summaryrefslogtreecommitdiffstats
path: root/src/node.cpp
blob: 07d2f3e4639f99c74eb1536933b1dc7613ff6fd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
/*
 * node.cpp - part of abakus
 * Copyright (C) 2004, 2005 Michael Pyne <[email protected]>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include <kdebug.h>

#include <math.h>

#include "node.h"
#include "valuemanager.h"
#include "function.h"

void Node::deleteNode(Node *node)
{
    if(dynamic_cast<BaseFunction *>(node) != 0)
        delete node;
}

BaseFunction::BaseFunction(const char *name) :
    m_name(name)
{
}

const Function *BaseFunction::function() const
{
    return FunctionManager::instance()->function(m_name);
}

UnaryFunction::UnaryFunction(const char *name, Node *operand) :
    BaseFunction(name), m_node(operand)
{
}

UnaryFunction::~UnaryFunction()
{
    deleteNode(m_node);
    m_node = 0;
}

void UnaryFunction::setOperand(Node *operand)
{
    m_node = operand;
}

void UnaryFunction::applyMap(NodeFunctor &fn) const
{
    fn(operand());
    fn(this);
}

TQString UnaryFunction::infixString() const
{
    return TQString("%1(%2)").arg(name(), operand()->infixString());
}

BuiltinFunction::BuiltinFunction(const char *name, Node *operand) :
    UnaryFunction(name, operand)
{
}

Abakus::number_t BuiltinFunction::value() const
{
    if(function() && operand()) {
	Abakus::number_t fnValue = operand()->value();
	return evaluateFunction(function(), fnValue);
    }

    return Abakus::number_t(0);
}

Abakus::number_t BuiltinFunction::derivative() const
{
    Abakus::number_t du = operand()->derivative();
    Abakus::number_t value = operand()->value();
    Abakus::number_t one(1), zero(0);

    if(du == zero)
        return du;

    // In case these functions get added later, these derivatives may
    // be useful:
    // d/dx(asinh u) = (du/dx * 1 / sqrt(x^2 + 1))
    // d/dx(acosh u) = (du/dx * 1 / sqrt(x^2 - 1))
    // d/dx(atanh u) = (du/dx * 1 / (1 - x^2))

    // This is very unfortunate duplication.
    if(name() == "sin")
        return value.cos() * du;
    else if(name() == "cos")
        return -value.sin() * du;
    else if(name() == "tan") {
        Abakus::number_t cosResult;

        cosResult = value.cos();
        cosResult = cosResult * cosResult;
        return one / cosResult;
    }
    else if(name() == "asinh") {
        value = value * value + one;
        return du / value.sqrt();
    }
    else if(name() == "acosh") {
        value = value * value - one;
        return du / value.sqrt();
    }
    else if(name() == "atanh") {
        value = one - value * value;
        return du / value;
    }
    else if(name() == "sinh") {
        return du * value.cosh();
    }
    else if(name() == "cosh") {
        return du * value.sinh(); // Yes the sign is correct.
    }
    else if(name() == "tanh") {
        Abakus::number_t tanh = value.tanh();

        return du * (one - tanh * tanh);
    }
    else if(name() == "atan") {
        return one * du / (one + value * value);
    }
    else if(name() == "acos") {
        // Same as asin but with inverted sign.
        return -(one / (value * value - one).sqrt() * du);
    }
    else if(name() == "asin") {
        return one / (value * value - one).sqrt() * du;
    }
    else if(name() == "ln") {
        return du / value;
    }
    else if(name() == "exp") {
        return du * value.exp();
    }
    else if(name() == "log") {
        return du / value / Abakus::number_t(10).ln();
    }
    else if(name() == "sqrt") {
        Abakus::number_t half("0.5");
        return half * value.pow(-half) * du;
    }
    else if(name() == "abs") {
        return (value / value.abs()) * du;
    }

    // Approximate it.

    Abakus::number_t epsilon("1e-15");
    Abakus::number_t fxh = evaluateFunction(function(), value + epsilon);
    Abakus::number_t fx = evaluateFunction(function(), value);
    return (fxh - fx) / epsilon;
}

DerivativeFunction::~DerivativeFunction()
{
    deleteNode(m_operand);
    m_operand = 0;
}

Abakus::number_t DerivativeFunction::value() const
{
    ValueManager *vm = ValueManager::instance();
    Abakus::number_t result;

    if(vm->isValueSet("x")) {
        Abakus::number_t oldValue = vm->value("x");

        vm->setValue("x", m_where->value());
        result = m_operand->derivative();
        vm->setValue("x", oldValue);
    }
    else {
        vm->setValue("x", m_where->value());
        result = m_operand->derivative();
        vm->removeValue("x");
    }

    return result;
}

Abakus::number_t DerivativeFunction::derivative() const
{
    kdError() << k_funcinfo << endl;
    kdError() << "This function is never supposed to be called!\n";

    return m_operand->derivative();
}

void DerivativeFunction::applyMap(NodeFunctor &fn) const
{
    fn(m_operand);
    fn(this);
}

TQString DerivativeFunction::infixString() const
{
    return TQString("deriv(%1, %2)").arg(m_operand->infixString(), m_where->infixString());
}

UnaryOperator::UnaryOperator(Type type, Node *operand)
    : m_type(type), m_node(operand)
{
}

UnaryOperator::~UnaryOperator()
{
    deleteNode(m_node);
    m_node = 0;
}

void UnaryOperator::applyMap(NodeFunctor &fn) const
{
    fn(operand());
    fn(this);
}

TQString UnaryOperator::infixString() const
{
    if(dynamic_cast<BinaryOperator *>(operand()))
        return TQString("-(%1)").arg(operand()->infixString());

    return TQString("-%1").arg(operand()->infixString());
}

Abakus::number_t UnaryOperator::derivative() const
{
    switch(type()) {
	case Negation:
	    return -(operand()->derivative());

	default:
	    kdError() << "Impossible case encountered for UnaryOperator!\n";
	    return Abakus::number_t(0);
    }
}

Abakus::number_t UnaryOperator::value() const
{
    switch(type()) {
	case Negation:
	    return -(operand()->value());

	default:
	    kdError() << "Impossible case encountered for UnaryOperator!\n";
	    return Abakus::number_t(0);
    }
}

BinaryOperator::BinaryOperator(Type type, Node *left, Node *right) :
    m_type(type), m_left(left), m_right(right)
{
}

BinaryOperator::~BinaryOperator()
{
    deleteNode(m_left);
    m_left = 0;

    deleteNode(m_right);
    m_right = 0;
}

void BinaryOperator::applyMap(NodeFunctor &fn) const
{
    fn(leftNode());
    fn(rightNode());
    fn(this);
}

TQString BinaryOperator::infixString() const
{
    TQString op;

    switch(type()) {
        case Addition:
            op = "+";
        break;

        case Subtraction:
            op = "-";
        break;

        case Multiplication:
            op = "*";
        break;

        case Division:
            op = "/";
        break;

        case Exponentiation:
            op = "^";
        break;

        default:
            op = "Error";
    }
    
    TQString left = TQString(isSimpleNode(leftNode()) ? "%1" : "(%1)").arg(leftNode()->infixString());
    TQString right = TQString(isSimpleNode(rightNode()) ? "%1" : "(%1)").arg(rightNode()->infixString());

    return TQString("%1 %2 %3").arg(left, op, right);
}

Abakus::number_t BinaryOperator::derivative() const
{
    if(!leftNode() || !rightNode()) {
	kdError() << "Can't evaluate binary operator!\n";
	return Abakus::number_t(0);
    }

    Abakus::number_t f = leftNode()->value();
    Abakus::number_t fPrime = leftNode()->derivative();
    Abakus::number_t g = rightNode()->value();
    Abakus::number_t gPrime = rightNode()->derivative();

    switch(type()) {
	case Addition:
	    return fPrime + gPrime;

	case Subtraction:
	    return fPrime - gPrime;

	case Multiplication:
	    return f * gPrime + fPrime * g;

	case Division:
	    return (g * fPrime - f * gPrime) / (g * g);

	case Exponentiation:
            return f.pow(g) * ((g / f) * fPrime + gPrime * f.ln());

	default:
	    kdError() << "Impossible case encountered evaluating binary operator!\n";
	    return Abakus::number_t(0);
    }
}

Abakus::number_t BinaryOperator::value() const
{
    if(!leftNode() || !rightNode()) {
	kdError() << "Can't evaluate binary operator!\n";
	return Abakus::number_t(0);
    }

    Abakus::number_t lValue = leftNode()->value();
    Abakus::number_t rValue = rightNode()->value();

    switch(type()) {
	case Addition:
	    return lValue + rValue;

	case Subtraction:
	    return lValue - rValue;

	case Multiplication:
	    return lValue * rValue;

	case Division:
	    return lValue / rValue;

	case Exponentiation:
            return lValue.pow(rValue);

	default:
	    kdError() << "Impossible case encountered evaluating binary operator!\n";
	    return Abakus::number_t(0);
    }
}

bool BinaryOperator::isSimpleNode(Node *node) const
{
    if(dynamic_cast<Identifier *>(node) ||
       dynamic_cast<NumericValue *>(node) ||
       dynamic_cast<UnaryOperator *>(node) ||
       dynamic_cast<BaseFunction *>(node))
    {
        return true;
    }

    return false;
}

Identifier::Identifier(const char *name) : m_name(name)
{
}

Abakus::number_t Identifier::value() const
{
    return ValueManager::instance()->value(name());
}

void Identifier::applyMap(NodeFunctor &fn) const
{
    fn(this);
}

TQString NumericValue::infixString() const
{
    return value().toString();
}