summaryrefslogtreecommitdiffstats
path: root/src/number.c
blob: 07aea62c7e1c47bf2199d24f21030bb0ccbb2f85 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
/* number.c: Implements arbitrary precision numbers. */
/*
    Copyright (C) 1991, 1992, 1993, 1994, 1997, 2000 Free Software Foundation, Inc.

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License , or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; see the file COPYING.  If not, write to:

      The Free Software Foundation, Inc.
      51 Franklin Street, Fifth Floor
      Boston, MA 02110-1301 USA.


    You may contact the author by:
       e-mail:  [email protected]
      us-mail:  Philip A. Nelson
                Computer Science Department, 9062
                Western Washington University
                Bellingham, WA 98226-9062
       
*************************************************************************/

#include "number.h"

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>/* Prototypes needed for external utility routines. */

#define bc_rt_warn rt_warn
#define bc_rt_error rt_error
#define bc_out_of_memory out_of_memory

_PROTOTYPE(void rt_warn, (char *mesg ,...));
_PROTOTYPE(void rt_error, (char *mesg ,...));
_PROTOTYPE(void out_of_memory, (void));


void out_of_memory(void){
  return;
}

void rt_warn(char *mesg ,...){
  return;
}

void rt_error(char *mesg ,...){
  return;
}

/* Storage used for special numbers. */
bc_num _zero_;
bc_num _one_;
bc_num _two_;

static bc_num _bc_Free_list = NULL;

/* new_num allocates a number and sets fields to known values. */

bc_num
bc_new_num (length, scale)
     int length, scale;
{
  bc_num temp;

  if (_bc_Free_list != NULL) {
    temp = _bc_Free_list;
    _bc_Free_list = temp->n_next;
  } else {
    temp = (bc_num) malloc (sizeof(bc_struct));
    if (temp == NULL) bc_out_of_memory ();
  }
  temp->n_sign = PLUS;
  temp->n_len = length;
  temp->n_scale = scale;
  temp->n_refs = 1;
  temp->n_ptr = (char *) malloc (length+scale+1);
  if (temp->n_ptr == NULL) bc_out_of_memory();
  temp->n_value = temp->n_ptr;
  memset (temp->n_ptr, 0, length+scale);
  return temp;
}

/* "Frees" a bc_num NUM.  Actually decreases reference count and only
   frees the storage if reference count is zero. */

void
bc_free_num (num)
    bc_num *num;
{
  if (*num == NULL) return;
  (*num)->n_refs--;
  if ((*num)->n_refs == 0) {
    if ((*num)->n_ptr)
      free ((*num)->n_ptr);
    (*num)->n_next = _bc_Free_list;
    _bc_Free_list = *num;
  }
  *num = NULL;
}


/* Intitialize the number package! */

void
bc_init_numbers ()
{
  _zero_ = bc_new_num (1,0);
  _one_  = bc_new_num (1,0);
  _one_->n_value[0] = 1;
  _two_  = bc_new_num (1,0);
  _two_->n_value[0] = 2;
}


/* Make a copy of a number!  Just increments the reference count! */

bc_num
bc_copy_num (num)
     bc_num num;
{
  num->n_refs++;
  return num;
}


/* Initialize a number NUM by making it a copy of zero. */

void
bc_init_num (num)
     bc_num *num;
{
  *num = bc_copy_num (_zero_);
}

/* For many things, we may have leading zeros in a number NUM.
   _bc_rm_leading_zeros just moves the data "value" pointer to the
   correct place and adjusts the length. */

static void
_bc_rm_leading_zeros (num)
     bc_num num;
{
  /* We can move n_value to point to the first non zero digit! */
  while (*num->n_value == 0 && num->n_len > 1) {
    num->n_value++;
    num->n_len--;
  }
}


/* Compare two bc numbers.  Return value is 0 if equal, -1 if N1 is less
   than N2 and +1 if N1 is greater than N2.  If USE_SIGN is false, just
   compare the magnitudes. */

static int
_bc_do_compare (n1, n2, use_sign, ignore_last)
     bc_num n1, n2;
     int use_sign;
     int ignore_last;
{
  char *n1ptr, *n2ptr;
  int  count;

  /* First, compare signs. */
  if (use_sign && n1->n_sign != n2->n_sign)
    {
      if (n1->n_sign == PLUS)
	return (1);	/* Positive N1 > Negative N2 */
      else
	return (-1);	/* Negative N1 < Positive N1 */
    }

  /* Now compare the magnitude. */
  if (n1->n_len != n2->n_len)
    {
      if (n1->n_len > n2->n_len)
	{
	  /* Magnitude of n1 > n2. */
	  if (!use_sign || n1->n_sign == PLUS)
	    return (1);
	  else
	    return (-1);
	}
      else
	{
	  /* Magnitude of n1 < n2. */
	  if (!use_sign || n1->n_sign == PLUS)
	    return (-1);
	  else
	    return (1);
	}
    }

  /* If we get here, they have the same number of integer digits.
     check the integer part and the equal length part of the fraction. */
  count = n1->n_len + MIN (n1->n_scale, n2->n_scale);
  n1ptr = n1->n_value;
  n2ptr = n2->n_value;

  while ((count > 0) && (*n1ptr == *n2ptr))
    {
      n1ptr++;
      n2ptr++;
      count--;
    }
  if (ignore_last && count == 1 && n1->n_scale == n2->n_scale)
    return (0);
  if (count != 0)
    {
      if (*n1ptr > *n2ptr)
	{
	  /* Magnitude of n1 > n2. */
	  if (!use_sign || n1->n_sign == PLUS)
	    return (1);
	  else
	    return (-1);
	}
      else
	{
	  /* Magnitude of n1 < n2. */
	  if (!use_sign || n1->n_sign == PLUS)
	    return (-1);
	  else
	    return (1);
	}
    }

  /* They are equal up to the last part of the equal part of the fraction. */
  if (n1->n_scale != n2->n_scale)
    {
      if (n1->n_scale > n2->n_scale)
	{
	  for (count = n1->n_scale-n2->n_scale; count>0; count--)
	    if (*n1ptr++ != 0)
	      {
		/* Magnitude of n1 > n2. */
		if (!use_sign || n1->n_sign == PLUS)
		  return (1);
		else
		  return (-1);
	      }
	}
      else
	{
	  for (count = n2->n_scale-n1->n_scale; count>0; count--)
	    if (*n2ptr++ != 0)
	      {
		/* Magnitude of n1 < n2. */
		if (!use_sign || n1->n_sign == PLUS)
		  return (-1);
		else
		  return (1);
	      }
	}
    }

  /* They must be equal! */
  return (0);
}


/* This is the "user callable" routine to compare numbers N1 and N2. */

int
bc_compare (n1, n2)
     bc_num n1, n2;
{
  return _bc_do_compare (n1, n2, TRUE, FALSE);
}

/* In some places we need to check if the number is negative. */

char
bc_is_neg (num)
     bc_num num;
{
  return num->n_sign == MINUS;
}

/* In some places we need to check if the number NUM is zero. */

char
bc_is_zero (num)
     bc_num num;
{
  int  count;
  char *nptr;

  /* Quick check. */
  if (num == _zero_) return TRUE;

  /* Initialize */
  count = num->n_len + num->n_scale;
  nptr = num->n_value;

  /* The check */
  while ((count > 0) && (*nptr++ == 0)) count--;

  if (count != 0)
    return FALSE;
  else
    return TRUE;
}

/* In some places we need to check if the number NUM is almost zero.
   Specifically, all but the last digit is 0 and the last digit is 1.
   Last digit is defined by scale. */

char
bc_is_near_zero (num, scale)
     bc_num num;
     int scale;
{
  int  count;
  char *nptr;

  /* Error checking */
  if (scale > num->n_scale)
    scale = num->n_scale;

  /* Initialize */
  count = num->n_len + scale;
  nptr = num->n_value;

  /* The check */
  while ((count > 0) && (*nptr++ == 0)) count--;

  if (count != 0 && (count != 1 || *--nptr != 1))
    return FALSE;
  else
    return TRUE;
}


/* Perform addition: N1 is added to N2 and the value is
   returned.  The signs of N1 and N2 are ignored.
   SCALE_MIN is to set the minimum scale of the result. */

static bc_num
_bc_do_add (n1, n2, scale_min)
     bc_num n1, n2;
     int scale_min;
{
  bc_num sum;
  int sum_scale, sum_digits;
  char *n1ptr, *n2ptr, *sumptr;
  int carry, n1bytes, n2bytes;
  int count;

  /* Prepare sum. */
  sum_scale = MAX (n1->n_scale, n2->n_scale);
  sum_digits = MAX (n1->n_len, n2->n_len) + 1;
  sum = bc_new_num (sum_digits, MAX(sum_scale, scale_min));

  /* Zero extra digits made by scale_min. */
  if (scale_min > sum_scale)
    {
      sumptr = (char *) (sum->n_value + sum_scale + sum_digits);
      for (count = scale_min - sum_scale; count > 0; count--)
	*sumptr++ = 0;
    }

  /* Start with the fraction part.  Initialize the pointers. */
  n1bytes = n1->n_scale;
  n2bytes = n2->n_scale;
  n1ptr = (char *) (n1->n_value + n1->n_len + n1bytes - 1);
  n2ptr = (char *) (n2->n_value + n2->n_len + n2bytes - 1);
  sumptr = (char *) (sum->n_value + sum_scale + sum_digits - 1);

  /* Add the fraction part.  First copy the longer fraction.*/
  if (n1bytes != n2bytes)
    {
      if (n1bytes > n2bytes)
	while (n1bytes>n2bytes)
	  { *sumptr-- = *n1ptr--; n1bytes--;}
      else
	while (n2bytes>n1bytes)
	  { *sumptr-- = *n2ptr--; n2bytes--;}
    }

  /* Now add the remaining fraction part and equal size integer parts. */
  n1bytes += n1->n_len;
  n2bytes += n2->n_len;
  carry = 0;
  while ((n1bytes > 0) && (n2bytes > 0))
    {
      *sumptr = *n1ptr-- + *n2ptr-- + carry;
      if (*sumptr > (BASE-1))
	{
	   carry = 1;
	   *sumptr -= BASE;
	}
      else
	carry = 0;
      sumptr--;
      n1bytes--;
      n2bytes--;
    }

  /* Now add carry the longer integer part. */
  if (n1bytes == 0)
    { n1bytes = n2bytes; n1ptr = n2ptr; }
  while (n1bytes-- > 0)
    {
      *sumptr = *n1ptr-- + carry;
      if (*sumptr > (BASE-1))
	{
	   carry = 1;
	   *sumptr -= BASE;
	 }
      else
	carry = 0;
      sumptr--;
    }

  /* Set final carry. */
  if (carry == 1)
    *sumptr += 1;

  /* Adjust sum and return. */
  _bc_rm_leading_zeros (sum);
  return sum;
}


/* Perform subtraction: N2 is subtracted from N1 and the value is
   returned.  The signs of N1 and N2 are ignored.  Also, N1 is
   assumed to be larger than N2.  SCALE_MIN is the minimum scale
   of the result. */

static bc_num
_bc_do_sub (n1, n2, scale_min)
     bc_num n1, n2;
     int scale_min;
{
  bc_num diff;
  int diff_scale, diff_len;
  int min_scale, min_len;
  char *n1ptr, *n2ptr, *diffptr;
  int borrow, count, val;

  /* Allocate temporary storage. */
  diff_len = MAX (n1->n_len, n2->n_len);
  diff_scale = MAX (n1->n_scale, n2->n_scale);
  min_len = MIN  (n1->n_len, n2->n_len);
  min_scale = MIN (n1->n_scale, n2->n_scale);
  diff = bc_new_num (diff_len, MAX(diff_scale, scale_min));

  /* Zero extra digits made by scale_min. */
  if (scale_min > diff_scale)
    {
      diffptr = (char *) (diff->n_value + diff_len + diff_scale);
      for (count = scale_min - diff_scale; count > 0; count--)
	*diffptr++ = 0;
    }

  /* Initialize the subtract. */
  n1ptr = (char *) (n1->n_value + n1->n_len + n1->n_scale -1);
  n2ptr = (char *) (n2->n_value + n2->n_len + n2->n_scale -1);
  diffptr = (char *) (diff->n_value + diff_len + diff_scale -1);

  /* Subtract the numbers. */
  borrow = 0;

  /* Take care of the longer scaled number. */
  if (n1->n_scale != min_scale)
    {
      /* n1 has the longer scale */
      for (count = n1->n_scale - min_scale; count > 0; count--)
	*diffptr-- = *n1ptr--;
    }
  else
    {
      /* n2 has the longer scale */
      for (count = n2->n_scale - min_scale; count > 0; count--)
	{
	  val = - *n2ptr-- - borrow;
	  if (val < 0)
	    {
	      val += BASE;
	      borrow = 1;
	    }
	  else
	    borrow = 0;
	  *diffptr-- = val;
	}
    }

  /* Now do the equal length scale and integer parts. */

  for (count = 0; count < min_len + min_scale; count++)
    {
      val = *n1ptr-- - *n2ptr-- - borrow;
      if (val < 0)
	{
	  val += BASE;
	  borrow = 1;
	}
      else
	borrow = 0;
      *diffptr-- = val;
    }

  /* If n1 has more digits then n2, we now do that subtract. */
  if (diff_len != min_len)
    {
      for (count = diff_len - min_len; count > 0; count--)
	{
	  val = *n1ptr-- - borrow;
	  if (val < 0)
	    {
	      val += BASE;
	      borrow = 1;
	    }
	  else
	    borrow = 0;
	  *diffptr-- = val;
	}
    }

  /* Clean up and return. */
  _bc_rm_leading_zeros (diff);
  return diff;
}


/* Here is the full subtract routine that takes care of negative numbers.
   N2 is subtracted from N1 and the result placed in RESULT.  SCALE_MIN
   is the minimum scale for the result. */

void
bc_sub (n1, n2, result, scale_min)
     bc_num n1, n2, *result;
     int scale_min;
{
  bc_num diff = NULL;
  int cmp_res;
  int res_scale;

  if (n1->n_sign != n2->n_sign)
    {
      diff = _bc_do_add (n1, n2, scale_min);
      diff->n_sign = n1->n_sign;
    }
  else
    {
      /* subtraction must be done. */
      /* Compare magnitudes. */
      cmp_res = _bc_do_compare (n1, n2, FALSE, FALSE);
      switch (cmp_res)
	{
	case -1:
	  /* n1 is less than n2, subtract n1 from n2. */
	  diff = _bc_do_sub (n2, n1, scale_min);
	  diff->n_sign = (n2->n_sign == PLUS ? MINUS : PLUS);
	  break;
	case  0:
	  /* They are equal! return zero! */
	  res_scale = MAX (scale_min, MAX(n1->n_scale, n2->n_scale));
	  diff = bc_new_num (1, res_scale);
	  memset (diff->n_value, 0, res_scale+1);
	  break;
	case  1:
	  /* n2 is less than n1, subtract n2 from n1. */
	  diff = _bc_do_sub (n1, n2, scale_min);
	  diff->n_sign = n1->n_sign;
	  break;
	}
    }

  /* Clean up and return. */
  bc_free_num (result);
  *result = diff;
}


/* Here is the full add routine that takes care of negative numbers.
   N1 is added to N2 and the result placed into RESULT.  SCALE_MIN
   is the minimum scale for the result. */

void
bc_add (n1, n2, result, scale_min)
     bc_num n1, n2, *result;
     int scale_min;
{
  bc_num sum = NULL;
  int cmp_res;
  int res_scale;

  if (n1->n_sign == n2->n_sign)
    {
      sum = _bc_do_add (n1, n2, scale_min);
      sum->n_sign = n1->n_sign;
    }
  else
    {
      /* subtraction must be done. */
      cmp_res = _bc_do_compare (n1, n2, FALSE, FALSE);  /* Compare magnitudes. */
      switch (cmp_res)
	{
	case -1:
	  /* n1 is less than n2, subtract n1 from n2. */
	  sum = _bc_do_sub (n2, n1, scale_min);
	  sum->n_sign = n2->n_sign;
	  break;
	case  0:
	  /* They are equal! return zero with the correct scale! */
	  res_scale = MAX (scale_min, MAX(n1->n_scale, n2->n_scale));
	  sum = bc_new_num (1, res_scale);
	  memset (sum->n_value, 0, res_scale+1);
	  break;
	case  1:
	  /* n2 is less than n1, subtract n2 from n1. */
	  sum = _bc_do_sub (n1, n2, scale_min);
	  sum->n_sign = n1->n_sign;
	}
    }

  /* Clean up and return. */
  bc_free_num (result);
  *result = sum;
}

/* Recursive vs non-recursive multiply crossover ranges. */
#if defined(MULDIGITS)
#include "muldigits.h"
#else
#define MUL_BASE_DIGITS 80
#endif

int mul_base_digits = MUL_BASE_DIGITS;
#define MUL_SMALL_DIGITS mul_base_digits/4

/* Multiply utility routines */

static bc_num
new_sub_num (length, scale, value)
     int length, scale;
     char *value;
{
  bc_num temp;

  if (_bc_Free_list != NULL) {
    temp = _bc_Free_list;
    _bc_Free_list = temp->n_next;
  } else {
    temp = (bc_num) malloc (sizeof(bc_struct));
    if (temp == NULL) bc_out_of_memory ();
  }
  temp->n_sign = PLUS;
  temp->n_len = length;
  temp->n_scale = scale;
  temp->n_refs = 1;
  temp->n_ptr = NULL;
  temp->n_value = value;
  return temp;
}

static void
_bc_simp_mul (bc_num n1, int n1len, bc_num n2, int n2len, bc_num *prod,
	      int full_scale)
{
  char *n1ptr, *n2ptr, *pvptr;
  char *n1end, *n2end;		/* To the end of n1 and n2. */
  int indx, sum, prodlen;

  prodlen = n1len+n2len+1;

  *prod = bc_new_num (prodlen, 0);

  n1end = (char *) (n1->n_value + n1len - 1);
  n2end = (char *) (n2->n_value + n2len - 1);
  pvptr = (char *) ((*prod)->n_value + prodlen - 1);
  sum = 0;

  /* Here is the loop... */
  for (indx = 0; indx < prodlen-1; indx++)
    {
      n1ptr = (char *) (n1end - MAX(0, indx-n2len+1));
      n2ptr = (char *) (n2end - MIN(indx, n2len-1));
      while ((n1ptr >= n1->n_value) && (n2ptr <= n2end))
	sum += *n1ptr-- * *n2ptr++;
      *pvptr-- = sum % BASE;
      sum = sum / BASE;
    }
  *pvptr = sum;
}


/* A special adder/subtractor for the recursive divide and conquer
   multiply algorithm.  Note: if sub is called, accum must
   be larger that what is being subtracted.  Also, accum and val
   must have n_scale = 0.  (e.g. they must look like integers. *) */
static void
_bc_shift_addsub (bc_num accum, bc_num val, int shift, int sub)
{
  signed char *accp, *valp;
  int  count, carry;

  count = val->n_len;
  if (val->n_value[0] == 0)
    count--;
  assert (accum->n_len+accum->n_scale >= shift+count);
  
  /* Set up pointers and others */
  accp = (signed char *)(accum->n_value +
			 accum->n_len + accum->n_scale - shift - 1);
  valp = (signed char *)(val->n_value + val->n_len - 1);
  carry = 0;

  if (sub) {
    /* Subtraction, carry is really borrow. */
    while (count--) {
      *accp -= *valp-- + carry;
      if (*accp < 0) {
	carry = 1;
        *accp-- += BASE;
      } else {
	carry = 0;
	accp--;
      }
    }
    while (carry) {
      *accp -= carry;
      if (*accp < 0)
	*accp-- += BASE;
      else
	carry = 0;
    }
  } else {
    /* Addition */
    while (count--) {
      *accp += *valp-- + carry;
      if (*accp > (BASE-1)) {
	carry = 1;
        *accp-- -= BASE;
      } else {
	carry = 0;
	accp--;
      }
    }
    while (carry) {
      *accp += carry;
      if (*accp > (BASE-1))
	*accp-- -= BASE;
      else
	carry = 0;
    }
  }
}

/* Recursive divide and conquer multiply algorithm.  
   Based on 
   Let u = u0 + u1*(b^n)
   Let v = v0 + v1*(b^n)
   Then uv = (B^2n+B^n)*u1*v1 + B^n*(u1-u0)*(v0-v1) + (B^n+1)*u0*v0

   B is the base of storage, number of digits in u1,u0 close to equal.
*/
static void
_bc_rec_mul (bc_num u, int ulen, bc_num v, int vlen, bc_num *prod,
	     int full_scale)
{ 
  bc_num u0, u1, v0, v1;
  int u0len, v0len;
  bc_num m1, m2, m3, d1, d2;
  int n, prodlen, m1zero;
  int d1len, d2len;

  /* Base case? */
  if ((ulen+vlen) < mul_base_digits
      || ulen < MUL_SMALL_DIGITS
      || vlen < MUL_SMALL_DIGITS ) {
    _bc_simp_mul (u, ulen, v, vlen, prod, full_scale);
    return;
  }

  /* Calculate n -- the u and v split point in digits. */
  n = (MAX(ulen, vlen)+1) / 2;

  /* Split u and v. */
  if (ulen < n) {
    u1 = bc_copy_num (_zero_);
    u0 = new_sub_num (ulen,0, u->n_value);
  } else {
    u1 = new_sub_num (ulen-n, 0, u->n_value);
    u0 = new_sub_num (n, 0, u->n_value+ulen-n);
  }
  if (vlen < n) {
    v1 = bc_copy_num (_zero_);
    v0 = new_sub_num (vlen,0, v->n_value);
  } else {
    v1 = new_sub_num (vlen-n, 0, v->n_value);
    v0 = new_sub_num (n, 0, v->n_value+vlen-n);
    }
  _bc_rm_leading_zeros (u1);
  _bc_rm_leading_zeros (u0);
  u0len = u0->n_len;
  _bc_rm_leading_zeros (v1);
  _bc_rm_leading_zeros (v0);
  v0len = v0->n_len;

  m1zero = bc_is_zero(u1) || bc_is_zero(v1);

  /* Calculate sub results ... */

  bc_init_num(&d1);
  bc_init_num(&d2);
  bc_sub (u1, u0, &d1, 0);
  d1len = d1->n_len;
  bc_sub (v0, v1, &d2, 0);
  d2len = d2->n_len;


  /* Do recursive multiplies and shifted adds. */
  if (m1zero)
    m1 = bc_copy_num (_zero_);
  else
    _bc_rec_mul (u1, u1->n_len, v1, v1->n_len, &m1, 0);

  if (bc_is_zero(d1) || bc_is_zero(d2))
    m2 = bc_copy_num (_zero_);
  else
    _bc_rec_mul (d1, d1len, d2, d2len, &m2, 0);

  if (bc_is_zero(u0) || bc_is_zero(v0))
    m3 = bc_copy_num (_zero_);
  else
    _bc_rec_mul (u0, u0->n_len, v0, v0->n_len, &m3, 0);

  /* Initialize product */
  prodlen = ulen+vlen+1;
  *prod = bc_new_num(prodlen, 0);

  if (!m1zero) {
    _bc_shift_addsub (*prod, m1, 2*n, 0);
    _bc_shift_addsub (*prod, m1, n, 0);
  }
  _bc_shift_addsub (*prod, m3, n, 0);
  _bc_shift_addsub (*prod, m3, 0, 0);
  _bc_shift_addsub (*prod, m2, n, d1->n_sign != d2->n_sign);

  /* Now clean up! */
  bc_free_num (&u1);
  bc_free_num (&u0);
  bc_free_num (&v1);
  bc_free_num (&m1);
  bc_free_num (&v0);
  bc_free_num (&m2);
  bc_free_num (&m3);
  bc_free_num (&d1);
  bc_free_num (&d2);
}

/* The multiply routine.  N2 times N1 is put int PROD with the scale of
   the result being MIN(N2 scale+N1 scale, MAX (SCALE, N2 scale, N1 scale)).
   */

void
bc_multiply (n1, n2, prod, scale)
     bc_num n1, n2, *prod;
     int scale;
{
  bc_num pval; 
  int len1, len2;
  int full_scale, prod_scale;

  /* Initialize things. */
  len1 = n1->n_len + n1->n_scale;
  len2 = n2->n_len + n2->n_scale;
  full_scale = n1->n_scale + n2->n_scale;
  prod_scale = MIN(full_scale,MAX(scale,MAX(n1->n_scale,n2->n_scale)));

  /* Do the multiply */
  _bc_rec_mul (n1, len1, n2, len2, &pval, full_scale);

  /* Assign to prod and clean up the number. */
  pval->n_sign = ( n1->n_sign == n2->n_sign ? PLUS : MINUS );
  pval->n_value = pval->n_ptr;
  pval->n_len = len2 + len1 + 1 - full_scale;
  pval->n_scale = prod_scale;
  _bc_rm_leading_zeros (pval);
  if (bc_is_zero (pval))
    pval->n_sign = PLUS;
  bc_free_num (prod);
  *prod = pval;
}

/* Some utility routines for the divide:  First a one digit multiply.
   NUM (with SIZE digits) is multiplied by DIGIT and the result is
   placed into RESULT.  It is written so that NUM and RESULT can be
   the same pointers.  */

static void
_one_mult (num, size, digit, result)
     unsigned char *num;
     int size, digit;
     unsigned char *result;
{
  int carry, value;
  unsigned char *nptr, *rptr;

  if (digit == 0)
    memset (result, 0, size);
  else
    {
      if (digit == 1)
	memcpy (result, num, size);
      else
	{
	  /* Initialize */
	  nptr = (unsigned char *) (num+size-1);
	  rptr = (unsigned char *) (result+size-1);
	  carry = 0;

	  while (size-- > 0)
	    {
	      value = *nptr-- * digit + carry;
	      *rptr-- = value % BASE;
	      carry = value / BASE;
	    }

	  if (carry != 0) *rptr = carry;
	}
    }
}


/* The full division routine. This computes N1 / N2.  It returns
   0 if the division is ok and the result is in QUOT.  The number of
   digits after the decimal point is SCALE. It returns -1 if division
   by zero is tried.  The algorithm is found in Knuth Vol 2. p237. */

int
bc_divide (n1, n2, quot, scale)
     bc_num n1, n2, *quot;
     int scale;
{
  bc_num qval;
  unsigned char *num1, *num2;
  unsigned char *ptr1, *ptr2, *n2ptr, *qptr;
  int  scale1, val;
  unsigned int  len1, len2, scale2, qdigits, extra, count;
  unsigned int  qdig, qguess, borrow, carry;
  unsigned char *mval;
  char zero;
  unsigned int  norm;

  /* Test for divide by zero. */
  if (bc_is_zero (n2)) return -1;

  /* Test for divide by 1.  If it is we must truncate. */
  if (n2->n_scale == 0)
    {
      if (n2->n_len == 1 && *n2->n_value == 1)
	{
	  qval = bc_new_num (n1->n_len, scale);
	  qval->n_sign = (n1->n_sign == n2->n_sign ? PLUS : MINUS);
	  memset (&qval->n_value[n1->n_len],0,scale);
	  memcpy (qval->n_value, n1->n_value,
		  n1->n_len + MIN(n1->n_scale,scale));
	  bc_free_num (quot);
	  *quot = qval;
	}
    }

  /* Set up the divide.  Move the decimal point on n1 by n2's scale.
     Remember, zeros on the end of num2 are wasted effort for dividing. */
  scale2 = n2->n_scale;
  n2ptr = (unsigned char *) n2->n_value+n2->n_len+scale2-1;
  while ((scale2 > 0) && (*n2ptr-- == 0)) scale2--;

  len1 = n1->n_len + scale2;
  scale1 = n1->n_scale - scale2;
  if (scale1 < scale)
    extra = scale - scale1;
  else
    extra = 0;
  num1 = (unsigned char *) malloc (n1->n_len+n1->n_scale+extra+2);
  if (num1 == NULL) bc_out_of_memory();
  memset (num1, 0, n1->n_len+n1->n_scale+extra+2);
  memcpy (num1+1, n1->n_value, n1->n_len+n1->n_scale);

  len2 = n2->n_len + scale2;
  num2 = (unsigned char *) malloc (len2+1);
  if (num2 == NULL) bc_out_of_memory();
  memcpy (num2, n2->n_value, len2);
  *(num2+len2) = 0;
  n2ptr = num2;
  while (*n2ptr == 0)
    {
      n2ptr++;
      len2--;
    }

  /* Calculate the number of quotient digits. */
  if (len2 > len1+scale)
    {
      qdigits = scale+1;
      zero = TRUE;
    }
  else
    {
      zero = FALSE;
      if (len2>len1)
	qdigits = scale+1;  	/* One for the zero integer part. */
      else
	qdigits = len1-len2+scale+1;
    }

  /* Allocate and zero the storage for the quotient. */
  qval = bc_new_num (qdigits-scale,scale);
  memset (qval->n_value, 0, qdigits);

  /* Allocate storage for the temporary storage mval. */
  mval = (unsigned char *) malloc (len2+1);
  if (mval == NULL) bc_out_of_memory ();

  /* Now for the full divide algorithm. */
  if (!zero)
    {
      /* Normalize */
      norm =  10 / ((int)*n2ptr + 1);
      if (norm != 1)
	{
	  _one_mult (num1, len1+scale1+extra+1, norm, num1);
	  _one_mult (n2ptr, len2, norm, n2ptr);
	}

      /* Initialize divide loop. */
      qdig = 0;
      if (len2 > len1)
	qptr = (unsigned char *) qval->n_value+len2-len1;
      else
	qptr = (unsigned char *) qval->n_value;

      /* Loop */
      while (qdig <= len1+scale-len2)
	{
	  /* Calculate the quotient digit guess. */
	  if (*n2ptr == num1[qdig])
	    qguess = 9;
	  else
	    qguess = (num1[qdig]*10 + num1[qdig+1]) / *n2ptr;

	  /* Test qguess. */
	  if (n2ptr[1]*qguess >
	      (num1[qdig]*10 + num1[qdig+1] - *n2ptr*qguess)*10
	       + num1[qdig+2])
	    {
	      qguess--;
	      /* And again. */
	      if (n2ptr[1]*qguess >
		  (num1[qdig]*10 + num1[qdig+1] - *n2ptr*qguess)*10
		  + num1[qdig+2])
		qguess--;
	    }

	  /* Multiply and subtract. */
	  borrow = 0;
	  if (qguess != 0)
	    {
	      *mval = 0;
	      _one_mult (n2ptr, len2, qguess, mval+1);
	      ptr1 = (unsigned char *) num1+qdig+len2;
	      ptr2 = (unsigned char *) mval+len2;
	      for (count = 0; count < len2+1; count++)
		{
		  val = (int) *ptr1 - (int) *ptr2-- - borrow;
		  if (val < 0)
		    {
		      val += 10;
		      borrow = 1;
		    }
		  else
		    borrow = 0;
		  *ptr1-- = val;
		}
	    }

	  /* Test for negative result. */
	  if (borrow == 1)
	    {
	      qguess--;
	      ptr1 = (unsigned char *) num1+qdig+len2;
	      ptr2 = (unsigned char *) n2ptr+len2-1;
	      carry = 0;
	      for (count = 0; count < len2; count++)
		{
		  val = (int) *ptr1 + (int) *ptr2-- + carry;
		  if (val > 9)
		    {
		      val -= 10;
		      carry = 1;
		    }
		  else
		    carry = 0;
		  *ptr1-- = val;
		}
	      if (carry == 1) *ptr1 = (*ptr1 + 1) % 10;
	    }

	  /* We now know the quotient digit. */
	  *qptr++ =  qguess;
	  qdig++;
	}
    }

  /* Clean up and return the number. */
  qval->n_sign = ( n1->n_sign == n2->n_sign ? PLUS : MINUS );
  if (bc_is_zero (qval)) qval->n_sign = PLUS;
  _bc_rm_leading_zeros (qval);
  bc_free_num (quot);
  *quot = qval;

  /* Clean up temporary storage. */
  free (mval);
  free (num1);
  free (num2);

  return 0;	/* Everything is OK. */
}


/* Division *and* modulo for numbers.  This computes both NUM1 / NUM2 and
   NUM1 % NUM2  and puts the results in QUOT and REM, except that if QUOT
   is NULL then that store will be omitted.
 */

int
bc_divmod (num1, num2, quot, rem, scale)
     bc_num num1, num2, *quot, *rem;
     int scale;
{
  bc_num quotient = NULL;
  bc_num temp;
  int rscale;

  /* Check for correct numbers. */
  if (bc_is_zero (num2)) return -1;

  /* Calculate final scale. */
  rscale = MAX (num1->n_scale, num2->n_scale+scale);
  bc_init_num(&temp);

  /* Calculate it. */
  bc_divide (num1, num2, &temp, scale);
  if (quot)
    quotient = bc_copy_num (temp);
  bc_multiply (temp, num2, &temp, rscale);
  bc_sub (num1, temp, rem, rscale);
  bc_free_num (&temp);

  if (quot)
    {
      bc_free_num (quot);
      *quot = quotient;
    }

  return 0;	/* Everything is OK. */
}


/* Modulo for numbers.  This computes NUM1 % NUM2  and puts the
   result in RESULT.   */

int
bc_modulo (num1, num2, result, scale)
     bc_num num1, num2, *result;
     int scale;
{
  return bc_divmod (num1, num2, NULL, result, scale);
}

/* Raise BASE to the EXPO power, reduced modulo MOD.  The result is
   placed in RESULT.  If a EXPO is not an integer,
   only the integer part is used.  */

int
bc_raisemod (base, expo, mod, result, scale)
     bc_num base, expo, mod, *result;
     int scale;
{
  bc_num power, exponent, parity, temp;
  int rscale;

  /* Check for correct numbers. */
  if (bc_is_zero(mod)) return -1;
  if (bc_is_neg(expo)) return -1;

  /* Set initial values.  */
  power = bc_copy_num (base);
  exponent = bc_copy_num (expo);
  temp = bc_copy_num (_one_);
  bc_init_num(&parity);

  /* Check the base for scale digits. */
  if (base->n_scale != 0)
      bc_rt_warn ("non-zero scale in base");

  /* Check the exponent for scale digits. */
  if (exponent->n_scale != 0)
    {
      bc_rt_warn ("non-zero scale in exponent");
      bc_divide (exponent, _one_, &exponent, 0); /*truncate */
    }

  /* Check the modulus for scale digits. */
  if (mod->n_scale != 0)
      bc_rt_warn ("non-zero scale in modulus");

  /* Do the calculation. */
  rscale = MAX(scale, base->n_scale);
  while ( !bc_is_zero(exponent) )
    {
      (void) bc_divmod (exponent, _two_, &exponent, &parity, 0);
      if ( !bc_is_zero(parity) )
	{
	  bc_multiply (temp, power, &temp, rscale);
	  (void) bc_modulo (temp, mod, &temp, scale);
	}

      bc_multiply (power, power, &power, rscale);
      (void) bc_modulo (power, mod, &power, scale);
    }

  /* Assign the value. */
  bc_free_num (&power);
  bc_free_num (&exponent);
  bc_free_num (result);
  *result = temp;
  return 0;	/* Everything is OK. */
}

/* Raise NUM1 to the NUM2 power.  The result is placed in RESULT.
   Maximum exponent is LONG_MAX.  If a NUM2 is not an integer,
   only the integer part is used.  */

void
bc_raise (num1, num2, result, scale)
     bc_num num1, num2, *result;
     int scale;
{
   bc_num temp, power;
   long exponent;
   int rscale;
   int pwrscale;
   int calcscale;
   char neg;

   /* Check the exponent for scale digits and convert to a long. */
   if (num2->n_scale != 0)
     bc_rt_warn ("non-zero scale in exponent");
   exponent = bc_num2long (num2);
   if (exponent == 0 && (num2->n_len > 1 || num2->n_value[0] != 0))
       bc_rt_error ("exponent too large in raise");

   /* Special case if exponent is a zero. */
   if (exponent == 0)
     {
       bc_free_num (result);
       *result = bc_copy_num (_one_);
       return;
     }

   /* Other initializations. */
   if (exponent < 0)
     {
       neg = TRUE;
       exponent = -exponent;
       rscale = scale;
     }
   else
     {
       neg = FALSE;
       rscale = MIN (num1->n_scale*exponent, MAX(scale, num1->n_scale));
     }

   /* Set initial value of temp.  */
   power = bc_copy_num (num1);
   pwrscale = num1->n_scale;
   while ((exponent & 1) == 0)
     {
       pwrscale = 2*pwrscale;
       bc_multiply (power, power, &power, pwrscale);
       exponent = exponent >> 1;
     }
   temp = bc_copy_num (power);
   calcscale = pwrscale;
   exponent = exponent >> 1;

   /* Do the calculation. */
   while (exponent > 0)
     {
       pwrscale = 2*pwrscale;
       bc_multiply (power, power, &power, pwrscale);
       if ((exponent & 1) == 1) {
	 calcscale = pwrscale + calcscale;
	 bc_multiply (temp, power, &temp, calcscale);
       }
       exponent = exponent >> 1;
     }

   /* Assign the value. */
   if (neg)
     {
       bc_divide (_one_, temp, result, rscale);
       bc_free_num (&temp);
     }
   else
     {
       bc_free_num (result);
       *result = temp;
       if ((*result)->n_scale > rscale)
	 (*result)->n_scale = rscale;
     }
   bc_free_num (&power);
}

/* Take the square root NUM and return it in NUM with SCALE digits
   after the decimal place. */

int
bc_sqrt (num, scale)
     bc_num *num;
     int scale;
{
  int rscale, cmp_res, done;
  int cscale;
  bc_num guess, guess1, point5, diff;

  /* Initial checks. */
  cmp_res = bc_compare (*num, _zero_);
  if (cmp_res < 0)
    return 0;		/* error */
  else
    {
      if (cmp_res == 0)
	{
	  bc_free_num (num);
	  *num = bc_copy_num (_zero_);
	  return 1;
	}
    }
  cmp_res = bc_compare (*num, _one_);
  if (cmp_res == 0)
    {
      bc_free_num (num);
      *num = bc_copy_num (_one_);
      return 1;
    }

  /* Initialize the variables. */
  rscale = MAX (scale, (*num)->n_scale);
  bc_init_num(&guess);
  bc_init_num(&guess1);
  bc_init_num(&diff);
  point5 = bc_new_num (1,1);
  point5->n_value[1] = 5;


  /* Calculate the initial guess. */
  if (cmp_res < 0)
    {
      /* The number is between 0 and 1.  Guess should start at 1. */
      guess = bc_copy_num (_one_);
      cscale = (*num)->n_scale;
    }
  else
    {
      /* The number is greater than 1.  Guess should start at 10^(exp/2). */
      bc_int2num (&guess,10);

      bc_int2num (&guess1,(*num)->n_len);
      bc_multiply (guess1, point5, &guess1, 0);
      guess1->n_scale = 0;
      bc_raise (guess, guess1, &guess, 0);
      bc_free_num (&guess1);
      cscale = 3;
    }

  /* Find the square root using Newton's algorithm. */
  done = FALSE;
  while (!done)
    {
      bc_free_num (&guess1);
      guess1 = bc_copy_num (guess);
      bc_divide (*num, guess, &guess, cscale);
      bc_add (guess, guess1, &guess, 0);
      bc_multiply (guess, point5, &guess, cscale);
      bc_sub (guess, guess1, &diff, cscale+1);
      if (bc_is_near_zero (diff, cscale))
	{
	  if (cscale < rscale+1)
	    cscale = MIN (cscale*3, rscale+1);
	  else
	    done = TRUE;
	}
    }

  /* Assign the number and clean up. */
  bc_free_num (num);
  bc_divide (guess,_one_,num,rscale);
  bc_free_num (&guess);
  bc_free_num (&guess1);
  bc_free_num (&point5);
  bc_free_num (&diff);
  return 1;
}


/* The following routines provide output for bcd numbers package
   using the rules of POSIX bc for output. */

/* This structure is used for saving digits in the conversion process. */
typedef struct stk_rec {
	long  digit;
	struct stk_rec *next;
} stk_rec;

/* The reference string for digits. */
static char ref_str[] = "0123456789ABCDEF";


/* A special output routine for "multi-character digits."  Exactly
   SIZE characters must be output for the value VAL.  If SPACE is
   non-zero, we must output one space before the number.  OUT_CHAR
   is the actual routine for writing the characters. */

void
bc_out_long (val, size, space, out_char)
     long val;
     int size, space;
#ifdef NUMBER__STDC__
     void (*out_char)(int);
#else
     void (*out_char)();
#endif
{
  char digits[40];
  int len, ix;

  if (space) (*out_char) (' ');
  sprintf (digits, "%ld", val);
  len = strlen (digits);
  while (size > len)
    {
      (*out_char) ('0');
      size--;
    }
  for (ix=0; ix < len; ix++)
    (*out_char) (digits[ix]);
}

/* Output of a bcd number.  NUM is written in base O_BASE using OUT_CHAR
   as the routine to do the actual output of the characters. */

void
bc_out_num (num, o_base, out_char, leading_zero)
     bc_num num;
     int o_base;
#ifdef NUMBER__STDC__
     void (*out_char)(int);
#else
     void (*out_char)();
#endif
     int leading_zero;
{
  char *nptr;
  int  index, fdigit, pre_space;
  stk_rec *digits, *temp;
  bc_num int_part, frac_part, base, cur_dig, t_num, max_o_digit;

  /* The negative sign if needed. */
  if (num->n_sign == MINUS) (*out_char) ('-');

  /* Output the number. */
  if (bc_is_zero (num))
    (*out_char) ('0');
  else
    if (o_base == 10)
      {
	/* The number is in base 10, do it the fast way. */
	nptr = num->n_value;
	if (num->n_len > 1 || *nptr != 0)
	  for (index=num->n_len; index>0; index--)
	    (*out_char) (BCD_CHAR(*nptr++));
	else
	  nptr++;

	if (leading_zero && bc_is_zero (num))
	  (*out_char) ('0');

	/* Now the fraction. */
	if (num->n_scale > 0)
	  {
	    (*out_char) ('.');
	    for (index=0; index<num->n_scale; index++)
	      (*out_char) (BCD_CHAR(*nptr++));
	  }
      }
    else
      {
	/* special case ... */
	if (leading_zero && bc_is_zero (num))
	  (*out_char) ('0');

	/* The number is some other base. */
	digits = NULL;
	bc_init_num (&int_part);
	bc_divide (num, _one_, &int_part, 0);
	bc_init_num (&frac_part);
	bc_init_num (&cur_dig);
	bc_init_num (&base);
	bc_sub (num, int_part, &frac_part, 0);
	/* Make the INT_PART and FRAC_PART positive. */
	int_part->n_sign = PLUS;
	frac_part->n_sign = PLUS;
	bc_int2num (&base, o_base);
	bc_init_num (&max_o_digit);
	bc_int2num (&max_o_digit, o_base-1);


	/* Get the digits of the integer part and push them on a stack. */
	while (!bc_is_zero (int_part))
	  {
	    bc_modulo (int_part, base, &cur_dig, 0);
	    temp = (stk_rec *) malloc (sizeof(stk_rec));
	    if (temp == NULL) bc_out_of_memory();
	    temp->digit = bc_num2long (cur_dig);
	    temp->next = digits;
	    digits = temp;
	    bc_divide (int_part, base, &int_part, 0);
	  }

	/* Print the digits on the stack. */
	if (digits != NULL)
	  {
	    /* Output the digits. */
	    while (digits != NULL)
	      {
		temp = digits;
		digits = digits->next;
		if (o_base <= 16)
		  (*out_char) (ref_str[ (int) temp->digit]);
		else
		  bc_out_long (temp->digit, max_o_digit->n_len, 1, out_char);
		free (temp);
	      }
	  }

	/* Get and print the digits of the fraction part. */
	if (num->n_scale > 0)
	  {
	    (*out_char) ('.');
	    pre_space = 0;
	    t_num = bc_copy_num (_one_);
	    while (t_num->n_len <= num->n_scale) {
	      bc_multiply (frac_part, base, &frac_part, num->n_scale);
	      fdigit = bc_num2long (frac_part);
	      bc_int2num (&int_part, fdigit);
	      bc_sub (frac_part, int_part, &frac_part, 0);
	      if (o_base <= 16)
		(*out_char) (ref_str[fdigit]);
	      else {
		bc_out_long (fdigit, max_o_digit->n_len, pre_space, out_char);
		pre_space = 1;
	      }
	      bc_multiply (t_num, base, &t_num, 0);
	    }
	    bc_free_num (&t_num);
	  }

	/* Clean up. */
	bc_free_num (&int_part);
	bc_free_num (&frac_part);
	bc_free_num (&base);
	bc_free_num (&cur_dig);
	bc_free_num (&max_o_digit);
      }
}
/* Convert a number NUM to a long.  The function returns only the integer
   part of the number.  For numbers that are too large to represent as
   a long, this function returns a zero.  This can be detected by checking
   the NUM for zero after having a zero returned. */

long
bc_num2long (num)
     bc_num num;
{
  long val;
  char *nptr;
  int  index;

  /* Extract the int value, ignore the fraction. */
  val = 0;
  nptr = num->n_value;
  for (index=num->n_len; (index>0) && (val<=(LONG_MAX/BASE)); index--)
    val = val*BASE + *nptr++;

  /* Check for overflow.  If overflow, return zero. */
  if (index>0) val = 0;
  if (val < 0) val = 0;

  /* Return the value. */
  if (num->n_sign == PLUS)
    return (val);
  else
    return (-val);
}


/* Convert an integer VAL to a bc number NUM. */

void
bc_int2num (num, val)
     bc_num *num;
     int val;
{
  char buffer[30];
  char *bptr, *vptr;
  int  ix = 1;
  char neg = 0;

  /* Sign. */
  if (val < 0)
    {
      neg = 1;
      val = -val;
    }

  /* Get things going. */
  bptr = buffer;
  *bptr++ = val % BASE;
  val = val / BASE;

  /* Extract remaining digits. */
  while (val != 0)
    {
      *bptr++ = val % BASE;
      val = val / BASE;
      ix++; 		/* Count the digits. */
    }

  /* Make the number. */
  bc_free_num (num);
  *num = bc_new_num (ix, 0);
  if (neg) (*num)->n_sign = MINUS;

  /* Assign the digits. */
  vptr = (*num)->n_value;
  while (ix-- > 0)
    *vptr++ = *--bptr;
}

/* Convert a numbers to a string.  Base 10 only.*/

char
*bc_num2str (num)
      bc_num num;
{
  char *str, *sptr;
  char *nptr;
  int  index, signch;

  /* Allocate the string memory. */
  signch = ( num->n_sign == PLUS ? 0 : 1 );  /* Number of sign chars. */
  if (num->n_scale > 0)
    str = (char *) malloc (num->n_len + num->n_scale + 2 + signch);
  else
    str = (char *) malloc (num->n_len + 1 + signch);
  if (str == NULL) bc_out_of_memory();

  /* The negative sign if needed. */
  sptr = str;
  if (signch) *sptr++ = '-';

  /* Load the whole number. */
  nptr = num->n_value;
  for (index=num->n_len; index>0; index--)
    *sptr++ = BCD_CHAR(*nptr++);

  /* Now the fraction. */
  if (num->n_scale > 0)
    {
      *sptr++ = '.';
      for (index=0; index<num->n_scale; index++)
	*sptr++ = BCD_CHAR(*nptr++);
    }

  /* Terminate the string and return it! */
  *sptr = '\0';
  return (str);
}
/* Convert strings to bc numbers.  Base 10 only.*/

void
bc_str2num (num, str, scale)
     bc_num *num;
     char *str;
     int scale;
{
  int digits, strscale;
  char *ptr, *nptr;
  char zero_int;

  /* Prepare num. */
  bc_free_num (num);

  /* Check for valid number and count digits. */
  ptr = str;
  digits = 0;
  strscale = 0;
  zero_int = FALSE;
  if ( (*ptr == '+') || (*ptr == '-'))  ptr++;  /* Sign */
  while (*ptr == '0') ptr++;			/* Skip leading zeros. */
  while (isdigit((int)*ptr)) ptr++, digits++;	/* digits */
  if (*ptr == '.') ptr++;			/* decimal point */
  while (isdigit((int)*ptr)) ptr++, strscale++;	/* digits */
  if ((*ptr != '\0') || (digits+strscale == 0))
    {
      *num = bc_copy_num (_zero_);
      return;
    }

  /* Adjust numbers and allocate storage and initialize fields. */
  strscale = MIN(strscale, scale);
  if (digits == 0)
    {
      zero_int = TRUE;
      digits = 1;
    }
  *num = bc_new_num (digits, strscale);

  /* Build the whole number. */
  ptr = str;
  if (*ptr == '-')
    {
      (*num)->n_sign = MINUS;
      ptr++;
    }
  else
    {
      (*num)->n_sign = PLUS;
      if (*ptr == '+') ptr++;
    }
  while (*ptr == '0') ptr++;			/* Skip leading zeros. */
  nptr = (*num)->n_value;
  if (zero_int)
    {
      *nptr++ = 0;
      digits = 0;
    }
  for (;digits > 0; digits--)
    *nptr++ = CH_VAL(*ptr++);


  /* Build the fractional part. */
  if (strscale > 0)
    {
      ptr++;  /* skip the decimal point! */
      for (;strscale > 0; strscale--)
	*nptr++ = CH_VAL(*ptr++);
    }
}

/* pn prints the number NUM in base 10. */

static void
out_char (int c)
{
  putchar(c);
}


void
pn (num)
     bc_num num;
{
  bc_out_num (num, 10, out_char, 0);
  out_char ('\n');
}


/* pv prints a character array as if it was a string of bcd digits. */
void
pv (name, num, len)
     char *name;
     unsigned char *num;
     int len;
{
  int i;
  printf ("%s=", name);
  for (i=0; i<len; i++) printf ("%c",BCD_CHAR(num[i]));
  printf ("\n");
}

// vim: set et sw=2 ts=8: