summaryrefslogtreecommitdiffstats
path: root/src/app/fht.h
diff options
context:
space:
mode:
authorMichele Calgaro <[email protected]>2020-06-13 22:45:28 +0900
committerMichele Calgaro <[email protected]>2020-06-13 22:45:28 +0900
commit5f44f7b187093ef290315b7f8766b540a31de35f (patch)
tree27ffb7b218199ca04f240c390c52426c65f45dce /src/app/fht.h
downloadcodeine-5f44f7b187093ef290315b7f8766b540a31de35f.tar.gz
codeine-5f44f7b187093ef290315b7f8766b540a31de35f.zip
Initial code import from debian snapshot
https://snapshot.debian.org/package/codeine/1.0.1-3.dfsg-3.1/ Signed-off-by: Michele Calgaro <[email protected]>
Diffstat (limited to 'src/app/fht.h')
-rw-r--r--src/app/fht.h126
1 files changed, 126 insertions, 0 deletions
diff --git a/src/app/fht.h b/src/app/fht.h
new file mode 100644
index 0000000..3dc5387
--- /dev/null
+++ b/src/app/fht.h
@@ -0,0 +1,126 @@
+// FHT - Fast Hartley Transform Class
+//
+// Copyright (C) 2004 Melchior FRANZ - [email protected]
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
+//
+// $Id: fht.h,v 1.3 2004/06/05 20:20:36 mfranz Exp $
+
+#ifndef FHT_H
+#define FHT_H
+
+/**
+ * Implementation of the Hartley Transform after Bracewell's discrete
+ * algorithm. The algorithm is subject to US patent No. 4,646,256 (1987)
+ * but was put into public domain by the Board of Trustees of Stanford
+ * University in 1994 and is now freely available[1].
+ *
+ * [1] Computer in Physics, Vol. 9, No. 4, Jul/Aug 1995 pp 373-379
+ */
+class FHT
+{
+ int m_exp2;
+ int m_num;
+ float *m_buf;
+ float *m_tab;
+ int *m_log;
+
+ /**
+ * Create a table of CAS (cosine and sine) values.
+ * Has only to be done in the constructor and saves from
+ * calculating the same values over and over while transforming.
+ */
+ void makeCasTable();
+
+ /**
+ * Recursive in-place Hartley transform. For internal use only!
+ */
+ void _transform(float *, int, int);
+
+ public:
+ /**
+ * Prepare transform for data sets with @f$2^n@f$ numbers, whereby @f$n@f$
+ * should be at least 3. Values of more than 3 need a trigonometry table.
+ * @see makeCasTable()
+ */
+ FHT(int);
+
+ ~FHT();
+ inline int sizeExp() const { return m_exp2; }
+ inline int size() const { return m_num; }
+ float *copy(float *, float *);
+ float *clear(float *);
+ void scale(float *, float);
+
+ /**
+ * Exponentially Weighted Moving Average (EWMA) filter.
+ * @param d is the filtered data.
+ * @param s is fresh input.
+ * @param w is the weighting factor.
+ */
+ void ewma(float *d, float *s, float w);
+
+ /**
+ * Test routine to create wobbling sine or rectangle wave.
+ * @param d destination vector.
+ * @param rect rectangle if true, sine otherwise.
+ */
+ void pattern(float *d, bool rect);
+
+ /**
+ * Logarithmic audio spectrum. Maps semi-logarithmic spectrum
+ * to logarithmic frequency scale, interpolates missing values.
+ * A logarithmic index map is calculated at the first run only.
+ * @param p is the input array.
+ * @param out is the spectrum.
+ */
+ void logSpectrum(float *out, float *p);
+
+ /**
+ * Semi-logarithmic audio spectrum.
+ */
+ void semiLogSpectrum(float *);
+
+ /**
+ * Fourier spectrum.
+ */
+ void spectrum(float *);
+
+ /**
+ * Calculates a mathematically correct FFT power spectrum.
+ * If further scaling is applied later, use power2 instead
+ * and factor the 0.5 in the final scaling factor.
+ * @see FHT::power2()
+ */
+ void power(float *);
+
+ /**
+ * Calculates an FFT power spectrum with doubled values as a
+ * result. The values need to be multiplied by 0.5 to be exact.
+ * Note that you only get @f$2^{n-1}@f$ power values for a data set
+ * of @f$2^n@f$ input values.
+ * @see FHT::power()
+ */
+ void power2(float *);
+
+ /**
+ * Discrete Hartley transform of data sets with 8 values.
+ */
+ void transform8(float *);
+
+ void transform(float *);
+};
+
+#endif