/**************************************************************************** ** ** Implementation of TQLayout functionality ** ** Created : 981231 ** ** Copyright (C) 1998-2008 Trolltech ASA. All rights reserved. ** ** This file is part of the kernel module of the TQt GUI Toolkit. ** ** This file may be used under the terms of the GNU General ** Public License versions 2.0 or 3.0 as published by the Free ** Software Foundation and appearing in the files LICENSE.GPL2 ** and LICENSE.GPL3 included in the packaging of this file. ** Alternatively you may (at your option) use any later version ** of the GNU General Public License if such license has been ** publicly approved by Trolltech ASA (or its successors, if any) ** and the KDE Free TQt Foundation. ** ** Please review the following information to ensure GNU General ** Public Licensing requirements will be met: ** http://trolltech.com/products/qt/licenses/licensing/opensource/. ** If you are unsure which license is appropriate for your use, please ** review the following information: ** http://trolltech.com/products/qt/licenses/licensing/licensingoverview ** or contact the sales department at sales@trolltech.com. ** ** This file may be used under the terms of the Q Public License as ** defined by Trolltech ASA and appearing in the file LICENSE.TQPL ** included in the packaging of this file. Licensees holding valid TQt ** Commercial licenses may use this file in accordance with the TQt ** Commercial License Agreement provided with the Software. ** ** This file is provided "AS IS" with NO WARRANTY OF ANY KIND, ** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR ** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted ** herein. ** **********************************************************************/ #include "tqlayout.h" #include "private/tqlayoutengine_p.h" #ifndef TQT_NO_LAYOUT static inline int toFixed( int i ) { return i * 256; } static inline int fRound( int i ) { return ( i % 256 < 128 ) ? i / 256 : 1 + i / 256; } /* This is the main workhorse of the TQGridLayout. It portions out available space to the chain's tqchildren. The calculation is done in fixed point: "fixed" variables are scaled by a factor of 256. If the tqlayout runs "backwards" (i.e. RightToLeft or Up) the tqlayout is computed mirror-reversed, and it's the caller's responsibility do reverse the values before use. chain tqcontains input and output parameters describing the tqgeometry. count is the count of items in the chain; pos and space give the interval (relative to parentWidget topLeft). */ TQ_EXPORT void qGeomCalc( TQMemArray &chain, int start, int count, int pos, int space, int spacer ) { typedef int fixed; int cHint = 0; int cMin = 0; int cMax = 0; int sumStretch = 0; int spacerCount = 0; bool wannaGrow = FALSE; // anyone who really wants to grow? // bool canShrink = FALSE; // anyone who could be persuaded to shrink? int i; for ( i = start; i < start + count; i++ ) { chain[i].done = FALSE; cHint += chain[i].smartSizeHint(); cMin += chain[i].tqminimumSize; cMax += chain[i].tqmaximumSize; sumStretch += chain[i].stretch; if ( !chain[i].empty ) spacerCount++; wannaGrow = wannaGrow || chain[i].expansive || chain[i].stretch > 0; } int extraspace = 0; if ( spacerCount ) spacerCount--; // only spacers between things if ( space < cMin + spacerCount * spacer ) { for ( i = start; i < start+count; i++ ) { chain[i].size = chain[i].tqminimumSize; chain[i].done = TRUE; } } else if ( space < cHint + spacerCount*spacer ) { /* Less space than smartSizeHint(), but more than tqminimumSize. Currently take space equally from each, as in TQt 2.x. Commented-out lines will give more space to stretchier items. */ int n = count; int space_left = space - spacerCount*spacer; int overdraft = cHint - space_left; // first give to the fixed ones: for ( i = start; i < start + count; i++ ) { if ( !chain[i].done && chain[i].tqminimumSize >= chain[i].smartSizeHint() ) { chain[i].size = chain[i].smartSizeHint(); chain[i].done = TRUE; space_left -= chain[i].smartSizeHint(); // sumStretch -= chain[i].stretch; n--; } } bool finished = n == 0; while ( !finished ) { finished = TRUE; fixed fp_over = toFixed( overdraft ); fixed fp_w = 0; for ( i = start; i < start+count; i++ ) { if ( chain[i].done ) continue; // if ( sumStretch <= 0 ) fp_w += fp_over / n; // else // fp_w += (fp_over * chain[i].stretch) / sumStretch; int w = fRound( fp_w ); chain[i].size = chain[i].smartSizeHint() - w; fp_w -= toFixed( w ); // give the difference to the next if ( chain[i].size < chain[i].tqminimumSize ) { chain[i].done = TRUE; chain[i].size = chain[i].tqminimumSize; finished = FALSE; overdraft -= ( chain[i].smartSizeHint() - chain[i].tqminimumSize ); // sumStretch -= chain[i].stretch; n--; break; } } } } else { // extra space int n = count; int space_left = space - spacerCount*spacer; // first give to the fixed ones, and handle non-expansiveness for ( i = start; i < start + count; i++ ) { if ( !chain[i].done && (chain[i].tqmaximumSize <= chain[i].smartSizeHint() || (wannaGrow && !chain[i].expansive && chain[i].stretch == 0)) ) { chain[i].size = chain[i].smartSizeHint(); chain[i].done = TRUE; space_left -= chain[i].smartSizeHint(); sumStretch -= chain[i].stretch; n--; } } extraspace = space_left; /* Do a trial distribution and calculate how much it is off. If there are more deficit pixels than surplus pixels, give the minimum size items what they need, and repeat. Otherwise give to the maximum size items, and repeat. Paul Olav Tvete has a wonderful mathematical proof of the correctness of this principle, but unfortunately this comment is too small to contain it. */ int surplus, deficit; do { surplus = deficit = 0; fixed fp_space = toFixed( space_left ); fixed fp_w = 0; for ( i = start; i < start+count; i++ ) { if ( chain[i].done ) continue; extraspace = 0; if ( sumStretch <= 0 ) fp_w += fp_space / n; else fp_w += (fp_space * chain[i].stretch) / sumStretch; int w = fRound( fp_w ); chain[i].size = w; fp_w -= toFixed( w ); // give the difference to the next if ( w < chain[i].smartSizeHint() ) { deficit += chain[i].smartSizeHint() - w; } else if ( w > chain[i].tqmaximumSize ) { surplus += w - chain[i].tqmaximumSize; } } if ( deficit > 0 && surplus <= deficit ) { // give to the ones that have too little for ( i = start; i < start+count; i++ ) { if ( !chain[i].done && chain[i].size < chain[i].smartSizeHint() ) { chain[i].size = chain[i].smartSizeHint(); chain[i].done = TRUE; space_left -= chain[i].smartSizeHint(); sumStretch -= chain[i].stretch; n--; } } } if ( surplus > 0 && surplus >= deficit ) { // take from the ones that have too much for ( i = start; i < start+count; i++ ) { if ( !chain[i].done && chain[i].size > chain[i].tqmaximumSize ) { chain[i].size = chain[i].tqmaximumSize; chain[i].done = TRUE; space_left -= chain[i].tqmaximumSize; sumStretch -= chain[i].stretch; n--; } } } } while ( n > 0 && surplus != deficit ); if ( n == 0 ) extraspace = space_left; } /* As a last resort, we distribute the unwanted space equally among the spacers (counting the start and end of the chain). We could, but don't, attempt a sub-pixel allocation of the extra space. */ int extra = extraspace / ( spacerCount + 2 ); int p = pos + extra; for ( i = start; i < start+count; i++ ) { chain[i].pos = p; p = p + chain[i].size; if ( !chain[i].empty ) p += spacer+extra; } } TQ_EXPORT TQSize tqSmartMinSize( const TQWidgetItem *i ) { TQWidget *w = ((TQWidgetItem *)i)->widget(); TQSize s( 0, 0 ); if ( w->tqlayout() ) { s = w->tqlayout()->totalMinimumSize(); } else { TQSize sh; if ( TQT_TQSIZEPOLICY_OBJECT(w->sizePolicy()).horData() != TQSizePolicy::Ignored ) { if ( TQT_TQSIZEPOLICY_OBJECT(w->sizePolicy()).mayShrinkHorizontally() ) { s.setWidth( w->tqminimumSizeHint().width() ); } else { sh = w->sizeHint(); s.setWidth( sh.width() ); } } if ( TQT_TQSIZEPOLICY_OBJECT(w->sizePolicy()).verData() != TQSizePolicy::Ignored ) { if ( TQT_TQSIZEPOLICY_OBJECT(w->sizePolicy()).mayShrinkVertically() ) { s.setHeight( w->tqminimumSizeHint().height() ); } else { s.setHeight( sh.isValid() ? sh.height() : w->sizeHint().height() ); } } } s = s.boundedTo( w->tqmaximumSize() ); TQSize min = w->tqminimumSize(); if ( min.width() > 0 ) s.setWidth( min.width() ); if ( min.height() > 0 ) s.setHeight( min.height() ); if ( i->hasHeightForWidth() && min.height() == 0 && min.width() > 0 ) s.setHeight( i->heightForWidth(s.width()) ); s = s.expandedTo( TQSize(1, 1) ); return s; } TQ_EXPORT TQSize tqSmartMinSize( TQWidget *w ) { TQWidgetItem item( w ); return tqSmartMinSize( &item ); } TQ_EXPORT TQSize tqSmartMaxSize( const TQWidgetItem *i, int align ) { TQWidget *w = ( (TQWidgetItem*)i )->widget(); if ( align & TQt::AlignHorizontal_Mask && align & TQt::AlignVertical_Mask ) return TQSize( TQLAYOUTSIZE_MAX, TQLAYOUTSIZE_MAX ); TQSize s = w->tqmaximumSize(); if ( s.width() == TQWIDGETSIZE_MAX && !(align & TQt::AlignHorizontal_Mask) ) if ( !TQT_TQSIZEPOLICY_OBJECT(w->sizePolicy()).mayGrowHorizontally() ) s.setWidth( w->sizeHint().width() ); if ( s.height() == TQWIDGETSIZE_MAX && !(align & TQt::AlignVertical_Mask) ) if ( !TQT_TQSIZEPOLICY_OBJECT(w->sizePolicy()).mayGrowVertically() ) s.setHeight( w->sizeHint().height() ); s = s.expandedTo( w->tqminimumSize() ); if ( align & TQt::AlignHorizontal_Mask ) s.setWidth( TQLAYOUTSIZE_MAX ); if ( align & TQt::AlignVertical_Mask ) s.setHeight( TQLAYOUTSIZE_MAX ); return s; } TQ_EXPORT TQSize tqSmartMaxSize( TQWidget *w, int align ) { TQWidgetItem item( w ); return tqSmartMaxSize( &item, align ); } #endif // TQT_NO_LAYOUT