summaryrefslogtreecommitdiffstats
path: root/src/sqlite/where.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/sqlite/where.c')
-rw-r--r--src/sqlite/where.c1439
1 files changed, 1439 insertions, 0 deletions
diff --git a/src/sqlite/where.c b/src/sqlite/where.c
new file mode 100644
index 0000000..a6cf2e7
--- /dev/null
+++ b/src/sqlite/where.c
@@ -0,0 +1,1439 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This module contains C code that generates VDBE code used to process
+** the WHERE clause of SQL statements. This module is reponsible for
+** generating the code that loops through a table looking for applicable
+** rows. Indices are selected and used to speed the search when doing
+** so is applicable. Because this module is responsible for selecting
+** indices, you might also think of this module as the "query optimizer".
+**
+** $Id: where.c,v 1.1.1.1 2006/02/03 20:35:19 hoganrobert Exp $
+*/
+#include "sqliteInt.h"
+
+/*
+** The query generator uses an array of instances of this structure to
+** help it analyze the subexpressions of the WHERE clause. Each WHERE
+** clause subexpression is separated from the others by an AND operator.
+**
+** The idxLeft and idxRight fields are the VDBE cursor numbers for the
+** table that contains the column that appears on the left-hand and
+** right-hand side of ExprInfo.p. If either side of ExprInfo.p is
+** something other than a simple column reference, then idxLeft or
+** idxRight are -1.
+**
+** It is the VDBE cursor number is the value stored in Expr.iTable
+** when Expr.op==TK_COLUMN and the value stored in SrcList.a[].iCursor.
+**
+** prereqLeft, prereqRight, and prereqAll record sets of cursor numbers,
+** but they do so indirectly. A single ExprMaskSet structure translates
+** cursor number into bits and the translated bit is stored in the prereq
+** fields. The translation is used in order to maximize the number of
+** bits that will fit in a Bitmask. The VDBE cursor numbers might be
+** spread out over the non-negative integers. For example, the cursor
+** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet
+** translates these sparse cursor numbers into consecutive integers
+** beginning with 0 in order to make the best possible use of the available
+** bits in the Bitmask. So, in the example above, the cursor numbers
+** would be mapped into integers 0 through 7.
+**
+** prereqLeft tells us every VDBE cursor that is referenced on the
+** left-hand side of ExprInfo.p. prereqRight does the same for the
+** right-hand side of the expression. The following identity always
+** holds:
+**
+** prereqAll = prereqLeft | prereqRight
+**
+** The ExprInfo.indexable field is true if the ExprInfo.p expression
+** is of a form that might control an index. Indexable expressions
+** look like this:
+**
+** <column> <op> <expr>
+**
+** Where <column> is a simple column name and <op> is on of the operators
+** that allowedOp() recognizes.
+*/
+typedef struct ExprInfo ExprInfo;
+struct ExprInfo {
+ Expr *p; /* Pointer to the subexpression */
+ u8 indexable; /* True if this subexprssion is usable by an index */
+ short int idxLeft; /* p->pLeft is a column in this table number. -1 if
+ ** p->pLeft is not the column of any table */
+ short int idxRight; /* p->pRight is a column in this table number. -1 if
+ ** p->pRight is not the column of any table */
+ Bitmask prereqLeft; /* Bitmask of tables referenced by p->pLeft */
+ Bitmask prereqRight; /* Bitmask of tables referenced by p->pRight */
+ Bitmask prereqAll; /* Bitmask of tables referenced by p */
+};
+
+/*
+** An instance of the following structure keeps track of a mapping
+** between VDBE cursor numbers and bits of the bitmasks in ExprInfo.
+**
+** The VDBE cursor numbers are small integers contained in
+** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
+** clause, the cursor numbers might not begin with 0 and they might
+** contain gaps in the numbering sequence. But we want to make maximum
+** use of the bits in our bitmasks. This structure provides a mapping
+** from the sparse cursor numbers into consecutive integers beginning
+** with 0.
+**
+** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
+** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
+**
+** For example, if the WHERE clause expression used these VDBE
+** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure
+** would map those cursor numbers into bits 0 through 5.
+**
+** Note that the mapping is not necessarily ordered. In the example
+** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
+** 57->5, 73->4. Or one of 719 other combinations might be used. It
+** does not really matter. What is important is that sparse cursor
+** numbers all get mapped into bit numbers that begin with 0 and contain
+** no gaps.
+*/
+typedef struct ExprMaskSet ExprMaskSet;
+struct ExprMaskSet {
+ int n; /* Number of assigned cursor values */
+ int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */
+};
+
+/*
+** Determine the number of elements in an array.
+*/
+#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
+
+/*
+** This routine identifies subexpressions in the WHERE clause where
+** each subexpression is separate by the AND operator. aSlot is
+** filled with pointers to the subexpressions. For example:
+**
+** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
+** \________/ \_______________/ \________________/
+** slot[0] slot[1] slot[2]
+**
+** The original WHERE clause in pExpr is unaltered. All this routine
+** does is make aSlot[] entries point to substructure within pExpr.
+**
+** aSlot[] is an array of subexpressions structures. There are nSlot
+** spaces left in this array. This routine finds as many AND-separated
+** subexpressions as it can and puts pointers to those subexpressions
+** into aSlot[] entries. The return value is the number of slots filled.
+*/
+static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
+ int cnt = 0;
+ if( pExpr==0 || nSlot<1 ) return 0;
+ if( nSlot==1 || pExpr->op!=TK_AND ){
+ aSlot[0].p = pExpr;
+ return 1;
+ }
+ if( pExpr->pLeft->op!=TK_AND ){
+ aSlot[0].p = pExpr->pLeft;
+ cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
+ }else{
+ cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
+ cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
+ }
+ return cnt;
+}
+
+/*
+** Initialize an expression mask set
+*/
+#define initMaskSet(P) memset(P, 0, sizeof(*P))
+
+/*
+** Return the bitmask for the given cursor number. Return 0 if
+** iCursor is not in the set.
+*/
+static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
+ int i;
+ for(i=0; i<pMaskSet->n; i++){
+ if( pMaskSet->ix[i]==iCursor ){
+ return ((Bitmask)1)<<i;
+ }
+ }
+ return 0;
+}
+
+/*
+** Create a new mask for cursor iCursor.
+*/
+static void createMask(ExprMaskSet *pMaskSet, int iCursor){
+ if( pMaskSet->n<ARRAYSIZE(pMaskSet->ix) ){
+ pMaskSet->ix[pMaskSet->n++] = iCursor;
+ }
+}
+
+/*
+** Destroy an expression mask set
+*/
+#define freeMaskSet(P) /* NO-OP */
+
+/*
+** This routine walks (recursively) an expression tree and generates
+** a bitmask indicating which tables are used in that expression
+** tree.
+**
+** In order for this routine to work, the calling function must have
+** previously invoked sqlite3ExprResolveNames() on the expression. See
+** the header comment on that routine for additional information.
+** The sqlite3ExprResolveNames() routines looks for column names and
+** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
+** the VDBE cursor number of the table.
+*/
+static Bitmask exprListTableUsage(ExprMaskSet *, ExprList *);
+static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
+ Bitmask mask = 0;
+ if( p==0 ) return 0;
+ if( p->op==TK_COLUMN ){
+ mask = getMask(pMaskSet, p->iTable);
+ return mask;
+ }
+ mask = exprTableUsage(pMaskSet, p->pRight);
+ mask |= exprTableUsage(pMaskSet, p->pLeft);
+ mask |= exprListTableUsage(pMaskSet, p->pList);
+ if( p->pSelect ){
+ Select *pS = p->pSelect;
+ mask |= exprListTableUsage(pMaskSet, pS->pEList);
+ mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
+ mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
+ mask |= exprTableUsage(pMaskSet, pS->pWhere);
+ mask |= exprTableUsage(pMaskSet, pS->pHaving);
+ }
+ return mask;
+}
+static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
+ int i;
+ Bitmask mask = 0;
+ if( pList ){
+ for(i=0; i<pList->nExpr; i++){
+ mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
+ }
+ }
+ return mask;
+}
+
+/*
+** Return TRUE if the given operator is one of the operators that is
+** allowed for an indexable WHERE clause term. The allowed operators are
+** "=", "<", ">", "<=", ">=", and "IN".
+*/
+static int allowedOp(int op){
+ assert( TK_GT==TK_LE-1 && TK_LE==TK_LT-1 && TK_LT==TK_GE-1 && TK_EQ==TK_GT-1);
+ return op==TK_IN || (op>=TK_EQ && op<=TK_GE);
+}
+
+/*
+** Swap two objects of type T.
+*/
+#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
+
+/*
+** Return the index in the SrcList that uses cursor iCur. If iCur is
+** used by the first entry in SrcList return 0. If iCur is used by
+** the second entry return 1. And so forth.
+**
+** SrcList is the set of tables in the FROM clause in the order that
+** they will be processed. The value returned here gives us an index
+** of which tables will be processed first.
+*/
+static int tableOrder(SrcList *pList, int iCur){
+ int i;
+ struct SrcList_item *pItem;
+ for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
+ if( pItem->iCursor==iCur ) return i;
+ }
+ return -1;
+}
+
+/*
+** The input to this routine is an ExprInfo structure with only the
+** "p" field filled in. The job of this routine is to analyze the
+** subexpression and populate all the other fields of the ExprInfo
+** structure.
+*/
+static void exprAnalyze(SrcList *pSrc, ExprMaskSet *pMaskSet, ExprInfo *pInfo){
+ Expr *pExpr = pInfo->p;
+ pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
+ pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
+ pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
+ pInfo->indexable = 0;
+ pInfo->idxLeft = -1;
+ pInfo->idxRight = -1;
+ if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
+ if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
+ pInfo->idxRight = pExpr->pRight->iTable;
+ pInfo->indexable = 1;
+ }
+ if( pExpr->pLeft->op==TK_COLUMN ){
+ pInfo->idxLeft = pExpr->pLeft->iTable;
+ pInfo->indexable = 1;
+ }
+ }
+ if( pInfo->indexable ){
+ assert( pInfo->idxLeft!=pInfo->idxRight );
+
+ /* We want the expression to be of the form "X = expr", not "expr = X".
+ ** So flip it over if necessary. If the expression is "X = Y", then
+ ** we want Y to come from an earlier table than X.
+ **
+ ** The collating sequence rule is to always choose the left expression.
+ ** So if we do a flip, we also have to move the collating sequence.
+ */
+ if( tableOrder(pSrc,pInfo->idxLeft)<tableOrder(pSrc,pInfo->idxRight) ){
+ assert( pExpr->op!=TK_IN );
+ SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
+ SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
+ if( pExpr->op>=TK_GT ){
+ assert( TK_LT==TK_GT+2 );
+ assert( TK_GE==TK_LE+2 );
+ assert( TK_GT>TK_EQ );
+ assert( TK_GT<TK_LE );
+ assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
+ pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
+ }
+ SWAP(unsigned, pInfo->prereqLeft, pInfo->prereqRight);
+ SWAP(short int, pInfo->idxLeft, pInfo->idxRight);
+ }
+ }
+
+}
+
+/*
+** This routine decides if pIdx can be used to satisfy the ORDER BY
+** clause. If it can, it returns 1. If pIdx cannot satisfy the
+** ORDER BY clause, this routine returns 0.
+**
+** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
+** left-most table in the FROM clause of that same SELECT statement and
+** the table has a cursor number of "base". pIdx is an index on pTab.
+**
+** nEqCol is the number of columns of pIdx that are used as equality
+** constraints. Any of these columns may be missing from the ORDER BY
+** clause and the match can still be a success.
+**
+** If the index is UNIQUE, then the ORDER BY clause is allowed to have
+** additional terms past the end of the index and the match will still
+** be a success.
+**
+** All terms of the ORDER BY that match against the index must be either
+** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
+** index do not need to satisfy this constraint.) The *pbRev value is
+** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
+** the ORDER BY clause is all ASC.
+*/
+static int isSortingIndex(
+ Parse *pParse, /* Parsing context */
+ Index *pIdx, /* The index we are testing */
+ Table *pTab, /* The table to be sorted */
+ int base, /* Cursor number for pTab */
+ ExprList *pOrderBy, /* The ORDER BY clause */
+ int nEqCol, /* Number of index columns with == constraints */
+ int *pbRev /* Set to 1 if ORDER BY is DESC */
+){
+ int i, j; /* Loop counters */
+ int sortOrder; /* Which direction we are sorting */
+ int nTerm; /* Number of ORDER BY terms */
+ struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
+ sqlite3 *db = pParse->db;
+
+ assert( pOrderBy!=0 );
+ nTerm = pOrderBy->nExpr;
+ assert( nTerm>0 );
+
+ /* Match terms of the ORDER BY clause against columns of
+ ** the index.
+ */
+ for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<pIdx->nColumn; i++){
+ Expr *pExpr; /* The expression of the ORDER BY pTerm */
+ CollSeq *pColl; /* The collating sequence of pExpr */
+
+ pExpr = pTerm->pExpr;
+ if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
+ /* Can not use an index sort on anything that is not a column in the
+ ** left-most table of the FROM clause */
+ return 0;
+ }
+ pColl = sqlite3ExprCollSeq(pParse, pExpr);
+ if( !pColl ) pColl = db->pDfltColl;
+ if( pExpr->iColumn!=pIdx->aiColumn[i] || pColl!=pIdx->keyInfo.aColl[i] ){
+ /* Term j of the ORDER BY clause does not match column i of the index */
+ if( i<nEqCol ){
+ /* If an index column that is constrained by == fails to match an
+ ** ORDER BY term, that is OK. Just ignore that column of the index
+ */
+ continue;
+ }else{
+ /* If an index column fails to match and is not constrained by ==
+ ** then the index cannot satisfy the ORDER BY constraint.
+ */
+ return 0;
+ }
+ }
+ if( i>nEqCol ){
+ if( pTerm->sortOrder!=sortOrder ){
+ /* Indices can only be used if all ORDER BY terms past the
+ ** equality constraints are all either DESC or ASC. */
+ return 0;
+ }
+ }else{
+ sortOrder = pTerm->sortOrder;
+ }
+ j++;
+ pTerm++;
+ }
+
+ /* The index can be used for sorting if all terms of the ORDER BY clause
+ ** or covered or if we ran out of index columns and the it is a UNIQUE
+ ** index.
+ */
+ if( j>=nTerm || (i>=pIdx->nColumn && pIdx->onError!=OE_None) ){
+ *pbRev = sortOrder==SQLITE_SO_DESC;
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
+** by sorting in order of ROWID. Return true if so and set *pbRev to be
+** true for reverse ROWID and false for forward ROWID order.
+*/
+static int sortableByRowid(
+ int base, /* Cursor number for table to be sorted */
+ ExprList *pOrderBy, /* The ORDER BY clause */
+ int *pbRev /* Set to 1 if ORDER BY is DESC */
+){
+ Expr *p;
+
+ assert( pOrderBy!=0 );
+ assert( pOrderBy->nExpr>0 );
+ p = pOrderBy->a[0].pExpr;
+ if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 ){
+ *pbRev = pOrderBy->a[0].sortOrder;
+ return 1;
+ }
+ return 0;
+}
+
+
+/*
+** Disable a term in the WHERE clause. Except, do not disable the term
+** if it controls a LEFT OUTER JOIN and it did not originate in the ON
+** or USING clause of that join.
+**
+** Consider the term t2.z='ok' in the following queries:
+**
+** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
+** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
+** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
+**
+** The t2.z='ok' is disabled in the in (2) because it originates
+** in the ON clause. The term is disabled in (3) because it is not part
+** of a LEFT OUTER JOIN. In (1), the term is not disabled.
+**
+** Disabling a term causes that term to not be tested in the inner loop
+** of the join. Disabling is an optimization. We would get the correct
+** results if nothing were ever disabled, but joins might run a little
+** slower. The trick is to disable as much as we can without disabling
+** too much. If we disabled in (1), we'd get the wrong answer.
+** See ticket #813.
+*/
+static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){
+ Expr *pExpr = *ppExpr;
+ if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){
+ *ppExpr = 0;
+ }
+}
+
+/*
+** Generate code that builds a probe for an index. Details:
+**
+** * Check the top nColumn entries on the stack. If any
+** of those entries are NULL, jump immediately to brk,
+** which is the loop exit, since no index entry will match
+** if any part of the key is NULL.
+**
+** * Construct a probe entry from the top nColumn entries in
+** the stack with affinities appropriate for index pIdx.
+*/
+static void buildIndexProbe(Vdbe *v, int nColumn, int brk, Index *pIdx){
+ sqlite3VdbeAddOp(v, OP_NotNull, -nColumn, sqlite3VdbeCurrentAddr(v)+3);
+ sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
+ sqlite3VdbeAddOp(v, OP_Goto, 0, brk);
+ sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
+ sqlite3IndexAffinityStr(v, pIdx);
+}
+
+/*
+** Generate code for an equality term of the WHERE clause. An equality
+** term can be either X=expr or X IN (...). pTerm is the X.
+*/
+static void codeEqualityTerm(
+ Parse *pParse, /* The parsing context */
+ ExprInfo *pTerm, /* The term of the WHERE clause to be coded */
+ int brk, /* Jump here to abandon the loop */
+ WhereLevel *pLevel /* When level of the FROM clause we are working on */
+){
+ Expr *pX = pTerm->p;
+ if( pX->op!=TK_IN ){
+ assert( pX->op==TK_EQ );
+ sqlite3ExprCode(pParse, pX->pRight);
+#ifndef SQLITE_OMIT_SUBQUERY
+ }else{
+ int iTab;
+ Vdbe *v = pParse->pVdbe;
+
+ sqlite3CodeSubselect(pParse, pX);
+ iTab = pX->iTable;
+ sqlite3VdbeAddOp(v, OP_Rewind, iTab, brk);
+ VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
+ pLevel->inP2 = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
+ pLevel->inOp = OP_Next;
+ pLevel->inP1 = iTab;
+#endif
+ }
+ disableTerm(pLevel, &pTerm->p);
+}
+
+/*
+** The number of bits in a Bitmask
+*/
+#define BMS (sizeof(Bitmask)*8-1)
+
+
+/*
+** Generate the beginning of the loop used for WHERE clause processing.
+** The return value is a pointer to an opaque structure that contains
+** information needed to terminate the loop. Later, the calling routine
+** should invoke sqlite3WhereEnd() with the return value of this function
+** in order to complete the WHERE clause processing.
+**
+** If an error occurs, this routine returns NULL.
+**
+** The basic idea is to do a nested loop, one loop for each table in
+** the FROM clause of a select. (INSERT and UPDATE statements are the
+** same as a SELECT with only a single table in the FROM clause.) For
+** example, if the SQL is this:
+**
+** SELECT * FROM t1, t2, t3 WHERE ...;
+**
+** Then the code generated is conceptually like the following:
+**
+** foreach row1 in t1 do \ Code generated
+** foreach row2 in t2 do |-- by sqlite3WhereBegin()
+** foreach row3 in t3 do /
+** ...
+** end \ Code generated
+** end |-- by sqlite3WhereEnd()
+** end /
+**
+** There are Btree cursors associated with each table. t1 uses cursor
+** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
+** And so forth. This routine generates code to open those VDBE cursors
+** and sqlite3WhereEnd() generates the code to close them.
+**
+** The code that sqlite3WhereBegin() generates leaves the cursors named
+** in pTabList pointing at their appropriate entries. The [...] code
+** can use OP_Column and OP_Rowid opcodes on these cursors to extract
+** data from the various tables of the loop.
+**
+** If the WHERE clause is empty, the foreach loops must each scan their
+** entire tables. Thus a three-way join is an O(N^3) operation. But if
+** the tables have indices and there are terms in the WHERE clause that
+** refer to those indices, a complete table scan can be avoided and the
+** code will run much faster. Most of the work of this routine is checking
+** to see if there are indices that can be used to speed up the loop.
+**
+** Terms of the WHERE clause are also used to limit which rows actually
+** make it to the "..." in the middle of the loop. After each "foreach",
+** terms of the WHERE clause that use only terms in that loop and outer
+** loops are evaluated and if false a jump is made around all subsequent
+** inner loops (or around the "..." if the test occurs within the inner-
+** most loop)
+**
+** OUTER JOINS
+**
+** An outer join of tables t1 and t2 is conceptally coded as follows:
+**
+** foreach row1 in t1 do
+** flag = 0
+** foreach row2 in t2 do
+** start:
+** ...
+** flag = 1
+** end
+** if flag==0 then
+** move the row2 cursor to a null row
+** goto start
+** fi
+** end
+**
+** ORDER BY CLAUSE PROCESSING
+**
+** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
+** if there is one. If there is no ORDER BY clause or if this routine
+** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
+**
+** If an index can be used so that the natural output order of the table
+** scan is correct for the ORDER BY clause, then that index is used and
+** *ppOrderBy is set to NULL. This is an optimization that prevents an
+** unnecessary sort of the result set if an index appropriate for the
+** ORDER BY clause already exists.
+**
+** If the where clause loops cannot be arranged to provide the correct
+** output order, then the *ppOrderBy is unchanged.
+*/
+WhereInfo *sqlite3WhereBegin(
+ Parse *pParse, /* The parser context */
+ SrcList *pTabList, /* A list of all tables to be scanned */
+ Expr *pWhere, /* The WHERE clause */
+ ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
+){
+ int i; /* Loop counter */
+ WhereInfo *pWInfo; /* Will become the return value of this function */
+ Vdbe *v = pParse->pVdbe; /* The virtual database engine */
+ int brk, cont = 0; /* Addresses used during code generation */
+ int nExpr; /* Number of subexpressions in the WHERE clause */
+ Bitmask loopMask; /* One bit set for each outer loop */
+ ExprInfo *pTerm; /* A single term in the WHERE clause; ptr to aExpr[] */
+ ExprMaskSet maskSet; /* The expression mask set */
+ int iDirectEq[BMS]; /* Term of the form ROWID==X for the N-th table */
+ int iDirectLt[BMS]; /* Term of the form ROWID<X or ROWID<=X */
+ int iDirectGt[BMS]; /* Term of the form ROWID>X or ROWID>=X */
+ ExprInfo aExpr[101]; /* The WHERE clause is divided into these terms */
+ struct SrcList_item *pTabItem; /* A single entry from pTabList */
+ WhereLevel *pLevel; /* A single level in the pWInfo list */
+
+ /* The number of terms in the FROM clause is limited by the number of
+ ** bits in a Bitmask
+ */
+ if( pTabList->nSrc>sizeof(Bitmask)*8 ){
+ sqlite3ErrorMsg(pParse, "at most %d tables in a join",
+ sizeof(Bitmask)*8);
+ return 0;
+ }
+
+ /* Split the WHERE clause into separate subexpressions where each
+ ** subexpression is separated by an AND operator. If the aExpr[]
+ ** array fills up, the last entry might point to an expression which
+ ** contains additional unfactored AND operators.
+ */
+ initMaskSet(&maskSet);
+ memset(aExpr, 0, sizeof(aExpr));
+ nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
+ if( nExpr==ARRAYSIZE(aExpr) ){
+ sqlite3ErrorMsg(pParse, "WHERE clause too complex - no more "
+ "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
+ return 0;
+ }
+
+ /* Allocate and initialize the WhereInfo structure that will become the
+ ** return value.
+ */
+ pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
+ if( sqlite3_malloc_failed ){
+ sqliteFree(pWInfo); /* Avoid leaking memory when malloc fails */
+ return 0;
+ }
+ pWInfo->pParse = pParse;
+ pWInfo->pTabList = pTabList;
+ pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
+
+ /* Special case: a WHERE clause that is constant. Evaluate the
+ ** expression and either jump over all of the code or fall thru.
+ */
+ if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){
+ sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
+ pWhere = 0;
+ }
+
+ /* Analyze all of the subexpressions.
+ */
+ for(i=0; i<pTabList->nSrc; i++){
+ createMask(&maskSet, pTabList->a[i].iCursor);
+ }
+ for(pTerm=aExpr, i=0; i<nExpr; i++, pTerm++){
+ exprAnalyze(pTabList, &maskSet, pTerm);
+ }
+
+ /* Figure out what index to use (if any) for each nested loop.
+ ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
+ ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
+ ** loop.
+ **
+ ** If terms exist that use the ROWID of any table, then set the
+ ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
+ ** to the index of the term containing the ROWID. We always prefer
+ ** to use a ROWID which can directly access a table rather than an
+ ** index which requires reading an index first to get the rowid then
+ ** doing a second read of the actual database table.
+ **
+ ** Actually, if there are more than 32 tables in the join, only the
+ ** first 32 tables are candidates for indices. This is (again) due
+ ** to the limit of 32 bits in an integer bitmask.
+ */
+ loopMask = 0;
+ pTabItem = pTabList->a;
+ pLevel = pWInfo->a;
+ for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++,pTabItem++,pLevel++){
+ int j;
+ int iCur = pTabItem->iCursor; /* The cursor for this table */
+ Bitmask mask = getMask(&maskSet, iCur); /* Cursor mask for this table */
+ Table *pTab = pTabItem->pTab;
+ Index *pIdx;
+ Index *pBestIdx = 0;
+ int bestScore = 0;
+ int bestRev = 0;
+
+ /* Check to see if there is an expression that uses only the
+ ** ROWID field of this table. For terms of the form ROWID==expr
+ ** set iDirectEq[i] to the index of the term. For terms of the
+ ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
+ ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
+ **
+ ** (Added:) Treat ROWID IN expr like ROWID=expr.
+ */
+ pLevel->iIdxCur = -1;
+ iDirectEq[i] = -1;
+ iDirectLt[i] = -1;
+ iDirectGt[i] = -1;
+ for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
+ Expr *pX = pTerm->p;
+ if( pTerm->idxLeft==iCur && pX->pLeft->iColumn<0
+ && (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){
+ switch( pX->op ){
+ case TK_IN:
+ case TK_EQ: iDirectEq[i] = j; break;
+ case TK_LE:
+ case TK_LT: iDirectLt[i] = j; break;
+ case TK_GE:
+ case TK_GT: iDirectGt[i] = j; break;
+ }
+ }
+ }
+
+ /* If we found a term that tests ROWID with == or IN, that term
+ ** will be used to locate the rows in the database table. There
+ ** is not need to continue into the code below that looks for
+ ** an index. We will always use the ROWID over an index.
+ */
+ if( iDirectEq[i]>=0 ){
+ loopMask |= mask;
+ pLevel->pIdx = 0;
+ continue;
+ }
+
+ /* Do a search for usable indices. Leave pBestIdx pointing to
+ ** the "best" index. pBestIdx is left set to NULL if no indices
+ ** are usable.
+ **
+ ** The best index is the one with the highest score. The score
+ ** for the index is determined as follows. For each of the
+ ** left-most terms that is fixed by an equality operator, add
+ ** 32 to the score. The right-most term of the index may be
+ ** constrained by an inequality. Add 4 if for an "x<..." constraint
+ ** and add 8 for an "x>..." constraint. If both constraints
+ ** are present, add 12.
+ **
+ ** If the left-most term of the index uses an IN operator
+ ** (ex: "x IN (...)") then add 16 to the score.
+ **
+ ** If an index can be used for sorting, add 2 to the score.
+ ** If an index contains all the terms of a table that are ever
+ ** used by any expression in the SQL statement, then add 1 to
+ ** the score.
+ **
+ ** This scoring system is designed so that the score can later be
+ ** used to determine how the index is used. If the score&0x1c is 0
+ ** then all constraints are equalities. If score&0x4 is not 0 then
+ ** there is an inequality used as a termination key. (ex: "x<...")
+ ** If score&0x8 is not 0 then there is an inequality used as the
+ ** start key. (ex: "x>..."). A score or 0x10 is the special case
+ ** of an IN operator constraint. (ex: "x IN ...").
+ **
+ ** The IN operator (as in "<expr> IN (...)") is treated the same as
+ ** an equality comparison except that it can only be used on the
+ ** left-most column of an index and other terms of the WHERE clause
+ ** cannot be used in conjunction with the IN operator to help satisfy
+ ** other columns of the index.
+ */
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ Bitmask eqMask = 0; /* Index columns covered by an x=... term */
+ Bitmask ltMask = 0; /* Index columns covered by an x<... term */
+ Bitmask gtMask = 0; /* Index columns covered by an x>... term */
+ Bitmask inMask = 0; /* Index columns covered by an x IN .. term */
+ Bitmask m;
+ int nEq, score, bRev = 0;
+
+ if( pIdx->nColumn>sizeof(eqMask)*8 ){
+ continue; /* Ignore indices with too many columns to analyze */
+ }
+ for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
+ Expr *pX = pTerm->p;
+ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
+ if( !pColl && pX->pRight ){
+ pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
+ }
+ if( !pColl ){
+ pColl = pParse->db->pDfltColl;
+ }
+ if( pTerm->idxLeft==iCur
+ && (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){
+ int iColumn = pX->pLeft->iColumn;
+ int k;
+ char idxaff = iColumn>=0 ? pIdx->pTable->aCol[iColumn].affinity : 0;
+ for(k=0; k<pIdx->nColumn; k++){
+ /* If the collating sequences or affinities don't match,
+ ** ignore this index. */
+ if( pColl!=pIdx->keyInfo.aColl[k] ) continue;
+ if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
+ if( pIdx->aiColumn[k]==iColumn ){
+ switch( pX->op ){
+ case TK_IN: {
+ if( k==0 ) inMask |= 1;
+ break;
+ }
+ case TK_EQ: {
+ eqMask |= ((Bitmask)1)<<k;
+ break;
+ }
+ case TK_LE:
+ case TK_LT: {
+ ltMask |= ((Bitmask)1)<<k;
+ break;
+ }
+ case TK_GE:
+ case TK_GT: {
+ gtMask |= ((Bitmask)1)<<k;
+ break;
+ }
+ default: {
+ /* CANT_HAPPEN */
+ assert( 0 );
+ break;
+ }
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ /* The following loop ends with nEq set to the number of columns
+ ** on the left of the index with == constraints.
+ */
+ for(nEq=0; nEq<pIdx->nColumn; nEq++){
+ m = (((Bitmask)1)<<(nEq+1))-1;
+ if( (m & eqMask)!=m ) break;
+ }
+
+ /* Begin assemblying the score
+ */
+ score = nEq*32; /* Base score is 32 times number of == constraints */
+ m = ((Bitmask)1)<<nEq;
+ if( m & ltMask ) score+=4; /* Increase score for a < constraint */
+ if( m & gtMask ) score+=8; /* Increase score for a > constraint */
+ if( score==0 && inMask ) score = 16; /* Default score for IN constraint */
+
+ /* Give bonus points if this index can be used for sorting
+ */
+ if( i==0 && score!=16 && ppOrderBy && *ppOrderBy ){
+ int base = pTabList->a[0].iCursor;
+ if( isSortingIndex(pParse, pIdx, pTab, base, *ppOrderBy, nEq, &bRev) ){
+ score += 2;
+ }
+ }
+
+ /* Check to see if we can get away with using just the index without
+ ** ever reading the table. If that is the case, then add one bonus
+ ** point to the score.
+ */
+ if( score && pTabItem->colUsed < (((Bitmask)1)<<(BMS-1)) ){
+ for(m=0, j=0; j<pIdx->nColumn; j++){
+ int x = pIdx->aiColumn[j];
+ if( x<BMS-1 ){
+ m |= ((Bitmask)1)<<x;
+ }
+ }
+ if( (pTabItem->colUsed & m)==pTabItem->colUsed ){
+ score++;
+ }
+ }
+
+ /* If the score for this index is the best we have seen so far, then
+ ** save it
+ */
+ if( score>bestScore ){
+ pBestIdx = pIdx;
+ bestScore = score;
+ bestRev = bRev;
+ }
+ }
+ pLevel->pIdx = pBestIdx;
+ pLevel->score = bestScore;
+ pLevel->bRev = bestRev;
+ loopMask |= mask;
+ if( pBestIdx ){
+ pLevel->iIdxCur = pParse->nTab++;
+ }
+ }
+
+ /* Check to see if the ORDER BY clause is or can be satisfied by the
+ ** use of an index on the first table.
+ */
+ if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
+ Index *pIdx; /* Index derived from the WHERE clause */
+ Table *pTab; /* Left-most table in the FROM clause */
+ int bRev = 0; /* True to reverse the output order */
+ int iCur; /* Btree-cursor that will be used by pTab */
+ WhereLevel *pLevel0 = &pWInfo->a[0];
+
+ pTab = pTabList->a[0].pTab;
+ pIdx = pLevel0->pIdx;
+ iCur = pTabList->a[0].iCursor;
+ if( pIdx==0 && sortableByRowid(iCur, *ppOrderBy, &bRev) ){
+ /* The ORDER BY clause specifies ROWID order, which is what we
+ ** were going to be doing anyway...
+ */
+ *ppOrderBy = 0;
+ pLevel0->bRev = bRev;
+ }else if( pLevel0->score==16 ){
+ /* If there is already an IN index on the left-most table,
+ ** it will not give the correct sort order.
+ ** So, pretend that no suitable index is found.
+ */
+ }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
+ /* If the left-most column is accessed using its ROWID, then do
+ ** not try to sort by index. But do delete the ORDER BY clause
+ ** if it is redundant.
+ */
+ }else if( (pLevel0->score&2)!=0 ){
+ /* The index that was selected for searching will cause rows to
+ ** appear in sorted order.
+ */
+ *ppOrderBy = 0;
+ }
+ }
+
+ /* Open all tables in the pTabList and any indices selected for
+ ** searching those tables.
+ */
+ sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
+ pLevel = pWInfo->a;
+ for(i=0, pTabItem=pTabList->a; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
+ Table *pTab;
+ Index *pIx;
+ int iIdxCur = pLevel->iIdxCur;
+
+ pTab = pTabItem->pTab;
+ if( pTab->isTransient || pTab->pSelect ) continue;
+ if( (pLevel->score & 1)==0 ){
+ sqlite3OpenTableForReading(v, pTabItem->iCursor, pTab);
+ }
+ pLevel->iTabCur = pTabItem->iCursor;
+ if( (pIx = pLevel->pIdx)!=0 ){
+ sqlite3VdbeAddOp(v, OP_Integer, pIx->iDb, 0);
+ sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
+ (char*)&pIx->keyInfo, P3_KEYINFO);
+ }
+ if( (pLevel->score & 1)!=0 ){
+ sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
+ }
+ sqlite3CodeVerifySchema(pParse, pTab->iDb);
+ }
+ pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
+
+ /* Generate the code to do the search
+ */
+ loopMask = 0;
+ pLevel = pWInfo->a;
+ pTabItem = pTabList->a;
+ for(i=0; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
+ int j, k;
+ int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */
+ Index *pIdx; /* The index we will be using */
+ int iIdxCur; /* The VDBE cursor for the index */
+ int omitTable; /* True if we use the index only */
+
+ pIdx = pLevel->pIdx;
+ iIdxCur = pLevel->iIdxCur;
+ pLevel->inOp = OP_Noop;
+
+ /* Check to see if it is appropriate to omit the use of the table
+ ** here and use its index instead.
+ */
+ omitTable = (pLevel->score&1)!=0;
+
+ /* If this is the right table of a LEFT OUTER JOIN, allocate and
+ ** initialize a memory cell that records if this table matches any
+ ** row of the left table of the join.
+ */
+ if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
+ if( !pParse->nMem ) pParse->nMem++;
+ pLevel->iLeftJoin = pParse->nMem++;
+ sqlite3VdbeAddOp(v, OP_Null, 0, 0);
+ sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
+ VdbeComment((v, "# init LEFT JOIN no-match flag"));
+ }
+
+ if( i<ARRAYSIZE(iDirectEq) && (k = iDirectEq[i])>=0 ){
+ /* Case 1: We can directly reference a single row using an
+ ** equality comparison against the ROWID field. Or
+ ** we reference multiple rows using a "rowid IN (...)"
+ ** construct.
+ */
+ assert( k<nExpr );
+ pTerm = &aExpr[k];
+ assert( pTerm->p!=0 );
+ assert( pTerm->idxLeft==iCur );
+ assert( omitTable==0 );
+ brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
+ codeEqualityTerm(pParse, pTerm, brk, pLevel);
+ cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
+ sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk);
+ sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk);
+ VdbeComment((v, "pk"));
+ pLevel->op = OP_Noop;
+ }else if( pIdx!=0 && pLevel->score>3 && (pLevel->score&0x0c)==0 ){
+ /* Case 2: There is an index and all terms of the WHERE clause that
+ ** refer to the index using the "==" or "IN" operators.
+ */
+ int start;
+ int nColumn = (pLevel->score+16)/32;
+ brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
+
+ /* For each column of the index, find the term of the WHERE clause that
+ ** constraints that column. If the WHERE clause term is X=expr, then
+ ** evaluation expr and leave the result on the stack */
+ for(j=0; j<nColumn; j++){
+ for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
+ Expr *pX = pTerm->p;
+ if( pX==0 ) continue;
+ if( pTerm->idxLeft==iCur
+ && (pTerm->prereqRight & loopMask)==pTerm->prereqRight
+ && pX->pLeft->iColumn==pIdx->aiColumn[j]
+ && (pX->op==TK_EQ || pX->op==TK_IN)
+ ){
+ char idxaff = pIdx->pTable->aCol[pX->pLeft->iColumn].affinity;
+ if( sqlite3IndexAffinityOk(pX, idxaff) ){
+ codeEqualityTerm(pParse, pTerm, brk, pLevel);
+ break;
+ }
+ }
+ }
+ }
+ pLevel->iMem = pParse->nMem++;
+ cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
+ buildIndexProbe(v, nColumn, brk, pIdx);
+ sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
+
+ /* Generate code (1) to move to the first matching element of the table.
+ ** Then generate code (2) that jumps to "brk" after the cursor is past
+ ** the last matching element of the table. The code (1) is executed
+ ** once to initialize the search, the code (2) is executed before each
+ ** iteration of the scan to see if the scan has finished. */
+ if( pLevel->bRev ){
+ /* Scan in reverse order */
+ sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk);
+ start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
+ sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk);
+ pLevel->op = OP_Prev;
+ }else{
+ /* Scan in the forward order */
+ sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk);
+ start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
+ sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC);
+ pLevel->op = OP_Next;
+ }
+ sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
+ sqlite3VdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
+ if( !omitTable ){
+ sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
+ sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
+ }
+ pLevel->p1 = iIdxCur;
+ pLevel->p2 = start;
+ }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
+ /* Case 3: We have an inequality comparison against the ROWID field.
+ */
+ int testOp = OP_Noop;
+ int start;
+ int bRev = pLevel->bRev;
+
+ assert( omitTable==0 );
+ brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
+ cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
+ if( bRev ){
+ int t = iDirectGt[i];
+ iDirectGt[i] = iDirectLt[i];
+ iDirectLt[i] = t;
+ }
+ if( iDirectGt[i]>=0 ){
+ Expr *pX;
+ k = iDirectGt[i];
+ assert( k<nExpr );
+ pTerm = &aExpr[k];
+ pX = pTerm->p;
+ assert( pX!=0 );
+ assert( pTerm->idxLeft==iCur );
+ sqlite3ExprCode(pParse, pX->pRight);
+ sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
+ sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
+ VdbeComment((v, "pk"));
+ disableTerm(pLevel, &pTerm->p);
+ }else{
+ sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
+ }
+ if( iDirectLt[i]>=0 ){
+ Expr *pX;
+ k = iDirectLt[i];
+ assert( k<nExpr );
+ pTerm = &aExpr[k];
+ pX = pTerm->p;
+ assert( pX!=0 );
+ assert( pTerm->idxLeft==iCur );
+ sqlite3ExprCode(pParse, pX->pRight);
+ pLevel->iMem = pParse->nMem++;
+ sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
+ if( pX->op==TK_LT || pX->op==TK_GT ){
+ testOp = bRev ? OP_Le : OP_Ge;
+ }else{
+ testOp = bRev ? OP_Lt : OP_Gt;
+ }
+ disableTerm(pLevel, &pTerm->p);
+ }
+ start = sqlite3VdbeCurrentAddr(v);
+ pLevel->op = bRev ? OP_Prev : OP_Next;
+ pLevel->p1 = iCur;
+ pLevel->p2 = start;
+ if( testOp!=OP_Noop ){
+ sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
+ sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
+ sqlite3VdbeAddOp(v, testOp, 'n', brk);
+ }
+ }else if( pIdx==0 ){
+ /* Case 4: There is no usable index. We must do a complete
+ ** scan of the entire database table.
+ */
+ int start;
+ int opRewind;
+
+ assert( omitTable==0 );
+ brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
+ cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
+ if( pLevel->bRev ){
+ opRewind = OP_Last;
+ pLevel->op = OP_Prev;
+ }else{
+ opRewind = OP_Rewind;
+ pLevel->op = OP_Next;
+ }
+ sqlite3VdbeAddOp(v, opRewind, iCur, brk);
+ start = sqlite3VdbeCurrentAddr(v);
+ pLevel->p1 = iCur;
+ pLevel->p2 = start;
+ }else{
+ /* Case 5: The WHERE clause term that refers to the right-most
+ ** column of the index is an inequality. For example, if
+ ** the index is on (x,y,z) and the WHERE clause is of the
+ ** form "x=5 AND y<10" then this case is used. Only the
+ ** right-most column can be an inequality - the rest must
+ ** use the "==" operator.
+ **
+ ** This case is also used when there are no WHERE clause
+ ** constraints but an index is selected anyway, in order
+ ** to force the output order to conform to an ORDER BY.
+ */
+ int score = pLevel->score;
+ int nEqColumn = score/32;
+ int start;
+ int leFlag=0, geFlag=0;
+ int testOp;
+
+ /* Evaluate the equality constraints
+ */
+ for(j=0; j<nEqColumn; j++){
+ int iIdxCol = pIdx->aiColumn[j];
+ for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
+ Expr *pX = pTerm->p;
+ if( pX==0 ) continue;
+ if( pTerm->idxLeft==iCur
+ && pX->op==TK_EQ
+ && (pTerm->prereqRight & loopMask)==pTerm->prereqRight
+ && pX->pLeft->iColumn==iIdxCol
+ ){
+ sqlite3ExprCode(pParse, pX->pRight);
+ disableTerm(pLevel, &pTerm->p);
+ break;
+ }
+ }
+ }
+
+ /* Duplicate the equality term values because they will all be
+ ** used twice: once to make the termination key and once to make the
+ ** start key.
+ */
+ for(j=0; j<nEqColumn; j++){
+ sqlite3VdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
+ }
+
+ /* Labels for the beginning and end of the loop
+ */
+ cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
+ brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
+
+ /* Generate the termination key. This is the key value that
+ ** will end the search. There is no termination key if there
+ ** are no equality terms and no "X<..." term.
+ **
+ ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
+ ** key computed here really ends up being the start key.
+ */
+ if( (score & 4)!=0 ){
+ for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
+ Expr *pX = pTerm->p;
+ if( pX==0 ) continue;
+ if( pTerm->idxLeft==iCur
+ && (pX->op==TK_LT || pX->op==TK_LE)
+ && (pTerm->prereqRight & loopMask)==pTerm->prereqRight
+ && pX->pLeft->iColumn==pIdx->aiColumn[j]
+ ){
+ sqlite3ExprCode(pParse, pX->pRight);
+ leFlag = pX->op==TK_LE;
+ disableTerm(pLevel, &pTerm->p);
+ break;
+ }
+ }
+ testOp = OP_IdxGE;
+ }else{
+ testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
+ leFlag = 1;
+ }
+ if( testOp!=OP_Noop ){
+ int nCol = nEqColumn + ((score & 4)!=0);
+ pLevel->iMem = pParse->nMem++;
+ buildIndexProbe(v, nCol, brk, pIdx);
+ if( pLevel->bRev ){
+ int op = leFlag ? OP_MoveLe : OP_MoveLt;
+ sqlite3VdbeAddOp(v, op, iIdxCur, brk);
+ }else{
+ sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
+ }
+ }else if( pLevel->bRev ){
+ sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
+ }
+
+ /* Generate the start key. This is the key that defines the lower
+ ** bound on the search. There is no start key if there are no
+ ** equality terms and if there is no "X>..." term. In
+ ** that case, generate a "Rewind" instruction in place of the
+ ** start key search.
+ **
+ ** 2002-Dec-04: In the case of a reverse-order search, the so-called
+ ** "start" key really ends up being used as the termination key.
+ */
+ if( (score & 8)!=0 ){
+ for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
+ Expr *pX = pTerm->p;
+ if( pX==0 ) continue;
+ if( pTerm->idxLeft==iCur
+ && (pX->op==TK_GT || pX->op==TK_GE)
+ && (pTerm->prereqRight & loopMask)==pTerm->prereqRight
+ && pX->pLeft->iColumn==pIdx->aiColumn[j]
+ ){
+ sqlite3ExprCode(pParse, pX->pRight);
+ geFlag = pX->op==TK_GE;
+ disableTerm(pLevel, &pTerm->p);
+ break;
+ }
+ }
+ }else{
+ geFlag = 1;
+ }
+ if( nEqColumn>0 || (score&8)!=0 ){
+ int nCol = nEqColumn + ((score&8)!=0);
+ buildIndexProbe(v, nCol, brk, pIdx);
+ if( pLevel->bRev ){
+ pLevel->iMem = pParse->nMem++;
+ sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
+ testOp = OP_IdxLT;
+ }else{
+ int op = geFlag ? OP_MoveGe : OP_MoveGt;
+ sqlite3VdbeAddOp(v, op, iIdxCur, brk);
+ }
+ }else if( pLevel->bRev ){
+ testOp = OP_Noop;
+ }else{
+ sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
+ }
+
+ /* Generate the the top of the loop. If there is a termination
+ ** key we have to test for that key and abort at the top of the
+ ** loop.
+ */
+ start = sqlite3VdbeCurrentAddr(v);
+ if( testOp!=OP_Noop ){
+ sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
+ sqlite3VdbeAddOp(v, testOp, iIdxCur, brk);
+ if( (leFlag && !pLevel->bRev) || (!geFlag && pLevel->bRev) ){
+ sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
+ }
+ }
+ sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
+ sqlite3VdbeAddOp(v, OP_IdxIsNull, nEqColumn + ((score&4)!=0), cont);
+ if( !omitTable ){
+ sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
+ sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
+ }
+
+ /* Record the instruction used to terminate the loop.
+ */
+ pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
+ pLevel->p1 = iIdxCur;
+ pLevel->p2 = start;
+ }
+ loopMask |= getMask(&maskSet, iCur);
+
+ /* Insert code to test every subexpression that can be completely
+ ** computed using the current set of tables.
+ */
+ for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
+ if( pTerm->p==0 ) continue;
+ if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
+ if( pLevel->iLeftJoin && !ExprHasProperty(pTerm->p,EP_FromJoin) ){
+ continue;
+ }
+ sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1);
+ pTerm->p = 0;
+ }
+ brk = cont;
+
+ /* For a LEFT OUTER JOIN, generate code that will record the fact that
+ ** at least one row of the right table has matched the left table.
+ */
+ if( pLevel->iLeftJoin ){
+ pLevel->top = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
+ sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
+ VdbeComment((v, "# record LEFT JOIN hit"));
+ for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
+ if( pTerm->p==0 ) continue;
+ if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
+ sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1);
+ pTerm->p = 0;
+ }
+ }
+ }
+ pWInfo->iContinue = cont;
+ freeMaskSet(&maskSet);
+ return pWInfo;
+}
+
+/*
+** Generate the end of the WHERE loop. See comments on
+** sqlite3WhereBegin() for additional information.
+*/
+void sqlite3WhereEnd(WhereInfo *pWInfo){
+ Vdbe *v = pWInfo->pParse->pVdbe;
+ int i;
+ WhereLevel *pLevel;
+ SrcList *pTabList = pWInfo->pTabList;
+ struct SrcList_item *pTabItem;
+
+ /* Generate loop termination code.
+ */
+ for(i=pTabList->nSrc-1; i>=0; i--){
+ pLevel = &pWInfo->a[i];
+ sqlite3VdbeResolveLabel(v, pLevel->cont);
+ if( pLevel->op!=OP_Noop ){
+ sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
+ }
+ sqlite3VdbeResolveLabel(v, pLevel->brk);
+ if( pLevel->inOp!=OP_Noop ){
+ sqlite3VdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
+ }
+ if( pLevel->iLeftJoin ){
+ int addr;
+ addr = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
+ sqlite3VdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iIdxCur>=0));
+ sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
+ if( pLevel->iIdxCur>=0 ){
+ sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
+ }
+ sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
+ }
+ }
+
+ /* The "break" point is here, just past the end of the outer loop.
+ ** Set it.
+ */
+ sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
+
+ /* Close all of the cursors that were opend by sqlite3WhereBegin.
+ */
+ pLevel = pWInfo->a;
+ pTabItem = pTabList->a;
+ for(i=0; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
+ Table *pTab = pTabItem->pTab;
+ assert( pTab!=0 );
+ if( pTab->isTransient || pTab->pSelect ) continue;
+ if( (pLevel->score & 1)==0 ){
+ sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
+ }
+ if( pLevel->pIdx!=0 ){
+ sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
+ }
+
+ /* Make cursor substitutions for cases where we want to use
+ ** just the index and never reference the table.
+ **
+ ** Calls to the code generator in between sqlite3WhereBegin and
+ ** sqlite3WhereEnd will have created code that references the table
+ ** directly. This loop scans all that code looking for opcodes
+ ** that reference the table and converts them into opcodes that
+ ** reference the index.
+ */
+ if( pLevel->score & 1 ){
+ int i, j, last;
+ VdbeOp *pOp;
+ Index *pIdx = pLevel->pIdx;
+
+ assert( pIdx!=0 );
+ pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
+ last = sqlite3VdbeCurrentAddr(v);
+ for(i=pWInfo->iTop; i<last; i++, pOp++){
+ if( pOp->p1!=pLevel->iTabCur ) continue;
+ if( pOp->opcode==OP_Column ){
+ pOp->p1 = pLevel->iIdxCur;
+ for(j=0; j<pIdx->nColumn; j++){
+ if( pOp->p2==pIdx->aiColumn[j] ){
+ pOp->p2 = j;
+ break;
+ }
+ }
+ }else if( pOp->opcode==OP_Rowid ){
+ pOp->p1 = pLevel->iIdxCur;
+ pOp->opcode = OP_IdxRowid;
+ }else if( pOp->opcode==OP_NullRow ){
+ pOp->opcode = OP_Noop;
+ }
+ }
+ }
+ }
+
+ /* Final cleanup
+ */
+ sqliteFree(pWInfo);
+ return;
+}