summaryrefslogtreecommitdiffstats
path: root/kspread/kspread_functions_statistical.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'kspread/kspread_functions_statistical.cpp')
-rw-r--r--kspread/kspread_functions_statistical.cpp1243
1 files changed, 1243 insertions, 0 deletions
diff --git a/kspread/kspread_functions_statistical.cpp b/kspread/kspread_functions_statistical.cpp
new file mode 100644
index 00000000..26c9d483
--- /dev/null
+++ b/kspread/kspread_functions_statistical.cpp
@@ -0,0 +1,1243 @@
+/* This file is part of the KDE project
+ Copyright (C) 1998-2002 The KSpread Team
+ www.koffice.org/kspread
+ Copyright (C) 2005 Tomas Mecir <[email protected]>
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public
+ License as published by the Free Software Foundation; either
+ version 2 of the License.
+
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public License
+ along with this library; see the file COPYING.LIB. If not, write to
+ the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+*/
+
+// built-in statistical functions
+
+#include "functions.h"
+#include "valuecalc.h"
+#include "valueconverter.h"
+
+// needed for MODE
+#include <tqmap.h>
+
+using namespace KSpread;
+
+// prototypes (sorted!)
+Value func_arrang (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_average (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_averagea (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_avedev (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_betadist (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_bino (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_chidist (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_combin (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_confidence (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_correl_pop (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_covar (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_devsq (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_devsqa (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_expondist (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_fdist (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_fisher (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_fisherinv (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_gammadist (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_gammaln (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_gauss (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_geomean (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_harmean (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_hypgeomdist (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_kurtosis_est (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_kurtosis_pop (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_large (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_loginv (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_lognormdist (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_median (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_mode (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_negbinomdist (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_normdist (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_norminv (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_normsinv (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_phi (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_poisson (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_skew_est (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_skew_pop (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_small (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_standardize (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_stddev (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_stddeva (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_stddevp (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_stddevpa (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_stdnormdist (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_sumproduct (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_sumx2py2 (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_sumx2my2 (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_sumxmy2 (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_tdist (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_variance (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_variancea (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_variancep (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_variancepa (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_weibull (valVector args, ValueCalc *calc, FuncExtra *);
+
+typedef TQValueList<double> List;
+
+// registers all statistical functions
+void RegisterStatisticalFunctions()
+{
+ FunctionRepository* repo = FunctionRepository::self();
+ Function *f;
+
+ f = new Function ("AVEDEV", func_avedev);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("AVERAGE", func_average);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("AVERAGEA", func_averagea);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("BETADIST", func_betadist);
+ f->setParamCount (3, 5);
+ repo->add (f);
+ f = new Function ("BINO", func_bino);
+ f->setParamCount (3);
+ repo->add (f);
+ f = new Function ("CHIDIST", func_chidist);
+ f->setParamCount (2);
+ repo->add (f);
+ f = new Function ("COMBIN", func_combin);
+ f->setParamCount (2);
+ repo->add (f);
+ f = new Function ("CONFIDENCE", func_confidence);
+ f->setParamCount (3);
+ repo->add (f);
+ f = new Function ("CORREL", func_correl_pop);
+ f->setParamCount (2);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("COVAR", func_covar);
+ f->setParamCount (2);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("DEVSQ", func_devsq);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("DEVSQA", func_devsqa);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("EXPONDIST", func_expondist);
+ f->setParamCount (3);
+ repo->add (f);
+ f = new Function ("FDIST", func_fdist);
+ f->setParamCount (3);
+ repo->add (f);
+ f = new Function ("FISHER", func_fisher);
+ repo->add (f);
+ f = new Function ("FISHERINV", func_fisherinv);
+ repo->add (f);
+ f = new Function ("GAMMADIST", func_gammadist);
+ f->setParamCount (4);
+ repo->add (f);
+ f = new Function ("GAMMALN", func_gammaln);
+ repo->add (f);
+ f = new Function ("GAUSS", func_gauss);
+ repo->add (f);
+ f = new Function ("GEOMEAN", func_geomean);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("HARMEAN", func_harmean);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("HYPGEOMDIST", func_hypgeomdist);
+ f->setParamCount (4);
+ repo->add (f);
+ f = new Function ("INVBINO", func_bino); // same as BINO, for 1.4 compat
+ repo->add (f);
+ f = new Function ("KURT", func_kurtosis_est);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("KURTP", func_kurtosis_pop);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("LARGE", func_large);
+ f->setParamCount (2);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("LOGINV", func_loginv);
+ f->setParamCount (3);
+ repo->add (f);
+ f = new Function ("LOGNORMDIST", func_lognormdist);
+ f->setParamCount (3);
+ repo->add (f);
+ f = new Function ("MEDIAN", func_median);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("MODE", func_mode);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("NEGBINOMDIST", func_negbinomdist);
+ f->setParamCount (3);
+ repo->add (f);
+ f = new Function ("NORMDIST", func_normdist);
+ f->setParamCount (4);
+ repo->add (f);
+ f = new Function ("NORMINV", func_norminv);
+ f->setParamCount (3);
+ repo->add (f);
+ f = new Function ("NORMSDIST", func_stdnormdist);
+ repo->add (f);
+ f = new Function ("NORMSINV", func_normsinv);
+ repo->add (f);
+ f = new Function ("PEARSON", func_correl_pop);
+ f->setParamCount (2);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("PERMUT", func_arrang);
+ f->setParamCount (2);
+ repo->add (f);
+ f = new Function ("PHI", func_phi);
+ repo->add (f);
+ f = new Function ("POISSON", func_poisson);
+ f->setParamCount (3);
+ repo->add (f);
+ f = new Function ("SKEW", func_skew_est);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("SKEWP", func_skew_pop);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("SMALL", func_small);
+ f->setParamCount (2);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("STANDARDIZE", func_standardize);
+ f->setParamCount (3);
+ repo->add (f);
+ f = new Function ("STDEV", func_stddev);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("STDEVA", func_stddeva);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("STDEVP", func_stddevp);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("STDEVPA", func_stddevpa);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("SUM2XMY", func_sumxmy2);
+ f->setParamCount (2);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("SUMPRODUCT", func_sumproduct);
+ f->setParamCount (2);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("SUMX2PY2", func_sumx2py2);
+ f->setParamCount (2);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("SUMX2MY2", func_sumx2my2);
+ f->setParamCount (2);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("TDIST", func_tdist);
+ f->setParamCount (3);
+ repo->add (f);
+ f = new Function ("VARIANCE", func_variance);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("VAR", func_variance);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("VARP", func_variancep);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("VARA", func_variancea);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("VARPA", func_variancepa);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("WEIBULL", func_weibull);
+ f->setParamCount (4);
+ repo->add (f);
+}
+
+// array-walk functions used in this file
+
+void awSkew (ValueCalc *c, Value &res, Value val, Value p)
+{
+ Value avg = p.element (0, 0);
+ Value stdev = p.element (1, 0);
+ // (val - avg) / stddev
+ Value d = c->div (c->sub (val, avg), stdev);
+ // res += d*d*d
+ res = c->add (res, c->mul (d, c->mul (d, d)));
+}
+
+void awSumInv (ValueCalc *c, Value &res, Value val, Value)
+{
+ // res += 1/value
+ res = c->add (res, c->div (1.0, val));
+}
+
+void awAveDev (ValueCalc *c, Value &res, Value val,
+ Value p)
+{
+ // res += abs (val - p)
+ res = c->add (res, c->abs (c->sub (val, p)));
+}
+
+void awKurtosis (ValueCalc *c, Value &res, Value val,
+ Value p)
+{
+ Value avg = p.element (0, 0);
+ Value stdev = p.element (1, 0);
+ //d = (val - avg ) / stdev
+ Value d = c->div (c->sub (val, avg), stdev);
+ // res += d^4
+ res = c->add (res, c->pow (d, 4));
+}
+
+
+Value func_skew_est (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ int number = calc->count (args);
+ Value avg = calc->avg (args);
+ if (number < 3)
+ return Value::errorVALUE();
+
+ Value res = calc->stddev (args, avg);
+ if (res.isZero())
+ return Value::errorVALUE();
+
+ Value params (2, 1);
+ params.setElement (0, 0, avg);
+ params.setElement (1, 0, res);
+ Value tskew;
+ calc->arrayWalk (args, tskew, awSkew, params);
+
+ // ((tskew * number) / (number-1)) / (number-2)
+ return calc->div (calc->div (calc->mul (tskew, number), number-1), number-2);
+}
+
+Value func_skew_pop (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ int number = calc->count (args);
+ Value avg = calc->avg (args);
+ if (number < 1)
+ return Value::errorVALUE();
+
+ Value res = calc->stddevP (args, avg);
+ if (res.isZero())
+ return Value::errorVALUE();
+
+ Value params (2, 1);
+ params.setElement (0, 0, avg);
+ params.setElement (1, 0, res);
+ Value tskew;
+ calc->arrayWalk (args, tskew, awSkew, params);
+
+ // tskew / number
+ return calc->div (tskew, number);
+}
+
+class ContentSheet : public TQMap<double, int> {};
+
+void func_mode_helper (Value range, ValueCalc *calc, ContentSheet &sh)
+{
+ if (!range.isArray())
+ {
+ double d = calc->conv()->asFloat (range).asFloat();
+ sh[d]++;
+ return;
+ }
+
+ for (unsigned int row = 0; row < range.rows(); ++row)
+ for (unsigned int col = 0; col < range.columns(); ++col) {
+ Value v = range.element (col, row);
+ if (v.isArray())
+ func_mode_helper (v, calc, sh);
+ else {
+ double d = calc->conv()->asFloat (v).asFloat();
+ sh[d]++;
+ }
+ }
+}
+
+Value func_mode (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ // does NOT support anything other than doubles !!!
+ ContentSheet sh;
+ for (unsigned int i = 0; i < args.count(); ++i)
+ func_mode_helper (args[i], calc, sh);
+
+ // retrieve value with max.count
+ int maxcount = 0;
+ double max = 0.0;
+ ContentSheet::iterator it;
+ for (it = sh.begin(); it != sh.end(); ++it)
+ if (it.data() > maxcount) {
+ max = it.key();
+ maxcount = it.data();
+ }
+ return Value (max);
+}
+
+Value func_covar_helper (Value range1, Value range2,
+ ValueCalc *calc, Value avg1, Value avg2)
+{
+ // two arrays -> cannot use arrayWalk
+ if ((!range1.isArray()) && (!range2.isArray()))
+ // (v1-E1)*(v2-E2)
+ return calc->mul (calc->sub (range1, avg1), calc->sub (range2, avg2));
+
+ int rows = range1.rows();
+ int cols = range1.columns();
+ int rows2 = range2.rows();
+ int cols2 = range2.columns();
+ if ((rows != rows2) || (cols != cols2))
+ return Value::errorVALUE();
+
+ Value result = 0.0;
+ for (int row = 0; row < rows; ++row)
+ for (int col = 0; col < cols; ++col) {
+ Value v1 = range1.element (col, row);
+ Value v2 = range2.element (col, row);
+ if (v1.isArray() || v2.isArray())
+ result = calc->add (result,
+ func_covar_helper (v1, v2, calc, avg1, avg2));
+ else
+ // result += (v1-E1)*(v2-E2)
+ result = calc->add (result, calc->mul (calc->sub (v1, avg1),
+ calc->sub (v2, avg2)));
+ }
+
+ return result;
+}
+
+Value func_covar (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value avg1 = calc->avg (args[0]);
+ Value avg2 = calc->avg (args[1]);
+ int number = calc->count (args[0]);
+ int number2 = calc->count (args[1]);
+
+ if (number2 <= 0 || number2 != number)
+ return Value::errorVALUE();
+
+ Value covar = func_covar_helper (args[0], args[1], calc, avg1, avg2);
+ return calc->div (covar, number);
+}
+
+Value func_correl_pop (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value covar = func_covar (args, calc, 0);
+ Value stdevp1 = calc->stddevP (args[0]);
+ Value stdevp2 = calc->stddevP (args[1]);
+
+ if (calc->isZero (stdevp1) || calc->isZero (stdevp2))
+ return Value::errorDIV0();
+
+ // covar / (stdevp1 * stdevp2)
+ return calc->div (covar, calc->mul (stdevp1, stdevp2));
+}
+
+void func_array_helper (Value range, ValueCalc *calc,
+ List &array, int &number)
+{
+ if (!range.isArray())
+ {
+ array << calc->conv()->asFloat (range).asFloat();
+ ++number;
+ return;
+ }
+
+ for (unsigned int row = 0; row < range.rows(); ++row)
+ for (unsigned int col = 0; col < range.columns(); ++col) {
+ Value v = range.element (col, row);
+ if (v.isArray ())
+ func_array_helper (v, calc, array, number);
+ else {
+ array << calc->conv()->asFloat (v).asFloat();
+ ++number;
+ }
+ }
+}
+
+Value func_large (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ // does NOT support anything other than doubles !!!
+ int k = calc->conv()->asInteger (args[1]).asInteger();
+ if ( k < 1 )
+ return false;
+
+ List array;
+ int number = 1;
+
+ func_array_helper (args[0], calc, array, number);
+
+ if ( k > number )
+ return Value::errorVALUE();
+
+ qHeapSort (array);
+ double d = *array.at (number - k - 1);
+ return Value (d);
+}
+
+Value func_small (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ // does NOT support anything other than doubles !!!
+ int k = calc->conv()->asInteger (args[1]).asInteger();
+ if ( k < 1 )
+ return false;
+
+ List array;
+ int number = 1;
+
+ func_array_helper (args[0], calc, array, number);
+
+ if ( k > number )
+ return Value::errorVALUE();
+
+ qHeapSort (array);
+ double d = *array.at (k - 1);
+ return Value (d);
+}
+
+Value func_geomean (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value count = calc->count (args);
+ Value prod = calc->product (args, 1.0);
+ if (calc->isZero (count))
+ return Value::errorDIV0();
+ return calc->pow (prod, calc->div (1.0, count));
+}
+
+Value func_harmean (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value count = calc->count (args);
+ if (calc->isZero (count))
+ return Value::errorDIV0();
+ Value suminv;
+ calc->arrayWalk (args, suminv, awSumInv, 0);
+ return calc->div (suminv, count);
+}
+
+Value func_loginv (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value p = args[0];
+ Value m = args[1];
+ Value s = args[2];
+
+ if (calc->lower (p, 0) || calc->greater (p, 1))
+ return Value::errorVALUE();
+
+ if (!calc->greater (s, 0))
+ return Value::errorVALUE();
+
+ Value result = 0.0;
+ if (calc->equal (p, 1)) //p==1
+ result = Value::errorVALUE();
+ else if (calc->greater (p, 0)) { //p>0
+ Value gaussInv = calc->gaussinv (p);
+ // exp (gaussInv * s + m)
+ result = calc->exp (calc->add (calc->mul (s, gaussInv), m));
+ }
+
+ return result;
+}
+
+Value func_devsq (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value res;
+ calc->arrayWalk (args, res, calc->awFunc ("devsq"), calc->avg (args, false));
+ return res;
+}
+
+Value func_devsqa (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value res;
+ calc->arrayWalk (args, res, calc->awFunc ("devsqa"), calc->avg (args));
+ return res;
+}
+
+Value func_kurtosis_est (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ int count = calc->count (args);
+ if (count < 4)
+ return Value::errorVALUE();
+
+ Value avg = calc->avg (args);
+ Value devsq;
+ calc->arrayWalk (args, devsq, calc->awFunc ("devsqa"), avg);
+
+ if (devsq.isZero ())
+ return Value::errorDIV0();
+
+ Value params (2, 1);
+ params.setElement (0, 0, avg);
+ params.setElement (1, 0, devsq);
+ Value x4;
+ calc->arrayWalk (args, x4, awKurtosis, params);
+
+ double den = (double) (count - 2) * (count - 3);
+ double nth = (double) count * (count + 1) / ((count - 1) * den);
+ double t = 3.0 * (count - 1) * (count - 1) / den;
+
+ // res = x4 * nth - t
+ return calc->sub (calc->mul (x4, nth), t);
+}
+
+Value func_kurtosis_pop (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ int count = calc->count (args);
+ if (count < 4)
+ return Value::errorVALUE();
+
+ Value avg = calc->avg (args);
+ Value devsq;
+ calc->arrayWalk (args, devsq, calc->awFunc ("devsqa"), avg);
+
+ if (devsq.isZero ())
+ return Value::errorDIV0();
+
+ Value params (2, 1);
+ params.setElement (0, 0, avg);
+ params.setElement (1, 0, devsq);
+ Value x4;
+ calc->arrayWalk (args, x4, awKurtosis, params);
+
+ // x4 / count - 3
+ return calc->sub (calc->div (x4, count), 3);
+}
+
+Value func_standardize (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value x = args[0];
+ Value m = args[1];
+ Value s = args[2];
+
+ if (!calc->greater (s, 0)) // s must be >0
+ return Value::errorVALUE();
+
+ // (x - m) / s
+ return calc->div (calc->sub (x, m), s);
+}
+
+Value func_hypgeomdist (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ int x = calc->conv()->asInteger (args[0]).asInteger();
+ int n = calc->conv()->asInteger (args[1]).asInteger();
+ int M = calc->conv()->asInteger (args[2]).asInteger();
+ int N = calc->conv()->asInteger (args[3]).asInteger();
+
+ if ( x < 0 || n < 0 || M < 0 || N < 0 )
+ return Value::errorVALUE();
+
+ if ( x > M || n > N )
+ return Value::errorVALUE();
+
+ Value d1 = calc->combin (M, x);
+ Value d2 = calc->combin (N - M, n - x);
+ Value d3 = calc->combin (N, n);
+
+ // d1 * d2 / d3
+ return calc->div (calc->mul (d1, d2), d3);
+}
+
+Value func_negbinomdist (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ int x = calc->conv()->asInteger (args[0]).asInteger();
+ int r = calc->conv()->asInteger (args[1]).asInteger();
+ Value p = args[2];
+
+ if ((x + r - 1) <= 0)
+ return Value::errorVALUE();
+ if (calc->lower (p, 0) || calc->greater (p, 1))
+ return Value::errorVALUE();
+
+ Value d1 = calc->combin (x + r - 1, r - 1);
+ // d2 = pow (p, r) * pow (1 - p, x)
+ Value d2 = calc->mul (calc->pow (p, r),
+ calc->pow (calc->sub (1, p), x));
+
+ return calc->mul (d1, d2);
+}
+
+// Function: permut
+Value func_arrang (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value n = args[0];
+ Value m = args[1];
+ if (calc->lower (n, m)) // problem if n<m
+ return Value::errorVALUE();
+
+ if (calc->lower (m, 0)) // problem if m<0 (n>=m so that's okay)
+ return Value::errorVALUE();
+
+ // fact(n) / (fact(n-m)
+ return calc->fact (n, calc->sub (n, m));
+}
+
+// Function: average
+Value func_average (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->avg (args, false);
+}
+
+// Function: averagea
+Value func_averagea (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->avg (args);
+}
+
+// Function: avedev
+Value func_avedev (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value result;
+ calc->arrayWalk (args, result, awAveDev, calc->avg (args));
+ return result;
+}
+
+// Function: median
+Value func_median (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ // does NOT support anything other than doubles !!!
+ List array;
+ int number = 1;
+
+ for (unsigned int i = 0; i < args.count(); ++i)
+ func_array_helper (args[i], calc, array, number);
+
+ qHeapSort (array);
+ double d = *array.at (number / 2 + number % 2);
+ return Value (d);
+}
+
+// Function: variance
+Value func_variance (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ int count = calc->count (args, false);
+ if (count < 2)
+ return Value::errorVALUE();
+
+ Value result = func_devsq (args, calc, 0);
+ return calc->div (result, count-1);
+}
+
+// Function: vara
+Value func_variancea (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ int count = calc->count (args);
+ if (count < 2)
+ return Value::errorVALUE();
+
+ Value result = func_devsqa (args, calc, 0);
+ return calc->div (result, count-1);
+}
+
+// Function: varp
+Value func_variancep (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ int count = calc->count (args, false);
+ if (count == 0)
+ return Value::errorVALUE();
+
+ Value result = func_devsq (args, calc, 0);
+ return calc->div (result, count);
+}
+
+// Function: varpa
+Value func_variancepa (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ int count = calc->count (args);
+ if (count == 0)
+ return Value::errorVALUE();
+
+ Value result = func_devsqa (args, calc, 0);
+ return calc->div (result, count);
+}
+
+// Function: stddev
+Value func_stddev (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->stddev (args, false);
+}
+
+// Function: stddeva
+Value func_stddeva (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->stddev (args);
+}
+
+// Function: stddevp
+Value func_stddevp (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->stddevP (args, false);
+}
+
+// Function: stddevpa
+Value func_stddevpa (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->stddevP (args);
+}
+
+// Function: combin
+Value func_combin (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->combin (args[0], args[1]);
+}
+
+// Function: bino
+Value func_bino (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value n = args[0];
+ Value m = args[1];
+ Value comb = calc->combin (n, m);
+ Value prob = args[2];
+
+ if (calc->lower (prob,0) || calc->greater (prob,1))
+ return Value::errorVALUE();
+
+ // result = comb * pow (prob, m) * pow (1 - prob, n - m)
+ Value pow1 = calc->pow (prob, m);
+ Value pow2 = calc->pow (calc->sub (1, prob), calc->sub (n, m));
+ return calc->mul (comb, calc->mul (pow1, pow2));
+}
+
+// Function: phi
+Value func_phi (valVector args, ValueCalc *calc, FuncExtra *)
+//distribution function for a standard normal distribution
+{
+ return calc->phi (args[0]);
+}
+
+// Function: gauss
+Value func_gauss (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ //returns the integral values of the standard normal cumulative distribution
+ return calc->gauss (args[0]);
+}
+
+// Function: gammadist
+Value func_gammadist (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value x = args[0];
+ Value alpha = args[1];
+ Value beta = args[2];
+ int kum = calc->conv()->asInteger (args[3]).asInteger(); // 0 or 1
+
+ Value result;
+
+ if (calc->lower (x, 0.0) || (!calc->greater (alpha, 0.0)) ||
+ (!calc->greater (beta, 0.0)))
+ return Value::errorVALUE();
+
+ if (kum == 0) { //density
+ Value G = calc->GetGamma (alpha);
+ // result = pow (x, alpha - 1.0) / exp (x / beta) / pow (beta, alpha) / G
+ Value pow1 = calc->pow (x, calc->sub (alpha, 1.0));
+ Value pow2 = calc->exp (calc->div (x, beta));
+ Value pow3 = calc->pow (beta, alpha);
+ result = calc->div (calc->div (calc->div (pow1, pow2), pow3), G);
+ }
+ else
+ result = calc->GetGammaDist (x, alpha, beta);
+
+ return Value (result);
+}
+
+// Function: betadist
+Value func_betadist (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value x = args[0];
+ Value alpha = args[1];
+ Value beta = args[2];
+
+ Value fA = 0.0;
+ Value fB = 1.0;
+ if (args.count() > 3) fA = args[3];
+ if (args.count() == 5) fB = args[4];
+
+ //x < fA || x > fB || fA == fB || alpha <= 0.0 || beta <= 0.0
+ if (calc->lower (x, fA) || calc->greater (x, fB) || calc->equal (fA, fB) ||
+ (!calc->greater (alpha, 0.0)) || (!calc->greater (beta, 0.0)))
+ return Value::errorVALUE();
+
+ // xx = (x - fA) / (fB - fA) // scaling
+ Value xx = calc->div (calc->sub (x, fA), calc->sub (fB, fA));
+
+ return calc->GetBeta (xx, alpha, beta);
+}
+
+// Function: fisher
+Value func_fisher (valVector args, ValueCalc *calc, FuncExtra *) {
+ //returns the Fisher transformation for x
+
+ // 0.5 * ln ((1.0 + fVal) / (1.0 - fVal))
+ Value fVal = args[0];
+ Value num = calc->div (calc->add (fVal, 1.0), calc->sub (1.0, fVal));
+ return calc->mul (calc->ln (num), 0.5);
+}
+
+// Function: fisherinv
+Value func_fisherinv (valVector args, ValueCalc *calc, FuncExtra *) {
+ //returns the inverse of the Fisher transformation for x
+
+ Value fVal = args[0];
+ // (exp (2.0 * fVal) - 1.0) / (exp (2.0 * fVal) + 1.0)
+ Value ex = calc->exp (calc->mul (fVal, 2.0));
+ return calc->div (calc->sub (ex, 1.0), calc->add (ex, 1.0));
+}
+
+// Function: normdist
+Value func_normdist (valVector args, ValueCalc *calc, FuncExtra *) {
+ //returns the normal cumulative distribution
+ Value x = args[0];
+ Value mue = args[1];
+ Value sigma = args[2];
+ Value k = args[3];
+
+ if (!calc->greater (sigma, 0.0))
+ return Value::errorVALUE();
+
+ // (x - mue) / sigma
+ Value Y = calc->div (calc->sub (x, mue), sigma);
+ if (calc->isZero (k)) // density
+ return calc->div (calc->phi (Y), sigma);
+ else // distribution
+ return calc->add (calc->gauss (Y), 0.5);
+}
+
+// Function: lognormdist
+Value func_lognormdist (valVector args, ValueCalc *calc, FuncExtra *) {
+ //returns the cumulative lognormal distribution
+ Value x = args[0];
+ Value mue = args[1];
+ Value sigma = args[2];
+
+ if (!calc->greater (sigma, 0.0) || (!calc->greater (x, 0.0)))
+ return Value::errorVALUE();
+
+ // (ln(x) - mue) / sigma
+ Value Y = calc->div (calc->sub (calc->ln (x), mue), sigma);
+ return calc->add (calc->gauss (Y), 0.5);
+}
+
+// Function: normsdist
+Value func_stdnormdist (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ //returns the cumulative lognormal distribution, mue=0, sigma=1
+ return calc->add (calc->gauss (args[0]), 0.5);
+}
+
+// Function: expondist
+Value func_expondist (valVector args, ValueCalc *calc, FuncExtra *) {
+ //returns the exponential distribution
+ Value x = args[0];
+ Value lambda = args[1];
+ Value kum = args[2];
+
+ Value result = 0.0;
+
+ if (!calc->greater (lambda, 0.0))
+ return Value::errorVALUE();
+
+ // ex = exp (-lambda * x)
+ Value ex = calc->exp (calc->mul (calc->mul (lambda, -1), x));
+ if (calc->isZero (kum)) { //density
+ if (!calc->lower (x, 0.0))
+ // lambda * ex
+ result = calc->mul (lambda, ex);
+ }
+ else { //distribution
+ if (calc->greater (x, 0.0))
+ // 1.0 - ex
+ result = calc->sub (1.0, ex);
+ }
+ return result;
+}
+
+// Function: weibull
+Value func_weibull (valVector args, ValueCalc *calc, FuncExtra *) {
+ //returns the Weibull distribution
+
+ Value x = args[0];
+ Value alpha = args[1];
+ Value beta = args[2];
+ Value kum = args[3];
+
+ Value result;
+
+ if ((!calc->greater (alpha, 0.0)) || (!calc->greater (beta, 0.0)) ||
+ calc->lower (x, 0.0))
+ return Value::errorVALUE();
+
+ // ex = exp (-pow (x / beta, alpha))
+ Value ex;
+ ex = calc->exp (calc->mul (calc->pow (calc->div (x, beta), alpha), -1));
+ if (calc->isZero (kum)) // density
+ {
+ // result = alpha / pow(beta,alpha) * pow(x,alpha-1.0) * ex
+ result = calc->div (alpha, calc->pow (beta, alpha));
+ result = calc->mul (result, calc->mul (calc->pow (x,
+ calc->sub (alpha, 1)), ex));
+ }
+ else // distribution
+ result = calc->sub (1.0, ex);
+
+ return result;
+}
+
+// Function: normsinv
+Value func_normsinv (valVector args, ValueCalc *calc, FuncExtra *) {
+ //returns the inverse of the standard normal cumulative distribution
+
+ Value x = args[0];
+ if (!(calc->greater (x, 0.0) && calc->lower (x, 1.0)))
+ return Value::errorVALUE();
+
+ return calc->gaussinv (x);
+}
+
+// Function: norminv
+Value func_norminv (valVector args, ValueCalc *calc, FuncExtra *) {
+ //returns the inverse of the normal cumulative distribution
+ Value x = args[0];
+ Value mue = args[1];
+ Value sigma = args[2];
+
+ if (!calc->greater (sigma, 0.0))
+ return Value::errorVALUE();
+ if (!(calc->greater (x, 0.0) && calc->lower (x, 1.0)))
+ return Value::errorVALUE();
+
+ // gaussinv (x)*sigma + mue
+ return calc->add (calc->mul (calc->gaussinv (x), sigma), mue);
+}
+
+// Function: gammaln
+Value func_gammaln (valVector args, ValueCalc *calc, FuncExtra *) {
+ //returns the natural logarithm of the gamma function
+
+ if (calc->greater (args[0], 0.0))
+ return calc->GetLogGamma (args[0]);
+ return Value::errorVALUE();
+}
+
+// Function: poisson
+Value func_poisson (valVector args, ValueCalc *calc, FuncExtra *) {
+ //returns the Poisson distribution
+
+ Value x = args[0];
+ Value lambda = args[1];
+ Value kum = args[2];
+
+ // lambda < 0.0 || x < 0.0
+ if (calc->lower (lambda, 0.0) || calc->lower (x, 0.0))
+ return Value::errorVALUE();
+
+ Value result;
+
+ // ex = exp (-lambda)
+ Value ex = calc->exp (calc->mul (lambda, -1));
+
+ if (calc->isZero (kum)) { // density
+ if (calc->isZero (lambda))
+ result = 0;
+ else
+ // ex * pow (lambda, x) / fact (x)
+ result = calc->div (calc->mul (ex, calc->pow (lambda, x)), calc->fact (x));
+ }
+ else { // distribution
+ if (calc->isZero (lambda))
+ result = 1;
+ else
+ {
+ result = 1.0;
+ Value fFak = 1.0;
+ unsigned long nEnd = calc->conv()->asInteger (x).asInteger();
+ for (unsigned long i = 1; i <= nEnd; i++)
+ {
+ // fFak *= i
+ fFak = calc->mul (fFak, i);
+ // result += pow (lambda, i) / fFak
+ result = calc->add (result, calc->div (calc->pow (lambda, i), fFak));
+ }
+ result = calc->mul (result, ex);
+ }
+ }
+
+ return result;
+}
+
+// Function: confidence
+Value func_confidence (valVector args, ValueCalc *calc, FuncExtra *) {
+ //returns the confidence interval for a population mean
+ Value alpha = args[0];
+ Value sigma = args[1];
+ Value n = args[2];
+
+ // sigma <= 0.0 || alpha <= 0.0 || alpha >= 1.0 || n < 1
+ if ((!calc->greater (sigma, 0.0)) || (!calc->greater (alpha, 0.0)) ||
+ (!calc->lower (alpha, 1.0)) || calc->lower (n, 1))
+ return Value::errorVALUE();
+
+ // g = gaussinv (1.0 - alpha / 2.0)
+ Value g = calc->gaussinv (calc->sub (1.0, calc->div (alpha, 2.0)));
+ // g * sigma / sqrt (n)
+ return calc->div (calc->mul (g, sigma), calc->sqrt (n));
+}
+
+// Function: tdist
+Value func_tdist (valVector args, ValueCalc *calc, FuncExtra *) {
+ //returns the t-distribution
+
+ Value T = args[0];
+ Value fDF = args[1];
+ int flag = calc->conv()->asInteger (args[2]).asInteger();
+
+ if (calc->lower (fDF, 1) || calc->lower (T, 0.0) || (flag != 1 && flag != 2))
+ return Value::errorVALUE();
+
+ // arg = fDF / (fDF + T * T)
+ Value arg = calc->div (fDF, calc->add (fDF, calc->sqr (T)));
+
+ Value R;
+ R = calc->mul (calc->GetBeta (arg, calc->div (fDF, 2.0), 0.5), 0.5);
+
+ if (flag == 1)
+ return R;
+ return calc->mul (R, 2); // flag is 2 here
+}
+
+// Function: fdist
+Value func_fdist (valVector args, ValueCalc *calc, FuncExtra *) {
+ //returns the f-distribution
+
+ Value x = args[0];
+ Value fF1 = args[1];
+ Value fF2 = args[2];
+
+ // x < 0.0 || fF1 < 1 || fF2 < 1 || fF1 >= 1.0E10 || fF2 >= 1.0E10
+ if (calc->lower (x, 0.0) || calc->lower (fF1, 1) || calc->lower (fF2, 1) ||
+ (!calc->lower (fF1, 1.0E10)) || (!calc->lower (fF2, 1.0E10)))
+ return Value::errorVALUE();
+
+ // arg = fF2 / (fF2 + fF1 * x)
+ Value arg = calc->div (fF2, calc->add (fF2, calc->mul (fF1, x)));
+ // alpha = fF2/2.0
+ Value alpha = calc->div (fF2, 2.0);
+ // beta = fF1/2.0
+ Value beta = calc->div (fF1, 2.0);
+ return calc->GetBeta (arg, alpha, beta);
+}
+
+// Function: chidist
+Value func_chidist (valVector args, ValueCalc *calc, FuncExtra *) {
+ //returns the chi-distribution
+
+ Value fChi = args[0];
+ Value fDF = args[1];
+
+ // fDF < 1 || fDF >= 1.0E5 || fChi < 0.0
+ if (calc->lower (fDF, 1) || (!calc->lower (fDF, 1.0E5)) ||
+ calc->lower (fChi, 0.0))
+ return Value::errorVALUE();
+
+ // 1.0 - GetGammaDist (fChi / 2.0, fDF / 2.0, 1.0)
+ return calc->sub (1.0, calc->GetGammaDist (calc->div (fChi, 2.0),
+ calc->div (fDF, 2.0), 1.0));
+}
+
+
+// two-array-walk functions used in the two-sum functions
+
+void tawSumproduct (ValueCalc *c, Value &res, Value v1,
+ Value v2) {
+ // res += v1*v2
+ res = c->add (res, c->mul (v1, v2));
+}
+
+void tawSumx2py2 (ValueCalc *c, Value &res, Value v1,
+ Value v2) {
+ // res += sqr(v1)+sqr(v2)
+ res = c->add (res, c->add (c->sqr (v1), c->sqr (v2)));
+}
+
+void tawSumx2my2 (ValueCalc *c, Value &res, Value v1,
+ Value v2) {
+ // res += sqr(v1)-sqr(v2)
+ res = c->add (res, c->sub (c->sqr (v1), c->sqr (v2)));
+}
+
+void tawSumxmy2 (ValueCalc *c, Value &res, Value v1,
+ Value v2) {
+ // res += sqr(v1-v2)
+ res = c->add (res, c->sqr (c->sub (v1, v2)));
+
+}
+
+// Function: sumproduct
+Value func_sumproduct (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value result;
+ calc->twoArrayWalk (args[0], args[1], result, tawSumproduct);
+ return result;
+}
+
+// Function: sumx2py2
+Value func_sumx2py2 (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value result;
+ calc->twoArrayWalk (args[0], args[1], result, tawSumx2py2);
+ return result;
+}
+
+// Function: sumx2my2
+Value func_sumx2my2 (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value result;
+ calc->twoArrayWalk (args[0], args[1], result, tawSumx2my2);
+ return result;
+}
+
+// Function: sum2xmy
+Value func_sumxmy2 (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value result;
+ calc->twoArrayWalk (args[0], args[1], result, tawSumxmy2);
+ return result;
+}