/* * This file is part of Krita * * Copyright (c) 2006 Cyrille Berger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef _KIS_PERSPECTVE_MATH_H_ #define _KIS_PERSPECTVE_MATH_H_ #include "kis_point.h" class TQRect; class KisPerspectiveMath { private: KisPerspectiveMath() { } public: static double* computeMatrixTransfo( const KisPoint& topLeft1, const KisPoint& topRight1, const KisPoint& bottomLeft1, const KisPoint& bottomRight1 , const KisPoint& topLeft2, const KisPoint& topRight2, const KisPoint& bottomLeft2, const KisPoint& bottomRight2); static double* computeMatrixTransfoToPerspective(const KisPoint& topLeft, const KisPoint& topRight, const KisPoint& bottomLeft, const KisPoint& bottomRight, const TQRect& r); static double* computeMatrixTransfoFromPerspective(const TQRect& r, const KisPoint& topLeft, const KisPoint& topRight, const KisPoint& bottomLeft, const KisPoint& bottomRight); struct LineEquation { // y = a*x + b double a, b; }; /// TODO: get ride of this in 2.0 inline static KisPoint matProd(const double (&m)[3][3], const KisPoint& p) { double s = ( p.x() * m[2][0] + p.y() * m[2][1] + 1.0); s = (s == 0.) ? 1. : 1./s; return KisPoint( (p.x() * m[0][0] + p.y() * m[0][1] + m[0][2] ) * s, (p.x() * m[1][0] + p.y() * m[1][1] + m[1][2] ) * s ); } static inline LineEquation computeLineEquation(const KisPoint* p1, const KisPoint* p2) { LineEquation eq; double x1 = p1->x(); double x2 = p2->x(); if( fabs(x1 - x2) < 0.000001 ) { x1 += 0.0001; // Introduce a small perturbation } eq.a = (p2->y() - p1->y()) / (double)( x2 - x1 ); eq.b = -eq.a * x1 + p1->y(); return eq; } static inline KisPoint computeIntersection(const LineEquation& d1, const LineEquation& d2) { double a1 = d1.a; double a2 = d2.a; if( fabs(a1 - a2) < 0.000001 ) { a1 += 0.0001; // Introduce a small perturbation } double x = (d1.b - d2.b) / (a2 - a1); return KisPoint(x, a2 * x + d2.b); } }; #endif