/*************************************************************************
 * This implementation has been taken from the OpenOffice 1.0 and modified
 * to use KSpread data types.
 *
 *  The Initial Developer of the Original Code is: Sun Microsystems, Inc.
 *
 *  Sun has made the contents of this file available subject to the
 *  terms of GNU Lesser General Public License Version 2.1 as
 *  specified in sal/rtl/source/digest.c in the OpenOffice package.
 *
 *
 *  Sun Microsystems Inc., October, 2000
 *
 *  GNU Lesser General Public License Version 2.1
 *  =============================================
 *  Copyright 2000 by Sun Microsystems, Inc.
 *  901 San Antonio Road, Palo Alto, CA 94303, USA
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License version 2.1, as published by the Free Software Foundation.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA
 *
 *  All Rights Reserved.
 *
 *  Contributor(s): Matthias Huetsch <matthias.huetsch@sun.com>
 *
 *
 ************************************************************************/

#include <stdlib.h>
#include <string.h>

#include "../config.h"
#include "digest.h"
#include <kdebug.h>
#include <kmdcodec.h>

typedef unsigned char sal_uInt8;
typedef unsigned short sal_uInt16;

#if SIZEOF_INT == 4
typedef unsigned int sal_uInt32;
#else
typedef unsigned long sal_uInt32;
#endif

void rtl_freeZeroMemory(void * p, sal_uInt32 n);
void rtl_freeMemory(void * p);
void rtl_zeroMemory(void * Ptr, sal_uInt32 Bytes);
void rtl_copyMemory(void *Dst, const void *Src, sal_uInt32 Bytes);

#ifndef OSL_LOBYTE
#	define OSL_LOBYTE(w)           ((sal_uInt8)((sal_uInt16)(w) & 0xFF))
#endif
#ifndef OSL_HIBYTE
#	define OSL_HIBYTE(w)           ((sal_uInt8)(((sal_uInt16)(w) >> 8) & 0xFF))
#endif
#ifndef OSL_MAKEWORD
#	define OSL_MAKEWORD(bl, bh)    ((sal_uInt16)((bl) & 0xFF) | (((sal_uInt16)(bh) & 0xFF) << 8))
#endif
#ifndef OSL_MAKEDWORD
#	define OSL_MAKEDWORD(wl, wh)   ((sal_uInt32)((wl) & 0xFFFF) | (((sal_uInt32)(wh) & 0xFFFF) << 16))
#endif
#ifndef OSL_LOWORD
#	define OSL_LOWORD(d)           ((sal_uInt16)((sal_uInt32)(d) & 0xFFFF))
#endif
#ifndef OSL_HIWORD
#	define OSL_HIWORD(d)           ((sal_uInt16)(((sal_uInt32)(d) >> 16) & 0xFFFF))
#endif

/** Define macros for swapping between byte orders.
 */
#ifndef OSL_SWAPWORD
#	define OSL_SWAPWORD(w)         OSL_MAKEWORD(OSL_HIBYTE(w),OSL_LOBYTE(w))
#endif
#ifndef OSL_SWAPDWORD
#	define OSL_SWAPDWORD(d)        OSL_MAKEDWORD(OSL_SWAPWORD(OSL_HIWORD(d)),OSL_SWAPWORD(OSL_LOWORD(d)))
#endif


/*========================================================================
 *
 * rtlDigest.
 *
 *======================================================================*/
/** Digest Handle opaque type.
 */
typedef void* rtlDigest;

/** Digest Algorithm enumeration.
    @see rtl_digest_create()
 */
enum __rtl_DigestAlgorithm
{
	rtl_Digest_AlgorithmMD2,
	rtl_Digest_AlgorithmMD5,
	rtl_Digest_AlgorithmSHA,
	rtl_Digest_AlgorithmSHA1,

	rtl_Digest_AlgorithmHMAC_MD5,
	rtl_Digest_AlgorithmHMAC_SHA1,

	rtl_Digest_AlgorithmInvalid,
	rtl_Digest_Algorithm_FORCE_EQUAL_SIZE
};

/** Digest Algorithm type.
 */
typedef enum __rtl_DigestAlgorithm rtlDigestAlgorithm;


/** Error Code enumeration.
 */
enum __rtl_DigestError
{
	rtl_Digest_E_None,
	rtl_Digest_E_Argument,
	rtl_Digest_E_Algorithm,
	rtl_Digest_E_BufferSize,
	rtl_Digest_E_Memory,
	rtl_Digest_E_Unknown,
	rtl_Digest_E_FORCE_EQUAL_SIZE
};

/** Error Code type.
 */
typedef enum __rtl_DigestError rtlDigestError;

typedef rtlDigestError Digest_init_t( void * ctx, const sal_uInt8 * Data, sal_uInt32 DatLen );

typedef void Digest_delete_t( void *ctx );

typedef rtlDigestError Digest_update_t( void * ctx, const void * Data, sal_uInt32 DatLen );

typedef rtlDigestError Digest_get_t( void * ctx, sal_uInt8 * Buffer, sal_uInt32 BufLen );

/*========================================================================
 *
 * rtl_digest_SHA1 interface.
 *
 *======================================================================*/
#define RTL_DIGEST_LENGTH_SHA1 20

/** Create a SHA1 digest handle.
    @descr The SHA1 digest algorithm is specified in

    FIPS PUB 180-1 (Supersedes FIPS PUB 180)
      Secure Hash Standard

    @see rtl_digest_create()
 */
rtlDigest rtl_digest_createSHA1 (void);


/** Destroy a SHA1 digest handle.
    @see rtl_digest_destroy()
 */
void rtl_digest_destroySHA1( rtlDigest Digest );


/** Update a SHA1 digest with given data.
    @see rtl_digest_update()
 */
rtlDigestError rtl_digest_updateSHA1( rtlDigest Digest, const void * pData, uint nDatLen );


/** Finalize a SHA1 digest and retrieve the digest value.
    @see rtl_digest_get()
 */
rtlDigestError rtl_digest_getSHA1( rtlDigest Digest, sal_uInt8 * pBuffer, uint nBufLen );


/** Evaluate a SHA1 digest value from given data.
    @descr This function performs an optimized call sequence on a
	single data buffer, avoiding digest creation and destruction.

	@see rtl_digest_updateSHA1()
	@see rtl_digest_getSHA1()

	@param  pData   [in] data buffer.
	@param  nDatLen [in] data length.
	@param  pBuffer [in] digest value buffer.
	@param  nBufLen [in] digest value length.

	@return rtl_Digest_E_None upon success.
 */
rtlDigestError rtl_digest_SHA1( const void * pData,      uint nDatLen,
                                unsigned char * pBuffer, uint nBufLen );


/*========================================================================
 *
 * rtlDigest internals.
 *
 *======================================================================*/

void rtl_zeroMemory(void * Ptr, sal_uInt32 Bytes)
{
  memset(Ptr, 0, Bytes);
}

void rtl_copyMemory(void *Dst, const void *Src, sal_uInt32 Bytes)
{
  memcpy(Dst, Src, Bytes);
}

void rtl_freeMemory (void * p)
{
  free(p);
}

void rtl_freeZeroMemory (void * p, sal_uInt32 n)
{
  if (p)
  {
    memset(p, 0, n);
    free(p);
  }
}

#define RTL_DIGEST_CREATE(T) ((T*)(malloc(sizeof(T))))

#define RTL_DIGEST_ROTL(a,n) (((a) << (n)) | ((a) >> (32 - (n))))

#define RTL_DIGEST_HTONL(l,c) \
	(*((c)++) = (sal_uInt8)(((l) >> 24L) & 0xff), \
	 *((c)++) = (sal_uInt8)(((l) >> 16L) & 0xff), \
	 *((c)++) = (sal_uInt8)(((l) >>  8L) & 0xff), \
	 *((c)++) = (sal_uInt8)(((l)       ) & 0xff))

#define RTL_DIGEST_LTOC(l,c) \
	(*((c)++) = (sal_uInt8)(((l)       ) & 0xff), \
	 *((c)++) = (sal_uInt8)(((l) >>  8L) & 0xff), \
	 *((c)++) = (sal_uInt8)(((l) >> 16L) & 0xff), \
	 *((c)++) = (sal_uInt8)(((l) >> 24L) & 0xff))

typedef struct digest_impl_st
{
	rtlDigestAlgorithm  m_algorithm;
        sal_uInt32          m_length;
  	Digest_init_t      *m_init;
	Digest_delete_t    *m_delete;
	Digest_update_t    *m_update;
	Digest_get_t       *m_get;
} Digest_Impl;

/*
 * __rtl_digest_swapLong.
 */
static void __rtl_digest_swapLong (sal_uInt32 *pData, sal_uInt32 nDatLen)
{
	sal_uInt32 *X;
	int         i, n;

	X = pData;
	n = nDatLen;

	for (i = 0; i < n; i++)
		X[i] = OSL_SWAPDWORD(X[i]);
}

/*========================================================================
 *
 * rtlDigest implementation.
 *
 *======================================================================*/
/*
 * rtl_digest_create.
 
rtlDigest rtl_digest_create (rtlDigestAlgorithm Algorithm)
{
	rtlDigest Digest = (rtlDigest)NULL;
	switch (Algorithm)
	{
		case rtl_Digest_AlgorithmMD2:
			Digest = rtl_digest_createMD2();
			break;

		case rtl_Digest_AlgorithmMD5:
			Digest = rtl_digest_createMD5();
			break;

		case rtl_Digest_AlgorithmSHA:
			Digest = rtl_digest_createSHA();
			break;

		case rtl_Digest_AlgorithmSHA1:
			Digest = rtl_digest_createSHA1();
			break;

		case rtl_Digest_AlgorithmHMAC_MD5:
			Digest = rtl_digest_createHMAC_MD5();
			break;

		case rtl_Digest_AlgorithmHMAC_SHA1:
			Digest = rtl_digest_createHMAC_SHA1();
			break;

                default: // rtl_Digest_AlgorithmInvalid 
			break;
	}
	return Digest;
}


// rtl_digest_queryAlgorithm.
 
rtlDigestAlgorithm rtl_digest_queryAlgorithm (rtlDigest Digest)
{
	Digest_Impl *pImpl = (Digest_Impl *)Digest;
	if (pImpl)
		return pImpl->m_algorithm;
	else
		return rtl_Digest_AlgorithmInvalid;
}

 // rtl_digest_queryLength.
sal_uInt32 rtl_digest_queryLength (rtlDigest Digest)
{
	Digest_Impl *pImpl = (Digest_Impl *)Digest;
	if (pImpl)
		return pImpl->m_length;
	else
		return 0;
}

// * rtl_digest_init.
rtlDigestError rtl_digest_init (
	rtlDigest Digest, const sal_uInt8 *pData, sal_uInt32 nDatLen)
{
	Digest_Impl *pImpl = (Digest_Impl *)Digest;
	if (pImpl)
	{
		if (pImpl->m_init)
			return pImpl->m_init (Digest, pData, nDatLen);
		else
			return rtl_Digest_E_None;
	}
	return rtl_Digest_E_Argument;
}

// * rtl_digest_update.
rtlDigestError rtl_digest_update (
	rtlDigest Digest, const void *pData, sal_uInt32 nDatLen)
{
	Digest_Impl *pImpl = (Digest_Impl *)Digest;
	if (pImpl && pImpl->m_update)
		return pImpl->m_update (Digest, pData, nDatLen);
	else
		return rtl_Digest_E_Argument;
}

// * rtl_digest_get.
rtlDigestError rtl_digest_get (
	rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen)
{
	Digest_Impl *pImpl = (Digest_Impl *)Digest;
	if (pImpl && pImpl->m_get)
		return pImpl->m_get (Digest, pBuffer, nBufLen);
	else
		return rtl_Digest_E_Argument;
}

// * rtl_digest_destroy.
void rtl_digest_destroy (rtlDigest Digest)
{
	Digest_Impl *pImpl = (Digest_Impl *)Digest;
	if (pImpl && pImpl->m_delete)
		pImpl->m_delete (Digest);
}
*/

/*========================================================================
 *
 * rtl_digest_(SHA|SHA1) common internals.
 *
 *======================================================================*/
#define DIGEST_CBLOCK_SHA 64
#define DIGEST_LBLOCK_SHA 16

typedef sal_uInt32 DigestSHA_update_t (sal_uInt32 x);

static sal_uInt32 __rtl_digest_updateSHA_1 (sal_uInt32 x);

typedef struct digestSHA_context_st
{
	DigestSHA_update_t *m_update;
	sal_uInt32          m_nDatLen;
	sal_uInt32          m_pData[DIGEST_LBLOCK_SHA];
	sal_uInt32          m_nA, m_nB, m_nC, m_nD, m_nE;
	sal_uInt32          m_nL, m_nH;
} DigestContextSHA;

typedef struct digestSHA_impl_st
{
	Digest_Impl      m_digest;
	DigestContextSHA m_context;
} DigestSHA_Impl;

static void __rtl_digest_initSHA (
	DigestContextSHA *ctx, DigestSHA_update_t *fct);

static void __rtl_digest_updateSHA (DigestContextSHA *ctx);
static void __rtl_digest_endSHA    (DigestContextSHA *ctx);

#define K_00_19 (sal_uInt32)0x5a827999L
#define K_20_39 (sal_uInt32)0x6ed9eba1L
#define K_40_59 (sal_uInt32)0x8f1bbcdcL
#define K_60_79 (sal_uInt32)0xca62c1d6L

#define F_00_19(b,c,d) ((((c) ^ (d)) & (b)) ^ (d))
#define F_20_39(b,c,d) ((b) ^ (c) ^ (d))
#define F_40_59(b,c,d) (((b) & (c)) | ((b) & (d)) | ((c) & (d)))
#define F_60_79(b,c,d) F_20_39(b,c,d)

#define BODY_X(i) \
    (X[(i)&0x0f] ^ X[((i)+2)&0x0f] ^ X[((i)+8)&0x0f] ^ X[((i)+13)&0x0f])

#define BODY_00_15(u,i,a,b,c,d,e,f) \
	(f)  = X[i]; \
	(f) += (e) + K_00_19 + RTL_DIGEST_ROTL((a), 5) + F_00_19((b), (c), (d)); \
	(b)  = RTL_DIGEST_ROTL((b), 30);

#define BODY_16_19(u,i,a,b,c,d,e,f) \
    (f)  = BODY_X((i)); \
	(f)  = X[(i)&0x0f] = (u)((f)); \
	(f) += (e) + K_00_19 + RTL_DIGEST_ROTL((a), 5) + F_00_19((b), (c), (d)); \
	(b)  = RTL_DIGEST_ROTL((b), 30);

#define BODY_20_39(u,i,a,b,c,d,e,f) \
    (f)  = BODY_X((i)); \
	(f)  = X[(i)&0x0f] = (u)((f)); \
	(f) += (e) + K_20_39 + RTL_DIGEST_ROTL((a), 5) + F_20_39((b), (c), (d)); \
	(b)  = RTL_DIGEST_ROTL((b), 30);

#define BODY_40_59(u,i,a,b,c,d,e,f) \
    (f)  = BODY_X((i)); \
	(f)  = X[(i)&0x0f] = (u)((f)); \
	(f) += (e) + K_40_59 + RTL_DIGEST_ROTL((a), 5) + F_40_59((b), (c), (d)); \
	(b)  = RTL_DIGEST_ROTL((b), 30);

#define BODY_60_79(u,i,a,b,c,d,e,f) \
    (f)  = BODY_X((i)); \
	(f)  = X[(i)&0x0f] = (u)((f)); \
	(f) += (e) + K_60_79 + RTL_DIGEST_ROTL((a), 5) + F_60_79((b), (c), (d)); \
	(b)  = RTL_DIGEST_ROTL((b), 30);

/*
 * __rtl_digest_initSHA.
 */
static void __rtl_digest_initSHA (
	DigestContextSHA *ctx, DigestSHA_update_t *fct)
{
	rtl_zeroMemory (ctx, sizeof (DigestContextSHA));
	ctx->m_update = fct;

	ctx->m_nA = (sal_uInt32)0x67452301L;
	ctx->m_nB = (sal_uInt32)0xefcdab89L;
	ctx->m_nC = (sal_uInt32)0x98badcfeL;
	ctx->m_nD = (sal_uInt32)0x10325476L;
	ctx->m_nE = (sal_uInt32)0xc3d2e1f0L;
}

/*
 * __rtl_digest_updateSHA.
 */
static void __rtl_digest_updateSHA (DigestContextSHA *ctx)
{
	sal_uInt32  A, B, C, D, E, T;
	sal_uInt32 *X;

	DigestSHA_update_t *U;
	U = ctx->m_update;

	A = ctx->m_nA;
	B = ctx->m_nB;
	C = ctx->m_nC;
	D = ctx->m_nD;
	E = ctx->m_nE;
	X = ctx->m_pData;

	BODY_00_15 (U,  0, A, B, C, D, E, T);
	BODY_00_15 (U,  1, T, A, B, C, D, E);
	BODY_00_15 (U,  2, E, T, A, B, C, D);
	BODY_00_15 (U,  3, D, E, T, A, B, C);
	BODY_00_15 (U,  4, C, D, E, T, A, B);
	BODY_00_15 (U,  5, B, C, D, E, T, A);
	BODY_00_15 (U,  6, A, B, C, D, E, T);
	BODY_00_15 (U,  7, T, A, B, C, D, E);
	BODY_00_15 (U,  8, E, T, A, B, C, D);
	BODY_00_15 (U,  9, D, E, T, A, B, C);
	BODY_00_15 (U, 10, C, D, E, T, A, B);
	BODY_00_15 (U, 11, B, C, D, E, T, A);
	BODY_00_15 (U, 12, A, B, C, D, E, T);
	BODY_00_15 (U, 13, T, A, B, C, D, E);
	BODY_00_15 (U, 14, E, T, A, B, C, D);
	BODY_00_15 (U, 15, D, E, T, A, B, C);
	BODY_16_19 (U, 16, C, D, E, T, A, B);
	BODY_16_19 (U, 17, B, C, D, E, T, A);
	BODY_16_19 (U, 18, A, B, C, D, E, T);
	BODY_16_19 (U, 19, T, A, B, C, D, E);

	BODY_20_39 (U, 20, E, T, A, B, C, D);
	BODY_20_39 (U, 21, D, E, T, A, B, C);
	BODY_20_39 (U, 22, C, D, E, T, A, B);
	BODY_20_39 (U, 23, B, C, D, E, T, A);
	BODY_20_39 (U, 24, A, B, C, D, E, T);
	BODY_20_39 (U, 25, T, A, B, C, D, E);
	BODY_20_39 (U, 26, E, T, A, B, C, D);
	BODY_20_39 (U, 27, D, E, T, A, B, C);
	BODY_20_39 (U, 28, C, D, E, T, A, B);
	BODY_20_39 (U, 29, B, C, D, E, T, A);
	BODY_20_39 (U, 30, A, B, C, D, E, T);
	BODY_20_39 (U, 31, T, A, B, C, D, E);
	BODY_20_39 (U, 32, E, T, A, B, C, D);
	BODY_20_39 (U, 33, D, E, T, A, B, C);
	BODY_20_39 (U, 34, C, D, E, T, A, B);
	BODY_20_39 (U, 35, B, C, D, E, T, A);
	BODY_20_39 (U, 36, A, B, C, D, E, T);
	BODY_20_39 (U, 37, T, A, B, C, D, E);
	BODY_20_39 (U, 38, E, T, A, B, C, D);
	BODY_20_39 (U, 39, D, E, T, A, B, C);

	BODY_40_59 (U, 40, C, D, E, T, A, B);
	BODY_40_59 (U, 41, B, C, D, E, T, A);
	BODY_40_59 (U, 42, A, B, C, D, E, T);
	BODY_40_59 (U, 43, T, A, B, C, D, E);
	BODY_40_59 (U, 44, E, T, A, B, C, D);
	BODY_40_59 (U, 45, D, E, T, A, B, C);
	BODY_40_59 (U, 46, C, D, E, T, A, B);
	BODY_40_59 (U, 47, B, C, D, E, T, A);
	BODY_40_59 (U, 48, A, B, C, D, E, T);
	BODY_40_59 (U, 49, T, A, B, C, D, E);
	BODY_40_59 (U, 50, E, T, A, B, C, D);
	BODY_40_59 (U, 51, D, E, T, A, B, C);
	BODY_40_59 (U, 52, C, D, E, T, A, B);
	BODY_40_59 (U, 53, B, C, D, E, T, A);
	BODY_40_59 (U, 54, A, B, C, D, E, T);
	BODY_40_59 (U, 55, T, A, B, C, D, E);
	BODY_40_59 (U, 56, E, T, A, B, C, D);
	BODY_40_59 (U, 57, D, E, T, A, B, C);
	BODY_40_59 (U, 58, C, D, E, T, A, B);
	BODY_40_59 (U, 59, B, C, D, E, T, A);

	BODY_60_79 (U, 60, A, B, C, D, E, T);
	BODY_60_79 (U, 61, T, A, B, C, D, E);
	BODY_60_79 (U, 62, E, T, A, B, C, D);
	BODY_60_79 (U, 63, D, E, T, A, B, C);
	BODY_60_79 (U, 64, C, D, E, T, A, B);
	BODY_60_79 (U, 65, B, C, D, E, T, A);
	BODY_60_79 (U, 66, A, B, C, D, E, T);
	BODY_60_79 (U, 67, T, A, B, C, D, E);
	BODY_60_79 (U, 68, E, T, A, B, C, D);
	BODY_60_79 (U, 69, D, E, T, A, B, C);
	BODY_60_79 (U, 70, C, D, E, T, A, B);
	BODY_60_79 (U, 71, B, C, D, E, T, A);
	BODY_60_79 (U, 72, A, B, C, D, E, T);
	BODY_60_79 (U, 73, T, A, B, C, D, E);
	BODY_60_79 (U, 74, E, T, A, B, C, D);
	BODY_60_79 (U, 75, D, E, T, A, B, C);
	BODY_60_79 (U, 76, C, D, E, T, A, B);
	BODY_60_79 (U, 77, B, C, D, E, T, A);
	BODY_60_79 (U, 78, A, B, C, D, E, T);
	BODY_60_79 (U, 79, T, A, B, C, D, E);

	ctx->m_nA += E;
	ctx->m_nB += T;
	ctx->m_nC += A;
	ctx->m_nD += B;
	ctx->m_nE += C;
}

/*
 * __rtl_digest_endSHA.
 */
static void __rtl_digest_endSHA (DigestContextSHA *ctx)
{
	static const sal_uInt8 end[4] =
	{
		0x80, 0x00, 0x00, 0x00
	};
	const sal_uInt8 *p = end;
	
	sal_uInt32 *X;
	int         i;

	X = ctx->m_pData;
	i = (ctx->m_nDatLen >> 2);

#ifdef WORDS_BIGENDIAN
	__rtl_digest_swapLong (X, i + 1);
#endif

	switch (ctx->m_nDatLen & 0x03)
	{
		case 1: X[i] &= 0x000000ff; break;
		case 2: X[i] &= 0x0000ffff; break;
		case 3: X[i] &= 0x00ffffff; break;
	}

	switch (ctx->m_nDatLen & 0x03)
	{
		case 0: X[i]  = ((sal_uInt32)(*(p++))) <<  0L;
		case 1: X[i] |= ((sal_uInt32)(*(p++))) <<  8L;
		case 2: X[i] |= ((sal_uInt32)(*(p++))) << 16L;
		case 3: X[i] |= ((sal_uInt32)(*(p++))) << 24L;
	}

	__rtl_digest_swapLong (X, i + 1);

	i += 1;

	if (i >= (DIGEST_LBLOCK_SHA - 2))
	{
		for (; i < DIGEST_LBLOCK_SHA; i++)
			X[i] = 0;
		__rtl_digest_updateSHA (ctx);
		i = 0;
	}

	for (; i < (DIGEST_LBLOCK_SHA - 2); i++)
		X[i] = 0;

	X[DIGEST_LBLOCK_SHA - 2] = ctx->m_nH;
	X[DIGEST_LBLOCK_SHA - 1] = ctx->m_nL;

	__rtl_digest_updateSHA (ctx);
}

/*========================================================================
 *
 * rtl_digest_SHA1 internals.
 *
 *======================================================================*/
/*
 * __rtl_digest_SHA_1.
 */
static const Digest_Impl __rtl_digest_SHA_1 = { rtl_Digest_AlgorithmSHA1,
                                                RTL_DIGEST_LENGTH_SHA1,
                                                0,
                                                rtl_digest_destroySHA1,
                                                rtl_digest_updateSHA1,
                                                rtl_digest_getSHA1 
};

/*
 * __rtl_digest_updateSHA_1.
 */
static sal_uInt32 __rtl_digest_updateSHA_1 (sal_uInt32 x)
{
	return RTL_DIGEST_ROTL (x, 1);
}

/*========================================================================
 *
 * rtl_digest_SHA1 implementation.
 *
 *======================================================================*/
/*
 * rtl_digest_SHA1.
 */
rtlDigestError rtl_digest_SHA1 (
	const void *pData,   sal_uInt32 nDatLen,
	sal_uInt8  *pBuffer, sal_uInt32 nBufLen)
{
	DigestSHA_Impl digest;
	rtlDigestError result;

	digest.m_digest = __rtl_digest_SHA_1;
	__rtl_digest_initSHA (&(digest.m_context), __rtl_digest_updateSHA_1);

	result = rtl_digest_updateSHA1 (&digest, pData, nDatLen);
	if (result == rtl_Digest_E_None)
		result = rtl_digest_getSHA1 (&digest, pBuffer, nBufLen);

	rtl_zeroMemory (&digest, sizeof (digest));
	return (result);
}

/*
 * rtl_digest_createSHA1.
 */
rtlDigest rtl_digest_createSHA1 (void)
{
	DigestSHA_Impl *pImpl = (DigestSHA_Impl*)NULL;
	pImpl = RTL_DIGEST_CREATE(DigestSHA_Impl);
	if (pImpl)
	{
		pImpl->m_digest = __rtl_digest_SHA_1;
		__rtl_digest_initSHA (&(pImpl->m_context), __rtl_digest_updateSHA_1);
	}
	return ((rtlDigest)pImpl);
}

/*
 * rtl_digest_updateSHA1.
 */
rtlDigestError rtl_digest_updateSHA1 (
	rtlDigest Digest, const void *pData, sal_uInt32 nDatLen)
{
	DigestSHA_Impl   *pImpl = (DigestSHA_Impl *)Digest;
	const sal_uInt8  *d     = (const sal_uInt8 *)pData;

	DigestContextSHA *ctx;
	sal_uInt32        len;

	if ((pImpl == NULL) || (pData == NULL))
		return rtl_Digest_E_Argument;

	if (!(pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmSHA1))
		return rtl_Digest_E_Algorithm;

	if (nDatLen == 0)
		return rtl_Digest_E_None;

	ctx = &(pImpl->m_context);

	len = ctx->m_nL + (nDatLen << 3);
	if (len < ctx->m_nL) ctx->m_nH += 1;
	ctx->m_nH += (nDatLen >> 29);
	ctx->m_nL  = len;

	if (ctx->m_nDatLen)
	{
		sal_uInt8  *p = (sal_uInt8 *)(ctx->m_pData) + ctx->m_nDatLen;
		sal_uInt32  n = DIGEST_CBLOCK_SHA - ctx->m_nDatLen;

		if (nDatLen < n)
		{
			rtl_copyMemory (p, d, nDatLen);
			ctx->m_nDatLen += nDatLen;

			return rtl_Digest_E_None;
		}

		rtl_copyMemory (p, d, n);
		d       += n;
		nDatLen -= n;

#ifndef WORDS_BIGENDIAN
		__rtl_digest_swapLong (ctx->m_pData, DIGEST_LBLOCK_SHA);
#endif

		__rtl_digest_updateSHA (ctx);
		ctx->m_nDatLen = 0;
	}

	while (nDatLen >= DIGEST_CBLOCK_SHA)
	{
		rtl_copyMemory (ctx->m_pData, d, DIGEST_CBLOCK_SHA);
		d       += DIGEST_CBLOCK_SHA;
		nDatLen -= DIGEST_CBLOCK_SHA;

#ifndef WORDS_BIGENDIAN
		__rtl_digest_swapLong (ctx->m_pData, DIGEST_LBLOCK_SHA);
#endif 

		__rtl_digest_updateSHA (ctx);
	}

	rtl_copyMemory (ctx->m_pData, d, nDatLen);
	ctx->m_nDatLen = nDatLen;

	return rtl_Digest_E_None;
}

/*
 * rtl_digest_getSHA1.
 */
rtlDigestError rtl_digest_getSHA1 (
	rtlDigest Digest, sal_uInt8 *pBuffer, sal_uInt32 nBufLen)
{
	DigestSHA_Impl   *pImpl = (DigestSHA_Impl *)Digest;
	sal_uInt8        *p     = pBuffer;

	DigestContextSHA *ctx;

	if ((pImpl == NULL) || (pBuffer == NULL))
		return rtl_Digest_E_Argument;

	if (!(pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmSHA1))
		return rtl_Digest_E_Algorithm;

	if (!(pImpl->m_digest.m_length <= nBufLen))
		return rtl_Digest_E_BufferSize;

	ctx = &(pImpl->m_context);

	__rtl_digest_endSHA (ctx);
	RTL_DIGEST_HTONL (ctx->m_nA, p);
	RTL_DIGEST_HTONL (ctx->m_nB, p);
	RTL_DIGEST_HTONL (ctx->m_nC, p);
	RTL_DIGEST_HTONL (ctx->m_nD, p);
	RTL_DIGEST_HTONL (ctx->m_nE, p);
	__rtl_digest_initSHA (ctx, __rtl_digest_updateSHA_1);

	return rtl_Digest_E_None;
}

/*
 * rtl_digest_destroySHA1.
 */
void rtl_digest_destroySHA1 (rtlDigest Digest)
{
	DigestSHA_Impl *pImpl = (DigestSHA_Impl *)Digest;
	if (pImpl)
	{
		if (pImpl->m_digest.m_algorithm == rtl_Digest_AlgorithmSHA1)
			rtl_freeZeroMemory (pImpl, sizeof (DigestSHA_Impl));
		else
			rtl_freeMemory (pImpl);
	}
}

/*========================================================================
 *
 * The End.
 *
 *======================================================================*/

bool SHA1::getHash( TQString const & text, TQCString & hash )
{
  rtlDigest aDigest     = rtl_digest_createSHA1();
  rtlDigestError aError = rtl_digest_updateSHA1( aDigest, text.unicode(), text.length() * sizeof(TQChar) );
  
  if ( aError == rtl_Digest_E_None )
  {
    TQCString digest;
    digest.resize( RTL_DIGEST_LENGTH_SHA1 + 1 );
    digest.fill( '\0', RTL_DIGEST_LENGTH_SHA1 );

    aError = rtl_digest_getSHA1( aDigest, (unsigned char *) digest.data(), RTL_DIGEST_LENGTH_SHA1 );
    
    if (aError != rtl_Digest_E_None)
      return false;
    
    hash = digest;

    return true;
  }
  
  return false;
}