summaryrefslogtreecommitdiffstats
path: root/src/art_svp_wind.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/art_svp_wind.c')
-rw-r--r--src/art_svp_wind.c1545
1 files changed, 1545 insertions, 0 deletions
diff --git a/src/art_svp_wind.c b/src/art_svp_wind.c
new file mode 100644
index 0000000..a12b1c7
--- /dev/null
+++ b/src/art_svp_wind.c
@@ -0,0 +1,1545 @@
+/* Libart_LGPL - library of basic graphic primitives
+ * Copyright (C) 1998-2000 Raph Levien
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 02111-1307, USA.
+ */
+
+/* Primitive intersection and winding number operations on sorted
+ vector paths.
+
+ These routines are internal to libart, used to construct operations
+ like intersection, union, and difference. */
+
+#include "config.h"
+#include "art_svp_wind.h"
+
+#include <stdio.h> /* for printf of debugging info */
+#include <string.h> /* for memcpy */
+#include <math.h>
+#include "art_misc.h"
+
+#include "art_rect.h"
+#include "art_svp.h"
+
+#define noVERBOSE
+
+#define PT_EQ(p1,p2) ((p1).x == (p2).x && (p1).y == (p2).y)
+
+#define PT_CLOSE(p1,p2) (fabs ((p1).x - (p2).x) < 1e-6 && fabs ((p1).y - (p2).y) < 1e-6)
+
+/* return nonzero and set *p to the intersection point if the lines
+ z0-z1 and z2-z3 intersect each other. */
+static int
+intersect_lines (ArtPoint z0, ArtPoint z1, ArtPoint z2, ArtPoint z3,
+ ArtPoint *p)
+{
+ double a01, b01, c01;
+ double a23, b23, c23;
+ double d0, d1, d2, d3;
+ double det;
+
+ /* if the vectors share an endpoint, they don't intersect */
+ if (PT_EQ (z0, z2) || PT_EQ (z0, z3) || PT_EQ (z1, z2) || PT_EQ (z1, z3))
+ return 0;
+
+#if 0
+ if (PT_CLOSE (z0, z2) || PT_CLOSE (z0, z3) || PT_CLOSE (z1, z2) || PT_CLOSE (z1, z3))
+ return 0;
+#endif
+
+ /* find line equations ax + by + c = 0 */
+ a01 = z0.y - z1.y;
+ b01 = z1.x - z0.x;
+ c01 = -(z0.x * a01 + z0.y * b01);
+ /* = -((z0.y - z1.y) * z0.x + (z1.x - z0.x) * z0.y)
+ = (z1.x * z0.y - z1.y * z0.x) */
+
+ d2 = a01 * z2.x + b01 * z2.y + c01;
+ d3 = a01 * z3.x + b01 * z3.y + c01;
+ if ((d2 > 0) == (d3 > 0))
+ return 0;
+
+ a23 = z2.y - z3.y;
+ b23 = z3.x - z2.x;
+ c23 = -(z2.x * a23 + z2.y * b23);
+
+ d0 = a23 * z0.x + b23 * z0.y + c23;
+ d1 = a23 * z1.x + b23 * z1.y + c23;
+ if ((d0 > 0) == (d1 > 0))
+ return 0;
+
+ /* now we definitely know that the lines intersect */
+ /* solve the two linear equations ax + by + c = 0 */
+ det = 1.0 / (a01 * b23 - a23 * b01);
+ p->x = det * (c23 * b01 - c01 * b23);
+ p->y = det * (c01 * a23 - c23 * a01);
+
+ return 1;
+}
+
+#define EPSILON 1e-6
+
+static double
+trap_epsilon (double v)
+{
+ const double epsilon = EPSILON;
+
+ if (v < epsilon && v > -epsilon) return 0;
+ else return v;
+}
+
+/* Determine the order of line segments z0-z1 and z2-z3.
+ Return +1 if z2-z3 lies entirely to the right of z0-z1,
+ -1 if entirely to the left,
+ or 0 if overlap.
+
+ The case analysis in this function is quite ugly. The fact that it's
+ almost 200 lines long is ridiculous.
+
+ Ok, so here's the plan to cut it down:
+
+ First, do a bounding line comparison on the x coordinates. This is pretty
+ much the common case, and should go quickly. It also takes care of the
+ case where both lines are horizontal.
+
+ Then, do d0 and d1 computation, but only if a23 is nonzero.
+
+ Finally, do d2 and d3 computation, but only if a01 is nonzero.
+
+ Fall through to returning 0 (this will happen when both lines are
+ horizontal and they overlap).
+ */
+static int
+x_order (ArtPoint z0, ArtPoint z1, ArtPoint z2, ArtPoint z3)
+{
+ double a01, b01, c01;
+ double a23, b23, c23;
+ double d0, d1, d2, d3;
+
+ if (z0.y == z1.y)
+ {
+ if (z2.y == z3.y)
+ {
+ double x01min, x01max;
+ double x23min, x23max;
+
+ if (z0.x > z1.x)
+ {
+ x01min = z1.x;
+ x01max = z0.x;
+ }
+ else
+ {
+ x01min = z0.x;
+ x01max = z1.x;
+ }
+
+ if (z2.x > z3.x)
+ {
+ x23min = z3.x;
+ x23max = z2.x;
+ }
+ else
+ {
+ x23min = z2.x;
+ x23max = z3.x;
+ }
+
+ if (x23min >= x01max) return 1;
+ else if (x01min >= x23max) return -1;
+ else return 0;
+ }
+ else
+ {
+ /* z0-z1 is horizontal, z2-z3 isn't */
+ a23 = z2.y - z3.y;
+ b23 = z3.x - z2.x;
+ c23 = -(z2.x * a23 + z2.y * b23);
+
+ if (z3.y < z2.y)
+ {
+ a23 = -a23;
+ b23 = -b23;
+ c23 = -c23;
+ }
+
+ d0 = trap_epsilon (a23 * z0.x + b23 * z0.y + c23);
+ d1 = trap_epsilon (a23 * z1.x + b23 * z1.y + c23);
+
+ if (d0 > 0)
+ {
+ if (d1 >= 0) return 1;
+ else return 0;
+ }
+ else if (d0 == 0)
+ {
+ if (d1 > 0) return 1;
+ else if (d1 < 0) return -1;
+ else printf ("case 1 degenerate\n");
+ return 0;
+ }
+ else /* d0 < 0 */
+ {
+ if (d1 <= 0) return -1;
+ else return 0;
+ }
+ }
+ }
+ else if (z2.y == z3.y)
+ {
+ /* z2-z3 is horizontal, z0-z1 isn't */
+ a01 = z0.y - z1.y;
+ b01 = z1.x - z0.x;
+ c01 = -(z0.x * a01 + z0.y * b01);
+ /* = -((z0.y - z1.y) * z0.x + (z1.x - z0.x) * z0.y)
+ = (z1.x * z0.y - z1.y * z0.x) */
+
+ if (z1.y < z0.y)
+ {
+ a01 = -a01;
+ b01 = -b01;
+ c01 = -c01;
+ }
+
+ d2 = trap_epsilon (a01 * z2.x + b01 * z2.y + c01);
+ d3 = trap_epsilon (a01 * z3.x + b01 * z3.y + c01);
+
+ if (d2 > 0)
+ {
+ if (d3 >= 0) return -1;
+ else return 0;
+ }
+ else if (d2 == 0)
+ {
+ if (d3 > 0) return -1;
+ else if (d3 < 0) return 1;
+ else printf ("case 2 degenerate\n");
+ return 0;
+ }
+ else /* d2 < 0 */
+ {
+ if (d3 <= 0) return 1;
+ else return 0;
+ }
+ }
+
+ /* find line equations ax + by + c = 0 */
+ a01 = z0.y - z1.y;
+ b01 = z1.x - z0.x;
+ c01 = -(z0.x * a01 + z0.y * b01);
+ /* = -((z0.y - z1.y) * z0.x + (z1.x - z0.x) * z0.y)
+ = -(z1.x * z0.y - z1.y * z0.x) */
+
+ if (a01 > 0)
+ {
+ a01 = -a01;
+ b01 = -b01;
+ c01 = -c01;
+ }
+ /* so now, (a01, b01) points to the left, thus a01 * x + b01 * y + c01
+ is negative if the point lies to the right of the line */
+
+ d2 = trap_epsilon (a01 * z2.x + b01 * z2.y + c01);
+ d3 = trap_epsilon (a01 * z3.x + b01 * z3.y + c01);
+ if (d2 > 0)
+ {
+ if (d3 >= 0) return -1;
+ }
+ else if (d2 == 0)
+ {
+ if (d3 > 0) return -1;
+ else if (d3 < 0) return 1;
+ else
+ fprintf (stderr, "colinear!\n");
+ }
+ else /* d2 < 0 */
+ {
+ if (d3 <= 0) return 1;
+ }
+
+ a23 = z2.y - z3.y;
+ b23 = z3.x - z2.x;
+ c23 = -(z2.x * a23 + z2.y * b23);
+
+ if (a23 > 0)
+ {
+ a23 = -a23;
+ b23 = -b23;
+ c23 = -c23;
+ }
+ d0 = trap_epsilon (a23 * z0.x + b23 * z0.y + c23);
+ d1 = trap_epsilon (a23 * z1.x + b23 * z1.y + c23);
+ if (d0 > 0)
+ {
+ if (d1 >= 0) return 1;
+ }
+ else if (d0 == 0)
+ {
+ if (d1 > 0) return 1;
+ else if (d1 < 0) return -1;
+ else
+ fprintf (stderr, "colinear!\n");
+ }
+ else /* d0 < 0 */
+ {
+ if (d1 <= 0) return -1;
+ }
+
+ return 0;
+}
+
+/* similar to x_order, but to determine whether point z0 + epsilon lies to
+ the left of the line z2-z3 or to the right */
+static int
+x_order_2 (ArtPoint z0, ArtPoint z1, ArtPoint z2, ArtPoint z3)
+{
+ double a23, b23, c23;
+ double d0, d1;
+
+ a23 = z2.y - z3.y;
+ b23 = z3.x - z2.x;
+ c23 = -(z2.x * a23 + z2.y * b23);
+
+ if (a23 > 0)
+ {
+ a23 = -a23;
+ b23 = -b23;
+ c23 = -c23;
+ }
+
+ d0 = a23 * z0.x + b23 * z0.y + c23;
+
+ if (d0 > EPSILON)
+ return -1;
+ else if (d0 < -EPSILON)
+ return 1;
+
+ d1 = a23 * z1.x + b23 * z1.y + c23;
+ if (d1 > EPSILON)
+ return -1;
+ else if (d1 < -EPSILON)
+ return 1;
+
+ if (z0.x == z1.x && z1.x == z2.x && z2.x == z3.x)
+ {
+ art_dprint ("x_order_2: colinear and horizontally aligned!\n");
+ return 0;
+ }
+
+ if (z0.x <= z2.x && z1.x <= z2.x && z0.x <= z3.x && z1.x <= z3.x)
+ return -1;
+ if (z0.x >= z2.x && z1.x >= z2.x && z0.x >= z3.x && z1.x >= z3.x)
+ return 1;
+
+ fprintf (stderr, "x_order_2: colinear!\n");
+ return 0;
+}
+
+#ifdef DEAD_CODE
+/* Traverse the vector path, keeping it in x-sorted order.
+
+ This routine doesn't actually do anything - it's just here for
+ explanatory purposes. */
+void
+traverse (ArtSVP *vp)
+{
+ int *active_segs;
+ int n_active_segs;
+ int *cursor;
+ int seg_idx;
+ double y;
+ int tmp1, tmp2;
+ int asi;
+ int i, j;
+
+ active_segs = art_new (int, vp->n_segs);
+ cursor = art_new (int, vp->n_segs);
+
+ n_active_segs = 0;
+ seg_idx = 0;
+ y = vp->segs[0].points[0].y;
+ while (seg_idx < vp->n_segs || n_active_segs > 0)
+ {
+ printf ("y = %g\n", y);
+ /* delete segments ending at y from active list */
+ for (i = 0; i < n_active_segs; i++)
+ {
+ asi = active_segs[i];
+ if (vp->segs[asi].n_points - 1 == cursor[asi] &&
+ vp->segs[asi].points[cursor[asi]].y == y)
+ {
+ printf ("deleting %d\n", asi);
+ n_active_segs--;
+ for (j = i; j < n_active_segs; j++)
+ active_segs[j] = active_segs[j + 1];
+ i--;
+ }
+ }
+
+ /* insert new segments into the active list */
+ while (seg_idx < vp->n_segs && y == vp->segs[seg_idx].points[0].y)
+ {
+ cursor[seg_idx] = 0;
+ printf ("inserting %d\n", seg_idx);
+ for (i = 0; i < n_active_segs; i++)
+ {
+ asi = active_segs[i];
+ if (x_order (vp->segs[asi].points[cursor[asi]],
+ vp->segs[asi].points[cursor[asi] + 1],
+ vp->segs[seg_idx].points[0],
+ vp->segs[seg_idx].points[1]) == -1)
+ break;
+ }
+ tmp1 = seg_idx;
+ for (j = i; j < n_active_segs; j++)
+ {
+ tmp2 = active_segs[j];
+ active_segs[j] = tmp1;
+ tmp1 = tmp2;
+ }
+ active_segs[n_active_segs] = tmp1;
+ n_active_segs++;
+ seg_idx++;
+ }
+
+ /* all active segs cross the y scanline (considering segs to be
+ closed on top and open on bottom) */
+ for (i = 0; i < n_active_segs; i++)
+ {
+ asi = active_segs[i];
+ printf ("%d (%g, %g) - (%g, %g) %s\n", asi,
+ vp->segs[asi].points[cursor[asi]].x,
+ vp->segs[asi].points[cursor[asi]].y,
+ vp->segs[asi].points[cursor[asi] + 1].x,
+ vp->segs[asi].points[cursor[asi] + 1].y,
+ vp->segs[asi].dir ? "v" : "^");
+ }
+
+ /* advance y to the next event */
+ if (n_active_segs == 0)
+ {
+ if (seg_idx < vp->n_segs)
+ y = vp->segs[seg_idx].points[0].y;
+ /* else we're done */
+ }
+ else
+ {
+ asi = active_segs[0];
+ y = vp->segs[asi].points[cursor[asi] + 1].y;
+ for (i = 1; i < n_active_segs; i++)
+ {
+ asi = active_segs[i];
+ if (y > vp->segs[asi].points[cursor[asi] + 1].y)
+ y = vp->segs[asi].points[cursor[asi] + 1].y;
+ }
+ if (seg_idx < vp->n_segs && y > vp->segs[seg_idx].points[0].y)
+ y = vp->segs[seg_idx].points[0].y;
+ }
+
+ /* advance cursors to reach new y */
+ for (i = 0; i < n_active_segs; i++)
+ {
+ asi = active_segs[i];
+ while (cursor[asi] < vp->segs[asi].n_points - 1 &&
+ y >= vp->segs[asi].points[cursor[asi] + 1].y)
+ cursor[asi]++;
+ }
+ printf ("\n");
+ }
+ art_free (cursor);
+ art_free (active_segs);
+}
+#endif
+
+/* I believe that the loop will always break with i=1.
+
+ I think I'll want to change this from a simple sorted list to a
+ modified stack. ips[*][0] will get its own data structure, and
+ ips[*] will in general only be allocated if there is an intersection.
+ Finally, the segment can be traced through the initial point
+ (formerly ips[*][0]), backwards through the stack, and finally
+ to cursor + 1.
+
+ This change should cut down on allocation bandwidth, and also
+ eliminate the iteration through n_ipl below.
+
+*/
+static void
+insert_ip (int seg_i, int *n_ips, int *n_ips_max, ArtPoint **ips, ArtPoint ip)
+{
+ int i;
+ ArtPoint tmp1, tmp2;
+ int n_ipl;
+ ArtPoint *ipl;
+
+ n_ipl = n_ips[seg_i]++;
+ if (n_ipl == n_ips_max[seg_i])
+ art_expand (ips[seg_i], ArtPoint, n_ips_max[seg_i]);
+ ipl = ips[seg_i];
+ for (i = 1; i < n_ipl; i++)
+ if (ipl[i].y > ip.y)
+ break;
+ tmp1 = ip;
+ for (; i <= n_ipl; i++)
+ {
+ tmp2 = ipl[i];
+ ipl[i] = tmp1;
+ tmp1 = tmp2;
+ }
+}
+
+/* test active segment (i - 1) against i for intersection, if
+ so, add intersection point to both ips lists. */
+static void
+intersect_neighbors (int i, int *active_segs,
+ int *n_ips, int *n_ips_max, ArtPoint **ips,
+ int *cursor, ArtSVP *vp)
+{
+ ArtPoint z0, z1, z2, z3;
+ int asi01, asi23;
+ ArtPoint ip;
+
+ asi01 = active_segs[i - 1];
+
+ z0 = ips[asi01][0];
+ if (n_ips[asi01] == 1)
+ z1 = vp->segs[asi01].points[cursor[asi01] + 1];
+ else
+ z1 = ips[asi01][1];
+
+ asi23 = active_segs[i];
+
+ z2 = ips[asi23][0];
+ if (n_ips[asi23] == 1)
+ z3 = vp->segs[asi23].points[cursor[asi23] + 1];
+ else
+ z3 = ips[asi23][1];
+
+ if (intersect_lines (z0, z1, z2, z3, &ip))
+ {
+#ifdef VERBOSE
+ printf ("new intersection point: (%g, %g)\n", ip.x, ip.y);
+#endif
+ insert_ip (asi01, n_ips, n_ips_max, ips, ip);
+ insert_ip (asi23, n_ips, n_ips_max, ips, ip);
+ }
+}
+
+/* Add a new point to a segment in the svp.
+
+ Here, we also check to make sure that the segments satisfy nocross.
+ However, this is only valuable for debugging, and could possibly be
+ removed.
+*/
+static void
+svp_add_point (ArtSVP *svp, int *n_points_max,
+ ArtPoint p, int *seg_map, int *active_segs, int n_active_segs,
+ int i)
+{
+ int asi, asi_left, asi_right;
+ int n_points, n_points_left, n_points_right;
+ ArtSVPSeg *seg;
+
+ asi = seg_map[active_segs[i]];
+ seg = &svp->segs[asi];
+ n_points = seg->n_points;
+ /* find out whether neighboring segments share a point */
+ if (i > 0)
+ {
+ asi_left = seg_map[active_segs[i - 1]];
+ n_points_left = svp->segs[asi_left].n_points;
+ if (n_points_left > 1 &&
+ PT_EQ (svp->segs[asi_left].points[n_points_left - 2],
+ svp->segs[asi].points[n_points - 1]))
+ {
+ /* ok, new vector shares a top point with segment to the left -
+ now, check that it satisfies ordering invariant */
+ if (x_order (svp->segs[asi_left].points[n_points_left - 2],
+ svp->segs[asi_left].points[n_points_left - 1],
+ svp->segs[asi].points[n_points - 1],
+ p) < 1)
+
+ {
+#ifdef VERBOSE
+ printf ("svp_add_point: cross on left!\n");
+#endif
+ }
+ }
+ }
+
+ if (i + 1 < n_active_segs)
+ {
+ asi_right = seg_map[active_segs[i + 1]];
+ n_points_right = svp->segs[asi_right].n_points;
+ if (n_points_right > 1 &&
+ PT_EQ (svp->segs[asi_right].points[n_points_right - 2],
+ svp->segs[asi].points[n_points - 1]))
+ {
+ /* ok, new vector shares a top point with segment to the right -
+ now, check that it satisfies ordering invariant */
+ if (x_order (svp->segs[asi_right].points[n_points_right - 2],
+ svp->segs[asi_right].points[n_points_right - 1],
+ svp->segs[asi].points[n_points - 1],
+ p) > -1)
+ {
+#ifdef VERBOSE
+ printf ("svp_add_point: cross on right!\n");
+#endif
+ }
+ }
+ }
+ if (n_points_max[asi] == n_points)
+ art_expand (seg->points, ArtPoint, n_points_max[asi]);
+ seg->points[n_points] = p;
+ if (p.x < seg->bbox.x0)
+ seg->bbox.x0 = p.x;
+ else if (p.x > seg->bbox.x1)
+ seg->bbox.x1 = p.x;
+ seg->bbox.y1 = p.y;
+ seg->n_points++;
+}
+
+#if 0
+/* find where the segment (currently at i) is supposed to go, and return
+ the target index - if equal to i, then there is no crossing problem.
+
+ "Where it is supposed to go" is defined as following:
+
+ Delete element i, re-insert at position target (bumping everything
+ target and greater to the right).
+ */
+static int
+find_crossing (int i, int *active_segs, int n_active_segs,
+ int *cursor, ArtPoint **ips, int *n_ips, ArtSVP *vp)
+{
+ int asi, asi_left, asi_right;
+ ArtPoint p0, p1;
+ ArtPoint p0l, p1l;
+ ArtPoint p0r, p1r;
+ int target;
+
+ asi = active_segs[i];
+ p0 = ips[asi][0];
+ if (n_ips[asi] == 1)
+ p1 = vp->segs[asi].points[cursor[asi] + 1];
+ else
+ p1 = ips[asi][1];
+
+ for (target = i; target > 0; target--)
+ {
+ asi_left = active_segs[target - 1];
+ p0l = ips[asi_left][0];
+ if (n_ips[asi_left] == 1)
+ p1l = vp->segs[asi_left].points[cursor[asi_left] + 1];
+ else
+ p1l = ips[asi_left][1];
+ if (!PT_EQ (p0, p0l))
+ break;
+
+#ifdef VERBOSE
+ printf ("point matches on left (%g, %g) - (%g, %g) x (%g, %g) - (%g, %g)!\n",
+ p0l.x, p0l.y, p1l.x, p1l.y, p0.x, p0.y, p1.x, p1.y);
+#endif
+ if (x_order (p0l, p1l, p0, p1) == 1)
+ break;
+
+#ifdef VERBOSE
+ printf ("scanning to the left (i=%d, target=%d)\n", i, target);
+#endif
+ }
+
+ if (target < i) return target;
+
+ for (; target < n_active_segs - 1; target++)
+ {
+ asi_right = active_segs[target + 1];
+ p0r = ips[asi_right][0];
+ if (n_ips[asi_right] == 1)
+ p1r = vp->segs[asi_right].points[cursor[asi_right] + 1];
+ else
+ p1r = ips[asi_right][1];
+ if (!PT_EQ (p0, p0r))
+ break;
+
+#ifdef VERBOSE
+ printf ("point matches on left (%g, %g) - (%g, %g) x (%g, %g) - (%g, %g)!\n",
+ p0.x, p0.y, p1.x, p1.y, p0r.x, p0r.y, p1r.x, p1r.y);
+#endif
+ if (x_order (p0r, p1r, p0, p1) == 1)
+ break;
+
+#ifdef VERBOSE
+ printf ("scanning to the right (i=%d, target=%d)\n", i, target);
+#endif
+ }
+
+ return target;
+}
+#endif
+
+/* This routine handles the case where the segment changes its position
+ in the active segment list. Generally, this will happen when the
+ segment (defined by i and cursor) shares a top point with a neighbor,
+ but breaks the ordering invariant.
+
+ Essentially, this routine sorts the lines [start..end), all of which
+ share a top point. This is implemented as your basic insertion sort.
+
+ This routine takes care of intersecting the appropriate neighbors,
+ as well.
+
+ A first argument of -1 immediately returns, which helps reduce special
+ casing in the main unwind routine.
+*/
+static void
+fix_crossing (int start, int end, int *active_segs, int n_active_segs,
+ int *cursor, ArtPoint **ips, int *n_ips, int *n_ips_max,
+ ArtSVP *vp, int *seg_map,
+ ArtSVP **p_new_vp, int *pn_segs_max,
+ int **pn_points_max)
+{
+ int i, j;
+ int target;
+ int asi, asj;
+ ArtPoint p0i, p1i;
+ ArtPoint p0j, p1j;
+ int swap = 0;
+#ifdef VERBOSE
+ int k;
+#endif
+ ArtPoint *pts;
+
+#ifdef VERBOSE
+ printf ("fix_crossing: [%d..%d)", start, end);
+ for (k = 0; k < n_active_segs; k++)
+ printf (" %d", active_segs[k]);
+ printf ("\n");
+#endif
+
+ if (start == -1)
+ return;
+
+ for (i = start + 1; i < end; i++)
+ {
+
+ asi = active_segs[i];
+ if (cursor[asi] < vp->segs[asi].n_points - 1) {
+ p0i = ips[asi][0];
+ if (n_ips[asi] == 1)
+ p1i = vp->segs[asi].points[cursor[asi] + 1];
+ else
+ p1i = ips[asi][1];
+
+ for (j = i - 1; j >= start; j--)
+ {
+ asj = active_segs[j];
+ if (cursor[asj] < vp->segs[asj].n_points - 1)
+ {
+ p0j = ips[asj][0];
+ if (n_ips[asj] == 1)
+ p1j = vp->segs[asj].points[cursor[asj] + 1];
+ else
+ p1j = ips[asj][1];
+
+ /* we _hope_ p0i = p0j */
+ if (x_order_2 (p0j, p1j, p0i, p1i) == -1)
+ break;
+ }
+ }
+
+ target = j + 1;
+ /* target is where active_seg[i] _should_ be in active_segs */
+
+ if (target != i)
+ {
+ swap = 1;
+
+#ifdef VERBOSE
+ printf ("fix_crossing: at %i should be %i\n", i, target);
+#endif
+
+ /* let's close off all relevant segments */
+ for (j = i; j >= target; j--)
+ {
+ asi = active_segs[j];
+ /* First conjunct: this isn't the last point in the original
+ segment.
+
+ Second conjunct: this isn't the first point in the new
+ segment (i.e. already broken).
+ */
+ if (cursor[asi] < vp->segs[asi].n_points - 1 &&
+ (*p_new_vp)->segs[seg_map[asi]].n_points != 1)
+ {
+ int seg_num;
+ /* so break here */
+#ifdef VERBOSE
+ printf ("closing off %d\n", j);
+#endif
+
+ pts = art_new (ArtPoint, 16);
+ pts[0] = ips[asi][0];
+ seg_num = art_svp_add_segment (p_new_vp, pn_segs_max,
+ pn_points_max,
+ 1, vp->segs[asi].dir,
+ pts,
+ NULL);
+ (*pn_points_max)[seg_num] = 16;
+ seg_map[asi] = seg_num;
+ }
+ }
+
+ /* now fix the ordering in active_segs */
+ asi = active_segs[i];
+ for (j = i; j > target; j--)
+ active_segs[j] = active_segs[j - 1];
+ active_segs[j] = asi;
+ }
+ }
+ }
+ if (swap && start > 0)
+ {
+ int as_start;
+
+ as_start = active_segs[start];
+ if (cursor[as_start] < vp->segs[as_start].n_points)
+ {
+#ifdef VERBOSE
+ printf ("checking intersection of %d, %d\n", start - 1, start);
+#endif
+ intersect_neighbors (start, active_segs,
+ n_ips, n_ips_max, ips,
+ cursor, vp);
+ }
+ }
+
+ if (swap && end < n_active_segs)
+ {
+ int as_end;
+
+ as_end = active_segs[end - 1];
+ if (cursor[as_end] < vp->segs[as_end].n_points)
+ {
+#ifdef VERBOSE
+ printf ("checking intersection of %d, %d\n", end - 1, end);
+#endif
+ intersect_neighbors (end, active_segs,
+ n_ips, n_ips_max, ips,
+ cursor, vp);
+ }
+ }
+ if (swap)
+ {
+#ifdef VERBOSE
+ printf ("fix_crossing return: [%d..%d)", start, end);
+ for (k = 0; k < n_active_segs; k++)
+ printf (" %d", active_segs[k]);
+ printf ("\n");
+#endif
+ }
+}
+
+/* Return a new sorted vector that covers the same area as the
+ argument, but which satisfies the nocross invariant.
+
+ Basically, this routine works by finding the intersection points,
+ and cutting the segments at those points.
+
+ Status of this routine:
+
+ Basic correctness: Seems ok.
+
+ Numerical stability: known problems in the case of points falling
+ on lines, and colinear lines. For actual use, randomly perturbing
+ the vertices is currently recommended.
+
+ Speed: pretty good, although a more efficient priority queue, as
+ well as bbox culling of potential intersections, are two
+ optimizations that could help.
+
+ Precision: pretty good, although the numerical stability problems
+ make this routine unsuitable for precise calculations of
+ differences.
+
+*/
+
+/* Here is a more detailed description of the algorithm. It follows
+ roughly the structure of traverse (above), but is obviously quite
+ a bit more complex.
+
+ Here are a few important data structures:
+
+ A new sorted vector path (new_svp).
+
+ For each (active) segment in the original, a list of intersection
+ points.
+
+ Of course, the original being traversed.
+
+ The following invariants hold (in addition to the invariants
+ of the traverse procedure).
+
+ The new sorted vector path lies entirely above the y scan line.
+
+ The new sorted vector path keeps the nocross invariant.
+
+ For each active segment, the y scan line crosses the line from the
+ first to the second of the intersection points (where the second
+ point is cursor + 1 if there is only one intersection point).
+
+ The list of intersection points + the (cursor + 1) point is kept
+ in nondecreasing y order.
+
+ Of the active segments, none of the lines from first to second
+ intersection point cross the 1st ip..2nd ip line of the left or
+ right neighbor. (However, such a line may cross further
+ intersection points of the neighbors, or segments past the
+ immediate neighbors).
+
+ Of the active segments, all lines from 1st ip..2nd ip are in
+ strictly increasing x_order (this is very similar to the invariant
+ of the traverse procedure, but is explicitly stated here in terms
+ of ips). (this basically says that nocross holds on the active
+ segments)
+
+ The combination of the new sorted vector path, the path through all
+ the intersection points to cursor + 1, and [cursor + 1, n_points)
+ covers the same area as the argument.
+
+ Another important data structure is mapping from original segment
+ number to new segment number.
+
+ The algorithm is perhaps best understood as advancing the cursors
+ while maintaining these invariants. Here's roughly how it's done.
+
+ When deleting segments from the active list, those segments are added
+ to the new sorted vector path. In addition, the neighbors may intersect
+ each other, so they are intersection tested (see below).
+
+ When inserting new segments, they are intersection tested against
+ their neighbors. The top point of the segment becomes the first
+ intersection point.
+
+ Advancing the cursor is just a bit different from the traverse
+ routine, as the cursor may advance through the intersection points
+ as well. Only when there is a single intersection point in the list
+ does the cursor advance in the original segment. In either case,
+ the new vector is intersection tested against both neighbors. It
+ also causes the vector over which the cursor is advancing to be
+ added to the new svp.
+
+ Two steps need further clarification:
+
+ Intersection testing: the 1st ip..2nd ip lines of the neighbors
+ are tested to see if they cross (using intersect_lines). If so,
+ then the intersection point is added to the ip list of both
+ segments, maintaining the invariant that the list of intersection
+ points is nondecreasing in y).
+
+ Adding vector to new svp: if the new vector shares a top x
+ coordinate with another vector, then it is checked to see whether
+ it is in order. If not, then both segments are "broken," and then
+ restarted. Note: in the case when both segments are in the same
+ order, they may simply be swapped without breaking.
+
+ For the time being, I'm going to put some of these operations into
+ subroutines. If it turns out to be a performance problem, I could
+ try to reorganize the traverse procedure so that each is only
+ called once, and inline them. But if it's not a performance
+ problem, I'll just keep it this way, because it will probably help
+ to make the code clearer, and I believe this code could use all the
+ clarity it can get. */
+/**
+ * art_svp_uncross: Resolve self-intersections of an svp.
+ * @vp: The original svp.
+ *
+ * Finds all the intersections within @vp, and constructs a new svp
+ * with new points added at these intersections.
+ *
+ * This routine needs to be redone from scratch with numerical robustness
+ * in mind. I'm working on it.
+ *
+ * Return value: The new svp.
+ **/
+ArtSVP *
+art_svp_uncross (ArtSVP *vp)
+{
+ int *active_segs;
+ int n_active_segs;
+ int *cursor;
+ int seg_idx;
+ double y;
+ int tmp1, tmp2;
+ int asi;
+ int i, j;
+ /* new data structures */
+ /* intersection points; invariant: *ips[i] is only allocated if
+ i is active */
+ int *n_ips, *n_ips_max;
+ ArtPoint **ips;
+ /* new sorted vector path */
+ int n_segs_max, seg_num;
+ ArtSVP *new_vp;
+ int *n_points_max;
+ /* mapping from argument to new segment numbers - again, only valid
+ if active */
+ int *seg_map;
+ double y_curs;
+ ArtPoint p_curs;
+ int first_share;
+ double share_x;
+ ArtPoint *pts;
+
+ n_segs_max = 16;
+ new_vp = (ArtSVP *)art_alloc (sizeof(ArtSVP) +
+ (n_segs_max - 1) * sizeof(ArtSVPSeg));
+ new_vp->n_segs = 0;
+
+ if (vp->n_segs == 0)
+ return new_vp;
+
+ active_segs = art_new (int, vp->n_segs);
+ cursor = art_new (int, vp->n_segs);
+
+ seg_map = art_new (int, vp->n_segs);
+ n_ips = art_new (int, vp->n_segs);
+ n_ips_max = art_new (int, vp->n_segs);
+ ips = art_new (ArtPoint *, vp->n_segs);
+
+ n_points_max = art_new (int, n_segs_max);
+
+ n_active_segs = 0;
+ seg_idx = 0;
+ y = vp->segs[0].points[0].y;
+ while (seg_idx < vp->n_segs || n_active_segs > 0)
+ {
+#ifdef VERBOSE
+ printf ("y = %g\n", y);
+#endif
+
+ /* maybe move deletions to end of loop (to avoid so much special
+ casing on the end of a segment)? */
+
+ /* delete segments ending at y from active list */
+ for (i = 0; i < n_active_segs; i++)
+ {
+ asi = active_segs[i];
+ if (vp->segs[asi].n_points - 1 == cursor[asi] &&
+ vp->segs[asi].points[cursor[asi]].y == y)
+ {
+ do
+ {
+#ifdef VERBOSE
+ printf ("deleting %d\n", asi);
+#endif
+ art_free (ips[asi]);
+ n_active_segs--;
+ for (j = i; j < n_active_segs; j++)
+ active_segs[j] = active_segs[j + 1];
+ if (i < n_active_segs)
+ asi = active_segs[i];
+ else
+ break;
+ }
+ while (vp->segs[asi].n_points - 1 == cursor[asi] &&
+ vp->segs[asi].points[cursor[asi]].y == y);
+
+ /* test intersection of neighbors */
+ if (i > 0 && i < n_active_segs)
+ intersect_neighbors (i, active_segs,
+ n_ips, n_ips_max, ips,
+ cursor, vp);
+
+ i--;
+ }
+ }
+
+ /* insert new segments into the active list */
+ while (seg_idx < vp->n_segs && y == vp->segs[seg_idx].points[0].y)
+ {
+#ifdef VERBOSE
+ printf ("inserting %d\n", seg_idx);
+#endif
+ cursor[seg_idx] = 0;
+ for (i = 0; i < n_active_segs; i++)
+ {
+ asi = active_segs[i];
+ if (x_order_2 (vp->segs[seg_idx].points[0],
+ vp->segs[seg_idx].points[1],
+ vp->segs[asi].points[cursor[asi]],
+ vp->segs[asi].points[cursor[asi] + 1]) == -1)
+ break;
+ }
+
+ /* Create and initialize the intersection points data structure */
+ n_ips[seg_idx] = 1;
+ n_ips_max[seg_idx] = 2;
+ ips[seg_idx] = art_new (ArtPoint, n_ips_max[seg_idx]);
+ ips[seg_idx][0] = vp->segs[seg_idx].points[0];
+
+ /* Start a new segment in the new vector path */
+ pts = art_new (ArtPoint, 16);
+ pts[0] = vp->segs[seg_idx].points[0];
+ seg_num = art_svp_add_segment (&new_vp, &n_segs_max,
+ &n_points_max,
+ 1, vp->segs[seg_idx].dir,
+ pts,
+ NULL);
+ n_points_max[seg_num] = 16;
+ seg_map[seg_idx] = seg_num;
+
+ tmp1 = seg_idx;
+ for (j = i; j < n_active_segs; j++)
+ {
+ tmp2 = active_segs[j];
+ active_segs[j] = tmp1;
+ tmp1 = tmp2;
+ }
+ active_segs[n_active_segs] = tmp1;
+ n_active_segs++;
+
+ if (i > 0)
+ intersect_neighbors (i, active_segs,
+ n_ips, n_ips_max, ips,
+ cursor, vp);
+
+ if (i + 1 < n_active_segs)
+ intersect_neighbors (i + 1, active_segs,
+ n_ips, n_ips_max, ips,
+ cursor, vp);
+
+ seg_idx++;
+ }
+
+ /* all active segs cross the y scanline (considering segs to be
+ closed on top and open on bottom) */
+#ifdef VERBOSE
+ for (i = 0; i < n_active_segs; i++)
+ {
+ asi = active_segs[i];
+ printf ("%d ", asi);
+ for (j = 0; j < n_ips[asi]; j++)
+ printf ("(%g, %g) - ",
+ ips[asi][j].x,
+ ips[asi][j].y);
+ printf ("(%g, %g) %s\n",
+ vp->segs[asi].points[cursor[asi] + 1].x,
+ vp->segs[asi].points[cursor[asi] + 1].y,
+ vp->segs[asi].dir ? "v" : "^");
+ }
+#endif
+
+ /* advance y to the next event
+ Note: this is quadratic. We'd probably get decent constant
+ factor speed improvement by caching the y_curs values. */
+ if (n_active_segs == 0)
+ {
+ if (seg_idx < vp->n_segs)
+ y = vp->segs[seg_idx].points[0].y;
+ /* else we're done */
+ }
+ else
+ {
+ asi = active_segs[0];
+ if (n_ips[asi] == 1)
+ y = vp->segs[asi].points[cursor[asi] + 1].y;
+ else
+ y = ips[asi][1].y;
+ for (i = 1; i < n_active_segs; i++)
+ {
+ asi = active_segs[i];
+ if (n_ips[asi] == 1)
+ y_curs = vp->segs[asi].points[cursor[asi] + 1].y;
+ else
+ y_curs = ips[asi][1].y;
+ if (y > y_curs)
+ y = y_curs;
+ }
+ if (seg_idx < vp->n_segs && y > vp->segs[seg_idx].points[0].y)
+ y = vp->segs[seg_idx].points[0].y;
+ }
+
+ first_share = -1;
+ share_x = 0; /* to avoid gcc warning, although share_x is never
+ used when first_share is -1 */
+ /* advance cursors to reach new y */
+ for (i = 0; i < n_active_segs; i++)
+ {
+ asi = active_segs[i];
+ if (n_ips[asi] == 1)
+ p_curs = vp->segs[asi].points[cursor[asi] + 1];
+ else
+ p_curs = ips[asi][1];
+ if (p_curs.y == y)
+ {
+ svp_add_point (new_vp, n_points_max,
+ p_curs, seg_map, active_segs, n_active_segs, i);
+
+ n_ips[asi]--;
+ for (j = 0; j < n_ips[asi]; j++)
+ ips[asi][j] = ips[asi][j + 1];
+
+ if (n_ips[asi] == 0)
+ {
+ ips[asi][0] = p_curs;
+ n_ips[asi] = 1;
+ cursor[asi]++;
+ }
+
+ if (first_share < 0 || p_curs.x != share_x)
+ {
+ /* this is where crossings are detected, and if
+ found, the active segments switched around. */
+
+ fix_crossing (first_share, i,
+ active_segs, n_active_segs,
+ cursor, ips, n_ips, n_ips_max, vp, seg_map,
+ &new_vp,
+ &n_segs_max, &n_points_max);
+
+ first_share = i;
+ share_x = p_curs.x;
+ }
+
+ if (cursor[asi] < vp->segs[asi].n_points - 1)
+ {
+
+ if (i > 0)
+ intersect_neighbors (i, active_segs,
+ n_ips, n_ips_max, ips,
+ cursor, vp);
+
+ if (i + 1 < n_active_segs)
+ intersect_neighbors (i + 1, active_segs,
+ n_ips, n_ips_max, ips,
+ cursor, vp);
+ }
+ }
+ else
+ {
+ /* not on a cursor point */
+ fix_crossing (first_share, i,
+ active_segs, n_active_segs,
+ cursor, ips, n_ips, n_ips_max, vp, seg_map,
+ &new_vp,
+ &n_segs_max, &n_points_max);
+ first_share = -1;
+ }
+ }
+
+ /* fix crossing on last shared group */
+ fix_crossing (first_share, i,
+ active_segs, n_active_segs,
+ cursor, ips, n_ips, n_ips_max, vp, seg_map,
+ &new_vp,
+ &n_segs_max, &n_points_max);
+
+#ifdef VERBOSE
+ printf ("\n");
+#endif
+ }
+
+ /* not necessary to sort, new segments only get added at y, which
+ increases monotonically */
+#if 0
+ qsort (&new_vp->segs, new_vp->n_segs, sizeof (svp_seg), svp_seg_compare);
+ {
+ int k;
+ for (k = 0; k < new_vp->n_segs - 1; k++)
+ {
+ printf ("(%g, %g) - (%g, %g) %s (%g, %g) - (%g, %g)\n",
+ new_vp->segs[k].points[0].x,
+ new_vp->segs[k].points[0].y,
+ new_vp->segs[k].points[1].x,
+ new_vp->segs[k].points[1].y,
+ svp_seg_compare (&new_vp->segs[k], &new_vp->segs[k + 1]) > 1 ? ">": "<",
+ new_vp->segs[k + 1].points[0].x,
+ new_vp->segs[k + 1].points[0].y,
+ new_vp->segs[k + 1].points[1].x,
+ new_vp->segs[k + 1].points[1].y);
+ }
+ }
+#endif
+
+ art_free (n_points_max);
+ art_free (seg_map);
+ art_free (n_ips_max);
+ art_free (n_ips);
+ art_free (ips);
+ art_free (cursor);
+ art_free (active_segs);
+
+ return new_vp;
+}
+
+#define noVERBOSE
+
+/* Rewind a svp satisfying the nocross invariant.
+
+ The winding number of a segment is defined as the winding number of
+ the points to the left while travelling in the direction of the
+ segment. Therefore it preincrements and postdecrements as a scan
+ line is traversed from left to right.
+
+ Status of this routine:
+
+ Basic correctness: Was ok in gfonted. However, this code does not
+ yet compute bboxes for the resulting svp segs.
+
+ Numerical stability: known problems in the case of horizontal
+ segments in polygons with any complexity. For actual use, randomly
+ perturbing the vertices is recommended.
+
+ Speed: good.
+
+ Precision: good, except that no attempt is made to remove "hair".
+ Doing random perturbation just makes matters worse.
+
+*/
+/**
+ * art_svp_rewind_uncrossed: Rewind an svp satisfying the nocross invariant.
+ * @vp: The original svp.
+ * @rule: The winding rule.
+ *
+ * Creates a new svp with winding number of 0 or 1 everywhere. The @rule
+ * argument specifies a rule for how winding numbers in the original
+ * @vp map to the winding numbers in the result.
+ *
+ * With @rule == ART_WIND_RULE_NONZERO, the resulting svp has a
+ * winding number of 1 where @vp has a nonzero winding number.
+ *
+ * With @rule == ART_WIND_RULE_INTERSECT, the resulting svp has a
+ * winding number of 1 where @vp has a winding number greater than
+ * 1. It is useful for computing intersections.
+ *
+ * With @rule == ART_WIND_RULE_ODDEVEN, the resulting svp has a
+ * winding number of 1 where @vp has an odd winding number. It is
+ * useful for implementing the even-odd winding rule of the
+ * PostScript imaging model.
+ *
+ * With @rule == ART_WIND_RULE_POSITIVE, the resulting svp has a
+ * winding number of 1 where @vp has a positive winding number. It is
+ * useful for implementing asymmetric difference.
+ *
+ * This routine needs to be redone from scratch with numerical robustness
+ * in mind. I'm working on it.
+ *
+ * Return value: The new svp.
+ **/
+ArtSVP *
+art_svp_rewind_uncrossed (ArtSVP *vp, ArtWindRule rule)
+{
+ int *active_segs;
+ int n_active_segs;
+ int *cursor;
+ int seg_idx;
+ double y;
+ int tmp1, tmp2;
+ int asi;
+ int i, j;
+
+ ArtSVP *new_vp;
+ int n_segs_max;
+ int *winding;
+ int left_wind;
+ int wind;
+ int keep, invert;
+
+#ifdef VERBOSE
+ print_svp (vp);
+#endif
+ n_segs_max = 16;
+ new_vp = (ArtSVP *)art_alloc (sizeof(ArtSVP) +
+ (n_segs_max - 1) * sizeof(ArtSVPSeg));
+ new_vp->n_segs = 0;
+
+ if (vp->n_segs == 0)
+ return new_vp;
+
+ winding = art_new (int, vp->n_segs);
+
+ active_segs = art_new (int, vp->n_segs);
+ cursor = art_new (int, vp->n_segs);
+
+ n_active_segs = 0;
+ seg_idx = 0;
+ y = vp->segs[0].points[0].y;
+ while (seg_idx < vp->n_segs || n_active_segs > 0)
+ {
+#ifdef VERBOSE
+ printf ("y = %g\n", y);
+#endif
+ /* delete segments ending at y from active list */
+ for (i = 0; i < n_active_segs; i++)
+ {
+ asi = active_segs[i];
+ if (vp->segs[asi].n_points - 1 == cursor[asi] &&
+ vp->segs[asi].points[cursor[asi]].y == y)
+ {
+#ifdef VERBOSE
+ printf ("deleting %d\n", asi);
+#endif
+ n_active_segs--;
+ for (j = i; j < n_active_segs; j++)
+ active_segs[j] = active_segs[j + 1];
+ i--;
+ }
+ }
+
+ /* insert new segments into the active list */
+ while (seg_idx < vp->n_segs && y == vp->segs[seg_idx].points[0].y)
+ {
+#ifdef VERBOSE
+ printf ("inserting %d\n", seg_idx);
+#endif
+ cursor[seg_idx] = 0;
+ for (i = 0; i < n_active_segs; i++)
+ {
+ asi = active_segs[i];
+ if (x_order_2 (vp->segs[seg_idx].points[0],
+ vp->segs[seg_idx].points[1],
+ vp->segs[asi].points[cursor[asi]],
+ vp->segs[asi].points[cursor[asi] + 1]) == -1)
+ break;
+ }
+
+ /* Determine winding number for this segment */
+ if (i == 0)
+ left_wind = 0;
+ else if (vp->segs[active_segs[i - 1]].dir)
+ left_wind = winding[active_segs[i - 1]];
+ else
+ left_wind = winding[active_segs[i - 1]] - 1;
+
+ if (vp->segs[seg_idx].dir)
+ wind = left_wind + 1;
+ else
+ wind = left_wind;
+
+ winding[seg_idx] = wind;
+
+ switch (rule)
+ {
+ case ART_WIND_RULE_NONZERO:
+ keep = (wind == 1 || wind == 0);
+ invert = (wind == 0);
+ break;
+ case ART_WIND_RULE_INTERSECT:
+ keep = (wind == 2);
+ invert = 0;
+ break;
+ case ART_WIND_RULE_ODDEVEN:
+ keep = 1;
+ invert = !(wind & 1);
+ break;
+ case ART_WIND_RULE_POSITIVE:
+ keep = (wind == 1);
+ invert = 0;
+ break;
+ default:
+ keep = 0;
+ invert = 0;
+ break;
+ }
+
+ if (keep)
+ {
+ ArtPoint *points, *new_points;
+ int n_points;
+ int new_dir;
+
+#ifdef VERBOSE
+ printf ("keeping segment %d\n", seg_idx);
+#endif
+ n_points = vp->segs[seg_idx].n_points;
+ points = vp->segs[seg_idx].points;
+ new_points = art_new (ArtPoint, n_points);
+ memcpy (new_points, points, n_points * sizeof (ArtPoint));
+ new_dir = vp->segs[seg_idx].dir ^ invert;
+ art_svp_add_segment (&new_vp, &n_segs_max,
+ NULL,
+ n_points, new_dir, new_points,
+ &vp->segs[seg_idx].bbox);
+ }
+
+ tmp1 = seg_idx;
+ for (j = i; j < n_active_segs; j++)
+ {
+ tmp2 = active_segs[j];
+ active_segs[j] = tmp1;
+ tmp1 = tmp2;
+ }
+ active_segs[n_active_segs] = tmp1;
+ n_active_segs++;
+ seg_idx++;
+ }
+
+#ifdef VERBOSE
+ /* all active segs cross the y scanline (considering segs to be
+ closed on top and open on bottom) */
+ for (i = 0; i < n_active_segs; i++)
+ {
+ asi = active_segs[i];
+ printf ("%d:%d (%g, %g) - (%g, %g) %s %d\n", asi,
+ cursor[asi],
+ vp->segs[asi].points[cursor[asi]].x,
+ vp->segs[asi].points[cursor[asi]].y,
+ vp->segs[asi].points[cursor[asi] + 1].x,
+ vp->segs[asi].points[cursor[asi] + 1].y,
+ vp->segs[asi].dir ? "v" : "^",
+ winding[asi]);
+ }
+#endif
+
+ /* advance y to the next event */
+ if (n_active_segs == 0)
+ {
+ if (seg_idx < vp->n_segs)
+ y = vp->segs[seg_idx].points[0].y;
+ /* else we're done */
+ }
+ else
+ {
+ asi = active_segs[0];
+ y = vp->segs[asi].points[cursor[asi] + 1].y;
+ for (i = 1; i < n_active_segs; i++)
+ {
+ asi = active_segs[i];
+ if (y > vp->segs[asi].points[cursor[asi] + 1].y)
+ y = vp->segs[asi].points[cursor[asi] + 1].y;
+ }
+ if (seg_idx < vp->n_segs && y > vp->segs[seg_idx].points[0].y)
+ y = vp->segs[seg_idx].points[0].y;
+ }
+
+ /* advance cursors to reach new y */
+ for (i = 0; i < n_active_segs; i++)
+ {
+ asi = active_segs[i];
+ while (cursor[asi] < vp->segs[asi].n_points - 1 &&
+ y >= vp->segs[asi].points[cursor[asi] + 1].y)
+ cursor[asi]++;
+ }
+#ifdef VERBOSE
+ printf ("\n");
+#endif
+ }
+ art_free (cursor);
+ art_free (active_segs);
+ art_free (winding);
+
+ return new_vp;
+}