summaryrefslogtreecommitdiffstats
path: root/art_affine.c
blob: 9f332a35201680baea9e1ee254d7ba203cfdc8ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/* Libart_LGPL - library of basic graphic primitives
 * Copyright (C) 1998 Raph Levien
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

/* Simple manipulations with affine transformations */

#include "config.h"
#include "art_affine.h"
#include "art_misc.h" /* for M_PI */

#include <math.h>
#include <stdio.h> /* for sprintf */
#include <string.h> /* for strcpy */


/* According to a strict interpretation of the libart structure, this
   routine should go into its own module, art_point_affine.  However,
   it's only two lines of code, and it can be argued that it is one of
   the natural basic functions of an affine transformation.
*/

/**
 * art_affine_point: Do an affine transformation of a point.
 * @dst: Where the result point is stored.
 * @src: The original point.
 @ @affine: The affine transformation.
 **/
void
art_affine_point (ArtPoint *dst, const ArtPoint *src,
		  const double affine[6])
{
  double x, y;

  x = src->x;
  y = src->y;
  dst->x = x * affine[0] + y * affine[2] + affine[4];
  dst->y = x * affine[1] + y * affine[3] + affine[5];
}

/**
 * art_affine_invert: Find the inverse of an affine transformation.
 * @dst: Where the resulting affine is stored.
 * @src: The original affine transformation.
 *
 * All non-degenerate affine transforms are invertible. If the original
 * affine is degenerate or nearly so, expect numerical instability and
 * very likely core dumps on Alpha and other fp-picky architectures.
 * Otherwise, @dst multiplied with @src, or @src multiplied with @dst
 * will be (to within roundoff error) the identity affine.
 **/
void
art_affine_invert (double dst[6], const double src[6])
{
  double r_det;

  r_det = 1.0 / (src[0] * src[3] - src[1] * src[2]);
  dst[0] = src[3] * r_det;
  dst[1] = -src[1] * r_det;
  dst[2] = -src[2] * r_det;
  dst[3] = src[0] * r_det;
  dst[4] = -src[4] * dst[0] - src[5] * dst[2];
  dst[5] = -src[4] * dst[1] - src[5] * dst[3];
}

/**
 * art_affine_flip: Flip an affine transformation horizontally and/or vertically.
 * @dst_affine: Where the resulting affine is stored.
 * @src_affine: The original affine transformation.
 * @horiz: Whether or not to flip horizontally.
 * @vert: Whether or not to flip horizontally.
 *
 * Flips the affine transform. FALSE for both @horiz and @vert implements
 * a simple copy operation. TRUE for both @horiz and @vert is a
 * 180 degree rotation. It is ok for @src_affine and @dst_affine to
 * be equal pointers.
 **/
void
art_affine_flip (double dst_affine[6], const double src_affine[6], int horz, int vert)
{
  dst_affine[0] = horz ? - src_affine[0] : src_affine[0];
  dst_affine[1] = horz ? - src_affine[1] : src_affine[1];
  dst_affine[2] = vert ? - src_affine[2] : src_affine[2];
  dst_affine[3] = vert ? - src_affine[3] : src_affine[3];
  dst_affine[4] = horz ? - src_affine[4] : src_affine[4];
  dst_affine[5] = vert ? - src_affine[5] : src_affine[5];
}

#define EPSILON 1e-6

/* It's ridiculous I have to write this myself. This is hardcoded to
   six digits of precision, which is good enough for PostScript.

   The return value is the number of characters (i.e. strlen (str)).
   It is no more than 12. */
static int
art_ftoa (char str[80], double x)
{
  char *p = str;
  int i, j;

  p = str;
  if (fabs (x) < EPSILON / 2)
    {
      strcpy (str, "0");
      return 1;
    }
  if (x < 0)
    {
      *p++ = '-';
      x = -x;
    }
  if ((int)floor ((x + EPSILON / 2) < 1))
    {
      *p++ = '0';
      *p++ = '.';
      i = sprintf (p, "%06d", (int)floor ((x + EPSILON / 2) * 1e6));
      while (i && p[i - 1] == '0')
	i--;
      if (i == 0)
	i--;
      p += i;
    }
  else if (x < 1e6)
    {
      i = sprintf (p, "%d", (int)floor (x + EPSILON / 2));
      p += i;
      if (i < 6)
	{
	  int ix;

	  *p++ = '.';
	  x -= floor (x + EPSILON / 2);
	  for (j = i; j < 6; j++)
	    x *= 10;
	  ix = floor (x + 0.5);

	  for (j = 0; j < i; j++)
	    ix *= 10;

	  /* A cheap hack, this routine can round wrong for fractions
	     near one. */
	  if (ix == 1000000)
	    ix = 999999;

	  sprintf (p, "%06d", ix);
	  i = 6 - i;
	  while (i && p[i - 1] == '0')
	    i--;
	  if (i == 0)
	    i--;
	  p += i;
	}
    }
  else
    p += sprintf (p, "%g", x);

  *p = '\0';
  return p - str;
}



#include <stdlib.h>
/**
 * art_affine_to_string: Convert affine transformation to concise PostScript string representation.
 * @str: Where to store the resulting string.
 * @src: The affine transform.
 *
 * Converts an affine transform into a bit of PostScript code that
 * implements the transform. Special cases of scaling, rotation, and
 * translation are detected, and the corresponding PostScript
 * operators used (this greatly aids understanding the output
 * generated). The identity transform is mapped to the null string.
 **/
void
art_affine_to_string (char str[128], const double src[6])
{
  char tmp[80];
  int i, ix;

#if 0
  for (i = 0; i < 1000; i++)
    {
      double d = rand () * .1 / RAND_MAX;
      art_ftoa (tmp, d);
      printf ("%g %f %s\n", d, d, tmp);
    }
#endif
  if (fabs (src[4]) < EPSILON && fabs (src[5]) < EPSILON)
    {
      /* could be scale or rotate */
      if (fabs (src[1]) < EPSILON && fabs (src[2]) < EPSILON)
	{
	  /* scale */
	  if (fabs (src[0] - 1) < EPSILON && fabs (src[3] - 1) < EPSILON)
	    {
	      /* identity transform */
	      str[0] = '\0';
	      return;
	    }
	  else
	    {
	      ix = 0;
	      ix += art_ftoa (str + ix, src[0]);
	      str[ix++] = ' ';
	      ix += art_ftoa (str + ix, src[3]);
	      strcpy (str + ix, " scale");
	      return;
	    }
	}
      else
	{
	  /* could be rotate */
	  if (fabs (src[0] - src[3]) < EPSILON &&
	      fabs (src[1] + src[2]) < EPSILON &&
	      fabs (src[0] * src[0] + src[1] * src[1] - 1) < 2 * EPSILON)
	    {
	      double theta;

	      theta = (180 / M_PI) * atan2 (src[1], src[0]);
	      art_ftoa (tmp, theta);
	      sprintf (str, "%s rotate", tmp);
	      return;
	    }
	}
    }
  else
    {
      /* could be translate */
      if (fabs (src[0] - 1) < EPSILON && fabs (src[1]) < EPSILON &&
	  fabs (src[2]) < EPSILON && fabs (src[3] - 1) < EPSILON)
	{
	  ix = 0;
	  ix += art_ftoa (str + ix, src[4]);
	  str[ix++] = ' ';
	  ix += art_ftoa (str + ix, src[5]);
	  strcpy (str + ix, " translate");
	  return;
	}
    }

  ix = 0;
  str[ix++] = '[';
  str[ix++] = ' ';
  for (i = 0; i < 6; i++)
    {
      ix += art_ftoa (str + ix, src[i]);
      str[ix++] = ' ';
    }
  strcpy (str + ix, "] concat");
}

/**
 * art_affine_multiply: Multiply two affine transformation matrices.
 * @dst: Where to store the result.
 * @src1: The first affine transform to multiply.
 * @src2: The second affine transform to multiply.
 *
 * Multiplies two affine transforms together, i.e. the resulting @dst
 * is equivalent to doing first @src1 then @src2. Note that the
 * PostScript concat operator multiplies on the left, i.e.  "M concat"
 * is equivalent to "CTM = multiply (M, CTM)";
 *
 * It is safe to call this function with @dst equal to @src1 or @src2.
 **/
void
art_affine_multiply (double dst[6], const double src1[6], const double src2[6])
{
  double d0, d1, d2, d3, d4, d5;

  d0 = src1[0] * src2[0] + src1[1] * src2[2];
  d1 = src1[0] * src2[1] + src1[1] * src2[3];
  d2 = src1[2] * src2[0] + src1[3] * src2[2];
  d3 = src1[2] * src2[1] + src1[3] * src2[3];
  d4 = src1[4] * src2[0] + src1[5] * src2[2] + src2[4];
  d5 = src1[4] * src2[1] + src1[5] * src2[3] + src2[5];
  dst[0] = d0;
  dst[1] = d1;
  dst[2] = d2;
  dst[3] = d3;
  dst[4] = d4;
  dst[5] = d5;
}

/**
 * art_affine_identity: Set up the identity matrix.
 * @dst: Where to store the resulting affine transform.
 *
 * Sets up an identity matrix.
 **/
void
art_affine_identity (double dst[6])
{
  dst[0] = 1;
  dst[1] = 0;
  dst[2] = 0;
  dst[3] = 1;
  dst[4] = 0;
  dst[5] = 0;
}


/**
 * art_affine_scale: Set up a scaling matrix.
 * @dst: Where to store the resulting affine transform.
 * @sx: X scale factor.
 * @sy: Y scale factor.
 *
 * Sets up a scaling matrix.
 **/
void
art_affine_scale (double dst[6], double sx, double sy)
{
  dst[0] = sx;
  dst[1] = 0;
  dst[2] = 0;
  dst[3] = sy;
  dst[4] = 0;
  dst[5] = 0;
}

/**
 * art_affine_rotate: Set up a rotation affine transform.
 * @dst: Where to store the resulting affine transform.
 * @theta: Rotation angle in degrees.
 *
 * Sets up a rotation matrix. In the standard libart coordinate
 * system, in which increasing y moves downward, this is a
 * counterclockwise rotation. In the standard PostScript coordinate
 * system, which is reversed in the y direction, it is a clockwise
 * rotation.
 **/
void
art_affine_rotate (double dst[6], double theta)
{
  double s, c;

  s = sin (theta * M_PI / 180.0);
  c = cos (theta * M_PI / 180.0);
  dst[0] = c;
  dst[1] = s;
  dst[2] = -s;
  dst[3] = c;
  dst[4] = 0;
  dst[5] = 0;
}

/**
 * art_affine_shear: Set up a shearing matrix.
 * @dst: Where to store the resulting affine transform.
 * @theta: Shear angle in degrees.
 *
 * Sets up a shearing matrix. In the standard libart coordinate system
 * and a small value for theta, || becomes \\. Horizontal lines remain
 * unchanged.
 **/
void
art_affine_shear (double dst[6], double theta)
{
  double t;

  t = tan (theta * M_PI / 180.0);
  dst[0] = 1;
  dst[1] = 0;
  dst[2] = t;
  dst[3] = 1;
  dst[4] = 0;
  dst[5] = 0;
}

/**
 * art_affine_translate: Set up a translation matrix.
 * @dst: Where to store the resulting affine transform.
 * @tx: X translation amount.
 * @tx: Y translation amount.
 *
 * Sets up a translation matrix.
 **/
void
art_affine_translate (double dst[6], double tx, double ty)
{
  dst[0] = 1;
  dst[1] = 0;
  dst[2] = 0;
  dst[3] = 1;
  dst[4] = tx;
  dst[5] = ty;
}

/**
 * art_affine_expansion: Find the affine's expansion factor.
 * @src: The affine transformation.
 *
 * Finds the expansion factor, i.e. the square root of the factor
 * by which the affine transform affects area. In an affine transform
 * composed of scaling, rotation, shearing, and translation, returns
 * the amount of scaling.
 *
 * Return value: the expansion factor.
 **/
double
art_affine_expansion (const double src[6])
{
  return sqrt (fabs (src[0] * src[3] - src[1] * src[2]));
}

/**
 * art_affine_rectilinear: Determine whether the affine transformation is rectilinear.
 * @src: The original affine transformation.
 *
 * Determines whether @src is rectilinear, i.e.  grid-aligned
 * rectangles are transformed to other grid-aligned rectangles.  The
 * implementation has epsilon-tolerance for roundoff errors.
 *
 * Return value: TRUE if @src is rectilinear.
 **/
int
art_affine_rectilinear (const double src[6])
{
  return ((fabs (src[1]) < EPSILON && fabs (src[2]) < EPSILON) ||
	  (fabs (src[0]) < EPSILON && fabs (src[3]) < EPSILON));
}

/**
 * art_affine_equal: Determine whether two affine transformations are equal.
 * @matrix1: An affine transformation.
 * @matrix2: Another affine transformation.
 *
 * Determines whether @matrix1 and @matrix2 are equal, with
 * epsilon-tolerance for roundoff errors.
 *
 * Return value: TRUE if @matrix1 and @matrix2 are equal.
 **/
int
art_affine_equal (double matrix1[6], double matrix2[6])
{
  return (fabs (matrix1[0] - matrix2[0]) < EPSILON &&
	  fabs (matrix1[1] - matrix2[1]) < EPSILON &&
	  fabs (matrix1[2] - matrix2[2]) < EPSILON &&
	  fabs (matrix1[3] - matrix2[3]) < EPSILON &&
	  fabs (matrix1[4] - matrix2[4]) < EPSILON &&
	  fabs (matrix1[5] - matrix2[5]) < EPSILON);
}