diff options
author | Timothy Pearson <[email protected]> | 2011-12-03 11:05:10 -0600 |
---|---|---|
committer | Timothy Pearson <[email protected]> | 2011-12-03 11:05:10 -0600 |
commit | f7e7a923aca8be643f9ae6f7252f9fb27b3d2c3b (patch) | |
tree | 1f78ef53b206c6b4e4efc88c4849aa9f686a094d /tde-i18n-pt/docs/tdeedu/kstars/luminosity.docbook | |
parent | 85ca18776aa487b06b9d5ab7459b8f837ba637f3 (diff) | |
download | tde-i18n-f7e7a923aca8be643f9ae6f7252f9fb27b3d2c3b.tar.gz tde-i18n-f7e7a923aca8be643f9ae6f7252f9fb27b3d2c3b.zip |
Second part of prior commit
Diffstat (limited to 'tde-i18n-pt/docs/tdeedu/kstars/luminosity.docbook')
-rw-r--r-- | tde-i18n-pt/docs/tdeedu/kstars/luminosity.docbook | 42 |
1 files changed, 42 insertions, 0 deletions
diff --git a/tde-i18n-pt/docs/tdeedu/kstars/luminosity.docbook b/tde-i18n-pt/docs/tdeedu/kstars/luminosity.docbook new file mode 100644 index 00000000000..448687c2aff --- /dev/null +++ b/tde-i18n-pt/docs/tdeedu/kstars/luminosity.docbook @@ -0,0 +1,42 @@ +<sect1 id="ai-luminosity"> + +<sect1info> + +<author +><firstname +>Jasem</firstname +> <surname +>Mutlaq</surname +> <affiliation +><address> +</address +></affiliation> +</author> +</sect1info> + +<title +>Luminosidade</title> +<indexterm +><primary +>Luminosidade</primary> +<seealso +>Fluxo</seealso> +</indexterm> + +<para +>A <firstterm +>Luminosidade</firstterm +> é a quantidade de energia emitida por uma estrela a cada segundo. </para> + +<para +>Todas as estrelas irradiam luz numa gama larga de frequências do espectro electromagnético, desde as ondas de rádio de baixa energia até aos raios altamente energéticos que são os raios-gama. Uma estrela que emita predominantemente na região dos ultra-violetas do espectro produz uma quantidade total de energia com ordens de grandeza maiores que uma estrela que emita principalmente na zona dos infra-vermelhos. Como tal, a luminosidade é uma medida de energia emitida por uma estrela em todos os comprimentos de onda. A relação entre o comprimento de onda e a energia foi quantificada por Einstein como sendo E = h * v em que 'v' é a frequência, o 'h' é a constante de Planck e o 'E' é a energia dos fotões em Joules. Como tal, comprimentos de onda menores (e, deste modo, maiores frequências), correspondem a energias mais altas. </para> + +<para +>Por exemplo, um comprimento de onda lambda = 10 metros situa-se na região do rádio no espectro electromagnético e têm uma frequência f = c / lambda = 3 * 10^8 m/s / 10 = 30 MHz, em que o 'c' é a velocidade da luz. A energia deste fotão é E = h * v = 6,625 * 10^-34 J s * 30 Mhz = 1,988 * 10^-26 Joules. Por outro lado, a luz visível tem comprimentos de onda muito mais curtos e frequências mais altas. Um fotão que tenha um comprimento de onda lambda = 5 * 10^-9 metros (um fotão esverdeado) tem uma energia E = 3,975 * 10^-17, o que é cerca de mil milhões de vezes mais elevada que um fotão de rádio. Do mesmo modo, um fotão de luz vermelha (com comprimento de onda lambda = 700 nm) tem menos energia que um fotão de luz violeta (comprimento de onda lambda = 400 nm). </para> + +<para +>A luminosidade depende tanto da temperatura como da área da superfície. Isto faz sentido, porque um tronco irradia mais energia do que um fósforo, ainda que ambos tenham a mesma temperatura. Do mesmo modo, um ferro aquecido a 2000 graus emite mais energia do que se for aquecido a apenas 200 graus. </para> + +<para +>A luminosidade é uma quantidade muito fundamental na Astronomia e na Astrofísica. Muito do que é aprendido sobre os objectos celeste vem da análise da sua luz. Isto tem a ver com o facto de os processos físicos que ocorrem nas estrelas são registados e transmitidos pela luz. A luminosidade é medida em unidades de energia por segundo. Os astrónomos preferem medir em Ergs, em vez de Watts, ao quantificar a luminosidade. </para> +</sect1> |