diff options
author | Darrell Anderson <[email protected]> | 2014-01-21 22:06:48 -0600 |
---|---|---|
committer | Timothy Pearson <[email protected]> | 2014-01-21 22:06:48 -0600 |
commit | 0b8ca6637be94f7814cafa7d01ad4699672ff336 (patch) | |
tree | d2b55b28893be8b047b4e60514f4a7f0713e0d70 /tde-i18n-pt_BR/docs/tdeedu/kstars/blackbody.docbook | |
parent | a1670b07bc16b0decb3e85ee17ae64109cb182c1 (diff) | |
download | tde-i18n-0b8ca6637be94f7814cafa7d01ad4699672ff336.tar.gz tde-i18n-0b8ca6637be94f7814cafa7d01ad4699672ff336.zip |
Beautify docbook files
Diffstat (limited to 'tde-i18n-pt_BR/docs/tdeedu/kstars/blackbody.docbook')
-rw-r--r-- | tde-i18n-pt_BR/docs/tdeedu/kstars/blackbody.docbook | 80 |
1 files changed, 20 insertions, 60 deletions
diff --git a/tde-i18n-pt_BR/docs/tdeedu/kstars/blackbody.docbook b/tde-i18n-pt_BR/docs/tdeedu/kstars/blackbody.docbook index 9fba273824d..978afd35447 100644 --- a/tde-i18n-pt_BR/docs/tdeedu/kstars/blackbody.docbook +++ b/tde-i18n-pt_BR/docs/tdeedu/kstars/blackbody.docbook @@ -2,69 +2,38 @@ <sect1info> -<author -><firstname ->Jasem</firstname -> <surname ->Mutlaq</surname -> <affiliation -><address> -</address -></affiliation> +<author><firstname>Jasem</firstname> <surname>Mutlaq</surname> <affiliation><address> +</address></affiliation> </author> </sect1info> -<title ->Radiação de Corpos Negros</title> -<indexterm -><primary ->Radiação de Corpos Negros</primary> -<seealso ->Cores e Temperaturas das estrelas</seealso> +<title>Radiação de Corpos Negros</title> +<indexterm><primary>Radiação de Corpos Negros</primary> +<seealso>Cores e Temperaturas das estrelas</seealso> </indexterm> -<para ->Um <firstterm ->Corpo Negro</firstterm -> se refere a um conceito idealizado de um objeto que emite <firstterm ->radiação térmica</firstterm -> perfeitamente. Como emissão e absorção de luz são processos inversos, um emissor perfeito de luz também precisa ser um absorvedor perfeito de luz. Desta forma, na temperatura ambiente, tal objeto seria perfeitamente negro. Daí o termo <emphasis ->Corpo Negro</emphasis ->. No entando, se esquentar a uma alta temperatura, o corpo negro começará a brilhar com <firstterm -> radiação térmica</firstterm ->. </para> +<para>Um <firstterm>Corpo Negro</firstterm> se refere a um conceito idealizado de um objeto que emite <firstterm>radiação térmica</firstterm> perfeitamente. Como emissão e absorção de luz são processos inversos, um emissor perfeito de luz também precisa ser um absorvedor perfeito de luz. Desta forma, na temperatura ambiente, tal objeto seria perfeitamente negro. Daí o termo <emphasis>Corpo Negro</emphasis>. No entando, se esquentar a uma alta temperatura, o corpo negro começará a brilhar com <firstterm> radiação térmica</firstterm>. </para> -<para ->De fato, todos os objetos emitem radiação térmica ( se suas temperaturas estiverem acima do Zero Absoluto, ou -273,15 graus Celsius), mas nenhum objeto é realmente um perfeito emissor; na verdade eles são melhores em emitir/absorver alguns comprimentos de onda luminosa do que outros. Essas eficiências irregulares tornam difícil o estudo da interação da luz, calor e matéria usando objetos normais. </para> +<para>De fato, todos os objetos emitem radiação térmica ( se suas temperaturas estiverem acima do Zero Absoluto, ou -273,15 graus Celsius), mas nenhum objeto é realmente um perfeito emissor; na verdade eles são melhores em emitir/absorver alguns comprimentos de onda luminosa do que outros. Essas eficiências irregulares tornam difícil o estudo da interação da luz, calor e matéria usando objetos normais. </para> -<para ->Por sorte, é possível construir um Corpo Negro quase perfeito. Construa uma caixa de um material condutor térmico, como metal. A caixa deve ser completamente fechada por todos os lados, de forma que o interior forme uma cavidade que não receba luz das proximidades. Então, faça um pequeno furo em algum lugar da caixa. A luz vinda deste buraco será quase igual a luz de um Corpo Negro ideal, para a temperatura do ar dentro da caixa. </para> +<para>Por sorte, é possível construir um Corpo Negro quase perfeito. Construa uma caixa de um material condutor térmico, como metal. A caixa deve ser completamente fechada por todos os lados, de forma que o interior forme uma cavidade que não receba luz das proximidades. Então, faça um pequeno furo em algum lugar da caixa. A luz vinda deste buraco será quase igual a luz de um Corpo Negro ideal, para a temperatura do ar dentro da caixa. </para> -<para ->No início do século 20, os cientistas Lord Rayleigh, Wilhelm Wein, e Max Planck (entre outros) estudaram a radiação de Corpos Negros usando este tipo de dispositivo. Após muito trabalho, Planck foi capaz de descrever perfeitamente a intensidade da luz emitida por um Corpo Negro como uma função do comprimento de onda. Além disso, ele foi capaz de descrever como este espectro mudaria com a temperatura. O trabalho de Planck sobre radiação de Corpos Negros é uma das áreas da física que levou até a fundação da maravilhosa ciência da Mecânica Quântica, mas isto está infelizmente além do escopo deste artigo. </para> +<para>No início do século 20, os cientistas Lord Rayleigh, Wilhelm Wein, e Max Planck (entre outros) estudaram a radiação de Corpos Negros usando este tipo de dispositivo. Após muito trabalho, Planck foi capaz de descrever perfeitamente a intensidade da luz emitida por um Corpo Negro como uma função do comprimento de onda. Além disso, ele foi capaz de descrever como este espectro mudaria com a temperatura. O trabalho de Planck sobre radiação de Corpos Negros é uma das áreas da física que levou até a fundação da maravilhosa ciência da Mecânica Quântica, mas isto está infelizmente além do escopo deste artigo. </para> -<para ->O que Planck e os outros descobriram foi que quando a temperatura de um Corpo Negro aumenta, a quantidade total de luz emitida por segunda aumenta, e o comprimento de onda do pico do espectro muda para cores mais azuis (veja a figura 1). </para> +<para>O que Planck e os outros descobriram foi que quando a temperatura de um Corpo Negro aumenta, a quantidade total de luz emitida por segunda aumenta, e o comprimento de onda do pico do espectro muda para cores mais azuis (veja a figura 1). </para> <para> <mediaobject> <imageobject> <imagedata fileref="blackbody.png" format="PNG"/> </imageobject> -<caption -><para -><phrase ->Figura 1</phrase -></para -></caption> +<caption><para><phrase>Figura 1</phrase></para></caption> </mediaobject> </para> -<para ->Por exemplo, uma barra de ferro torna-se vermelhor/laranja quando aquecida a uma alta temperatura e sua cor progressivamente desloca-se para azul e branco, quando for aquecida mais. </para> +<para>Por exemplo, uma barra de ferro torna-se vermelhor/laranja quando aquecida a uma alta temperatura e sua cor progressivamente desloca-se para azul e branco, quando for aquecida mais. </para> -<para ->Em 1893, o físico alemão Wilhelm Wein quantificou a relação entre temperatura de Corpos Negros e o comprimento de onda do pico do espectro através da seguinte equação: </para> +<para>Em 1893, o físico alemão Wilhelm Wein quantificou a relação entre temperatura de Corpos Negros e o comprimento de onda do pico do espectro através da seguinte equação: </para> <para> <mediaobject> @@ -74,22 +43,17 @@ </mediaobject> </para> -<para ->onde T é a temperatura em Kelvin. A lei de Wein (conhecida também como lei do deslocamento de Wein) pode ser colocada em palavras como "O comprimento de onda da emissão máxima de um Corpo Negro é inversamente proporcional a sua temperatura". Isto faz sentido; menores comprimentos de onda (maior freqüência) luminosa corresponde a fótons mais energizados, o que você esperaria de um objeto mais quente. </para> +<para>onde T é a temperatura em Kelvin. A lei de Wein (conhecida também como lei do deslocamento de Wein) pode ser colocada em palavras como "O comprimento de onda da emissão máxima de um Corpo Negro é inversamente proporcional a sua temperatura". Isto faz sentido; menores comprimentos de onda (maior freqüência) luminosa corresponde a fótons mais energizados, o que você esperaria de um objeto mais quente. </para> -<para ->Por exemplo, o sol possui uma temperatura média de 5800 K, logo seu comprimento de onda de emissão máxima é fornecido por: <mediaobject -> <imageobject> +<para>Por exemplo, o sol possui uma temperatura média de 5800 K, logo seu comprimento de onda de emissão máxima é fornecido por: <mediaobject> <imageobject> <imagedata fileref="lambda_ex.png" format="PNG"/> </imageobject> </mediaobject> </para> -<para ->Este comprimento de onda cai na região verde do espectro de luz visível, mas o Sol continuamente irradia fótons ao mesmo tempo maiores e menores que lambda(max) e o olho humano percebe a cor do Sol como branco/amarelo. </para> +<para>Este comprimento de onda cai na região verde do espectro de luz visível, mas o Sol continuamente irradia fótons ao mesmo tempo maiores e menores que lambda(max) e o olho humano percebe a cor do Sol como branco/amarelo. </para> -<para ->Em 1879, o físico austríaco Stephan Josef Stefan mostrou que a luminosidade de um Corpo Negro (L) é proporcional a quarta potência de sua temperatura (T). </para> +<para>Em 1879, o físico austríaco Stephan Josef Stefan mostrou que a luminosidade de um Corpo Negro (L) é proporcional a quarta potência de sua temperatura (T). </para> <para> <mediaobject> @@ -99,11 +63,9 @@ </mediaobject> </para> -<para ->Onde A é área da superfície, alpha é uma constante de proporcionalidade, e T é a temperatura em Kelvin. Significa que, se nós dobrarmos a temperatura (1000 K para 2000 K por exemplo) então a energia total irradiada por um Corpo Negro aumenta por um fator de 2^4 ou 16. </para> +<para>Onde A é área da superfície, alpha é uma constante de proporcionalidade, e T é a temperatura em Kelvin. Significa que, se nós dobrarmos a temperatura (1000 K para 2000 K por exemplo) então a energia total irradiada por um Corpo Negro aumenta por um fator de 2^4 ou 16. </para> -<para ->Cinco anos depois, o físico austríaco Ludwig Boltzman derivou a mesma equação e agora é conhecida como a lei de Stephan-Boltzman. Se nós assumirmos uma estrela esférica com raio R, então a luminosidade de tal estrela é </para> +<para>Cinco anos depois, o físico austríaco Ludwig Boltzman derivou a mesma equação e agora é conhecida como a lei de Stephan-Boltzman. Se nós assumirmos uma estrela esférica com raio R, então a luminosidade de tal estrela é </para> <para> <mediaobject> @@ -113,9 +75,7 @@ </mediaobject> </para> -<para ->onde R é o raio da estrela em cm, e alpha é a constante de Stephan-Boltzman , que tem o valor de: <mediaobject -> <imageobject> +<para>onde R é o raio da estrela em cm, e alpha é a constante de Stephan-Boltzman , que tem o valor de: <mediaobject> <imageobject> <imagedata fileref="alpha.png" format="PNG"/> </imageobject> </mediaobject> |