summaryrefslogtreecommitdiffstats
path: root/tde-i18n-pt_BR/docs/tdeedu/kstars/darkmatter.docbook
diff options
context:
space:
mode:
Diffstat (limited to 'tde-i18n-pt_BR/docs/tdeedu/kstars/darkmatter.docbook')
-rw-r--r--tde-i18n-pt_BR/docs/tdeedu/kstars/darkmatter.docbook80
1 files changed, 14 insertions, 66 deletions
diff --git a/tde-i18n-pt_BR/docs/tdeedu/kstars/darkmatter.docbook b/tde-i18n-pt_BR/docs/tdeedu/kstars/darkmatter.docbook
index 1c52e6a3a0e..3dfa83067d5 100644
--- a/tde-i18n-pt_BR/docs/tdeedu/kstars/darkmatter.docbook
+++ b/tde-i18n-pt_BR/docs/tdeedu/kstars/darkmatter.docbook
@@ -1,86 +1,34 @@
<sect1 id="ai-darkmatter">
<sect1info>
-<author
-><firstname
->Jasem</firstname
-> <surname
->Mutlaq</surname
-> <affiliation
-><address>
-</address
-></affiliation>
+<author><firstname>Jasem</firstname> <surname>Mutlaq</surname> <affiliation><address>
+</address></affiliation>
</author>
</sect1info>
-<title
->Matéria Negra</title>
-<indexterm
-><primary
->Matéria Negra</primary>
+<title>Matéria Negra</title>
+<indexterm><primary>Matéria Negra</primary>
</indexterm>
-<para
->Os cientistas estão agora muito confortaveis com a ideia que 90% da massa do universo está em uma forma de materia que não pode ser vista. </para>
+<para>Os cientistas estão agora muito confortaveis com a ideia que 90% da massa do universo está em uma forma de materia que não pode ser vista. </para>
-<para
->A despeito de amplos mapas do universo próximo que cobrem o espectro de radio ate raios gama, temos conta de apenas 10% da massa que deve estar lá fora. Como Bruce H. Margon, um astrónomo da Universidade de Washington, disse ao New York Times em 2001: <citation
->é uma situação muito embaraçosa admitir que não podemos encontrar 90% do universo.</citation
-> </para>
+<para>A despeito de amplos mapas do universo próximo que cobrem o espectro de radio ate raios gama, temos conta de apenas 10% da massa que deve estar lá fora. Como Bruce H. Margon, um astrónomo da Universidade de Washington, disse ao New York Times em 2001: <citation>é uma situação muito embaraçosa admitir que não podemos encontrar 90% do universo.</citation> </para>
-<para
->O termo usado para essa <quote
->massa perdida</quote
-> é <firstterm
->Matéria Negra</firstterm
->, e estas duas palavras resumem muito bem tudo que sabemos sobre isto até agora. Sabemos que existe <quote
->Matéria</quote
->, porque podemos ver os efeitos de sua influencia gravitacional. De qualquer forma, a materia não emite qualquer radiação eletromagnética detectável, portanto é <quote
->Escura </quote
->. Existem várias teorias para justificar a massa perdida, passando por partículas subatômicas exóticas, uma população de buracos negros isolados, até menos exóticos duendes marrons e brancos. O termo <quote
->massa perdida </quote
-> pode ser enganador, pois a massa não está perdida, apenas é leve. Mas o que exatamente é materia negra e como sabemos realmente que existe se não podemos vê-la? </para>
+<para>O termo usado para essa <quote>massa perdida</quote> é <firstterm>Matéria Negra</firstterm>, e estas duas palavras resumem muito bem tudo que sabemos sobre isto até agora. Sabemos que existe <quote>Matéria</quote>, porque podemos ver os efeitos de sua influencia gravitacional. De qualquer forma, a materia não emite qualquer radiação eletromagnética detectável, portanto é <quote>Escura </quote>. Existem várias teorias para justificar a massa perdida, passando por partículas subatômicas exóticas, uma população de buracos negros isolados, até menos exóticos duendes marrons e brancos. O termo <quote>massa perdida </quote> pode ser enganador, pois a massa não está perdida, apenas é leve. Mas o que exatamente é materia negra e como sabemos realmente que existe se não podemos vê-la? </para>
-<para
->A estoria começou em 1933 quando o Astrónomo Fritz Zwicky estava estudando os movimentos de um enorme e distante ajuntamento de galáxias, especificamente o agrupamento Coma e o agrupamento Virgo. Zwicky estimou a massa de cada Galaxia no agrupamento baseado em sua luminosidade, e adicionou a massa de toda a Galaxia para ter uma massa total do agrupamento. Ele fez então uma segunda estimativa independente da massa do agrupamento, baseado o afastamento em velocidade das galáxias individuais no agrupamento. Para sua surpresa, esta segunda <firstterm
->massa dinâmica</firstterm
-> estimada era <emphasis
->400 vezes</emphasis
-> maior que a estimativa baseada na luz da Galaxia. </para>
+<para>A estoria começou em 1933 quando o Astrónomo Fritz Zwicky estava estudando os movimentos de um enorme e distante ajuntamento de galáxias, especificamente o agrupamento Coma e o agrupamento Virgo. Zwicky estimou a massa de cada Galaxia no agrupamento baseado em sua luminosidade, e adicionou a massa de toda a Galaxia para ter uma massa total do agrupamento. Ele fez então uma segunda estimativa independente da massa do agrupamento, baseado o afastamento em velocidade das galáxias individuais no agrupamento. Para sua surpresa, esta segunda <firstterm>massa dinâmica</firstterm> estimada era <emphasis>400 vezes</emphasis> maior que a estimativa baseada na luz da Galaxia. </para>
-<para
->Ainda que a evidencia fosse forte na época de Zwicky, apenas nos anos de 1970 os cientistas começaram a explorar esta discrepância abrangentemente. Foi nesta época que a existência da Materia Negra começou a ser considerada seriamente. A existência de tal materia não apenas resolveria o deficit de massa nos aglomerados de galáxias; traria também maiores consequências na evolução e destino do próprio universo. </para>
+<para>Ainda que a evidencia fosse forte na época de Zwicky, apenas nos anos de 1970 os cientistas começaram a explorar esta discrepância abrangentemente. Foi nesta época que a existência da Materia Negra começou a ser considerada seriamente. A existência de tal materia não apenas resolveria o deficit de massa nos aglomerados de galáxias; traria também maiores consequências na evolução e destino do próprio universo. </para>
-<para
->Outro fenómeno que sugeria a necessidade de materia negra é a curva rotacional das <firstterm
->Galáxias Espirais</firstterm
->. Galáxias Espirais contem uma grande população de estrelas que orbitam o centro galáctico em órbitas circulares próximas, muito semelhante a planetas orbitando uma estrela. Como órbitas planetarias, as estrelas com órbitas Galaticas grandes deveriam ter velocidades orbitais menores (isto é apenas uma aplicação da terceira lei de Kepler). Realmente, a terceira lei de Kepler apenas se aplica a estrelas perto do perímetro de uma Galaxia Espiral, porque assume que a massa contida em uma órbita é constante. </para>
+<para>Outro fenómeno que sugeria a necessidade de materia negra é a curva rotacional das <firstterm>Galáxias Espirais</firstterm>. Galáxias Espirais contem uma grande população de estrelas que orbitam o centro galáctico em órbitas circulares próximas, muito semelhante a planetas orbitando uma estrela. Como órbitas planetarias, as estrelas com órbitas Galaticas grandes deveriam ter velocidades orbitais menores (isto é apenas uma aplicação da terceira lei de Kepler). Realmente, a terceira lei de Kepler apenas se aplica a estrelas perto do perímetro de uma Galaxia Espiral, porque assume que a massa contida em uma órbita é constante. </para>
-<para
->Contudo, astrónomos fizeram observações das velocidades orbitais de estrelas nas partes externas de um grande numero de galáxias espirais e nenhuma delas seguia a terceira lei de Kepler conforme o esperado. Em vez de cair em raios largos, as velocidades orbitais permaneciam deveras constantes. A implicação é que a massa contida por órbitas de raios largos aumenta, mesmo para estrelas que aparentemente estão próximas da beirada da Galaxia. Enquanto elas estão próximas a beirada da parte luminosa da Galaxia, a Galaxia tem um perfil de massa que aparentemente continua bem alem das regiões ocupadas pelas estrelas. </para>
+<para>Contudo, astrónomos fizeram observações das velocidades orbitais de estrelas nas partes externas de um grande numero de galáxias espirais e nenhuma delas seguia a terceira lei de Kepler conforme o esperado. Em vez de cair em raios largos, as velocidades orbitais permaneciam deveras constantes. A implicação é que a massa contida por órbitas de raios largos aumenta, mesmo para estrelas que aparentemente estão próximas da beirada da Galaxia. Enquanto elas estão próximas a beirada da parte luminosa da Galaxia, a Galaxia tem um perfil de massa que aparentemente continua bem alem das regiões ocupadas pelas estrelas. </para>
-<para
->Aqui está outra forma de pensar sobre isso: Considere as estrelas próximas ao perímetro de uma Galaxia espiral, com velocidades orbitais típicas observadas de 200 Km por segundo. Se a Galaxia consistisse somente de materia que podemos ver, estas estrelas muito rapidamente voariam para fora da Galaxia, porque as suas velocidades orbitais Sao 4 vezes maiores que a velocidade de escape da Galaxia. Como as galáxias aparentemente não estão se partindo, deve haver massa na Galaxia que desconhecemos, quando adicionamos tudo que podemos ver. </para>
+<para>Aqui está outra forma de pensar sobre isso: Considere as estrelas próximas ao perímetro de uma Galaxia espiral, com velocidades orbitais típicas observadas de 200 Km por segundo. Se a Galaxia consistisse somente de materia que podemos ver, estas estrelas muito rapidamente voariam para fora da Galaxia, porque as suas velocidades orbitais Sao 4 vezes maiores que a velocidade de escape da Galaxia. Como as galáxias aparentemente não estão se partindo, deve haver massa na Galaxia que desconhecemos, quando adicionamos tudo que podemos ver. </para>
-<para
->Várias teorias apareceram na literatura para dar conta da massa perdida como <acronym
->WIMP</acronym
-> (Weakly Interacting Massive Particles), <acronym
->MACHO</acronym
->s (MAssive Compact Halo Objects), buracos negros primordiais, neutrinos pesados, e outras; cada uma com seus pros e contras. Nenhuma teoria isolada foi ainda aceita pela comunidade astronómica, porque não temos ate agora os meios para testar uma teoria contra outra conclusivamente. </para>
+<para>Várias teorias apareceram na literatura para dar conta da massa perdida como <acronym>WIMP</acronym> (Weakly Interacting Massive Particles), <acronym>MACHO</acronym>s (MAssive Compact Halo Objects), buracos negros primordiais, neutrinos pesados, e outras; cada uma com seus pros e contras. Nenhuma teoria isolada foi ainda aceita pela comunidade astronómica, porque não temos ate agora os meios para testar uma teoria contra outra conclusivamente. </para>
<tip>
-<para
->Você pode ver os agrupamentos de galáxias que o Professor Zwicky estudou para descobrir a matéria negra. Use a janela Encontrar Objeto do KStars <keycombo
-><keycap
->&Ctrl;</keycap
-><keycap
->f</keycap
-></keycombo
->) para centralizar em <quote
->M 87</quote
-> para encontrar o agrupamento Virgo, e em <quote
->NGC 4884</quote
-> para encontrar o agrupamento Coma. Você pode precisar aproximar para ver as galáxias. Note que o agrupamento Virgo parece ser muito maior no Céu. Na realidade, Coma é o agrupamento maior; ele parece menor apenas por estar bem mais longe. </para>
+<para>Você pode ver os agrupamentos de galáxias que o Professor Zwicky estudou para descobrir a matéria negra. Use a janela Encontrar Objeto do KStars <keycombo><keycap>&Ctrl;</keycap><keycap>f</keycap></keycombo>) para centralizar em <quote>M 87</quote> para encontrar o agrupamento Virgo, e em <quote>NGC 4884</quote> para encontrar o agrupamento Coma. Você pode precisar aproximar para ver as galáxias. Note que o agrupamento Virgo parece ser muito maior no Céu. Na realidade, Coma é o agrupamento maior; ele parece menor apenas por estar bem mais longe. </para>
</tip>
</sect1>