From f7e7a923aca8be643f9ae6f7252f9fb27b3d2c3b Mon Sep 17 00:00:00 2001 From: Timothy Pearson Date: Sat, 3 Dec 2011 11:05:10 -0600 Subject: Second part of prior commit --- tde-i18n-pt/docs/tdeedu/kstars/flux.docbook | 75 +++++++++++++++++++++++++++++ 1 file changed, 75 insertions(+) create mode 100644 tde-i18n-pt/docs/tdeedu/kstars/flux.docbook (limited to 'tde-i18n-pt/docs/tdeedu/kstars/flux.docbook') diff --git a/tde-i18n-pt/docs/tdeedu/kstars/flux.docbook b/tde-i18n-pt/docs/tdeedu/kstars/flux.docbook new file mode 100644 index 00000000000..3999b245842 --- /dev/null +++ b/tde-i18n-pt/docs/tdeedu/kstars/flux.docbook @@ -0,0 +1,75 @@ + + + + +Jasem Mutlaq
+
+
+
+ +Fluxo +Fluxo +Luminosidade + + +O fluxo é a quantidade de energia que passa por uma unidade de área em cada segundo. + +Os astrónomos usam o fluxo para denotar o brilho aparente de um corpo celeste. O brilho aparente é definido como a quantidade de luz recebida de uma estrela acima da atmosfera da terra e que passa por uma área unitária a cada segundo. Deste modo, o brilho aparente é apenas o fluxo que recebemos de uma estrela. + +O fluxo mede a taxa do fluxo de energia que passa através de cada cm^2 (ou qualquer área unitária) da superfície de um objecto em cada segundo. O fluxo detectado depende da distância da fonte que irradia a energia. Isto deve-se ao facto de a energia se espalhar num dado volume de espaço antes de nos atingir. Vamos assumir que temos um balão imaginário que enclausura uma estrela. Cada ponto do balão representa uma unidade de energia emitida a partir da estrela. Inicialmente, os pontos numa área de um cm^2 estão próximos uns dos outros e o fluxo (a energia emitida por centímetro quadrado por segundo) é alta. Ao fim de uma distância 'd', o volume e a área da superfície do balão aumentaram, fazendo com que os pontos se espalhem entre si. Por consequência, o número de pontos (ou energia) contido em cada cm^2 diminuiu, como se ilustra na Figura 1. + + + + + + +Figura 1 + + + +O fluxo é inversamente proporcional à distância por uma relação de r^2. Como tal, se a distância duplicar, iremos receber 1/2^2 ou 1/4 do fluxo original. Num ponto de vista fundamental, o fluxo é a luminosidade por área unitária: + + + + + +em que o (4 * PI * R^2) é a área da superfície de uma esfera (ou de um balão!) com um raio R. O fluxo é medido em Watts/m^2/s ou, como é denominado normalmente pelos astrónomos: Ergs/cm^2/s. Por exemplo, a luminosidade do Sol é de L = 3,90 * 10^26 W. Isto é, num segundo, o Sol irradia 3,90 * 10^26 Joules de energia para o espaço. Deste modo, o fluxo que recebemos e que passa por um centímetro quadrado do sol a uma distância de uma UA (1,496 * 10^13 cm) é: + + + + + + + + +
-- cgit v1.2.1