1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
|
// Copyright (C) 2003 Dominique Devriese <[email protected]>
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
// 02110-1301, USA.
#include "circle_imp.h"
#include "bogus_imp.h"
#include "point_imp.h"
#include "../misc/kigtransform.h"
#include "../misc/kigpainter.h"
#include "../misc/coordinate_system.h"
#include "../kig/kig_document.h"
#include "../kig/kig_view.h"
#include <tdelocale.h>
#include <math.h>
CircleImp::CircleImp( const Coordinate& center, double radius )
: mcenter( center ), mradius( radius )
{
}
CircleImp::~CircleImp()
{
}
ObjectImp* CircleImp::transform( const Transformation& t ) const
{
if ( t.isHomothetic() )
{
Coordinate nc = t.apply( mcenter );
double nr = t.apply( mradius );
if ( nc.valid() )
return new CircleImp( nc, nr );
else return new InvalidImp;
}
else
{
// domi: i should return a ConicImp here, but i don't know how to
// calculate it..
return Parent::transform( t );
};
}
void CircleImp::draw( KigPainter& p ) const
{
p.drawCircle( mcenter, mradius );
}
bool CircleImp::contains( const Coordinate& p, int width, const KigWidget& w ) const
{
return fabs((mcenter - p).length() - mradius) <= w.screenInfo().normalMiss( width );
}
bool CircleImp::inRect( const Rect& r, int width, const KigWidget& w ) const
{
// first we check if the rect contains at least one of the
// north/south/east/west points of the circle
if ( r.contains( mcenter + Coordinate( 0, -mradius ) ) ) return true;
if ( r.contains( mcenter + Coordinate( mradius, 0 ) ) ) return true;
if ( r.contains( mcenter + Coordinate( 0, mradius ) ) ) return true;
if ( r.contains( mcenter + Coordinate( -mradius, 0 ) ) ) return true;
// we allow a miss of some pixels ..
double miss = w.screenInfo().normalMiss( width );
double bigradius = mradius + miss;
bigradius *= bigradius;
double smallradius = mradius - miss;
smallradius *= smallradius;
const int in = -1;
const int undecided = 0;
const int out = 1;
int inorout = undecided;
Coordinate coords[4];
coords[0] = r.topLeft();
coords[1] = r.topRight();
coords[2] = r.bottomRight();
coords[3] = r.bottomLeft();
// we check if the corners of the rect are either
for ( Coordinate* i = coords; i < coords + 4; ++i )
{
double t = ( *i - mcenter ).squareLength();
if ( t >= bigradius )
{
if ( inorout == in ) return true;
inorout = out;
}
else if ( t <= smallradius )
{
if ( inorout == out ) return true;
inorout = in;
}
}
return inorout == undecided;
}
bool CircleImp::valid() const
{
return true;
}
const uint CircleImp::numberOfProperties() const
{
// We _intentionally_ do not use the Conic properties..
return CurveImp::numberOfProperties() + 7;
}
const QCStringList CircleImp::propertiesInternalNames() const
{
QCStringList l = CurveImp::propertiesInternalNames();
l << "surface";
l << "circumference";
l << "radius";
l << "center";
l << "cartesian-equation";
l << "simply-cartesian-equation";
l << "polar-equation";
assert( l.size() == CircleImp::numberOfProperties() );
return l;
}
const QCStringList CircleImp::properties() const
{
QCStringList l = CurveImp::properties();
l << I18N_NOOP( "Surface" );
l << I18N_NOOP( "Circumference" );
l << I18N_NOOP( "Radius" );
l << I18N_NOOP( "Center" );
l << I18N_NOOP( "Expanded Cartesian Equation" );
l << I18N_NOOP( "Cartesian Equation" );
l << I18N_NOOP( "Polar Equation" );
assert( l.size() == CircleImp::numberOfProperties() );
return l;
}
const ObjectImpType* CircleImp::impRequirementForProperty( uint which ) const
{
if ( which < CurveImp::numberOfProperties() )
return CurveImp::impRequirementForProperty( which );
else return CircleImp::stype();
}
const char* CircleImp::iconForProperty( uint which ) const
{
assert( which < CircleImp::numberOfProperties() );
if ( which < CurveImp::numberOfProperties() )
return CurveImp::iconForProperty( which );
else if ( which == CurveImp::numberOfProperties() )
return "areaCircle"; // surface
else if ( which == CurveImp::numberOfProperties() + 1 )
return "circumference"; // circumference
else if ( which == CurveImp::numberOfProperties() + 2 )
return ""; //radius
else if ( which == CurveImp::numberOfProperties() + 3 )
return "baseCircle"; // circle center
else if ( which == CurveImp::numberOfProperties() + 4 )
return "kig_text"; // cartesian equation
else if ( which == CurveImp::numberOfProperties() + 5 )
return "kig_text"; // simply cartesian equation
else if ( which == CurveImp::numberOfProperties() + 6 )
return "kig_text"; // polar equation
else assert( false );
return "";
}
ObjectImp* CircleImp::property( uint which, const KigDocument& w ) const
{
assert( which < CircleImp::numberOfProperties() );
if ( which < CurveImp::numberOfProperties() )
return CurveImp::property( which, w );
if ( which == CurveImp::numberOfProperties() )
return new DoubleImp( surface() );
else if ( which == CurveImp::numberOfProperties() + 1 )
return new DoubleImp( circumference() );
else if ( which == CurveImp::numberOfProperties() + 2 )
return new DoubleImp( radius() );
else if ( which == CurveImp::numberOfProperties() + 3 )
return new PointImp( center() );
else if ( which == CurveImp::numberOfProperties() + 4 )
return new StringImp( cartesianEquationString( w ) );
else if ( which == CurveImp::numberOfProperties() + 5 )
return new StringImp( simplyCartesianEquationString( w ) );
else if ( which == CurveImp::numberOfProperties() + 6 )
return new StringImp( polarEquationString( w ) );
else assert( false );
return new InvalidImp;
}
const Coordinate CircleImp::center() const
{
return mcenter;
}
double CircleImp::radius() const
{
return mradius;
}
double CircleImp::surface() const
{
return M_PI * squareRadius();
}
double CircleImp::squareRadius() const
{
return mradius * mradius;
}
double CircleImp::circumference() const
{
return 2 * M_PI * radius();
}
TQString CircleImp::polarEquationString( const KigDocument& w ) const
{
TQString ret = i18n( "rho = %1 [centered at %2]" );
ConicPolarData data = polarData();
ret = ret.arg( data.pdimen, 0, 'g', 3 );
ret = ret.arg( w.coordinateSystem().fromScreen( data.focus1, w ) );
return ret;
}
TQString CircleImp::cartesianEquationString( const KigDocument& ) const
{
TQString ret = i18n( "x² + y² + %1 x + %2 y + %3 = 0" );
ConicCartesianData data = cartesianData();
ret = ret.arg( data.coeffs[3], 0, 'g', 3 );
ret = ret.arg( data.coeffs[4], 0, 'g', 3 );
ret = ret.arg( data.coeffs[5], 0, 'g', 3 );
return ret;
}
TQString CircleImp::simplyCartesianEquationString( const KigDocument& ) const
{
TQString ret = i18n( "( x - %1 )² + ( y - %2 )² = %3" );
ret = ret.arg( mcenter.x, 0, 'g', 3 );
ret = ret.arg( mcenter.y, 0, 'g', 3 );
ret = ret.arg( mradius * mradius, 0, 'g', 3 );
return ret;
}
Coordinate CircleImp::focus1() const
{
return center();
}
Coordinate CircleImp::focus2() const
{
return center();
}
int CircleImp::conicType() const
{
return 1;
}
const ConicCartesianData CircleImp::cartesianData() const
{
Coordinate c = center();
double sqr = squareRadius();
ConicCartesianData data(
1.0, 1.0, 0.0, -2*c.x, -2*c.y,
c.x*c.x + c.y*c.y - sqr );
return data;
}
const ConicPolarData CircleImp::polarData() const
{
return ConicPolarData( center(), radius(), 0, 0 );
}
CircleImp* CircleImp::copy() const
{
return new CircleImp( mcenter, mradius );
}
double CircleImp::getParam( const Coordinate& point, const KigDocument& ) const
{
Coordinate tmp = point - mcenter;
double ret = atan2(tmp.y, tmp.x) / ( 2 * M_PI );
if ( ret > 0 ) return ret;
else return ret + 1;
}
const Coordinate CircleImp::getPoint( double p, const KigDocument& ) const
{
return mcenter + Coordinate (cos(p * 2 * M_PI), sin(p * 2 * M_PI)) * mradius;
}
void CircleImp::visit( ObjectImpVisitor* vtor ) const
{
vtor->visit( this );
}
bool CircleImp::equals( const ObjectImp& rhs ) const
{
return rhs.inherits( CircleImp::stype() ) &&
static_cast<const CircleImp&>( rhs ).center() == center() &&
static_cast<const CircleImp&>( rhs ).radius() == radius();
}
const ObjectImpType* CircleImp::stype()
{
static const ObjectImpType t(
Parent::stype(), "circle",
I18N_NOOP( "circle" ),
I18N_NOOP( "Select this circle" ),
I18N_NOOP( "Select circle %1" ),
I18N_NOOP( "Remove a Circle" ),
I18N_NOOP( "Add a Circle" ),
I18N_NOOP( "Move a Circle" ),
I18N_NOOP( "Attach to this circle" ),
I18N_NOOP( "Show a Circle" ),
I18N_NOOP( "Hide a Circle" )
);
return &t;
}
const ObjectImpType* CircleImp::type() const
{
return CircleImp::stype();
}
bool CircleImp::isPropertyDefinedOnOrThroughThisImp( uint which ) const
{
assert( which < CircleImp::numberOfProperties() );
if ( which < CurveImp::numberOfProperties() )
return CurveImp::isPropertyDefinedOnOrThroughThisImp( which );
return false;
}
Rect CircleImp::surroundingRect() const
{
Coordinate d( mradius, mradius );
return Rect( mcenter - d, mcenter + d );
}
|