1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
|
/*
**************************************************************************
description
--------------------
copyright : (C) 2002 by Andreas Zehender
email : [email protected]
**************************************************************************
**************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
**************************************************************************/
#include "pmpolynomexponents.h"
#include "pmdebug.h"
bool PMPolynomExponents::m_created[6] = { false, false, false,
false, false, false };
QValueList<PMPolynomExponents> PMPolynomExponents::m_lists[6];
PMPolynomExponents operator+ ( const PMPolynomExponents& p1,
const PMPolynomExponents& p2 )
{
return PMPolynomExponents( p1.m_exponents[0] + p2.m_exponents[0],
p1.m_exponents[1] + p2.m_exponents[1],
p1.m_exponents[2] + p2.m_exponents[2] );
}
QValueList<PMPolynomExponents>& PMPolynomExponents::polynom( int n )
{
if( ( n < 2 ) || ( n > 7 ) )
{
n = 2;
kdError( PMArea ) << "Wrong polynom order in PMPolynomExponents::polynom( )\n";
}
if( !m_created[n-2] )
{
m_lists[n-2] = recPolynom( PMPolynomExponents( 0, 0, 0 ), 0, n, 0 );
m_created[n-2] = true;
// kdDebug( PMArea ) << "Polynom n: " << n << " size: " << m_lists[n-2].count( ) << endl;
}
return m_lists[n-2];
}
QValueList<PMPolynomExponents>
PMPolynomExponents::recPolynom( const PMPolynomExponents& base,
int xyz, int n, int rem )
{
QValueList<PMPolynomExponents> res;
if( n >= 0 )
{
if( ( ( rem + n ) == 0 ) || ( xyz > 2 ) )
res.append( base );
else
{
PMPolynomExponents newBase = base;
newBase.setExponent( xyz, n );
res += recPolynom( newBase, xyz + 1, rem, 0 );
res += recPolynom( base, xyz, n - 1, rem + 1 );
}
}
return res;
}
|