/* * This file is part of the DOM implementation for KDE. * * Copyright (C) 2006 Allan Sandfeld Jensen (kde@carewolf.com) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #ifndef _MultiMap_h_ #define _MultiMap_h_ #include <tqptrdict.h> #include <tqptrlist.h> #include <assert.h> #include <stdlib.h> template<class T> class MultiMapPtrList; // KMultiMap is an implementaition of a Map with multiple entries per key. // It is originally designed to work like a shell for TQPtrDict<TQPtrList>, but // TQPtrList have been replaced with a much faster hash set. template<class T> class KMultiMap { public: KMultiMap() : dict(257) { dict.setAutoDelete(true); } ~KMultiMap() {}; typedef MultiMapPtrList<T> List; void append(void* key, T* element) { List *list = dict.find(key); if (!list){ list = new List(8); dict.insert(key, list); } list->append(element); } void remove(void* key, T* element) { List *list = dict.find(key); if (list) { list->remove(element); if (list->isEmpty()) dict.remove(key); } } void remove(void* key) { dict.remove(key); } List* find(void* key) { return dict.find(key); } private: TQPtrDict<List> dict; }; static inline unsigned int stupidHash(void* ptr) { unsigned long val = (unsigned long)ptr; // remove alignment and multiply by a prime unlikely to be a factor of size val = (val >> 4) * 1237; return val; } #define START_PTRLIST_SIZE 4 #define MAX_PTRLIST_SIZE 27 class PtrListEntry { public: PtrListEntry(unsigned int log_size) : count(0), log_size(log_size), search(log_size), next(0) { // entry = new T* [size]; assert(log_size < MAX_PTRLIST_SIZE); entry = (void**)calloc ((1<<log_size), sizeof(void*)); } ~PtrListEntry() { // delete[] entry; free(entry); } bool insert(void* e) { unsigned int t_size = size(); if (count == t_size) return false; unsigned int hash = stupidHash(e); void** firstFree = 0; // Only let elements be placed 'search' spots from their hash for(unsigned int j=0; j<search; j++) { unsigned int i = (hash + j) & (t_size-1); // modulo size // We need check to all hashes in 'search' to garuantee uniqueness if (entry[i] == 0) { if (!firstFree) firstFree = entry + i; } else if (entry[i] == e) return true; } if (firstFree) { *firstFree = e; count++; return true; } // We had more than 'search' collisions if (count < (t_size/3)*2) { // only 2/3 full => increase search unsigned int s = search *2; if (s >= t_size) s = t_size; search = s; return insert(e); } return false; } // Insert another smaller set into this one // Is only garuantied to succede when this PtrList is new void insert(PtrListEntry* listEntry) { assert(size() >= listEntry->count * 2); unsigned int old_size = 1U << listEntry->log_size; for(unsigned int i = 0; i < old_size; i++) { bool s = true; void *e = listEntry->entry[i]; if (e) s = insert(e); assert(s); } } bool remove(void* e) { if (count == 0) return false; unsigned int size = (1U<<log_size); unsigned int hash = stupidHash(e); // Elements are at most placed 'search' spots from their hash for(unsigned int j=0; j<search; j++) { unsigned int i = (hash + j) & (size-1); // modulo size if (entry[i] == e) { entry[i] = 0; count--; return true; } } return false; } bool contains(void* e) { if (count == 0) return false; unsigned int t_size = size(); unsigned int hash = stupidHash(e); // Elements are at most placed 'search' spots from their hash for(unsigned int j=0; j<search; j++) { unsigned int i = (hash + j) & (t_size-1); // modulo size if (entry[i] == e) return true; } return false; } void* at(unsigned int i) const { assert (i < (1U<<log_size)); return entry[i]; } bool isEmpty() const { return count == 0; } bool isFull() const { return count == size(); } unsigned int size() const { return (1U << log_size); } unsigned int count; const unsigned short log_size; unsigned short search; PtrListEntry *next; void** entry; }; // An unsorted and unique PtrList that is implement as a linked list of hash-sets // Optimized for fast insert and fast lookup template<class T> class MultiMapPtrList { public: MultiMapPtrList(unsigned int init_size= 16) : m_first(0), m_current(0), m_pos(0) { assert(init_size > 0); unsigned int s = init_size - 1; unsigned int log_size = 0; while (s > 0) { log_size++; s = s >> 1; } m_first = new PtrListEntry(log_size); } MultiMapPtrList(const MultiMapPtrList& ptrList) : m_first(0), m_current(0), m_pos(0) { unsigned int t_count = ptrList.count(); unsigned int log_size = 0; while (t_count > 0) { log_size++; t_count = t_count >> 1; } // At least as large as the largest ptrListEntry in the original if (t_count < ptrList.m_first->log_size) log_size = ptrList.m_first->log_size; m_first = new PtrListEntry(log_size); PtrListEntry *t_current = ptrList.m_first; while (t_current) { unsigned int t_size = t_current->size(); for(unsigned int i=0; i < t_size; i++) { void* e = t_current->at(i); if (e != 0) { bool t = m_first->insert(e); if (!t) { // Make a new, but keep the size PtrListEntry *t_new = new PtrListEntry(log_size); t_new->insert(e); t_new->next = m_first; m_first = t_new; } } } t_current = t_current->next; } } ~MultiMapPtrList() { PtrListEntry *t_next, *t_current = m_first; while (t_current) { t_next = t_current->next; delete t_current; t_current = t_next; } } void append(T* e) { PtrListEntry *t_last = 0, *t_current = m_first; int count = 0; while (t_current) { if (t_current->insert(e)) return; t_last = t_current; t_current = t_current->next; count++; } // Create new hash-set unsigned int newsize = m_first->log_size+1; if (newsize > MAX_PTRLIST_SIZE) newsize = MAX_PTRLIST_SIZE; t_current = new PtrListEntry(newsize); bool t = t_current->insert(e); assert(t); // Prepend it to the list, for insert effeciency t_current->next = m_first; m_first = t_current; // ### rehash some of the smaller sets /* if (count > 4) { // rehash the last in the new t_current->insert(t_last); }*/ } void remove(T* e) { PtrListEntry *t_next, *t_last = 0, *t_current = m_first; // Remove has to check every PtrEntry. while (t_current) { t_next = t_current->next; if (t_current->remove(e) && t_current->isEmpty()) { if (t_last) { t_last->next = t_current->next; } else { assert (m_first == t_current); m_first = t_current->next; } delete t_current; } else { t_last = t_current; } t_current = t_next; } } bool contains(T* e) { PtrListEntry *t_current = m_first; while (t_current) { if (t_current->contains(e)) return true; t_current = t_current->next; } return false; } bool isEmpty() { if (!m_first) return true; PtrListEntry *t_current = m_first; while (t_current) { if (!t_current->isEmpty()) return false; t_current = t_current->next; } return true; } unsigned int count() const { unsigned int t_count = 0; PtrListEntry *t_current = m_first; while (t_current) { t_count += t_current->count; t_current = t_current->next; } return t_count; } // Iterator functions: T* first() { m_current = m_first; m_pos = 0; // skip holes if (m_current && !m_current->at(m_pos)) return next(); else return current(); } T* current() { if (!m_current) return (T*)0; else return (T*)m_current->at(m_pos); } T* next() { if (!m_current) return (T*)0; m_pos++; if (m_pos >= m_current->size()) { m_current = m_current->next; m_pos = 0; } // skip holes if (m_current && !m_current->at(m_pos)) return next(); else return current(); } private: PtrListEntry *m_first; // iteration: PtrListEntry *m_current; unsigned int m_pos; }; #undef START_PTRLIST_SIZE #undef MAX_PTRLIST_SIZE #endif