summaryrefslogtreecommitdiffstats
path: root/kopete/plugins/statistics/sqlite/vdbe.c
diff options
context:
space:
mode:
Diffstat (limited to 'kopete/plugins/statistics/sqlite/vdbe.c')
-rw-r--r--kopete/plugins/statistics/sqlite/vdbe.c4450
1 files changed, 4450 insertions, 0 deletions
diff --git a/kopete/plugins/statistics/sqlite/vdbe.c b/kopete/plugins/statistics/sqlite/vdbe.c
new file mode 100644
index 00000000..58f8c731
--- /dev/null
+++ b/kopete/plugins/statistics/sqlite/vdbe.c
@@ -0,0 +1,4450 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** The code in this file implements execution method of the
+** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
+** handles housekeeping details such as creating and deleting
+** VDBE instances. This file is solely interested in executing
+** the VDBE program.
+**
+** In the external interface, an "sqlite3_stmt*" is an opaque pointer
+** to a VDBE.
+**
+** The SQL parser generates a program which is then executed by
+** the VDBE to do the work of the SQL statement. VDBE programs are
+** similar in form to assembly language. The program consists of
+** a linear sequence of operations. Each operation has an opcode
+** and 3 operands. Operands P1 and P2 are integers. Operand P3
+** is a null-terminated string. The P2 operand must be non-negative.
+** Opcodes will typically ignore one or more operands. Many opcodes
+** ignore all three operands.
+**
+** Computation results are stored on a stack. Each entry on the
+** stack is either an integer, a null-terminated string, a floating point
+** number, or the SQL "NULL" value. An inplicit conversion from one
+** type to the other occurs as necessary.
+**
+** Most of the code in this file is taken up by the sqlite3VdbeExec()
+** function which does the work of interpreting a VDBE program.
+** But other routines are also provided to help in building up
+** a program instruction by instruction.
+**
+** Various scripts scan this source file in order to generate HTML
+** documentation, headers files, or other derived files. The formatting
+** of the code in this file is, therefore, important. See other comments
+** in this file for details. If in doubt, do not deviate from existing
+** commenting and indentation practices when changing or adding code.
+**
+** $Id$
+*/
+#include "sqliteInt.h"
+#include "os.h"
+#include <ctype.h>
+#include "vdbeInt.h"
+
+/*
+** The following global variable is incremented every time a cursor
+** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test
+** procedures use this information to make sure that indices are
+** working correctly. This variable has no function other than to
+** help verify the correct operation of the library.
+*/
+int sqlite3_search_count = 0;
+
+/*
+** When this global variable is positive, it gets decremented once before
+** each instruction in the VDBE. When reaches zero, the SQLITE_Interrupt
+** of the db.flags field is set in order to simulate and interrupt.
+**
+** This facility is used for testing purposes only. It does not function
+** in an ordinary build.
+*/
+int sqlite3_interrupt_count = 0;
+
+/*
+** Release the memory associated with the given stack level. This
+** leaves the Mem.flags field in an inconsistent state.
+*/
+#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
+
+/*
+** Convert the given stack entity into a string if it isn't one
+** already. Return non-zero if a malloc() fails.
+*/
+#define Stringify(P, enc) \
+ if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
+ { goto no_mem; }
+
+/*
+** Convert the given stack entity into a string that has been obtained
+** from sqliteMalloc(). This is different from Stringify() above in that
+** Stringify() will use the NBFS bytes of static string space if the string
+** will fit but this routine always mallocs for space.
+** Return non-zero if we run out of memory.
+*/
+#define Dynamicify(P,enc) sqlite3VdbeMemDynamicify(P)
+
+
+/*
+** An ephemeral string value (signified by the MEM_Ephem flag) contains
+** a pointer to a dynamically allocated string where some other entity
+** is responsible for deallocating that string. Because the stack entry
+** does not control the string, it might be deleted without the stack
+** entry knowing it.
+**
+** This routine converts an ephemeral string into a dynamically allocated
+** string that the stack entry itself controls. In other words, it
+** converts an MEM_Ephem string into an MEM_Dyn string.
+*/
+#define Deephemeralize(P) \
+ if( ((P)->flags&MEM_Ephem)!=0 \
+ && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
+
+/*
+** Convert the given stack entity into a integer if it isn't one
+** already.
+**
+** Any prior string or real representation is invalidated.
+** NULLs are converted into 0.
+*/
+#define Integerify(P) sqlite3VdbeMemIntegerify(P)
+
+/*
+** Convert P so that it has type MEM_Real.
+**
+** Any prior string or integer representation is invalidated.
+** NULLs are converted into 0.0.
+*/
+#define Realify(P) sqlite3VdbeMemRealify(P)
+
+/*
+** Argument pMem points at a memory cell that will be passed to a
+** user-defined function or returned to the user as the result of a query.
+** The second argument, 'db_enc' is the text encoding used by the vdbe for
+** stack variables. This routine sets the pMem->enc and pMem->type
+** variables used by the sqlite3_value_*() routines.
+*/
+#define storeTypeInfo(A,B) _storeTypeInfo(A)
+static void _storeTypeInfo(Mem *pMem){
+ int flags = pMem->flags;
+ if( flags & MEM_Null ){
+ pMem->type = SQLITE_NULL;
+ }
+ else if( flags & MEM_Int ){
+ pMem->type = SQLITE_INTEGER;
+ }
+ else if( flags & MEM_Real ){
+ pMem->type = SQLITE_FLOAT;
+ }
+ else if( flags & MEM_Str ){
+ pMem->type = SQLITE_TEXT;
+ }else{
+ pMem->type = SQLITE_BLOB;
+ }
+}
+
+/*
+** Insert a new aggregate element and make it the element that
+** has focus.
+**
+** Return 0 on success and 1 if memory is exhausted.
+*/
+static int AggInsert(Agg *p, char *zKey, int nKey){
+ AggElem *pElem;
+ int i;
+ int rc;
+ pElem = sqliteMalloc( sizeof(AggElem) + nKey +
+ (p->nMem-1)*sizeof(pElem->aMem[0]) );
+ if( pElem==0 ) return SQLITE_NOMEM;
+ pElem->zKey = (char*)&pElem->aMem[p->nMem];
+ memcpy(pElem->zKey, zKey, nKey);
+ pElem->nKey = nKey;
+
+ if( p->pCsr ){
+ rc = sqlite3BtreeInsert(p->pCsr, zKey, nKey, &pElem, sizeof(AggElem*));
+ if( rc!=SQLITE_OK ){
+ sqliteFree(pElem);
+ return rc;
+ }
+ }
+
+ for(i=0; i<p->nMem; i++){
+ pElem->aMem[i].flags = MEM_Null;
+ }
+ p->pCurrent = pElem;
+ return 0;
+}
+
+/*
+** Pop the stack N times.
+*/
+static void popStack(Mem **ppTos, int N){
+ Mem *pTos = *ppTos;
+ while( N>0 ){
+ N--;
+ Release(pTos);
+ pTos--;
+ }
+ *ppTos = pTos;
+}
+
+/*
+** The parameters are pointers to the head of two sorted lists
+** of Sorter structures. Merge these two lists together and return
+** a single sorted list. This routine forms the core of the merge-sort
+** algorithm.
+**
+** In the case of a tie, left sorts in front of right.
+*/
+static Sorter *Merge(Sorter *pLeft, Sorter *pRight, KeyInfo *pKeyInfo){
+ Sorter sHead;
+ Sorter *pTail;
+ pTail = &sHead;
+ pTail->pNext = 0;
+ while( pLeft && pRight ){
+ int c = sqlite3VdbeRecordCompare(pKeyInfo, pLeft->nKey, pLeft->zKey,
+ pRight->nKey, pRight->zKey);
+ if( c<=0 ){
+ pTail->pNext = pLeft;
+ pLeft = pLeft->pNext;
+ }else{
+ pTail->pNext = pRight;
+ pRight = pRight->pNext;
+ }
+ pTail = pTail->pNext;
+ }
+ if( pLeft ){
+ pTail->pNext = pLeft;
+ }else if( pRight ){
+ pTail->pNext = pRight;
+ }
+ return sHead.pNext;
+}
+
+/*
+** Allocate cursor number iCur. Return a pointer to it. Return NULL
+** if we run out of memory.
+*/
+static Cursor *allocateCursor(Vdbe *p, int iCur){
+ Cursor *pCx;
+ assert( iCur<p->nCursor );
+ if( p->apCsr[iCur] ){
+ sqlite3VdbeFreeCursor(p->apCsr[iCur]);
+ }
+ p->apCsr[iCur] = pCx = sqliteMalloc( sizeof(Cursor) );
+ return pCx;
+}
+
+/*
+** Apply any conversion required by the supplied column affinity to
+** memory cell pRec. affinity may be one of:
+**
+** SQLITE_AFF_NUMERIC
+** SQLITE_AFF_TEXT
+** SQLITE_AFF_NONE
+** SQLITE_AFF_INTEGER
+**
+*/
+static void applyAffinity(Mem *pRec, char affinity, u8 enc){
+ if( affinity==SQLITE_AFF_NONE ){
+ /* do nothing */
+ }else if( affinity==SQLITE_AFF_TEXT ){
+ /* Only attempt the conversion to TEXT if there is an integer or real
+ ** representation (blob and NULL do not get converted) but no string
+ ** representation.
+ */
+ if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
+ sqlite3VdbeMemStringify(pRec, enc);
+ }
+ pRec->flags &= ~(MEM_Real|MEM_Int);
+ }else{
+ if( 0==(pRec->flags&(MEM_Real|MEM_Int)) ){
+ /* pRec does not have a valid integer or real representation.
+ ** Attempt a conversion if pRec has a string representation and
+ ** it looks like a number.
+ */
+ int realnum;
+ sqlite3VdbeMemNulTerminate(pRec);
+ if( pRec->flags&MEM_Str && sqlite3IsNumber(pRec->z, &realnum, enc) ){
+ if( realnum ){
+ Realify(pRec);
+ }else{
+ Integerify(pRec);
+ }
+ }
+ }
+
+ if( affinity==SQLITE_AFF_INTEGER ){
+ /* For INTEGER affinity, try to convert a real value to an int */
+ if( (pRec->flags&MEM_Real) && !(pRec->flags&MEM_Int) ){
+ pRec->i = pRec->r;
+ if( ((double)pRec->i)==pRec->r ){
+ pRec->flags |= MEM_Int;
+ }
+ }
+ }
+ }
+}
+
+#ifndef NDEBUG
+/*
+** Write a nice string representation of the contents of cell pMem
+** into buffer zBuf, length nBuf.
+*/
+void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf, int nBuf){
+ char *zCsr = zBuf;
+ int f = pMem->flags;
+
+ static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
+
+ if( f&MEM_Blob ){
+ int i;
+ char c;
+ if( f & MEM_Dyn ){
+ c = 'z';
+ assert( (f & (MEM_Static|MEM_Ephem))==0 );
+ }else if( f & MEM_Static ){
+ c = 't';
+ assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
+ }else if( f & MEM_Ephem ){
+ c = 'e';
+ assert( (f & (MEM_Static|MEM_Dyn))==0 );
+ }else{
+ c = 's';
+ }
+
+ zCsr += sprintf(zCsr, "%c", c);
+ zCsr += sprintf(zCsr, "%d[", pMem->n);
+ for(i=0; i<16 && i<pMem->n; i++){
+ zCsr += sprintf(zCsr, "%02X ", ((int)pMem->z[i] & 0xFF));
+ }
+ for(i=0; i<16 && i<pMem->n; i++){
+ char z = pMem->z[i];
+ if( z<32 || z>126 ) *zCsr++ = '.';
+ else *zCsr++ = z;
+ }
+
+ zCsr += sprintf(zCsr, "]");
+ *zCsr = '\0';
+ }else if( f & MEM_Str ){
+ int j, k;
+ zBuf[0] = ' ';
+ if( f & MEM_Dyn ){
+ zBuf[1] = 'z';
+ assert( (f & (MEM_Static|MEM_Ephem))==0 );
+ }else if( f & MEM_Static ){
+ zBuf[1] = 't';
+ assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
+ }else if( f & MEM_Ephem ){
+ zBuf[1] = 'e';
+ assert( (f & (MEM_Static|MEM_Dyn))==0 );
+ }else{
+ zBuf[1] = 's';
+ }
+ k = 2;
+ k += sprintf(&zBuf[k], "%d", pMem->n);
+ zBuf[k++] = '[';
+ for(j=0; j<15 && j<pMem->n; j++){
+ u8 c = pMem->z[j];
+ if( c>=0x20 && c<0x7f ){
+ zBuf[k++] = c;
+ }else{
+ zBuf[k++] = '.';
+ }
+ }
+ zBuf[k++] = ']';
+ k += sprintf(&zBuf[k], encnames[pMem->enc]);
+ zBuf[k++] = 0;
+ }
+}
+#endif
+
+
+#ifdef VDBE_PROFILE
+/*
+** The following routine only works on pentium-class processors.
+** It uses the RDTSC opcode to read cycle count value out of the
+** processor and returns that value. This can be used for high-res
+** profiling.
+*/
+__inline__ unsigned long long int hwtime(void){
+ unsigned long long int x;
+ __asm__("rdtsc\n\t"
+ "mov %%edx, %%ecx\n\t"
+ :"=A" (x));
+ return x;
+}
+#endif
+
+/*
+** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
+** sqlite3_interrupt() routine has been called. If it has been, then
+** processing of the VDBE program is interrupted.
+**
+** This macro added to every instruction that does a jump in order to
+** implement a loop. This test used to be on every single instruction,
+** but that meant we more testing that we needed. By only testing the
+** flag on jump instructions, we get a (small) speed improvement.
+*/
+#define CHECK_FOR_INTERRUPT \
+ if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt;
+
+
+/*
+** Execute as much of a VDBE program as we can then return.
+**
+** sqlite3VdbeMakeReady() must be called before this routine in order to
+** close the program with a final OP_Halt and to set up the callbacks
+** and the error message pointer.
+**
+** Whenever a row or result data is available, this routine will either
+** invoke the result callback (if there is one) or return with
+** SQLITE_ROW.
+**
+** If an attempt is made to open a locked database, then this routine
+** will either invoke the busy callback (if there is one) or it will
+** return SQLITE_BUSY.
+**
+** If an error occurs, an error message is written to memory obtained
+** from sqliteMalloc() and p->zErrMsg is made to point to that memory.
+** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
+**
+** If the callback ever returns non-zero, then the program exits
+** immediately. There will be no error message but the p->rc field is
+** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
+**
+** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
+** routine to return SQLITE_ERROR.
+**
+** Other fatal errors return SQLITE_ERROR.
+**
+** After this routine has finished, sqlite3VdbeFinalize() should be
+** used to clean up the mess that was left behind.
+*/
+int sqlite3VdbeExec(
+ Vdbe *p /* The VDBE */
+){
+ int pc; /* The program counter */
+ Op *pOp; /* Current operation */
+ int rc = SQLITE_OK; /* Value to return */
+ sqlite3 *db = p->db; /* The database */
+ Mem *pTos; /* Top entry in the operand stack */
+ char zBuf[100]; /* Space to sprintf() an integer */
+#ifdef VDBE_PROFILE
+ unsigned long long start; /* CPU clock count at start of opcode */
+ int origPc; /* Program counter at start of opcode */
+#endif
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ int nProgressOps = 0; /* Opcodes executed since progress callback. */
+#endif
+
+ if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
+ assert( db->magic==SQLITE_MAGIC_BUSY );
+ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
+ p->rc = SQLITE_OK;
+ assert( p->explain==0 );
+ pTos = p->pTos;
+ if( sqlite3_malloc_failed ) goto no_mem;
+ if( p->popStack ){
+ popStack(&pTos, p->popStack);
+ p->popStack = 0;
+ }
+ p->resOnStack = 0;
+ CHECK_FOR_INTERRUPT;
+ for(pc=p->pc; rc==SQLITE_OK; pc++){
+ assert( pc>=0 && pc<p->nOp );
+ assert( pTos<=&p->aStack[pc] );
+#ifdef VDBE_PROFILE
+ origPc = pc;
+ start = hwtime();
+#endif
+ pOp = &p->aOp[pc];
+
+ /* Only allow tracing if NDEBUG is not defined.
+ */
+#ifndef NDEBUG
+ if( p->trace ){
+ if( pc==0 ){
+ printf("VDBE Execution Trace:\n");
+ sqlite3VdbePrintSql(p);
+ }
+ sqlite3VdbePrintOp(p->trace, pc, pOp);
+ }
+#endif
+#ifdef SQLITE_TEST
+ if( p->trace==0 && pc==0 && sqlite3OsFileExists("vdbe_sqltrace") ){
+ sqlite3VdbePrintSql(p);
+ }
+#endif
+
+
+ /* Check to see if we need to simulate an interrupt. This only happens
+ ** if we have a special test build.
+ */
+#ifdef SQLITE_TEST
+ if( sqlite3_interrupt_count>0 ){
+ sqlite3_interrupt_count--;
+ if( sqlite3_interrupt_count==0 ){
+ sqlite3_interrupt(db);
+ }
+ }
+#endif
+
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ /* Call the progress callback if it is configured and the required number
+ ** of VDBE ops have been executed (either since this invocation of
+ ** sqlite3VdbeExec() or since last time the progress callback was called).
+ ** If the progress callback returns non-zero, exit the virtual machine with
+ ** a return code SQLITE_ABORT.
+ */
+ if( db->xProgress ){
+ if( db->nProgressOps==nProgressOps ){
+ if( db->xProgress(db->pProgressArg)!=0 ){
+ rc = SQLITE_ABORT;
+ continue; /* skip to the next iteration of the for loop */
+ }
+ nProgressOps = 0;
+ }
+ nProgressOps++;
+ }
+#endif
+
+ switch( pOp->opcode ){
+
+/*****************************************************************************
+** What follows is a massive switch statement where each case implements a
+** separate instruction in the virtual machine. If we follow the usual
+** indentation conventions, each case should be indented by 6 spaces. But
+** that is a lot of wasted space on the left margin. So the code within
+** the switch statement will break with convention and be flush-left. Another
+** big comment (similar to this one) will mark the point in the code where
+** we transition back to normal indentation.
+**
+** The formatting of each case is important. The makefile for SQLite
+** generates two C files "opcodes.h" and "opcodes.c" by scanning this
+** file looking for lines that begin with "case OP_". The opcodes.h files
+** will be filled with #defines that give unique integer values to each
+** opcode and the opcodes.c file is filled with an array of strings where
+** each string is the symbolic name for the corresponding opcode. If the
+** case statement is followed by a comment of the form "/# same as ... #/"
+** that comment is used to determine the particular value of the opcode.
+**
+** Documentation about VDBE opcodes is generated by scanning this file
+** for lines of that contain "Opcode:". That line and all subsequent
+** comment lines are used in the generation of the opcode.html documentation
+** file.
+**
+** SUMMARY:
+**
+** Formatting is important to scripts that scan this file.
+** Do not deviate from the formatting style currently in use.
+**
+*****************************************************************************/
+
+/* Opcode: Goto * P2 *
+**
+** An unconditional jump to address P2.
+** The next instruction executed will be
+** the one at index P2 from the beginning of
+** the program.
+*/
+case OP_Goto: {
+ CHECK_FOR_INTERRUPT;
+ pc = pOp->p2 - 1;
+ break;
+}
+
+/* Opcode: Gosub * P2 *
+**
+** Push the current address plus 1 onto the return address stack
+** and then jump to address P2.
+**
+** The return address stack is of limited depth. If too many
+** OP_Gosub operations occur without intervening OP_Returns, then
+** the return address stack will fill up and processing will abort
+** with a fatal error.
+*/
+case OP_Gosub: {
+ assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
+ p->returnStack[p->returnDepth++] = pc+1;
+ pc = pOp->p2 - 1;
+ break;
+}
+
+/* Opcode: Return * * *
+**
+** Jump immediately to the next instruction after the last unreturned
+** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
+** processing aborts with a fatal error.
+*/
+case OP_Return: {
+ assert( p->returnDepth>0 );
+ p->returnDepth--;
+ pc = p->returnStack[p->returnDepth] - 1;
+ break;
+}
+
+/* Opcode: Halt P1 P2 *
+**
+** Exit immediately. All open cursors, Lists, Sorts, etc are closed
+** automatically.
+**
+** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
+** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
+** For errors, it can be some other value. If P1!=0 then P2 will determine
+** whether or not to rollback the current transaction. Do not rollback
+** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
+** then back out all changes that have occurred during this execution of the
+** VDBE, but do not rollback the transaction.
+**
+** There is an implied "Halt 0 0 0" instruction inserted at the very end of
+** every program. So a jump past the last instruction of the program
+** is the same as executing Halt.
+*/
+case OP_Halt: {
+ p->pTos = pTos;
+ p->rc = pOp->p1;
+ p->pc = pc;
+ p->errorAction = pOp->p2;
+ if( pOp->p3 ){
+ sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0);
+ }
+ rc = sqlite3VdbeHalt(p);
+ if( rc==SQLITE_BUSY ){
+ p->rc = SQLITE_BUSY;
+ return SQLITE_BUSY;
+ }else if( rc!=SQLITE_OK ){
+ p->rc = rc;
+ }
+ return p->rc ? SQLITE_ERROR : SQLITE_DONE;
+}
+
+/* Opcode: Integer P1 * P3
+**
+** The integer value P1 is pushed onto the stack. If P3 is not zero
+** then it is assumed to be a string representation of the same integer.
+** If P1 is zero and P3 is not zero, then the value is derived from P3.
+*/
+case OP_Integer: {
+ pTos++;
+ if( pOp->p3==0 ){
+ pTos->flags = MEM_Int;
+ pTos->i = pOp->p1;
+ }else{
+ pTos->flags = MEM_Str|MEM_Static|MEM_Term;
+ pTos->z = pOp->p3;
+ pTos->n = strlen(pTos->z);
+ pTos->enc = SQLITE_UTF8;
+ pTos->i = sqlite3VdbeIntValue(pTos);
+ pTos->flags |= MEM_Int;
+ }
+ break;
+}
+
+/* Opcode: Real * * P3
+**
+** The string value P3 is converted to a real and pushed on to the stack.
+*/
+case OP_Real: { /* same as TK_FLOAT */
+ pTos++;
+ pTos->flags = MEM_Str|MEM_Static|MEM_Term;
+ pTos->z = pOp->p3;
+ pTos->n = strlen(pTos->z);
+ pTos->enc = SQLITE_UTF8;
+ pTos->r = sqlite3VdbeRealValue(pTos);
+ pTos->flags |= MEM_Real;
+ sqlite3VdbeChangeEncoding(pTos, db->enc);
+ break;
+}
+
+/* Opcode: String8 * * P3
+**
+** P3 points to a nul terminated UTF-8 string. This opcode is transformed
+** into an OP_String before it is executed for the first time.
+*/
+case OP_String8: { /* same as TK_STRING */
+ pOp->opcode = OP_String;
+
+ if( db->enc!=SQLITE_UTF8 && pOp->p3 ){
+ pTos++;
+ sqlite3VdbeMemSetStr(pTos, pOp->p3, -1, SQLITE_UTF8, SQLITE_STATIC);
+ if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, db->enc) ) goto no_mem;
+ if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem;
+ pTos->flags &= ~(MEM_Dyn);
+ pTos->flags |= MEM_Static;
+ if( pOp->p3type==P3_DYNAMIC ){
+ sqliteFree(pOp->p3);
+ }
+ pOp->p3type = P3_DYNAMIC;
+ pOp->p3 = pTos->z;
+ break;
+ }
+ /* Otherwise fall through to the next case, OP_String */
+}
+
+/* Opcode: String * * P3
+**
+** The string value P3 is pushed onto the stack. If P3==0 then a
+** NULL is pushed onto the stack. P3 is assumed to be a nul terminated
+** string encoded with the database native encoding.
+*/
+case OP_String: {
+ pTos++;
+ if( pOp->p3 ){
+ pTos->flags = MEM_Str|MEM_Static|MEM_Term;
+ pTos->z = pOp->p3;
+ if( db->enc==SQLITE_UTF8 ){
+ pTos->n = strlen(pTos->z);
+ }else{
+ pTos->n = sqlite3utf16ByteLen(pTos->z, -1);
+ }
+ pTos->enc = db->enc;
+ }else{
+ pTos->flags = MEM_Null;
+ }
+ break;
+}
+
+/* Opcode: HexBlob * * P3
+**
+** P3 is an UTF-8 SQL hex encoding of a blob. The blob is pushed onto the
+** vdbe stack.
+**
+** The first time this instruction executes, in transforms itself into a
+** 'Blob' opcode with a binary blob as P3.
+*/
+case OP_HexBlob: { /* same as TK_BLOB */
+ pOp->opcode = OP_Blob;
+ pOp->p1 = strlen(pOp->p3)/2;
+ if( pOp->p1 ){
+ char *zBlob = sqlite3HexToBlob(pOp->p3);
+ if( !zBlob ) goto no_mem;
+ if( pOp->p3type==P3_DYNAMIC ){
+ sqliteFree(pOp->p3);
+ }
+ pOp->p3 = zBlob;
+ pOp->p3type = P3_DYNAMIC;
+ }else{
+ if( pOp->p3type==P3_DYNAMIC ){
+ sqliteFree(pOp->p3);
+ }
+ pOp->p3type = P3_STATIC;
+ pOp->p3 = "";
+ }
+
+ /* Fall through to the next case, OP_Blob. */
+}
+
+/* Opcode: Blob P1 * P3
+**
+** P3 points to a blob of data P1 bytes long. Push this
+** value onto the stack. This instruction is not coded directly
+** by the compiler. Instead, the compiler layer specifies
+** an OP_HexBlob opcode, with the hex string representation of
+** the blob as P3. This opcode is transformed to an OP_Blob
+** before execution (within the sqlite3_prepare() function).
+*/
+case OP_Blob: {
+ pTos++;
+ sqlite3VdbeMemSetStr(pTos, pOp->p3, pOp->p1, 0, 0);
+ break;
+}
+
+/* Opcode: Variable P1 * *
+**
+** Push the value of variable P1 onto the stack. A variable is
+** an unknown in the original SQL string as handed to sqlite3_compile().
+** Any occurance of the '?' character in the original SQL is considered
+** a variable. Variables in the SQL string are number from left to
+** right beginning with 1. The values of variables are set using the
+** sqlite3_bind() API.
+*/
+case OP_Variable: {
+ int j = pOp->p1 - 1;
+ assert( j>=0 && j<p->nVar );
+
+ pTos++;
+ sqlite3VdbeMemShallowCopy(pTos, &p->aVar[j], MEM_Static);
+ break;
+}
+
+/* Opcode: Pop P1 * *
+**
+** P1 elements are popped off of the top of stack and discarded.
+*/
+case OP_Pop: {
+ assert( pOp->p1>=0 );
+ popStack(&pTos, pOp->p1);
+ assert( pTos>=&p->aStack[-1] );
+ break;
+}
+
+/* Opcode: Dup P1 P2 *
+**
+** A copy of the P1-th element of the stack
+** is made and pushed onto the top of the stack.
+** The top of the stack is element 0. So the
+** instruction "Dup 0 0 0" will make a copy of the
+** top of the stack.
+**
+** If the content of the P1-th element is a dynamically
+** allocated string, then a new copy of that string
+** is made if P2==0. If P2!=0, then just a pointer
+** to the string is copied.
+**
+** Also see the Pull instruction.
+*/
+case OP_Dup: {
+ Mem *pFrom = &pTos[-pOp->p1];
+ assert( pFrom<=pTos && pFrom>=p->aStack );
+ pTos++;
+ sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem);
+ if( pOp->p2 ){
+ Deephemeralize(pTos);
+ }
+ break;
+}
+
+/* Opcode: Pull P1 * *
+**
+** The P1-th element is removed from its current location on
+** the stack and pushed back on top of the stack. The
+** top of the stack is element 0, so "Pull 0 0 0" is
+** a no-op. "Pull 1 0 0" swaps the top two elements of
+** the stack.
+**
+** See also the Dup instruction.
+*/
+case OP_Pull: {
+ Mem *pFrom = &pTos[-pOp->p1];
+ int i;
+ Mem ts;
+
+ ts = *pFrom;
+ Deephemeralize(pTos);
+ for(i=0; i<pOp->p1; i++, pFrom++){
+ Deephemeralize(&pFrom[1]);
+ assert( (pFrom->flags & MEM_Ephem)==0 );
+ *pFrom = pFrom[1];
+ if( pFrom->flags & MEM_Short ){
+ assert( pFrom->flags & (MEM_Str|MEM_Blob) );
+ assert( pFrom->z==pFrom[1].zShort );
+ pFrom->z = pFrom->zShort;
+ }
+ }
+ *pTos = ts;
+ if( pTos->flags & MEM_Short ){
+ assert( pTos->flags & (MEM_Str|MEM_Blob) );
+ assert( pTos->z==pTos[-pOp->p1].zShort );
+ pTos->z = pTos->zShort;
+ }
+ break;
+}
+
+/* Opcode: Push P1 * *
+**
+** Overwrite the value of the P1-th element down on the
+** stack (P1==0 is the top of the stack) with the value
+** of the top of the stack. Then pop the top of the stack.
+*/
+case OP_Push: {
+ Mem *pTo = &pTos[-pOp->p1];
+
+ assert( pTo>=p->aStack );
+ sqlite3VdbeMemMove(pTo, pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: Callback P1 * *
+**
+** Pop P1 values off the stack and form them into an array. Then
+** invoke the callback function using the newly formed array as the
+** 3rd parameter.
+*/
+case OP_Callback: {
+ int i;
+ assert( p->nResColumn==pOp->p1 );
+
+ for(i=0; i<pOp->p1; i++){
+ Mem *pVal = &pTos[0-i];
+ sqlite3VdbeMemNulTerminate(pVal);
+ storeTypeInfo(pVal, db->enc);
+ }
+
+ p->resOnStack = 1;
+ p->nCallback++;
+ p->popStack = pOp->p1;
+ p->pc = pc + 1;
+ p->pTos = pTos;
+ return SQLITE_ROW;
+}
+
+/* Opcode: Concat P1 P2 *
+**
+** Look at the first P1+2 elements of the stack. Append them all
+** together with the lowest element first. The original P1+2 elements
+** are popped from the stack if P2==0 and retained if P2==1. If
+** any element of the stack is NULL, then the result is NULL.
+**
+** When P1==1, this routine makes a copy of the top stack element
+** into memory obtained from sqliteMalloc().
+*/
+case OP_Concat: { /* same as TK_CONCAT */
+ char *zNew;
+ int nByte;
+ int nField;
+ int i, j;
+ Mem *pTerm;
+
+ /* Loop through the stack elements to see how long the result will be. */
+ nField = pOp->p1 + 2;
+ pTerm = &pTos[1-nField];
+ nByte = 0;
+ for(i=0; i<nField; i++, pTerm++){
+ assert( pOp->p2==0 || (pTerm->flags&MEM_Str) );
+ if( pTerm->flags&MEM_Null ){
+ nByte = -1;
+ break;
+ }
+ Stringify(pTerm, db->enc);
+ nByte += pTerm->n;
+ }
+
+ if( nByte<0 ){
+ /* If nByte is less than zero, then there is a NULL value on the stack.
+ ** In this case just pop the values off the stack (if required) and
+ ** push on a NULL.
+ */
+ if( pOp->p2==0 ){
+ popStack(&pTos, nField);
+ }
+ pTos++;
+ pTos->flags = MEM_Null;
+ }else{
+ /* Otherwise malloc() space for the result and concatenate all the
+ ** stack values.
+ */
+ zNew = sqliteMallocRaw( nByte+2 );
+ if( zNew==0 ) goto no_mem;
+ j = 0;
+ pTerm = &pTos[1-nField];
+ for(i=j=0; i<nField; i++, pTerm++){
+ int n = pTerm->n;
+ assert( pTerm->flags & MEM_Str );
+ memcpy(&zNew[j], pTerm->z, n);
+ j += n;
+ }
+ zNew[j] = 0;
+ zNew[j+1] = 0;
+ assert( j==nByte );
+
+ if( pOp->p2==0 ){
+ popStack(&pTos, nField);
+ }
+ pTos++;
+ pTos->n = j;
+ pTos->flags = MEM_Str|MEM_Dyn|MEM_Term;
+ pTos->xDel = 0;
+ pTos->enc = db->enc;
+ pTos->z = zNew;
+ }
+ break;
+}
+
+/* Opcode: Add * * *
+**
+** Pop the top two elements from the stack, add them together,
+** and push the result back onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the addition.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: Multiply * * *
+**
+** Pop the top two elements from the stack, multiply them together,
+** and push the result back onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the multiplication.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: Subtract * * *
+**
+** Pop the top two elements from the stack, subtract the
+** first (what was on top of the stack) from the second (the
+** next on stack)
+** and push the result back onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the subtraction.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: Divide * * *
+**
+** Pop the top two elements from the stack, divide the
+** first (what was on top of the stack) from the second (the
+** next on stack)
+** and push the result back onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the division. Division by zero returns NULL.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: Remainder * * *
+**
+** Pop the top two elements from the stack, divide the
+** first (what was on top of the stack) from the second (the
+** next on stack)
+** and push the remainder after division onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the division. Division by zero returns NULL.
+** If either operand is NULL, the result is NULL.
+*/
+case OP_Add: /* same as TK_PLUS */
+case OP_Subtract: /* same as TK_MINUS */
+case OP_Multiply: /* same as TK_STAR */
+case OP_Divide: /* same as TK_SLASH */
+case OP_Remainder: { /* same as TK_REM */
+ Mem *pNos = &pTos[-1];
+ assert( pNos>=p->aStack );
+ if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){
+ Release(pTos);
+ pTos--;
+ Release(pTos);
+ pTos->flags = MEM_Null;
+ }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
+ i64 a, b;
+ a = pTos->i;
+ b = pNos->i;
+ switch( pOp->opcode ){
+ case OP_Add: b += a; break;
+ case OP_Subtract: b -= a; break;
+ case OP_Multiply: b *= a; break;
+ case OP_Divide: {
+ if( a==0 ) goto divide_by_zero;
+ b /= a;
+ break;
+ }
+ default: {
+ if( a==0 ) goto divide_by_zero;
+ b %= a;
+ break;
+ }
+ }
+ Release(pTos);
+ pTos--;
+ Release(pTos);
+ pTos->i = b;
+ pTos->flags = MEM_Int;
+ }else{
+ double a, b;
+ a = sqlite3VdbeRealValue(pTos);
+ b = sqlite3VdbeRealValue(pNos);
+ switch( pOp->opcode ){
+ case OP_Add: b += a; break;
+ case OP_Subtract: b -= a; break;
+ case OP_Multiply: b *= a; break;
+ case OP_Divide: {
+ if( a==0.0 ) goto divide_by_zero;
+ b /= a;
+ break;
+ }
+ default: {
+ int ia = (int)a;
+ int ib = (int)b;
+ if( ia==0.0 ) goto divide_by_zero;
+ b = ib % ia;
+ break;
+ }
+ }
+ Release(pTos);
+ pTos--;
+ Release(pTos);
+ pTos->r = b;
+ pTos->flags = MEM_Real;
+ }
+ break;
+
+divide_by_zero:
+ Release(pTos);
+ pTos--;
+ Release(pTos);
+ pTos->flags = MEM_Null;
+ break;
+}
+
+/* Opcode: CollSeq * * P3
+**
+** P3 is a pointer to a CollSeq struct. If the next call to a user function
+** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
+** be returned. This is used by the built-in min(), max() and nullif()
+** built-in functions.
+**
+** The interface used by the implementation of the aforementioned functions
+** to retrieve the collation sequence set by this opcode is not available
+** publicly, only to user functions defined in func.c.
+*/
+case OP_CollSeq: {
+ assert( pOp->p3type==P3_COLLSEQ );
+ break;
+}
+
+/* Opcode: Function P1 P2 P3
+**
+** Invoke a user function (P3 is a pointer to a Function structure that
+** defines the function) with P1 arguments taken from the stack. Pop all
+** arguments from the stack and push back the result.
+**
+** P2 is a 32-bit bitmask indicating whether or not each argument to the
+** function was determined to be constant at compile time. If the first
+** argument was constant then bit 0 of P2 is set. This is used to determine
+** whether meta data associated with a user function argument using the
+** sqlite3_set_auxdata() API may be safely retained until the next
+** invocation of this opcode.
+**
+** See also: AggFunc
+*/
+case OP_Function: {
+ int i;
+ Mem *pArg;
+ sqlite3_context ctx;
+ sqlite3_value **apVal;
+ int n = pOp->p1;
+
+ n = pOp->p1;
+ apVal = p->apArg;
+ assert( apVal || n==0 );
+
+ pArg = &pTos[1-n];
+ for(i=0; i<n; i++, pArg++){
+ apVal[i] = pArg;
+ storeTypeInfo(pArg, db->enc);
+ }
+
+ assert( pOp->p3type==P3_FUNCDEF || pOp->p3type==P3_VDBEFUNC );
+ if( pOp->p3type==P3_FUNCDEF ){
+ ctx.pFunc = (FuncDef*)pOp->p3;
+ ctx.pVdbeFunc = 0;
+ }else{
+ ctx.pVdbeFunc = (VdbeFunc*)pOp->p3;
+ ctx.pFunc = ctx.pVdbeFunc->pFunc;
+ }
+
+ ctx.s.flags = MEM_Null;
+ ctx.s.z = 0;
+ ctx.s.xDel = 0;
+ ctx.isError = 0;
+ ctx.isStep = 0;
+ if( ctx.pFunc->needCollSeq ){
+ assert( pOp>p->aOp );
+ assert( pOp[-1].p3type==P3_COLLSEQ );
+ assert( pOp[-1].opcode==OP_CollSeq );
+ ctx.pColl = (CollSeq *)pOp[-1].p3;
+ }
+ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ (*ctx.pFunc->xFunc)(&ctx, n, apVal);
+ if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
+ if( sqlite3_malloc_failed ) goto no_mem;
+ popStack(&pTos, n);
+
+ /* If any auxilary data functions have been called by this user function,
+ ** immediately call the destructor for any non-static values.
+ */
+ if( ctx.pVdbeFunc ){
+ sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p2);
+ pOp->p3 = (char *)ctx.pVdbeFunc;
+ pOp->p3type = P3_VDBEFUNC;
+ }
+
+ /* Copy the result of the function to the top of the stack */
+ sqlite3VdbeChangeEncoding(&ctx.s, db->enc);
+ pTos++;
+ pTos->flags = 0;
+ sqlite3VdbeMemMove(pTos, &ctx.s);
+
+ /* If the function returned an error, throw an exception */
+ if( ctx.isError ){
+ if( !(pTos->flags&MEM_Str) ){
+ sqlite3SetString(&p->zErrMsg, "user function error", (char*)0);
+ }else{
+ sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pTos), (char*)0);
+ sqlite3VdbeChangeEncoding(pTos, db->enc);
+ }
+ rc = SQLITE_ERROR;
+ }
+ break;
+}
+
+/* Opcode: BitAnd * * *
+**
+** Pop the top two elements from the stack. Convert both elements
+** to integers. Push back onto the stack the bit-wise AND of the
+** two elements.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: BitOr * * *
+**
+** Pop the top two elements from the stack. Convert both elements
+** to integers. Push back onto the stack the bit-wise OR of the
+** two elements.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: ShiftLeft * * *
+**
+** Pop the top two elements from the stack. Convert both elements
+** to integers. Push back onto the stack the second element shifted
+** left by N bits where N is the top element on the stack.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: ShiftRight * * *
+**
+** Pop the top two elements from the stack. Convert both elements
+** to integers. Push back onto the stack the second element shifted
+** right by N bits where N is the top element on the stack.
+** If either operand is NULL, the result is NULL.
+*/
+case OP_BitAnd: /* same as TK_BITAND */
+case OP_BitOr: /* same as TK_BITOR */
+case OP_ShiftLeft: /* same as TK_LSHIFT */
+case OP_ShiftRight: { /* same as TK_RSHIFT */
+ Mem *pNos = &pTos[-1];
+ int a, b;
+
+ assert( pNos>=p->aStack );
+ if( (pTos->flags | pNos->flags) & MEM_Null ){
+ popStack(&pTos, 2);
+ pTos++;
+ pTos->flags = MEM_Null;
+ break;
+ }
+ a = sqlite3VdbeIntValue(pNos);
+ b = sqlite3VdbeIntValue(pTos);
+ switch( pOp->opcode ){
+ case OP_BitAnd: a &= b; break;
+ case OP_BitOr: a |= b; break;
+ case OP_ShiftLeft: a <<= b; break;
+ case OP_ShiftRight: a >>= b; break;
+ default: /* CANT HAPPEN */ break;
+ }
+ Release(pTos);
+ pTos--;
+ Release(pTos);
+ pTos->i = a;
+ pTos->flags = MEM_Int;
+ break;
+}
+
+/* Opcode: AddImm P1 * *
+**
+** Add the value P1 to whatever is on top of the stack. The result
+** is always an integer.
+**
+** To force the top of the stack to be an integer, just add 0.
+*/
+case OP_AddImm: {
+ assert( pTos>=p->aStack );
+ Integerify(pTos);
+ pTos->i += pOp->p1;
+ break;
+}
+
+/* Opcode: ForceInt P1 P2 *
+**
+** Convert the top of the stack into an integer. If the current top of
+** the stack is not numeric (meaning that is is a NULL or a string that
+** does not look like an integer or floating point number) then pop the
+** stack and jump to P2. If the top of the stack is numeric then
+** convert it into the least integer that is greater than or equal to its
+** current value if P1==0, or to the least integer that is strictly
+** greater than its current value if P1==1.
+*/
+case OP_ForceInt: {
+ int v;
+ assert( pTos>=p->aStack );
+ applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc);
+ if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){
+ Release(pTos);
+ pTos--;
+ pc = pOp->p2 - 1;
+ break;
+ }
+ if( pTos->flags & MEM_Int ){
+ v = pTos->i + (pOp->p1!=0);
+ }else{
+ Realify(pTos);
+ v = (int)pTos->r;
+ if( pTos->r>(double)v ) v++;
+ if( pOp->p1 && pTos->r==(double)v ) v++;
+ }
+ Release(pTos);
+ pTos->i = v;
+ pTos->flags = MEM_Int;
+ break;
+}
+
+/* Opcode: MustBeInt P1 P2 *
+**
+** Force the top of the stack to be an integer. If the top of the
+** stack is not an integer and cannot be converted into an integer
+** with out data loss, then jump immediately to P2, or if P2==0
+** raise an SQLITE_MISMATCH exception.
+**
+** If the top of the stack is not an integer and P2 is not zero and
+** P1 is 1, then the stack is popped. In all other cases, the depth
+** of the stack is unchanged.
+*/
+case OP_MustBeInt: {
+ assert( pTos>=p->aStack );
+ applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc);
+ if( (pTos->flags & MEM_Int)==0 ){
+ if( pOp->p2==0 ){
+ rc = SQLITE_MISMATCH;
+ goto abort_due_to_error;
+ }else{
+ if( pOp->p1 ) popStack(&pTos, 1);
+ pc = pOp->p2 - 1;
+ }
+ }else{
+ Release(pTos);
+ pTos->flags = MEM_Int;
+ }
+ break;
+}
+
+/* Opcode: Eq P1 P2 P3
+**
+** Pop the top two elements from the stack. If they are equal, then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+**
+** The least significant byte of P1 may be either 0x00 or 0x01. If either
+** operand is NULL (and thus if the result is unknown) then take the jump
+** only if the least significant byte of P1 is 0x01.
+**
+** The second least significant byte of P1 must be an affinity character -
+** 'n', 't', 'i' or 'o' - or 0x00. An attempt is made to coerce both values
+** according to the affinity before the comparison is made. If the byte is
+** 0x00, then numeric affinity is used.
+**
+** Once any conversions have taken place, and neither value is NULL,
+** the values are compared. If both values are blobs, or both are text,
+** then memcmp() is used to determine the results of the comparison. If
+** both values are numeric, then a numeric comparison is used. If the
+** two values are of different types, then they are inequal.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+**
+** If P3 is not NULL it is a pointer to a collating sequence (a CollSeq
+** structure) that defines how to compare text.
+*/
+/* Opcode: Ne P1 P2 P3
+**
+** This works just like the Eq opcode except that the jump is taken if
+** the operands from the stack are not equal. See the Eq opcode for
+** additional information.
+*/
+/* Opcode: Lt P1 P2 P3
+**
+** This works just like the Eq opcode except that the jump is taken if
+** the 2nd element down on the stack is less than the top of the stack.
+** See the Eq opcode for additional information.
+*/
+/* Opcode: Le P1 P2 P3
+**
+** This works just like the Eq opcode except that the jump is taken if
+** the 2nd element down on the stack is less than or equal to the
+** top of the stack. See the Eq opcode for additional information.
+*/
+/* Opcode: Gt P1 P2 P3
+**
+** This works just like the Eq opcode except that the jump is taken if
+** the 2nd element down on the stack is greater than the top of the stack.
+** See the Eq opcode for additional information.
+*/
+/* Opcode: Ge P1 P2 P3
+**
+** This works just like the Eq opcode except that the jump is taken if
+** the 2nd element down on the stack is greater than or equal to the
+** top of the stack. See the Eq opcode for additional information.
+*/
+case OP_Eq: /* same as TK_EQ */
+case OP_Ne: /* same as TK_NE */
+case OP_Lt: /* same as TK_LT */
+case OP_Le: /* same as TK_LE */
+case OP_Gt: /* same as TK_GT */
+case OP_Ge: { /* same as TK_GE */
+ Mem *pNos;
+ int flags;
+ int res;
+ char affinity;
+
+ pNos = &pTos[-1];
+ flags = pTos->flags|pNos->flags;
+
+ /* If either value is a NULL P2 is not zero, take the jump if the least
+ ** significant byte of P1 is true. If P2 is zero, then push a NULL onto
+ ** the stack.
+ */
+ if( flags&MEM_Null ){
+ popStack(&pTos, 2);
+ if( pOp->p2 ){
+ if( (pOp->p1&0xFF) ) pc = pOp->p2-1;
+ }else{
+ pTos++;
+ pTos->flags = MEM_Null;
+ }
+ break;
+ }
+
+ affinity = (pOp->p1>>8)&0xFF;
+ if( affinity ){
+ applyAffinity(pNos, affinity, db->enc);
+ applyAffinity(pTos, affinity, db->enc);
+ }
+
+ assert( pOp->p3type==P3_COLLSEQ || pOp->p3==0 );
+ res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3);
+ switch( pOp->opcode ){
+ case OP_Eq: res = res==0; break;
+ case OP_Ne: res = res!=0; break;
+ case OP_Lt: res = res<0; break;
+ case OP_Le: res = res<=0; break;
+ case OP_Gt: res = res>0; break;
+ default: res = res>=0; break;
+ }
+
+ popStack(&pTos, 2);
+ if( pOp->p2 ){
+ if( res ){
+ pc = pOp->p2-1;
+ }
+ }else{
+ pTos++;
+ pTos->flags = MEM_Int;
+ pTos->i = res;
+ }
+ break;
+}
+
+/* Opcode: And * * *
+**
+** Pop two values off the stack. Take the logical AND of the
+** two values and push the resulting boolean value back onto the
+** stack.
+*/
+/* Opcode: Or * * *
+**
+** Pop two values off the stack. Take the logical OR of the
+** two values and push the resulting boolean value back onto the
+** stack.
+*/
+case OP_And: /* same as TK_AND */
+case OP_Or: { /* same as TK_OR */
+ Mem *pNos = &pTos[-1];
+ int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
+
+ assert( pNos>=p->aStack );
+ if( pTos->flags & MEM_Null ){
+ v1 = 2;
+ }else{
+ Integerify(pTos);
+ v1 = pTos->i==0;
+ }
+ if( pNos->flags & MEM_Null ){
+ v2 = 2;
+ }else{
+ Integerify(pNos);
+ v2 = pNos->i==0;
+ }
+ if( pOp->opcode==OP_And ){
+ static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
+ v1 = and_logic[v1*3+v2];
+ }else{
+ static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
+ v1 = or_logic[v1*3+v2];
+ }
+ popStack(&pTos, 2);
+ pTos++;
+ if( v1==2 ){
+ pTos->flags = MEM_Null;
+ }else{
+ pTos->i = v1==0;
+ pTos->flags = MEM_Int;
+ }
+ break;
+}
+
+/* Opcode: Negative * * *
+**
+** Treat the top of the stack as a numeric quantity. Replace it
+** with its additive inverse. If the top of the stack is NULL
+** its value is unchanged.
+*/
+/* Opcode: AbsValue * * *
+**
+** Treat the top of the stack as a numeric quantity. Replace it
+** with its absolute value. If the top of the stack is NULL
+** its value is unchanged.
+*/
+case OP_Negative: /* same as TK_UMINUS */
+case OP_AbsValue: {
+ assert( pTos>=p->aStack );
+ if( pTos->flags & MEM_Real ){
+ Release(pTos);
+ if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
+ pTos->r = -pTos->r;
+ }
+ pTos->flags = MEM_Real;
+ }else if( pTos->flags & MEM_Int ){
+ Release(pTos);
+ if( pOp->opcode==OP_Negative || pTos->i<0 ){
+ pTos->i = -pTos->i;
+ }
+ pTos->flags = MEM_Int;
+ }else if( pTos->flags & MEM_Null ){
+ /* Do nothing */
+ }else{
+ Realify(pTos);
+ if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
+ pTos->r = -pTos->r;
+ }
+ pTos->flags = MEM_Real;
+ }
+ break;
+}
+
+/* Opcode: Not * * *
+**
+** Interpret the top of the stack as a boolean value. Replace it
+** with its complement. If the top of the stack is NULL its value
+** is unchanged.
+*/
+case OP_Not: { /* same as TK_NOT */
+ assert( pTos>=p->aStack );
+ if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
+ Integerify(pTos);
+ assert( (pTos->flags & MEM_Dyn)==0 );
+ pTos->i = !pTos->i;
+ pTos->flags = MEM_Int;
+ break;
+}
+
+/* Opcode: BitNot * * *
+**
+** Interpret the top of the stack as an value. Replace it
+** with its ones-complement. If the top of the stack is NULL its
+** value is unchanged.
+*/
+case OP_BitNot: { /* same as TK_BITNOT */
+ assert( pTos>=p->aStack );
+ if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
+ Integerify(pTos);
+ assert( (pTos->flags & MEM_Dyn)==0 );
+ pTos->i = ~pTos->i;
+ pTos->flags = MEM_Int;
+ break;
+}
+
+/* Opcode: Noop * * *
+**
+** Do nothing. This instruction is often useful as a jump
+** destination.
+*/
+case OP_Noop: {
+ break;
+}
+
+/* Opcode: If P1 P2 *
+**
+** Pop a single boolean from the stack. If the boolean popped is
+** true, then jump to p2. Otherwise continue to the next instruction.
+** An integer is false if zero and true otherwise. A string is
+** false if it has zero length and true otherwise.
+**
+** If the value popped of the stack is NULL, then take the jump if P1
+** is true and fall through if P1 is false.
+*/
+/* Opcode: IfNot P1 P2 *
+**
+** Pop a single boolean from the stack. If the boolean popped is
+** false, then jump to p2. Otherwise continue to the next instruction.
+** An integer is false if zero and true otherwise. A string is
+** false if it has zero length and true otherwise.
+**
+** If the value popped of the stack is NULL, then take the jump if P1
+** is true and fall through if P1 is false.
+*/
+case OP_If:
+case OP_IfNot: {
+ int c;
+ assert( pTos>=p->aStack );
+ if( pTos->flags & MEM_Null ){
+ c = pOp->p1;
+ }else{
+ c = sqlite3VdbeIntValue(pTos);
+ if( pOp->opcode==OP_IfNot ) c = !c;
+ }
+ Release(pTos);
+ pTos--;
+ if( c ) pc = pOp->p2-1;
+ break;
+}
+
+/* Opcode: IsNull P1 P2 *
+**
+** If any of the top abs(P1) values on the stack are NULL, then jump
+** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack
+** unchanged.
+*/
+case OP_IsNull: { /* same as TK_ISNULL */
+ int i, cnt;
+ Mem *pTerm;
+ cnt = pOp->p1;
+ if( cnt<0 ) cnt = -cnt;
+ pTerm = &pTos[1-cnt];
+ assert( pTerm>=p->aStack );
+ for(i=0; i<cnt; i++, pTerm++){
+ if( pTerm->flags & MEM_Null ){
+ pc = pOp->p2-1;
+ break;
+ }
+ }
+ if( pOp->p1>0 ) popStack(&pTos, cnt);
+ break;
+}
+
+/* Opcode: NotNull P1 P2 *
+**
+** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the
+** stack if P1 times if P1 is greater than zero. If P1 is less than
+** zero then leave the stack unchanged.
+*/
+case OP_NotNull: { /* same as TK_NOTNULL */
+ int i, cnt;
+ cnt = pOp->p1;
+ if( cnt<0 ) cnt = -cnt;
+ assert( &pTos[1-cnt] >= p->aStack );
+ for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
+ if( i>=cnt ) pc = pOp->p2-1;
+ if( pOp->p1>0 ) popStack(&pTos, cnt);
+ break;
+}
+
+/* Opcode: SetNumColumns P1 P2 *
+**
+** Before the OP_Column opcode can be executed on a cursor, this
+** opcode must be called to set the number of fields in the table.
+**
+** This opcode sets the number of columns for cursor P1 to P2.
+*/
+case OP_SetNumColumns: {
+ assert( (pOp->p1)<p->nCursor );
+ assert( p->apCsr[pOp->p1]!=0 );
+ p->apCsr[pOp->p1]->nField = pOp->p2;
+ break;
+}
+
+/* Opcode: IdxColumn P1 * *
+**
+** P1 is a cursor opened on an index. Push the first field from the
+** current index key onto the stack.
+*/
+/* Opcode: Column P1 P2 *
+**
+** Interpret the data that cursor P1 points to as a structure built using
+** the MakeRecord instruction. (See the MakeRecord opcode for additional
+** information about the format of the data.) Push onto the stack the value
+** of the P2-th column contained in the data.
+**
+** If the KeyAsData opcode has previously executed on this cursor, then the
+** field might be extracted from the key rather than the data.
+**
+** If P1 is negative, then the record is stored on the stack rather than in
+** a table. For P1==-1, the top of the stack is used. For P1==-2, the
+** next on the stack is used. And so forth. The value pushed is always
+** just a pointer into the record which is stored further down on the
+** stack. The column value is not copied. The number of columns in the
+** record is stored on the stack just above the record itself.
+*/
+case OP_IdxColumn:
+case OP_Column: {
+ u32 payloadSize; /* Number of bytes in the record */
+ int p1 = pOp->p1; /* P1 value of the opcode */
+ int p2 = pOp->p2; /* column number to retrieve */
+ Cursor *pC = 0; /* The VDBE cursor */
+ char *zRec; /* Pointer to complete record-data */
+ BtCursor *pCrsr; /* The BTree cursor */
+ u32 *aType; /* aType[i] holds the numeric type of the i-th column */
+ u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
+ u32 nField; /* number of fields in the record */
+ u32 szHdr; /* Number of bytes in the record header */
+ int len; /* The length of the serialized data for the column */
+ int offset = 0; /* Offset into the data */
+ int idx; /* Index into the header */
+ int i; /* Loop counter */
+ char *zData; /* Part of the record being decoded */
+ Mem sMem; /* For storing the record being decoded */
+
+ sMem.flags = 0;
+ assert( p1<p->nCursor );
+ pTos++;
+ pTos->flags = MEM_Null;
+
+ /* This block sets the variable payloadSize to be the total number of
+ ** bytes in the record.
+ **
+ ** zRec is set to be the complete text of the record if it is available.
+ ** The complete record text is always available for pseudo-tables and
+ ** when we are decoded a record from the stack. If the record is stored
+ ** in a cursor, the complete record text might be available in the
+ ** pC->aRow cache. Or it might not be. If the data is unavailable,
+ ** zRec is set to NULL.
+ **
+ ** We also compute the number of columns in the record. For cursors,
+ ** the number of columns is stored in the Cursor.nField element. For
+ ** records on the stack, the next entry down on the stack is an integer
+ ** which is the number of records.
+ */
+ assert( p1<0 || p->apCsr[p1]!=0 );
+ if( p1<0 ){
+ /* Take the record off of the stack */
+ Mem *pRec = &pTos[p1];
+ Mem *pCnt = &pRec[-1];
+ assert( pRec>=p->aStack );
+ assert( pRec->flags & MEM_Blob );
+ payloadSize = pRec->n;
+ zRec = pRec->z;
+ assert( pCnt>=p->aStack );
+ assert( pCnt->flags & MEM_Int );
+ nField = pCnt->i;
+ pCrsr = 0;
+ }else if( (pC = p->apCsr[p1])->pCursor!=0 ){
+ /* The record is stored in a B-Tree */
+ sqlite3VdbeCursorMoveto(pC);
+ zRec = 0;
+ pCrsr = pC->pCursor;
+ if( pC->nullRow ){
+ payloadSize = 0;
+ }else if( pC->cacheValid ){
+ payloadSize = pC->payloadSize;
+ zRec = pC->aRow;
+ }else if( pC->keyAsData ){
+ i64 payloadSize64;
+ sqlite3BtreeKeySize(pCrsr, &payloadSize64);
+ payloadSize = payloadSize64;
+ }else{
+ sqlite3BtreeDataSize(pCrsr, &payloadSize);
+ }
+ nField = pC->nField;
+ }else if( pC->pseudoTable ){
+ /* The record is the sole entry of a pseudo-table */
+ payloadSize = pC->nData;
+ zRec = pC->pData;
+ pC->cacheValid = 0;
+ assert( payloadSize==0 || zRec!=0 );
+ nField = pC->nField;
+ pCrsr = 0;
+ }else{
+ zRec = 0;
+ payloadSize = 0;
+ pCrsr = 0;
+ nField = 0;
+ }
+
+ /* If payloadSize is 0, then just push a NULL onto the stack. */
+ if( payloadSize==0 ){
+ pTos->flags = MEM_Null;
+ break;
+ }
+
+ assert( p2<nField );
+
+ /* Read and parse the table header. Store the results of the parse
+ ** into the record header cache fields of the cursor.
+ */
+ if( pC && pC->cacheValid ){
+ aType = pC->aType;
+ aOffset = pC->aOffset;
+ }else{
+ int avail; /* Number of bytes of available data */
+ if( pC && pC->aType ){
+ aType = pC->aType;
+ }else{
+ aType = sqliteMallocRaw( 2*nField*sizeof(aType) );
+ }
+ aOffset = &aType[nField];
+ if( aType==0 ){
+ goto no_mem;
+ }
+
+ /* Figure out how many bytes are in the header */
+ if( zRec ){
+ zData = zRec;
+ }else{
+ if( pC->keyAsData ){
+ zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
+ }else{
+ zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
+ }
+ /* If KeyFetch()/DataFetch() managed to get the entire payload,
+ ** save the payload in the pC->aRow cache. That will save us from
+ ** having to make additional calls to fetch the content portion of
+ ** the record.
+ */
+ if( avail>=payloadSize ){
+ zRec = pC->aRow = zData;
+ }else{
+ pC->aRow = 0;
+ }
+ }
+ idx = sqlite3GetVarint32(zData, &szHdr);
+
+
+ /* The KeyFetch() or DataFetch() above are fast and will get the entire
+ ** record header in most cases. But they will fail to get the complete
+ ** record header if the record header does not fit on a single page
+ ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
+ ** acquire the complete header text.
+ */
+ if( !zRec && avail<szHdr ){
+ rc = sqlite3VdbeMemFromBtree(pCrsr, 0, szHdr, pC->keyAsData, &sMem);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ zData = sMem.z;
+ }
+
+ /* Scan the header and use it to fill in the aType[] and aOffset[]
+ ** arrays. aType[i] will contain the type integer for the i-th
+ ** column and aOffset[i] will contain the offset from the beginning
+ ** of the record to the start of the data for the i-th column
+ */
+ offset = szHdr;
+ i = 0;
+ while( idx<szHdr && i<nField && offset<=payloadSize ){
+ aOffset[i] = offset;
+ idx += sqlite3GetVarint32(&zData[idx], &aType[i]);
+ offset += sqlite3VdbeSerialTypeLen(aType[i]);
+ i++;
+ }
+ Release(&sMem);
+ sMem.flags = MEM_Null;
+
+ /* The header should end at the start of data and the data should
+ ** end at last byte of the record. If this is not the case then
+ ** we are dealing with a malformed record.
+ */
+ if( idx!=szHdr || offset!=payloadSize ){
+ sqliteFree(aType);
+ if( pC ) pC->aType = 0;
+ rc = SQLITE_CORRUPT;
+ break;
+ }
+
+ /* Remember all aType and aColumn information if we have a cursor
+ ** to remember it in. */
+ if( pC ){
+ pC->payloadSize = payloadSize;
+ pC->aType = aType;
+ pC->aOffset = aOffset;
+ pC->cacheValid = 1;
+ }
+ }
+
+ /* Get the column information.
+ */
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( zRec ){
+ zData = &zRec[aOffset[p2]];
+ }else{
+ len = sqlite3VdbeSerialTypeLen(aType[p2]);
+ sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->keyAsData, &sMem);
+ zData = sMem.z;
+ }
+ sqlite3VdbeSerialGet(zData, aType[p2], pTos);
+ pTos->enc = db->enc;
+
+ /* If we dynamically allocated space to hold the data (in the
+ ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
+ ** dynamically allocated space over to the pTos structure rather.
+ ** This prevents a memory copy.
+ */
+ if( (sMem.flags & MEM_Dyn)!=0 ){
+ assert( pTos->flags & MEM_Ephem );
+ assert( pTos->flags & (MEM_Str|MEM_Blob) );
+ assert( pTos->z==sMem.z );
+ assert( sMem.flags & MEM_Term );
+ pTos->flags &= ~MEM_Ephem;
+ pTos->flags |= MEM_Dyn|MEM_Term;
+ }
+
+ /* pTos->z might be pointing to sMem.zShort[]. Fix that so that we
+ ** can abandon sMem */
+ rc = sqlite3VdbeMemMakeWriteable(pTos);
+
+ /* Release the aType[] memory if we are not dealing with cursor */
+ if( !pC ){
+ sqliteFree(aType);
+ }
+ break;
+}
+
+/* Opcode MakeRecord P1 P2 P3
+**
+** Convert the top abs(P1) entries of the stack into a single entry
+** suitable for use as a data record in a database table or as a key
+** in an index. The details of the format are irrelavant as long as
+** the OP_Column opcode can decode the record later and as long as the
+** sqlite3VdbeRecordCompare function will correctly compare two encoded
+** records. Refer to source code comments for the details of the record
+** format.
+**
+** The original stack entries are popped from the stack if P1>0 but
+** remain on the stack if P1<0.
+**
+** The P2 argument is divided into two 16-bit words before it is processed.
+** If the hi-word is non-zero, then an extra integer is read from the stack
+** and appended to the record as a varint. If the low-word of P2 is not
+** zero and one or more of the entries are NULL, then jump to the value of
+** the low-word of P2. This feature can be used to skip a uniqueness test
+** on indices.
+**
+** P3 may be a string that is P1 characters long. The nth character of the
+** string indicates the column affinity that should be used for the nth
+** field of the index key (i.e. the first character of P3 corresponds to the
+** lowest element on the stack).
+**
+** Character Column affinity
+** ------------------------------
+** 'n' NUMERIC
+** 'i' INTEGER
+** 't' TEXT
+** 'o' NONE
+**
+** If P3 is NULL then all index fields have the affinity NONE.
+*/
+case OP_MakeRecord: {
+ /* Assuming the record contains N fields, the record format looks
+ ** like this:
+ **
+ ** ------------------------------------------------------------------------
+ ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
+ ** ------------------------------------------------------------------------
+ **
+ ** Data(0) is taken from the lowest element of the stack and data(N-1) is
+ ** the top of the stack.
+ **
+ ** Each type field is a varint representing the serial type of the
+ ** corresponding data element (see sqlite3VdbeSerialType()). The
+ ** hdr-size field is also a varint which is the offset from the beginning
+ ** of the record to data0.
+ */
+ unsigned char *zNewRecord;
+ unsigned char *zCsr;
+ Mem *pRec;
+ Mem *pRowid = 0;
+ int nData = 0; /* Number of bytes of data space */
+ int nHdr = 0; /* Number of bytes of header space */
+ int nByte = 0; /* Space required for this record */
+ u32 serial_type; /* Type field */
+ int containsNull = 0; /* True if any of the data fields are NULL */
+ char zTemp[NBFS]; /* Space to hold small records */
+ Mem *pData0;
+
+ int leaveOnStack; /* If true, leave the entries on the stack */
+ int nField; /* Number of fields in the record */
+ int jumpIfNull; /* Jump here if non-zero and any entries are NULL. */
+ int addRowid; /* True to append a rowid column at the end */
+ char *zAffinity; /* The affinity string for the record */
+
+ leaveOnStack = ((pOp->p1<0)?1:0);
+ nField = pOp->p1 * (leaveOnStack?-1:1);
+ jumpIfNull = (pOp->p2 & 0x00FFFFFF);
+ addRowid = ((pOp->p2>>24) & 0x0000FFFF)?1:0;
+ zAffinity = pOp->p3;
+
+ pData0 = &pTos[1-nField];
+ assert( pData0>=p->aStack );
+ containsNull = 0;
+
+ /* Loop through the elements that will make up the record to figure
+ ** out how much space is required for the new record.
+ */
+ for(pRec=pData0; pRec<=pTos; pRec++){
+ if( zAffinity ){
+ applyAffinity(pRec, zAffinity[pRec-pData0], db->enc);
+ }
+ if( pRec->flags&MEM_Null ){
+ containsNull = 1;
+ }
+ serial_type = sqlite3VdbeSerialType(pRec);
+ nData += sqlite3VdbeSerialTypeLen(serial_type);
+ nHdr += sqlite3VarintLen(serial_type);
+ }
+
+ /* If we have to append a varint rowid to this record, set 'rowid'
+ ** to the value of the rowid and increase nByte by the amount of space
+ ** required to store it and the 0x00 seperator byte.
+ */
+ if( addRowid ){
+ pRowid = &pTos[0-nField];
+ assert( pRowid>=p->aStack );
+ Integerify(pRowid);
+ serial_type = sqlite3VdbeSerialType(pRowid);
+ nData += sqlite3VdbeSerialTypeLen(serial_type);
+ nHdr += sqlite3VarintLen(serial_type);
+ }
+
+ /* Add the initial header varint and total the size */
+ nHdr += sqlite3VarintLen(nHdr);
+ nByte = nHdr+nData;
+
+ /* Allocate space for the new record. */
+ if( nByte>sizeof(zTemp) ){
+ zNewRecord = sqliteMallocRaw(nByte);
+ if( !zNewRecord ){
+ goto no_mem;
+ }
+ }else{
+ zNewRecord = zTemp;
+ }
+
+ /* Write the record */
+ zCsr = zNewRecord;
+ zCsr += sqlite3PutVarint(zCsr, nHdr);
+ for(pRec=pData0; pRec<=pTos; pRec++){
+ serial_type = sqlite3VdbeSerialType(pRec);
+ zCsr += sqlite3PutVarint(zCsr, serial_type); /* serial type */
+ }
+ if( addRowid ){
+ zCsr += sqlite3PutVarint(zCsr, sqlite3VdbeSerialType(pRowid));
+ }
+ for(pRec=pData0; pRec<=pTos; pRec++){
+ zCsr += sqlite3VdbeSerialPut(zCsr, pRec); /* serial data */
+ }
+ if( addRowid ){
+ zCsr += sqlite3VdbeSerialPut(zCsr, pRowid);
+ }
+
+ /* If zCsr has not been advanced exactly nByte bytes, then one
+ ** of the sqlite3PutVarint() or sqlite3VdbeSerialPut() calls above
+ ** failed. This indicates a corrupted memory cell or code bug.
+ */
+ if( zCsr!=(zNewRecord+nByte) ){
+ rc = SQLITE_INTERNAL;
+ goto abort_due_to_error;
+ }
+
+ /* Pop entries off the stack if required. Push the new record on. */
+ if( !leaveOnStack ){
+ popStack(&pTos, nField+addRowid);
+ }
+ pTos++;
+ pTos->n = nByte;
+ if( nByte<=sizeof(zTemp) ){
+ assert( zNewRecord==(unsigned char *)zTemp );
+ pTos->z = pTos->zShort;
+ memcpy(pTos->zShort, zTemp, nByte);
+ pTos->flags = MEM_Blob | MEM_Short;
+ }else{
+ assert( zNewRecord!=(unsigned char *)zTemp );
+ pTos->z = zNewRecord;
+ pTos->flags = MEM_Blob | MEM_Dyn;
+ pTos->xDel = 0;
+ }
+
+ /* If a NULL was encountered and jumpIfNull is non-zero, take the jump. */
+ if( jumpIfNull && containsNull ){
+ pc = jumpIfNull - 1;
+ }
+ break;
+}
+
+/* Opcode: Statement P1 * *
+**
+** Begin an individual statement transaction which is part of a larger
+** BEGIN..COMMIT transaction. This is needed so that the statement
+** can be rolled back after an error without having to roll back the
+** entire transaction. The statement transaction will automatically
+** commit when the VDBE halts.
+**
+** The statement is begun on the database file with index P1. The main
+** database file has an index of 0 and the file used for temporary tables
+** has an index of 1.
+*/
+case OP_Statement: {
+ int i = pOp->p1;
+ Btree *pBt;
+ if( i>=0 && i<db->nDb && (pBt = db->aDb[i].pBt) && !(db->autoCommit) ){
+ assert( sqlite3BtreeIsInTrans(pBt) );
+ if( !sqlite3BtreeIsInStmt(pBt) ){
+ rc = sqlite3BtreeBeginStmt(pBt);
+ }
+ }
+ break;
+}
+
+/* Opcode: AutoCommit P1 P2 *
+**
+** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
+** back any currently active btree transactions. If there are any active
+** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
+**
+** This instruction causes the VM to halt.
+*/
+case OP_AutoCommit: {
+ u8 i = pOp->p1;
+ u8 rollback = pOp->p2;
+
+ assert( i==1 || i==0 );
+ assert( i==1 || rollback==0 );
+
+ assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
+
+ if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
+ /* If this instruction implements a COMMIT or ROLLBACK, other VMs are
+ ** still running, and a transaction is active, return an error indicating
+ ** that the other VMs must complete first.
+ */
+ sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit",
+ " transaction - SQL statements in progress", 0);
+ rc = SQLITE_ERROR;
+ }else if( i!=db->autoCommit ){
+ db->autoCommit = i;
+ if( pOp->p2 ){
+ assert( i==1 );
+ sqlite3RollbackAll(db);
+ }else if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
+ p->pTos = pTos;
+ p->pc = pc;
+ db->autoCommit = 1-i;
+ p->rc = SQLITE_BUSY;
+ return SQLITE_BUSY;
+ }
+ return SQLITE_DONE;
+ }else{
+ sqlite3SetString(&p->zErrMsg,
+ (!i)?"cannot start a transaction within a transaction":(
+ (rollback)?"cannot rollback - no transaction is active":
+ "cannot commit - no transaction is active"), 0);
+
+ rc = SQLITE_ERROR;
+ }
+ break;
+}
+
+/* Opcode: Transaction P1 P2 *
+**
+** Begin a transaction. The transaction ends when a Commit or Rollback
+** opcode is encountered. Depending on the ON CONFLICT setting, the
+** transaction might also be rolled back if an error is encountered.
+**
+** P1 is the index of the database file on which the transaction is
+** started. Index 0 is the main database file and index 1 is the
+** file used for temporary tables.
+**
+** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
+** obtained on the database file when a write-transaction is started. No
+** other process can start another write transaction while this transaction is
+** underway. Starting a write transaction also creates a rollback journal. A
+** write transaction must be started before any changes can be made to the
+** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
+** on the file.
+**
+** If P2 is zero, then a read-lock is obtained on the database file.
+*/
+case OP_Transaction: {
+ int i = pOp->p1;
+ Btree *pBt;
+
+ assert( i>=0 && i<db->nDb );
+ pBt = db->aDb[i].pBt;
+
+ if( pBt ){
+ rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
+ if( rc==SQLITE_BUSY ){
+ p->pc = pc;
+ p->rc = SQLITE_BUSY;
+ p->pTos = pTos;
+ return SQLITE_BUSY;
+ }
+ if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
+ goto abort_due_to_error;
+ }
+ }
+ break;
+}
+
+/* Opcode: ReadCookie P1 P2 *
+**
+** Read cookie number P2 from database P1 and push it onto the stack.
+** P2==0 is the schema version. P2==1 is the database format.
+** P2==2 is the recommended pager cache size, and so forth. P1==0 is
+** the main database file and P1==1 is the database file used to store
+** temporary tables.
+**
+** There must be a read-lock on the database (either a transaction
+** must be started or there must be an open cursor) before
+** executing this instruction.
+*/
+case OP_ReadCookie: {
+ int iMeta;
+ assert( pOp->p2<SQLITE_N_BTREE_META );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( db->aDb[pOp->p1].pBt!=0 );
+ /* The indexing of meta values at the schema layer is off by one from
+ ** the indexing in the btree layer. The btree considers meta[0] to
+ ** be the number of free pages in the database (a read-only value)
+ ** and meta[1] to be the schema cookie. The schema layer considers
+ ** meta[1] to be the schema cookie. So we have to shift the index
+ ** by one in the following statement.
+ */
+ rc = sqlite3BtreeGetMeta(db->aDb[pOp->p1].pBt, 1 + pOp->p2, (u32 *)&iMeta);
+ pTos++;
+ pTos->i = iMeta;
+ pTos->flags = MEM_Int;
+ break;
+}
+
+/* Opcode: SetCookie P1 P2 *
+**
+** Write the top of the stack into cookie number P2 of database P1.
+** P2==0 is the schema version. P2==1 is the database format.
+** P2==2 is the recommended pager cache size, and so forth. P1==0 is
+** the main database file and P1==1 is the database file used to store
+** temporary tables.
+**
+** A transaction must be started before executing this opcode.
+*/
+case OP_SetCookie: {
+ Db *pDb;
+ assert( pOp->p2<SQLITE_N_BTREE_META );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ pDb = &db->aDb[pOp->p1];
+ assert( pDb->pBt!=0 );
+ assert( pTos>=p->aStack );
+ Integerify(pTos);
+ /* See note about index shifting on OP_ReadCookie */
+ rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->i);
+ if( pOp->p2==0 ){
+ /* When the schema cookie changes, record the new cookie internally */
+ pDb->schema_cookie = pTos->i;
+ db->flags |= SQLITE_InternChanges;
+ }
+ assert( (pTos->flags & MEM_Dyn)==0 );
+ pTos--;
+ break;
+}
+
+/* Opcode: VerifyCookie P1 P2 *
+**
+** Check the value of global database parameter number 0 (the
+** schema version) and make sure it is equal to P2.
+** P1 is the database number which is 0 for the main database file
+** and 1 for the file holding temporary tables and some higher number
+** for auxiliary databases.
+**
+** The cookie changes its value whenever the database schema changes.
+** This operation is used to detect when that the cookie has changed
+** and that the current process needs to reread the schema.
+**
+** Either a transaction needs to have been started or an OP_Open needs
+** to be executed (to establish a read lock) before this opcode is
+** invoked.
+*/
+case OP_VerifyCookie: {
+ int iMeta;
+ Btree *pBt;
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ pBt = db->aDb[pOp->p1].pBt;
+ if( pBt ){
+ rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
+ }else{
+ rc = SQLITE_OK;
+ iMeta = 0;
+ }
+ if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
+ sqlite3SetString(&p->zErrMsg, "database schema has changed", (char*)0);
+ rc = SQLITE_SCHEMA;
+ }
+ break;
+}
+
+/* Opcode: OpenRead P1 P2 P3
+**
+** Open a read-only cursor for the database table whose root page is
+** P2 in a database file. The database file is determined by an
+** integer from the top of the stack. 0 means the main database and
+** 1 means the database used for temporary tables. Give the new
+** cursor an identifier of P1. The P1 values need not be contiguous
+** but all P1 values should be small integers. It is an error for
+** P1 to be negative.
+**
+** If P2==0 then take the root page number from the next of the stack.
+**
+** There will be a read lock on the database whenever there is an
+** open cursor. If the database was unlocked prior to this instruction
+** then a read lock is acquired as part of this instruction. A read
+** lock allows other processes to read the database but prohibits
+** any other process from modifying the database. The read lock is
+** released when all cursors are closed. If this instruction attempts
+** to get a read lock but fails, the script terminates with an
+** SQLITE_BUSY error code.
+**
+** The P3 value is a pointer to a KeyInfo structure that defines the
+** content and collating sequence of indices. P3 is NULL for cursors
+** that are not pointing to indices.
+**
+** See also OpenWrite.
+*/
+/* Opcode: OpenWrite P1 P2 P3
+**
+** Open a read/write cursor named P1 on the table or index whose root
+** page is P2. If P2==0 then take the root page number from the stack.
+**
+** The P3 value is a pointer to a KeyInfo structure that defines the
+** content and collating sequence of indices. P3 is NULL for cursors
+** that are not pointing to indices.
+**
+** This instruction works just like OpenRead except that it opens the cursor
+** in read/write mode. For a given table, there can be one or more read-only
+** cursors or a single read/write cursor but not both.
+**
+** See also OpenRead.
+*/
+case OP_OpenRead:
+case OP_OpenWrite: {
+ int i = pOp->p1;
+ int p2 = pOp->p2;
+ int wrFlag;
+ Btree *pX;
+ int iDb;
+ Cursor *pCur;
+
+ assert( pTos>=p->aStack );
+ Integerify(pTos);
+ iDb = pTos->i;
+ assert( (pTos->flags & MEM_Dyn)==0 );
+ pTos--;
+ assert( iDb>=0 && iDb<db->nDb );
+ pX = db->aDb[iDb].pBt;
+ assert( pX!=0 );
+ wrFlag = pOp->opcode==OP_OpenWrite;
+ if( p2<=0 ){
+ assert( pTos>=p->aStack );
+ Integerify(pTos);
+ p2 = pTos->i;
+ assert( (pTos->flags & MEM_Dyn)==0 );
+ pTos--;
+ if( p2<2 ){
+ sqlite3SetString(&p->zErrMsg, "root page number less than 2", (char*)0);
+ rc = SQLITE_INTERNAL;
+ break;
+ }
+ }
+ assert( i>=0 );
+ pCur = allocateCursor(p, i);
+ if( pCur==0 ) goto no_mem;
+ pCur->nullRow = 1;
+ if( pX==0 ) break;
+ /* We always provide a key comparison function. If the table being
+ ** opened is of type INTKEY, the comparision function will be ignored. */
+ rc = sqlite3BtreeCursor(pX, p2, wrFlag,
+ sqlite3VdbeRecordCompare, pOp->p3,
+ &pCur->pCursor);
+ pCur->pKeyInfo = (KeyInfo*)pOp->p3;
+ if( pCur->pKeyInfo ){
+ pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
+ pCur->pKeyInfo->enc = p->db->enc;
+ }else{
+ pCur->pIncrKey = &pCur->bogusIncrKey;
+ }
+ switch( rc ){
+ case SQLITE_BUSY: {
+ p->pc = pc;
+ p->rc = SQLITE_BUSY;
+ p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
+ return SQLITE_BUSY;
+ }
+ case SQLITE_OK: {
+ int flags = sqlite3BtreeFlags(pCur->pCursor);
+ pCur->intKey = (flags & BTREE_INTKEY)!=0;
+ pCur->zeroData = (flags & BTREE_ZERODATA)!=0;
+ break;
+ }
+ case SQLITE_EMPTY: {
+ rc = SQLITE_OK;
+ break;
+ }
+ default: {
+ goto abort_due_to_error;
+ }
+ }
+ break;
+}
+
+/* Opcode: OpenTemp P1 * P3
+**
+** Open a new cursor to a transient table.
+** The transient cursor is always opened read/write even if
+** the main database is read-only. The transient table is deleted
+** automatically when the cursor is closed.
+**
+** The cursor points to a BTree table if P3==0 and to a BTree index
+** if P3 is not 0. If P3 is not NULL, it points to a KeyInfo structure
+** that defines the format of keys in the index.
+**
+** This opcode is used for tables that exist for the duration of a single
+** SQL statement only. Tables created using CREATE TEMPORARY TABLE
+** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the
+** context of this opcode means for the duration of a single SQL statement
+** whereas "Temporary" in the context of CREATE TABLE means for the duration
+** of the connection to the database. Same word; different meanings.
+*/
+case OP_OpenTemp: {
+ int i = pOp->p1;
+ Cursor *pCx;
+ assert( i>=0 );
+ pCx = allocateCursor(p, i);
+ if( pCx==0 ) goto no_mem;
+ pCx->nullRow = 1;
+ rc = sqlite3BtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
+ }
+ if( rc==SQLITE_OK ){
+ /* If a transient index is required, create it by calling
+ ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
+ ** opening it. If a transient table is required, just use the
+ ** automatically created table with root-page 1 (an INTKEY table).
+ */
+ if( pOp->p3 ){
+ int pgno;
+ assert( pOp->p3type==P3_KEYINFO );
+ rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA);
+ if( rc==SQLITE_OK ){
+ assert( pgno==MASTER_ROOT+1 );
+ rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare,
+ pOp->p3, &pCx->pCursor);
+ pCx->pKeyInfo = (KeyInfo*)pOp->p3;
+ pCx->pKeyInfo->enc = p->db->enc;
+ pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
+ }
+ }else{
+ rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor);
+ pCx->intKey = 1;
+ pCx->pIncrKey = &pCx->bogusIncrKey;
+ }
+ }
+ break;
+}
+
+/* Opcode: OpenPseudo P1 * *
+**
+** Open a new cursor that points to a fake table that contains a single
+** row of data. Any attempt to write a second row of data causes the
+** first row to be deleted. All data is deleted when the cursor is
+** closed.
+**
+** A pseudo-table created by this opcode is useful for holding the
+** NEW or OLD tables in a trigger.
+*/
+case OP_OpenPseudo: {
+ int i = pOp->p1;
+ Cursor *pCx;
+ assert( i>=0 );
+ pCx = allocateCursor(p, i);
+ if( pCx==0 ) goto no_mem;
+ pCx->nullRow = 1;
+ pCx->pseudoTable = 1;
+ pCx->pIncrKey = &pCx->bogusIncrKey;
+ break;
+}
+
+/* Opcode: Close P1 * *
+**
+** Close a cursor previously opened as P1. If P1 is not
+** currently open, this instruction is a no-op.
+*/
+case OP_Close: {
+ int i = pOp->p1;
+ if( i>=0 && i<p->nCursor ){
+ sqlite3VdbeFreeCursor(p->apCsr[i]);
+ p->apCsr[i] = 0;
+ }
+ break;
+}
+
+/* Opcode: MoveGe P1 P2 *
+**
+** Pop the top of the stack and use its value as a key. Reposition
+** cursor P1 so that it points to the smallest entry that is greater
+** than or equal to the key that was popped ffrom the stack.
+** If there are no records greater than or equal to the key and P2
+** is not zero, then jump to P2.
+**
+** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
+*/
+/* Opcode: MoveGt P1 P2 *
+**
+** Pop the top of the stack and use its value as a key. Reposition
+** cursor P1 so that it points to the smallest entry that is greater
+** than the key from the stack.
+** If there are no records greater than the key and P2 is not zero,
+** then jump to P2.
+**
+** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
+*/
+/* Opcode: MoveLt P1 P2 *
+**
+** Pop the top of the stack and use its value as a key. Reposition
+** cursor P1 so that it points to the largest entry that is less
+** than the key from the stack.
+** If there are no records less than the key and P2 is not zero,
+** then jump to P2.
+**
+** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
+*/
+/* Opcode: MoveLe P1 P2 *
+**
+** Pop the top of the stack and use its value as a key. Reposition
+** cursor P1 so that it points to the largest entry that is less than
+** or equal to the key that was popped from the stack.
+** If there are no records less than or eqal to the key and P2 is not zero,
+** then jump to P2.
+**
+** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
+*/
+case OP_MoveLt:
+case OP_MoveLe:
+case OP_MoveGe:
+case OP_MoveGt: {
+ int i = pOp->p1;
+ Cursor *pC;
+
+ assert( pTos>=p->aStack );
+ assert( i>=0 && i<p->nCursor );
+ pC = p->apCsr[i];
+ assert( pC!=0 );
+ if( pC->pCursor!=0 ){
+ int res, oc;
+ oc = pOp->opcode;
+ pC->nullRow = 0;
+ *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
+ if( pC->intKey ){
+ i64 iKey;
+ assert( !pOp->p3 );
+ Integerify(pTos);
+ iKey = intToKey(pTos->i);
+ if( pOp->p2==0 && pOp->opcode==OP_MoveGe ){
+ pC->movetoTarget = iKey;
+ pC->deferredMoveto = 1;
+ assert( (pTos->flags & MEM_Dyn)==0 );
+ pTos--;
+ break;
+ }
+ sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, &res);
+ pC->lastRecno = pTos->i;
+ pC->recnoIsValid = res==0;
+ }else{
+ Stringify(pTos, db->enc);
+ sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
+ pC->recnoIsValid = 0;
+ }
+ pC->deferredMoveto = 0;
+ pC->cacheValid = 0;
+ *pC->pIncrKey = 0;
+ sqlite3_search_count++;
+ if( oc==OP_MoveGe || oc==OP_MoveGt ){
+ if( res<0 ){
+ sqlite3BtreeNext(pC->pCursor, &res);
+ pC->recnoIsValid = 0;
+ }else{
+ res = 0;
+ }
+ }else{
+ assert( oc==OP_MoveLt || oc==OP_MoveLe );
+ if( res>=0 ){
+ sqlite3BtreePrevious(pC->pCursor, &res);
+ pC->recnoIsValid = 0;
+ }else{
+ /* res might be negative because the table is empty. Check to
+ ** see if this is the case.
+ */
+ res = sqlite3BtreeEof(pC->pCursor);
+ }
+ }
+ if( res ){
+ if( pOp->p2>0 ){
+ pc = pOp->p2 - 1;
+ }else{
+ pC->nullRow = 1;
+ }
+ }
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: Distinct P1 P2 *
+**
+** Use the top of the stack as a string key. If a record with that key does
+** not exist in the table of cursor P1, then jump to P2. If the record
+** does already exist, then fall thru. The cursor is left pointing
+** at the record if it exists. The key is not popped from the stack.
+**
+** This operation is similar to NotFound except that this operation
+** does not pop the key from the stack.
+**
+** See also: Found, NotFound, MoveTo, IsUnique, NotExists
+*/
+/* Opcode: Found P1 P2 *
+**
+** Use the top of the stack as a string key. If a record with that key
+** does exist in table of P1, then jump to P2. If the record
+** does not exist, then fall thru. The cursor is left pointing
+** to the record if it exists. The key is popped from the stack.
+**
+** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
+*/
+/* Opcode: NotFound P1 P2 *
+**
+** Use the top of the stack as a string key. If a record with that key
+** does not exist in table of P1, then jump to P2. If the record
+** does exist, then fall thru. The cursor is left pointing to the
+** record if it exists. The key is popped from the stack.
+**
+** The difference between this operation and Distinct is that
+** Distinct does not pop the key from the stack.
+**
+** See also: Distinct, Found, MoveTo, NotExists, IsUnique
+*/
+case OP_Distinct:
+case OP_NotFound:
+case OP_Found: {
+ int i = pOp->p1;
+ int alreadyExists = 0;
+ Cursor *pC;
+ assert( pTos>=p->aStack );
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ if( (pC = p->apCsr[i])->pCursor!=0 ){
+ int res, rx;
+ assert( pC->intKey==0 );
+ Stringify(pTos, db->enc);
+ rx = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
+ alreadyExists = rx==SQLITE_OK && res==0;
+ pC->deferredMoveto = 0;
+ pC->cacheValid = 0;
+ }
+ if( pOp->opcode==OP_Found ){
+ if( alreadyExists ) pc = pOp->p2 - 1;
+ }else{
+ if( !alreadyExists ) pc = pOp->p2 - 1;
+ }
+ if( pOp->opcode!=OP_Distinct ){
+ Release(pTos);
+ pTos--;
+ }
+ break;
+}
+
+/* Opcode: IsUnique P1 P2 *
+**
+** The top of the stack is an integer record number. Call this
+** record number R. The next on the stack is an index key created
+** using MakeIdxKey. Call it K. This instruction pops R from the
+** stack but it leaves K unchanged.
+**
+** P1 is an index. So it has no data and its key consists of a
+** record generated by OP_MakeIdxKey. This key contains one or more
+** fields followed by a ROWID field.
+**
+** This instruction asks if there is an entry in P1 where the
+** fields matches K but the rowid is different from R.
+** If there is no such entry, then there is an immediate
+** jump to P2. If any entry does exist where the index string
+** matches K but the record number is not R, then the record
+** number for that entry is pushed onto the stack and control
+** falls through to the next instruction.
+**
+** See also: Distinct, NotFound, NotExists, Found
+*/
+case OP_IsUnique: {
+ int i = pOp->p1;
+ Mem *pNos = &pTos[-1];
+ Cursor *pCx;
+ BtCursor *pCrsr;
+ i64 R;
+
+ /* Pop the value R off the top of the stack
+ */
+ assert( pNos>=p->aStack );
+ Integerify(pTos);
+ R = pTos->i;
+ assert( (pTos->flags & MEM_Dyn)==0 );
+ pTos--;
+ assert( i>=0 && i<=p->nCursor );
+ pCx = p->apCsr[i];
+ assert( pCx!=0 );
+ pCrsr = pCx->pCursor;
+ if( pCrsr!=0 ){
+ int res, rc;
+ i64 v; /* The record number on the P1 entry that matches K */
+ char *zKey; /* The value of K */
+ int nKey; /* Number of bytes in K */
+ int len; /* Number of bytes in K without the rowid at the end */
+ int szRowid; /* Size of the rowid column at the end of zKey */
+
+ /* Make sure K is a string and make zKey point to K
+ */
+ Stringify(pNos, db->enc);
+ zKey = pNos->z;
+ nKey = pNos->n;
+
+ szRowid = sqlite3VdbeIdxRowidLen(nKey, zKey);
+ len = nKey-szRowid;
+
+ /* Search for an entry in P1 where all but the last four bytes match K.
+ ** If there is no such entry, jump immediately to P2.
+ */
+ assert( pCx->deferredMoveto==0 );
+ pCx->cacheValid = 0;
+ rc = sqlite3BtreeMoveto(pCrsr, zKey, len, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ if( res<0 ){
+ rc = sqlite3BtreeNext(pCrsr, &res);
+ if( res ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+ }
+ rc = sqlite3VdbeIdxKeyCompare(pCx, len, zKey, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ if( res>0 ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+
+ /* At this point, pCrsr is pointing to an entry in P1 where all but
+ ** the final entry (the rowid) matches K. Check to see if the
+ ** final rowid column is different from R. If it equals R then jump
+ ** immediately to P2.
+ */
+ rc = sqlite3VdbeIdxRowid(pCrsr, &v);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( v==R ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+
+ /* The final varint of the key is different from R. Push it onto
+ ** the stack. (The record number of an entry that violates a UNIQUE
+ ** constraint.)
+ */
+ pTos++;
+ pTos->i = v;
+ pTos->flags = MEM_Int;
+ }
+ break;
+}
+
+/* Opcode: NotExists P1 P2 *
+**
+** Use the top of the stack as a integer key. If a record with that key
+** does not exist in table of P1, then jump to P2. If the record
+** does exist, then fall thru. The cursor is left pointing to the
+** record if it exists. The integer key is popped from the stack.
+**
+** The difference between this operation and NotFound is that this
+** operation assumes the key is an integer and NotFound assumes it
+** is a string.
+**
+** See also: Distinct, Found, MoveTo, NotFound, IsUnique
+*/
+case OP_NotExists: {
+ int i = pOp->p1;
+ Cursor *pC;
+ BtCursor *pCrsr;
+ assert( pTos>=p->aStack );
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
+ int res, rx;
+ u64 iKey;
+ assert( pTos->flags & MEM_Int );
+ assert( p->apCsr[i]->intKey );
+ iKey = intToKey(pTos->i);
+ rx = sqlite3BtreeMoveto(pCrsr, 0, iKey, &res);
+ pC->lastRecno = pTos->i;
+ pC->recnoIsValid = res==0;
+ pC->nullRow = 0;
+ pC->cacheValid = 0;
+ if( rx!=SQLITE_OK || res!=0 ){
+ pc = pOp->p2 - 1;
+ pC->recnoIsValid = 0;
+ }
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: NewRecno P1 * *
+**
+** Get a new integer record number used as the key to a table.
+** The record number is not previously used as a key in the database
+** table that cursor P1 points to. The new record number is pushed
+** onto the stack.
+*/
+case OP_NewRecno: {
+ int i = pOp->p1;
+ i64 v = 0;
+ Cursor *pC;
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ if( (pC = p->apCsr[i])->pCursor==0 ){
+ /* The zero initialization above is all that is needed */
+ }else{
+ /* The next rowid or record number (different terms for the same
+ ** thing) is obtained in a two-step algorithm.
+ **
+ ** First we attempt to find the largest existing rowid and add one
+ ** to that. But if the largest existing rowid is already the maximum
+ ** positive integer, we have to fall through to the second
+ ** probabilistic algorithm
+ **
+ ** The second algorithm is to select a rowid at random and see if
+ ** it already exists in the table. If it does not exist, we have
+ ** succeeded. If the random rowid does exist, we select a new one
+ ** and try again, up to 1000 times.
+ **
+ ** For a table with less than 2 billion entries, the probability
+ ** of not finding a unused rowid is about 1.0e-300. This is a
+ ** non-zero probability, but it is still vanishingly small and should
+ ** never cause a problem. You are much, much more likely to have a
+ ** hardware failure than for this algorithm to fail.
+ **
+ ** The analysis in the previous paragraph assumes that you have a good
+ ** source of random numbers. Is a library function like lrand48()
+ ** good enough? Maybe. Maybe not. It's hard to know whether there
+ ** might be subtle bugs is some implementations of lrand48() that
+ ** could cause problems. To avoid uncertainty, SQLite uses its own
+ ** random number generator based on the RC4 algorithm.
+ **
+ ** To promote locality of reference for repetitive inserts, the
+ ** first few attempts at chosing a random rowid pick values just a little
+ ** larger than the previous rowid. This has been shown experimentally
+ ** to double the speed of the COPY operation.
+ */
+ int res, rx=SQLITE_OK, cnt;
+ i64 x;
+ cnt = 0;
+ assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
+ assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
+ if( !pC->useRandomRowid ){
+ if( pC->nextRowidValid ){
+ v = pC->nextRowid;
+ }else{
+ rx = sqlite3BtreeLast(pC->pCursor, &res);
+ if( res ){
+ v = 1;
+ }else{
+ sqlite3BtreeKeySize(pC->pCursor, &v);
+ v = keyToInt(v);
+ if( v==0x7fffffffffffffff ){
+ pC->useRandomRowid = 1;
+ }else{
+ v++;
+ }
+ }
+ }
+ if( v<0x7fffffffffffffff ){
+ pC->nextRowidValid = 1;
+ pC->nextRowid = v+1;
+ }else{
+ pC->nextRowidValid = 0;
+ }
+ }
+ if( pC->useRandomRowid ){
+ v = db->priorNewRowid;
+ cnt = 0;
+ do{
+ if( v==0 || cnt>2 ){
+ sqlite3Randomness(sizeof(v), &v);
+ if( cnt<5 ) v &= 0xffffff;
+ }else{
+ unsigned char r;
+ sqlite3Randomness(1, &r);
+ v += r + 1;
+ }
+ if( v==0 ) continue;
+ x = intToKey(v);
+ rx = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)x, &res);
+ cnt++;
+ }while( cnt<1000 && rx==SQLITE_OK && res==0 );
+ db->priorNewRowid = v;
+ if( rx==SQLITE_OK && res==0 ){
+ rc = SQLITE_FULL;
+ goto abort_due_to_error;
+ }
+ }
+ pC->recnoIsValid = 0;
+ pC->deferredMoveto = 0;
+ pC->cacheValid = 0;
+ }
+ pTos++;
+ pTos->i = v;
+ pTos->flags = MEM_Int;
+ break;
+}
+
+/* Opcode: PutIntKey P1 P2 *
+**
+** Write an entry into the table of cursor P1. A new entry is
+** created if it doesn't already exist or the data for an existing
+** entry is overwritten. The data is the value on the top of the
+** stack. The key is the next value down on the stack. The key must
+** be an integer. The stack is popped twice by this instruction.
+**
+** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
+** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P2 is set,
+** then rowid is stored for subsequent return by the
+** sqlite3_last_insert_rowid() function (otherwise it's unmodified).
+*/
+/* Opcode: PutStrKey P1 * *
+**
+** Write an entry into the table of cursor P1. A new entry is
+** created if it doesn't already exist or the data for an existing
+** entry is overwritten. The data is the value on the top of the
+** stack. The key is the next value down on the stack. The key must
+** be a string. The stack is popped twice by this instruction.
+**
+** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
+*/
+case OP_PutIntKey:
+case OP_PutStrKey: {
+ Mem *pNos = &pTos[-1];
+ int i = pOp->p1;
+ Cursor *pC;
+ assert( pNos>=p->aStack );
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ if( ((pC = p->apCsr[i])->pCursor!=0 || pC->pseudoTable) ){
+ char *zKey;
+ i64 nKey;
+ i64 iKey;
+ if( pOp->opcode==OP_PutStrKey ){
+ Stringify(pNos, db->enc);
+ nKey = pNos->n;
+ zKey = pNos->z;
+ }else{
+ assert( pNos->flags & MEM_Int );
+
+ /* If the table is an INTKEY table, set nKey to the value of
+ ** the integer key, and zKey to NULL. Otherwise, set nKey to
+ ** sizeof(i64) and point zKey at iKey. iKey contains the integer
+ ** key in the on-disk byte order.
+ */
+ iKey = intToKey(pNos->i);
+ if( pC->intKey ){
+ nKey = intToKey(pNos->i);
+ zKey = 0;
+ }else{
+ nKey = sizeof(i64);
+ zKey = (char*)&iKey;
+ }
+
+ if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
+ if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i;
+ if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){
+ pC->nextRowidValid = 0;
+ }
+ }
+ if( pTos->flags & MEM_Null ){
+ pTos->z = 0;
+ pTos->n = 0;
+ }else{
+ assert( pTos->flags & (MEM_Blob|MEM_Str) );
+ }
+ if( pC->pseudoTable ){
+ /* PutStrKey does not work for pseudo-tables.
+ ** The following assert makes sure we are not trying to use
+ ** PutStrKey on a pseudo-table
+ */
+ assert( pOp->opcode==OP_PutIntKey );
+ sqliteFree(pC->pData);
+ pC->iKey = iKey;
+ pC->nData = pTos->n;
+ if( pTos->flags & MEM_Dyn ){
+ pC->pData = pTos->z;
+ pTos->flags = MEM_Null;
+ }else{
+ pC->pData = sqliteMallocRaw( pC->nData+2 );
+ if( !pC->pData ) goto no_mem;
+ memcpy(pC->pData, pTos->z, pC->nData);
+ pC->pData[pC->nData] = 0;
+ pC->pData[pC->nData+1] = 0;
+ }
+ pC->nullRow = 0;
+ }else{
+ rc = sqlite3BtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n);
+ }
+ pC->recnoIsValid = 0;
+ pC->deferredMoveto = 0;
+ pC->cacheValid = 0;
+ }
+ popStack(&pTos, 2);
+ break;
+}
+
+/* Opcode: Delete P1 P2 *
+**
+** Delete the record at which the P1 cursor is currently pointing.
+**
+** The cursor will be left pointing at either the next or the previous
+** record in the table. If it is left pointing at the next record, then
+** the next Next instruction will be a no-op. Hence it is OK to delete
+** a record from within an Next loop.
+**
+** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
+** incremented (otherwise not).
+**
+** If P1 is a pseudo-table, then this instruction is a no-op.
+*/
+case OP_Delete: {
+ int i = pOp->p1;
+ Cursor *pC;
+ assert( i>=0 && i<p->nCursor );
+ pC = p->apCsr[i];
+ assert( pC!=0 );
+ if( pC->pCursor!=0 ){
+ sqlite3VdbeCursorMoveto(pC);
+ rc = sqlite3BtreeDelete(pC->pCursor);
+ pC->nextRowidValid = 0;
+ pC->cacheValid = 0;
+ }
+ if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
+ break;
+}
+
+/* Opcode: ResetCount P1 * *
+**
+** This opcode resets the VMs internal change counter to 0. If P1 is true,
+** then the value of the change counter is copied to the database handle
+** change counter (returned by subsequent calls to sqlite3_changes())
+** before it is reset. This is used by trigger programs.
+*/
+case OP_ResetCount: {
+ if( pOp->p1 ){
+ sqlite3VdbeSetChanges(db, p->nChange);
+ }
+ p->nChange = 0;
+ break;
+}
+
+/* Opcode: KeyAsData P1 P2 *
+**
+** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
+** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls
+** data off of the key rather than the data. This is used for
+** processing compound selects.
+*/
+case OP_KeyAsData: {
+ int i = pOp->p1;
+ Cursor *pC;
+ assert( i>=0 && i<p->nCursor );
+ pC = p->apCsr[i];
+ assert( pC!=0 );
+ pC->keyAsData = pOp->p2;
+ break;
+}
+
+/* Opcode: RowData P1 * *
+**
+** Push onto the stack the complete row data for cursor P1.
+** There is no interpretation of the data. It is just copied
+** onto the stack exactly as it is found in the database file.
+**
+** If the cursor is not pointing to a valid row, a NULL is pushed
+** onto the stack.
+*/
+/* Opcode: RowKey P1 * *
+**
+** Push onto the stack the complete row key for cursor P1.
+** There is no interpretation of the key. It is just copied
+** onto the stack exactly as it is found in the database file.
+**
+** If the cursor is not pointing to a valid row, a NULL is pushed
+** onto the stack.
+*/
+case OP_RowKey:
+case OP_RowData: {
+ int i = pOp->p1;
+ Cursor *pC;
+ u32 n;
+
+ pTos++;
+ assert( i>=0 && i<p->nCursor );
+ pC = p->apCsr[i];
+ assert( pC!=0 );
+ if( pC->nullRow ){
+ pTos->flags = MEM_Null;
+ }else if( pC->pCursor!=0 ){
+ BtCursor *pCrsr = pC->pCursor;
+ sqlite3VdbeCursorMoveto(pC);
+ if( pC->nullRow ){
+ pTos->flags = MEM_Null;
+ break;
+ }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){
+ i64 n64;
+ assert( !pC->intKey );
+ sqlite3BtreeKeySize(pCrsr, &n64);
+ n = n64;
+ }else{
+ sqlite3BtreeDataSize(pCrsr, &n);
+ }
+ pTos->n = n;
+ if( n<=NBFS ){
+ pTos->flags = MEM_Blob | MEM_Short;
+ pTos->z = pTos->zShort;
+ }else{
+ char *z = sqliteMallocRaw( n );
+ if( z==0 ) goto no_mem;
+ pTos->flags = MEM_Blob | MEM_Dyn;
+ pTos->xDel = 0;
+ pTos->z = z;
+ }
+ if( pC->keyAsData || pOp->opcode==OP_RowKey ){
+ sqlite3BtreeKey(pCrsr, 0, n, pTos->z);
+ }else{
+ sqlite3BtreeData(pCrsr, 0, n, pTos->z);
+ }
+ }else if( pC->pseudoTable ){
+ pTos->n = pC->nData;
+ pTos->z = pC->pData;
+ pTos->flags = MEM_Blob|MEM_Ephem;
+ }else{
+ pTos->flags = MEM_Null;
+ }
+ break;
+}
+
+/* Opcode: Recno P1 * *
+**
+** Push onto the stack an integer which is the first 4 bytes of the
+** the key to the current entry in a sequential scan of the database
+** file P1. The sequential scan should have been started using the
+** Next opcode.
+*/
+case OP_Recno: {
+ int i = pOp->p1;
+ Cursor *pC;
+ i64 v;
+
+ assert( i>=0 && i<p->nCursor );
+ pC = p->apCsr[i];
+ assert( pC!=0 );
+ sqlite3VdbeCursorMoveto(pC);
+ pTos++;
+ if( pC->recnoIsValid ){
+ v = pC->lastRecno;
+ }else if( pC->pseudoTable ){
+ v = keyToInt(pC->iKey);
+ }else if( pC->nullRow || pC->pCursor==0 ){
+ pTos->flags = MEM_Null;
+ break;
+ }else{
+ assert( pC->pCursor!=0 );
+ sqlite3BtreeKeySize(pC->pCursor, &v);
+ v = keyToInt(v);
+ }
+ pTos->i = v;
+ pTos->flags = MEM_Int;
+ break;
+}
+
+/* Opcode: FullKey P1 * *
+**
+** Extract the complete key from the record that cursor P1 is currently
+** pointing to and push the key onto the stack as a string.
+**
+** Compare this opcode to Recno. The Recno opcode extracts the first
+** 4 bytes of the key and pushes those bytes onto the stack as an
+** integer. This instruction pushes the entire key as a string.
+**
+** This opcode may not be used on a pseudo-table.
+*/
+case OP_FullKey: {
+ int i = pOp->p1;
+ BtCursor *pCrsr;
+ Cursor *pC;
+
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ assert( p->apCsr[i]->keyAsData );
+ assert( !p->apCsr[i]->pseudoTable );
+ pTos++;
+ pTos->flags = MEM_Null;
+ if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
+ i64 amt;
+ char *z;
+
+ sqlite3VdbeCursorMoveto(pC);
+ assert( pC->intKey==0 );
+ sqlite3BtreeKeySize(pCrsr, &amt);
+ if( amt<=0 ){
+ rc = SQLITE_CORRUPT;
+ goto abort_due_to_error;
+ }
+ if( amt>NBFS ){
+ z = sqliteMallocRaw( amt );
+ if( z==0 ) goto no_mem;
+ pTos->flags = MEM_Blob | MEM_Dyn;
+ pTos->xDel = 0;
+ }else{
+ z = pTos->zShort;
+ pTos->flags = MEM_Blob | MEM_Short;
+ }
+ sqlite3BtreeKey(pCrsr, 0, amt, z);
+ pTos->z = z;
+ pTos->n = amt;
+ }
+ break;
+}
+
+/* Opcode: NullRow P1 * *
+**
+** Move the cursor P1 to a null row. Any OP_Column operations
+** that occur while the cursor is on the null row will always push
+** a NULL onto the stack.
+*/
+case OP_NullRow: {
+ int i = pOp->p1;
+ Cursor *pC;
+
+ assert( i>=0 && i<p->nCursor );
+ pC = p->apCsr[i];
+ assert( pC!=0 );
+ pC->nullRow = 1;
+ pC->recnoIsValid = 0;
+ break;
+}
+
+/* Opcode: Last P1 P2 *
+**
+** The next use of the Recno or Column or Next instruction for P1
+** will refer to the last entry in the database table or index.
+** If the table or index is empty and P2>0, then jump immediately to P2.
+** If P2 is 0 or if the table or index is not empty, fall through
+** to the following instruction.
+*/
+case OP_Last: {
+ int i = pOp->p1;
+ Cursor *pC;
+ BtCursor *pCrsr;
+
+ assert( i>=0 && i<p->nCursor );
+ pC = p->apCsr[i];
+ assert( pC!=0 );
+ if( (pCrsr = pC->pCursor)!=0 ){
+ int res;
+ rc = sqlite3BtreeLast(pCrsr, &res);
+ pC->nullRow = res;
+ pC->deferredMoveto = 0;
+ pC->cacheValid = 0;
+ if( res && pOp->p2>0 ){
+ pc = pOp->p2 - 1;
+ }
+ }else{
+ pC->nullRow = 0;
+ }
+ break;
+}
+
+/* Opcode: Rewind P1 P2 *
+**
+** The next use of the Recno or Column or Next instruction for P1
+** will refer to the first entry in the database table or index.
+** If the table or index is empty and P2>0, then jump immediately to P2.
+** If P2 is 0 or if the table or index is not empty, fall through
+** to the following instruction.
+*/
+case OP_Rewind: {
+ int i = pOp->p1;
+ Cursor *pC;
+ BtCursor *pCrsr;
+ int res;
+
+ assert( i>=0 && i<p->nCursor );
+ pC = p->apCsr[i];
+ assert( pC!=0 );
+ if( (pCrsr = pC->pCursor)!=0 ){
+ rc = sqlite3BtreeFirst(pCrsr, &res);
+ pC->atFirst = res==0;
+ pC->deferredMoveto = 0;
+ pC->cacheValid = 0;
+ }else{
+ res = 1;
+ }
+ pC->nullRow = res;
+ if( res && pOp->p2>0 ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: Next P1 P2 *
+**
+** Advance cursor P1 so that it points to the next key/data pair in its
+** table or index. If there are no more key/value pairs then fall through
+** to the following instruction. But if the cursor advance was successful,
+** jump immediately to P2.
+**
+** See also: Prev
+*/
+/* Opcode: Prev P1 P2 *
+**
+** Back up cursor P1 so that it points to the previous key/data pair in its
+** table or index. If there is no previous key/value pairs then fall through
+** to the following instruction. But if the cursor backup was successful,
+** jump immediately to P2.
+*/
+case OP_Prev:
+case OP_Next: {
+ Cursor *pC;
+ BtCursor *pCrsr;
+
+ CHECK_FOR_INTERRUPT;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ if( (pCrsr = pC->pCursor)!=0 ){
+ int res;
+ if( pC->nullRow ){
+ res = 1;
+ }else{
+ assert( pC->deferredMoveto==0 );
+ rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
+ sqlite3BtreePrevious(pCrsr, &res);
+ pC->nullRow = res;
+ pC->cacheValid = 0;
+ }
+ if( res==0 ){
+ pc = pOp->p2 - 1;
+ sqlite3_search_count++;
+ }
+ }else{
+ pC->nullRow = 1;
+ }
+ pC->recnoIsValid = 0;
+ break;
+}
+
+/* Opcode: IdxPut P1 P2 P3
+**
+** The top of the stack holds a SQL index key made using the
+** MakeIdxKey instruction. This opcode writes that key into the
+** index P1. Data for the entry is nil.
+**
+** If P2==1, then the key must be unique. If the key is not unique,
+** the program aborts with a SQLITE_CONSTRAINT error and the database
+** is rolled back. If P3 is not null, then it becomes part of the
+** error message returned with the SQLITE_CONSTRAINT.
+*/
+case OP_IdxPut: {
+ int i = pOp->p1;
+ Cursor *pC;
+ BtCursor *pCrsr;
+ assert( pTos>=p->aStack );
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ assert( pTos->flags & MEM_Blob );
+ if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
+ int nKey = pTos->n;
+ const char *zKey = pTos->z;
+ if( pOp->p2 ){
+ int res;
+ int len;
+
+ /* 'len' is the length of the key minus the rowid at the end */
+ len = nKey - sqlite3VdbeIdxRowidLen(nKey, zKey);
+
+ rc = sqlite3BtreeMoveto(pCrsr, zKey, len, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ while( res!=0 && !sqlite3BtreeEof(pCrsr) ){
+ int c;
+ if( sqlite3VdbeIdxKeyCompare(pC, len, zKey, &c)==SQLITE_OK && c==0 ){
+ rc = SQLITE_CONSTRAINT;
+ if( pOp->p3 && pOp->p3[0] ){
+ sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0);
+ }
+ goto abort_due_to_error;
+ }
+ if( res<0 ){
+ sqlite3BtreeNext(pCrsr, &res);
+ res = +1;
+ }else{
+ break;
+ }
+ }
+ }
+ assert( pC->intKey==0 );
+ rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0);
+ assert( pC->deferredMoveto==0 );
+ pC->cacheValid = 0;
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: IdxDelete P1 * *
+**
+** The top of the stack is an index key built using the MakeIdxKey opcode.
+** This opcode removes that entry from the index.
+*/
+case OP_IdxDelete: {
+ int i = pOp->p1;
+ Cursor *pC;
+ BtCursor *pCrsr;
+ assert( pTos>=p->aStack );
+ assert( pTos->flags & MEM_Blob );
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
+ int rx, res;
+ rx = sqlite3BtreeMoveto(pCrsr, pTos->z, pTos->n, &res);
+ if( rx==SQLITE_OK && res==0 ){
+ rc = sqlite3BtreeDelete(pCrsr);
+ }
+ assert( pC->deferredMoveto==0 );
+ pC->cacheValid = 0;
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: IdxRecno P1 * *
+**
+** Push onto the stack an integer which is the varint located at the
+** end of the index key pointed to by cursor P1. These integer should be
+** the record number of the table entry to which this index entry points.
+**
+** See also: Recno, MakeIdxKey.
+*/
+case OP_IdxRecno: {
+ int i = pOp->p1;
+ BtCursor *pCrsr;
+ Cursor *pC;
+
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ pTos++;
+ pTos->flags = MEM_Null;
+ if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
+ i64 rowid;
+
+ assert( pC->deferredMoveto==0 );
+ assert( pC->intKey==0 );
+ if( pC->nullRow ){
+ pTos->flags = MEM_Null;
+ }else{
+ rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ pTos->flags = MEM_Int;
+ pTos->i = rowid;
+ }
+ }
+ break;
+}
+
+/* Opcode: IdxGT P1 P2 *
+**
+** The top of the stack is an index entry that omits the ROWID. Compare
+** the top of stack against the index that P1 is currently pointing to.
+** Ignore the ROWID on the P1 index.
+**
+** The top of the stack might have fewer columns that P1.
+**
+** If the P1 index entry is greater than the top of the stack
+** then jump to P2. Otherwise fall through to the next instruction.
+** In either case, the stack is popped once.
+*/
+/* Opcode: IdxGE P1 P2 P3
+**
+** The top of the stack is an index entry that omits the ROWID. Compare
+** the top of stack against the index that P1 is currently pointing to.
+** Ignore the ROWID on the P1 index.
+**
+** If the P1 index entry is greater than or equal to the top of the stack
+** then jump to P2. Otherwise fall through to the next instruction.
+** In either case, the stack is popped once.
+**
+** If P3 is the "+" string (or any other non-NULL string) then the
+** index taken from the top of the stack is temporarily increased by
+** an epsilon prior to the comparison. This make the opcode work
+** like IdxGT except that if the key from the stack is a prefix of
+** the key in the cursor, the result is false whereas it would be
+** true with IdxGT.
+*/
+/* Opcode: IdxLT P1 P2 P3
+**
+** The top of the stack is an index entry that omits the ROWID. Compare
+** the top of stack against the index that P1 is currently pointing to.
+** Ignore the ROWID on the P1 index.
+**
+** If the P1 index entry is less than the top of the stack
+** then jump to P2. Otherwise fall through to the next instruction.
+** In either case, the stack is popped once.
+**
+** If P3 is the "+" string (or any other non-NULL string) then the
+** index taken from the top of the stack is temporarily increased by
+** an epsilon prior to the comparison. This makes the opcode work
+** like IdxLE.
+*/
+case OP_IdxLT:
+case OP_IdxGT:
+case OP_IdxGE: {
+ int i= pOp->p1;
+ BtCursor *pCrsr;
+ Cursor *pC;
+
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ assert( pTos>=p->aStack );
+ if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
+ int res, rc;
+
+ assert( pTos->flags & MEM_Blob ); /* Created using OP_Make*Key */
+ Stringify(pTos, db->enc);
+ assert( pC->deferredMoveto==0 );
+ *pC->pIncrKey = pOp->p3!=0;
+ assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT );
+ rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, pTos->z, &res);
+ *pC->pIncrKey = 0;
+ if( rc!=SQLITE_OK ){
+ break;
+ }
+ if( pOp->opcode==OP_IdxLT ){
+ res = -res;
+ }else if( pOp->opcode==OP_IdxGE ){
+ res++;
+ }
+ if( res>0 ){
+ pc = pOp->p2 - 1 ;
+ }
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: IdxIsNull P1 P2 *
+**
+** The top of the stack contains an index entry such as might be generated
+** by the MakeIdxKey opcode. This routine looks at the first P1 fields of
+** that key. If any of the first P1 fields are NULL, then a jump is made
+** to address P2. Otherwise we fall straight through.
+**
+** The index entry is always popped from the stack.
+*/
+case OP_IdxIsNull: {
+ int i = pOp->p1;
+ int k, n;
+ const char *z;
+ u32 serial_type;
+
+ assert( pTos>=p->aStack );
+ assert( pTos->flags & MEM_Blob );
+ z = pTos->z;
+ n = pTos->n;
+ k = sqlite3GetVarint32(z, &serial_type);
+ for(; k<n && i>0; i--){
+ k += sqlite3GetVarint32(&z[k], &serial_type);
+ if( serial_type==0 ){ /* Serial type 0 is a NULL */
+ pc = pOp->p2-1;
+ break;
+ }
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: Destroy P1 P2 *
+**
+** Delete an entire database table or index whose root page in the database
+** file is given by P1.
+**
+** The table being destroyed is in the main database file if P2==0. If
+** P2==1 then the table to be clear is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** See also: Clear
+*/
+case OP_Destroy: {
+ rc = sqlite3BtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1);
+ break;
+}
+
+/* Opcode: Clear P1 P2 *
+**
+** Delete all contents of the database table or index whose root page
+** in the database file is given by P1. But, unlike Destroy, do not
+** remove the table or index from the database file.
+**
+** The table being clear is in the main database file if P2==0. If
+** P2==1 then the table to be clear is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** See also: Destroy
+*/
+case OP_Clear: {
+ rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
+ break;
+}
+
+/* Opcode: CreateTable P1 * *
+**
+** Allocate a new table in the main database file if P2==0 or in the
+** auxiliary database file if P2==1. Push the page number
+** for the root page of the new table onto the stack.
+**
+** The difference between a table and an index is this: A table must
+** have a 4-byte integer key and can have arbitrary data. An index
+** has an arbitrary key but no data.
+**
+** See also: CreateIndex
+*/
+/* Opcode: CreateIndex P1 * *
+**
+** Allocate a new index in the main database file if P2==0 or in the
+** auxiliary database file if P2==1. Push the page number of the
+** root page of the new index onto the stack.
+**
+** See documentation on OP_CreateTable for additional information.
+*/
+case OP_CreateIndex:
+case OP_CreateTable: {
+ int pgno;
+ int flags;
+ Db *pDb;
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ pDb = &db->aDb[pOp->p1];
+ assert( pDb->pBt!=0 );
+ if( pOp->opcode==OP_CreateTable ){
+ /* flags = BTREE_INTKEY; */
+ flags = BTREE_LEAFDATA|BTREE_INTKEY;
+ }else{
+ flags = BTREE_ZERODATA;
+ }
+ rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
+ pTos++;
+ if( rc==SQLITE_OK ){
+ pTos->i = pgno;
+ pTos->flags = MEM_Int;
+ }else{
+ pTos->flags = MEM_Null;
+ }
+ break;
+}
+
+/* Opcode: ParseSchema P1 * P3
+**
+** Read and parse all entries from the SQLITE_MASTER table of database P1
+** that match the WHERE clause P3.
+**
+** This opcode invokes the parser to create a new virtual machine,
+** then runs the new virtual machine. It is thus a reentrant opcode.
+*/
+case OP_ParseSchema: {
+ char *zSql;
+ int iDb = pOp->p1;
+ const char *zMaster;
+ InitData initData;
+
+ assert( iDb>=0 && iDb<db->nDb );
+ if( !DbHasProperty(db, iDb, DB_SchemaLoaded) ) break;
+ zMaster = iDb==1 ? TEMP_MASTER_NAME : MASTER_NAME;
+ initData.db = db;
+ initData.pzErrMsg = &p->zErrMsg;
+ zSql = sqlite3MPrintf(
+ "SELECT name, rootpage, sql, %d FROM '%q'.%s WHERE %s",
+ pOp->p1, db->aDb[iDb].zName, zMaster, pOp->p3);
+ if( zSql==0 ) goto no_mem;
+ sqlite3SafetyOff(db);
+ assert( db->init.busy==0 );
+ db->init.busy = 1;
+ rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
+ db->init.busy = 0;
+ sqlite3SafetyOn(db);
+ sqliteFree(zSql);
+ break;
+}
+
+/* Opcode: DropTable P1 * P3
+**
+** Remove the internal (in-memory) data structures that describe
+** the table named P3 in database P1. This is called after a table
+** is dropped in order to keep the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropTable: {
+ sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3);
+ break;
+}
+
+/* Opcode: DropIndex P1 * P3
+**
+** Remove the internal (in-memory) data structures that describe
+** the index named P3 in database P1. This is called after an index
+** is dropped in order to keep the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropIndex: {
+ sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3);
+ break;
+}
+
+/* Opcode: DropTrigger P1 * P3
+**
+** Remove the internal (in-memory) data structures that describe
+** the trigger named P3 in database P1. This is called after a trigger
+** is dropped in order to keep the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropTrigger: {
+ sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3);
+ break;
+}
+
+
+/* Opcode: IntegrityCk * P2 *
+**
+** Do an analysis of the currently open database. Push onto the
+** stack the text of an error message describing any problems.
+** If there are no errors, push a "ok" onto the stack.
+**
+** The root page numbers of all tables in the database are integer
+** values on the stack. This opcode pulls as many integers as it
+** can off of the stack and uses those numbers as the root pages.
+**
+** If P2 is not zero, the check is done on the auxiliary database
+** file, not the main database file.
+**
+** This opcode is used for testing purposes only.
+*/
+case OP_IntegrityCk: {
+ int nRoot;
+ int *aRoot;
+ int j;
+ char *z;
+
+ for(nRoot=0; &pTos[-nRoot]>=p->aStack; nRoot++){
+ if( (pTos[-nRoot].flags & MEM_Int)==0 ) break;
+ }
+ assert( nRoot>0 );
+ aRoot = sqliteMallocRaw( sizeof(int*)*(nRoot+1) );
+ if( aRoot==0 ) goto no_mem;
+ for(j=0; j<nRoot; j++){
+ Mem *pMem = &pTos[-j];
+ aRoot[j] = pMem->i;
+ }
+ aRoot[j] = 0;
+ popStack(&pTos, nRoot);
+ pTos++;
+ z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
+ if( z==0 || z[0]==0 ){
+ if( z ) sqliteFree(z);
+ pTos->z = "ok";
+ pTos->n = 2;
+ pTos->flags = MEM_Str | MEM_Static | MEM_Term;
+ }else{
+ pTos->z = z;
+ pTos->n = strlen(z);
+ pTos->flags = MEM_Str | MEM_Dyn | MEM_Term;
+ pTos->xDel = 0;
+ }
+ pTos->enc = SQLITE_UTF8;
+ sqlite3VdbeChangeEncoding(pTos, db->enc);
+ sqliteFree(aRoot);
+ break;
+}
+
+/* Opcode: ListWrite * * *
+**
+** Write the integer on the top of the stack
+** into the temporary storage list.
+*/
+case OP_ListWrite: {
+ Keylist *pKeylist;
+ assert( pTos>=p->aStack );
+ pKeylist = p->pList;
+ if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
+ pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
+ if( pKeylist==0 ) goto no_mem;
+ pKeylist->nKey = 1000;
+ pKeylist->nRead = 0;
+ pKeylist->nUsed = 0;
+ pKeylist->pNext = p->pList;
+ p->pList = pKeylist;
+ }
+ Integerify(pTos);
+ pKeylist->aKey[pKeylist->nUsed++] = pTos->i;
+ assert( (pTos->flags & MEM_Dyn)==0 );
+ pTos--;
+ break;
+}
+
+/* Opcode: ListRewind * * *
+**
+** Rewind the temporary buffer back to the beginning.
+*/
+case OP_ListRewind: {
+ /* What this opcode codes, really, is reverse the order of the
+ ** linked list of Keylist structures so that they are read out
+ ** in the same order that they were read in. */
+ Keylist *pRev, *pTop;
+ pRev = 0;
+ while( p->pList ){
+ pTop = p->pList;
+ p->pList = pTop->pNext;
+ pTop->pNext = pRev;
+ pRev = pTop;
+ }
+ p->pList = pRev;
+ break;
+}
+
+/* Opcode: ListRead * P2 *
+**
+** Attempt to read an integer from the temporary storage buffer
+** and push it onto the stack. If the storage buffer is empty,
+** push nothing but instead jump to P2.
+*/
+case OP_ListRead: {
+ Keylist *pKeylist;
+ CHECK_FOR_INTERRUPT;
+ pKeylist = p->pList;
+ if( pKeylist!=0 ){
+ assert( pKeylist->nRead>=0 );
+ assert( pKeylist->nRead<pKeylist->nUsed );
+ assert( pKeylist->nRead<pKeylist->nKey );
+ pTos++;
+ pTos->i = pKeylist->aKey[pKeylist->nRead++];
+ pTos->flags = MEM_Int;
+ if( pKeylist->nRead>=pKeylist->nUsed ){
+ p->pList = pKeylist->pNext;
+ sqliteFree(pKeylist);
+ }
+ }else{
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: ListReset * * *
+**
+** Reset the temporary storage buffer so that it holds nothing.
+*/
+case OP_ListReset: {
+ if( p->pList ){
+ sqlite3VdbeKeylistFree(p->pList);
+ p->pList = 0;
+ }
+ break;
+}
+
+/* Opcode: ContextPush * * *
+**
+** Save the current Vdbe context such that it can be restored by a ContextPop
+** opcode. The context stores the last insert row id, the last statement change
+** count, and the current statement change count.
+*/
+case OP_ContextPush: {
+ int i = p->contextStackTop++;
+ Context *pContext;
+
+ assert( i>=0 );
+ /* FIX ME: This should be allocated as part of the vdbe at compile-time */
+ if( i>=p->contextStackDepth ){
+ p->contextStackDepth = i+1;
+ p->contextStack = sqliteRealloc(p->contextStack, sizeof(Context)*(i+1));
+ if( p->contextStack==0 ) goto no_mem;
+ }
+ pContext = &p->contextStack[i];
+ pContext->lastRowid = db->lastRowid;
+ pContext->nChange = p->nChange;
+ pContext->pList = p->pList;
+ p->pList = 0;
+ break;
+}
+
+/* Opcode: ContextPop * * *
+**
+** Restore the Vdbe context to the state it was in when contextPush was last
+** executed. The context stores the last insert row id, the last statement
+** change count, and the current statement change count.
+*/
+case OP_ContextPop: {
+ Context *pContext = &p->contextStack[--p->contextStackTop];
+ assert( p->contextStackTop>=0 );
+ db->lastRowid = pContext->lastRowid;
+ p->nChange = pContext->nChange;
+ sqlite3VdbeKeylistFree(p->pList);
+ p->pList = pContext->pList;
+ break;
+}
+
+/* Opcode: SortPut * * *
+**
+** The TOS is the key and the NOS is the data. Pop both from the stack
+** and put them on the sorter. The key and data should have been
+** made using SortMakeKey and SortMakeRec, respectively.
+*/
+case OP_SortPut: {
+ Mem *pNos = &pTos[-1];
+ Sorter *pSorter;
+ assert( pNos>=p->aStack );
+ if( Dynamicify(pTos, db->enc) ) goto no_mem;
+ pSorter = sqliteMallocRaw( sizeof(Sorter) );
+ if( pSorter==0 ) goto no_mem;
+ pSorter->pNext = p->pSort;
+ p->pSort = pSorter;
+ assert( pTos->flags & MEM_Dyn );
+ pSorter->nKey = pTos->n;
+ pSorter->zKey = pTos->z;
+ pSorter->data.flags = MEM_Null;
+ rc = sqlite3VdbeMemMove(&pSorter->data, pNos);
+ pTos -= 2;
+ break;
+}
+
+/* Opcode: Sort * * P3
+**
+** Sort all elements on the sorter. The algorithm is a
+** mergesort. The P3 argument is a pointer to a KeyInfo structure
+** that describes the keys to be sorted.
+*/
+case OP_Sort: {
+ int i;
+ KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3;
+ Sorter *pElem;
+ Sorter *apSorter[NSORT];
+ pKeyInfo->enc = p->db->enc;
+ for(i=0; i<NSORT; i++){
+ apSorter[i] = 0;
+ }
+ while( p->pSort ){
+ pElem = p->pSort;
+ p->pSort = pElem->pNext;
+ pElem->pNext = 0;
+ for(i=0; i<NSORT-1; i++){
+ if( apSorter[i]==0 ){
+ apSorter[i] = pElem;
+ break;
+ }else{
+ pElem = Merge(apSorter[i], pElem, pKeyInfo);
+ apSorter[i] = 0;
+ }
+ }
+ if( i>=NSORT-1 ){
+ apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem, pKeyInfo);
+ }
+ }
+ pElem = 0;
+ for(i=0; i<NSORT; i++){
+ pElem = Merge(apSorter[i], pElem, pKeyInfo);
+ }
+ p->pSort = pElem;
+ break;
+}
+
+/* Opcode: SortNext * P2 *
+**
+** Push the data for the topmost element in the sorter onto the
+** stack, then remove the element from the sorter. If the sorter
+** is empty, push nothing on the stack and instead jump immediately
+** to instruction P2.
+*/
+case OP_SortNext: {
+ Sorter *pSorter = p->pSort;
+ CHECK_FOR_INTERRUPT;
+ if( pSorter!=0 ){
+ p->pSort = pSorter->pNext;
+ pTos++;
+ pTos->flags = MEM_Null;
+ rc = sqlite3VdbeMemMove(pTos, &pSorter->data);
+ sqliteFree(pSorter->zKey);
+ sqliteFree(pSorter);
+ }else{
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: SortReset * * *
+**
+** Remove any elements that remain on the sorter.
+*/
+case OP_SortReset: {
+ sqlite3VdbeSorterReset(p);
+ break;
+}
+
+/* Opcode: MemStore P1 P2 *
+**
+** Write the top of the stack into memory location P1.
+** P1 should be a small integer since space is allocated
+** for all memory locations between 0 and P1 inclusive.
+**
+** After the data is stored in the memory location, the
+** stack is popped once if P2 is 1. If P2 is zero, then
+** the original data remains on the stack.
+*/
+case OP_MemStore: {
+ assert( pTos>=p->aStack );
+ assert( pOp->p1>=0 && pOp->p1<p->nMem );
+ rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos);
+ pTos--;
+
+ /* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will
+ ** restore the top of the stack to its original value.
+ */
+ if( pOp->p2 ){
+ break;
+ }
+}
+/* Opcode: MemLoad P1 * *
+**
+** Push a copy of the value in memory location P1 onto the stack.
+**
+** If the value is a string, then the value pushed is a pointer to
+** the string that is stored in the memory location. If the memory
+** location is subsequently changed (using OP_MemStore) then the
+** value pushed onto the stack will change too.
+*/
+case OP_MemLoad: {
+ int i = pOp->p1;
+ assert( i>=0 && i<p->nMem );
+ pTos++;
+ sqlite3VdbeMemShallowCopy(pTos, &p->aMem[i], MEM_Ephem);
+ break;
+}
+
+/* Opcode: MemIncr P1 P2 *
+**
+** Increment the integer valued memory cell P1 by 1. If P2 is not zero
+** and the result after the increment is greater than zero, then jump
+** to P2.
+**
+** This instruction throws an error if the memory cell is not initially
+** an integer.
+*/
+case OP_MemIncr: {
+ int i = pOp->p1;
+ Mem *pMem;
+ assert( i>=0 && i<p->nMem );
+ pMem = &p->aMem[i];
+ assert( pMem->flags==MEM_Int );
+ pMem->i++;
+ if( pOp->p2>0 && pMem->i>0 ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: AggReset P1 P2 P3
+**
+** Reset the aggregator so that it no longer contains any data.
+** Future aggregator elements will contain P2 values each and be sorted
+** using the KeyInfo structure pointed to by P3.
+**
+** If P1 is non-zero, then only a single aggregator row is available (i.e.
+** there is no GROUP BY expression). In this case it is illegal to invoke
+** OP_AggFocus.
+*/
+case OP_AggReset: {
+ assert( !pOp->p3 || pOp->p3type==P3_KEYINFO );
+ if( pOp->p1 ){
+ rc = sqlite3VdbeAggReset(0, &p->agg, (KeyInfo *)pOp->p3);
+ p->agg.nMem = pOp->p2; /* Agg.nMem is used by AggInsert() */
+ rc = AggInsert(&p->agg, 0, 0);
+ }else{
+ rc = sqlite3VdbeAggReset(db, &p->agg, (KeyInfo *)pOp->p3);
+ p->agg.nMem = pOp->p2;
+ }
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) );
+ if( p->agg.apFunc==0 ) goto no_mem;
+ break;
+}
+
+/* Opcode: AggInit * P2 P3
+**
+** Initialize the function parameters for an aggregate function.
+** The aggregate will operate out of aggregate column P2.
+** P3 is a pointer to the FuncDef structure for the function.
+*/
+case OP_AggInit: {
+ int i = pOp->p2;
+ assert( i>=0 && i<p->agg.nMem );
+ p->agg.apFunc[i] = (FuncDef*)pOp->p3;
+ break;
+}
+
+/* Opcode: AggFunc * P2 P3
+**
+** Execute the step function for an aggregate. The
+** function has P2 arguments. P3 is a pointer to the FuncDef
+** structure that specifies the function.
+**
+** The top of the stack must be an integer which is the index of
+** the aggregate column that corresponds to this aggregate function.
+** Ideally, this index would be another parameter, but there are
+** no free parameters left. The integer is popped from the stack.
+*/
+case OP_AggFunc: {
+ int n = pOp->p2;
+ int i;
+ Mem *pMem, *pRec;
+ sqlite3_context ctx;
+ sqlite3_value **apVal;
+
+ assert( n>=0 );
+ assert( pTos->flags==MEM_Int );
+ pRec = &pTos[-n];
+ assert( pRec>=p->aStack );
+
+ apVal = p->apArg;
+ assert( apVal || n==0 );
+
+ for(i=0; i<n; i++, pRec++){
+ apVal[i] = pRec;
+ storeTypeInfo(pRec, db->enc);
+ }
+ i = pTos->i;
+ assert( i>=0 && i<p->agg.nMem );
+ ctx.pFunc = (FuncDef*)pOp->p3;
+ pMem = &p->agg.pCurrent->aMem[i];
+ ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */
+ ctx.pAgg = pMem->z;
+ ctx.cnt = ++pMem->i;
+ ctx.isError = 0;
+ ctx.isStep = 1;
+ ctx.pColl = 0;
+ if( ctx.pFunc->needCollSeq ){
+ assert( pOp>p->aOp );
+ assert( pOp[-1].p3type==P3_COLLSEQ );
+ assert( pOp[-1].opcode==OP_CollSeq );
+ ctx.pColl = (CollSeq *)pOp[-1].p3;
+ }
+ (ctx.pFunc->xStep)(&ctx, n, apVal);
+ pMem->z = ctx.pAgg;
+ pMem->flags = MEM_AggCtx;
+ popStack(&pTos, n+1);
+ if( ctx.isError ){
+ rc = SQLITE_ERROR;
+ }
+ break;
+}
+
+/* Opcode: AggFocus * P2 *
+**
+** Pop the top of the stack and use that as an aggregator key. If
+** an aggregator with that same key already exists, then make the
+** aggregator the current aggregator and jump to P2. If no aggregator
+** with the given key exists, create one and make it current but
+** do not jump.
+**
+** The order of aggregator opcodes is important. The order is:
+** AggReset AggFocus AggNext. In other words, you must execute
+** AggReset first, then zero or more AggFocus operations, then
+** zero or more AggNext operations. You must not execute an AggFocus
+** in between an AggNext and an AggReset.
+*/
+case OP_AggFocus: {
+ char *zKey;
+ int nKey;
+ int res;
+ assert( pTos>=p->aStack );
+ Stringify(pTos, db->enc);
+ zKey = pTos->z;
+ nKey = pTos->n;
+ assert( p->agg.pBtree );
+ assert( p->agg.pCsr );
+ rc = sqlite3BtreeMoveto(p->agg.pCsr, zKey, nKey, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( res==0 ){
+ rc = sqlite3BtreeData(p->agg.pCsr, 0, sizeof(AggElem*),
+ (char *)&p->agg.pCurrent);
+ pc = pOp->p2 - 1;
+ }else{
+ rc = AggInsert(&p->agg, zKey, nKey);
+ }
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: AggSet * P2 *
+**
+** Move the top of the stack into the P2-th field of the current
+** aggregate. String values are duplicated into new memory.
+*/
+case OP_AggSet: {
+ AggElem *pFocus;
+ int i = pOp->p2;
+ pFocus = p->agg.pCurrent;
+ assert( pTos>=p->aStack );
+ if( pFocus==0 ) goto no_mem;
+ assert( i>=0 && i<p->agg.nMem );
+ rc = sqlite3VdbeMemMove(&pFocus->aMem[i], pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: AggGet * P2 *
+**
+** Push a new entry onto the stack which is a copy of the P2-th field
+** of the current aggregate. Strings are not duplicated so
+** string values will be ephemeral.
+*/
+case OP_AggGet: {
+ AggElem *pFocus;
+ int i = pOp->p2;
+ pFocus = p->agg.pCurrent;
+ if( pFocus==0 ) goto no_mem;
+ assert( i>=0 && i<p->agg.nMem );
+ pTos++;
+ sqlite3VdbeMemShallowCopy(pTos, &pFocus->aMem[i], MEM_Ephem);
+ if( pTos->flags&MEM_Str ){
+ sqlite3VdbeChangeEncoding(pTos, db->enc);
+ }
+ break;
+}
+
+/* Opcode: AggNext * P2 *
+**
+** Make the next aggregate value the current aggregate. The prior
+** aggregate is deleted. If all aggregate values have been consumed,
+** jump to P2.
+**
+** The order of aggregator opcodes is important. The order is:
+** AggReset AggFocus AggNext. In other words, you must execute
+** AggReset first, then zero or more AggFocus operations, then
+** zero or more AggNext operations. You must not execute an AggFocus
+** in between an AggNext and an AggReset.
+*/
+case OP_AggNext: {
+ int res;
+ assert( rc==SQLITE_OK );
+ CHECK_FOR_INTERRUPT;
+ if( p->agg.searching==0 ){
+ p->agg.searching = 1;
+ if( p->agg.pCsr ){
+ rc = sqlite3BtreeFirst(p->agg.pCsr, &res);
+ }else{
+ res = 0;
+ }
+ }else{
+ if( p->agg.pCsr ){
+ rc = sqlite3BtreeNext(p->agg.pCsr, &res);
+ }else{
+ res = 1;
+ }
+ }
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ if( res!=0 ){
+ pc = pOp->p2 - 1;
+ }else{
+ int i;
+ sqlite3_context ctx;
+ Mem *aMem;
+
+ if( p->agg.pCsr ){
+ rc = sqlite3BtreeData(p->agg.pCsr, 0, sizeof(AggElem*),
+ (char *)&p->agg.pCurrent);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ }
+ aMem = p->agg.pCurrent->aMem;
+ for(i=0; i<p->agg.nMem; i++){
+ FuncDef *pFunc = p->agg.apFunc[i];
+ Mem *pMem = &aMem[i];
+ if( pFunc==0 || pFunc->xFinalize==0 ) continue;
+ ctx.s.flags = MEM_Null;
+ ctx.s.z = pMem->zShort;
+ ctx.pAgg = (void*)pMem->z;
+ ctx.cnt = pMem->i;
+ ctx.isStep = 0;
+ ctx.pFunc = pFunc;
+ pFunc->xFinalize(&ctx);
+ pMem->z = ctx.pAgg;
+ if( pMem->z && pMem->z!=pMem->zShort ){
+ sqliteFree( pMem->z );
+ }
+ *pMem = ctx.s;
+ if( pMem->flags & MEM_Short ){
+ pMem->z = pMem->zShort;
+ }
+ }
+ }
+ break;
+}
+
+/* Opcode: Vacuum * * *
+**
+** Vacuum the entire database. This opcode will cause other virtual
+** machines to be created and run. It may not be called from within
+** a transaction.
+*/
+case OP_Vacuum: {
+ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ rc = sqlite3RunVacuum(&p->zErrMsg, db);
+ if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
+ break;
+}
+
+/* An other opcode is illegal...
+*/
+default: {
+ sqlite3_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode);
+ sqlite3SetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0);
+ rc = SQLITE_INTERNAL;
+ break;
+}
+
+/*****************************************************************************
+** The cases of the switch statement above this line should all be indented
+** by 6 spaces. But the left-most 6 spaces have been removed to improve the
+** readability. From this point on down, the normal indentation rules are
+** restored.
+*****************************************************************************/
+ }
+
+#ifdef VDBE_PROFILE
+ {
+ long long elapse = hwtime() - start;
+ pOp->cycles += elapse;
+ pOp->cnt++;
+#if 0
+ fprintf(stdout, "%10lld ", elapse);
+ sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
+#endif
+ }
+#endif
+
+ /* The following code adds nothing to the actual functionality
+ ** of the program. It is only here for testing and debugging.
+ ** On the other hand, it does burn CPU cycles every time through
+ ** the evaluator loop. So we can leave it out when NDEBUG is defined.
+ */
+#ifndef NDEBUG
+ /* Sanity checking on the top element of the stack */
+ if( pTos>=p->aStack ){
+ sqlite3VdbeMemSanity(pTos, db->enc);
+ }
+ if( pc<-1 || pc>=p->nOp ){
+ sqlite3SetString(&p->zErrMsg, "jump destination out of range", (char*)0);
+ rc = SQLITE_INTERNAL;
+ }
+ if( p->trace && pTos>=p->aStack ){
+ int i;
+ fprintf(p->trace, "Stack:");
+ for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
+ if( pTos[i].flags & MEM_Null ){
+ fprintf(p->trace, " NULL");
+ }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
+ fprintf(p->trace, " si:%lld", pTos[i].i);
+ }else if( pTos[i].flags & MEM_Int ){
+ fprintf(p->trace, " i:%lld", pTos[i].i);
+ }else if( pTos[i].flags & MEM_Real ){
+ fprintf(p->trace, " r:%g", pTos[i].r);
+ }else{
+ char zBuf[100];
+ sqlite3VdbeMemPrettyPrint(&pTos[i], zBuf, 100);
+ fprintf(p->trace, " ");
+ fprintf(p->trace, "%s", zBuf);
+ }
+ }
+ if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
+ fprintf(p->trace,"\n");
+ }
+#endif
+ } /* The end of the for(;;) loop the loops through opcodes */
+
+ /* If we reach this point, it means that execution is finished.
+ */
+vdbe_halt:
+ if( rc ){
+ p->rc = rc;
+ rc = SQLITE_ERROR;
+ }else{
+ rc = SQLITE_DONE;
+ }
+ sqlite3VdbeHalt(p);
+ p->pTos = pTos;
+ return rc;
+
+ /* Jump to here if a malloc() fails. It's hard to get a malloc()
+ ** to fail on a modern VM computer, so this code is untested.
+ */
+no_mem:
+ sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0);
+ rc = SQLITE_NOMEM;
+ goto vdbe_halt;
+
+ /* Jump to here for an SQLITE_MISUSE error.
+ */
+abort_due_to_misuse:
+ rc = SQLITE_MISUSE;
+ /* Fall thru into abort_due_to_error */
+
+ /* Jump to here for any other kind of fatal error. The "rc" variable
+ ** should hold the error number.
+ */
+abort_due_to_error:
+ if( p->zErrMsg==0 ){
+ if( sqlite3_malloc_failed ) rc = SQLITE_NOMEM;
+ sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
+ }
+ goto vdbe_halt;
+
+ /* Jump to here if the sqlite3_interrupt() API sets the interrupt
+ ** flag.
+ */
+abort_due_to_interrupt:
+ assert( db->flags & SQLITE_Interrupt );
+ db->flags &= ~SQLITE_Interrupt;
+ if( db->magic!=SQLITE_MAGIC_BUSY ){
+ rc = SQLITE_MISUSE;
+ }else{
+ rc = SQLITE_INTERRUPT;
+ }
+ p->rc = rc;
+ sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
+ goto vdbe_halt;
+}