diff options
Diffstat (limited to 'kopete/plugins/statistics/sqlite/vdbe.c')
-rw-r--r-- | kopete/plugins/statistics/sqlite/vdbe.c | 4450 |
1 files changed, 4450 insertions, 0 deletions
diff --git a/kopete/plugins/statistics/sqlite/vdbe.c b/kopete/plugins/statistics/sqlite/vdbe.c new file mode 100644 index 00000000..58f8c731 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/vdbe.c @@ -0,0 +1,4450 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** The code in this file implements execution method of the +** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") +** handles housekeeping details such as creating and deleting +** VDBE instances. This file is solely interested in executing +** the VDBE program. +** +** In the external interface, an "sqlite3_stmt*" is an opaque pointer +** to a VDBE. +** +** The SQL parser generates a program which is then executed by +** the VDBE to do the work of the SQL statement. VDBE programs are +** similar in form to assembly language. The program consists of +** a linear sequence of operations. Each operation has an opcode +** and 3 operands. Operands P1 and P2 are integers. Operand P3 +** is a null-terminated string. The P2 operand must be non-negative. +** Opcodes will typically ignore one or more operands. Many opcodes +** ignore all three operands. +** +** Computation results are stored on a stack. Each entry on the +** stack is either an integer, a null-terminated string, a floating point +** number, or the SQL "NULL" value. An inplicit conversion from one +** type to the other occurs as necessary. +** +** Most of the code in this file is taken up by the sqlite3VdbeExec() +** function which does the work of interpreting a VDBE program. +** But other routines are also provided to help in building up +** a program instruction by instruction. +** +** Various scripts scan this source file in order to generate HTML +** documentation, headers files, or other derived files. The formatting +** of the code in this file is, therefore, important. See other comments +** in this file for details. If in doubt, do not deviate from existing +** commenting and indentation practices when changing or adding code. +** +** $Id$ +*/ +#include "sqliteInt.h" +#include "os.h" +#include <ctype.h> +#include "vdbeInt.h" + +/* +** The following global variable is incremented every time a cursor +** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test +** procedures use this information to make sure that indices are +** working correctly. This variable has no function other than to +** help verify the correct operation of the library. +*/ +int sqlite3_search_count = 0; + +/* +** When this global variable is positive, it gets decremented once before +** each instruction in the VDBE. When reaches zero, the SQLITE_Interrupt +** of the db.flags field is set in order to simulate and interrupt. +** +** This facility is used for testing purposes only. It does not function +** in an ordinary build. +*/ +int sqlite3_interrupt_count = 0; + +/* +** Release the memory associated with the given stack level. This +** leaves the Mem.flags field in an inconsistent state. +*/ +#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); } + +/* +** Convert the given stack entity into a string if it isn't one +** already. Return non-zero if a malloc() fails. +*/ +#define Stringify(P, enc) \ + if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ + { goto no_mem; } + +/* +** Convert the given stack entity into a string that has been obtained +** from sqliteMalloc(). This is different from Stringify() above in that +** Stringify() will use the NBFS bytes of static string space if the string +** will fit but this routine always mallocs for space. +** Return non-zero if we run out of memory. +*/ +#define Dynamicify(P,enc) sqlite3VdbeMemDynamicify(P) + + +/* +** An ephemeral string value (signified by the MEM_Ephem flag) contains +** a pointer to a dynamically allocated string where some other entity +** is responsible for deallocating that string. Because the stack entry +** does not control the string, it might be deleted without the stack +** entry knowing it. +** +** This routine converts an ephemeral string into a dynamically allocated +** string that the stack entry itself controls. In other words, it +** converts an MEM_Ephem string into an MEM_Dyn string. +*/ +#define Deephemeralize(P) \ + if( ((P)->flags&MEM_Ephem)!=0 \ + && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} + +/* +** Convert the given stack entity into a integer if it isn't one +** already. +** +** Any prior string or real representation is invalidated. +** NULLs are converted into 0. +*/ +#define Integerify(P) sqlite3VdbeMemIntegerify(P) + +/* +** Convert P so that it has type MEM_Real. +** +** Any prior string or integer representation is invalidated. +** NULLs are converted into 0.0. +*/ +#define Realify(P) sqlite3VdbeMemRealify(P) + +/* +** Argument pMem points at a memory cell that will be passed to a +** user-defined function or returned to the user as the result of a query. +** The second argument, 'db_enc' is the text encoding used by the vdbe for +** stack variables. This routine sets the pMem->enc and pMem->type +** variables used by the sqlite3_value_*() routines. +*/ +#define storeTypeInfo(A,B) _storeTypeInfo(A) +static void _storeTypeInfo(Mem *pMem){ + int flags = pMem->flags; + if( flags & MEM_Null ){ + pMem->type = SQLITE_NULL; + } + else if( flags & MEM_Int ){ + pMem->type = SQLITE_INTEGER; + } + else if( flags & MEM_Real ){ + pMem->type = SQLITE_FLOAT; + } + else if( flags & MEM_Str ){ + pMem->type = SQLITE_TEXT; + }else{ + pMem->type = SQLITE_BLOB; + } +} + +/* +** Insert a new aggregate element and make it the element that +** has focus. +** +** Return 0 on success and 1 if memory is exhausted. +*/ +static int AggInsert(Agg *p, char *zKey, int nKey){ + AggElem *pElem; + int i; + int rc; + pElem = sqliteMalloc( sizeof(AggElem) + nKey + + (p->nMem-1)*sizeof(pElem->aMem[0]) ); + if( pElem==0 ) return SQLITE_NOMEM; + pElem->zKey = (char*)&pElem->aMem[p->nMem]; + memcpy(pElem->zKey, zKey, nKey); + pElem->nKey = nKey; + + if( p->pCsr ){ + rc = sqlite3BtreeInsert(p->pCsr, zKey, nKey, &pElem, sizeof(AggElem*)); + if( rc!=SQLITE_OK ){ + sqliteFree(pElem); + return rc; + } + } + + for(i=0; i<p->nMem; i++){ + pElem->aMem[i].flags = MEM_Null; + } + p->pCurrent = pElem; + return 0; +} + +/* +** Pop the stack N times. +*/ +static void popStack(Mem **ppTos, int N){ + Mem *pTos = *ppTos; + while( N>0 ){ + N--; + Release(pTos); + pTos--; + } + *ppTos = pTos; +} + +/* +** The parameters are pointers to the head of two sorted lists +** of Sorter structures. Merge these two lists together and return +** a single sorted list. This routine forms the core of the merge-sort +** algorithm. +** +** In the case of a tie, left sorts in front of right. +*/ +static Sorter *Merge(Sorter *pLeft, Sorter *pRight, KeyInfo *pKeyInfo){ + Sorter sHead; + Sorter *pTail; + pTail = &sHead; + pTail->pNext = 0; + while( pLeft && pRight ){ + int c = sqlite3VdbeRecordCompare(pKeyInfo, pLeft->nKey, pLeft->zKey, + pRight->nKey, pRight->zKey); + if( c<=0 ){ + pTail->pNext = pLeft; + pLeft = pLeft->pNext; + }else{ + pTail->pNext = pRight; + pRight = pRight->pNext; + } + pTail = pTail->pNext; + } + if( pLeft ){ + pTail->pNext = pLeft; + }else if( pRight ){ + pTail->pNext = pRight; + } + return sHead.pNext; +} + +/* +** Allocate cursor number iCur. Return a pointer to it. Return NULL +** if we run out of memory. +*/ +static Cursor *allocateCursor(Vdbe *p, int iCur){ + Cursor *pCx; + assert( iCur<p->nCursor ); + if( p->apCsr[iCur] ){ + sqlite3VdbeFreeCursor(p->apCsr[iCur]); + } + p->apCsr[iCur] = pCx = sqliteMalloc( sizeof(Cursor) ); + return pCx; +} + +/* +** Apply any conversion required by the supplied column affinity to +** memory cell pRec. affinity may be one of: +** +** SQLITE_AFF_NUMERIC +** SQLITE_AFF_TEXT +** SQLITE_AFF_NONE +** SQLITE_AFF_INTEGER +** +*/ +static void applyAffinity(Mem *pRec, char affinity, u8 enc){ + if( affinity==SQLITE_AFF_NONE ){ + /* do nothing */ + }else if( affinity==SQLITE_AFF_TEXT ){ + /* Only attempt the conversion to TEXT if there is an integer or real + ** representation (blob and NULL do not get converted) but no string + ** representation. + */ + if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ + sqlite3VdbeMemStringify(pRec, enc); + } + pRec->flags &= ~(MEM_Real|MEM_Int); + }else{ + if( 0==(pRec->flags&(MEM_Real|MEM_Int)) ){ + /* pRec does not have a valid integer or real representation. + ** Attempt a conversion if pRec has a string representation and + ** it looks like a number. + */ + int realnum; + sqlite3VdbeMemNulTerminate(pRec); + if( pRec->flags&MEM_Str && sqlite3IsNumber(pRec->z, &realnum, enc) ){ + if( realnum ){ + Realify(pRec); + }else{ + Integerify(pRec); + } + } + } + + if( affinity==SQLITE_AFF_INTEGER ){ + /* For INTEGER affinity, try to convert a real value to an int */ + if( (pRec->flags&MEM_Real) && !(pRec->flags&MEM_Int) ){ + pRec->i = pRec->r; + if( ((double)pRec->i)==pRec->r ){ + pRec->flags |= MEM_Int; + } + } + } + } +} + +#ifndef NDEBUG +/* +** Write a nice string representation of the contents of cell pMem +** into buffer zBuf, length nBuf. +*/ +void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf, int nBuf){ + char *zCsr = zBuf; + int f = pMem->flags; + + static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; + + if( f&MEM_Blob ){ + int i; + char c; + if( f & MEM_Dyn ){ + c = 'z'; + assert( (f & (MEM_Static|MEM_Ephem))==0 ); + }else if( f & MEM_Static ){ + c = 't'; + assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); + }else if( f & MEM_Ephem ){ + c = 'e'; + assert( (f & (MEM_Static|MEM_Dyn))==0 ); + }else{ + c = 's'; + } + + zCsr += sprintf(zCsr, "%c", c); + zCsr += sprintf(zCsr, "%d[", pMem->n); + for(i=0; i<16 && i<pMem->n; i++){ + zCsr += sprintf(zCsr, "%02X ", ((int)pMem->z[i] & 0xFF)); + } + for(i=0; i<16 && i<pMem->n; i++){ + char z = pMem->z[i]; + if( z<32 || z>126 ) *zCsr++ = '.'; + else *zCsr++ = z; + } + + zCsr += sprintf(zCsr, "]"); + *zCsr = '\0'; + }else if( f & MEM_Str ){ + int j, k; + zBuf[0] = ' '; + if( f & MEM_Dyn ){ + zBuf[1] = 'z'; + assert( (f & (MEM_Static|MEM_Ephem))==0 ); + }else if( f & MEM_Static ){ + zBuf[1] = 't'; + assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); + }else if( f & MEM_Ephem ){ + zBuf[1] = 'e'; + assert( (f & (MEM_Static|MEM_Dyn))==0 ); + }else{ + zBuf[1] = 's'; + } + k = 2; + k += sprintf(&zBuf[k], "%d", pMem->n); + zBuf[k++] = '['; + for(j=0; j<15 && j<pMem->n; j++){ + u8 c = pMem->z[j]; + if( c>=0x20 && c<0x7f ){ + zBuf[k++] = c; + }else{ + zBuf[k++] = '.'; + } + } + zBuf[k++] = ']'; + k += sprintf(&zBuf[k], encnames[pMem->enc]); + zBuf[k++] = 0; + } +} +#endif + + +#ifdef VDBE_PROFILE +/* +** The following routine only works on pentium-class processors. +** It uses the RDTSC opcode to read cycle count value out of the +** processor and returns that value. This can be used for high-res +** profiling. +*/ +__inline__ unsigned long long int hwtime(void){ + unsigned long long int x; + __asm__("rdtsc\n\t" + "mov %%edx, %%ecx\n\t" + :"=A" (x)); + return x; +} +#endif + +/* +** The CHECK_FOR_INTERRUPT macro defined here looks to see if the +** sqlite3_interrupt() routine has been called. If it has been, then +** processing of the VDBE program is interrupted. +** +** This macro added to every instruction that does a jump in order to +** implement a loop. This test used to be on every single instruction, +** but that meant we more testing that we needed. By only testing the +** flag on jump instructions, we get a (small) speed improvement. +*/ +#define CHECK_FOR_INTERRUPT \ + if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt; + + +/* +** Execute as much of a VDBE program as we can then return. +** +** sqlite3VdbeMakeReady() must be called before this routine in order to +** close the program with a final OP_Halt and to set up the callbacks +** and the error message pointer. +** +** Whenever a row or result data is available, this routine will either +** invoke the result callback (if there is one) or return with +** SQLITE_ROW. +** +** If an attempt is made to open a locked database, then this routine +** will either invoke the busy callback (if there is one) or it will +** return SQLITE_BUSY. +** +** If an error occurs, an error message is written to memory obtained +** from sqliteMalloc() and p->zErrMsg is made to point to that memory. +** The error code is stored in p->rc and this routine returns SQLITE_ERROR. +** +** If the callback ever returns non-zero, then the program exits +** immediately. There will be no error message but the p->rc field is +** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. +** +** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this +** routine to return SQLITE_ERROR. +** +** Other fatal errors return SQLITE_ERROR. +** +** After this routine has finished, sqlite3VdbeFinalize() should be +** used to clean up the mess that was left behind. +*/ +int sqlite3VdbeExec( + Vdbe *p /* The VDBE */ +){ + int pc; /* The program counter */ + Op *pOp; /* Current operation */ + int rc = SQLITE_OK; /* Value to return */ + sqlite3 *db = p->db; /* The database */ + Mem *pTos; /* Top entry in the operand stack */ + char zBuf[100]; /* Space to sprintf() an integer */ +#ifdef VDBE_PROFILE + unsigned long long start; /* CPU clock count at start of opcode */ + int origPc; /* Program counter at start of opcode */ +#endif +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK + int nProgressOps = 0; /* Opcodes executed since progress callback. */ +#endif + + if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE; + assert( db->magic==SQLITE_MAGIC_BUSY ); + assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); + p->rc = SQLITE_OK; + assert( p->explain==0 ); + pTos = p->pTos; + if( sqlite3_malloc_failed ) goto no_mem; + if( p->popStack ){ + popStack(&pTos, p->popStack); + p->popStack = 0; + } + p->resOnStack = 0; + CHECK_FOR_INTERRUPT; + for(pc=p->pc; rc==SQLITE_OK; pc++){ + assert( pc>=0 && pc<p->nOp ); + assert( pTos<=&p->aStack[pc] ); +#ifdef VDBE_PROFILE + origPc = pc; + start = hwtime(); +#endif + pOp = &p->aOp[pc]; + + /* Only allow tracing if NDEBUG is not defined. + */ +#ifndef NDEBUG + if( p->trace ){ + if( pc==0 ){ + printf("VDBE Execution Trace:\n"); + sqlite3VdbePrintSql(p); + } + sqlite3VdbePrintOp(p->trace, pc, pOp); + } +#endif +#ifdef SQLITE_TEST + if( p->trace==0 && pc==0 && sqlite3OsFileExists("vdbe_sqltrace") ){ + sqlite3VdbePrintSql(p); + } +#endif + + + /* Check to see if we need to simulate an interrupt. This only happens + ** if we have a special test build. + */ +#ifdef SQLITE_TEST + if( sqlite3_interrupt_count>0 ){ + sqlite3_interrupt_count--; + if( sqlite3_interrupt_count==0 ){ + sqlite3_interrupt(db); + } + } +#endif + +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK + /* Call the progress callback if it is configured and the required number + ** of VDBE ops have been executed (either since this invocation of + ** sqlite3VdbeExec() or since last time the progress callback was called). + ** If the progress callback returns non-zero, exit the virtual machine with + ** a return code SQLITE_ABORT. + */ + if( db->xProgress ){ + if( db->nProgressOps==nProgressOps ){ + if( db->xProgress(db->pProgressArg)!=0 ){ + rc = SQLITE_ABORT; + continue; /* skip to the next iteration of the for loop */ + } + nProgressOps = 0; + } + nProgressOps++; + } +#endif + + switch( pOp->opcode ){ + +/***************************************************************************** +** What follows is a massive switch statement where each case implements a +** separate instruction in the virtual machine. If we follow the usual +** indentation conventions, each case should be indented by 6 spaces. But +** that is a lot of wasted space on the left margin. So the code within +** the switch statement will break with convention and be flush-left. Another +** big comment (similar to this one) will mark the point in the code where +** we transition back to normal indentation. +** +** The formatting of each case is important. The makefile for SQLite +** generates two C files "opcodes.h" and "opcodes.c" by scanning this +** file looking for lines that begin with "case OP_". The opcodes.h files +** will be filled with #defines that give unique integer values to each +** opcode and the opcodes.c file is filled with an array of strings where +** each string is the symbolic name for the corresponding opcode. If the +** case statement is followed by a comment of the form "/# same as ... #/" +** that comment is used to determine the particular value of the opcode. +** +** Documentation about VDBE opcodes is generated by scanning this file +** for lines of that contain "Opcode:". That line and all subsequent +** comment lines are used in the generation of the opcode.html documentation +** file. +** +** SUMMARY: +** +** Formatting is important to scripts that scan this file. +** Do not deviate from the formatting style currently in use. +** +*****************************************************************************/ + +/* Opcode: Goto * P2 * +** +** An unconditional jump to address P2. +** The next instruction executed will be +** the one at index P2 from the beginning of +** the program. +*/ +case OP_Goto: { + CHECK_FOR_INTERRUPT; + pc = pOp->p2 - 1; + break; +} + +/* Opcode: Gosub * P2 * +** +** Push the current address plus 1 onto the return address stack +** and then jump to address P2. +** +** The return address stack is of limited depth. If too many +** OP_Gosub operations occur without intervening OP_Returns, then +** the return address stack will fill up and processing will abort +** with a fatal error. +*/ +case OP_Gosub: { + assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) ); + p->returnStack[p->returnDepth++] = pc+1; + pc = pOp->p2 - 1; + break; +} + +/* Opcode: Return * * * +** +** Jump immediately to the next instruction after the last unreturned +** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then +** processing aborts with a fatal error. +*/ +case OP_Return: { + assert( p->returnDepth>0 ); + p->returnDepth--; + pc = p->returnStack[p->returnDepth] - 1; + break; +} + +/* Opcode: Halt P1 P2 * +** +** Exit immediately. All open cursors, Lists, Sorts, etc are closed +** automatically. +** +** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), +** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). +** For errors, it can be some other value. If P1!=0 then P2 will determine +** whether or not to rollback the current transaction. Do not rollback +** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, +** then back out all changes that have occurred during this execution of the +** VDBE, but do not rollback the transaction. +** +** There is an implied "Halt 0 0 0" instruction inserted at the very end of +** every program. So a jump past the last instruction of the program +** is the same as executing Halt. +*/ +case OP_Halt: { + p->pTos = pTos; + p->rc = pOp->p1; + p->pc = pc; + p->errorAction = pOp->p2; + if( pOp->p3 ){ + sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0); + } + rc = sqlite3VdbeHalt(p); + if( rc==SQLITE_BUSY ){ + p->rc = SQLITE_BUSY; + return SQLITE_BUSY; + }else if( rc!=SQLITE_OK ){ + p->rc = rc; + } + return p->rc ? SQLITE_ERROR : SQLITE_DONE; +} + +/* Opcode: Integer P1 * P3 +** +** The integer value P1 is pushed onto the stack. If P3 is not zero +** then it is assumed to be a string representation of the same integer. +** If P1 is zero and P3 is not zero, then the value is derived from P3. +*/ +case OP_Integer: { + pTos++; + if( pOp->p3==0 ){ + pTos->flags = MEM_Int; + pTos->i = pOp->p1; + }else{ + pTos->flags = MEM_Str|MEM_Static|MEM_Term; + pTos->z = pOp->p3; + pTos->n = strlen(pTos->z); + pTos->enc = SQLITE_UTF8; + pTos->i = sqlite3VdbeIntValue(pTos); + pTos->flags |= MEM_Int; + } + break; +} + +/* Opcode: Real * * P3 +** +** The string value P3 is converted to a real and pushed on to the stack. +*/ +case OP_Real: { /* same as TK_FLOAT */ + pTos++; + pTos->flags = MEM_Str|MEM_Static|MEM_Term; + pTos->z = pOp->p3; + pTos->n = strlen(pTos->z); + pTos->enc = SQLITE_UTF8; + pTos->r = sqlite3VdbeRealValue(pTos); + pTos->flags |= MEM_Real; + sqlite3VdbeChangeEncoding(pTos, db->enc); + break; +} + +/* Opcode: String8 * * P3 +** +** P3 points to a nul terminated UTF-8 string. This opcode is transformed +** into an OP_String before it is executed for the first time. +*/ +case OP_String8: { /* same as TK_STRING */ + pOp->opcode = OP_String; + + if( db->enc!=SQLITE_UTF8 && pOp->p3 ){ + pTos++; + sqlite3VdbeMemSetStr(pTos, pOp->p3, -1, SQLITE_UTF8, SQLITE_STATIC); + if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, db->enc) ) goto no_mem; + if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem; + pTos->flags &= ~(MEM_Dyn); + pTos->flags |= MEM_Static; + if( pOp->p3type==P3_DYNAMIC ){ + sqliteFree(pOp->p3); + } + pOp->p3type = P3_DYNAMIC; + pOp->p3 = pTos->z; + break; + } + /* Otherwise fall through to the next case, OP_String */ +} + +/* Opcode: String * * P3 +** +** The string value P3 is pushed onto the stack. If P3==0 then a +** NULL is pushed onto the stack. P3 is assumed to be a nul terminated +** string encoded with the database native encoding. +*/ +case OP_String: { + pTos++; + if( pOp->p3 ){ + pTos->flags = MEM_Str|MEM_Static|MEM_Term; + pTos->z = pOp->p3; + if( db->enc==SQLITE_UTF8 ){ + pTos->n = strlen(pTos->z); + }else{ + pTos->n = sqlite3utf16ByteLen(pTos->z, -1); + } + pTos->enc = db->enc; + }else{ + pTos->flags = MEM_Null; + } + break; +} + +/* Opcode: HexBlob * * P3 +** +** P3 is an UTF-8 SQL hex encoding of a blob. The blob is pushed onto the +** vdbe stack. +** +** The first time this instruction executes, in transforms itself into a +** 'Blob' opcode with a binary blob as P3. +*/ +case OP_HexBlob: { /* same as TK_BLOB */ + pOp->opcode = OP_Blob; + pOp->p1 = strlen(pOp->p3)/2; + if( pOp->p1 ){ + char *zBlob = sqlite3HexToBlob(pOp->p3); + if( !zBlob ) goto no_mem; + if( pOp->p3type==P3_DYNAMIC ){ + sqliteFree(pOp->p3); + } + pOp->p3 = zBlob; + pOp->p3type = P3_DYNAMIC; + }else{ + if( pOp->p3type==P3_DYNAMIC ){ + sqliteFree(pOp->p3); + } + pOp->p3type = P3_STATIC; + pOp->p3 = ""; + } + + /* Fall through to the next case, OP_Blob. */ +} + +/* Opcode: Blob P1 * P3 +** +** P3 points to a blob of data P1 bytes long. Push this +** value onto the stack. This instruction is not coded directly +** by the compiler. Instead, the compiler layer specifies +** an OP_HexBlob opcode, with the hex string representation of +** the blob as P3. This opcode is transformed to an OP_Blob +** before execution (within the sqlite3_prepare() function). +*/ +case OP_Blob: { + pTos++; + sqlite3VdbeMemSetStr(pTos, pOp->p3, pOp->p1, 0, 0); + break; +} + +/* Opcode: Variable P1 * * +** +** Push the value of variable P1 onto the stack. A variable is +** an unknown in the original SQL string as handed to sqlite3_compile(). +** Any occurance of the '?' character in the original SQL is considered +** a variable. Variables in the SQL string are number from left to +** right beginning with 1. The values of variables are set using the +** sqlite3_bind() API. +*/ +case OP_Variable: { + int j = pOp->p1 - 1; + assert( j>=0 && j<p->nVar ); + + pTos++; + sqlite3VdbeMemShallowCopy(pTos, &p->aVar[j], MEM_Static); + break; +} + +/* Opcode: Pop P1 * * +** +** P1 elements are popped off of the top of stack and discarded. +*/ +case OP_Pop: { + assert( pOp->p1>=0 ); + popStack(&pTos, pOp->p1); + assert( pTos>=&p->aStack[-1] ); + break; +} + +/* Opcode: Dup P1 P2 * +** +** A copy of the P1-th element of the stack +** is made and pushed onto the top of the stack. +** The top of the stack is element 0. So the +** instruction "Dup 0 0 0" will make a copy of the +** top of the stack. +** +** If the content of the P1-th element is a dynamically +** allocated string, then a new copy of that string +** is made if P2==0. If P2!=0, then just a pointer +** to the string is copied. +** +** Also see the Pull instruction. +*/ +case OP_Dup: { + Mem *pFrom = &pTos[-pOp->p1]; + assert( pFrom<=pTos && pFrom>=p->aStack ); + pTos++; + sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem); + if( pOp->p2 ){ + Deephemeralize(pTos); + } + break; +} + +/* Opcode: Pull P1 * * +** +** The P1-th element is removed from its current location on +** the stack and pushed back on top of the stack. The +** top of the stack is element 0, so "Pull 0 0 0" is +** a no-op. "Pull 1 0 0" swaps the top two elements of +** the stack. +** +** See also the Dup instruction. +*/ +case OP_Pull: { + Mem *pFrom = &pTos[-pOp->p1]; + int i; + Mem ts; + + ts = *pFrom; + Deephemeralize(pTos); + for(i=0; i<pOp->p1; i++, pFrom++){ + Deephemeralize(&pFrom[1]); + assert( (pFrom->flags & MEM_Ephem)==0 ); + *pFrom = pFrom[1]; + if( pFrom->flags & MEM_Short ){ + assert( pFrom->flags & (MEM_Str|MEM_Blob) ); + assert( pFrom->z==pFrom[1].zShort ); + pFrom->z = pFrom->zShort; + } + } + *pTos = ts; + if( pTos->flags & MEM_Short ){ + assert( pTos->flags & (MEM_Str|MEM_Blob) ); + assert( pTos->z==pTos[-pOp->p1].zShort ); + pTos->z = pTos->zShort; + } + break; +} + +/* Opcode: Push P1 * * +** +** Overwrite the value of the P1-th element down on the +** stack (P1==0 is the top of the stack) with the value +** of the top of the stack. Then pop the top of the stack. +*/ +case OP_Push: { + Mem *pTo = &pTos[-pOp->p1]; + + assert( pTo>=p->aStack ); + sqlite3VdbeMemMove(pTo, pTos); + pTos--; + break; +} + +/* Opcode: Callback P1 * * +** +** Pop P1 values off the stack and form them into an array. Then +** invoke the callback function using the newly formed array as the +** 3rd parameter. +*/ +case OP_Callback: { + int i; + assert( p->nResColumn==pOp->p1 ); + + for(i=0; i<pOp->p1; i++){ + Mem *pVal = &pTos[0-i]; + sqlite3VdbeMemNulTerminate(pVal); + storeTypeInfo(pVal, db->enc); + } + + p->resOnStack = 1; + p->nCallback++; + p->popStack = pOp->p1; + p->pc = pc + 1; + p->pTos = pTos; + return SQLITE_ROW; +} + +/* Opcode: Concat P1 P2 * +** +** Look at the first P1+2 elements of the stack. Append them all +** together with the lowest element first. The original P1+2 elements +** are popped from the stack if P2==0 and retained if P2==1. If +** any element of the stack is NULL, then the result is NULL. +** +** When P1==1, this routine makes a copy of the top stack element +** into memory obtained from sqliteMalloc(). +*/ +case OP_Concat: { /* same as TK_CONCAT */ + char *zNew; + int nByte; + int nField; + int i, j; + Mem *pTerm; + + /* Loop through the stack elements to see how long the result will be. */ + nField = pOp->p1 + 2; + pTerm = &pTos[1-nField]; + nByte = 0; + for(i=0; i<nField; i++, pTerm++){ + assert( pOp->p2==0 || (pTerm->flags&MEM_Str) ); + if( pTerm->flags&MEM_Null ){ + nByte = -1; + break; + } + Stringify(pTerm, db->enc); + nByte += pTerm->n; + } + + if( nByte<0 ){ + /* If nByte is less than zero, then there is a NULL value on the stack. + ** In this case just pop the values off the stack (if required) and + ** push on a NULL. + */ + if( pOp->p2==0 ){ + popStack(&pTos, nField); + } + pTos++; + pTos->flags = MEM_Null; + }else{ + /* Otherwise malloc() space for the result and concatenate all the + ** stack values. + */ + zNew = sqliteMallocRaw( nByte+2 ); + if( zNew==0 ) goto no_mem; + j = 0; + pTerm = &pTos[1-nField]; + for(i=j=0; i<nField; i++, pTerm++){ + int n = pTerm->n; + assert( pTerm->flags & MEM_Str ); + memcpy(&zNew[j], pTerm->z, n); + j += n; + } + zNew[j] = 0; + zNew[j+1] = 0; + assert( j==nByte ); + + if( pOp->p2==0 ){ + popStack(&pTos, nField); + } + pTos++; + pTos->n = j; + pTos->flags = MEM_Str|MEM_Dyn|MEM_Term; + pTos->xDel = 0; + pTos->enc = db->enc; + pTos->z = zNew; + } + break; +} + +/* Opcode: Add * * * +** +** Pop the top two elements from the stack, add them together, +** and push the result back onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the addition. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: Multiply * * * +** +** Pop the top two elements from the stack, multiply them together, +** and push the result back onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the multiplication. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: Subtract * * * +** +** Pop the top two elements from the stack, subtract the +** first (what was on top of the stack) from the second (the +** next on stack) +** and push the result back onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the subtraction. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: Divide * * * +** +** Pop the top two elements from the stack, divide the +** first (what was on top of the stack) from the second (the +** next on stack) +** and push the result back onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the division. Division by zero returns NULL. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: Remainder * * * +** +** Pop the top two elements from the stack, divide the +** first (what was on top of the stack) from the second (the +** next on stack) +** and push the remainder after division onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the division. Division by zero returns NULL. +** If either operand is NULL, the result is NULL. +*/ +case OP_Add: /* same as TK_PLUS */ +case OP_Subtract: /* same as TK_MINUS */ +case OP_Multiply: /* same as TK_STAR */ +case OP_Divide: /* same as TK_SLASH */ +case OP_Remainder: { /* same as TK_REM */ + Mem *pNos = &pTos[-1]; + assert( pNos>=p->aStack ); + if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){ + Release(pTos); + pTos--; + Release(pTos); + pTos->flags = MEM_Null; + }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){ + i64 a, b; + a = pTos->i; + b = pNos->i; + switch( pOp->opcode ){ + case OP_Add: b += a; break; + case OP_Subtract: b -= a; break; + case OP_Multiply: b *= a; break; + case OP_Divide: { + if( a==0 ) goto divide_by_zero; + b /= a; + break; + } + default: { + if( a==0 ) goto divide_by_zero; + b %= a; + break; + } + } + Release(pTos); + pTos--; + Release(pTos); + pTos->i = b; + pTos->flags = MEM_Int; + }else{ + double a, b; + a = sqlite3VdbeRealValue(pTos); + b = sqlite3VdbeRealValue(pNos); + switch( pOp->opcode ){ + case OP_Add: b += a; break; + case OP_Subtract: b -= a; break; + case OP_Multiply: b *= a; break; + case OP_Divide: { + if( a==0.0 ) goto divide_by_zero; + b /= a; + break; + } + default: { + int ia = (int)a; + int ib = (int)b; + if( ia==0.0 ) goto divide_by_zero; + b = ib % ia; + break; + } + } + Release(pTos); + pTos--; + Release(pTos); + pTos->r = b; + pTos->flags = MEM_Real; + } + break; + +divide_by_zero: + Release(pTos); + pTos--; + Release(pTos); + pTos->flags = MEM_Null; + break; +} + +/* Opcode: CollSeq * * P3 +** +** P3 is a pointer to a CollSeq struct. If the next call to a user function +** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will +** be returned. This is used by the built-in min(), max() and nullif() +** built-in functions. +** +** The interface used by the implementation of the aforementioned functions +** to retrieve the collation sequence set by this opcode is not available +** publicly, only to user functions defined in func.c. +*/ +case OP_CollSeq: { + assert( pOp->p3type==P3_COLLSEQ ); + break; +} + +/* Opcode: Function P1 P2 P3 +** +** Invoke a user function (P3 is a pointer to a Function structure that +** defines the function) with P1 arguments taken from the stack. Pop all +** arguments from the stack and push back the result. +** +** P2 is a 32-bit bitmask indicating whether or not each argument to the +** function was determined to be constant at compile time. If the first +** argument was constant then bit 0 of P2 is set. This is used to determine +** whether meta data associated with a user function argument using the +** sqlite3_set_auxdata() API may be safely retained until the next +** invocation of this opcode. +** +** See also: AggFunc +*/ +case OP_Function: { + int i; + Mem *pArg; + sqlite3_context ctx; + sqlite3_value **apVal; + int n = pOp->p1; + + n = pOp->p1; + apVal = p->apArg; + assert( apVal || n==0 ); + + pArg = &pTos[1-n]; + for(i=0; i<n; i++, pArg++){ + apVal[i] = pArg; + storeTypeInfo(pArg, db->enc); + } + + assert( pOp->p3type==P3_FUNCDEF || pOp->p3type==P3_VDBEFUNC ); + if( pOp->p3type==P3_FUNCDEF ){ + ctx.pFunc = (FuncDef*)pOp->p3; + ctx.pVdbeFunc = 0; + }else{ + ctx.pVdbeFunc = (VdbeFunc*)pOp->p3; + ctx.pFunc = ctx.pVdbeFunc->pFunc; + } + + ctx.s.flags = MEM_Null; + ctx.s.z = 0; + ctx.s.xDel = 0; + ctx.isError = 0; + ctx.isStep = 0; + if( ctx.pFunc->needCollSeq ){ + assert( pOp>p->aOp ); + assert( pOp[-1].p3type==P3_COLLSEQ ); + assert( pOp[-1].opcode==OP_CollSeq ); + ctx.pColl = (CollSeq *)pOp[-1].p3; + } + if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; + (*ctx.pFunc->xFunc)(&ctx, n, apVal); + if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; + if( sqlite3_malloc_failed ) goto no_mem; + popStack(&pTos, n); + + /* If any auxilary data functions have been called by this user function, + ** immediately call the destructor for any non-static values. + */ + if( ctx.pVdbeFunc ){ + sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p2); + pOp->p3 = (char *)ctx.pVdbeFunc; + pOp->p3type = P3_VDBEFUNC; + } + + /* Copy the result of the function to the top of the stack */ + sqlite3VdbeChangeEncoding(&ctx.s, db->enc); + pTos++; + pTos->flags = 0; + sqlite3VdbeMemMove(pTos, &ctx.s); + + /* If the function returned an error, throw an exception */ + if( ctx.isError ){ + if( !(pTos->flags&MEM_Str) ){ + sqlite3SetString(&p->zErrMsg, "user function error", (char*)0); + }else{ + sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pTos), (char*)0); + sqlite3VdbeChangeEncoding(pTos, db->enc); + } + rc = SQLITE_ERROR; + } + break; +} + +/* Opcode: BitAnd * * * +** +** Pop the top two elements from the stack. Convert both elements +** to integers. Push back onto the stack the bit-wise AND of the +** two elements. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: BitOr * * * +** +** Pop the top two elements from the stack. Convert both elements +** to integers. Push back onto the stack the bit-wise OR of the +** two elements. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: ShiftLeft * * * +** +** Pop the top two elements from the stack. Convert both elements +** to integers. Push back onto the stack the second element shifted +** left by N bits where N is the top element on the stack. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: ShiftRight * * * +** +** Pop the top two elements from the stack. Convert both elements +** to integers. Push back onto the stack the second element shifted +** right by N bits where N is the top element on the stack. +** If either operand is NULL, the result is NULL. +*/ +case OP_BitAnd: /* same as TK_BITAND */ +case OP_BitOr: /* same as TK_BITOR */ +case OP_ShiftLeft: /* same as TK_LSHIFT */ +case OP_ShiftRight: { /* same as TK_RSHIFT */ + Mem *pNos = &pTos[-1]; + int a, b; + + assert( pNos>=p->aStack ); + if( (pTos->flags | pNos->flags) & MEM_Null ){ + popStack(&pTos, 2); + pTos++; + pTos->flags = MEM_Null; + break; + } + a = sqlite3VdbeIntValue(pNos); + b = sqlite3VdbeIntValue(pTos); + switch( pOp->opcode ){ + case OP_BitAnd: a &= b; break; + case OP_BitOr: a |= b; break; + case OP_ShiftLeft: a <<= b; break; + case OP_ShiftRight: a >>= b; break; + default: /* CANT HAPPEN */ break; + } + Release(pTos); + pTos--; + Release(pTos); + pTos->i = a; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: AddImm P1 * * +** +** Add the value P1 to whatever is on top of the stack. The result +** is always an integer. +** +** To force the top of the stack to be an integer, just add 0. +*/ +case OP_AddImm: { + assert( pTos>=p->aStack ); + Integerify(pTos); + pTos->i += pOp->p1; + break; +} + +/* Opcode: ForceInt P1 P2 * +** +** Convert the top of the stack into an integer. If the current top of +** the stack is not numeric (meaning that is is a NULL or a string that +** does not look like an integer or floating point number) then pop the +** stack and jump to P2. If the top of the stack is numeric then +** convert it into the least integer that is greater than or equal to its +** current value if P1==0, or to the least integer that is strictly +** greater than its current value if P1==1. +*/ +case OP_ForceInt: { + int v; + assert( pTos>=p->aStack ); + applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc); + if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){ + Release(pTos); + pTos--; + pc = pOp->p2 - 1; + break; + } + if( pTos->flags & MEM_Int ){ + v = pTos->i + (pOp->p1!=0); + }else{ + Realify(pTos); + v = (int)pTos->r; + if( pTos->r>(double)v ) v++; + if( pOp->p1 && pTos->r==(double)v ) v++; + } + Release(pTos); + pTos->i = v; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: MustBeInt P1 P2 * +** +** Force the top of the stack to be an integer. If the top of the +** stack is not an integer and cannot be converted into an integer +** with out data loss, then jump immediately to P2, or if P2==0 +** raise an SQLITE_MISMATCH exception. +** +** If the top of the stack is not an integer and P2 is not zero and +** P1 is 1, then the stack is popped. In all other cases, the depth +** of the stack is unchanged. +*/ +case OP_MustBeInt: { + assert( pTos>=p->aStack ); + applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc); + if( (pTos->flags & MEM_Int)==0 ){ + if( pOp->p2==0 ){ + rc = SQLITE_MISMATCH; + goto abort_due_to_error; + }else{ + if( pOp->p1 ) popStack(&pTos, 1); + pc = pOp->p2 - 1; + } + }else{ + Release(pTos); + pTos->flags = MEM_Int; + } + break; +} + +/* Opcode: Eq P1 P2 P3 +** +** Pop the top two elements from the stack. If they are equal, then +** jump to instruction P2. Otherwise, continue to the next instruction. +** +** The least significant byte of P1 may be either 0x00 or 0x01. If either +** operand is NULL (and thus if the result is unknown) then take the jump +** only if the least significant byte of P1 is 0x01. +** +** The second least significant byte of P1 must be an affinity character - +** 'n', 't', 'i' or 'o' - or 0x00. An attempt is made to coerce both values +** according to the affinity before the comparison is made. If the byte is +** 0x00, then numeric affinity is used. +** +** Once any conversions have taken place, and neither value is NULL, +** the values are compared. If both values are blobs, or both are text, +** then memcmp() is used to determine the results of the comparison. If +** both values are numeric, then a numeric comparison is used. If the +** two values are of different types, then they are inequal. +** +** If P2 is zero, do not jump. Instead, push an integer 1 onto the +** stack if the jump would have been taken, or a 0 if not. Push a +** NULL if either operand was NULL. +** +** If P3 is not NULL it is a pointer to a collating sequence (a CollSeq +** structure) that defines how to compare text. +*/ +/* Opcode: Ne P1 P2 P3 +** +** This works just like the Eq opcode except that the jump is taken if +** the operands from the stack are not equal. See the Eq opcode for +** additional information. +*/ +/* Opcode: Lt P1 P2 P3 +** +** This works just like the Eq opcode except that the jump is taken if +** the 2nd element down on the stack is less than the top of the stack. +** See the Eq opcode for additional information. +*/ +/* Opcode: Le P1 P2 P3 +** +** This works just like the Eq opcode except that the jump is taken if +** the 2nd element down on the stack is less than or equal to the +** top of the stack. See the Eq opcode for additional information. +*/ +/* Opcode: Gt P1 P2 P3 +** +** This works just like the Eq opcode except that the jump is taken if +** the 2nd element down on the stack is greater than the top of the stack. +** See the Eq opcode for additional information. +*/ +/* Opcode: Ge P1 P2 P3 +** +** This works just like the Eq opcode except that the jump is taken if +** the 2nd element down on the stack is greater than or equal to the +** top of the stack. See the Eq opcode for additional information. +*/ +case OP_Eq: /* same as TK_EQ */ +case OP_Ne: /* same as TK_NE */ +case OP_Lt: /* same as TK_LT */ +case OP_Le: /* same as TK_LE */ +case OP_Gt: /* same as TK_GT */ +case OP_Ge: { /* same as TK_GE */ + Mem *pNos; + int flags; + int res; + char affinity; + + pNos = &pTos[-1]; + flags = pTos->flags|pNos->flags; + + /* If either value is a NULL P2 is not zero, take the jump if the least + ** significant byte of P1 is true. If P2 is zero, then push a NULL onto + ** the stack. + */ + if( flags&MEM_Null ){ + popStack(&pTos, 2); + if( pOp->p2 ){ + if( (pOp->p1&0xFF) ) pc = pOp->p2-1; + }else{ + pTos++; + pTos->flags = MEM_Null; + } + break; + } + + affinity = (pOp->p1>>8)&0xFF; + if( affinity ){ + applyAffinity(pNos, affinity, db->enc); + applyAffinity(pTos, affinity, db->enc); + } + + assert( pOp->p3type==P3_COLLSEQ || pOp->p3==0 ); + res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3); + switch( pOp->opcode ){ + case OP_Eq: res = res==0; break; + case OP_Ne: res = res!=0; break; + case OP_Lt: res = res<0; break; + case OP_Le: res = res<=0; break; + case OP_Gt: res = res>0; break; + default: res = res>=0; break; + } + + popStack(&pTos, 2); + if( pOp->p2 ){ + if( res ){ + pc = pOp->p2-1; + } + }else{ + pTos++; + pTos->flags = MEM_Int; + pTos->i = res; + } + break; +} + +/* Opcode: And * * * +** +** Pop two values off the stack. Take the logical AND of the +** two values and push the resulting boolean value back onto the +** stack. +*/ +/* Opcode: Or * * * +** +** Pop two values off the stack. Take the logical OR of the +** two values and push the resulting boolean value back onto the +** stack. +*/ +case OP_And: /* same as TK_AND */ +case OP_Or: { /* same as TK_OR */ + Mem *pNos = &pTos[-1]; + int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */ + + assert( pNos>=p->aStack ); + if( pTos->flags & MEM_Null ){ + v1 = 2; + }else{ + Integerify(pTos); + v1 = pTos->i==0; + } + if( pNos->flags & MEM_Null ){ + v2 = 2; + }else{ + Integerify(pNos); + v2 = pNos->i==0; + } + if( pOp->opcode==OP_And ){ + static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; + v1 = and_logic[v1*3+v2]; + }else{ + static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; + v1 = or_logic[v1*3+v2]; + } + popStack(&pTos, 2); + pTos++; + if( v1==2 ){ + pTos->flags = MEM_Null; + }else{ + pTos->i = v1==0; + pTos->flags = MEM_Int; + } + break; +} + +/* Opcode: Negative * * * +** +** Treat the top of the stack as a numeric quantity. Replace it +** with its additive inverse. If the top of the stack is NULL +** its value is unchanged. +*/ +/* Opcode: AbsValue * * * +** +** Treat the top of the stack as a numeric quantity. Replace it +** with its absolute value. If the top of the stack is NULL +** its value is unchanged. +*/ +case OP_Negative: /* same as TK_UMINUS */ +case OP_AbsValue: { + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Real ){ + Release(pTos); + if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ + pTos->r = -pTos->r; + } + pTos->flags = MEM_Real; + }else if( pTos->flags & MEM_Int ){ + Release(pTos); + if( pOp->opcode==OP_Negative || pTos->i<0 ){ + pTos->i = -pTos->i; + } + pTos->flags = MEM_Int; + }else if( pTos->flags & MEM_Null ){ + /* Do nothing */ + }else{ + Realify(pTos); + if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ + pTos->r = -pTos->r; + } + pTos->flags = MEM_Real; + } + break; +} + +/* Opcode: Not * * * +** +** Interpret the top of the stack as a boolean value. Replace it +** with its complement. If the top of the stack is NULL its value +** is unchanged. +*/ +case OP_Not: { /* same as TK_NOT */ + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ + Integerify(pTos); + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos->i = !pTos->i; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: BitNot * * * +** +** Interpret the top of the stack as an value. Replace it +** with its ones-complement. If the top of the stack is NULL its +** value is unchanged. +*/ +case OP_BitNot: { /* same as TK_BITNOT */ + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ + Integerify(pTos); + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos->i = ~pTos->i; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: Noop * * * +** +** Do nothing. This instruction is often useful as a jump +** destination. +*/ +case OP_Noop: { + break; +} + +/* Opcode: If P1 P2 * +** +** Pop a single boolean from the stack. If the boolean popped is +** true, then jump to p2. Otherwise continue to the next instruction. +** An integer is false if zero and true otherwise. A string is +** false if it has zero length and true otherwise. +** +** If the value popped of the stack is NULL, then take the jump if P1 +** is true and fall through if P1 is false. +*/ +/* Opcode: IfNot P1 P2 * +** +** Pop a single boolean from the stack. If the boolean popped is +** false, then jump to p2. Otherwise continue to the next instruction. +** An integer is false if zero and true otherwise. A string is +** false if it has zero length and true otherwise. +** +** If the value popped of the stack is NULL, then take the jump if P1 +** is true and fall through if P1 is false. +*/ +case OP_If: +case OP_IfNot: { + int c; + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Null ){ + c = pOp->p1; + }else{ + c = sqlite3VdbeIntValue(pTos); + if( pOp->opcode==OP_IfNot ) c = !c; + } + Release(pTos); + pTos--; + if( c ) pc = pOp->p2-1; + break; +} + +/* Opcode: IsNull P1 P2 * +** +** If any of the top abs(P1) values on the stack are NULL, then jump +** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack +** unchanged. +*/ +case OP_IsNull: { /* same as TK_ISNULL */ + int i, cnt; + Mem *pTerm; + cnt = pOp->p1; + if( cnt<0 ) cnt = -cnt; + pTerm = &pTos[1-cnt]; + assert( pTerm>=p->aStack ); + for(i=0; i<cnt; i++, pTerm++){ + if( pTerm->flags & MEM_Null ){ + pc = pOp->p2-1; + break; + } + } + if( pOp->p1>0 ) popStack(&pTos, cnt); + break; +} + +/* Opcode: NotNull P1 P2 * +** +** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the +** stack if P1 times if P1 is greater than zero. If P1 is less than +** zero then leave the stack unchanged. +*/ +case OP_NotNull: { /* same as TK_NOTNULL */ + int i, cnt; + cnt = pOp->p1; + if( cnt<0 ) cnt = -cnt; + assert( &pTos[1-cnt] >= p->aStack ); + for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){} + if( i>=cnt ) pc = pOp->p2-1; + if( pOp->p1>0 ) popStack(&pTos, cnt); + break; +} + +/* Opcode: SetNumColumns P1 P2 * +** +** Before the OP_Column opcode can be executed on a cursor, this +** opcode must be called to set the number of fields in the table. +** +** This opcode sets the number of columns for cursor P1 to P2. +*/ +case OP_SetNumColumns: { + assert( (pOp->p1)<p->nCursor ); + assert( p->apCsr[pOp->p1]!=0 ); + p->apCsr[pOp->p1]->nField = pOp->p2; + break; +} + +/* Opcode: IdxColumn P1 * * +** +** P1 is a cursor opened on an index. Push the first field from the +** current index key onto the stack. +*/ +/* Opcode: Column P1 P2 * +** +** Interpret the data that cursor P1 points to as a structure built using +** the MakeRecord instruction. (See the MakeRecord opcode for additional +** information about the format of the data.) Push onto the stack the value +** of the P2-th column contained in the data. +** +** If the KeyAsData opcode has previously executed on this cursor, then the +** field might be extracted from the key rather than the data. +** +** If P1 is negative, then the record is stored on the stack rather than in +** a table. For P1==-1, the top of the stack is used. For P1==-2, the +** next on the stack is used. And so forth. The value pushed is always +** just a pointer into the record which is stored further down on the +** stack. The column value is not copied. The number of columns in the +** record is stored on the stack just above the record itself. +*/ +case OP_IdxColumn: +case OP_Column: { + u32 payloadSize; /* Number of bytes in the record */ + int p1 = pOp->p1; /* P1 value of the opcode */ + int p2 = pOp->p2; /* column number to retrieve */ + Cursor *pC = 0; /* The VDBE cursor */ + char *zRec; /* Pointer to complete record-data */ + BtCursor *pCrsr; /* The BTree cursor */ + u32 *aType; /* aType[i] holds the numeric type of the i-th column */ + u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ + u32 nField; /* number of fields in the record */ + u32 szHdr; /* Number of bytes in the record header */ + int len; /* The length of the serialized data for the column */ + int offset = 0; /* Offset into the data */ + int idx; /* Index into the header */ + int i; /* Loop counter */ + char *zData; /* Part of the record being decoded */ + Mem sMem; /* For storing the record being decoded */ + + sMem.flags = 0; + assert( p1<p->nCursor ); + pTos++; + pTos->flags = MEM_Null; + + /* This block sets the variable payloadSize to be the total number of + ** bytes in the record. + ** + ** zRec is set to be the complete text of the record if it is available. + ** The complete record text is always available for pseudo-tables and + ** when we are decoded a record from the stack. If the record is stored + ** in a cursor, the complete record text might be available in the + ** pC->aRow cache. Or it might not be. If the data is unavailable, + ** zRec is set to NULL. + ** + ** We also compute the number of columns in the record. For cursors, + ** the number of columns is stored in the Cursor.nField element. For + ** records on the stack, the next entry down on the stack is an integer + ** which is the number of records. + */ + assert( p1<0 || p->apCsr[p1]!=0 ); + if( p1<0 ){ + /* Take the record off of the stack */ + Mem *pRec = &pTos[p1]; + Mem *pCnt = &pRec[-1]; + assert( pRec>=p->aStack ); + assert( pRec->flags & MEM_Blob ); + payloadSize = pRec->n; + zRec = pRec->z; + assert( pCnt>=p->aStack ); + assert( pCnt->flags & MEM_Int ); + nField = pCnt->i; + pCrsr = 0; + }else if( (pC = p->apCsr[p1])->pCursor!=0 ){ + /* The record is stored in a B-Tree */ + sqlite3VdbeCursorMoveto(pC); + zRec = 0; + pCrsr = pC->pCursor; + if( pC->nullRow ){ + payloadSize = 0; + }else if( pC->cacheValid ){ + payloadSize = pC->payloadSize; + zRec = pC->aRow; + }else if( pC->keyAsData ){ + i64 payloadSize64; + sqlite3BtreeKeySize(pCrsr, &payloadSize64); + payloadSize = payloadSize64; + }else{ + sqlite3BtreeDataSize(pCrsr, &payloadSize); + } + nField = pC->nField; + }else if( pC->pseudoTable ){ + /* The record is the sole entry of a pseudo-table */ + payloadSize = pC->nData; + zRec = pC->pData; + pC->cacheValid = 0; + assert( payloadSize==0 || zRec!=0 ); + nField = pC->nField; + pCrsr = 0; + }else{ + zRec = 0; + payloadSize = 0; + pCrsr = 0; + nField = 0; + } + + /* If payloadSize is 0, then just push a NULL onto the stack. */ + if( payloadSize==0 ){ + pTos->flags = MEM_Null; + break; + } + + assert( p2<nField ); + + /* Read and parse the table header. Store the results of the parse + ** into the record header cache fields of the cursor. + */ + if( pC && pC->cacheValid ){ + aType = pC->aType; + aOffset = pC->aOffset; + }else{ + int avail; /* Number of bytes of available data */ + if( pC && pC->aType ){ + aType = pC->aType; + }else{ + aType = sqliteMallocRaw( 2*nField*sizeof(aType) ); + } + aOffset = &aType[nField]; + if( aType==0 ){ + goto no_mem; + } + + /* Figure out how many bytes are in the header */ + if( zRec ){ + zData = zRec; + }else{ + if( pC->keyAsData ){ + zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail); + }else{ + zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail); + } + /* If KeyFetch()/DataFetch() managed to get the entire payload, + ** save the payload in the pC->aRow cache. That will save us from + ** having to make additional calls to fetch the content portion of + ** the record. + */ + if( avail>=payloadSize ){ + zRec = pC->aRow = zData; + }else{ + pC->aRow = 0; + } + } + idx = sqlite3GetVarint32(zData, &szHdr); + + + /* The KeyFetch() or DataFetch() above are fast and will get the entire + ** record header in most cases. But they will fail to get the complete + ** record header if the record header does not fit on a single page + ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to + ** acquire the complete header text. + */ + if( !zRec && avail<szHdr ){ + rc = sqlite3VdbeMemFromBtree(pCrsr, 0, szHdr, pC->keyAsData, &sMem); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + zData = sMem.z; + } + + /* Scan the header and use it to fill in the aType[] and aOffset[] + ** arrays. aType[i] will contain the type integer for the i-th + ** column and aOffset[i] will contain the offset from the beginning + ** of the record to the start of the data for the i-th column + */ + offset = szHdr; + i = 0; + while( idx<szHdr && i<nField && offset<=payloadSize ){ + aOffset[i] = offset; + idx += sqlite3GetVarint32(&zData[idx], &aType[i]); + offset += sqlite3VdbeSerialTypeLen(aType[i]); + i++; + } + Release(&sMem); + sMem.flags = MEM_Null; + + /* The header should end at the start of data and the data should + ** end at last byte of the record. If this is not the case then + ** we are dealing with a malformed record. + */ + if( idx!=szHdr || offset!=payloadSize ){ + sqliteFree(aType); + if( pC ) pC->aType = 0; + rc = SQLITE_CORRUPT; + break; + } + + /* Remember all aType and aColumn information if we have a cursor + ** to remember it in. */ + if( pC ){ + pC->payloadSize = payloadSize; + pC->aType = aType; + pC->aOffset = aOffset; + pC->cacheValid = 1; + } + } + + /* Get the column information. + */ + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + if( zRec ){ + zData = &zRec[aOffset[p2]]; + }else{ + len = sqlite3VdbeSerialTypeLen(aType[p2]); + sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->keyAsData, &sMem); + zData = sMem.z; + } + sqlite3VdbeSerialGet(zData, aType[p2], pTos); + pTos->enc = db->enc; + + /* If we dynamically allocated space to hold the data (in the + ** sqlite3VdbeMemFromBtree() call above) then transfer control of that + ** dynamically allocated space over to the pTos structure rather. + ** This prevents a memory copy. + */ + if( (sMem.flags & MEM_Dyn)!=0 ){ + assert( pTos->flags & MEM_Ephem ); + assert( pTos->flags & (MEM_Str|MEM_Blob) ); + assert( pTos->z==sMem.z ); + assert( sMem.flags & MEM_Term ); + pTos->flags &= ~MEM_Ephem; + pTos->flags |= MEM_Dyn|MEM_Term; + } + + /* pTos->z might be pointing to sMem.zShort[]. Fix that so that we + ** can abandon sMem */ + rc = sqlite3VdbeMemMakeWriteable(pTos); + + /* Release the aType[] memory if we are not dealing with cursor */ + if( !pC ){ + sqliteFree(aType); + } + break; +} + +/* Opcode MakeRecord P1 P2 P3 +** +** Convert the top abs(P1) entries of the stack into a single entry +** suitable for use as a data record in a database table or as a key +** in an index. The details of the format are irrelavant as long as +** the OP_Column opcode can decode the record later and as long as the +** sqlite3VdbeRecordCompare function will correctly compare two encoded +** records. Refer to source code comments for the details of the record +** format. +** +** The original stack entries are popped from the stack if P1>0 but +** remain on the stack if P1<0. +** +** The P2 argument is divided into two 16-bit words before it is processed. +** If the hi-word is non-zero, then an extra integer is read from the stack +** and appended to the record as a varint. If the low-word of P2 is not +** zero and one or more of the entries are NULL, then jump to the value of +** the low-word of P2. This feature can be used to skip a uniqueness test +** on indices. +** +** P3 may be a string that is P1 characters long. The nth character of the +** string indicates the column affinity that should be used for the nth +** field of the index key (i.e. the first character of P3 corresponds to the +** lowest element on the stack). +** +** Character Column affinity +** ------------------------------ +** 'n' NUMERIC +** 'i' INTEGER +** 't' TEXT +** 'o' NONE +** +** If P3 is NULL then all index fields have the affinity NONE. +*/ +case OP_MakeRecord: { + /* Assuming the record contains N fields, the record format looks + ** like this: + ** + ** ------------------------------------------------------------------------ + ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | + ** ------------------------------------------------------------------------ + ** + ** Data(0) is taken from the lowest element of the stack and data(N-1) is + ** the top of the stack. + ** + ** Each type field is a varint representing the serial type of the + ** corresponding data element (see sqlite3VdbeSerialType()). The + ** hdr-size field is also a varint which is the offset from the beginning + ** of the record to data0. + */ + unsigned char *zNewRecord; + unsigned char *zCsr; + Mem *pRec; + Mem *pRowid = 0; + int nData = 0; /* Number of bytes of data space */ + int nHdr = 0; /* Number of bytes of header space */ + int nByte = 0; /* Space required for this record */ + u32 serial_type; /* Type field */ + int containsNull = 0; /* True if any of the data fields are NULL */ + char zTemp[NBFS]; /* Space to hold small records */ + Mem *pData0; + + int leaveOnStack; /* If true, leave the entries on the stack */ + int nField; /* Number of fields in the record */ + int jumpIfNull; /* Jump here if non-zero and any entries are NULL. */ + int addRowid; /* True to append a rowid column at the end */ + char *zAffinity; /* The affinity string for the record */ + + leaveOnStack = ((pOp->p1<0)?1:0); + nField = pOp->p1 * (leaveOnStack?-1:1); + jumpIfNull = (pOp->p2 & 0x00FFFFFF); + addRowid = ((pOp->p2>>24) & 0x0000FFFF)?1:0; + zAffinity = pOp->p3; + + pData0 = &pTos[1-nField]; + assert( pData0>=p->aStack ); + containsNull = 0; + + /* Loop through the elements that will make up the record to figure + ** out how much space is required for the new record. + */ + for(pRec=pData0; pRec<=pTos; pRec++){ + if( zAffinity ){ + applyAffinity(pRec, zAffinity[pRec-pData0], db->enc); + } + if( pRec->flags&MEM_Null ){ + containsNull = 1; + } + serial_type = sqlite3VdbeSerialType(pRec); + nData += sqlite3VdbeSerialTypeLen(serial_type); + nHdr += sqlite3VarintLen(serial_type); + } + + /* If we have to append a varint rowid to this record, set 'rowid' + ** to the value of the rowid and increase nByte by the amount of space + ** required to store it and the 0x00 seperator byte. + */ + if( addRowid ){ + pRowid = &pTos[0-nField]; + assert( pRowid>=p->aStack ); + Integerify(pRowid); + serial_type = sqlite3VdbeSerialType(pRowid); + nData += sqlite3VdbeSerialTypeLen(serial_type); + nHdr += sqlite3VarintLen(serial_type); + } + + /* Add the initial header varint and total the size */ + nHdr += sqlite3VarintLen(nHdr); + nByte = nHdr+nData; + + /* Allocate space for the new record. */ + if( nByte>sizeof(zTemp) ){ + zNewRecord = sqliteMallocRaw(nByte); + if( !zNewRecord ){ + goto no_mem; + } + }else{ + zNewRecord = zTemp; + } + + /* Write the record */ + zCsr = zNewRecord; + zCsr += sqlite3PutVarint(zCsr, nHdr); + for(pRec=pData0; pRec<=pTos; pRec++){ + serial_type = sqlite3VdbeSerialType(pRec); + zCsr += sqlite3PutVarint(zCsr, serial_type); /* serial type */ + } + if( addRowid ){ + zCsr += sqlite3PutVarint(zCsr, sqlite3VdbeSerialType(pRowid)); + } + for(pRec=pData0; pRec<=pTos; pRec++){ + zCsr += sqlite3VdbeSerialPut(zCsr, pRec); /* serial data */ + } + if( addRowid ){ + zCsr += sqlite3VdbeSerialPut(zCsr, pRowid); + } + + /* If zCsr has not been advanced exactly nByte bytes, then one + ** of the sqlite3PutVarint() or sqlite3VdbeSerialPut() calls above + ** failed. This indicates a corrupted memory cell or code bug. + */ + if( zCsr!=(zNewRecord+nByte) ){ + rc = SQLITE_INTERNAL; + goto abort_due_to_error; + } + + /* Pop entries off the stack if required. Push the new record on. */ + if( !leaveOnStack ){ + popStack(&pTos, nField+addRowid); + } + pTos++; + pTos->n = nByte; + if( nByte<=sizeof(zTemp) ){ + assert( zNewRecord==(unsigned char *)zTemp ); + pTos->z = pTos->zShort; + memcpy(pTos->zShort, zTemp, nByte); + pTos->flags = MEM_Blob | MEM_Short; + }else{ + assert( zNewRecord!=(unsigned char *)zTemp ); + pTos->z = zNewRecord; + pTos->flags = MEM_Blob | MEM_Dyn; + pTos->xDel = 0; + } + + /* If a NULL was encountered and jumpIfNull is non-zero, take the jump. */ + if( jumpIfNull && containsNull ){ + pc = jumpIfNull - 1; + } + break; +} + +/* Opcode: Statement P1 * * +** +** Begin an individual statement transaction which is part of a larger +** BEGIN..COMMIT transaction. This is needed so that the statement +** can be rolled back after an error without having to roll back the +** entire transaction. The statement transaction will automatically +** commit when the VDBE halts. +** +** The statement is begun on the database file with index P1. The main +** database file has an index of 0 and the file used for temporary tables +** has an index of 1. +*/ +case OP_Statement: { + int i = pOp->p1; + Btree *pBt; + if( i>=0 && i<db->nDb && (pBt = db->aDb[i].pBt) && !(db->autoCommit) ){ + assert( sqlite3BtreeIsInTrans(pBt) ); + if( !sqlite3BtreeIsInStmt(pBt) ){ + rc = sqlite3BtreeBeginStmt(pBt); + } + } + break; +} + +/* Opcode: AutoCommit P1 P2 * +** +** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll +** back any currently active btree transactions. If there are any active +** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails. +** +** This instruction causes the VM to halt. +*/ +case OP_AutoCommit: { + u8 i = pOp->p1; + u8 rollback = pOp->p2; + + assert( i==1 || i==0 ); + assert( i==1 || rollback==0 ); + + assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */ + + if( db->activeVdbeCnt>1 && i && !db->autoCommit ){ + /* If this instruction implements a COMMIT or ROLLBACK, other VMs are + ** still running, and a transaction is active, return an error indicating + ** that the other VMs must complete first. + */ + sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit", + " transaction - SQL statements in progress", 0); + rc = SQLITE_ERROR; + }else if( i!=db->autoCommit ){ + db->autoCommit = i; + if( pOp->p2 ){ + assert( i==1 ); + sqlite3RollbackAll(db); + }else if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ + p->pTos = pTos; + p->pc = pc; + db->autoCommit = 1-i; + p->rc = SQLITE_BUSY; + return SQLITE_BUSY; + } + return SQLITE_DONE; + }else{ + sqlite3SetString(&p->zErrMsg, + (!i)?"cannot start a transaction within a transaction":( + (rollback)?"cannot rollback - no transaction is active": + "cannot commit - no transaction is active"), 0); + + rc = SQLITE_ERROR; + } + break; +} + +/* Opcode: Transaction P1 P2 * +** +** Begin a transaction. The transaction ends when a Commit or Rollback +** opcode is encountered. Depending on the ON CONFLICT setting, the +** transaction might also be rolled back if an error is encountered. +** +** P1 is the index of the database file on which the transaction is +** started. Index 0 is the main database file and index 1 is the +** file used for temporary tables. +** +** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is +** obtained on the database file when a write-transaction is started. No +** other process can start another write transaction while this transaction is +** underway. Starting a write transaction also creates a rollback journal. A +** write transaction must be started before any changes can be made to the +** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained +** on the file. +** +** If P2 is zero, then a read-lock is obtained on the database file. +*/ +case OP_Transaction: { + int i = pOp->p1; + Btree *pBt; + + assert( i>=0 && i<db->nDb ); + pBt = db->aDb[i].pBt; + + if( pBt ){ + rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); + if( rc==SQLITE_BUSY ){ + p->pc = pc; + p->rc = SQLITE_BUSY; + p->pTos = pTos; + return SQLITE_BUSY; + } + if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){ + goto abort_due_to_error; + } + } + break; +} + +/* Opcode: ReadCookie P1 P2 * +** +** Read cookie number P2 from database P1 and push it onto the stack. +** P2==0 is the schema version. P2==1 is the database format. +** P2==2 is the recommended pager cache size, and so forth. P1==0 is +** the main database file and P1==1 is the database file used to store +** temporary tables. +** +** There must be a read-lock on the database (either a transaction +** must be started or there must be an open cursor) before +** executing this instruction. +*/ +case OP_ReadCookie: { + int iMeta; + assert( pOp->p2<SQLITE_N_BTREE_META ); + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + assert( db->aDb[pOp->p1].pBt!=0 ); + /* The indexing of meta values at the schema layer is off by one from + ** the indexing in the btree layer. The btree considers meta[0] to + ** be the number of free pages in the database (a read-only value) + ** and meta[1] to be the schema cookie. The schema layer considers + ** meta[1] to be the schema cookie. So we have to shift the index + ** by one in the following statement. + */ + rc = sqlite3BtreeGetMeta(db->aDb[pOp->p1].pBt, 1 + pOp->p2, (u32 *)&iMeta); + pTos++; + pTos->i = iMeta; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: SetCookie P1 P2 * +** +** Write the top of the stack into cookie number P2 of database P1. +** P2==0 is the schema version. P2==1 is the database format. +** P2==2 is the recommended pager cache size, and so forth. P1==0 is +** the main database file and P1==1 is the database file used to store +** temporary tables. +** +** A transaction must be started before executing this opcode. +*/ +case OP_SetCookie: { + Db *pDb; + assert( pOp->p2<SQLITE_N_BTREE_META ); + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + pDb = &db->aDb[pOp->p1]; + assert( pDb->pBt!=0 ); + assert( pTos>=p->aStack ); + Integerify(pTos); + /* See note about index shifting on OP_ReadCookie */ + rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->i); + if( pOp->p2==0 ){ + /* When the schema cookie changes, record the new cookie internally */ + pDb->schema_cookie = pTos->i; + db->flags |= SQLITE_InternChanges; + } + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + break; +} + +/* Opcode: VerifyCookie P1 P2 * +** +** Check the value of global database parameter number 0 (the +** schema version) and make sure it is equal to P2. +** P1 is the database number which is 0 for the main database file +** and 1 for the file holding temporary tables and some higher number +** for auxiliary databases. +** +** The cookie changes its value whenever the database schema changes. +** This operation is used to detect when that the cookie has changed +** and that the current process needs to reread the schema. +** +** Either a transaction needs to have been started or an OP_Open needs +** to be executed (to establish a read lock) before this opcode is +** invoked. +*/ +case OP_VerifyCookie: { + int iMeta; + Btree *pBt; + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + pBt = db->aDb[pOp->p1].pBt; + if( pBt ){ + rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta); + }else{ + rc = SQLITE_OK; + iMeta = 0; + } + if( rc==SQLITE_OK && iMeta!=pOp->p2 ){ + sqlite3SetString(&p->zErrMsg, "database schema has changed", (char*)0); + rc = SQLITE_SCHEMA; + } + break; +} + +/* Opcode: OpenRead P1 P2 P3 +** +** Open a read-only cursor for the database table whose root page is +** P2 in a database file. The database file is determined by an +** integer from the top of the stack. 0 means the main database and +** 1 means the database used for temporary tables. Give the new +** cursor an identifier of P1. The P1 values need not be contiguous +** but all P1 values should be small integers. It is an error for +** P1 to be negative. +** +** If P2==0 then take the root page number from the next of the stack. +** +** There will be a read lock on the database whenever there is an +** open cursor. If the database was unlocked prior to this instruction +** then a read lock is acquired as part of this instruction. A read +** lock allows other processes to read the database but prohibits +** any other process from modifying the database. The read lock is +** released when all cursors are closed. If this instruction attempts +** to get a read lock but fails, the script terminates with an +** SQLITE_BUSY error code. +** +** The P3 value is a pointer to a KeyInfo structure that defines the +** content and collating sequence of indices. P3 is NULL for cursors +** that are not pointing to indices. +** +** See also OpenWrite. +*/ +/* Opcode: OpenWrite P1 P2 P3 +** +** Open a read/write cursor named P1 on the table or index whose root +** page is P2. If P2==0 then take the root page number from the stack. +** +** The P3 value is a pointer to a KeyInfo structure that defines the +** content and collating sequence of indices. P3 is NULL for cursors +** that are not pointing to indices. +** +** This instruction works just like OpenRead except that it opens the cursor +** in read/write mode. For a given table, there can be one or more read-only +** cursors or a single read/write cursor but not both. +** +** See also OpenRead. +*/ +case OP_OpenRead: +case OP_OpenWrite: { + int i = pOp->p1; + int p2 = pOp->p2; + int wrFlag; + Btree *pX; + int iDb; + Cursor *pCur; + + assert( pTos>=p->aStack ); + Integerify(pTos); + iDb = pTos->i; + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + assert( iDb>=0 && iDb<db->nDb ); + pX = db->aDb[iDb].pBt; + assert( pX!=0 ); + wrFlag = pOp->opcode==OP_OpenWrite; + if( p2<=0 ){ + assert( pTos>=p->aStack ); + Integerify(pTos); + p2 = pTos->i; + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + if( p2<2 ){ + sqlite3SetString(&p->zErrMsg, "root page number less than 2", (char*)0); + rc = SQLITE_INTERNAL; + break; + } + } + assert( i>=0 ); + pCur = allocateCursor(p, i); + if( pCur==0 ) goto no_mem; + pCur->nullRow = 1; + if( pX==0 ) break; + /* We always provide a key comparison function. If the table being + ** opened is of type INTKEY, the comparision function will be ignored. */ + rc = sqlite3BtreeCursor(pX, p2, wrFlag, + sqlite3VdbeRecordCompare, pOp->p3, + &pCur->pCursor); + pCur->pKeyInfo = (KeyInfo*)pOp->p3; + if( pCur->pKeyInfo ){ + pCur->pIncrKey = &pCur->pKeyInfo->incrKey; + pCur->pKeyInfo->enc = p->db->enc; + }else{ + pCur->pIncrKey = &pCur->bogusIncrKey; + } + switch( rc ){ + case SQLITE_BUSY: { + p->pc = pc; + p->rc = SQLITE_BUSY; + p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */ + return SQLITE_BUSY; + } + case SQLITE_OK: { + int flags = sqlite3BtreeFlags(pCur->pCursor); + pCur->intKey = (flags & BTREE_INTKEY)!=0; + pCur->zeroData = (flags & BTREE_ZERODATA)!=0; + break; + } + case SQLITE_EMPTY: { + rc = SQLITE_OK; + break; + } + default: { + goto abort_due_to_error; + } + } + break; +} + +/* Opcode: OpenTemp P1 * P3 +** +** Open a new cursor to a transient table. +** The transient cursor is always opened read/write even if +** the main database is read-only. The transient table is deleted +** automatically when the cursor is closed. +** +** The cursor points to a BTree table if P3==0 and to a BTree index +** if P3 is not 0. If P3 is not NULL, it points to a KeyInfo structure +** that defines the format of keys in the index. +** +** This opcode is used for tables that exist for the duration of a single +** SQL statement only. Tables created using CREATE TEMPORARY TABLE +** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the +** context of this opcode means for the duration of a single SQL statement +** whereas "Temporary" in the context of CREATE TABLE means for the duration +** of the connection to the database. Same word; different meanings. +*/ +case OP_OpenTemp: { + int i = pOp->p1; + Cursor *pCx; + assert( i>=0 ); + pCx = allocateCursor(p, i); + if( pCx==0 ) goto no_mem; + pCx->nullRow = 1; + rc = sqlite3BtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt); + if( rc==SQLITE_OK ){ + rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); + } + if( rc==SQLITE_OK ){ + /* If a transient index is required, create it by calling + ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before + ** opening it. If a transient table is required, just use the + ** automatically created table with root-page 1 (an INTKEY table). + */ + if( pOp->p3 ){ + int pgno; + assert( pOp->p3type==P3_KEYINFO ); + rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); + if( rc==SQLITE_OK ){ + assert( pgno==MASTER_ROOT+1 ); + rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare, + pOp->p3, &pCx->pCursor); + pCx->pKeyInfo = (KeyInfo*)pOp->p3; + pCx->pKeyInfo->enc = p->db->enc; + pCx->pIncrKey = &pCx->pKeyInfo->incrKey; + } + }else{ + rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor); + pCx->intKey = 1; + pCx->pIncrKey = &pCx->bogusIncrKey; + } + } + break; +} + +/* Opcode: OpenPseudo P1 * * +** +** Open a new cursor that points to a fake table that contains a single +** row of data. Any attempt to write a second row of data causes the +** first row to be deleted. All data is deleted when the cursor is +** closed. +** +** A pseudo-table created by this opcode is useful for holding the +** NEW or OLD tables in a trigger. +*/ +case OP_OpenPseudo: { + int i = pOp->p1; + Cursor *pCx; + assert( i>=0 ); + pCx = allocateCursor(p, i); + if( pCx==0 ) goto no_mem; + pCx->nullRow = 1; + pCx->pseudoTable = 1; + pCx->pIncrKey = &pCx->bogusIncrKey; + break; +} + +/* Opcode: Close P1 * * +** +** Close a cursor previously opened as P1. If P1 is not +** currently open, this instruction is a no-op. +*/ +case OP_Close: { + int i = pOp->p1; + if( i>=0 && i<p->nCursor ){ + sqlite3VdbeFreeCursor(p->apCsr[i]); + p->apCsr[i] = 0; + } + break; +} + +/* Opcode: MoveGe P1 P2 * +** +** Pop the top of the stack and use its value as a key. Reposition +** cursor P1 so that it points to the smallest entry that is greater +** than or equal to the key that was popped ffrom the stack. +** If there are no records greater than or equal to the key and P2 +** is not zero, then jump to P2. +** +** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe +*/ +/* Opcode: MoveGt P1 P2 * +** +** Pop the top of the stack and use its value as a key. Reposition +** cursor P1 so that it points to the smallest entry that is greater +** than the key from the stack. +** If there are no records greater than the key and P2 is not zero, +** then jump to P2. +** +** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe +*/ +/* Opcode: MoveLt P1 P2 * +** +** Pop the top of the stack and use its value as a key. Reposition +** cursor P1 so that it points to the largest entry that is less +** than the key from the stack. +** If there are no records less than the key and P2 is not zero, +** then jump to P2. +** +** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe +*/ +/* Opcode: MoveLe P1 P2 * +** +** Pop the top of the stack and use its value as a key. Reposition +** cursor P1 so that it points to the largest entry that is less than +** or equal to the key that was popped from the stack. +** If there are no records less than or eqal to the key and P2 is not zero, +** then jump to P2. +** +** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt +*/ +case OP_MoveLt: +case OP_MoveLe: +case OP_MoveGe: +case OP_MoveGt: { + int i = pOp->p1; + Cursor *pC; + + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + if( pC->pCursor!=0 ){ + int res, oc; + oc = pOp->opcode; + pC->nullRow = 0; + *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe; + if( pC->intKey ){ + i64 iKey; + assert( !pOp->p3 ); + Integerify(pTos); + iKey = intToKey(pTos->i); + if( pOp->p2==0 && pOp->opcode==OP_MoveGe ){ + pC->movetoTarget = iKey; + pC->deferredMoveto = 1; + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + break; + } + sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, &res); + pC->lastRecno = pTos->i; + pC->recnoIsValid = res==0; + }else{ + Stringify(pTos, db->enc); + sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); + pC->recnoIsValid = 0; + } + pC->deferredMoveto = 0; + pC->cacheValid = 0; + *pC->pIncrKey = 0; + sqlite3_search_count++; + if( oc==OP_MoveGe || oc==OP_MoveGt ){ + if( res<0 ){ + sqlite3BtreeNext(pC->pCursor, &res); + pC->recnoIsValid = 0; + }else{ + res = 0; + } + }else{ + assert( oc==OP_MoveLt || oc==OP_MoveLe ); + if( res>=0 ){ + sqlite3BtreePrevious(pC->pCursor, &res); + pC->recnoIsValid = 0; + }else{ + /* res might be negative because the table is empty. Check to + ** see if this is the case. + */ + res = sqlite3BtreeEof(pC->pCursor); + } + } + if( res ){ + if( pOp->p2>0 ){ + pc = pOp->p2 - 1; + }else{ + pC->nullRow = 1; + } + } + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: Distinct P1 P2 * +** +** Use the top of the stack as a string key. If a record with that key does +** not exist in the table of cursor P1, then jump to P2. If the record +** does already exist, then fall thru. The cursor is left pointing +** at the record if it exists. The key is not popped from the stack. +** +** This operation is similar to NotFound except that this operation +** does not pop the key from the stack. +** +** See also: Found, NotFound, MoveTo, IsUnique, NotExists +*/ +/* Opcode: Found P1 P2 * +** +** Use the top of the stack as a string key. If a record with that key +** does exist in table of P1, then jump to P2. If the record +** does not exist, then fall thru. The cursor is left pointing +** to the record if it exists. The key is popped from the stack. +** +** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists +*/ +/* Opcode: NotFound P1 P2 * +** +** Use the top of the stack as a string key. If a record with that key +** does not exist in table of P1, then jump to P2. If the record +** does exist, then fall thru. The cursor is left pointing to the +** record if it exists. The key is popped from the stack. +** +** The difference between this operation and Distinct is that +** Distinct does not pop the key from the stack. +** +** See also: Distinct, Found, MoveTo, NotExists, IsUnique +*/ +case OP_Distinct: +case OP_NotFound: +case OP_Found: { + int i = pOp->p1; + int alreadyExists = 0; + Cursor *pC; + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pC = p->apCsr[i])->pCursor!=0 ){ + int res, rx; + assert( pC->intKey==0 ); + Stringify(pTos, db->enc); + rx = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); + alreadyExists = rx==SQLITE_OK && res==0; + pC->deferredMoveto = 0; + pC->cacheValid = 0; + } + if( pOp->opcode==OP_Found ){ + if( alreadyExists ) pc = pOp->p2 - 1; + }else{ + if( !alreadyExists ) pc = pOp->p2 - 1; + } + if( pOp->opcode!=OP_Distinct ){ + Release(pTos); + pTos--; + } + break; +} + +/* Opcode: IsUnique P1 P2 * +** +** The top of the stack is an integer record number. Call this +** record number R. The next on the stack is an index key created +** using MakeIdxKey. Call it K. This instruction pops R from the +** stack but it leaves K unchanged. +** +** P1 is an index. So it has no data and its key consists of a +** record generated by OP_MakeIdxKey. This key contains one or more +** fields followed by a ROWID field. +** +** This instruction asks if there is an entry in P1 where the +** fields matches K but the rowid is different from R. +** If there is no such entry, then there is an immediate +** jump to P2. If any entry does exist where the index string +** matches K but the record number is not R, then the record +** number for that entry is pushed onto the stack and control +** falls through to the next instruction. +** +** See also: Distinct, NotFound, NotExists, Found +*/ +case OP_IsUnique: { + int i = pOp->p1; + Mem *pNos = &pTos[-1]; + Cursor *pCx; + BtCursor *pCrsr; + i64 R; + + /* Pop the value R off the top of the stack + */ + assert( pNos>=p->aStack ); + Integerify(pTos); + R = pTos->i; + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + assert( i>=0 && i<=p->nCursor ); + pCx = p->apCsr[i]; + assert( pCx!=0 ); + pCrsr = pCx->pCursor; + if( pCrsr!=0 ){ + int res, rc; + i64 v; /* The record number on the P1 entry that matches K */ + char *zKey; /* The value of K */ + int nKey; /* Number of bytes in K */ + int len; /* Number of bytes in K without the rowid at the end */ + int szRowid; /* Size of the rowid column at the end of zKey */ + + /* Make sure K is a string and make zKey point to K + */ + Stringify(pNos, db->enc); + zKey = pNos->z; + nKey = pNos->n; + + szRowid = sqlite3VdbeIdxRowidLen(nKey, zKey); + len = nKey-szRowid; + + /* Search for an entry in P1 where all but the last four bytes match K. + ** If there is no such entry, jump immediately to P2. + */ + assert( pCx->deferredMoveto==0 ); + pCx->cacheValid = 0; + rc = sqlite3BtreeMoveto(pCrsr, zKey, len, &res); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + if( res<0 ){ + rc = sqlite3BtreeNext(pCrsr, &res); + if( res ){ + pc = pOp->p2 - 1; + break; + } + } + rc = sqlite3VdbeIdxKeyCompare(pCx, len, zKey, &res); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + if( res>0 ){ + pc = pOp->p2 - 1; + break; + } + + /* At this point, pCrsr is pointing to an entry in P1 where all but + ** the final entry (the rowid) matches K. Check to see if the + ** final rowid column is different from R. If it equals R then jump + ** immediately to P2. + */ + rc = sqlite3VdbeIdxRowid(pCrsr, &v); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + if( v==R ){ + pc = pOp->p2 - 1; + break; + } + + /* The final varint of the key is different from R. Push it onto + ** the stack. (The record number of an entry that violates a UNIQUE + ** constraint.) + */ + pTos++; + pTos->i = v; + pTos->flags = MEM_Int; + } + break; +} + +/* Opcode: NotExists P1 P2 * +** +** Use the top of the stack as a integer key. If a record with that key +** does not exist in table of P1, then jump to P2. If the record +** does exist, then fall thru. The cursor is left pointing to the +** record if it exists. The integer key is popped from the stack. +** +** The difference between this operation and NotFound is that this +** operation assumes the key is an integer and NotFound assumes it +** is a string. +** +** See also: Distinct, Found, MoveTo, NotFound, IsUnique +*/ +case OP_NotExists: { + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + int res, rx; + u64 iKey; + assert( pTos->flags & MEM_Int ); + assert( p->apCsr[i]->intKey ); + iKey = intToKey(pTos->i); + rx = sqlite3BtreeMoveto(pCrsr, 0, iKey, &res); + pC->lastRecno = pTos->i; + pC->recnoIsValid = res==0; + pC->nullRow = 0; + pC->cacheValid = 0; + if( rx!=SQLITE_OK || res!=0 ){ + pc = pOp->p2 - 1; + pC->recnoIsValid = 0; + } + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: NewRecno P1 * * +** +** Get a new integer record number used as the key to a table. +** The record number is not previously used as a key in the database +** table that cursor P1 points to. The new record number is pushed +** onto the stack. +*/ +case OP_NewRecno: { + int i = pOp->p1; + i64 v = 0; + Cursor *pC; + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pC = p->apCsr[i])->pCursor==0 ){ + /* The zero initialization above is all that is needed */ + }else{ + /* The next rowid or record number (different terms for the same + ** thing) is obtained in a two-step algorithm. + ** + ** First we attempt to find the largest existing rowid and add one + ** to that. But if the largest existing rowid is already the maximum + ** positive integer, we have to fall through to the second + ** probabilistic algorithm + ** + ** The second algorithm is to select a rowid at random and see if + ** it already exists in the table. If it does not exist, we have + ** succeeded. If the random rowid does exist, we select a new one + ** and try again, up to 1000 times. + ** + ** For a table with less than 2 billion entries, the probability + ** of not finding a unused rowid is about 1.0e-300. This is a + ** non-zero probability, but it is still vanishingly small and should + ** never cause a problem. You are much, much more likely to have a + ** hardware failure than for this algorithm to fail. + ** + ** The analysis in the previous paragraph assumes that you have a good + ** source of random numbers. Is a library function like lrand48() + ** good enough? Maybe. Maybe not. It's hard to know whether there + ** might be subtle bugs is some implementations of lrand48() that + ** could cause problems. To avoid uncertainty, SQLite uses its own + ** random number generator based on the RC4 algorithm. + ** + ** To promote locality of reference for repetitive inserts, the + ** first few attempts at chosing a random rowid pick values just a little + ** larger than the previous rowid. This has been shown experimentally + ** to double the speed of the COPY operation. + */ + int res, rx=SQLITE_OK, cnt; + i64 x; + cnt = 0; + assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 ); + assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 ); + if( !pC->useRandomRowid ){ + if( pC->nextRowidValid ){ + v = pC->nextRowid; + }else{ + rx = sqlite3BtreeLast(pC->pCursor, &res); + if( res ){ + v = 1; + }else{ + sqlite3BtreeKeySize(pC->pCursor, &v); + v = keyToInt(v); + if( v==0x7fffffffffffffff ){ + pC->useRandomRowid = 1; + }else{ + v++; + } + } + } + if( v<0x7fffffffffffffff ){ + pC->nextRowidValid = 1; + pC->nextRowid = v+1; + }else{ + pC->nextRowidValid = 0; + } + } + if( pC->useRandomRowid ){ + v = db->priorNewRowid; + cnt = 0; + do{ + if( v==0 || cnt>2 ){ + sqlite3Randomness(sizeof(v), &v); + if( cnt<5 ) v &= 0xffffff; + }else{ + unsigned char r; + sqlite3Randomness(1, &r); + v += r + 1; + } + if( v==0 ) continue; + x = intToKey(v); + rx = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)x, &res); + cnt++; + }while( cnt<1000 && rx==SQLITE_OK && res==0 ); + db->priorNewRowid = v; + if( rx==SQLITE_OK && res==0 ){ + rc = SQLITE_FULL; + goto abort_due_to_error; + } + } + pC->recnoIsValid = 0; + pC->deferredMoveto = 0; + pC->cacheValid = 0; + } + pTos++; + pTos->i = v; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: PutIntKey P1 P2 * +** +** Write an entry into the table of cursor P1. A new entry is +** created if it doesn't already exist or the data for an existing +** entry is overwritten. The data is the value on the top of the +** stack. The key is the next value down on the stack. The key must +** be an integer. The stack is popped twice by this instruction. +** +** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is +** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P2 is set, +** then rowid is stored for subsequent return by the +** sqlite3_last_insert_rowid() function (otherwise it's unmodified). +*/ +/* Opcode: PutStrKey P1 * * +** +** Write an entry into the table of cursor P1. A new entry is +** created if it doesn't already exist or the data for an existing +** entry is overwritten. The data is the value on the top of the +** stack. The key is the next value down on the stack. The key must +** be a string. The stack is popped twice by this instruction. +** +** P1 may not be a pseudo-table opened using the OpenPseudo opcode. +*/ +case OP_PutIntKey: +case OP_PutStrKey: { + Mem *pNos = &pTos[-1]; + int i = pOp->p1; + Cursor *pC; + assert( pNos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( ((pC = p->apCsr[i])->pCursor!=0 || pC->pseudoTable) ){ + char *zKey; + i64 nKey; + i64 iKey; + if( pOp->opcode==OP_PutStrKey ){ + Stringify(pNos, db->enc); + nKey = pNos->n; + zKey = pNos->z; + }else{ + assert( pNos->flags & MEM_Int ); + + /* If the table is an INTKEY table, set nKey to the value of + ** the integer key, and zKey to NULL. Otherwise, set nKey to + ** sizeof(i64) and point zKey at iKey. iKey contains the integer + ** key in the on-disk byte order. + */ + iKey = intToKey(pNos->i); + if( pC->intKey ){ + nKey = intToKey(pNos->i); + zKey = 0; + }else{ + nKey = sizeof(i64); + zKey = (char*)&iKey; + } + + if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; + if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i; + if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){ + pC->nextRowidValid = 0; + } + } + if( pTos->flags & MEM_Null ){ + pTos->z = 0; + pTos->n = 0; + }else{ + assert( pTos->flags & (MEM_Blob|MEM_Str) ); + } + if( pC->pseudoTable ){ + /* PutStrKey does not work for pseudo-tables. + ** The following assert makes sure we are not trying to use + ** PutStrKey on a pseudo-table + */ + assert( pOp->opcode==OP_PutIntKey ); + sqliteFree(pC->pData); + pC->iKey = iKey; + pC->nData = pTos->n; + if( pTos->flags & MEM_Dyn ){ + pC->pData = pTos->z; + pTos->flags = MEM_Null; + }else{ + pC->pData = sqliteMallocRaw( pC->nData+2 ); + if( !pC->pData ) goto no_mem; + memcpy(pC->pData, pTos->z, pC->nData); + pC->pData[pC->nData] = 0; + pC->pData[pC->nData+1] = 0; + } + pC->nullRow = 0; + }else{ + rc = sqlite3BtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n); + } + pC->recnoIsValid = 0; + pC->deferredMoveto = 0; + pC->cacheValid = 0; + } + popStack(&pTos, 2); + break; +} + +/* Opcode: Delete P1 P2 * +** +** Delete the record at which the P1 cursor is currently pointing. +** +** The cursor will be left pointing at either the next or the previous +** record in the table. If it is left pointing at the next record, then +** the next Next instruction will be a no-op. Hence it is OK to delete +** a record from within an Next loop. +** +** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is +** incremented (otherwise not). +** +** If P1 is a pseudo-table, then this instruction is a no-op. +*/ +case OP_Delete: { + int i = pOp->p1; + Cursor *pC; + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + if( pC->pCursor!=0 ){ + sqlite3VdbeCursorMoveto(pC); + rc = sqlite3BtreeDelete(pC->pCursor); + pC->nextRowidValid = 0; + pC->cacheValid = 0; + } + if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; + break; +} + +/* Opcode: ResetCount P1 * * +** +** This opcode resets the VMs internal change counter to 0. If P1 is true, +** then the value of the change counter is copied to the database handle +** change counter (returned by subsequent calls to sqlite3_changes()) +** before it is reset. This is used by trigger programs. +*/ +case OP_ResetCount: { + if( pOp->p1 ){ + sqlite3VdbeSetChanges(db, p->nChange); + } + p->nChange = 0; + break; +} + +/* Opcode: KeyAsData P1 P2 * +** +** Turn the key-as-data mode for cursor P1 either on (if P2==1) or +** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls +** data off of the key rather than the data. This is used for +** processing compound selects. +*/ +case OP_KeyAsData: { + int i = pOp->p1; + Cursor *pC; + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + pC->keyAsData = pOp->p2; + break; +} + +/* Opcode: RowData P1 * * +** +** Push onto the stack the complete row data for cursor P1. +** There is no interpretation of the data. It is just copied +** onto the stack exactly as it is found in the database file. +** +** If the cursor is not pointing to a valid row, a NULL is pushed +** onto the stack. +*/ +/* Opcode: RowKey P1 * * +** +** Push onto the stack the complete row key for cursor P1. +** There is no interpretation of the key. It is just copied +** onto the stack exactly as it is found in the database file. +** +** If the cursor is not pointing to a valid row, a NULL is pushed +** onto the stack. +*/ +case OP_RowKey: +case OP_RowData: { + int i = pOp->p1; + Cursor *pC; + u32 n; + + pTos++; + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + if( pC->nullRow ){ + pTos->flags = MEM_Null; + }else if( pC->pCursor!=0 ){ + BtCursor *pCrsr = pC->pCursor; + sqlite3VdbeCursorMoveto(pC); + if( pC->nullRow ){ + pTos->flags = MEM_Null; + break; + }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){ + i64 n64; + assert( !pC->intKey ); + sqlite3BtreeKeySize(pCrsr, &n64); + n = n64; + }else{ + sqlite3BtreeDataSize(pCrsr, &n); + } + pTos->n = n; + if( n<=NBFS ){ + pTos->flags = MEM_Blob | MEM_Short; + pTos->z = pTos->zShort; + }else{ + char *z = sqliteMallocRaw( n ); + if( z==0 ) goto no_mem; + pTos->flags = MEM_Blob | MEM_Dyn; + pTos->xDel = 0; + pTos->z = z; + } + if( pC->keyAsData || pOp->opcode==OP_RowKey ){ + sqlite3BtreeKey(pCrsr, 0, n, pTos->z); + }else{ + sqlite3BtreeData(pCrsr, 0, n, pTos->z); + } + }else if( pC->pseudoTable ){ + pTos->n = pC->nData; + pTos->z = pC->pData; + pTos->flags = MEM_Blob|MEM_Ephem; + }else{ + pTos->flags = MEM_Null; + } + break; +} + +/* Opcode: Recno P1 * * +** +** Push onto the stack an integer which is the first 4 bytes of the +** the key to the current entry in a sequential scan of the database +** file P1. The sequential scan should have been started using the +** Next opcode. +*/ +case OP_Recno: { + int i = pOp->p1; + Cursor *pC; + i64 v; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + sqlite3VdbeCursorMoveto(pC); + pTos++; + if( pC->recnoIsValid ){ + v = pC->lastRecno; + }else if( pC->pseudoTable ){ + v = keyToInt(pC->iKey); + }else if( pC->nullRow || pC->pCursor==0 ){ + pTos->flags = MEM_Null; + break; + }else{ + assert( pC->pCursor!=0 ); + sqlite3BtreeKeySize(pC->pCursor, &v); + v = keyToInt(v); + } + pTos->i = v; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: FullKey P1 * * +** +** Extract the complete key from the record that cursor P1 is currently +** pointing to and push the key onto the stack as a string. +** +** Compare this opcode to Recno. The Recno opcode extracts the first +** 4 bytes of the key and pushes those bytes onto the stack as an +** integer. This instruction pushes the entire key as a string. +** +** This opcode may not be used on a pseudo-table. +*/ +case OP_FullKey: { + int i = pOp->p1; + BtCursor *pCrsr; + Cursor *pC; + + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + assert( p->apCsr[i]->keyAsData ); + assert( !p->apCsr[i]->pseudoTable ); + pTos++; + pTos->flags = MEM_Null; + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + i64 amt; + char *z; + + sqlite3VdbeCursorMoveto(pC); + assert( pC->intKey==0 ); + sqlite3BtreeKeySize(pCrsr, &amt); + if( amt<=0 ){ + rc = SQLITE_CORRUPT; + goto abort_due_to_error; + } + if( amt>NBFS ){ + z = sqliteMallocRaw( amt ); + if( z==0 ) goto no_mem; + pTos->flags = MEM_Blob | MEM_Dyn; + pTos->xDel = 0; + }else{ + z = pTos->zShort; + pTos->flags = MEM_Blob | MEM_Short; + } + sqlite3BtreeKey(pCrsr, 0, amt, z); + pTos->z = z; + pTos->n = amt; + } + break; +} + +/* Opcode: NullRow P1 * * +** +** Move the cursor P1 to a null row. Any OP_Column operations +** that occur while the cursor is on the null row will always push +** a NULL onto the stack. +*/ +case OP_NullRow: { + int i = pOp->p1; + Cursor *pC; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + pC->nullRow = 1; + pC->recnoIsValid = 0; + break; +} + +/* Opcode: Last P1 P2 * +** +** The next use of the Recno or Column or Next instruction for P1 +** will refer to the last entry in the database table or index. +** If the table or index is empty and P2>0, then jump immediately to P2. +** If P2 is 0 or if the table or index is not empty, fall through +** to the following instruction. +*/ +case OP_Last: { + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + if( (pCrsr = pC->pCursor)!=0 ){ + int res; + rc = sqlite3BtreeLast(pCrsr, &res); + pC->nullRow = res; + pC->deferredMoveto = 0; + pC->cacheValid = 0; + if( res && pOp->p2>0 ){ + pc = pOp->p2 - 1; + } + }else{ + pC->nullRow = 0; + } + break; +} + +/* Opcode: Rewind P1 P2 * +** +** The next use of the Recno or Column or Next instruction for P1 +** will refer to the first entry in the database table or index. +** If the table or index is empty and P2>0, then jump immediately to P2. +** If P2 is 0 or if the table or index is not empty, fall through +** to the following instruction. +*/ +case OP_Rewind: { + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + int res; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + if( (pCrsr = pC->pCursor)!=0 ){ + rc = sqlite3BtreeFirst(pCrsr, &res); + pC->atFirst = res==0; + pC->deferredMoveto = 0; + pC->cacheValid = 0; + }else{ + res = 1; + } + pC->nullRow = res; + if( res && pOp->p2>0 ){ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: Next P1 P2 * +** +** Advance cursor P1 so that it points to the next key/data pair in its +** table or index. If there are no more key/value pairs then fall through +** to the following instruction. But if the cursor advance was successful, +** jump immediately to P2. +** +** See also: Prev +*/ +/* Opcode: Prev P1 P2 * +** +** Back up cursor P1 so that it points to the previous key/data pair in its +** table or index. If there is no previous key/value pairs then fall through +** to the following instruction. But if the cursor backup was successful, +** jump immediately to P2. +*/ +case OP_Prev: +case OP_Next: { + Cursor *pC; + BtCursor *pCrsr; + + CHECK_FOR_INTERRUPT; + assert( pOp->p1>=0 && pOp->p1<p->nCursor ); + pC = p->apCsr[pOp->p1]; + assert( pC!=0 ); + if( (pCrsr = pC->pCursor)!=0 ){ + int res; + if( pC->nullRow ){ + res = 1; + }else{ + assert( pC->deferredMoveto==0 ); + rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) : + sqlite3BtreePrevious(pCrsr, &res); + pC->nullRow = res; + pC->cacheValid = 0; + } + if( res==0 ){ + pc = pOp->p2 - 1; + sqlite3_search_count++; + } + }else{ + pC->nullRow = 1; + } + pC->recnoIsValid = 0; + break; +} + +/* Opcode: IdxPut P1 P2 P3 +** +** The top of the stack holds a SQL index key made using the +** MakeIdxKey instruction. This opcode writes that key into the +** index P1. Data for the entry is nil. +** +** If P2==1, then the key must be unique. If the key is not unique, +** the program aborts with a SQLITE_CONSTRAINT error and the database +** is rolled back. If P3 is not null, then it becomes part of the +** error message returned with the SQLITE_CONSTRAINT. +*/ +case OP_IdxPut: { + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + assert( pTos->flags & MEM_Blob ); + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + int nKey = pTos->n; + const char *zKey = pTos->z; + if( pOp->p2 ){ + int res; + int len; + + /* 'len' is the length of the key minus the rowid at the end */ + len = nKey - sqlite3VdbeIdxRowidLen(nKey, zKey); + + rc = sqlite3BtreeMoveto(pCrsr, zKey, len, &res); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + while( res!=0 && !sqlite3BtreeEof(pCrsr) ){ + int c; + if( sqlite3VdbeIdxKeyCompare(pC, len, zKey, &c)==SQLITE_OK && c==0 ){ + rc = SQLITE_CONSTRAINT; + if( pOp->p3 && pOp->p3[0] ){ + sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0); + } + goto abort_due_to_error; + } + if( res<0 ){ + sqlite3BtreeNext(pCrsr, &res); + res = +1; + }else{ + break; + } + } + } + assert( pC->intKey==0 ); + rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0); + assert( pC->deferredMoveto==0 ); + pC->cacheValid = 0; + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: IdxDelete P1 * * +** +** The top of the stack is an index key built using the MakeIdxKey opcode. +** This opcode removes that entry from the index. +*/ +case OP_IdxDelete: { + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + assert( pTos>=p->aStack ); + assert( pTos->flags & MEM_Blob ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + int rx, res; + rx = sqlite3BtreeMoveto(pCrsr, pTos->z, pTos->n, &res); + if( rx==SQLITE_OK && res==0 ){ + rc = sqlite3BtreeDelete(pCrsr); + } + assert( pC->deferredMoveto==0 ); + pC->cacheValid = 0; + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: IdxRecno P1 * * +** +** Push onto the stack an integer which is the varint located at the +** end of the index key pointed to by cursor P1. These integer should be +** the record number of the table entry to which this index entry points. +** +** See also: Recno, MakeIdxKey. +*/ +case OP_IdxRecno: { + int i = pOp->p1; + BtCursor *pCrsr; + Cursor *pC; + + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + pTos++; + pTos->flags = MEM_Null; + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + i64 rowid; + + assert( pC->deferredMoveto==0 ); + assert( pC->intKey==0 ); + if( pC->nullRow ){ + pTos->flags = MEM_Null; + }else{ + rc = sqlite3VdbeIdxRowid(pCrsr, &rowid); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + pTos->flags = MEM_Int; + pTos->i = rowid; + } + } + break; +} + +/* Opcode: IdxGT P1 P2 * +** +** The top of the stack is an index entry that omits the ROWID. Compare +** the top of stack against the index that P1 is currently pointing to. +** Ignore the ROWID on the P1 index. +** +** The top of the stack might have fewer columns that P1. +** +** If the P1 index entry is greater than the top of the stack +** then jump to P2. Otherwise fall through to the next instruction. +** In either case, the stack is popped once. +*/ +/* Opcode: IdxGE P1 P2 P3 +** +** The top of the stack is an index entry that omits the ROWID. Compare +** the top of stack against the index that P1 is currently pointing to. +** Ignore the ROWID on the P1 index. +** +** If the P1 index entry is greater than or equal to the top of the stack +** then jump to P2. Otherwise fall through to the next instruction. +** In either case, the stack is popped once. +** +** If P3 is the "+" string (or any other non-NULL string) then the +** index taken from the top of the stack is temporarily increased by +** an epsilon prior to the comparison. This make the opcode work +** like IdxGT except that if the key from the stack is a prefix of +** the key in the cursor, the result is false whereas it would be +** true with IdxGT. +*/ +/* Opcode: IdxLT P1 P2 P3 +** +** The top of the stack is an index entry that omits the ROWID. Compare +** the top of stack against the index that P1 is currently pointing to. +** Ignore the ROWID on the P1 index. +** +** If the P1 index entry is less than the top of the stack +** then jump to P2. Otherwise fall through to the next instruction. +** In either case, the stack is popped once. +** +** If P3 is the "+" string (or any other non-NULL string) then the +** index taken from the top of the stack is temporarily increased by +** an epsilon prior to the comparison. This makes the opcode work +** like IdxLE. +*/ +case OP_IdxLT: +case OP_IdxGT: +case OP_IdxGE: { + int i= pOp->p1; + BtCursor *pCrsr; + Cursor *pC; + + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + assert( pTos>=p->aStack ); + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + int res, rc; + + assert( pTos->flags & MEM_Blob ); /* Created using OP_Make*Key */ + Stringify(pTos, db->enc); + assert( pC->deferredMoveto==0 ); + *pC->pIncrKey = pOp->p3!=0; + assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT ); + rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, pTos->z, &res); + *pC->pIncrKey = 0; + if( rc!=SQLITE_OK ){ + break; + } + if( pOp->opcode==OP_IdxLT ){ + res = -res; + }else if( pOp->opcode==OP_IdxGE ){ + res++; + } + if( res>0 ){ + pc = pOp->p2 - 1 ; + } + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: IdxIsNull P1 P2 * +** +** The top of the stack contains an index entry such as might be generated +** by the MakeIdxKey opcode. This routine looks at the first P1 fields of +** that key. If any of the first P1 fields are NULL, then a jump is made +** to address P2. Otherwise we fall straight through. +** +** The index entry is always popped from the stack. +*/ +case OP_IdxIsNull: { + int i = pOp->p1; + int k, n; + const char *z; + u32 serial_type; + + assert( pTos>=p->aStack ); + assert( pTos->flags & MEM_Blob ); + z = pTos->z; + n = pTos->n; + k = sqlite3GetVarint32(z, &serial_type); + for(; k<n && i>0; i--){ + k += sqlite3GetVarint32(&z[k], &serial_type); + if( serial_type==0 ){ /* Serial type 0 is a NULL */ + pc = pOp->p2-1; + break; + } + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: Destroy P1 P2 * +** +** Delete an entire database table or index whose root page in the database +** file is given by P1. +** +** The table being destroyed is in the main database file if P2==0. If +** P2==1 then the table to be clear is in the auxiliary database file +** that is used to store tables create using CREATE TEMPORARY TABLE. +** +** See also: Clear +*/ +case OP_Destroy: { + rc = sqlite3BtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1); + break; +} + +/* Opcode: Clear P1 P2 * +** +** Delete all contents of the database table or index whose root page +** in the database file is given by P1. But, unlike Destroy, do not +** remove the table or index from the database file. +** +** The table being clear is in the main database file if P2==0. If +** P2==1 then the table to be clear is in the auxiliary database file +** that is used to store tables create using CREATE TEMPORARY TABLE. +** +** See also: Destroy +*/ +case OP_Clear: { + rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1); + break; +} + +/* Opcode: CreateTable P1 * * +** +** Allocate a new table in the main database file if P2==0 or in the +** auxiliary database file if P2==1. Push the page number +** for the root page of the new table onto the stack. +** +** The difference between a table and an index is this: A table must +** have a 4-byte integer key and can have arbitrary data. An index +** has an arbitrary key but no data. +** +** See also: CreateIndex +*/ +/* Opcode: CreateIndex P1 * * +** +** Allocate a new index in the main database file if P2==0 or in the +** auxiliary database file if P2==1. Push the page number of the +** root page of the new index onto the stack. +** +** See documentation on OP_CreateTable for additional information. +*/ +case OP_CreateIndex: +case OP_CreateTable: { + int pgno; + int flags; + Db *pDb; + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + pDb = &db->aDb[pOp->p1]; + assert( pDb->pBt!=0 ); + if( pOp->opcode==OP_CreateTable ){ + /* flags = BTREE_INTKEY; */ + flags = BTREE_LEAFDATA|BTREE_INTKEY; + }else{ + flags = BTREE_ZERODATA; + } + rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); + pTos++; + if( rc==SQLITE_OK ){ + pTos->i = pgno; + pTos->flags = MEM_Int; + }else{ + pTos->flags = MEM_Null; + } + break; +} + +/* Opcode: ParseSchema P1 * P3 +** +** Read and parse all entries from the SQLITE_MASTER table of database P1 +** that match the WHERE clause P3. +** +** This opcode invokes the parser to create a new virtual machine, +** then runs the new virtual machine. It is thus a reentrant opcode. +*/ +case OP_ParseSchema: { + char *zSql; + int iDb = pOp->p1; + const char *zMaster; + InitData initData; + + assert( iDb>=0 && iDb<db->nDb ); + if( !DbHasProperty(db, iDb, DB_SchemaLoaded) ) break; + zMaster = iDb==1 ? TEMP_MASTER_NAME : MASTER_NAME; + initData.db = db; + initData.pzErrMsg = &p->zErrMsg; + zSql = sqlite3MPrintf( + "SELECT name, rootpage, sql, %d FROM '%q'.%s WHERE %s", + pOp->p1, db->aDb[iDb].zName, zMaster, pOp->p3); + if( zSql==0 ) goto no_mem; + sqlite3SafetyOff(db); + assert( db->init.busy==0 ); + db->init.busy = 1; + rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); + db->init.busy = 0; + sqlite3SafetyOn(db); + sqliteFree(zSql); + break; +} + +/* Opcode: DropTable P1 * P3 +** +** Remove the internal (in-memory) data structures that describe +** the table named P3 in database P1. This is called after a table +** is dropped in order to keep the internal representation of the +** schema consistent with what is on disk. +*/ +case OP_DropTable: { + sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3); + break; +} + +/* Opcode: DropIndex P1 * P3 +** +** Remove the internal (in-memory) data structures that describe +** the index named P3 in database P1. This is called after an index +** is dropped in order to keep the internal representation of the +** schema consistent with what is on disk. +*/ +case OP_DropIndex: { + sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3); + break; +} + +/* Opcode: DropTrigger P1 * P3 +** +** Remove the internal (in-memory) data structures that describe +** the trigger named P3 in database P1. This is called after a trigger +** is dropped in order to keep the internal representation of the +** schema consistent with what is on disk. +*/ +case OP_DropTrigger: { + sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3); + break; +} + + +/* Opcode: IntegrityCk * P2 * +** +** Do an analysis of the currently open database. Push onto the +** stack the text of an error message describing any problems. +** If there are no errors, push a "ok" onto the stack. +** +** The root page numbers of all tables in the database are integer +** values on the stack. This opcode pulls as many integers as it +** can off of the stack and uses those numbers as the root pages. +** +** If P2 is not zero, the check is done on the auxiliary database +** file, not the main database file. +** +** This opcode is used for testing purposes only. +*/ +case OP_IntegrityCk: { + int nRoot; + int *aRoot; + int j; + char *z; + + for(nRoot=0; &pTos[-nRoot]>=p->aStack; nRoot++){ + if( (pTos[-nRoot].flags & MEM_Int)==0 ) break; + } + assert( nRoot>0 ); + aRoot = sqliteMallocRaw( sizeof(int*)*(nRoot+1) ); + if( aRoot==0 ) goto no_mem; + for(j=0; j<nRoot; j++){ + Mem *pMem = &pTos[-j]; + aRoot[j] = pMem->i; + } + aRoot[j] = 0; + popStack(&pTos, nRoot); + pTos++; + z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot); + if( z==0 || z[0]==0 ){ + if( z ) sqliteFree(z); + pTos->z = "ok"; + pTos->n = 2; + pTos->flags = MEM_Str | MEM_Static | MEM_Term; + }else{ + pTos->z = z; + pTos->n = strlen(z); + pTos->flags = MEM_Str | MEM_Dyn | MEM_Term; + pTos->xDel = 0; + } + pTos->enc = SQLITE_UTF8; + sqlite3VdbeChangeEncoding(pTos, db->enc); + sqliteFree(aRoot); + break; +} + +/* Opcode: ListWrite * * * +** +** Write the integer on the top of the stack +** into the temporary storage list. +*/ +case OP_ListWrite: { + Keylist *pKeylist; + assert( pTos>=p->aStack ); + pKeylist = p->pList; + if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){ + pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) ); + if( pKeylist==0 ) goto no_mem; + pKeylist->nKey = 1000; + pKeylist->nRead = 0; + pKeylist->nUsed = 0; + pKeylist->pNext = p->pList; + p->pList = pKeylist; + } + Integerify(pTos); + pKeylist->aKey[pKeylist->nUsed++] = pTos->i; + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + break; +} + +/* Opcode: ListRewind * * * +** +** Rewind the temporary buffer back to the beginning. +*/ +case OP_ListRewind: { + /* What this opcode codes, really, is reverse the order of the + ** linked list of Keylist structures so that they are read out + ** in the same order that they were read in. */ + Keylist *pRev, *pTop; + pRev = 0; + while( p->pList ){ + pTop = p->pList; + p->pList = pTop->pNext; + pTop->pNext = pRev; + pRev = pTop; + } + p->pList = pRev; + break; +} + +/* Opcode: ListRead * P2 * +** +** Attempt to read an integer from the temporary storage buffer +** and push it onto the stack. If the storage buffer is empty, +** push nothing but instead jump to P2. +*/ +case OP_ListRead: { + Keylist *pKeylist; + CHECK_FOR_INTERRUPT; + pKeylist = p->pList; + if( pKeylist!=0 ){ + assert( pKeylist->nRead>=0 ); + assert( pKeylist->nRead<pKeylist->nUsed ); + assert( pKeylist->nRead<pKeylist->nKey ); + pTos++; + pTos->i = pKeylist->aKey[pKeylist->nRead++]; + pTos->flags = MEM_Int; + if( pKeylist->nRead>=pKeylist->nUsed ){ + p->pList = pKeylist->pNext; + sqliteFree(pKeylist); + } + }else{ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: ListReset * * * +** +** Reset the temporary storage buffer so that it holds nothing. +*/ +case OP_ListReset: { + if( p->pList ){ + sqlite3VdbeKeylistFree(p->pList); + p->pList = 0; + } + break; +} + +/* Opcode: ContextPush * * * +** +** Save the current Vdbe context such that it can be restored by a ContextPop +** opcode. The context stores the last insert row id, the last statement change +** count, and the current statement change count. +*/ +case OP_ContextPush: { + int i = p->contextStackTop++; + Context *pContext; + + assert( i>=0 ); + /* FIX ME: This should be allocated as part of the vdbe at compile-time */ + if( i>=p->contextStackDepth ){ + p->contextStackDepth = i+1; + p->contextStack = sqliteRealloc(p->contextStack, sizeof(Context)*(i+1)); + if( p->contextStack==0 ) goto no_mem; + } + pContext = &p->contextStack[i]; + pContext->lastRowid = db->lastRowid; + pContext->nChange = p->nChange; + pContext->pList = p->pList; + p->pList = 0; + break; +} + +/* Opcode: ContextPop * * * +** +** Restore the Vdbe context to the state it was in when contextPush was last +** executed. The context stores the last insert row id, the last statement +** change count, and the current statement change count. +*/ +case OP_ContextPop: { + Context *pContext = &p->contextStack[--p->contextStackTop]; + assert( p->contextStackTop>=0 ); + db->lastRowid = pContext->lastRowid; + p->nChange = pContext->nChange; + sqlite3VdbeKeylistFree(p->pList); + p->pList = pContext->pList; + break; +} + +/* Opcode: SortPut * * * +** +** The TOS is the key and the NOS is the data. Pop both from the stack +** and put them on the sorter. The key and data should have been +** made using SortMakeKey and SortMakeRec, respectively. +*/ +case OP_SortPut: { + Mem *pNos = &pTos[-1]; + Sorter *pSorter; + assert( pNos>=p->aStack ); + if( Dynamicify(pTos, db->enc) ) goto no_mem; + pSorter = sqliteMallocRaw( sizeof(Sorter) ); + if( pSorter==0 ) goto no_mem; + pSorter->pNext = p->pSort; + p->pSort = pSorter; + assert( pTos->flags & MEM_Dyn ); + pSorter->nKey = pTos->n; + pSorter->zKey = pTos->z; + pSorter->data.flags = MEM_Null; + rc = sqlite3VdbeMemMove(&pSorter->data, pNos); + pTos -= 2; + break; +} + +/* Opcode: Sort * * P3 +** +** Sort all elements on the sorter. The algorithm is a +** mergesort. The P3 argument is a pointer to a KeyInfo structure +** that describes the keys to be sorted. +*/ +case OP_Sort: { + int i; + KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3; + Sorter *pElem; + Sorter *apSorter[NSORT]; + pKeyInfo->enc = p->db->enc; + for(i=0; i<NSORT; i++){ + apSorter[i] = 0; + } + while( p->pSort ){ + pElem = p->pSort; + p->pSort = pElem->pNext; + pElem->pNext = 0; + for(i=0; i<NSORT-1; i++){ + if( apSorter[i]==0 ){ + apSorter[i] = pElem; + break; + }else{ + pElem = Merge(apSorter[i], pElem, pKeyInfo); + apSorter[i] = 0; + } + } + if( i>=NSORT-1 ){ + apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem, pKeyInfo); + } + } + pElem = 0; + for(i=0; i<NSORT; i++){ + pElem = Merge(apSorter[i], pElem, pKeyInfo); + } + p->pSort = pElem; + break; +} + +/* Opcode: SortNext * P2 * +** +** Push the data for the topmost element in the sorter onto the +** stack, then remove the element from the sorter. If the sorter +** is empty, push nothing on the stack and instead jump immediately +** to instruction P2. +*/ +case OP_SortNext: { + Sorter *pSorter = p->pSort; + CHECK_FOR_INTERRUPT; + if( pSorter!=0 ){ + p->pSort = pSorter->pNext; + pTos++; + pTos->flags = MEM_Null; + rc = sqlite3VdbeMemMove(pTos, &pSorter->data); + sqliteFree(pSorter->zKey); + sqliteFree(pSorter); + }else{ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: SortReset * * * +** +** Remove any elements that remain on the sorter. +*/ +case OP_SortReset: { + sqlite3VdbeSorterReset(p); + break; +} + +/* Opcode: MemStore P1 P2 * +** +** Write the top of the stack into memory location P1. +** P1 should be a small integer since space is allocated +** for all memory locations between 0 and P1 inclusive. +** +** After the data is stored in the memory location, the +** stack is popped once if P2 is 1. If P2 is zero, then +** the original data remains on the stack. +*/ +case OP_MemStore: { + assert( pTos>=p->aStack ); + assert( pOp->p1>=0 && pOp->p1<p->nMem ); + rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos); + pTos--; + + /* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will + ** restore the top of the stack to its original value. + */ + if( pOp->p2 ){ + break; + } +} +/* Opcode: MemLoad P1 * * +** +** Push a copy of the value in memory location P1 onto the stack. +** +** If the value is a string, then the value pushed is a pointer to +** the string that is stored in the memory location. If the memory +** location is subsequently changed (using OP_MemStore) then the +** value pushed onto the stack will change too. +*/ +case OP_MemLoad: { + int i = pOp->p1; + assert( i>=0 && i<p->nMem ); + pTos++; + sqlite3VdbeMemShallowCopy(pTos, &p->aMem[i], MEM_Ephem); + break; +} + +/* Opcode: MemIncr P1 P2 * +** +** Increment the integer valued memory cell P1 by 1. If P2 is not zero +** and the result after the increment is greater than zero, then jump +** to P2. +** +** This instruction throws an error if the memory cell is not initially +** an integer. +*/ +case OP_MemIncr: { + int i = pOp->p1; + Mem *pMem; + assert( i>=0 && i<p->nMem ); + pMem = &p->aMem[i]; + assert( pMem->flags==MEM_Int ); + pMem->i++; + if( pOp->p2>0 && pMem->i>0 ){ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: AggReset P1 P2 P3 +** +** Reset the aggregator so that it no longer contains any data. +** Future aggregator elements will contain P2 values each and be sorted +** using the KeyInfo structure pointed to by P3. +** +** If P1 is non-zero, then only a single aggregator row is available (i.e. +** there is no GROUP BY expression). In this case it is illegal to invoke +** OP_AggFocus. +*/ +case OP_AggReset: { + assert( !pOp->p3 || pOp->p3type==P3_KEYINFO ); + if( pOp->p1 ){ + rc = sqlite3VdbeAggReset(0, &p->agg, (KeyInfo *)pOp->p3); + p->agg.nMem = pOp->p2; /* Agg.nMem is used by AggInsert() */ + rc = AggInsert(&p->agg, 0, 0); + }else{ + rc = sqlite3VdbeAggReset(db, &p->agg, (KeyInfo *)pOp->p3); + p->agg.nMem = pOp->p2; + } + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) ); + if( p->agg.apFunc==0 ) goto no_mem; + break; +} + +/* Opcode: AggInit * P2 P3 +** +** Initialize the function parameters for an aggregate function. +** The aggregate will operate out of aggregate column P2. +** P3 is a pointer to the FuncDef structure for the function. +*/ +case OP_AggInit: { + int i = pOp->p2; + assert( i>=0 && i<p->agg.nMem ); + p->agg.apFunc[i] = (FuncDef*)pOp->p3; + break; +} + +/* Opcode: AggFunc * P2 P3 +** +** Execute the step function for an aggregate. The +** function has P2 arguments. P3 is a pointer to the FuncDef +** structure that specifies the function. +** +** The top of the stack must be an integer which is the index of +** the aggregate column that corresponds to this aggregate function. +** Ideally, this index would be another parameter, but there are +** no free parameters left. The integer is popped from the stack. +*/ +case OP_AggFunc: { + int n = pOp->p2; + int i; + Mem *pMem, *pRec; + sqlite3_context ctx; + sqlite3_value **apVal; + + assert( n>=0 ); + assert( pTos->flags==MEM_Int ); + pRec = &pTos[-n]; + assert( pRec>=p->aStack ); + + apVal = p->apArg; + assert( apVal || n==0 ); + + for(i=0; i<n; i++, pRec++){ + apVal[i] = pRec; + storeTypeInfo(pRec, db->enc); + } + i = pTos->i; + assert( i>=0 && i<p->agg.nMem ); + ctx.pFunc = (FuncDef*)pOp->p3; + pMem = &p->agg.pCurrent->aMem[i]; + ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */ + ctx.pAgg = pMem->z; + ctx.cnt = ++pMem->i; + ctx.isError = 0; + ctx.isStep = 1; + ctx.pColl = 0; + if( ctx.pFunc->needCollSeq ){ + assert( pOp>p->aOp ); + assert( pOp[-1].p3type==P3_COLLSEQ ); + assert( pOp[-1].opcode==OP_CollSeq ); + ctx.pColl = (CollSeq *)pOp[-1].p3; + } + (ctx.pFunc->xStep)(&ctx, n, apVal); + pMem->z = ctx.pAgg; + pMem->flags = MEM_AggCtx; + popStack(&pTos, n+1); + if( ctx.isError ){ + rc = SQLITE_ERROR; + } + break; +} + +/* Opcode: AggFocus * P2 * +** +** Pop the top of the stack and use that as an aggregator key. If +** an aggregator with that same key already exists, then make the +** aggregator the current aggregator and jump to P2. If no aggregator +** with the given key exists, create one and make it current but +** do not jump. +** +** The order of aggregator opcodes is important. The order is: +** AggReset AggFocus AggNext. In other words, you must execute +** AggReset first, then zero or more AggFocus operations, then +** zero or more AggNext operations. You must not execute an AggFocus +** in between an AggNext and an AggReset. +*/ +case OP_AggFocus: { + char *zKey; + int nKey; + int res; + assert( pTos>=p->aStack ); + Stringify(pTos, db->enc); + zKey = pTos->z; + nKey = pTos->n; + assert( p->agg.pBtree ); + assert( p->agg.pCsr ); + rc = sqlite3BtreeMoveto(p->agg.pCsr, zKey, nKey, &res); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + if( res==0 ){ + rc = sqlite3BtreeData(p->agg.pCsr, 0, sizeof(AggElem*), + (char *)&p->agg.pCurrent); + pc = pOp->p2 - 1; + }else{ + rc = AggInsert(&p->agg, zKey, nKey); + } + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: AggSet * P2 * +** +** Move the top of the stack into the P2-th field of the current +** aggregate. String values are duplicated into new memory. +*/ +case OP_AggSet: { + AggElem *pFocus; + int i = pOp->p2; + pFocus = p->agg.pCurrent; + assert( pTos>=p->aStack ); + if( pFocus==0 ) goto no_mem; + assert( i>=0 && i<p->agg.nMem ); + rc = sqlite3VdbeMemMove(&pFocus->aMem[i], pTos); + pTos--; + break; +} + +/* Opcode: AggGet * P2 * +** +** Push a new entry onto the stack which is a copy of the P2-th field +** of the current aggregate. Strings are not duplicated so +** string values will be ephemeral. +*/ +case OP_AggGet: { + AggElem *pFocus; + int i = pOp->p2; + pFocus = p->agg.pCurrent; + if( pFocus==0 ) goto no_mem; + assert( i>=0 && i<p->agg.nMem ); + pTos++; + sqlite3VdbeMemShallowCopy(pTos, &pFocus->aMem[i], MEM_Ephem); + if( pTos->flags&MEM_Str ){ + sqlite3VdbeChangeEncoding(pTos, db->enc); + } + break; +} + +/* Opcode: AggNext * P2 * +** +** Make the next aggregate value the current aggregate. The prior +** aggregate is deleted. If all aggregate values have been consumed, +** jump to P2. +** +** The order of aggregator opcodes is important. The order is: +** AggReset AggFocus AggNext. In other words, you must execute +** AggReset first, then zero or more AggFocus operations, then +** zero or more AggNext operations. You must not execute an AggFocus +** in between an AggNext and an AggReset. +*/ +case OP_AggNext: { + int res; + assert( rc==SQLITE_OK ); + CHECK_FOR_INTERRUPT; + if( p->agg.searching==0 ){ + p->agg.searching = 1; + if( p->agg.pCsr ){ + rc = sqlite3BtreeFirst(p->agg.pCsr, &res); + }else{ + res = 0; + } + }else{ + if( p->agg.pCsr ){ + rc = sqlite3BtreeNext(p->agg.pCsr, &res); + }else{ + res = 1; + } + } + if( rc!=SQLITE_OK ) goto abort_due_to_error; + if( res!=0 ){ + pc = pOp->p2 - 1; + }else{ + int i; + sqlite3_context ctx; + Mem *aMem; + + if( p->agg.pCsr ){ + rc = sqlite3BtreeData(p->agg.pCsr, 0, sizeof(AggElem*), + (char *)&p->agg.pCurrent); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + } + aMem = p->agg.pCurrent->aMem; + for(i=0; i<p->agg.nMem; i++){ + FuncDef *pFunc = p->agg.apFunc[i]; + Mem *pMem = &aMem[i]; + if( pFunc==0 || pFunc->xFinalize==0 ) continue; + ctx.s.flags = MEM_Null; + ctx.s.z = pMem->zShort; + ctx.pAgg = (void*)pMem->z; + ctx.cnt = pMem->i; + ctx.isStep = 0; + ctx.pFunc = pFunc; + pFunc->xFinalize(&ctx); + pMem->z = ctx.pAgg; + if( pMem->z && pMem->z!=pMem->zShort ){ + sqliteFree( pMem->z ); + } + *pMem = ctx.s; + if( pMem->flags & MEM_Short ){ + pMem->z = pMem->zShort; + } + } + } + break; +} + +/* Opcode: Vacuum * * * +** +** Vacuum the entire database. This opcode will cause other virtual +** machines to be created and run. It may not be called from within +** a transaction. +*/ +case OP_Vacuum: { + if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; + rc = sqlite3RunVacuum(&p->zErrMsg, db); + if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; + break; +} + +/* An other opcode is illegal... +*/ +default: { + sqlite3_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode); + sqlite3SetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0); + rc = SQLITE_INTERNAL; + break; +} + +/***************************************************************************** +** The cases of the switch statement above this line should all be indented +** by 6 spaces. But the left-most 6 spaces have been removed to improve the +** readability. From this point on down, the normal indentation rules are +** restored. +*****************************************************************************/ + } + +#ifdef VDBE_PROFILE + { + long long elapse = hwtime() - start; + pOp->cycles += elapse; + pOp->cnt++; +#if 0 + fprintf(stdout, "%10lld ", elapse); + sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]); +#endif + } +#endif + + /* The following code adds nothing to the actual functionality + ** of the program. It is only here for testing and debugging. + ** On the other hand, it does burn CPU cycles every time through + ** the evaluator loop. So we can leave it out when NDEBUG is defined. + */ +#ifndef NDEBUG + /* Sanity checking on the top element of the stack */ + if( pTos>=p->aStack ){ + sqlite3VdbeMemSanity(pTos, db->enc); + } + if( pc<-1 || pc>=p->nOp ){ + sqlite3SetString(&p->zErrMsg, "jump destination out of range", (char*)0); + rc = SQLITE_INTERNAL; + } + if( p->trace && pTos>=p->aStack ){ + int i; + fprintf(p->trace, "Stack:"); + for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){ + if( pTos[i].flags & MEM_Null ){ + fprintf(p->trace, " NULL"); + }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ + fprintf(p->trace, " si:%lld", pTos[i].i); + }else if( pTos[i].flags & MEM_Int ){ + fprintf(p->trace, " i:%lld", pTos[i].i); + }else if( pTos[i].flags & MEM_Real ){ + fprintf(p->trace, " r:%g", pTos[i].r); + }else{ + char zBuf[100]; + sqlite3VdbeMemPrettyPrint(&pTos[i], zBuf, 100); + fprintf(p->trace, " "); + fprintf(p->trace, "%s", zBuf); + } + } + if( rc!=0 ) fprintf(p->trace," rc=%d",rc); + fprintf(p->trace,"\n"); + } +#endif + } /* The end of the for(;;) loop the loops through opcodes */ + + /* If we reach this point, it means that execution is finished. + */ +vdbe_halt: + if( rc ){ + p->rc = rc; + rc = SQLITE_ERROR; + }else{ + rc = SQLITE_DONE; + } + sqlite3VdbeHalt(p); + p->pTos = pTos; + return rc; + + /* Jump to here if a malloc() fails. It's hard to get a malloc() + ** to fail on a modern VM computer, so this code is untested. + */ +no_mem: + sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0); + rc = SQLITE_NOMEM; + goto vdbe_halt; + + /* Jump to here for an SQLITE_MISUSE error. + */ +abort_due_to_misuse: + rc = SQLITE_MISUSE; + /* Fall thru into abort_due_to_error */ + + /* Jump to here for any other kind of fatal error. The "rc" variable + ** should hold the error number. + */ +abort_due_to_error: + if( p->zErrMsg==0 ){ + if( sqlite3_malloc_failed ) rc = SQLITE_NOMEM; + sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0); + } + goto vdbe_halt; + + /* Jump to here if the sqlite3_interrupt() API sets the interrupt + ** flag. + */ +abort_due_to_interrupt: + assert( db->flags & SQLITE_Interrupt ); + db->flags &= ~SQLITE_Interrupt; + if( db->magic!=SQLITE_MAGIC_BUSY ){ + rc = SQLITE_MISUSE; + }else{ + rc = SQLITE_INTERRUPT; + } + p->rc = rc; + sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0); + goto vdbe_halt; +} |