diff options
Diffstat (limited to 'kopete/plugins/statistics/sqlite')
52 files changed, 47954 insertions, 0 deletions
diff --git a/kopete/plugins/statistics/sqlite/Makefile.am b/kopete/plugins/statistics/sqlite/Makefile.am new file mode 100644 index 00000000..f647c6d5 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/Makefile.am @@ -0,0 +1,51 @@ +noinst_LTLIBRARIES = \ + libsqlite.la + +KDE_CFLAGS = \ + -w + +libsqlite_la_CFLAGS = \ + $(all_includes) \ + -DTHREADSAFE=1 + +libsqlite_la_LDFLAGS = \ + $(LIBPTHREAD) + +libsqlite_la_SOURCES = \ + attach.c \ + auth.c \ + btree.c \ + build.c \ + date.c \ + delete.c \ + encode.c \ + expr.c \ + func.c \ + hash.c \ + insert.c \ + legacy.c \ + main.c \ + opcodes.c \ + os_mac.c \ + os_unix.c \ + os_win.c \ + pager.c \ + parse.c \ + pragma.c \ + printf.c \ + random.c \ + select.c \ + shell.c \ + table.c \ + tokenize.c \ + trigger.c \ + update.c \ + utf.c \ + util.c \ + vacuum.c \ + vdbe.c \ + vdbeapi.c \ + vdbeaux.c \ + vdbemem.c \ + where.c + diff --git a/kopete/plugins/statistics/sqlite/attach.c b/kopete/plugins/statistics/sqlite/attach.c new file mode 100644 index 00000000..2f089986 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/attach.c @@ -0,0 +1,329 @@ +/* +** 2003 April 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used to implement the ATTACH and DETACH commands. +** +** $Id$ +*/ +#include "sqliteInt.h" + +/* +** This routine is called by the parser to process an ATTACH statement: +** +** ATTACH DATABASE filename AS dbname +** +** The pFilename and pDbname arguments are the tokens that define the +** filename and dbname in the ATTACH statement. +*/ +void sqlite3Attach( + Parse *pParse, /* The parser context */ + Token *pFilename, /* Name of database file */ + Token *pDbname, /* Name of the database to use internally */ + int keyType, /* 0: no key. 1: TEXT, 2: BLOB */ + Token *pKey /* Text of the key for keytype 1 and 2 */ +){ + Db *aNew; + int rc, i; + char *zFile, *zName; + sqlite3 *db; + Vdbe *v; + + v = sqlite3GetVdbe(pParse); + if( !v ) return; + sqlite3VdbeAddOp(v, OP_Halt, 0, 0); + if( pParse->explain ) return; + db = pParse->db; + if( db->nDb>=MAX_ATTACHED+2 ){ + sqlite3ErrorMsg(pParse, "too many attached databases - max %d", + MAX_ATTACHED); + pParse->rc = SQLITE_ERROR; + return; + } + + if( !db->autoCommit ){ + sqlite3ErrorMsg(pParse, "cannot ATTACH database within transaction"); + pParse->rc = SQLITE_ERROR; + return; + } + + zFile = sqlite3NameFromToken(pFilename);; + if( zFile==0 ) return; +#ifndef SQLITE_OMIT_AUTHORIZATION + if( sqlite3AuthCheck(pParse, SQLITE_ATTACH, zFile, 0, 0)!=SQLITE_OK ){ + sqliteFree(zFile); + return; + } +#endif /* SQLITE_OMIT_AUTHORIZATION */ + + zName = sqlite3NameFromToken(pDbname); + if( zName==0 ) return; + for(i=0; i<db->nDb; i++){ + char *z = db->aDb[i].zName; + if( z && sqlite3StrICmp(z, zName)==0 ){ + sqlite3ErrorMsg(pParse, "database %z is already in use", zName); + pParse->rc = SQLITE_ERROR; + sqliteFree(zFile); + return; + } + } + + if( db->aDb==db->aDbStatic ){ + aNew = sqliteMalloc( sizeof(db->aDb[0])*3 ); + if( aNew==0 ) return; + memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2); + }else{ + aNew = sqliteRealloc(db->aDb, sizeof(db->aDb[0])*(db->nDb+1) ); + if( aNew==0 ) return; + } + db->aDb = aNew; + aNew = &db->aDb[db->nDb++]; + memset(aNew, 0, sizeof(*aNew)); + sqlite3HashInit(&aNew->tblHash, SQLITE_HASH_STRING, 0); + sqlite3HashInit(&aNew->idxHash, SQLITE_HASH_STRING, 0); + sqlite3HashInit(&aNew->trigHash, SQLITE_HASH_STRING, 0); + sqlite3HashInit(&aNew->aFKey, SQLITE_HASH_STRING, 1); + aNew->zName = zName; + aNew->safety_level = 3; + rc = sqlite3BtreeFactory(db, zFile, 0, MAX_PAGES, &aNew->pBt); + if( rc ){ + sqlite3ErrorMsg(pParse, "unable to open database: %s", zFile); + } +#if SQLITE_HAS_CODEC + { + extern int sqlite3CodecAttach(sqlite3*, int, void*, int); + char *zKey; + int nKey; + if( keyType==0 ){ + /* No key specified. Use the key from the main database */ + extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*); + sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey); + }else if( keyType==1 ){ + /* Key specified as text */ + zKey = sqlite3NameFromToken(pKey); + nKey = strlen(zKey); + }else{ + /* Key specified as a BLOB */ + char *zTemp; + assert( keyType==2 ); + pKey->z++; + pKey->n--; + zTemp = sqlite3NameFromToken(pKey); + zKey = sqlite3HexToBlob(zTemp); + sqliteFree(zTemp); + } + sqlite3CodecAttach(db, db->nDb-1, zKey, nKey); + if( keyType ){ + sqliteFree(zKey); + } + } +#endif + sqliteFree(zFile); + db->flags &= ~SQLITE_Initialized; + if( pParse->nErr==0 && rc==SQLITE_OK ){ + rc = sqlite3ReadSchema(pParse); + } + if( rc ){ + int i = db->nDb - 1; + assert( i>=2 ); + if( db->aDb[i].pBt ){ + sqlite3BtreeClose(db->aDb[i].pBt); + db->aDb[i].pBt = 0; + } + sqlite3ResetInternalSchema(db, 0); + if( 0==pParse->nErr ){ + pParse->nErr++; + pParse->rc = SQLITE_ERROR; + } + } +} + +/* +** This routine is called by the parser to process a DETACH statement: +** +** DETACH DATABASE dbname +** +** The pDbname argument is the name of the database in the DETACH statement. +*/ +void sqlite3Detach(Parse *pParse, Token *pDbname){ + int i; + sqlite3 *db; + Vdbe *v; + Db *pDb = 0; + + v = sqlite3GetVdbe(pParse); + if( !v ) return; + sqlite3VdbeAddOp(v, OP_Halt, 0, 0); + if( pParse->explain ) return; + db = pParse->db; + for(i=0; i<db->nDb; i++){ + pDb = &db->aDb[i]; + if( pDb->pBt==0 || pDb->zName==0 ) continue; + if( strlen(pDb->zName)!=pDbname->n ) continue; + if( sqlite3StrNICmp(pDb->zName, pDbname->z, pDbname->n)==0 ) break; + } + if( i>=db->nDb ){ + sqlite3ErrorMsg(pParse, "no such database: %T", pDbname); + return; + } + if( i<2 ){ + sqlite3ErrorMsg(pParse, "cannot detach database %T", pDbname); + return; + } + if( !db->autoCommit ){ + sqlite3ErrorMsg(pParse, "cannot DETACH database within transaction"); + pParse->rc = SQLITE_ERROR; + return; + } +#ifndef SQLITE_OMIT_AUTHORIZATION + if( sqlite3AuthCheck(pParse,SQLITE_DETACH,db->aDb[i].zName,0,0)!=SQLITE_OK ){ + return; + } +#endif /* SQLITE_OMIT_AUTHORIZATION */ + sqlite3BtreeClose(pDb->pBt); + pDb->pBt = 0; + sqlite3ResetInternalSchema(db, 0); +} + +/* +** Initialize a DbFixer structure. This routine must be called prior +** to passing the structure to one of the sqliteFixAAAA() routines below. +** +** The return value indicates whether or not fixation is required. TRUE +** means we do need to fix the database references, FALSE means we do not. +*/ +int sqlite3FixInit( + DbFixer *pFix, /* The fixer to be initialized */ + Parse *pParse, /* Error messages will be written here */ + int iDb, /* This is the database that must be used */ + const char *zType, /* "view", "trigger", or "index" */ + const Token *pName /* Name of the view, trigger, or index */ +){ + sqlite3 *db; + + if( iDb<0 || iDb==1 ) return 0; + db = pParse->db; + assert( db->nDb>iDb ); + pFix->pParse = pParse; + pFix->zDb = db->aDb[iDb].zName; + pFix->zType = zType; + pFix->pName = pName; + return 1; +} + +/* +** The following set of routines walk through the parse tree and assign +** a specific database to all table references where the database name +** was left unspecified in the original SQL statement. The pFix structure +** must have been initialized by a prior call to sqlite3FixInit(). +** +** These routines are used to make sure that an index, trigger, or +** view in one database does not refer to objects in a different database. +** (Exception: indices, triggers, and views in the TEMP database are +** allowed to refer to anything.) If a reference is explicitly made +** to an object in a different database, an error message is added to +** pParse->zErrMsg and these routines return non-zero. If everything +** checks out, these routines return 0. +*/ +int sqlite3FixSrcList( + DbFixer *pFix, /* Context of the fixation */ + SrcList *pList /* The Source list to check and modify */ +){ + int i; + const char *zDb; + struct SrcList_item *pItem; + + if( pList==0 ) return 0; + zDb = pFix->zDb; + for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ + if( pItem->zDatabase==0 ){ + pItem->zDatabase = sqliteStrDup(zDb); + }else if( sqlite3StrICmp(pItem->zDatabase,zDb)!=0 ){ + sqlite3ErrorMsg(pFix->pParse, + "%s %T cannot reference objects in database %s", + pFix->zType, pFix->pName, pItem->zDatabase); + return 1; + } + if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1; + if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1; + } + return 0; +} +int sqlite3FixSelect( + DbFixer *pFix, /* Context of the fixation */ + Select *pSelect /* The SELECT statement to be fixed to one database */ +){ + while( pSelect ){ + if( sqlite3FixExprList(pFix, pSelect->pEList) ){ + return 1; + } + if( sqlite3FixSrcList(pFix, pSelect->pSrc) ){ + return 1; + } + if( sqlite3FixExpr(pFix, pSelect->pWhere) ){ + return 1; + } + if( sqlite3FixExpr(pFix, pSelect->pHaving) ){ + return 1; + } + pSelect = pSelect->pPrior; + } + return 0; +} +int sqlite3FixExpr( + DbFixer *pFix, /* Context of the fixation */ + Expr *pExpr /* The expression to be fixed to one database */ +){ + while( pExpr ){ + if( sqlite3FixSelect(pFix, pExpr->pSelect) ){ + return 1; + } + if( sqlite3FixExprList(pFix, pExpr->pList) ){ + return 1; + } + if( sqlite3FixExpr(pFix, pExpr->pRight) ){ + return 1; + } + pExpr = pExpr->pLeft; + } + return 0; +} +int sqlite3FixExprList( + DbFixer *pFix, /* Context of the fixation */ + ExprList *pList /* The expression to be fixed to one database */ +){ + int i; + struct ExprList_item *pItem; + if( pList==0 ) return 0; + for(i=0, pItem=pList->a; i<pList->nExpr; i++, pItem++){ + if( sqlite3FixExpr(pFix, pItem->pExpr) ){ + return 1; + } + } + return 0; +} +int sqlite3FixTriggerStep( + DbFixer *pFix, /* Context of the fixation */ + TriggerStep *pStep /* The trigger step be fixed to one database */ +){ + while( pStep ){ + if( sqlite3FixSelect(pFix, pStep->pSelect) ){ + return 1; + } + if( sqlite3FixExpr(pFix, pStep->pWhere) ){ + return 1; + } + if( sqlite3FixExprList(pFix, pStep->pExprList) ){ + return 1; + } + pStep = pStep->pNext; + } + return 0; +} diff --git a/kopete/plugins/statistics/sqlite/auth.c b/kopete/plugins/statistics/sqlite/auth.c new file mode 100644 index 00000000..b251eacf --- /dev/null +++ b/kopete/plugins/statistics/sqlite/auth.c @@ -0,0 +1,223 @@ +/* +** 2003 January 11 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used to implement the sqlite3_set_authorizer() +** API. This facility is an optional feature of the library. Embedded +** systems that do not need this facility may omit it by recompiling +** the library with -DSQLITE_OMIT_AUTHORIZATION=1 +** +** $Id$ +*/ +#include "sqliteInt.h" + +/* +** All of the code in this file may be omitted by defining a single +** macro. +*/ +#ifndef SQLITE_OMIT_AUTHORIZATION + +/* +** Set or clear the access authorization function. +** +** The access authorization function is be called during the compilation +** phase to verify that the user has read and/or write access permission on +** various fields of the database. The first argument to the auth function +** is a copy of the 3rd argument to this routine. The second argument +** to the auth function is one of these constants: +** +** SQLITE_CREATE_INDEX +** SQLITE_CREATE_TABLE +** SQLITE_CREATE_TEMP_INDEX +** SQLITE_CREATE_TEMP_TABLE +** SQLITE_CREATE_TEMP_TRIGGER +** SQLITE_CREATE_TEMP_VIEW +** SQLITE_CREATE_TRIGGER +** SQLITE_CREATE_VIEW +** SQLITE_DELETE +** SQLITE_DROP_INDEX +** SQLITE_DROP_TABLE +** SQLITE_DROP_TEMP_INDEX +** SQLITE_DROP_TEMP_TABLE +** SQLITE_DROP_TEMP_TRIGGER +** SQLITE_DROP_TEMP_VIEW +** SQLITE_DROP_TRIGGER +** SQLITE_DROP_VIEW +** SQLITE_INSERT +** SQLITE_PRAGMA +** SQLITE_READ +** SQLITE_SELECT +** SQLITE_TRANSACTION +** SQLITE_UPDATE +** +** The third and fourth arguments to the auth function are the name of +** the table and the column that are being accessed. The auth function +** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If +** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY +** means that the SQL statement will never-run - the sqlite3_exec() call +** will return with an error. SQLITE_IGNORE means that the SQL statement +** should run but attempts to read the specified column will return NULL +** and attempts to write the column will be ignored. +** +** Setting the auth function to NULL disables this hook. The default +** setting of the auth function is NULL. +*/ +int sqlite3_set_authorizer( + sqlite3 *db, + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), + void *pArg +){ + db->xAuth = xAuth; + db->pAuthArg = pArg; + return SQLITE_OK; +} + +/* +** Write an error message into pParse->zErrMsg that explains that the +** user-supplied authorization function returned an illegal value. +*/ +static void sqliteAuthBadReturnCode(Parse *pParse, int rc){ + sqlite3ErrorMsg(pParse, "illegal return value (%d) from the " + "authorization function - should be SQLITE_OK, SQLITE_IGNORE, " + "or SQLITE_DENY", rc); + pParse->rc = SQLITE_ERROR; +} + +/* +** The pExpr should be a TK_COLUMN expression. The table referred to +** is in pTabList or else it is the NEW or OLD table of a trigger. +** Check to see if it is OK to read this particular column. +** +** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN +** instruction into a TK_NULL. If the auth function returns SQLITE_DENY, +** then generate an error. +*/ +void sqlite3AuthRead( + Parse *pParse, /* The parser context */ + Expr *pExpr, /* The expression to check authorization on */ + SrcList *pTabList /* All table that pExpr might refer to */ +){ + sqlite3 *db = pParse->db; + int rc; + Table *pTab; /* The table being read */ + const char *zCol; /* Name of the column of the table */ + int iSrc; /* Index in pTabList->a[] of table being read */ + const char *zDBase; /* Name of database being accessed */ + TriggerStack *pStack; /* The stack of current triggers */ + + if( db->xAuth==0 ) return; + assert( pExpr->op==TK_COLUMN ); + for(iSrc=0; iSrc<pTabList->nSrc; iSrc++){ + if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break; + } + if( iSrc>=0 && iSrc<pTabList->nSrc ){ + pTab = pTabList->a[iSrc].pTab; + }else if( (pStack = pParse->trigStack)!=0 ){ + /* This must be an attempt to read the NEW or OLD pseudo-tables + ** of a trigger. + */ + assert( pExpr->iTable==pStack->newIdx || pExpr->iTable==pStack->oldIdx ); + pTab = pStack->pTab; + }else{ + return; + } + if( pTab==0 ) return; + if( pExpr->iColumn>=0 ){ + assert( pExpr->iColumn<pTab->nCol ); + zCol = pTab->aCol[pExpr->iColumn].zName; + }else if( pTab->iPKey>=0 ){ + assert( pTab->iPKey<pTab->nCol ); + zCol = pTab->aCol[pTab->iPKey].zName; + }else{ + zCol = "ROWID"; + } + assert( pExpr->iDb<db->nDb ); + zDBase = db->aDb[pExpr->iDb].zName; + rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase, + pParse->zAuthContext); + if( rc==SQLITE_IGNORE ){ + pExpr->op = TK_NULL; + }else if( rc==SQLITE_DENY ){ + if( db->nDb>2 || pExpr->iDb!=0 ){ + sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited", + zDBase, pTab->zName, zCol); + }else{ + sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited",pTab->zName,zCol); + } + pParse->rc = SQLITE_AUTH; + }else if( rc!=SQLITE_OK ){ + sqliteAuthBadReturnCode(pParse, rc); + } +} + +/* +** Do an authorization check using the code and arguments given. Return +** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY +** is returned, then the error count and error message in pParse are +** modified appropriately. +*/ +int sqlite3AuthCheck( + Parse *pParse, + int code, + const char *zArg1, + const char *zArg2, + const char *zArg3 +){ + sqlite3 *db = pParse->db; + int rc; + + /* Don't do any authorization checks if the database is initialising. */ + if( db->init.busy ){ + return SQLITE_OK; + } + + if( db->xAuth==0 ){ + return SQLITE_OK; + } + rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext); + if( rc==SQLITE_DENY ){ + sqlite3ErrorMsg(pParse, "not authorized"); + pParse->rc = SQLITE_AUTH; + }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){ + rc = SQLITE_DENY; + sqliteAuthBadReturnCode(pParse, rc); + } + return rc; +} + +/* +** Push an authorization context. After this routine is called, the +** zArg3 argument to authorization callbacks will be zContext until +** popped. Or if pParse==0, this routine is a no-op. +*/ +void sqlite3AuthContextPush( + Parse *pParse, + AuthContext *pContext, + const char *zContext +){ + pContext->pParse = pParse; + if( pParse ){ + pContext->zAuthContext = pParse->zAuthContext; + pParse->zAuthContext = zContext; + } +} + +/* +** Pop an authorization context that was previously pushed +** by sqlite3AuthContextPush +*/ +void sqlite3AuthContextPop(AuthContext *pContext){ + if( pContext->pParse ){ + pContext->pParse->zAuthContext = pContext->zAuthContext; + pContext->pParse = 0; + } +} + +#endif /* SQLITE_OMIT_AUTHORIZATION */ diff --git a/kopete/plugins/statistics/sqlite/btree.c b/kopete/plugins/statistics/sqlite/btree.c new file mode 100644 index 00000000..fe8754e0 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/btree.c @@ -0,0 +1,4462 @@ +/* +** 2004 April 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** $Id$ +** +** This file implements a external (disk-based) database using BTrees. +** For a detailed discussion of BTrees, refer to +** +** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: +** "Sorting And Searching", pages 473-480. Addison-Wesley +** Publishing Company, Reading, Massachusetts. +** +** The basic idea is that each page of the file contains N database +** entries and N+1 pointers to subpages. +** +** ---------------------------------------------------------------- +** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) | +** ---------------------------------------------------------------- +** +** All of the keys on the page that Ptr(0) points to have values less +** than Key(0). All of the keys on page Ptr(1) and its subpages have +** values greater than Key(0) and less than Key(1). All of the keys +** on Ptr(N+1) and its subpages have values greater than Key(N). And +** so forth. +** +** Finding a particular key requires reading O(log(M)) pages from the +** disk where M is the number of entries in the tree. +** +** In this implementation, a single file can hold one or more separate +** BTrees. Each BTree is identified by the index of its root page. The +** key and data for any entry are combined to form the "payload". A +** fixed amount of payload can be carried directly on the database +** page. If the payload is larger than the preset amount then surplus +** bytes are stored on overflow pages. The payload for an entry +** and the preceding pointer are combined to form a "Cell". Each +** page has a small header which contains the Ptr(N+1) pointer and other +** information such as the size of key and data. +** +** FORMAT DETAILS +** +** The file is divided into pages. The first page is called page 1, +** the second is page 2, and so forth. A page number of zero indicates +** "no such page". The page size can be anything between 512 and 65536. +** Each page can be either a btree page, a freelist page or an overflow +** page. +** +** The first page is always a btree page. The first 100 bytes of the first +** page contain a special header (the "file header") that describes the file. +** The format of the file header is as follows: +** +** OFFSET SIZE DESCRIPTION +** 0 16 Header string: "SQLite format 3\000" +** 16 2 Page size in bytes. +** 18 1 File format write version +** 19 1 File format read version +** 20 1 Bytes of unused space at the end of each page +** 21 1 Max embedded payload fraction +** 22 1 Min embedded payload fraction +** 23 1 Min leaf payload fraction +** 24 4 File change counter +** 28 4 Reserved for future use +** 32 4 First freelist page +** 36 4 Number of freelist pages in the file +** 40 60 15 4-byte meta values passed to higher layers +** +** All of the integer values are big-endian (most significant byte first). +** +** The file change counter is incremented when the database is changed more +** than once within the same second. This counter, together with the +** modification time of the file, allows other processes to know +** when the file has changed and thus when they need to flush their +** cache. +** +** The max embedded payload fraction is the amount of the total usable +** space in a page that can be consumed by a single cell for standard +** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default +** is to limit the maximum cell size so that at least 4 cells will fit +** on one page. Thus the default max embedded payload fraction is 64. +** +** If the payload for a cell is larger than the max payload, then extra +** payload is spilled to overflow pages. Once an overflow page is allocated, +** as many bytes as possible are moved into the overflow pages without letting +** the cell size drop below the min embedded payload fraction. +** +** The min leaf payload fraction is like the min embedded payload fraction +** except that it applies to leaf nodes in a LEAFDATA tree. The maximum +** payload fraction for a LEAFDATA tree is always 100% (or 255) and it +** not specified in the header. +** +** Each btree pages is divided into three sections: The header, the +** cell pointer array, and the cell area area. Page 1 also has a 100-byte +** file header that occurs before the page header. +** +** |----------------| +** | file header | 100 bytes. Page 1 only. +** |----------------| +** | page header | 8 bytes for leaves. 12 bytes for interior nodes +** |----------------| +** | cell pointer | | 2 bytes per cell. Sorted order. +** | array | | Grows downward +** | | v +** |----------------| +** | unallocated | +** | space | +** |----------------| ^ Grows upwards +** | cell content | | Arbitrary order interspersed with freeblocks. +** | area | | and free space fragments. +** |----------------| +** +** The page headers looks like this: +** +** OFFSET SIZE DESCRIPTION +** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf +** 1 2 byte offset to the first freeblock +** 3 2 number of cells on this page +** 5 2 first byte of the cell content area +** 7 1 number of fragmented free bytes +** 8 4 Right child (the Ptr(N+1) value). Omitted on leaves. +** +** The flags define the format of this btree page. The leaf flag means that +** this page has no children. The zerodata flag means that this page carries +** only keys and no data. The intkey flag means that the key is a integer +** which is stored in the key size entry of the cell header rather than in +** the payload area. +** +** The cell pointer array begins on the first byte after the page header. +** The cell pointer array contains zero or more 2-byte numbers which are +** offsets from the beginning of the page to the cell content in the cell +** content area. The cell pointers occur in sorted order. The system strives +** to keep free space after the last cell pointer so that new cells can +** be easily added without having to defragment the page. +** +** Cell content is stored at the very end of the page and grows toward the +** beginning of the page. +** +** Unused space within the cell content area is collected into a linked list of +** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset +** to the first freeblock is given in the header. Freeblocks occur in +** increasing order. Because a freeblock must be at least 4 bytes in size, +** any group of 3 or fewer unused bytes in the cell content area cannot +** exist on the freeblock chain. A group of 3 or fewer free bytes is called +** a fragment. The total number of bytes in all fragments is recorded. +** in the page header at offset 7. +** +** SIZE DESCRIPTION +** 2 Byte offset of the next freeblock +** 2 Bytes in this freeblock +** +** Cells are of variable length. Cells are stored in the cell content area at +** the end of the page. Pointers to the cells are in the cell pointer array +** that immediately follows the page header. Cells is not necessarily +** contiguous or in order, but cell pointers are contiguous and in order. +** +** Cell content makes use of variable length integers. A variable +** length integer is 1 to 9 bytes where the lower 7 bits of each +** byte are used. The integer consists of all bytes that have bit 8 set and +** the first byte with bit 8 clear. The most significant byte of the integer +** appears first. A variable-length integer may not be more than 9 bytes long. +** As a special case, all 8 bytes of the 9th byte are used as data. This +** allows a 64-bit integer to be encoded in 9 bytes. +** +** 0x00 becomes 0x00000000 +** 0x7f becomes 0x0000007f +** 0x81 0x00 becomes 0x00000080 +** 0x82 0x00 becomes 0x00000100 +** 0x80 0x7f becomes 0x0000007f +** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678 +** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081 +** +** Variable length integers are used for rowids and to hold the number of +** bytes of key and data in a btree cell. +** +** The content of a cell looks like this: +** +** SIZE DESCRIPTION +** 4 Page number of the left child. Omitted if leaf flag is set. +** var Number of bytes of data. Omitted if the zerodata flag is set. +** var Number of bytes of key. Or the key itself if intkey flag is set. +** * Payload +** 4 First page of the overflow chain. Omitted if no overflow +** +** Overflow pages form a linked list. Each page except the last is completely +** filled with data (pagesize - 4 bytes). The last page can have as little +** as 1 byte of data. +** +** SIZE DESCRIPTION +** 4 Page number of next overflow page +** * Data +** +** Freelist pages come in two subtypes: trunk pages and leaf pages. The +** file header points to first in a linked list of trunk page. Each trunk +** page points to multiple leaf pages. The content of a leaf page is +** unspecified. A trunk page looks like this: +** +** SIZE DESCRIPTION +** 4 Page number of next trunk page +** 4 Number of leaf pointers on this page +** * zero or more pages numbers of leaves +*/ +#include "sqliteInt.h" +#include "pager.h" +#include "btree.h" +#include "os.h" +#include <assert.h> + + +/* The following value is the maximum cell size assuming a maximum page +** size give above. +*/ +#define MX_CELL_SIZE(pBt) (pBt->pageSize-8) + +/* The maximum number of cells on a single page of the database. This +** assumes a minimum cell size of 3 bytes. Such small cells will be +** exceedingly rare, but they are possible. +*/ +#define MX_CELL(pBt) ((pBt->pageSize-8)/3) + +/* Forward declarations */ +typedef struct MemPage MemPage; + +/* +** This is a magic string that appears at the beginning of every +** SQLite database in order to identify the file as a real database. +** 123456789 123456 */ +static const char zMagicHeader[] = "SQLite format 3"; + +/* +** Page type flags. An ORed combination of these flags appear as the +** first byte of every BTree page. +*/ +#define PTF_INTKEY 0x01 +#define PTF_ZERODATA 0x02 +#define PTF_LEAFDATA 0x04 +#define PTF_LEAF 0x08 + +/* +** As each page of the file is loaded into memory, an instance of the following +** structure is appended and initialized to zero. This structure stores +** information about the page that is decoded from the raw file page. +** +** The pParent field points back to the parent page. This allows us to +** walk up the BTree from any leaf to the root. Care must be taken to +** unref() the parent page pointer when this page is no longer referenced. +** The pageDestructor() routine handles that chore. +*/ +struct MemPage { + u8 isInit; /* True if previously initialized. MUST BE FIRST! */ + u8 idxShift; /* True if Cell indices have changed */ + u8 nOverflow; /* Number of overflow cell bodies in aCell[] */ + u8 intKey; /* True if intkey flag is set */ + u8 leaf; /* True if leaf flag is set */ + u8 zeroData; /* True if table stores keys only */ + u8 leafData; /* True if tables stores data on leaves only */ + u8 hasData; /* True if this page stores data */ + u8 hdrOffset; /* 100 for page 1. 0 otherwise */ + u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */ + u16 maxLocal; /* Copy of Btree.maxLocal or Btree.maxLeaf */ + u16 minLocal; /* Copy of Btree.minLocal or Btree.minLeaf */ + u16 cellOffset; /* Index in aData of first cell pointer */ + u16 idxParent; /* Index in parent of this node */ + u16 nFree; /* Number of free bytes on the page */ + u16 nCell; /* Number of cells on this page, local and ovfl */ + struct _OvflCell { /* Cells that will not fit on aData[] */ + u8 *pCell; /* Pointers to the body of the overflow cell */ + u16 idx; /* Insert this cell before idx-th non-overflow cell */ + } aOvfl[5]; + struct Btree *pBt; /* Pointer back to BTree structure */ + u8 *aData; /* Pointer back to the start of the page */ + Pgno pgno; /* Page number for this page */ + MemPage *pParent; /* The parent of this page. NULL for root */ +}; + +/* +** The in-memory image of a disk page has the auxiliary information appended +** to the end. EXTRA_SIZE is the number of bytes of space needed to hold +** that extra information. +*/ +#define EXTRA_SIZE sizeof(MemPage) + +/* +** Everything we need to know about an open database +*/ +struct Btree { + Pager *pPager; /* The page cache */ + BtCursor *pCursor; /* A list of all open cursors */ + MemPage *pPage1; /* First page of the database */ + u8 inTrans; /* True if a transaction is in progress */ + u8 inStmt; /* True if we are in a statement subtransaction */ + u8 readOnly; /* True if the underlying file is readonly */ + u8 maxEmbedFrac; /* Maximum payload as % of total page size */ + u8 minEmbedFrac; /* Minimum payload as % of total page size */ + u8 minLeafFrac; /* Minimum leaf payload as % of total page size */ + u8 pageSizeFixed; /* True if the page size can no longer be changed */ + u16 pageSize; /* Total number of bytes on a page */ + u16 usableSize; /* Number of usable bytes on each page */ + int maxLocal; /* Maximum local payload in non-LEAFDATA tables */ + int minLocal; /* Minimum local payload in non-LEAFDATA tables */ + int maxLeaf; /* Maximum local payload in a LEAFDATA table */ + int minLeaf; /* Minimum local payload in a LEAFDATA table */ +}; +typedef Btree Bt; + +/* +** Btree.inTrans may take one of the following values. +*/ +#define TRANS_NONE 0 +#define TRANS_READ 1 +#define TRANS_WRITE 2 + +/* +** An instance of the following structure is used to hold information +** about a cell. The parseCellPtr() function fills in this structure +** based on information extract from the raw disk page. +*/ +typedef struct CellInfo CellInfo; +struct CellInfo { + u8 *pCell; /* Pointer to the start of cell content */ + i64 nKey; /* The key for INTKEY tables, or number of bytes in key */ + u32 nData; /* Number of bytes of data */ + u16 nHeader; /* Size of the cell content header in bytes */ + u16 nLocal; /* Amount of payload held locally */ + u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */ + u16 nSize; /* Size of the cell content on the main b-tree page */ +}; + +/* +** A cursor is a pointer to a particular entry in the BTree. +** The entry is identified by its MemPage and the index in +** MemPage.aCell[] of the entry. +*/ +struct BtCursor { + Btree *pBt; /* The Btree to which this cursor belongs */ + BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ + int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */ + void *pArg; /* First arg to xCompare() */ + Pgno pgnoRoot; /* The root page of this tree */ + MemPage *pPage; /* Page that contains the entry */ + int idx; /* Index of the entry in pPage->aCell[] */ + CellInfo info; /* A parse of the cell we are pointing at */ + u8 wrFlag; /* True if writable */ + u8 isValid; /* TRUE if points to a valid entry */ + u8 status; /* Set to SQLITE_ABORT if cursors is invalidated */ +}; + +/* +** Forward declaration +*/ +static int checkReadLocks(Btree*,Pgno,BtCursor*); + + +/* +** Read or write a two- and four-byte big-endian integer values. +*/ +static u32 get2byte(unsigned char *p){ + return (p[0]<<8) | p[1]; +} +static u32 get4byte(unsigned char *p){ + return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; +} +static void put2byte(unsigned char *p, u32 v){ + p[0] = v>>8; + p[1] = v; +} +static void put4byte(unsigned char *p, u32 v){ + p[0] = v>>24; + p[1] = v>>16; + p[2] = v>>8; + p[3] = v; +} + +/* +** Routines to read and write variable-length integers. These used to +** be defined locally, but now we use the varint routines in the util.c +** file. +*/ +#define getVarint sqlite3GetVarint +#define getVarint32 sqlite3GetVarint32 +#define putVarint sqlite3PutVarint + +/* +** Given a btree page and a cell index (0 means the first cell on +** the page, 1 means the second cell, and so forth) return a pointer +** to the cell content. +** +** This routine works only for pages that do not contain overflow cells. +*/ +static u8 *findCell(MemPage *pPage, int iCell){ + u8 *data = pPage->aData; + assert( iCell>=0 ); + assert( iCell<get2byte(&data[pPage->hdrOffset+3]) ); + return data + get2byte(&data[pPage->cellOffset+2*iCell]); +} + +/* +** This a more complex version of findCell() that works for +** pages that do contain overflow cells. See insert +*/ +static u8 *findOverflowCell(MemPage *pPage, int iCell){ + int i; + for(i=pPage->nOverflow-1; i>=0; i--){ + int k; + struct _OvflCell *pOvfl; + pOvfl = &pPage->aOvfl[i]; + k = pOvfl->idx; + if( k<=iCell ){ + if( k==iCell ){ + return pOvfl->pCell; + } + iCell--; + } + } + return findCell(pPage, iCell); +} + +/* +** Parse a cell content block and fill in the CellInfo structure. There +** are two versions of this function. parseCell() takes a cell index +** as the second argument and parseCellPtr() takes a pointer to the +** body of the cell as its second argument. +*/ +static void parseCellPtr( + MemPage *pPage, /* Page containing the cell */ + u8 *pCell, /* Pointer to the cell text. */ + CellInfo *pInfo /* Fill in this structure */ +){ + int n; /* Number bytes in cell content header */ + u32 nPayload; /* Number of bytes of cell payload */ + + pInfo->pCell = pCell; + assert( pPage->leaf==0 || pPage->leaf==1 ); + n = pPage->childPtrSize; + assert( n==4-4*pPage->leaf ); + if( pPage->hasData ){ + n += getVarint32(&pCell[n], &nPayload); + }else{ + nPayload = 0; + } + n += getVarint(&pCell[n], (u64 *)&pInfo->nKey); + pInfo->nHeader = n; + pInfo->nData = nPayload; + if( !pPage->intKey ){ + nPayload += pInfo->nKey; + } + if( nPayload<=pPage->maxLocal ){ + /* This is the (easy) common case where the entire payload fits + ** on the local page. No overflow is required. + */ + int nSize; /* Total size of cell content in bytes */ + pInfo->nLocal = nPayload; + pInfo->iOverflow = 0; + nSize = nPayload + n; + if( nSize<4 ){ + nSize = 4; /* Minimum cell size is 4 */ + } + pInfo->nSize = nSize; + }else{ + /* If the payload will not fit completely on the local page, we have + ** to decide how much to store locally and how much to spill onto + ** overflow pages. The strategy is to minimize the amount of unused + ** space on overflow pages while keeping the amount of local storage + ** in between minLocal and maxLocal. + ** + ** Warning: changing the way overflow payload is distributed in any + ** way will result in an incompatible file format. + */ + int minLocal; /* Minimum amount of payload held locally */ + int maxLocal; /* Maximum amount of payload held locally */ + int surplus; /* Overflow payload available for local storage */ + + minLocal = pPage->minLocal; + maxLocal = pPage->maxLocal; + surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4); + if( surplus <= maxLocal ){ + pInfo->nLocal = surplus; + }else{ + pInfo->nLocal = minLocal; + } + pInfo->iOverflow = pInfo->nLocal + n; + pInfo->nSize = pInfo->iOverflow + 4; + } +} +static void parseCell( + MemPage *pPage, /* Page containing the cell */ + int iCell, /* The cell index. First cell is 0 */ + CellInfo *pInfo /* Fill in this structure */ +){ + parseCellPtr(pPage, findCell(pPage, iCell), pInfo); +} + +/* +** Compute the total number of bytes that a Cell needs in the cell +** data area of the btree-page. The return number includes the cell +** data header and the local payload, but not any overflow page or +** the space used by the cell pointer. +*/ +#ifndef NDEBUG +static int cellSize(MemPage *pPage, int iCell){ + CellInfo info; + parseCell(pPage, iCell, &info); + return info.nSize; +} +#endif +static int cellSizePtr(MemPage *pPage, u8 *pCell){ + CellInfo info; + parseCellPtr(pPage, pCell, &info); + return info.nSize; +} + +/* +** Do sanity checking on a page. Throw an exception if anything is +** not right. +** +** This routine is used for internal error checking only. It is omitted +** from most builds. +*/ +#if defined(BTREE_DEBUG) && !defined(NDEBUG) && 0 +static void _pageIntegrity(MemPage *pPage){ + int usableSize; + u8 *data; + int i, j, idx, c, pc, hdr, nFree; + int cellOffset; + int nCell, cellLimit; + u8 *used; + + used = sqliteMallocRaw( pPage->pBt->pageSize ); + if( used==0 ) return; + usableSize = pPage->pBt->usableSize; + assert( pPage->aData==&((unsigned char*)pPage)[-pPage->pBt->pageSize] ); + hdr = pPage->hdrOffset; + assert( hdr==(pPage->pgno==1 ? 100 : 0) ); + assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) ); + c = pPage->aData[hdr]; + if( pPage->isInit ){ + assert( pPage->leaf == ((c & PTF_LEAF)!=0) ); + assert( pPage->zeroData == ((c & PTF_ZERODATA)!=0) ); + assert( pPage->leafData == ((c & PTF_LEAFDATA)!=0) ); + assert( pPage->intKey == ((c & (PTF_INTKEY|PTF_LEAFDATA))!=0) ); + assert( pPage->hasData == + !(pPage->zeroData || (!pPage->leaf && pPage->leafData)) ); + assert( pPage->cellOffset==pPage->hdrOffset+12-4*pPage->leaf ); + assert( pPage->nCell = get2byte(&pPage->aData[hdr+3]) ); + } + data = pPage->aData; + memset(used, 0, usableSize); + for(i=0; i<hdr+10-pPage->leaf*4; i++) used[i] = 1; + nFree = 0; + pc = get2byte(&data[hdr+1]); + while( pc ){ + int size; + assert( pc>0 && pc<usableSize-4 ); + size = get2byte(&data[pc+2]); + assert( pc+size<=usableSize ); + nFree += size; + for(i=pc; i<pc+size; i++){ + assert( used[i]==0 ); + used[i] = 1; + } + pc = get2byte(&data[pc]); + } + idx = 0; + nCell = get2byte(&data[hdr+3]); + cellLimit = get2byte(&data[hdr+5]); + assert( pPage->isInit==0 + || pPage->nFree==nFree+data[hdr+7]+cellLimit-(cellOffset+2*nCell) ); + cellOffset = pPage->cellOffset; + for(i=0; i<nCell; i++){ + int size; + pc = get2byte(&data[cellOffset+2*i]); + assert( pc>0 && pc<usableSize-4 ); + size = cellSize(pPage, &data[pc]); + assert( pc+size<=usableSize ); + for(j=pc; j<pc+size; j++){ + assert( used[j]==0 ); + used[j] = 1; + } + } + for(i=cellOffset+2*nCell; i<cellimit; i++){ + assert( used[i]==0 ); + used[i] = 1; + } + nFree = 0; + for(i=0; i<usableSize; i++){ + assert( used[i]<=1 ); + if( used[i]==0 ) nFree++; + } + assert( nFree==data[hdr+7] ); + sqliteFree(used); +} +#define pageIntegrity(X) _pageIntegrity(X) +#else +# define pageIntegrity(X) +#endif + +/* +** Defragment the page given. All Cells are moved to the +** beginning of the page and all free space is collected +** into one big FreeBlk at the end of the page. +*/ +static int defragmentPage(MemPage *pPage){ + int i; /* Loop counter */ + int pc; /* Address of a i-th cell */ + int addr; /* Offset of first byte after cell pointer array */ + int hdr; /* Offset to the page header */ + int size; /* Size of a cell */ + int usableSize; /* Number of usable bytes on a page */ + int cellOffset; /* Offset to the cell pointer array */ + int brk; /* Offset to the cell content area */ + int nCell; /* Number of cells on the page */ + unsigned char *data; /* The page data */ + unsigned char *temp; /* Temp area for cell content */ + + assert( sqlite3pager_iswriteable(pPage->aData) ); + assert( pPage->pBt!=0 ); + assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); + assert( pPage->nOverflow==0 ); + temp = sqliteMalloc( pPage->pBt->pageSize ); + if( temp==0 ) return SQLITE_NOMEM; + data = pPage->aData; + hdr = pPage->hdrOffset; + cellOffset = pPage->cellOffset; + nCell = pPage->nCell; + assert( nCell==get2byte(&data[hdr+3]) ); + usableSize = pPage->pBt->usableSize; + brk = get2byte(&data[hdr+5]); + memcpy(&temp[brk], &data[brk], usableSize - brk); + brk = usableSize; + for(i=0; i<nCell; i++){ + u8 *pAddr; /* The i-th cell pointer */ + pAddr = &data[cellOffset + i*2]; + pc = get2byte(pAddr); + assert( pc<pPage->pBt->usableSize ); + size = cellSizePtr(pPage, &temp[pc]); + brk -= size; + memcpy(&data[brk], &temp[pc], size); + put2byte(pAddr, brk); + } + assert( brk>=cellOffset+2*nCell ); + put2byte(&data[hdr+5], brk); + data[hdr+1] = 0; + data[hdr+2] = 0; + data[hdr+7] = 0; + addr = cellOffset+2*nCell; + memset(&data[addr], 0, brk-addr); + sqliteFree(temp); + return SQLITE_OK; +} + +/* +** Allocate nByte bytes of space on a page. +** +** Return the index into pPage->aData[] of the first byte of +** the new allocation. Or return 0 if there is not enough free +** space on the page to satisfy the allocation request. +** +** If the page contains nBytes of free space but does not contain +** nBytes of contiguous free space, then this routine automatically +** calls defragementPage() to consolidate all free space before +** allocating the new chunk. +*/ +static int allocateSpace(MemPage *pPage, int nByte){ + int addr, pc, hdr; + int size; + int nFrag; + int top; + int nCell; + int cellOffset; + unsigned char *data; + + data = pPage->aData; + assert( sqlite3pager_iswriteable(data) ); + assert( pPage->pBt ); + if( nByte<4 ) nByte = 4; + if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0; + pPage->nFree -= nByte; + hdr = pPage->hdrOffset; + + nFrag = data[hdr+7]; + if( nFrag<60 ){ + /* Search the freelist looking for a slot big enough to satisfy the + ** space request. */ + addr = hdr+1; + while( (pc = get2byte(&data[addr]))>0 ){ + size = get2byte(&data[pc+2]); + if( size>=nByte ){ + if( size<nByte+4 ){ + memcpy(&data[addr], &data[pc], 2); + data[hdr+7] = nFrag + size - nByte; + return pc; + }else{ + put2byte(&data[pc+2], size-nByte); + return pc + size - nByte; + } + } + addr = pc; + } + } + + /* Allocate memory from the gap in between the cell pointer array + ** and the cell content area. + */ + top = get2byte(&data[hdr+5]); + nCell = get2byte(&data[hdr+3]); + cellOffset = pPage->cellOffset; + if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){ + if( defragmentPage(pPage) ) return 0; + top = get2byte(&data[hdr+5]); + } + top -= nByte; + assert( cellOffset + 2*nCell <= top ); + put2byte(&data[hdr+5], top); + return top; +} + +/* +** Return a section of the pPage->aData to the freelist. +** The first byte of the new free block is pPage->aDisk[start] +** and the size of the block is "size" bytes. +** +** Most of the effort here is involved in coalesing adjacent +** free blocks into a single big free block. +*/ +static void freeSpace(MemPage *pPage, int start, int size){ + int addr, pbegin, hdr; + unsigned char *data = pPage->aData; + + assert( pPage->pBt!=0 ); + assert( sqlite3pager_iswriteable(data) ); + assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) ); + assert( (start + size)<=pPage->pBt->usableSize ); + if( size<4 ) size = 4; + + /* Add the space back into the linked list of freeblocks */ + hdr = pPage->hdrOffset; + addr = hdr + 1; + while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){ + assert( pbegin<=pPage->pBt->usableSize-4 ); + assert( pbegin>addr ); + addr = pbegin; + } + assert( pbegin<=pPage->pBt->usableSize-4 ); + assert( pbegin>addr || pbegin==0 ); + put2byte(&data[addr], start); + put2byte(&data[start], pbegin); + put2byte(&data[start+2], size); + pPage->nFree += size; + + /* Coalesce adjacent free blocks */ + addr = pPage->hdrOffset + 1; + while( (pbegin = get2byte(&data[addr]))>0 ){ + int pnext, psize; + assert( pbegin>addr ); + assert( pbegin<=pPage->pBt->usableSize-4 ); + pnext = get2byte(&data[pbegin]); + psize = get2byte(&data[pbegin+2]); + if( pbegin + psize + 3 >= pnext && pnext>0 ){ + int frag = pnext - (pbegin+psize); + assert( frag<=data[pPage->hdrOffset+7] ); + data[pPage->hdrOffset+7] -= frag; + put2byte(&data[pbegin], get2byte(&data[pnext])); + put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin); + }else{ + addr = pbegin; + } + } + + /* If the cell content area begins with a freeblock, remove it. */ + if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){ + int top; + pbegin = get2byte(&data[hdr+1]); + memcpy(&data[hdr+1], &data[pbegin], 2); + top = get2byte(&data[hdr+5]); + put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2])); + } +} + +/* +** Decode the flags byte (the first byte of the header) for a page +** and initialize fields of the MemPage structure accordingly. +*/ +static void decodeFlags(MemPage *pPage, int flagByte){ + Btree *pBt; /* A copy of pPage->pBt */ + + assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); + pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0; + pPage->zeroData = (flagByte & PTF_ZERODATA)!=0; + pPage->leaf = (flagByte & PTF_LEAF)!=0; + pPage->childPtrSize = 4*(pPage->leaf==0); + pBt = pPage->pBt; + if( flagByte & PTF_LEAFDATA ){ + pPage->leafData = 1; + pPage->maxLocal = pBt->maxLeaf; + pPage->minLocal = pBt->minLeaf; + }else{ + pPage->leafData = 0; + pPage->maxLocal = pBt->maxLocal; + pPage->minLocal = pBt->minLocal; + } + pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData)); +} + +/* +** Initialize the auxiliary information for a disk block. +** +** The pParent parameter must be a pointer to the MemPage which +** is the parent of the page being initialized. The root of a +** BTree has no parent and so for that page, pParent==NULL. +** +** Return SQLITE_OK on success. If we see that the page does +** not contain a well-formed database page, then return +** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not +** guarantee that the page is well-formed. It only shows that +** we failed to detect any corruption. +*/ +static int initPage( + MemPage *pPage, /* The page to be initialized */ + MemPage *pParent /* The parent. Might be NULL */ +){ + int pc; /* Address of a freeblock within pPage->aData[] */ + int i; /* Loop counter */ + int hdr; /* Offset to beginning of page header */ + u8 *data; /* Equal to pPage->aData */ + Btree *pBt; /* The main btree structure */ + int usableSize; /* Amount of usable space on each page */ + int cellOffset; /* Offset from start of page to first cell pointer */ + int nFree; /* Number of unused bytes on the page */ + int top; /* First byte of the cell content area */ + + pBt = pPage->pBt; + assert( pBt!=0 ); + assert( pParent==0 || pParent->pBt==pBt ); + assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) ); + assert( pPage->aData == &((unsigned char*)pPage)[-pBt->pageSize] ); + if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){ + /* The parent page should never change unless the file is corrupt */ + return SQLITE_CORRUPT; /* bkpt-CORRUPT */ + } + if( pPage->isInit ) return SQLITE_OK; + if( pPage->pParent==0 && pParent!=0 ){ + pPage->pParent = pParent; + sqlite3pager_ref(pParent->aData); + } + hdr = pPage->hdrOffset; + data = pPage->aData; + decodeFlags(pPage, data[hdr]); + pPage->nOverflow = 0; + pPage->idxShift = 0; + usableSize = pBt->usableSize; + pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf; + top = get2byte(&data[hdr+5]); + pPage->nCell = get2byte(&data[hdr+3]); + if( pPage->nCell>MX_CELL(pBt) ){ + /* To many cells for a single page. The page must be corrupt */ + return SQLITE_CORRUPT; /* bkpt-CORRUPT */ + } + if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){ + /* All pages must have at least one cell, except for root pages */ + return SQLITE_CORRUPT; /* bkpt-CORRUPT */ + } + + /* Compute the total free space on the page */ + pc = get2byte(&data[hdr+1]); + nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell); + i = 0; + while( pc>0 ){ + int next, size; + if( pc>usableSize-4 ){ + /* Free block is off the page */ + return SQLITE_CORRUPT; /* bkpt-CORRUPT */ + } + if( i++>SQLITE_MAX_PAGE_SIZE/4 ){ + /* The free block list forms an infinite loop */ + return SQLITE_CORRUPT; /* bkpt-CORRUPT */ + } + next = get2byte(&data[pc]); + size = get2byte(&data[pc+2]); + if( next>0 && next<=pc+size+3 ){ + /* Free blocks must be in accending order */ + return SQLITE_CORRUPT; /* bkpt-CORRUPT */ + } + nFree += size; + pc = next; + } + pPage->nFree = nFree; + if( nFree>=usableSize ){ + /* Free space cannot exceed total page size */ + return SQLITE_CORRUPT; /* bkpt-CORRUPT */ + } + + pPage->isInit = 1; + pageIntegrity(pPage); + return SQLITE_OK; +} + +/* +** Set up a raw page so that it looks like a database page holding +** no entries. +*/ +static void zeroPage(MemPage *pPage, int flags){ + unsigned char *data = pPage->aData; + Btree *pBt = pPage->pBt; + int hdr = pPage->hdrOffset; + int first; + + assert( sqlite3pager_pagenumber(data)==pPage->pgno ); + assert( &data[pBt->pageSize] == (unsigned char*)pPage ); + assert( sqlite3pager_iswriteable(data) ); + memset(&data[hdr], 0, pBt->usableSize - hdr); + data[hdr] = flags; + first = hdr + 8 + 4*((flags&PTF_LEAF)==0); + memset(&data[hdr+1], 0, 4); + data[hdr+7] = 0; + put2byte(&data[hdr+5], pBt->usableSize); + pPage->nFree = pBt->usableSize - first; + decodeFlags(pPage, flags); + pPage->hdrOffset = hdr; + pPage->cellOffset = first; + pPage->nOverflow = 0; + pPage->idxShift = 0; + pPage->nCell = 0; + pPage->isInit = 1; + pageIntegrity(pPage); +} + +/* +** Get a page from the pager. Initialize the MemPage.pBt and +** MemPage.aData elements if needed. +*/ +static int getPage(Btree *pBt, Pgno pgno, MemPage **ppPage){ + int rc; + unsigned char *aData; + MemPage *pPage; + rc = sqlite3pager_get(pBt->pPager, pgno, (void**)&aData); + if( rc ) return rc; + pPage = (MemPage*)&aData[pBt->pageSize]; + pPage->aData = aData; + pPage->pBt = pBt; + pPage->pgno = pgno; + pPage->hdrOffset = pPage->pgno==1 ? 100 : 0; + *ppPage = pPage; + return SQLITE_OK; +} + +/* +** Get a page from the pager and initialize it. This routine +** is just a convenience wrapper around separate calls to +** getPage() and initPage(). +*/ +static int getAndInitPage( + Btree *pBt, /* The database file */ + Pgno pgno, /* Number of the page to get */ + MemPage **ppPage, /* Write the page pointer here */ + MemPage *pParent /* Parent of the page */ +){ + int rc; + if( pgno==0 ){ + return SQLITE_CORRUPT; /* bkpt-CORRUPT */ + } + rc = getPage(pBt, pgno, ppPage); + if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){ + rc = initPage(*ppPage, pParent); + } + return rc; +} + +/* +** Release a MemPage. This should be called once for each prior +** call to getPage. +*/ +static void releasePage(MemPage *pPage){ + if( pPage ){ + assert( pPage->aData ); + assert( pPage->pBt ); + assert( &pPage->aData[pPage->pBt->pageSize]==(unsigned char*)pPage ); + sqlite3pager_unref(pPage->aData); + } +} + +/* +** This routine is called when the reference count for a page +** reaches zero. We need to unref the pParent pointer when that +** happens. +*/ +static void pageDestructor(void *pData, int pageSize){ + MemPage *pPage = (MemPage*)&((char*)pData)[pageSize]; + if( pPage->pParent ){ + MemPage *pParent = pPage->pParent; + pPage->pParent = 0; + releasePage(pParent); + } + pPage->isInit = 0; +} + +/* +** During a rollback, when the pager reloads information into the cache +** so that the cache is restored to its original state at the start of +** the transaction, for each page restored this routine is called. +** +** This routine needs to reset the extra data section at the end of the +** page to agree with the restored data. +*/ +static void pageReinit(void *pData, int pageSize){ + MemPage *pPage = (MemPage*)&((char*)pData)[pageSize]; + if( pPage->isInit ){ + pPage->isInit = 0; + initPage(pPage, pPage->pParent); + } +} + +/* +** Open a database file. +** +** zFilename is the name of the database file. If zFilename is NULL +** a new database with a random name is created. This randomly named +** database file will be deleted when sqlite3BtreeClose() is called. +*/ +int sqlite3BtreeOpen( + const char *zFilename, /* Name of the file containing the BTree database */ + Btree **ppBtree, /* Pointer to new Btree object written here */ + int flags /* Options */ +){ + Btree *pBt; + int rc; + int nReserve; + unsigned char zDbHeader[100]; + + /* + ** The following asserts make sure that structures used by the btree are + ** the right size. This is to guard against size changes that result + ** when compiling on a different architecture. + */ + assert( sizeof(i64)==8 ); + assert( sizeof(u64)==8 ); + assert( sizeof(u32)==4 ); + assert( sizeof(u16)==2 ); + assert( sizeof(Pgno)==4 ); + assert( sizeof(ptr)==sizeof(char*) ); + assert( sizeof(uptr)==sizeof(ptr) ); + + pBt = sqliteMalloc( sizeof(*pBt) ); + if( pBt==0 ){ + *ppBtree = 0; + return SQLITE_NOMEM; + } + rc = sqlite3pager_open(&pBt->pPager, zFilename, EXTRA_SIZE, + (flags & BTREE_OMIT_JOURNAL)==0); + if( rc!=SQLITE_OK ){ + if( pBt->pPager ) sqlite3pager_close(pBt->pPager); + sqliteFree(pBt); + *ppBtree = 0; + return rc; + } + sqlite3pager_set_destructor(pBt->pPager, pageDestructor); + sqlite3pager_set_reiniter(pBt->pPager, pageReinit); + pBt->pCursor = 0; + pBt->pPage1 = 0; + pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager); + sqlite3pager_read_fileheader(pBt->pPager, sizeof(zDbHeader), zDbHeader); + pBt->pageSize = get2byte(&zDbHeader[16]); + if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE ){ + pBt->pageSize = SQLITE_DEFAULT_PAGE_SIZE; + pBt->maxEmbedFrac = 64; /* 25% */ + pBt->minEmbedFrac = 32; /* 12.5% */ + pBt->minLeafFrac = 32; /* 12.5% */ + nReserve = 0; + }else{ + nReserve = zDbHeader[20]; + pBt->maxEmbedFrac = zDbHeader[21]; + pBt->minEmbedFrac = zDbHeader[22]; + pBt->minLeafFrac = zDbHeader[23]; + pBt->pageSizeFixed = 1; + } + pBt->usableSize = pBt->pageSize - nReserve; + sqlite3pager_set_pagesize(pBt->pPager, pBt->pageSize); + *ppBtree = pBt; + return SQLITE_OK; +} + +/* +** Close an open database and invalidate all cursors. +*/ +int sqlite3BtreeClose(Btree *pBt){ + while( pBt->pCursor ){ + sqlite3BtreeCloseCursor(pBt->pCursor); + } + sqlite3pager_close(pBt->pPager); + sqliteFree(pBt); + return SQLITE_OK; +} + +/* +** Change the busy handler callback function. +*/ +int sqlite3BtreeSetBusyHandler(Btree *pBt, BusyHandler *pHandler){ + sqlite3pager_set_busyhandler(pBt->pPager, pHandler); + return SQLITE_OK; +} + +/* +** Change the limit on the number of pages allowed in the cache. +** +** The maximum number of cache pages is set to the absolute +** value of mxPage. If mxPage is negative, the pager will +** operate asynchronously - it will not stop to do fsync()s +** to insure data is written to the disk surface before +** continuing. Transactions still work if synchronous is off, +** and the database cannot be corrupted if this program +** crashes. But if the operating system crashes or there is +** an abrupt power failure when synchronous is off, the database +** could be left in an inconsistent and unrecoverable state. +** Synchronous is on by default so database corruption is not +** normally a worry. +*/ +int sqlite3BtreeSetCacheSize(Btree *pBt, int mxPage){ + sqlite3pager_set_cachesize(pBt->pPager, mxPage); + return SQLITE_OK; +} + +/* +** Change the way data is synced to disk in order to increase or decrease +** how well the database resists damage due to OS crashes and power +** failures. Level 1 is the same as asynchronous (no syncs() occur and +** there is a high probability of damage) Level 2 is the default. There +** is a very low but non-zero probability of damage. Level 3 reduces the +** probability of damage to near zero but with a write performance reduction. +*/ +int sqlite3BtreeSetSafetyLevel(Btree *pBt, int level){ + sqlite3pager_set_safety_level(pBt->pPager, level); + return SQLITE_OK; +} + +/* +** Change the default pages size and the number of reserved bytes per page. +*/ +int sqlite3BtreeSetPageSize(Btree *pBt, int pageSize, int nReserve){ + if( pBt->pageSizeFixed ){ + return SQLITE_READONLY; + } + if( nReserve<0 ){ + nReserve = pBt->pageSize - pBt->usableSize; + } + if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE ){ + pBt->pageSize = pageSize; + sqlite3pager_set_pagesize(pBt->pPager, pageSize); + } + pBt->usableSize = pBt->pageSize - nReserve; + return SQLITE_OK; +} + +/* +** Return the currently defined page size +*/ +int sqlite3BtreeGetPageSize(Btree *pBt){ + return pBt->pageSize; +} +int sqlite3BtreeGetReserve(Btree *pBt){ + return pBt->pageSize - pBt->usableSize; +} + +/* +** Get a reference to pPage1 of the database file. This will +** also acquire a readlock on that file. +** +** SQLITE_OK is returned on success. If the file is not a +** well-formed database file, then SQLITE_CORRUPT is returned. +** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM +** is returned if we run out of memory. SQLITE_PROTOCOL is returned +** if there is a locking protocol violation. +*/ +static int lockBtree(Btree *pBt){ + int rc; + MemPage *pPage1; + if( pBt->pPage1 ) return SQLITE_OK; + rc = getPage(pBt, 1, &pPage1); + if( rc!=SQLITE_OK ) return rc; + + + /* Do some checking to help insure the file we opened really is + ** a valid database file. + */ + rc = SQLITE_NOTADB; + if( sqlite3pager_pagecount(pBt->pPager)>0 ){ + u8 *page1 = pPage1->aData; + if( memcmp(page1, zMagicHeader, 16)!=0 ){ + goto page1_init_failed; + } + if( page1[18]>1 || page1[19]>1 ){ + goto page1_init_failed; + } + pBt->pageSize = get2byte(&page1[16]); + pBt->usableSize = pBt->pageSize - page1[20]; + if( pBt->usableSize<500 ){ + goto page1_init_failed; + } + pBt->maxEmbedFrac = page1[21]; + pBt->minEmbedFrac = page1[22]; + pBt->minLeafFrac = page1[23]; + } + + /* maxLocal is the maximum amount of payload to store locally for + ** a cell. Make sure it is small enough so that at least minFanout + ** cells can will fit on one page. We assume a 10-byte page header. + ** Besides the payload, the cell must store: + ** 2-byte pointer to the cell + ** 4-byte child pointer + ** 9-byte nKey value + ** 4-byte nData value + ** 4-byte overflow page pointer + ** So a cell consists of a 2-byte poiner, a header which is as much as + ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow + ** page pointer. + */ + pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23; + pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23; + pBt->maxLeaf = pBt->usableSize - 35; + pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23; + if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){ + goto page1_init_failed; + } + assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); + pBt->pPage1 = pPage1; + return SQLITE_OK; + +page1_init_failed: + releasePage(pPage1); + pBt->pPage1 = 0; + return rc; +} + +/* +** If there are no outstanding cursors and we are not in the middle +** of a transaction but there is a read lock on the database, then +** this routine unrefs the first page of the database file which +** has the effect of releasing the read lock. +** +** If there are any outstanding cursors, this routine is a no-op. +** +** If there is a transaction in progress, this routine is a no-op. +*/ +static void unlockBtreeIfUnused(Btree *pBt){ + if( pBt->inTrans==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){ + if( pBt->pPage1->aData==0 ){ + MemPage *pPage = pBt->pPage1; + pPage->aData = &((char*)pPage)[-pBt->pageSize]; + pPage->pBt = pBt; + pPage->pgno = 1; + } + releasePage(pBt->pPage1); + pBt->pPage1 = 0; + pBt->inStmt = 0; + } +} + +/* +** Create a new database by initializing the first page of the +** file. +*/ +static int newDatabase(Btree *pBt){ + MemPage *pP1; + unsigned char *data; + int rc; + if( sqlite3pager_pagecount(pBt->pPager)>0 ) return SQLITE_OK; + pP1 = pBt->pPage1; + assert( pP1!=0 ); + data = pP1->aData; + rc = sqlite3pager_write(data); + if( rc ) return rc; + memcpy(data, zMagicHeader, sizeof(zMagicHeader)); + assert( sizeof(zMagicHeader)==16 ); + put2byte(&data[16], pBt->pageSize); + data[18] = 1; + data[19] = 1; + data[20] = pBt->pageSize - pBt->usableSize; + data[21] = pBt->maxEmbedFrac; + data[22] = pBt->minEmbedFrac; + data[23] = pBt->minLeafFrac; + memset(&data[24], 0, 100-24); + zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); + pBt->pageSizeFixed = 1; + return SQLITE_OK; +} + +/* +** Attempt to start a new transaction. A write-transaction +** is started if the second argument is nonzero, otherwise a read- +** transaction. If the second argument is 2 or more and exclusive +** transaction is started, meaning that no other process is allowed +** to access the database. A preexisting transaction may not be +** upgrade to exclusive by calling this routine a second time - the +** exclusivity flag only works for a new transaction. +** +** A write-transaction must be started before attempting any +** changes to the database. None of the following routines +** will work unless a transaction is started first: +** +** sqlite3BtreeCreateTable() +** sqlite3BtreeCreateIndex() +** sqlite3BtreeClearTable() +** sqlite3BtreeDropTable() +** sqlite3BtreeInsert() +** sqlite3BtreeDelete() +** sqlite3BtreeUpdateMeta() +** +** If wrflag is true, then nMaster specifies the maximum length of +** a master journal file name supplied later via sqlite3BtreeSync(). +** This is so that appropriate space can be allocated in the journal file +** when it is created.. +*/ +int sqlite3BtreeBeginTrans(Btree *pBt, int wrflag){ + int rc = SQLITE_OK; + + /* If the btree is already in a write-transaction, or it + ** is already in a read-transaction and a read-transaction + ** is requested, this is a no-op. + */ + if( pBt->inTrans==TRANS_WRITE || + (pBt->inTrans==TRANS_READ && !wrflag) ){ + return SQLITE_OK; + } + if( pBt->readOnly && wrflag ){ + return SQLITE_READONLY; + } + + if( pBt->pPage1==0 ){ + rc = lockBtree(pBt); + } + + if( rc==SQLITE_OK && wrflag ){ + rc = sqlite3pager_begin(pBt->pPage1->aData, wrflag>1); + if( rc==SQLITE_OK ){ + rc = newDatabase(pBt); + } + } + + if( rc==SQLITE_OK ){ + pBt->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); + if( wrflag ) pBt->inStmt = 0; + }else{ + unlockBtreeIfUnused(pBt); + } + return rc; +} + +/* +** Commit the transaction currently in progress. +** +** This will release the write lock on the database file. If there +** are no active cursors, it also releases the read lock. +*/ +int sqlite3BtreeCommit(Btree *pBt){ + int rc = SQLITE_OK; + if( pBt->inTrans==TRANS_WRITE ){ + rc = sqlite3pager_commit(pBt->pPager); + } + pBt->inTrans = TRANS_NONE; + pBt->inStmt = 0; + unlockBtreeIfUnused(pBt); + return rc; +} + +#ifndef NDEBUG +/* +** Return the number of write-cursors open on this handle. This is for use +** in assert() expressions, so it is only compiled if NDEBUG is not +** defined. +*/ +static int countWriteCursors(Btree *pBt){ + BtCursor *pCur; + int r = 0; + for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ + if( pCur->wrFlag ) r++; + } + return r; +} +#endif + +#if 0 +/* +** Invalidate all cursors +*/ +static void invalidateCursors(Btree *pBt){ + BtCursor *pCur; + for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ + MemPage *pPage = pCur->pPage; + if( pPage /* && !pPage->isInit */ ){ + pageIntegrity(pPage); + releasePage(pPage); + pCur->pPage = 0; + pCur->isValid = 0; + pCur->status = SQLITE_ABORT; + } + } +} +#endif + +#ifdef SQLITE_TEST +/* +** Print debugging information about all cursors to standard output. +*/ +void sqlite3BtreeCursorList(Btree *pBt){ + BtCursor *pCur; + for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ + MemPage *pPage = pCur->pPage; + char *zMode = pCur->wrFlag ? "rw" : "ro"; + sqlite3DebugPrintf("CURSOR %p rooted at %4d(%s) currently at %d.%d%s\n", + pCur, pCur->pgnoRoot, zMode, + pPage ? pPage->pgno : 0, pCur->idx, + pCur->isValid ? "" : " eof" + ); + } +} +#endif + +/* +** Rollback the transaction in progress. All cursors will be +** invalided by this operation. Any attempt to use a cursor +** that was open at the beginning of this operation will result +** in an error. +** +** This will release the write lock on the database file. If there +** are no active cursors, it also releases the read lock. +*/ +int sqlite3BtreeRollback(Btree *pBt){ + int rc = SQLITE_OK; + MemPage *pPage1; + if( pBt->inTrans==TRANS_WRITE ){ + rc = sqlite3pager_rollback(pBt->pPager); + /* The rollback may have destroyed the pPage1->aData value. So + ** call getPage() on page 1 again to make sure pPage1->aData is + ** set correctly. */ + if( getPage(pBt, 1, &pPage1)==SQLITE_OK ){ + releasePage(pPage1); + } + assert( countWriteCursors(pBt)==0 ); + } + pBt->inTrans = TRANS_NONE; + pBt->inStmt = 0; + unlockBtreeIfUnused(pBt); + return rc; +} + +/* +** Start a statement subtransaction. The subtransaction can +** can be rolled back independently of the main transaction. +** You must start a transaction before starting a subtransaction. +** The subtransaction is ended automatically if the main transaction +** commits or rolls back. +** +** Only one subtransaction may be active at a time. It is an error to try +** to start a new subtransaction if another subtransaction is already active. +** +** Statement subtransactions are used around individual SQL statements +** that are contained within a BEGIN...COMMIT block. If a constraint +** error occurs within the statement, the effect of that one statement +** can be rolled back without having to rollback the entire transaction. +*/ +int sqlite3BtreeBeginStmt(Btree *pBt){ + int rc; + if( (pBt->inTrans!=TRANS_WRITE) || pBt->inStmt ){ + return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; + } + rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_stmt_begin(pBt->pPager); + pBt->inStmt = 1; + return rc; +} + + +/* +** Commit the statment subtransaction currently in progress. If no +** subtransaction is active, this is a no-op. +*/ +int sqlite3BtreeCommitStmt(Btree *pBt){ + int rc; + if( pBt->inStmt && !pBt->readOnly ){ + rc = sqlite3pager_stmt_commit(pBt->pPager); + }else{ + rc = SQLITE_OK; + } + pBt->inStmt = 0; + return rc; +} + +/* +** Rollback the active statement subtransaction. If no subtransaction +** is active this routine is a no-op. +** +** All cursors will be invalidated by this operation. Any attempt +** to use a cursor that was open at the beginning of this operation +** will result in an error. +*/ +int sqlite3BtreeRollbackStmt(Btree *pBt){ + int rc; + if( pBt->inStmt==0 || pBt->readOnly ) return SQLITE_OK; + rc = sqlite3pager_stmt_rollback(pBt->pPager); + assert( countWriteCursors(pBt)==0 ); + pBt->inStmt = 0; + return rc; +} + +/* +** Default key comparison function to be used if no comparison function +** is specified on the sqlite3BtreeCursor() call. +*/ +static int dfltCompare( + void *NotUsed, /* User data is not used */ + int n1, const void *p1, /* First key to compare */ + int n2, const void *p2 /* Second key to compare */ +){ + int c; + c = memcmp(p1, p2, n1<n2 ? n1 : n2); + if( c==0 ){ + c = n1 - n2; + } + return c; +} + +/* +** Create a new cursor for the BTree whose root is on the page +** iTable. The act of acquiring a cursor gets a read lock on +** the database file. +** +** If wrFlag==0, then the cursor can only be used for reading. +** If wrFlag==1, then the cursor can be used for reading or for +** writing if other conditions for writing are also met. These +** are the conditions that must be met in order for writing to +** be allowed: +** +** 1: The cursor must have been opened with wrFlag==1 +** +** 2: No other cursors may be open with wrFlag==0 on the same table +** +** 3: The database must be writable (not on read-only media) +** +** 4: There must be an active transaction. +** +** Condition 2 warrants further discussion. If any cursor is opened +** on a table with wrFlag==0, that prevents all other cursors from +** writing to that table. This is a kind of "read-lock". When a cursor +** is opened with wrFlag==0 it is guaranteed that the table will not +** change as long as the cursor is open. This allows the cursor to +** do a sequential scan of the table without having to worry about +** entries being inserted or deleted during the scan. Cursors should +** be opened with wrFlag==0 only if this read-lock property is needed. +** That is to say, cursors should be opened with wrFlag==0 only if they +** intend to use the sqlite3BtreeNext() system call. All other cursors +** should be opened with wrFlag==1 even if they never really intend +** to write. +** +** No checking is done to make sure that page iTable really is the +** root page of a b-tree. If it is not, then the cursor acquired +** will not work correctly. +** +** The comparison function must be logically the same for every cursor +** on a particular table. Changing the comparison function will result +** in incorrect operations. If the comparison function is NULL, a +** default comparison function is used. The comparison function is +** always ignored for INTKEY tables. +*/ +int sqlite3BtreeCursor( + Btree *pBt, /* The btree */ + int iTable, /* Root page of table to open */ + int wrFlag, /* 1 to write. 0 read-only */ + int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */ + void *pArg, /* First arg to xCompare() */ + BtCursor **ppCur /* Write new cursor here */ +){ + int rc; + BtCursor *pCur; + + *ppCur = 0; + if( wrFlag ){ + if( pBt->readOnly ){ + return SQLITE_READONLY; + } + if( checkReadLocks(pBt, iTable, 0) ){ + return SQLITE_LOCKED; + } + } + if( pBt->pPage1==0 ){ + rc = lockBtree(pBt); + if( rc!=SQLITE_OK ){ + return rc; + } + } + pCur = sqliteMallocRaw( sizeof(*pCur) ); + if( pCur==0 ){ + rc = SQLITE_NOMEM; + goto create_cursor_exception; + } + pCur->pgnoRoot = (Pgno)iTable; + if( iTable==1 && sqlite3pager_pagecount(pBt->pPager)==0 ){ + rc = SQLITE_EMPTY; + pCur->pPage = 0; + goto create_cursor_exception; + } + pCur->pPage = 0; /* For exit-handler, in case getAndInitPage() fails. */ + rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0); + if( rc!=SQLITE_OK ){ + goto create_cursor_exception; + } + pCur->xCompare = xCmp ? xCmp : dfltCompare; + pCur->pArg = pArg; + pCur->pBt = pBt; + pCur->wrFlag = wrFlag; + pCur->idx = 0; + memset(&pCur->info, 0, sizeof(pCur->info)); + pCur->pNext = pBt->pCursor; + if( pCur->pNext ){ + pCur->pNext->pPrev = pCur; + } + pCur->pPrev = 0; + pBt->pCursor = pCur; + pCur->isValid = 0; + pCur->status = SQLITE_OK; + *ppCur = pCur; + return SQLITE_OK; + +create_cursor_exception: + if( pCur ){ + releasePage(pCur->pPage); + sqliteFree(pCur); + } + unlockBtreeIfUnused(pBt); + return rc; +} + +#if 0 /* Not Used */ +/* +** Change the value of the comparison function used by a cursor. +*/ +void sqlite3BtreeSetCompare( + BtCursor *pCur, /* The cursor to whose comparison function is changed */ + int(*xCmp)(void*,int,const void*,int,const void*), /* New comparison func */ + void *pArg /* First argument to xCmp() */ +){ + pCur->xCompare = xCmp ? xCmp : dfltCompare; + pCur->pArg = pArg; +} +#endif + +/* +** Close a cursor. The read lock on the database file is released +** when the last cursor is closed. +*/ +int sqlite3BtreeCloseCursor(BtCursor *pCur){ + Btree *pBt = pCur->pBt; + if( pCur->pPrev ){ + pCur->pPrev->pNext = pCur->pNext; + }else{ + pBt->pCursor = pCur->pNext; + } + if( pCur->pNext ){ + pCur->pNext->pPrev = pCur->pPrev; + } + releasePage(pCur->pPage); + unlockBtreeIfUnused(pBt); + sqliteFree(pCur); + return SQLITE_OK; +} + +/* +** Make a temporary cursor by filling in the fields of pTempCur. +** The temporary cursor is not on the cursor list for the Btree. +*/ +static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){ + memcpy(pTempCur, pCur, sizeof(*pCur)); + pTempCur->pNext = 0; + pTempCur->pPrev = 0; + if( pTempCur->pPage ){ + sqlite3pager_ref(pTempCur->pPage->aData); + } +} + +/* +** Delete a temporary cursor such as was made by the CreateTemporaryCursor() +** function above. +*/ +static void releaseTempCursor(BtCursor *pCur){ + if( pCur->pPage ){ + sqlite3pager_unref(pCur->pPage->aData); + } +} + +/* +** Make sure the BtCursor.info field of the given cursor is valid. +** If it is not already valid, call parseCell() to fill it in. +** +** BtCursor.info is a cache of the information in the current cell. +** Using this cache reduces the number of calls to parseCell(). +*/ +static void getCellInfo(BtCursor *pCur){ + if( pCur->info.nSize==0 ){ + parseCell(pCur->pPage, pCur->idx, &pCur->info); + }else{ +#ifndef NDEBUG + CellInfo info; + memset(&info, 0, sizeof(info)); + parseCell(pCur->pPage, pCur->idx, &info); + assert( memcmp(&info, &pCur->info, sizeof(info))==0 ); +#endif + } +} + +/* +** Set *pSize to the size of the buffer needed to hold the value of +** the key for the current entry. If the cursor is not pointing +** to a valid entry, *pSize is set to 0. +** +** For a table with the INTKEY flag set, this routine returns the key +** itself, not the number of bytes in the key. +*/ +int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ + if( !pCur->isValid ){ + *pSize = 0; + }else{ + getCellInfo(pCur); + *pSize = pCur->info.nKey; + } + return SQLITE_OK; +} + +/* +** Set *pSize to the number of bytes of data in the entry the +** cursor currently points to. Always return SQLITE_OK. +** Failure is not possible. If the cursor is not currently +** pointing to an entry (which can happen, for example, if +** the database is empty) then *pSize is set to 0. +*/ +int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ + if( !pCur->isValid ){ + /* Not pointing at a valid entry - set *pSize to 0. */ + *pSize = 0; + }else{ + getCellInfo(pCur); + *pSize = pCur->info.nData; + } + return SQLITE_OK; +} + +/* +** Read payload information from the entry that the pCur cursor is +** pointing to. Begin reading the payload at "offset" and read +** a total of "amt" bytes. Put the result in zBuf. +** +** This routine does not make a distinction between key and data. +** It just reads bytes from the payload area. Data might appear +** on the main page or be scattered out on multiple overflow pages. +*/ +static int getPayload( + BtCursor *pCur, /* Cursor pointing to entry to read from */ + int offset, /* Begin reading this far into payload */ + int amt, /* Read this many bytes */ + unsigned char *pBuf, /* Write the bytes into this buffer */ + int skipKey /* offset begins at data if this is true */ +){ + unsigned char *aPayload; + Pgno nextPage; + int rc; + MemPage *pPage; + Btree *pBt; + int ovflSize; + u32 nKey; + + assert( pCur!=0 && pCur->pPage!=0 ); + assert( pCur->isValid ); + pBt = pCur->pBt; + pPage = pCur->pPage; + pageIntegrity(pPage); + assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); + getCellInfo(pCur); + aPayload = pCur->info.pCell; + aPayload += pCur->info.nHeader; + if( pPage->intKey ){ + nKey = 0; + }else{ + nKey = pCur->info.nKey; + } + assert( offset>=0 ); + if( skipKey ){ + offset += nKey; + } + if( offset+amt > nKey+pCur->info.nData ){ + return SQLITE_ERROR; + } + if( offset<pCur->info.nLocal ){ + int a = amt; + if( a+offset>pCur->info.nLocal ){ + a = pCur->info.nLocal - offset; + } + memcpy(pBuf, &aPayload[offset], a); + if( a==amt ){ + return SQLITE_OK; + } + offset = 0; + pBuf += a; + amt -= a; + }else{ + offset -= pCur->info.nLocal; + } + ovflSize = pBt->usableSize - 4; + if( amt>0 ){ + nextPage = get4byte(&aPayload[pCur->info.nLocal]); + while( amt>0 && nextPage ){ + rc = sqlite3pager_get(pBt->pPager, nextPage, (void**)&aPayload); + if( rc!=0 ){ + return rc; + } + nextPage = get4byte(aPayload); + if( offset<ovflSize ){ + int a = amt; + if( a + offset > ovflSize ){ + a = ovflSize - offset; + } + memcpy(pBuf, &aPayload[offset+4], a); + offset = 0; + amt -= a; + pBuf += a; + }else{ + offset -= ovflSize; + } + sqlite3pager_unref(aPayload); + } + } + + if( amt>0 ){ + return SQLITE_CORRUPT; /* bkpt-CORRUPT */ + } + return SQLITE_OK; +} + +/* +** Read part of the key associated with cursor pCur. Exactly +** "amt" bytes will be transfered into pBuf[]. The transfer +** begins at "offset". +** +** Return SQLITE_OK on success or an error code if anything goes +** wrong. An error is returned if "offset+amt" is larger than +** the available payload. +*/ +int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ + if( pCur->isValid==0 ){ + return pCur->status; + } + assert( pCur->pPage!=0 ); + assert( pCur->pPage->intKey==0 ); + assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); + return getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); +} + +/* +** Read part of the data associated with cursor pCur. Exactly +** "amt" bytes will be transfered into pBuf[]. The transfer +** begins at "offset". +** +** Return SQLITE_OK on success or an error code if anything goes +** wrong. An error is returned if "offset+amt" is larger than +** the available payload. +*/ +int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ + if( !pCur->isValid ){ + return pCur->status ? pCur->status : SQLITE_INTERNAL; + } + assert( pCur->pPage!=0 ); + assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); + return getPayload(pCur, offset, amt, pBuf, 1); +} + +/* +** Return a pointer to payload information from the entry that the +** pCur cursor is pointing to. The pointer is to the beginning of +** the key if skipKey==0 and it points to the beginning of data if +** skipKey==1. The number of bytes of available key/data is written +** into *pAmt. If *pAmt==0, then the value returned will not be +** a valid pointer. +** +** This routine is an optimization. It is common for the entire key +** and data to fit on the local page and for there to be no overflow +** pages. When that is so, this routine can be used to access the +** key and data without making a copy. If the key and/or data spills +** onto overflow pages, then getPayload() must be used to reassembly +** the key/data and copy it into a preallocated buffer. +** +** The pointer returned by this routine looks directly into the cached +** page of the database. The data might change or move the next time +** any btree routine is called. +*/ +static const unsigned char *fetchPayload( + BtCursor *pCur, /* Cursor pointing to entry to read from */ + int *pAmt, /* Write the number of available bytes here */ + int skipKey /* read beginning at data if this is true */ +){ + unsigned char *aPayload; + MemPage *pPage; + Btree *pBt; + u32 nKey; + int nLocal; + + assert( pCur!=0 && pCur->pPage!=0 ); + assert( pCur->isValid ); + pBt = pCur->pBt; + pPage = pCur->pPage; + pageIntegrity(pPage); + assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); + getCellInfo(pCur); + aPayload = pCur->info.pCell; + aPayload += pCur->info.nHeader; + if( pPage->intKey ){ + nKey = 0; + }else{ + nKey = pCur->info.nKey; + } + if( skipKey ){ + aPayload += nKey; + nLocal = pCur->info.nLocal - nKey; + }else{ + nLocal = pCur->info.nLocal; + if( nLocal>nKey ){ + nLocal = nKey; + } + } + *pAmt = nLocal; + return aPayload; +} + + +/* +** For the entry that cursor pCur is point to, return as +** many bytes of the key or data as are available on the local +** b-tree page. Write the number of available bytes into *pAmt. +** +** The pointer returned is ephemeral. The key/data may move +** or be destroyed on the next call to any Btree routine. +** +** These routines is used to get quick access to key and data +** in the common case where no overflow pages are used. +*/ +const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){ + return (const void*)fetchPayload(pCur, pAmt, 0); +} +const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){ + return (const void*)fetchPayload(pCur, pAmt, 1); +} + + +/* +** Move the cursor down to a new child page. The newPgno argument is the +** page number of the child page to move to. +*/ +static int moveToChild(BtCursor *pCur, u32 newPgno){ + int rc; + MemPage *pNewPage; + MemPage *pOldPage; + Btree *pBt = pCur->pBt; + + assert( pCur->isValid ); + rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage); + if( rc ) return rc; + pageIntegrity(pNewPage); + pNewPage->idxParent = pCur->idx; + pOldPage = pCur->pPage; + pOldPage->idxShift = 0; + releasePage(pOldPage); + pCur->pPage = pNewPage; + pCur->idx = 0; + pCur->info.nSize = 0; + if( pNewPage->nCell<1 ){ + return SQLITE_CORRUPT; /* bkpt-CORRUPT */ + } + return SQLITE_OK; +} + +/* +** Return true if the page is the virtual root of its table. +** +** The virtual root page is the root page for most tables. But +** for the table rooted on page 1, sometime the real root page +** is empty except for the right-pointer. In such cases the +** virtual root page is the page that the right-pointer of page +** 1 is pointing to. +*/ +static int isRootPage(MemPage *pPage){ + MemPage *pParent = pPage->pParent; + if( pParent==0 ) return 1; + if( pParent->pgno>1 ) return 0; + if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1; + return 0; +} + +/* +** Move the cursor up to the parent page. +** +** pCur->idx is set to the cell index that contains the pointer +** to the page we are coming from. If we are coming from the +** right-most child page then pCur->idx is set to one more than +** the largest cell index. +*/ +static void moveToParent(BtCursor *pCur){ + Pgno oldPgno; + MemPage *pParent; + MemPage *pPage; + int idxParent; + + assert( pCur->isValid ); + pPage = pCur->pPage; + assert( pPage!=0 ); + assert( !isRootPage(pPage) ); + pageIntegrity(pPage); + pParent = pPage->pParent; + assert( pParent!=0 ); + pageIntegrity(pParent); + idxParent = pPage->idxParent; + sqlite3pager_ref(pParent->aData); + oldPgno = pPage->pgno; + releasePage(pPage); + pCur->pPage = pParent; + pCur->info.nSize = 0; + assert( pParent->idxShift==0 ); + pCur->idx = idxParent; +} + +/* +** Move the cursor to the root page +*/ +static int moveToRoot(BtCursor *pCur){ + MemPage *pRoot; + int rc; + Btree *pBt = pCur->pBt; + + rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0); + if( rc ){ + pCur->isValid = 0; + return rc; + } + releasePage(pCur->pPage); + pageIntegrity(pRoot); + pCur->pPage = pRoot; + pCur->idx = 0; + pCur->info.nSize = 0; + if( pRoot->nCell==0 && !pRoot->leaf ){ + Pgno subpage; + assert( pRoot->pgno==1 ); + subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); + assert( subpage>0 ); + pCur->isValid = 1; + rc = moveToChild(pCur, subpage); + } + pCur->isValid = pCur->pPage->nCell>0; + return rc; +} + +/* +** Move the cursor down to the left-most leaf entry beneath the +** entry to which it is currently pointing. +*/ +static int moveToLeftmost(BtCursor *pCur){ + Pgno pgno; + int rc; + MemPage *pPage; + + assert( pCur->isValid ); + while( !(pPage = pCur->pPage)->leaf ){ + assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); + pgno = get4byte(findCell(pPage, pCur->idx)); + rc = moveToChild(pCur, pgno); + if( rc ) return rc; + } + return SQLITE_OK; +} + +/* +** Move the cursor down to the right-most leaf entry beneath the +** page to which it is currently pointing. Notice the difference +** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() +** finds the left-most entry beneath the *entry* whereas moveToRightmost() +** finds the right-most entry beneath the *page*. +*/ +static int moveToRightmost(BtCursor *pCur){ + Pgno pgno; + int rc; + MemPage *pPage; + + assert( pCur->isValid ); + while( !(pPage = pCur->pPage)->leaf ){ + pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); + pCur->idx = pPage->nCell; + rc = moveToChild(pCur, pgno); + if( rc ) return rc; + } + pCur->idx = pPage->nCell - 1; + pCur->info.nSize = 0; + return SQLITE_OK; +} + +/* Move the cursor to the first entry in the table. Return SQLITE_OK +** on success. Set *pRes to 0 if the cursor actually points to something +** or set *pRes to 1 if the table is empty. +*/ +int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ + int rc; + if( pCur->status ){ + return pCur->status; + } + rc = moveToRoot(pCur); + if( rc ) return rc; + if( pCur->isValid==0 ){ + assert( pCur->pPage->nCell==0 ); + *pRes = 1; + return SQLITE_OK; + } + assert( pCur->pPage->nCell>0 ); + *pRes = 0; + rc = moveToLeftmost(pCur); + return rc; +} + +/* Move the cursor to the last entry in the table. Return SQLITE_OK +** on success. Set *pRes to 0 if the cursor actually points to something +** or set *pRes to 1 if the table is empty. +*/ +int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ + int rc; + if( pCur->status ){ + return pCur->status; + } + rc = moveToRoot(pCur); + if( rc ) return rc; + if( pCur->isValid==0 ){ + assert( pCur->pPage->nCell==0 ); + *pRes = 1; + return SQLITE_OK; + } + assert( pCur->isValid ); + *pRes = 0; + rc = moveToRightmost(pCur); + return rc; +} + +/* Move the cursor so that it points to an entry near pKey/nKey. +** Return a success code. +** +** For INTKEY tables, only the nKey parameter is used. pKey is +** ignored. For other tables, nKey is the number of bytes of data +** in nKey. The comparison function specified when the cursor was +** created is used to compare keys. +** +** If an exact match is not found, then the cursor is always +** left pointing at a leaf page which would hold the entry if it +** were present. The cursor might point to an entry that comes +** before or after the key. +** +** The result of comparing the key with the entry to which the +** cursor is written to *pRes if pRes!=NULL. The meaning of +** this value is as follows: +** +** *pRes<0 The cursor is left pointing at an entry that +** is smaller than pKey or if the table is empty +** and the cursor is therefore left point to nothing. +** +** *pRes==0 The cursor is left pointing at an entry that +** exactly matches pKey. +** +** *pRes>0 The cursor is left pointing at an entry that +** is larger than pKey. +*/ +int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, i64 nKey, int *pRes){ + int rc; + + if( pCur->status ){ + return pCur->status; + } + rc = moveToRoot(pCur); + if( rc ) return rc; + assert( pCur->pPage ); + assert( pCur->pPage->isInit ); + if( pCur->isValid==0 ){ + *pRes = -1; + assert( pCur->pPage->nCell==0 ); + return SQLITE_OK; + } + for(;;){ + int lwr, upr; + Pgno chldPg; + MemPage *pPage = pCur->pPage; + int c = -1; /* pRes return if table is empty must be -1 */ + lwr = 0; + upr = pPage->nCell-1; + pageIntegrity(pPage); + while( lwr<=upr ){ + void *pCellKey; + i64 nCellKey; + pCur->idx = (lwr+upr)/2; + pCur->info.nSize = 0; + sqlite3BtreeKeySize(pCur, &nCellKey); + if( pPage->intKey ){ + if( nCellKey<nKey ){ + c = -1; + }else if( nCellKey>nKey ){ + c = +1; + }else{ + c = 0; + } + }else{ + int available; + pCellKey = (void *)fetchPayload(pCur, &available, 0); + if( available>=nCellKey ){ + c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey); + }else{ + pCellKey = sqliteMallocRaw( nCellKey ); + if( pCellKey==0 ) return SQLITE_NOMEM; + rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey); + c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey); + sqliteFree(pCellKey); + if( rc ) return rc; + } + } + if( c==0 ){ + if( pPage->leafData && !pPage->leaf ){ + lwr = pCur->idx; + upr = lwr - 1; + break; + }else{ + if( pRes ) *pRes = 0; + return SQLITE_OK; + } + } + if( c<0 ){ + lwr = pCur->idx+1; + }else{ + upr = pCur->idx-1; + } + } + assert( lwr==upr+1 ); + assert( pPage->isInit ); + if( pPage->leaf ){ + chldPg = 0; + }else if( lwr>=pPage->nCell ){ + chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); + }else{ + chldPg = get4byte(findCell(pPage, lwr)); + } + if( chldPg==0 ){ + assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); + if( pRes ) *pRes = c; + return SQLITE_OK; + } + pCur->idx = lwr; + pCur->info.nSize = 0; + rc = moveToChild(pCur, chldPg); + if( rc ){ + return rc; + } + } + /* NOT REACHED */ +} + +/* +** Return TRUE if the cursor is not pointing at an entry of the table. +** +** TRUE will be returned after a call to sqlite3BtreeNext() moves +** past the last entry in the table or sqlite3BtreePrev() moves past +** the first entry. TRUE is also returned if the table is empty. +*/ +int sqlite3BtreeEof(BtCursor *pCur){ + return pCur->isValid==0; +} + +/* +** Advance the cursor to the next entry in the database. If +** successful then set *pRes=0. If the cursor +** was already pointing to the last entry in the database before +** this routine was called, then set *pRes=1. +*/ +int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ + int rc; + MemPage *pPage = pCur->pPage; + + assert( pRes!=0 ); + if( pCur->isValid==0 ){ + *pRes = 1; + return SQLITE_OK; + } + assert( pPage->isInit ); + assert( pCur->idx<pPage->nCell ); + pCur->idx++; + pCur->info.nSize = 0; + if( pCur->idx>=pPage->nCell ){ + if( !pPage->leaf ){ + rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); + if( rc ) return rc; + rc = moveToLeftmost(pCur); + *pRes = 0; + return rc; + } + do{ + if( isRootPage(pPage) ){ + *pRes = 1; + pCur->isValid = 0; + return SQLITE_OK; + } + moveToParent(pCur); + pPage = pCur->pPage; + }while( pCur->idx>=pPage->nCell ); + *pRes = 0; + if( pPage->leafData ){ + rc = sqlite3BtreeNext(pCur, pRes); + }else{ + rc = SQLITE_OK; + } + return rc; + } + *pRes = 0; + if( pPage->leaf ){ + return SQLITE_OK; + } + rc = moveToLeftmost(pCur); + return rc; +} + +/* +** Step the cursor to the back to the previous entry in the database. If +** successful then set *pRes=0. If the cursor +** was already pointing to the first entry in the database before +** this routine was called, then set *pRes=1. +*/ +int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ + int rc; + Pgno pgno; + MemPage *pPage; + if( pCur->isValid==0 ){ + *pRes = 1; + return SQLITE_OK; + } + pPage = pCur->pPage; + assert( pPage->isInit ); + assert( pCur->idx>=0 ); + if( !pPage->leaf ){ + pgno = get4byte( findCell(pPage, pCur->idx) ); + rc = moveToChild(pCur, pgno); + if( rc ) return rc; + rc = moveToRightmost(pCur); + }else{ + while( pCur->idx==0 ){ + if( isRootPage(pPage) ){ + pCur->isValid = 0; + *pRes = 1; + return SQLITE_OK; + } + moveToParent(pCur); + pPage = pCur->pPage; + } + pCur->idx--; + pCur->info.nSize = 0; + if( pPage->leafData ){ + rc = sqlite3BtreePrevious(pCur, pRes); + }else{ + rc = SQLITE_OK; + } + } + *pRes = 0; + return rc; +} + +/* +** The TRACE macro will print high-level status information about the +** btree operation when the global variable sqlite3_btree_trace is +** enabled. +*/ +#if SQLITE_TEST +# define TRACE(X) if( sqlite3_btree_trace )\ + { sqlite3DebugPrintf X; fflush(stdout); } +#else +# define TRACE(X) +#endif +int sqlite3_btree_trace=0; /* True to enable tracing */ + +/* +** Allocate a new page from the database file. +** +** The new page is marked as dirty. (In other words, sqlite3pager_write() +** has already been called on the new page.) The new page has also +** been referenced and the calling routine is responsible for calling +** sqlite3pager_unref() on the new page when it is done. +** +** SQLITE_OK is returned on success. Any other return value indicates +** an error. *ppPage and *pPgno are undefined in the event of an error. +** Do not invoke sqlite3pager_unref() on *ppPage if an error is returned. +** +** If the "nearby" parameter is not 0, then a (feeble) effort is made to +** locate a page close to the page number "nearby". This can be used in an +** attempt to keep related pages close to each other in the database file, +** which in turn can make database access faster. +*/ +static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){ + MemPage *pPage1; + int rc; + int n; /* Number of pages on the freelist */ + int k; /* Number of leaves on the trunk of the freelist */ + + pPage1 = pBt->pPage1; + n = get4byte(&pPage1->aData[36]); + if( n>0 ){ + /* There are pages on the freelist. Reuse one of those pages. */ + MemPage *pTrunk; + rc = sqlite3pager_write(pPage1->aData); + if( rc ) return rc; + put4byte(&pPage1->aData[36], n-1); + rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk); + if( rc ) return rc; + rc = sqlite3pager_write(pTrunk->aData); + if( rc ){ + releasePage(pTrunk); + return rc; + } + k = get4byte(&pTrunk->aData[4]); + if( k==0 ){ + /* The trunk has no leaves. So extract the trunk page itself and + ** use it as the newly allocated page */ + *pPgno = get4byte(&pPage1->aData[32]); + memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); + *ppPage = pTrunk; + TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); + }else if( k>pBt->usableSize/4 - 8 ){ + /* Value of k is out of range. Database corruption */ + return SQLITE_CORRUPT; /* bkpt-CORRUPT */ + }else{ + /* Extract a leaf from the trunk */ + int closest; + unsigned char *aData = pTrunk->aData; + if( nearby>0 ){ + int i, dist; + closest = 0; + dist = get4byte(&aData[8]) - nearby; + if( dist<0 ) dist = -dist; + for(i=1; i<k; i++){ + int d2 = get4byte(&aData[8+i*4]) - nearby; + if( d2<0 ) d2 = -d2; + if( d2<dist ) closest = i; + } + }else{ + closest = 0; + } + *pPgno = get4byte(&aData[8+closest*4]); + if( *pPgno>sqlite3pager_pagecount(pBt->pPager) ){ + /* Free page off the end of the file */ + return SQLITE_CORRUPT; /* bkpt-CORRUPT */ + } + TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d: %d more free pages\n", + *pPgno, closest+1, k, pTrunk->pgno, n-1)); + if( closest<k-1 ){ + memcpy(&aData[8+closest*4], &aData[4+k*4], 4); + } + put4byte(&aData[4], k-1); + rc = getPage(pBt, *pPgno, ppPage); + releasePage(pTrunk); + if( rc==SQLITE_OK ){ + sqlite3pager_dont_rollback((*ppPage)->aData); + rc = sqlite3pager_write((*ppPage)->aData); + } + } + }else{ + /* There are no pages on the freelist, so create a new page at the + ** end of the file */ + *pPgno = sqlite3pager_pagecount(pBt->pPager) + 1; + rc = getPage(pBt, *pPgno, ppPage); + if( rc ) return rc; + rc = sqlite3pager_write((*ppPage)->aData); + TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); + } + return rc; +} + +/* +** Add a page of the database file to the freelist. +** +** sqlite3pager_unref() is NOT called for pPage. +*/ +static int freePage(MemPage *pPage){ + Btree *pBt = pPage->pBt; + MemPage *pPage1 = pBt->pPage1; + int rc, n, k; + + /* Prepare the page for freeing */ + assert( pPage->pgno>1 ); + pPage->isInit = 0; + releasePage(pPage->pParent); + pPage->pParent = 0; + + /* Increment the free page count on pPage1 */ + rc = sqlite3pager_write(pPage1->aData); + if( rc ) return rc; + n = get4byte(&pPage1->aData[36]); + put4byte(&pPage1->aData[36], n+1); + + if( n==0 ){ + /* This is the first free page */ + rc = sqlite3pager_write(pPage->aData); + if( rc ) return rc; + memset(pPage->aData, 0, 8); + put4byte(&pPage1->aData[32], pPage->pgno); + TRACE(("FREE-PAGE: %d first\n", pPage->pgno)); + }else{ + /* Other free pages already exist. Retrive the first trunk page + ** of the freelist and find out how many leaves it has. */ + MemPage *pTrunk; + rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk); + if( rc ) return rc; + k = get4byte(&pTrunk->aData[4]); + if( k>=pBt->usableSize/4 - 8 ){ + /* The trunk is full. Turn the page being freed into a new + ** trunk page with no leaves. */ + rc = sqlite3pager_write(pPage->aData); + if( rc ) return rc; + put4byte(pPage->aData, pTrunk->pgno); + put4byte(&pPage->aData[4], 0); + put4byte(&pPage1->aData[32], pPage->pgno); + TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", + pPage->pgno, pTrunk->pgno)); + }else{ + /* Add the newly freed page as a leaf on the current trunk */ + rc = sqlite3pager_write(pTrunk->aData); + if( rc ) return rc; + put4byte(&pTrunk->aData[4], k+1); + put4byte(&pTrunk->aData[8+k*4], pPage->pgno); + sqlite3pager_dont_write(pBt->pPager, pPage->pgno); + TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); + } + releasePage(pTrunk); + } + return rc; +} + +/* +** Free any overflow pages associated with the given Cell. +*/ +static int clearCell(MemPage *pPage, unsigned char *pCell){ + Btree *pBt = pPage->pBt; + CellInfo info; + Pgno ovflPgno; + int rc; + + parseCellPtr(pPage, pCell, &info); + if( info.iOverflow==0 ){ + return SQLITE_OK; /* No overflow pages. Return without doing anything */ + } + ovflPgno = get4byte(&pCell[info.iOverflow]); + while( ovflPgno!=0 ){ + MemPage *pOvfl; + rc = getPage(pBt, ovflPgno, &pOvfl); + if( rc ) return rc; + ovflPgno = get4byte(pOvfl->aData); + rc = freePage(pOvfl); + if( rc ) return rc; + sqlite3pager_unref(pOvfl->aData); + } + return SQLITE_OK; +} + +/* +** Create the byte sequence used to represent a cell on page pPage +** and write that byte sequence into pCell[]. Overflow pages are +** allocated and filled in as necessary. The calling procedure +** is responsible for making sure sufficient space has been allocated +** for pCell[]. +** +** Note that pCell does not necessary need to point to the pPage->aData +** area. pCell might point to some temporary storage. The cell will +** be constructed in this temporary area then copied into pPage->aData +** later. +*/ +static int fillInCell( + MemPage *pPage, /* The page that contains the cell */ + unsigned char *pCell, /* Complete text of the cell */ + const void *pKey, i64 nKey, /* The key */ + const void *pData,int nData, /* The data */ + int *pnSize /* Write cell size here */ +){ + int nPayload; + const u8 *pSrc; + int nSrc, n, rc; + int spaceLeft; + MemPage *pOvfl = 0; + MemPage *pToRelease = 0; + unsigned char *pPrior; + unsigned char *pPayload; + Btree *pBt = pPage->pBt; + Pgno pgnoOvfl = 0; + int nHeader; + CellInfo info; + + /* Fill in the header. */ + nHeader = 0; + if( !pPage->leaf ){ + nHeader += 4; + } + if( pPage->hasData ){ + nHeader += putVarint(&pCell[nHeader], nData); + }else{ + nData = 0; + } + nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); + parseCellPtr(pPage, pCell, &info); + assert( info.nHeader==nHeader ); + assert( info.nKey==nKey ); + assert( info.nData==nData ); + + /* Fill in the payload */ + nPayload = nData; + if( pPage->intKey ){ + pSrc = pData; + nSrc = nData; + nData = 0; + }else{ + nPayload += nKey; + pSrc = pKey; + nSrc = nKey; + } + *pnSize = info.nSize; + spaceLeft = info.nLocal; + pPayload = &pCell[nHeader]; + pPrior = &pCell[info.iOverflow]; + + while( nPayload>0 ){ + if( spaceLeft==0 ){ + rc = allocatePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl); + if( rc ){ + releasePage(pToRelease); + clearCell(pPage, pCell); + return rc; + } + put4byte(pPrior, pgnoOvfl); + releasePage(pToRelease); + pToRelease = pOvfl; + pPrior = pOvfl->aData; + put4byte(pPrior, 0); + pPayload = &pOvfl->aData[4]; + spaceLeft = pBt->usableSize - 4; + } + n = nPayload; + if( n>spaceLeft ) n = spaceLeft; + if( n>nSrc ) n = nSrc; + memcpy(pPayload, pSrc, n); + nPayload -= n; + pPayload += n; + pSrc += n; + nSrc -= n; + spaceLeft -= n; + if( nSrc==0 ){ + nSrc = nData; + pSrc = pData; + } + } + releasePage(pToRelease); + return SQLITE_OK; +} + +/* +** Change the MemPage.pParent pointer on the page whose number is +** given in the second argument so that MemPage.pParent holds the +** pointer in the third argument. +*/ +static void reparentPage(Btree *pBt, Pgno pgno, MemPage *pNewParent, int idx){ + MemPage *pThis; + unsigned char *aData; + + if( pgno==0 ) return; + assert( pBt->pPager!=0 ); + aData = sqlite3pager_lookup(pBt->pPager, pgno); + if( aData ){ + pThis = (MemPage*)&aData[pBt->pageSize]; + assert( pThis->aData==aData ); + if( pThis->isInit ){ + if( pThis->pParent!=pNewParent ){ + if( pThis->pParent ) sqlite3pager_unref(pThis->pParent->aData); + pThis->pParent = pNewParent; + if( pNewParent ) sqlite3pager_ref(pNewParent->aData); + } + pThis->idxParent = idx; + } + sqlite3pager_unref(aData); + } +} + +/* +** Change the pParent pointer of all children of pPage to point back +** to pPage. +** +** In other words, for every child of pPage, invoke reparentPage() +** to make sure that each child knows that pPage is its parent. +** +** This routine gets called after you memcpy() one page into +** another. +*/ +static void reparentChildPages(MemPage *pPage){ + int i; + Btree *pBt; + + if( pPage->leaf ) return; + pBt = pPage->pBt; + for(i=0; i<pPage->nCell; i++){ + reparentPage(pBt, get4byte(findCell(pPage,i)), pPage, i); + } + reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]), pPage, i); + pPage->idxShift = 0; +} + +/* +** Remove the i-th cell from pPage. This routine effects pPage only. +** The cell content is not freed or deallocated. It is assumed that +** the cell content has been copied someplace else. This routine just +** removes the reference to the cell from pPage. +** +** "sz" must be the number of bytes in the cell. +*/ +static void dropCell(MemPage *pPage, int idx, int sz){ + int i; /* Loop counter */ + int pc; /* Offset to cell content of cell being deleted */ + u8 *data; /* pPage->aData */ + u8 *ptr; /* Used to move bytes around within data[] */ + + assert( idx>=0 && idx<pPage->nCell ); + assert( sz==cellSize(pPage, idx) ); + assert( sqlite3pager_iswriteable(pPage->aData) ); + data = pPage->aData; + ptr = &data[pPage->cellOffset + 2*idx]; + pc = get2byte(ptr); + assert( pc>10 && pc+sz<=pPage->pBt->usableSize ); + freeSpace(pPage, pc, sz); + for(i=idx+1; i<pPage->nCell; i++, ptr+=2){ + ptr[0] = ptr[2]; + ptr[1] = ptr[3]; + } + pPage->nCell--; + put2byte(&data[pPage->hdrOffset+3], pPage->nCell); + pPage->nFree += 2; + pPage->idxShift = 1; +} + +/* +** Insert a new cell on pPage at cell index "i". pCell points to the +** content of the cell. +** +** If the cell content will fit on the page, then put it there. If it +** will not fit, then make a copy of the cell content into pTemp if +** pTemp is not null. Regardless of pTemp, allocate a new entry +** in pPage->aOvfl[] and make it point to the cell content (either +** in pTemp or the original pCell) and also record its index. +** Allocating a new entry in pPage->aCell[] implies that +** pPage->nOverflow is incremented. +*/ +static void insertCell( + MemPage *pPage, /* Page into which we are copying */ + int i, /* New cell becomes the i-th cell of the page */ + u8 *pCell, /* Content of the new cell */ + int sz, /* Bytes of content in pCell */ + u8 *pTemp /* Temp storage space for pCell, if needed */ +){ + int idx; /* Where to write new cell content in data[] */ + int j; /* Loop counter */ + int top; /* First byte of content for any cell in data[] */ + int end; /* First byte past the last cell pointer in data[] */ + int ins; /* Index in data[] where new cell pointer is inserted */ + int hdr; /* Offset into data[] of the page header */ + int cellOffset; /* Address of first cell pointer in data[] */ + u8 *data; /* The content of the whole page */ + u8 *ptr; /* Used for moving information around in data[] */ + + assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); + assert( sz==cellSizePtr(pPage, pCell) ); + assert( sqlite3pager_iswriteable(pPage->aData) ); + if( pPage->nOverflow || sz+2>pPage->nFree ){ + if( pTemp ){ + memcpy(pTemp, pCell, sz); + pCell = pTemp; + } + j = pPage->nOverflow++; + assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) ); + pPage->aOvfl[j].pCell = pCell; + pPage->aOvfl[j].idx = i; + pPage->nFree = 0; + }else{ + data = pPage->aData; + hdr = pPage->hdrOffset; + top = get2byte(&data[hdr+5]); + cellOffset = pPage->cellOffset; + end = cellOffset + 2*pPage->nCell + 2; + ins = cellOffset + 2*i; + if( end > top - sz ){ + defragmentPage(pPage); + top = get2byte(&data[hdr+5]); + assert( end + sz <= top ); + } + idx = allocateSpace(pPage, sz); + assert( idx>0 ); + assert( end <= get2byte(&data[hdr+5]) ); + pPage->nCell++; + pPage->nFree -= 2; + memcpy(&data[idx], pCell, sz); + for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){ + ptr[0] = ptr[-2]; + ptr[1] = ptr[-1]; + } + put2byte(&data[ins], idx); + put2byte(&data[hdr+3], pPage->nCell); + pPage->idxShift = 1; + pageIntegrity(pPage); + } +} + +/* +** Add a list of cells to a page. The page should be initially empty. +** The cells are guaranteed to fit on the page. +*/ +static void assemblePage( + MemPage *pPage, /* The page to be assemblied */ + int nCell, /* The number of cells to add to this page */ + u8 **apCell, /* Pointers to cell bodies */ + int *aSize /* Sizes of the cells */ +){ + int i; /* Loop counter */ + int totalSize; /* Total size of all cells */ + int hdr; /* Index of page header */ + int cellptr; /* Address of next cell pointer */ + int cellbody; /* Address of next cell body */ + u8 *data; /* Data for the page */ + + assert( pPage->nOverflow==0 ); + totalSize = 0; + for(i=0; i<nCell; i++){ + totalSize += aSize[i]; + } + assert( totalSize+2*nCell<=pPage->nFree ); + assert( pPage->nCell==0 ); + cellptr = pPage->cellOffset; + data = pPage->aData; + hdr = pPage->hdrOffset; + put2byte(&data[hdr+3], nCell); + cellbody = allocateSpace(pPage, totalSize); + assert( cellbody>0 ); + assert( pPage->nFree >= 2*nCell ); + pPage->nFree -= 2*nCell; + for(i=0; i<nCell; i++){ + put2byte(&data[cellptr], cellbody); + memcpy(&data[cellbody], apCell[i], aSize[i]); + cellptr += 2; + cellbody += aSize[i]; + } + assert( cellbody==pPage->pBt->usableSize ); + pPage->nCell = nCell; +} + +/* +** GCC does not define the offsetof() macro so we'll have to do it +** ourselves. +*/ +#ifndef offsetof +#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) +#endif + +/* +** The following parameters determine how many adjacent pages get involved +** in a balancing operation. NN is the number of neighbors on either side +** of the page that participate in the balancing operation. NB is the +** total number of pages that participate, including the target page and +** NN neighbors on either side. +** +** The minimum value of NN is 1 (of course). Increasing NN above 1 +** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance +** in exchange for a larger degradation in INSERT and UPDATE performance. +** The value of NN appears to give the best results overall. +*/ +#define NN 1 /* Number of neighbors on either side of pPage */ +#define NB (NN*2+1) /* Total pages involved in the balance */ + +/* Forward reference */ +static int balance(MemPage*); + +/* +** This routine redistributes Cells on pPage and up to NN*2 siblings +** of pPage so that all pages have about the same amount of free space. +** Usually NN siblings on either side of pPage is used in the balancing, +** though more siblings might come from one side if pPage is the first +** or last child of its parent. If pPage has fewer than 2*NN siblings +** (something which can only happen if pPage is the root page or a +** child of root) then all available siblings participate in the balancing. +** +** The number of siblings of pPage might be increased or decreased by one or +** two in an effort to keep pages nearly full but not over full. The root page +** is special and is allowed to be nearly empty. If pPage is +** the root page, then the depth of the tree might be increased +** or decreased by one, as necessary, to keep the root page from being +** overfull or completely empty. +** +** Note that when this routine is called, some of the Cells on pPage +** might not actually be stored in pPage->aData[]. This can happen +** if the page is overfull. Part of the job of this routine is to +** make sure all Cells for pPage once again fit in pPage->aData[]. +** +** In the course of balancing the siblings of pPage, the parent of pPage +** might become overfull or underfull. If that happens, then this routine +** is called recursively on the parent. +** +** If this routine fails for any reason, it might leave the database +** in a corrupted state. So if this routine fails, the database should +** be rolled back. +*/ +static int balance_nonroot(MemPage *pPage){ + MemPage *pParent; /* The parent of pPage */ + Btree *pBt; /* The whole database */ + int nCell = 0; /* Number of cells in aCell[] */ + int nOld; /* Number of pages in apOld[] */ + int nNew; /* Number of pages in apNew[] */ + int nDiv; /* Number of cells in apDiv[] */ + int i, j, k; /* Loop counters */ + int idx; /* Index of pPage in pParent->aCell[] */ + int nxDiv; /* Next divider slot in pParent->aCell[] */ + int rc; /* The return code */ + int leafCorrection; /* 4 if pPage is a leaf. 0 if not */ + int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ + int usableSpace; /* Bytes in pPage beyond the header */ + int pageFlags; /* Value of pPage->aData[0] */ + int subtotal; /* Subtotal of bytes in cells on one page */ + int iSpace = 0; /* First unused byte of aSpace[] */ + int mxCellPerPage; /* Maximum number of cells in one page */ + MemPage *apOld[NB]; /* pPage and up to two siblings */ + Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */ + MemPage *apCopy[NB]; /* Private copies of apOld[] pages */ + MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ + Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */ + int idxDiv[NB]; /* Indices of divider cells in pParent */ + u8 *apDiv[NB]; /* Divider cells in pParent */ + int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */ + int szNew[NB+2]; /* Combined size of cells place on i-th page */ + u8 **apCell; /* All cells begin balanced */ + int *szCell; /* Local size of all cells in apCell[] */ + u8 *aCopy[NB]; /* Space for holding data of apCopy[] */ + u8 *aSpace; /* Space to hold copies of dividers cells */ + + /* + ** Find the parent page. + */ + assert( pPage->isInit ); + assert( sqlite3pager_iswriteable(pPage->aData) ); + pBt = pPage->pBt; + pParent = pPage->pParent; + sqlite3pager_write(pParent->aData); + assert( pParent ); + TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); + + /* + ** Allocate space for memory structures + */ + mxCellPerPage = MX_CELL(pBt); + apCell = sqliteMallocRaw( + (mxCellPerPage+2)*NB*(sizeof(u8*)+sizeof(int)) + + sizeof(MemPage)*NB + + pBt->pageSize*(5+NB) + ); + if( apCell==0 ){ + return SQLITE_NOMEM; + } + szCell = (int*)&apCell[(mxCellPerPage+2)*NB]; + aCopy[0] = (u8*)&szCell[(mxCellPerPage+2)*NB]; + for(i=1; i<NB; i++){ + aCopy[i] = &aCopy[i-1][pBt->pageSize+sizeof(MemPage)]; + } + aSpace = &aCopy[NB-1][pBt->pageSize+sizeof(MemPage)]; + + /* + ** Find the cell in the parent page whose left child points back + ** to pPage. The "idx" variable is the index of that cell. If pPage + ** is the rightmost child of pParent then set idx to pParent->nCell + */ + if( pParent->idxShift ){ + Pgno pgno; + pgno = pPage->pgno; + assert( pgno==sqlite3pager_pagenumber(pPage->aData) ); + for(idx=0; idx<pParent->nCell; idx++){ + if( get4byte(findCell(pParent, idx))==pgno ){ + break; + } + } + assert( idx<pParent->nCell + || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno ); + }else{ + idx = pPage->idxParent; + } + + /* + ** Initialize variables so that it will be safe to jump + ** directly to balance_cleanup at any moment. + */ + nOld = nNew = 0; + sqlite3pager_ref(pParent->aData); + + /* + ** Find sibling pages to pPage and the cells in pParent that divide + ** the siblings. An attempt is made to find NN siblings on either + ** side of pPage. More siblings are taken from one side, however, if + ** pPage there are fewer than NN siblings on the other side. If pParent + ** has NB or fewer children then all children of pParent are taken. + */ + nxDiv = idx - NN; + if( nxDiv + NB > pParent->nCell ){ + nxDiv = pParent->nCell - NB + 1; + } + if( nxDiv<0 ){ + nxDiv = 0; + } + nDiv = 0; + for(i=0, k=nxDiv; i<NB; i++, k++){ + if( k<pParent->nCell ){ + idxDiv[i] = k; + apDiv[i] = findCell(pParent, k); + nDiv++; + assert( !pParent->leaf ); + pgnoOld[i] = get4byte(apDiv[i]); + }else if( k==pParent->nCell ){ + pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]); + }else{ + break; + } + rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent); + if( rc ) goto balance_cleanup; + apOld[i]->idxParent = k; + apCopy[i] = 0; + assert( i==nOld ); + nOld++; + } + + /* + ** Make copies of the content of pPage and its siblings into aOld[]. + ** The rest of this function will use data from the copies rather + ** that the original pages since the original pages will be in the + ** process of being overwritten. + */ + for(i=0; i<nOld; i++){ + MemPage *p = apCopy[i] = (MemPage*)&aCopy[i][pBt->pageSize]; + p->aData = &((u8*)p)[-pBt->pageSize]; + memcpy(p->aData, apOld[i]->aData, pBt->pageSize + sizeof(MemPage)); + p->aData = &((u8*)p)[-pBt->pageSize]; + } + + /* + ** Load pointers to all cells on sibling pages and the divider cells + ** into the local apCell[] array. Make copies of the divider cells + ** into space obtained form aSpace[] and remove the the divider Cells + ** from pParent. + ** + ** If the siblings are on leaf pages, then the child pointers of the + ** divider cells are stripped from the cells before they are copied + ** into aSpace[]. In this way, all cells in apCell[] are without + ** child pointers. If siblings are not leaves, then all cell in + ** apCell[] include child pointers. Either way, all cells in apCell[] + ** are alike. + ** + ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. + ** leafData: 1 if pPage holds key+data and pParent holds only keys. + */ + nCell = 0; + leafCorrection = pPage->leaf*4; + leafData = pPage->leafData && pPage->leaf; + for(i=0; i<nOld; i++){ + MemPage *pOld = apCopy[i]; + int limit = pOld->nCell+pOld->nOverflow; + for(j=0; j<limit; j++){ + apCell[nCell] = findOverflowCell(pOld, j); + szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); + nCell++; + } + if( i<nOld-1 ){ + int sz = cellSizePtr(pParent, apDiv[i]); + if( leafData ){ + /* With the LEAFDATA flag, pParent cells hold only INTKEYs that + ** are duplicates of keys on the child pages. We need to remove + ** the divider cells from pParent, but the dividers cells are not + ** added to apCell[] because they are duplicates of child cells. + */ + dropCell(pParent, nxDiv, sz); + }else{ + u8 *pTemp; + szCell[nCell] = sz; + pTemp = &aSpace[iSpace]; + iSpace += sz; + assert( iSpace<=pBt->pageSize*5 ); + memcpy(pTemp, apDiv[i], sz); + apCell[nCell] = pTemp+leafCorrection; + dropCell(pParent, nxDiv, sz); + szCell[nCell] -= leafCorrection; + assert( get4byte(pTemp)==pgnoOld[i] ); + if( !pOld->leaf ){ + assert( leafCorrection==0 ); + /* The right pointer of the child page pOld becomes the left + ** pointer of the divider cell */ + memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4); + }else{ + assert( leafCorrection==4 ); + } + nCell++; + } + } + } + + /* + ** Figure out the number of pages needed to hold all nCell cells. + ** Store this number in "k". Also compute szNew[] which is the total + ** size of all cells on the i-th page and cntNew[] which is the index + ** in apCell[] of the cell that divides page i from page i+1. + ** cntNew[k] should equal nCell. + ** + ** Values computed by this block: + ** + ** k: The total number of sibling pages + ** szNew[i]: Spaced used on the i-th sibling page. + ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to + ** the right of the i-th sibling page. + ** usableSpace: Number of bytes of space available on each sibling. + ** + */ + usableSpace = pBt->usableSize - 12 + leafCorrection; + for(subtotal=k=i=0; i<nCell; i++){ + subtotal += szCell[i] + 2; + if( subtotal > usableSpace ){ + szNew[k] = subtotal - szCell[i]; + cntNew[k] = i; + if( leafData ){ i--; } + subtotal = 0; + k++; + } + } + szNew[k] = subtotal; + cntNew[k] = nCell; + k++; + + /* + ** The packing computed by the previous block is biased toward the siblings + ** on the left side. The left siblings are always nearly full, while the + ** right-most sibling might be nearly empty. This block of code attempts + ** to adjust the packing of siblings to get a better balance. + ** + ** This adjustment is more than an optimization. The packing above might + ** be so out of balance as to be illegal. For example, the right-most + ** sibling might be completely empty. This adjustment is not optional. + */ + for(i=k-1; i>0; i--){ + int szRight = szNew[i]; /* Size of sibling on the right */ + int szLeft = szNew[i-1]; /* Size of sibling on the left */ + int r; /* Index of right-most cell in left sibling */ + int d; /* Index of first cell to the left of right sibling */ + + r = cntNew[i-1] - 1; + d = r + 1 - leafData; + while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){ + szRight += szCell[d] + 2; + szLeft -= szCell[r] + 2; + cntNew[i-1]--; + r = cntNew[i-1] - 1; + d = r + 1 - leafData; + } + szNew[i] = szRight; + szNew[i-1] = szLeft; + } + assert( cntNew[0]>0 ); + + /* + ** Allocate k new pages. Reuse old pages where possible. + */ + assert( pPage->pgno>1 ); + pageFlags = pPage->aData[0]; + for(i=0; i<k; i++){ + MemPage *pNew; + if( i<nOld ){ + pNew = apNew[i] = apOld[i]; + pgnoNew[i] = pgnoOld[i]; + apOld[i] = 0; + sqlite3pager_write(pNew->aData); + }else{ + rc = allocatePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1]); + if( rc ) goto balance_cleanup; + apNew[i] = pNew; + } + nNew++; + zeroPage(pNew, pageFlags); + } + + /* Free any old pages that were not reused as new pages. + */ + while( i<nOld ){ + rc = freePage(apOld[i]); + if( rc ) goto balance_cleanup; + releasePage(apOld[i]); + apOld[i] = 0; + i++; + } + + /* + ** Put the new pages in accending order. This helps to + ** keep entries in the disk file in order so that a scan + ** of the table is a linear scan through the file. That + ** in turn helps the operating system to deliver pages + ** from the disk more rapidly. + ** + ** An O(n^2) insertion sort algorithm is used, but since + ** n is never more than NB (a small constant), that should + ** not be a problem. + ** + ** When NB==3, this one optimization makes the database + ** about 25% faster for large insertions and deletions. + */ + for(i=0; i<k-1; i++){ + int minV = pgnoNew[i]; + int minI = i; + for(j=i+1; j<k; j++){ + if( pgnoNew[j]<(unsigned)minV ){ + minI = j; + minV = pgnoNew[j]; + } + } + if( minI>i ){ + int t; + MemPage *pT; + t = pgnoNew[i]; + pT = apNew[i]; + pgnoNew[i] = pgnoNew[minI]; + apNew[i] = apNew[minI]; + pgnoNew[minI] = t; + apNew[minI] = pT; + } + } + TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n", + pgnoOld[0], + nOld>=2 ? pgnoOld[1] : 0, + nOld>=3 ? pgnoOld[2] : 0, + pgnoNew[0], szNew[0], + nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0, + nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0, + nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0, + nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0)); + + + /* + ** Evenly distribute the data in apCell[] across the new pages. + ** Insert divider cells into pParent as necessary. + */ + j = 0; + for(i=0; i<nNew; i++){ + MemPage *pNew = apNew[i]; + assert( pNew->pgno==pgnoNew[i] ); + assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]); + j = cntNew[i]; + assert( pNew->nCell>0 ); + assert( pNew->nOverflow==0 ); + if( i<nNew-1 && j<nCell ){ + u8 *pCell; + u8 *pTemp; + int sz; + pCell = apCell[j]; + sz = szCell[j] + leafCorrection; + if( !pNew->leaf ){ + memcpy(&pNew->aData[8], pCell, 4); + pTemp = 0; + }else if( leafData ){ + CellInfo info; + j--; + parseCellPtr(pNew, apCell[j], &info); + pCell = &aSpace[iSpace]; + fillInCell(pParent, pCell, 0, info.nKey, 0, 0, &sz); + iSpace += sz; + assert( iSpace<=pBt->pageSize*5 ); + pTemp = 0; + }else{ + pCell -= 4; + pTemp = &aSpace[iSpace]; + iSpace += sz; + assert( iSpace<=pBt->pageSize*5 ); + } + insertCell(pParent, nxDiv, pCell, sz, pTemp); + put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno); + j++; + nxDiv++; + } + } + assert( j==nCell ); + if( (pageFlags & PTF_LEAF)==0 ){ + memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4); + } + if( nxDiv==pParent->nCell+pParent->nOverflow ){ + /* Right-most sibling is the right-most child of pParent */ + put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]); + }else{ + /* Right-most sibling is the left child of the first entry in pParent + ** past the right-most divider entry */ + put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]); + } + + /* + ** Reparent children of all cells. + */ + for(i=0; i<nNew; i++){ + reparentChildPages(apNew[i]); + } + reparentChildPages(pParent); + + /* + ** Balance the parent page. Note that the current page (pPage) might + ** have been added to the freelist is it might no longer be initialized. + ** But the parent page will always be initialized. + */ + assert( pParent->isInit ); + /* assert( pPage->isInit ); // No! pPage might have been added to freelist */ + /* pageIntegrity(pPage); // No! pPage might have been added to freelist */ + rc = balance(pParent); + + /* + ** Cleanup before returning. + */ +balance_cleanup: + sqliteFree(apCell); + for(i=0; i<nOld; i++){ + releasePage(apOld[i]); + } + for(i=0; i<nNew; i++){ + releasePage(apNew[i]); + } + releasePage(pParent); + TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n", + pPage->pgno, nOld, nNew, nCell)); + return rc; +} + +/* +** This routine is called for the root page of a btree when the root +** page contains no cells. This is an opportunity to make the tree +** shallower by one level. +*/ +static int balance_shallower(MemPage *pPage){ + MemPage *pChild; /* The only child page of pPage */ + Pgno pgnoChild; /* Page number for pChild */ + int rc = SQLITE_OK; /* Return code from subprocedures */ + Btree *pBt; /* The main BTree structure */ + int mxCellPerPage; /* Maximum number of cells per page */ + u8 **apCell; /* All cells from pages being balanced */ + int *szCell; /* Local size of all cells */ + + assert( pPage->pParent==0 ); + assert( pPage->nCell==0 ); + pBt = pPage->pBt; + mxCellPerPage = MX_CELL(pBt); + apCell = sqliteMallocRaw( mxCellPerPage*(sizeof(u8*)+sizeof(int)) ); + if( apCell==0 ) return SQLITE_NOMEM; + szCell = (int*)&apCell[mxCellPerPage]; + if( pPage->leaf ){ + /* The table is completely empty */ + TRACE(("BALANCE: empty table %d\n", pPage->pgno)); + }else{ + /* The root page is empty but has one child. Transfer the + ** information from that one child into the root page if it + ** will fit. This reduces the depth of the tree by one. + ** + ** If the root page is page 1, it has less space available than + ** its child (due to the 100 byte header that occurs at the beginning + ** of the database fle), so it might not be able to hold all of the + ** information currently contained in the child. If this is the + ** case, then do not do the transfer. Leave page 1 empty except + ** for the right-pointer to the child page. The child page becomes + ** the virtual root of the tree. + */ + pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]); + assert( pgnoChild>0 ); + assert( pgnoChild<=sqlite3pager_pagecount(pPage->pBt->pPager) ); + rc = getPage(pPage->pBt, pgnoChild, &pChild); + if( rc ) goto end_shallow_balance; + if( pPage->pgno==1 ){ + rc = initPage(pChild, pPage); + if( rc ) goto end_shallow_balance; + assert( pChild->nOverflow==0 ); + if( pChild->nFree>=100 ){ + /* The child information will fit on the root page, so do the + ** copy */ + int i; + zeroPage(pPage, pChild->aData[0]); + for(i=0; i<pChild->nCell; i++){ + apCell[i] = findCell(pChild,i); + szCell[i] = cellSizePtr(pChild, apCell[i]); + } + assemblePage(pPage, pChild->nCell, apCell, szCell); + freePage(pChild); + TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno)); + }else{ + /* The child has more information that will fit on the root. + ** The tree is already balanced. Do nothing. */ + TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno)); + } + }else{ + memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize); + pPage->isInit = 0; + pPage->pParent = 0; + rc = initPage(pPage, 0); + assert( rc==SQLITE_OK ); + freePage(pChild); + TRACE(("BALANCE: transfer child %d into root %d\n", + pChild->pgno, pPage->pgno)); + } + reparentChildPages(pPage); + releasePage(pChild); + } +end_shallow_balance: + sqliteFree(apCell); + return rc; +} + + +/* +** The root page is overfull +** +** When this happens, Create a new child page and copy the +** contents of the root into the child. Then make the root +** page an empty page with rightChild pointing to the new +** child. Finally, call balance_internal() on the new child +** to cause it to split. +*/ +static int balance_deeper(MemPage *pPage){ + int rc; /* Return value from subprocedures */ + MemPage *pChild; /* Pointer to a new child page */ + Pgno pgnoChild; /* Page number of the new child page */ + Btree *pBt; /* The BTree */ + int usableSize; /* Total usable size of a page */ + u8 *data; /* Content of the parent page */ + u8 *cdata; /* Content of the child page */ + int hdr; /* Offset to page header in parent */ + int brk; /* Offset to content of first cell in parent */ + + assert( pPage->pParent==0 ); + assert( pPage->nOverflow>0 ); + pBt = pPage->pBt; + rc = allocatePage(pBt, &pChild, &pgnoChild, pPage->pgno); + if( rc ) return rc; + assert( sqlite3pager_iswriteable(pChild->aData) ); + usableSize = pBt->usableSize; + data = pPage->aData; + hdr = pPage->hdrOffset; + brk = get2byte(&data[hdr+5]); + cdata = pChild->aData; + memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr); + memcpy(&cdata[brk], &data[brk], usableSize-brk); + rc = initPage(pChild, pPage); + if( rc ) return rc; + memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0])); + pChild->nOverflow = pPage->nOverflow; + if( pChild->nOverflow ){ + pChild->nFree = 0; + } + assert( pChild->nCell==pPage->nCell ); + zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF); + put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild); + TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno)); + rc = balance_nonroot(pChild); + releasePage(pChild); + return rc; +} + +/* +** Decide if the page pPage needs to be balanced. If balancing is +** required, call the appropriate balancing routine. +*/ +static int balance(MemPage *pPage){ + int rc = SQLITE_OK; + if( pPage->pParent==0 ){ + if( pPage->nOverflow>0 ){ + rc = balance_deeper(pPage); + } + if( pPage->nCell==0 ){ + rc = balance_shallower(pPage); + } + }else{ + if( pPage->nOverflow>0 || pPage->nFree>pPage->pBt->usableSize*2/3 ){ + rc = balance_nonroot(pPage); + } + } + return rc; +} + +/* +** This routine checks all cursors that point to table pgnoRoot. +** If any of those cursors other than pExclude were opened with +** wrFlag==0 then this routine returns SQLITE_LOCKED. If all +** cursors that point to pgnoRoot were opened with wrFlag==1 +** then this routine returns SQLITE_OK. +** +** In addition to checking for read-locks (where a read-lock +** means a cursor opened with wrFlag==0) this routine also moves +** all cursors other than pExclude so that they are pointing to the +** first Cell on root page. This is necessary because an insert +** or delete might change the number of cells on a page or delete +** a page entirely and we do not want to leave any cursors +** pointing to non-existant pages or cells. +*/ +static int checkReadLocks(Btree *pBt, Pgno pgnoRoot, BtCursor *pExclude){ + BtCursor *p; + for(p=pBt->pCursor; p; p=p->pNext){ + if( p->pgnoRoot!=pgnoRoot || p==pExclude ) continue; + if( p->wrFlag==0 ) return SQLITE_LOCKED; + if( p->pPage->pgno!=p->pgnoRoot ){ + moveToRoot(p); + } + } + return SQLITE_OK; +} + +/* +** Insert a new record into the BTree. The key is given by (pKey,nKey) +** and the data is given by (pData,nData). The cursor is used only to +** define what table the record should be inserted into. The cursor +** is left pointing at a random location. +** +** For an INTKEY table, only the nKey value of the key is used. pKey is +** ignored. For a ZERODATA table, the pData and nData are both ignored. +*/ +int sqlite3BtreeInsert( + BtCursor *pCur, /* Insert data into the table of this cursor */ + const void *pKey, i64 nKey, /* The key of the new record */ + const void *pData, int nData /* The data of the new record */ +){ + int rc; + int loc; + int szNew; + MemPage *pPage; + Btree *pBt = pCur->pBt; + unsigned char *oldCell; + unsigned char *newCell = 0; + + if( pCur->status ){ + return pCur->status; /* A rollback destroyed this cursor */ + } + if( pBt->inTrans!=TRANS_WRITE ){ + /* Must start a transaction before doing an insert */ + return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; + } + assert( !pBt->readOnly ); + if( !pCur->wrFlag ){ + return SQLITE_PERM; /* Cursor not open for writing */ + } + if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){ + return SQLITE_LOCKED; /* The table pCur points to has a read lock */ + } + rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc); + if( rc ) return rc; + pPage = pCur->pPage; + assert( pPage->intKey || nKey>=0 ); + assert( pPage->leaf || !pPage->leafData ); + TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", + pCur->pgnoRoot, nKey, nData, pPage->pgno, + loc==0 ? "overwrite" : "new entry")); + assert( pPage->isInit ); + rc = sqlite3pager_write(pPage->aData); + if( rc ) return rc; + newCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) ); + if( newCell==0 ) return SQLITE_NOMEM; + rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew); + if( rc ) goto end_insert; + assert( szNew==cellSizePtr(pPage, newCell) ); + assert( szNew<=MX_CELL_SIZE(pBt) ); + if( loc==0 && pCur->isValid ){ + int szOld; + assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); + oldCell = findCell(pPage, pCur->idx); + if( !pPage->leaf ){ + memcpy(newCell, oldCell, 4); + } + szOld = cellSizePtr(pPage, oldCell); + rc = clearCell(pPage, oldCell); + if( rc ) goto end_insert; + dropCell(pPage, pCur->idx, szOld); + }else if( loc<0 && pPage->nCell>0 ){ + assert( pPage->leaf ); + pCur->idx++; + pCur->info.nSize = 0; + }else{ + assert( pPage->leaf ); + } + insertCell(pPage, pCur->idx, newCell, szNew, 0); + rc = balance(pPage); + /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */ + /* fflush(stdout); */ + moveToRoot(pCur); +end_insert: + sqliteFree(newCell); + return rc; +} + +/* +** Delete the entry that the cursor is pointing to. The cursor +** is left pointing at a random location. +*/ +int sqlite3BtreeDelete(BtCursor *pCur){ + MemPage *pPage = pCur->pPage; + unsigned char *pCell; + int rc; + Pgno pgnoChild = 0; + Btree *pBt = pCur->pBt; + + assert( pPage->isInit ); + if( pCur->status ){ + return pCur->status; /* A rollback destroyed this cursor */ + } + if( pBt->inTrans!=TRANS_WRITE ){ + /* Must start a transaction before doing a delete */ + return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; + } + assert( !pBt->readOnly ); + if( pCur->idx >= pPage->nCell ){ + return SQLITE_ERROR; /* The cursor is not pointing to anything */ + } + if( !pCur->wrFlag ){ + return SQLITE_PERM; /* Did not open this cursor for writing */ + } + if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){ + return SQLITE_LOCKED; /* The table pCur points to has a read lock */ + } + rc = sqlite3pager_write(pPage->aData); + if( rc ) return rc; + pCell = findCell(pPage, pCur->idx); + if( !pPage->leaf ){ + pgnoChild = get4byte(pCell); + } + clearCell(pPage, pCell); + if( !pPage->leaf ){ + /* + ** The entry we are about to delete is not a leaf so if we do not + ** do something we will leave a hole on an internal page. + ** We have to fill the hole by moving in a cell from a leaf. The + ** next Cell after the one to be deleted is guaranteed to exist and + ** to be a leaf so we can use it. + */ + BtCursor leafCur; + unsigned char *pNext; + int szNext; + int notUsed; + unsigned char *tempCell; + assert( !pPage->leafData ); + getTempCursor(pCur, &leafCur); + rc = sqlite3BtreeNext(&leafCur, ¬Used); + if( rc!=SQLITE_OK ){ + if( rc!=SQLITE_NOMEM ){ + rc = SQLITE_CORRUPT; /* bkpt-CORRUPT */ + } + return rc; + } + rc = sqlite3pager_write(leafCur.pPage->aData); + if( rc ) return rc; + TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n", + pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno)); + dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell)); + pNext = findCell(leafCur.pPage, leafCur.idx); + szNext = cellSizePtr(leafCur.pPage, pNext); + assert( MX_CELL_SIZE(pBt)>=szNext+4 ); + tempCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) ); + if( tempCell==0 ) return SQLITE_NOMEM; + insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell); + put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild); + rc = balance(pPage); + sqliteFree(tempCell); + if( rc ) return rc; + dropCell(leafCur.pPage, leafCur.idx, szNext); + rc = balance(leafCur.pPage); + releaseTempCursor(&leafCur); + }else{ + TRACE(("DELETE: table=%d delete from leaf %d\n", + pCur->pgnoRoot, pPage->pgno)); + dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell)); + rc = balance(pPage); + } + moveToRoot(pCur); + return rc; +} + +/* +** Create a new BTree table. Write into *piTable the page +** number for the root page of the new table. +** +** The type of type is determined by the flags parameter. Only the +** following values of flags are currently in use. Other values for +** flags might not work: +** +** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys +** BTREE_ZERODATA Used for SQL indices +*/ +int sqlite3BtreeCreateTable(Btree *pBt, int *piTable, int flags){ + MemPage *pRoot; + Pgno pgnoRoot; + int rc; + if( pBt->inTrans!=TRANS_WRITE ){ + /* Must start a transaction first */ + return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; + } + if( pBt->readOnly ){ + return SQLITE_READONLY; + } + rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1); + if( rc ) return rc; + assert( sqlite3pager_iswriteable(pRoot->aData) ); + zeroPage(pRoot, flags | PTF_LEAF); + sqlite3pager_unref(pRoot->aData); + *piTable = (int)pgnoRoot; + return SQLITE_OK; +} + +/* +** Erase the given database page and all its children. Return +** the page to the freelist. +*/ +static int clearDatabasePage( + Btree *pBt, /* The BTree that contains the table */ + Pgno pgno, /* Page number to clear */ + MemPage *pParent, /* Parent page. NULL for the root */ + int freePageFlag /* Deallocate page if true */ +){ + MemPage *pPage; + int rc; + unsigned char *pCell; + int i; + + rc = getAndInitPage(pBt, pgno, &pPage, pParent); + if( rc ) return rc; + rc = sqlite3pager_write(pPage->aData); + if( rc ) return rc; + for(i=0; i<pPage->nCell; i++){ + pCell = findCell(pPage, i); + if( !pPage->leaf ){ + rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1); + if( rc ) return rc; + } + rc = clearCell(pPage, pCell); + if( rc ) return rc; + } + if( !pPage->leaf ){ + rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1); + if( rc ) return rc; + } + if( freePageFlag ){ + rc = freePage(pPage); + }else{ + zeroPage(pPage, pPage->aData[0] | PTF_LEAF); + } + releasePage(pPage); + return rc; +} + +/* +** Delete all information from a single table in the database. iTable is +** the page number of the root of the table. After this routine returns, +** the root page is empty, but still exists. +** +** This routine will fail with SQLITE_LOCKED if there are any open +** read cursors on the table. Open write cursors are moved to the +** root of the table. +*/ +int sqlite3BtreeClearTable(Btree *pBt, int iTable){ + int rc; + BtCursor *pCur; + if( pBt->inTrans!=TRANS_WRITE ){ + return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; + } + for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ + if( pCur->pgnoRoot==(Pgno)iTable ){ + if( pCur->wrFlag==0 ) return SQLITE_LOCKED; + moveToRoot(pCur); + } + } + rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0); + if( rc ){ + sqlite3BtreeRollback(pBt); + } + return rc; +} + +/* +** Erase all information in a table and add the root of the table to +** the freelist. Except, the root of the principle table (the one on +** page 1) is never added to the freelist. +** +** This routine will fail with SQLITE_LOCKED if there are any open +** cursors on the table. +*/ +int sqlite3BtreeDropTable(Btree *pBt, int iTable){ + int rc; + MemPage *pPage; + BtCursor *pCur; + if( pBt->inTrans!=TRANS_WRITE ){ + return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; + } + for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ + if( pCur->pgnoRoot==(Pgno)iTable ){ + return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */ + } + } + rc = getPage(pBt, (Pgno)iTable, &pPage); + if( rc ) return rc; + rc = sqlite3BtreeClearTable(pBt, iTable); + if( rc ) return rc; + if( iTable>1 ){ + rc = freePage(pPage); + }else{ + zeroPage(pPage, PTF_INTKEY|PTF_LEAF ); + } + releasePage(pPage); + return rc; +} + + +/* +** Read the meta-information out of a database file. Meta[0] +** is the number of free pages currently in the database. Meta[1] +** through meta[15] are available for use by higher layers. Meta[0] +** is read-only, the others are read/write. +** +** The schema layer numbers meta values differently. At the schema +** layer (and the SetCookie and ReadCookie opcodes) the number of +** free pages is not visible. So Cookie[0] is the same as Meta[1]. +*/ +int sqlite3BtreeGetMeta(Btree *pBt, int idx, u32 *pMeta){ + int rc; + unsigned char *pP1; + + assert( idx>=0 && idx<=15 ); + rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1); + if( rc ) return rc; + *pMeta = get4byte(&pP1[36 + idx*4]); + sqlite3pager_unref(pP1); + + /* The current implementation is unable to handle writes to an autovacuumed + ** database. So make such a database readonly. */ + if( idx==4 && *pMeta>0 ) pBt->readOnly = 1; + + return SQLITE_OK; +} + +/* +** Write meta-information back into the database. Meta[0] is +** read-only and may not be written. +*/ +int sqlite3BtreeUpdateMeta(Btree *pBt, int idx, u32 iMeta){ + unsigned char *pP1; + int rc; + assert( idx>=1 && idx<=15 ); + if( pBt->inTrans!=TRANS_WRITE ){ + return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; + } + assert( pBt->pPage1!=0 ); + pP1 = pBt->pPage1->aData; + rc = sqlite3pager_write(pP1); + if( rc ) return rc; + put4byte(&pP1[36 + idx*4], iMeta); + return SQLITE_OK; +} + +/* +** Return the flag byte at the beginning of the page that the cursor +** is currently pointing to. +*/ +int sqlite3BtreeFlags(BtCursor *pCur){ + MemPage *pPage = pCur->pPage; + return pPage ? pPage->aData[pPage->hdrOffset] : 0; +} + +/* +** Print a disassembly of the given page on standard output. This routine +** is used for debugging and testing only. +*/ +#ifdef SQLITE_TEST +int sqlite3BtreePageDump(Btree *pBt, int pgno, int recursive){ + int rc; + MemPage *pPage; + int i, j, c; + int nFree; + u16 idx; + int hdr; + int nCell; + int isInit; + unsigned char *data; + char range[20]; + unsigned char payload[20]; + + rc = getPage(pBt, (Pgno)pgno, &pPage); + isInit = pPage->isInit; + if( pPage->isInit==0 ){ + initPage(pPage, 0); + } + if( rc ){ + return rc; + } + hdr = pPage->hdrOffset; + data = pPage->aData; + c = data[hdr]; + pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0; + pPage->zeroData = (c & PTF_ZERODATA)!=0; + pPage->leafData = (c & PTF_LEAFDATA)!=0; + pPage->leaf = (c & PTF_LEAF)!=0; + pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData)); + nCell = get2byte(&data[hdr+3]); + sqlite3DebugPrintf("PAGE %d: flags=0x%02x frag=%d parent=%d\n", pgno, + data[hdr], data[hdr+7], + (pPage->isInit && pPage->pParent) ? pPage->pParent->pgno : 0); + assert( hdr == (pgno==1 ? 100 : 0) ); + idx = hdr + 12 - pPage->leaf*4; + for(i=0; i<nCell; i++){ + CellInfo info; + Pgno child; + unsigned char *pCell; + int sz; + int addr; + + addr = get2byte(&data[idx + 2*i]); + pCell = &data[addr]; + parseCellPtr(pPage, pCell, &info); + sz = info.nSize; + sprintf(range,"%d..%d", addr, addr+sz-1); + if( pPage->leaf ){ + child = 0; + }else{ + child = get4byte(pCell); + } + sz = info.nData; + if( !pPage->intKey ) sz += info.nKey; + if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1; + memcpy(payload, &pCell[info.nHeader], sz); + for(j=0; j<sz; j++){ + if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.'; + } + payload[sz] = 0; + sqlite3DebugPrintf( + "cell %2d: i=%-10s chld=%-4d nk=%-4lld nd=%-4d payload=%s\n", + i, range, child, info.nKey, info.nData, payload + ); + } + if( !pPage->leaf ){ + sqlite3DebugPrintf("right_child: %d\n", get4byte(&data[hdr+8])); + } + nFree = 0; + i = 0; + idx = get2byte(&data[hdr+1]); + while( idx>0 && idx<pPage->pBt->usableSize ){ + int sz = get2byte(&data[idx+2]); + sprintf(range,"%d..%d", idx, idx+sz-1); + nFree += sz; + sqlite3DebugPrintf("freeblock %2d: i=%-10s size=%-4d total=%d\n", + i, range, sz, nFree); + idx = get2byte(&data[idx]); + i++; + } + if( idx!=0 ){ + sqlite3DebugPrintf("ERROR: next freeblock index out of range: %d\n", idx); + } + if( recursive && !pPage->leaf ){ + for(i=0; i<nCell; i++){ + unsigned char *pCell = findCell(pPage, i); + sqlite3BtreePageDump(pBt, get4byte(pCell), 1); + idx = get2byte(pCell); + } + sqlite3BtreePageDump(pBt, get4byte(&data[hdr+8]), 1); + } + pPage->isInit = isInit; + sqlite3pager_unref(data); + fflush(stdout); + return SQLITE_OK; +} +#endif + +#ifdef SQLITE_TEST +/* +** Fill aResult[] with information about the entry and page that the +** cursor is pointing to. +** +** aResult[0] = The page number +** aResult[1] = The entry number +** aResult[2] = Total number of entries on this page +** aResult[3] = Cell size (local payload + header) +** aResult[4] = Number of free bytes on this page +** aResult[5] = Number of free blocks on the page +** aResult[6] = Total payload size (local + overflow) +** aResult[7] = Header size in bytes +** aResult[8] = Local payload size +** aResult[9] = Parent page number +** +** This routine is used for testing and debugging only. +*/ +int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult, int upCnt){ + int cnt, idx; + MemPage *pPage = pCur->pPage; + BtCursor tmpCur; + + pageIntegrity(pPage); + assert( pPage->isInit ); + getTempCursor(pCur, &tmpCur); + while( upCnt-- ){ + moveToParent(&tmpCur); + } + pPage = tmpCur.pPage; + pageIntegrity(pPage); + aResult[0] = sqlite3pager_pagenumber(pPage->aData); + assert( aResult[0]==pPage->pgno ); + aResult[1] = tmpCur.idx; + aResult[2] = pPage->nCell; + if( tmpCur.idx>=0 && tmpCur.idx<pPage->nCell ){ + getCellInfo(&tmpCur); + aResult[3] = tmpCur.info.nSize; + aResult[6] = tmpCur.info.nData; + aResult[7] = tmpCur.info.nHeader; + aResult[8] = tmpCur.info.nLocal; + }else{ + aResult[3] = 0; + aResult[6] = 0; + aResult[7] = 0; + aResult[8] = 0; + } + aResult[4] = pPage->nFree; + cnt = 0; + idx = get2byte(&pPage->aData[pPage->hdrOffset+1]); + while( idx>0 && idx<pPage->pBt->usableSize ){ + cnt++; + idx = get2byte(&pPage->aData[idx]); + } + aResult[5] = cnt; + if( pPage->pParent==0 || isRootPage(pPage) ){ + aResult[9] = 0; + }else{ + aResult[9] = pPage->pParent->pgno; + } + releaseTempCursor(&tmpCur); + return SQLITE_OK; +} +#endif + +/* +** Return the pager associated with a BTree. This routine is used for +** testing and debugging only. +*/ +Pager *sqlite3BtreePager(Btree *pBt){ + return pBt->pPager; +} + +/* +** This structure is passed around through all the sanity checking routines +** in order to keep track of some global state information. +*/ +typedef struct IntegrityCk IntegrityCk; +struct IntegrityCk { + Btree *pBt; /* The tree being checked out */ + Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */ + int nPage; /* Number of pages in the database */ + int *anRef; /* Number of times each page is referenced */ + char *zErrMsg; /* An error message. NULL of no errors seen. */ +}; + +/* +** Append a message to the error message string. +*/ +static void checkAppendMsg( + IntegrityCk *pCheck, + char *zMsg1, + const char *zFormat, + ... +){ + va_list ap; + char *zMsg2; + va_start(ap, zFormat); + zMsg2 = sqlite3VMPrintf(zFormat, ap); + va_end(ap); + if( zMsg1==0 ) zMsg1 = ""; + if( pCheck->zErrMsg ){ + char *zOld = pCheck->zErrMsg; + pCheck->zErrMsg = 0; + sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0); + sqliteFree(zOld); + }else{ + sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0); + } + sqliteFree(zMsg2); +} + +/* +** Add 1 to the reference count for page iPage. If this is the second +** reference to the page, add an error message to pCheck->zErrMsg. +** Return 1 if there are 2 ore more references to the page and 0 if +** if this is the first reference to the page. +** +** Also check that the page number is in bounds. +*/ +static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){ + if( iPage==0 ) return 1; + if( iPage>pCheck->nPage || iPage<0 ){ + checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage); + return 1; + } + if( pCheck->anRef[iPage]==1 ){ + checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage); + return 1; + } + return (pCheck->anRef[iPage]++)>1; +} + +/* +** Check the integrity of the freelist or of an overflow page list. +** Verify that the number of pages on the list is N. +*/ +static void checkList( + IntegrityCk *pCheck, /* Integrity checking context */ + int isFreeList, /* True for a freelist. False for overflow page list */ + int iPage, /* Page number for first page in the list */ + int N, /* Expected number of pages in the list */ + char *zContext /* Context for error messages */ +){ + int i; + int expected = N; + int iFirst = iPage; + while( N-- > 0 ){ + unsigned char *pOvfl; + if( iPage<1 ){ + checkAppendMsg(pCheck, zContext, + "%d of %d pages missing from overflow list starting at %d", + N+1, expected, iFirst); + break; + } + if( checkRef(pCheck, iPage, zContext) ) break; + if( sqlite3pager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){ + checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage); + break; + } + if( isFreeList ){ + int n = get4byte(&pOvfl[4]); + if( n>pCheck->pBt->usableSize/4-8 ){ + checkAppendMsg(pCheck, zContext, + "freelist leaf count too big on page %d", iPage); + N--; + }else{ + for(i=0; i<n; i++){ + checkRef(pCheck, get4byte(&pOvfl[8+i*4]), zContext); + } + N -= n; + } + } + iPage = get4byte(pOvfl); + sqlite3pager_unref(pOvfl); + } +} + +/* +** Do various sanity checks on a single page of a tree. Return +** the tree depth. Root pages return 0. Parents of root pages +** return 1, and so forth. +** +** These checks are done: +** +** 1. Make sure that cells and freeblocks do not overlap +** but combine to completely cover the page. +** NO 2. Make sure cell keys are in order. +** NO 3. Make sure no key is less than or equal to zLowerBound. +** NO 4. Make sure no key is greater than or equal to zUpperBound. +** 5. Check the integrity of overflow pages. +** 6. Recursively call checkTreePage on all children. +** 7. Verify that the depth of all children is the same. +** 8. Make sure this page is at least 33% full or else it is +** the root of the tree. +*/ +static int checkTreePage( + IntegrityCk *pCheck, /* Context for the sanity check */ + int iPage, /* Page number of the page to check */ + MemPage *pParent, /* Parent page */ + char *zParentContext, /* Parent context */ + char *zLowerBound, /* All keys should be greater than this, if not NULL */ + int nLower, /* Number of characters in zLowerBound */ + char *zUpperBound, /* All keys should be less than this, if not NULL */ + int nUpper /* Number of characters in zUpperBound */ +){ + MemPage *pPage; + int i, rc, depth, d2, pgno, cnt; + int hdr, cellStart; + int nCell; + u8 *data; + BtCursor cur; + Btree *pBt; + int maxLocal, usableSize; + char zContext[100]; + char *hit; + + /* Check that the page exists + */ + cur.pBt = pBt = pCheck->pBt; + usableSize = pBt->usableSize; + if( iPage==0 ) return 0; + if( checkRef(pCheck, iPage, zParentContext) ) return 0; + if( (rc = getPage(pBt, (Pgno)iPage, &pPage))!=0 ){ + checkAppendMsg(pCheck, zContext, + "unable to get the page. error code=%d", rc); + return 0; + } + maxLocal = pPage->leafData ? pBt->maxLeaf : pBt->maxLocal; + if( (rc = initPage(pPage, pParent))!=0 ){ + checkAppendMsg(pCheck, zContext, "initPage() returns error code %d", rc); + releasePage(pPage); + return 0; + } + + /* Check out all the cells. + */ + depth = 0; + cur.pPage = pPage; + for(i=0; i<pPage->nCell; i++){ + u8 *pCell; + int sz; + CellInfo info; + + /* Check payload overflow pages + */ + sprintf(zContext, "On tree page %d cell %d: ", iPage, i); + pCell = findCell(pPage,i); + parseCellPtr(pPage, pCell, &info); + sz = info.nData; + if( !pPage->intKey ) sz += info.nKey; + if( sz>info.nLocal ){ + int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4); + checkList(pCheck, 0, get4byte(&pCell[info.iOverflow]),nPage,zContext); + } + + /* Check sanity of left child page. + */ + if( !pPage->leaf ){ + pgno = get4byte(pCell); + d2 = checkTreePage(pCheck,pgno,pPage,zContext,0,0,0,0); + if( i>0 && d2!=depth ){ + checkAppendMsg(pCheck, zContext, "Child page depth differs"); + } + depth = d2; + } + } + if( !pPage->leaf ){ + pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); + sprintf(zContext, "On page %d at right child: ", iPage); + checkTreePage(pCheck, pgno, pPage, zContext,0,0,0,0); + } + + /* Check for complete coverage of the page + */ + data = pPage->aData; + hdr = pPage->hdrOffset; + hit = sqliteMalloc( usableSize ); + if( hit ){ + memset(hit, 1, get2byte(&data[hdr+5])); + nCell = get2byte(&data[hdr+3]); + cellStart = hdr + 12 - 4*pPage->leaf; + for(i=0; i<nCell; i++){ + int pc = get2byte(&data[cellStart+i*2]); + int size = cellSizePtr(pPage, &data[pc]); + int j; + for(j=pc+size-1; j>=pc; j--) hit[j]++; + } + for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000; + cnt++){ + int size = get2byte(&data[i+2]); + int j; + for(j=i+size-1; j>=i; j--) hit[j]++; + i = get2byte(&data[i]); + } + for(i=cnt=0; i<usableSize; i++){ + if( hit[i]==0 ){ + cnt++; + }else if( hit[i]>1 ){ + checkAppendMsg(pCheck, 0, + "Multiple uses for byte %d of page %d", i, iPage); + break; + } + } + if( cnt!=data[hdr+7] ){ + checkAppendMsg(pCheck, 0, + "Fragmented space is %d byte reported as %d on page %d", + cnt, data[hdr+7], iPage); + } + } + sqliteFree(hit); + + releasePage(pPage); + return depth+1; +} + +/* +** This routine does a complete check of the given BTree file. aRoot[] is +** an array of pages numbers were each page number is the root page of +** a table. nRoot is the number of entries in aRoot. +** +** If everything checks out, this routine returns NULL. If something is +** amiss, an error message is written into memory obtained from malloc() +** and a pointer to that error message is returned. The calling function +** is responsible for freeing the error message when it is done. +*/ +char *sqlite3BtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){ + int i; + int nRef; + IntegrityCk sCheck; + + nRef = *sqlite3pager_stats(pBt->pPager); + if( lockBtree(pBt)!=SQLITE_OK ){ + return sqliteStrDup("Unable to acquire a read lock on the database"); + } + sCheck.pBt = pBt; + sCheck.pPager = pBt->pPager; + sCheck.nPage = sqlite3pager_pagecount(sCheck.pPager); + if( sCheck.nPage==0 ){ + unlockBtreeIfUnused(pBt); + return 0; + } + sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) ); + for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; } + i = PENDING_BYTE/pBt->pageSize + 1; + if( i<=sCheck.nPage ){ + sCheck.anRef[i] = 1; + } + sCheck.zErrMsg = 0; + + /* Check the integrity of the freelist + */ + checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), + get4byte(&pBt->pPage1->aData[36]), "Main freelist: "); + + /* Check all the tables. + */ + for(i=0; i<nRoot; i++){ + if( aRoot[i]==0 ) continue; + checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0); + } + + /* Make sure every page in the file is referenced + */ + for(i=1; i<=sCheck.nPage; i++){ + if( sCheck.anRef[i]==0 ){ + checkAppendMsg(&sCheck, 0, "Page %d is never used", i); + } + } + + /* Make sure this analysis did not leave any unref() pages + */ + unlockBtreeIfUnused(pBt); + if( nRef != *sqlite3pager_stats(pBt->pPager) ){ + checkAppendMsg(&sCheck, 0, + "Outstanding page count goes from %d to %d during this analysis", + nRef, *sqlite3pager_stats(pBt->pPager) + ); + } + + /* Clean up and report errors. + */ + sqliteFree(sCheck.anRef); + return sCheck.zErrMsg; +} + +/* +** Return the full pathname of the underlying database file. +*/ +const char *sqlite3BtreeGetFilename(Btree *pBt){ + assert( pBt->pPager!=0 ); + return sqlite3pager_filename(pBt->pPager); +} + +/* +** Return the pathname of the directory that contains the database file. +*/ +const char *sqlite3BtreeGetDirname(Btree *pBt){ + assert( pBt->pPager!=0 ); + return sqlite3pager_dirname(pBt->pPager); +} + +/* +** Return the pathname of the journal file for this database. The return +** value of this routine is the same regardless of whether the journal file +** has been created or not. +*/ +const char *sqlite3BtreeGetJournalname(Btree *pBt){ + assert( pBt->pPager!=0 ); + return sqlite3pager_journalname(pBt->pPager); +} + +/* +** Copy the complete content of pBtFrom into pBtTo. A transaction +** must be active for both files. +** +** The size of file pBtFrom may be reduced by this operation. +** If anything goes wrong, the transaction on pBtFrom is rolled back. +*/ +int sqlite3BtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){ + int rc = SQLITE_OK; + Pgno i, nPage, nToPage; + + if( pBtTo->inTrans!=TRANS_WRITE || pBtFrom->inTrans!=TRANS_WRITE ){ + return SQLITE_ERROR; + } + if( pBtTo->pCursor ) return SQLITE_BUSY; + nToPage = sqlite3pager_pagecount(pBtTo->pPager); + nPage = sqlite3pager_pagecount(pBtFrom->pPager); + for(i=1; rc==SQLITE_OK && i<=nPage; i++){ + void *pPage; + rc = sqlite3pager_get(pBtFrom->pPager, i, &pPage); + if( rc ) break; + rc = sqlite3pager_overwrite(pBtTo->pPager, i, pPage); + if( rc ) break; + sqlite3pager_unref(pPage); + } + for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){ + void *pPage; + rc = sqlite3pager_get(pBtTo->pPager, i, &pPage); + if( rc ) break; + rc = sqlite3pager_write(pPage); + sqlite3pager_unref(pPage); + sqlite3pager_dont_write(pBtTo->pPager, i); + } + if( !rc && nPage<nToPage ){ + rc = sqlite3pager_truncate(pBtTo->pPager, nPage); + } + if( rc ){ + sqlite3BtreeRollback(pBtTo); + } + return rc; +} + +/* +** Return non-zero if a transaction is active. +*/ +int sqlite3BtreeIsInTrans(Btree *pBt){ + return (pBt && (pBt->inTrans==TRANS_WRITE)); +} + +/* +** Return non-zero if a statement transaction is active. +*/ +int sqlite3BtreeIsInStmt(Btree *pBt){ + return (pBt && pBt->inStmt); +} + +/* +** This call is a no-op if no write-transaction is currently active on pBt. +** +** Otherwise, sync the database file for the btree pBt. zMaster points to +** the name of a master journal file that should be written into the +** individual journal file, or is NULL, indicating no master journal file +** (single database transaction). +** +** When this is called, the master journal should already have been +** created, populated with this journal pointer and synced to disk. +** +** Once this is routine has returned, the only thing required to commit +** the write-transaction for this database file is to delete the journal. +*/ +int sqlite3BtreeSync(Btree *pBt, const char *zMaster){ + if( pBt->inTrans==TRANS_WRITE ){ + return sqlite3pager_sync(pBt->pPager, zMaster); + } + return SQLITE_OK; +} diff --git a/kopete/plugins/statistics/sqlite/btree.h b/kopete/plugins/statistics/sqlite/btree.h new file mode 100644 index 00000000..48524aef --- /dev/null +++ b/kopete/plugins/statistics/sqlite/btree.h @@ -0,0 +1,124 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the sqlite B-Tree file +** subsystem. See comments in the source code for a detailed description +** of what each interface routine does. +** +** @(#) $Id$ +*/ +#ifndef _BTREE_H_ +#define _BTREE_H_ + +/* TODO: This definition is just included so other modules compile. It +** needs to be revisited. +*/ +#define SQLITE_N_BTREE_META 10 + +/* +** Forward declarations of structure +*/ +typedef struct Btree Btree; +typedef struct BtCursor BtCursor; + + +int sqlite3BtreeOpen( + const char *zFilename, /* Name of database file to open */ + Btree **, /* Return open Btree* here */ + int flags /* Flags */ +); + +/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the +** following values. +*/ +#define BTREE_OMIT_JOURNAL 1 /* Do not use journal. No argument */ +#define BTREE_MEMORY 2 /* In-memory DB. No argument */ + +int sqlite3BtreeClose(Btree*); +int sqlite3BtreeSetBusyHandler(Btree*,BusyHandler*); +int sqlite3BtreeSetCacheSize(Btree*,int); +int sqlite3BtreeSetSafetyLevel(Btree*,int); +int sqlite3BtreeSetPageSize(Btree*,int,int); +int sqlite3BtreeGetPageSize(Btree*); +int sqlite3BtreeGetReserve(Btree*); +int sqlite3BtreeBeginTrans(Btree*,int); +int sqlite3BtreeCommit(Btree*); +int sqlite3BtreeRollback(Btree*); +int sqlite3BtreeBeginStmt(Btree*); +int sqlite3BtreeCommitStmt(Btree*); +int sqlite3BtreeRollbackStmt(Btree*); +int sqlite3BtreeCreateTable(Btree*, int*, int flags); +int sqlite3BtreeIsInTrans(Btree*); +int sqlite3BtreeIsInStmt(Btree*); +int sqlite3BtreeSync(Btree*, const char *zMaster); + +const char *sqlite3BtreeGetFilename(Btree *); +const char *sqlite3BtreeGetDirname(Btree *); +const char *sqlite3BtreeGetJournalname(Btree *); +int sqlite3BtreeCopyFile(Btree *, Btree *); + +/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR +** of the following flags: +*/ +#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */ +#define BTREE_ZERODATA 2 /* Table has keys only - no data */ +#define BTREE_LEAFDATA 4 /* Data stored in leaves only. Implies INTKEY */ + +int sqlite3BtreeDropTable(Btree*, int); +int sqlite3BtreeClearTable(Btree*, int); +int sqlite3BtreeGetMeta(Btree*, int idx, u32 *pValue); +int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value); + +int sqlite3BtreeCursor( + Btree*, /* BTree containing table to open */ + int iTable, /* Index of root page */ + int wrFlag, /* 1 for writing. 0 for read-only */ + int(*)(void*,int,const void*,int,const void*), /* Key comparison function */ + void*, /* First argument to compare function */ + BtCursor **ppCursor /* Returned cursor */ +); + +void sqlite3BtreeSetCompare( + BtCursor *, + int(*)(void*,int,const void*,int,const void*), + void* +); + +int sqlite3BtreeCloseCursor(BtCursor*); +int sqlite3BtreeMoveto(BtCursor*, const void *pKey, i64 nKey, int *pRes); +int sqlite3BtreeDelete(BtCursor*); +int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey, + const void *pData, int nData); +int sqlite3BtreeFirst(BtCursor*, int *pRes); +int sqlite3BtreeLast(BtCursor*, int *pRes); +int sqlite3BtreeNext(BtCursor*, int *pRes); +int sqlite3BtreeEof(BtCursor*); +int sqlite3BtreeFlags(BtCursor*); +int sqlite3BtreePrevious(BtCursor*, int *pRes); +int sqlite3BtreeKeySize(BtCursor*, i64 *pSize); +int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); +const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt); +const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt); +int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); +int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); + +char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot); +struct Pager *sqlite3BtreePager(Btree*); + + +#ifdef SQLITE_TEST +int sqlite3BtreeCursorInfo(BtCursor*, int*, int); +void sqlite3BtreeCursorList(Btree*); +int sqlite3BtreePageDump(Btree*, int, int recursive); +#endif + + +#endif /* _BTREE_H_ */ diff --git a/kopete/plugins/statistics/sqlite/build.c b/kopete/plugins/statistics/sqlite/build.c new file mode 100644 index 00000000..3e5e08a5 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/build.c @@ -0,0 +1,2564 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that are called by the SQLite parser +** when syntax rules are reduced. The routines in this file handle the +** following kinds of SQL syntax: +** +** CREATE TABLE +** DROP TABLE +** CREATE INDEX +** DROP INDEX +** creating ID lists +** BEGIN TRANSACTION +** COMMIT +** ROLLBACK +** PRAGMA +** +** $Id$ +*/ +#include "sqliteInt.h" +#include <ctype.h> + +/* +** This routine is called when a new SQL statement is beginning to +** be parsed. Check to see if the schema for the database needs +** to be read from the SQLITE_MASTER and SQLITE_TEMP_MASTER tables. +** If it does, then read it. +*/ +void sqlite3BeginParse(Parse *pParse, int explainFlag){ + pParse->explain = explainFlag; + pParse->nVar = 0; +} + +/* +** This routine is called after a single SQL statement has been +** parsed and a VDBE program to execute that statement has been +** prepared. This routine puts the finishing touches on the +** VDBE program and resets the pParse structure for the next +** parse. +** +** Note that if an error occurred, it might be the case that +** no VDBE code was generated. +*/ +void sqlite3FinishCoding(Parse *pParse){ + sqlite3 *db; + Vdbe *v; + + if( sqlite3_malloc_failed ) return; + + /* Begin by generating some termination code at the end of the + ** vdbe program + */ + db = pParse->db; + v = sqlite3GetVdbe(pParse); + if( v ){ + sqlite3VdbeAddOp(v, OP_Halt, 0, 0); + + /* The cookie mask contains one bit for each database file open. + ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are + ** set for each database that is used. Generate code to start a + ** transaction on each used database and to verify the schema cookie + ** on each used database. + */ + if( pParse->cookieGoto>0 ){ + u32 mask; + int iDb; + sqlite3VdbeChangeP2(v, pParse->cookieGoto-1, sqlite3VdbeCurrentAddr(v)); + for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ + if( (mask & pParse->cookieMask)==0 ) continue; + sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0); + sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]); + } + sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto); + } + + /* Add a No-op that contains the complete text of the compiled SQL + ** statement as its P3 argument. This does not change the functionality + ** of the program. + ** + ** This is used to implement sqlite3_trace() functionality. + */ + sqlite3VdbeOp3(v, OP_Noop, 0, 0, pParse->zSql, pParse->zTail-pParse->zSql); + } + + + /* Get the VDBE program ready for execution + */ + if( v && pParse->nErr==0 ){ + FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; + sqlite3VdbeTrace(v, trace); + sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3, + pParse->nTab+3, pParse->explain); + pParse->rc = pParse->nErr ? SQLITE_ERROR : SQLITE_DONE; + pParse->colNamesSet = 0; + }else if( pParse->rc==SQLITE_OK ){ + pParse->rc = SQLITE_ERROR; + } + pParse->nTab = 0; + pParse->nMem = 0; + pParse->nSet = 0; + pParse->nAgg = 0; + pParse->nVar = 0; + pParse->cookieMask = 0; + pParse->cookieGoto = 0; +} + +/* +** Locate the in-memory structure that describes a particular database +** table given the name of that table and (optionally) the name of the +** database containing the table. Return NULL if not found. +** +** If zDatabase is 0, all databases are searched for the table and the +** first matching table is returned. (No checking for duplicate table +** names is done.) The search order is TEMP first, then MAIN, then any +** auxiliary databases added using the ATTACH command. +** +** See also sqlite3LocateTable(). +*/ +Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ + Table *p = 0; + int i; + assert( zName!=0 ); + assert( (db->flags & SQLITE_Initialized) || db->init.busy ); + for(i=0; i<db->nDb; i++){ + int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ + if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; + p = sqlite3HashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1); + if( p ) break; + } + return p; +} + +/* +** Locate the in-memory structure that describes a particular database +** table given the name of that table and (optionally) the name of the +** database containing the table. Return NULL if not found. Also leave an +** error message in pParse->zErrMsg. +** +** The difference between this routine and sqlite3FindTable() is that this +** routine leaves an error message in pParse->zErrMsg where +** sqlite3FindTable() does not. +*/ +Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){ + Table *p; + + /* Read the database schema. If an error occurs, leave an error message + ** and code in pParse and return NULL. */ + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ + return 0; + } + + p = sqlite3FindTable(pParse->db, zName, zDbase); + if( p==0 ){ + if( zDbase ){ + sqlite3ErrorMsg(pParse, "no such table: %s.%s", zDbase, zName); + }else if( sqlite3FindTable(pParse->db, zName, 0)!=0 ){ + sqlite3ErrorMsg(pParse, "table \"%s\" is not in database \"%s\"", + zName, zDbase); + }else{ + sqlite3ErrorMsg(pParse, "no such table: %s", zName); + } + pParse->checkSchema = 1; + } + return p; +} + +/* +** Locate the in-memory structure that describes +** a particular index given the name of that index +** and the name of the database that contains the index. +** Return NULL if not found. +** +** If zDatabase is 0, all databases are searched for the +** table and the first matching index is returned. (No checking +** for duplicate index names is done.) The search order is +** TEMP first, then MAIN, then any auxiliary databases added +** using the ATTACH command. +*/ +Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ + Index *p = 0; + int i; + assert( (db->flags & SQLITE_Initialized) || db->init.busy ); + for(i=0; i<db->nDb; i++){ + int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ + if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; + p = sqlite3HashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1); + if( p ) break; + } + return p; +} + +/* +** Reclaim the memory used by an index +*/ +static void freeIndex(Index *p){ + sqliteFree(p->zColAff); + sqliteFree(p); +} + +/* +** Remove the given index from the index hash table, and free +** its memory structures. +** +** The index is removed from the database hash tables but +** it is not unlinked from the Table that it indexes. +** Unlinking from the Table must be done by the calling function. +*/ +static void sqliteDeleteIndex(sqlite3 *db, Index *p){ + Index *pOld; + + assert( db!=0 && p->zName!=0 ); + pOld = sqlite3HashInsert(&db->aDb[p->iDb].idxHash, p->zName, + strlen(p->zName)+1, 0); + if( pOld!=0 && pOld!=p ){ + sqlite3HashInsert(&db->aDb[p->iDb].idxHash, pOld->zName, + strlen(pOld->zName)+1, pOld); + } + freeIndex(p); +} + +/* +** Unlink the given index from its table, then remove +** the index from the index hash table and free its memory +** structures. +*/ +void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ + Index *pIndex; + int len; + + len = strlen(zIdxName); + pIndex = sqlite3HashInsert(&db->aDb[iDb].idxHash, zIdxName, len+1, 0); + if( pIndex ){ + if( pIndex->pTable->pIndex==pIndex ){ + pIndex->pTable->pIndex = pIndex->pNext; + }else{ + Index *p; + for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} + if( p && p->pNext==pIndex ){ + p->pNext = pIndex->pNext; + } + } + freeIndex(pIndex); + } + db->flags |= SQLITE_InternChanges; +} + +/* +** Erase all schema information from the in-memory hash tables of +** a single database. This routine is called to reclaim memory +** before the database closes. It is also called during a rollback +** if there were schema changes during the transaction or if a +** schema-cookie mismatch occurs. +** +** If iDb<=0 then reset the internal schema tables for all database +** files. If iDb>=2 then reset the internal schema for only the +** single file indicated. +*/ +void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ + HashElem *pElem; + Hash temp1; + Hash temp2; + int i, j; + + assert( iDb>=0 && iDb<db->nDb ); + db->flags &= ~SQLITE_Initialized; + for(i=iDb; i<db->nDb; i++){ + Db *pDb = &db->aDb[i]; + temp1 = pDb->tblHash; + temp2 = pDb->trigHash; + sqlite3HashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0); + sqlite3HashClear(&pDb->aFKey); + sqlite3HashClear(&pDb->idxHash); + for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ + Trigger *pTrigger = sqliteHashData(pElem); + sqlite3DeleteTrigger(pTrigger); + } + sqlite3HashClear(&temp2); + sqlite3HashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0); + for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ + Table *pTab = sqliteHashData(pElem); + sqlite3DeleteTable(db, pTab); + } + sqlite3HashClear(&temp1); + DbClearProperty(db, i, DB_SchemaLoaded); + if( iDb>0 ) return; + } + assert( iDb==0 ); + db->flags &= ~SQLITE_InternChanges; + + /* If one or more of the auxiliary database files has been closed, + ** then remove then from the auxiliary database list. We take the + ** opportunity to do this here since we have just deleted all of the + ** schema hash tables and therefore do not have to make any changes + ** to any of those tables. + */ + for(i=0; i<db->nDb; i++){ + struct Db *pDb = &db->aDb[i]; + if( pDb->pBt==0 ){ + if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux); + pDb->pAux = 0; + } + } + for(i=j=2; i<db->nDb; i++){ + struct Db *pDb = &db->aDb[i]; + if( pDb->pBt==0 ){ + sqliteFree(pDb->zName); + pDb->zName = 0; + continue; + } + if( j<i ){ + db->aDb[j] = db->aDb[i]; + } + j++; + } + memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); + db->nDb = j; + if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ + memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); + sqliteFree(db->aDb); + db->aDb = db->aDbStatic; + } +} + +/* +** This routine is called whenever a rollback occurs. If there were +** schema changes during the transaction, then we have to reset the +** internal hash tables and reload them from disk. +*/ +void sqlite3RollbackInternalChanges(sqlite3 *db){ + if( db->flags & SQLITE_InternChanges ){ + sqlite3ResetInternalSchema(db, 0); + } +} + +/* +** This routine is called when a commit occurs. +*/ +void sqlite3CommitInternalChanges(sqlite3 *db){ + db->flags &= ~SQLITE_InternChanges; +} + +/* +** Clear the column names from a table or view. +*/ +static void sqliteResetColumnNames(Table *pTable){ + int i; + Column *pCol; + assert( pTable!=0 ); + for(i=0, pCol=pTable->aCol; i<pTable->nCol; i++, pCol++){ + sqliteFree(pCol->zName); + sqliteFree(pCol->zDflt); + sqliteFree(pCol->zType); + } + sqliteFree(pTable->aCol); + pTable->aCol = 0; + pTable->nCol = 0; +} + +/* +** Remove the memory data structures associated with the given +** Table. No changes are made to disk by this routine. +** +** This routine just deletes the data structure. It does not unlink +** the table data structure from the hash table. Nor does it remove +** foreign keys from the sqlite.aFKey hash table. But it does destroy +** memory structures of the indices and foreign keys associated with +** the table. +** +** Indices associated with the table are unlinked from the "db" +** data structure if db!=NULL. If db==NULL, indices attached to +** the table are deleted, but it is assumed they have already been +** unlinked. +*/ +void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ + Index *pIndex, *pNext; + FKey *pFKey, *pNextFKey; + + if( pTable==0 ) return; + + /* Delete all indices associated with this table + */ + for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ + pNext = pIndex->pNext; + assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) ); + sqliteDeleteIndex(db, pIndex); + } + + /* Delete all foreign keys associated with this table. The keys + ** should have already been unlinked from the db->aFKey hash table + */ + for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){ + pNextFKey = pFKey->pNextFrom; + assert( pTable->iDb<db->nDb ); + assert( sqlite3HashFind(&db->aDb[pTable->iDb].aFKey, + pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey ); + sqliteFree(pFKey); + } + + /* Delete the Table structure itself. + */ + sqliteResetColumnNames(pTable); + sqliteFree(pTable->zName); + sqliteFree(pTable->zColAff); + sqlite3SelectDelete(pTable->pSelect); + sqliteFree(pTable); +} + +/* +** Unlink the given table from the hash tables and the delete the +** table structure with all its indices and foreign keys. +*/ +void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ + Table *p; + FKey *pF1, *pF2; + Db *pDb; + + assert( db!=0 ); + assert( iDb>=0 && iDb<db->nDb ); + assert( zTabName && zTabName[0] ); + pDb = &db->aDb[iDb]; + p = sqlite3HashInsert(&pDb->tblHash, zTabName, strlen(zTabName)+1, 0); + if( p ){ + for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){ + int nTo = strlen(pF1->zTo) + 1; + pF2 = sqlite3HashFind(&pDb->aFKey, pF1->zTo, nTo); + if( pF2==pF1 ){ + sqlite3HashInsert(&pDb->aFKey, pF1->zTo, nTo, pF1->pNextTo); + }else{ + while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; } + if( pF2 ){ + pF2->pNextTo = pF1->pNextTo; + } + } + } + sqlite3DeleteTable(db, p); + } + db->flags |= SQLITE_InternChanges; +} + +/* +** Given a token, return a string that consists of the text of that +** token with any quotations removed. Space to hold the returned string +** is obtained from sqliteMalloc() and must be freed by the calling +** function. +** +** Tokens are really just pointers into the original SQL text and so +** are not \000 terminated and are not persistent. The returned string +** is \000 terminated and is persistent. +*/ +char *sqlite3NameFromToken(Token *pName){ + char *zName; + if( pName ){ + zName = sqliteStrNDup(pName->z, pName->n); + sqlite3Dequote(zName); + }else{ + zName = 0; + } + return zName; +} + +/* +** Open the sqlite_master table stored in database number iDb for +** writing. The table is opened using cursor 0. +*/ +void sqlite3OpenMasterTable(Vdbe *v, int iDb){ + sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); + sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT); + sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */ +} + +/* +** The token *pName contains the name of a database (either "main" or +** "temp" or the name of an attached db). This routine returns the +** index of the named database in db->aDb[], or -1 if the named db +** does not exist. +*/ +int findDb(sqlite3 *db, Token *pName){ + int i; + Db *pDb; + for(pDb=db->aDb, i=0; i<db->nDb; i++, pDb++){ + if( pName->n==strlen(pDb->zName) && + 0==sqlite3StrNICmp(pDb->zName, pName->z, pName->n) ){ + return i; + } + } + return -1; +} + +/* The table or view or trigger name is passed to this routine via tokens +** pName1 and pName2. If the table name was fully qualified, for example: +** +** CREATE TABLE xxx.yyy (...); +** +** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if +** the table name is not fully qualified, i.e.: +** +** CREATE TABLE yyy(...); +** +** Then pName1 is set to "yyy" and pName2 is "". +** +** This routine sets the *ppUnqual pointer to point at the token (pName1 or +** pName2) that stores the unqualified table name. The index of the +** database "xxx" is returned. +*/ +int sqlite3TwoPartName( + Parse *pParse, /* Parsing and code generating context */ + Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ + Token *pName2, /* The "yyy" in the name "xxx.yyy" */ + Token **pUnqual /* Write the unqualified object name here */ +){ + int iDb; /* Database holding the object */ + sqlite3 *db = pParse->db; + + if( pName2 && pName2->n>0 ){ + assert( !db->init.busy ); + *pUnqual = pName2; + iDb = findDb(db, pName1); + if( iDb<0 ){ + sqlite3ErrorMsg(pParse, "unknown database %T", pName1); + pParse->nErr++; + return -1; + } + }else{ + assert( db->init.iDb==0 || db->init.busy ); + iDb = db->init.iDb; + *pUnqual = pName1; + } + return iDb; +} + +/* +** This routine is used to check if the UTF-8 string zName is a legal +** unqualified name for a new schema object (table, index, view or +** trigger). All names are legal except those that begin with the string +** "sqlite_" (in upper, lower or mixed case). This portion of the namespace +** is reserved for internal use. +*/ +int sqlite3CheckObjectName(Parse *pParse, const char *zName){ + if( !pParse->db->init.busy && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ + sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); + return SQLITE_ERROR; + } + return SQLITE_OK; +} + +/* +** Begin constructing a new table representation in memory. This is +** the first of several action routines that get called in response +** to a CREATE TABLE statement. In particular, this routine is called +** after seeing tokens "CREATE" and "TABLE" and the table name. The +** pStart token is the CREATE and pName is the table name. The isTemp +** flag is true if the table should be stored in the auxiliary database +** file instead of in the main database file. This is normally the case +** when the "TEMP" or "TEMPORARY" keyword occurs in between +** CREATE and TABLE. +** +** The new table record is initialized and put in pParse->pNewTable. +** As more of the CREATE TABLE statement is parsed, additional action +** routines will be called to add more information to this record. +** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine +** is called to complete the construction of the new table record. +*/ +void sqlite3StartTable( + Parse *pParse, /* Parser context */ + Token *pStart, /* The "CREATE" token */ + Token *pName1, /* First part of the name of the table or view */ + Token *pName2, /* Second part of the name of the table or view */ + int isTemp, /* True if this is a TEMP table */ + int isView /* True if this is a VIEW */ +){ + Table *pTable; + Index *pIdx; + char *zName; + sqlite3 *db = pParse->db; + Vdbe *v; + int iDb; /* Database number to create the table in */ + Token *pName; /* Unqualified name of the table to create */ + + /* The table or view name to create is passed to this routine via tokens + ** pName1 and pName2. If the table name was fully qualified, for example: + ** + ** CREATE TABLE xxx.yyy (...); + ** + ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if + ** the table name is not fully qualified, i.e.: + ** + ** CREATE TABLE yyy(...); + ** + ** Then pName1 is set to "yyy" and pName2 is "". + ** + ** The call below sets the pName pointer to point at the token (pName1 or + ** pName2) that stores the unqualified table name. The variable iDb is + ** set to the index of the database that the table or view is to be + ** created in. + */ + iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); + if( iDb<0 ) return; + if( isTemp && iDb>1 ){ + /* If creating a temp table, the name may not be qualified */ + sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); + pParse->nErr++; + return; + } + if( isTemp ) iDb = 1; + + pParse->sNameToken = *pName; + zName = sqlite3NameFromToken(pName); + if( zName==0 ) return; + if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ + sqliteFree(zName); + return; + } + if( db->init.iDb==1 ) isTemp = 1; +#ifndef SQLITE_OMIT_AUTHORIZATION + assert( (isTemp & 1)==isTemp ); + { + int code; + char *zDb = db->aDb[iDb].zName; + if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ + sqliteFree(zName); + return; + } + if( isView ){ + if( isTemp ){ + code = SQLITE_CREATE_TEMP_VIEW; + }else{ + code = SQLITE_CREATE_VIEW; + } + }else{ + if( isTemp ){ + code = SQLITE_CREATE_TEMP_TABLE; + }else{ + code = SQLITE_CREATE_TABLE; + } + } + if( sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ + sqliteFree(zName); + return; + } + } +#endif + + /* Make sure the new table name does not collide with an existing + ** index or table name in the same database. Issue an error message if + ** it does. + */ + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) return; + pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName); + if( pTable ){ + sqlite3ErrorMsg(pParse, "table %T already exists", pName); + sqliteFree(zName); + return; + } + if( (pIdx = sqlite3FindIndex(db, zName, 0))!=0 && + ( iDb==0 || !db->init.busy) ){ + sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); + sqliteFree(zName); + return; + } + pTable = sqliteMalloc( sizeof(Table) ); + if( pTable==0 ){ + pParse->rc = SQLITE_NOMEM; + pParse->nErr++; + sqliteFree(zName); + return; + } + pTable->zName = zName; + pTable->nCol = 0; + pTable->aCol = 0; + pTable->iPKey = -1; + pTable->pIndex = 0; + pTable->iDb = iDb; + if( pParse->pNewTable ) sqlite3DeleteTable(db, pParse->pNewTable); + pParse->pNewTable = pTable; + + /* Begin generating the code that will insert the table record into + ** the SQLITE_MASTER table. Note in particular that we must go ahead + ** and allocate the record number for the table entry now. Before any + ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause + ** indices to be created and the table record must come before the + ** indices. Hence, the record number for the table must be allocated + ** now. + */ + if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ + sqlite3BeginWriteOperation(pParse, 0, iDb); + /* Every time a new table is created the file-format + ** and encoding meta-values are set in the database, in + ** case this is the first table created. + */ + sqlite3VdbeAddOp(v, OP_Integer, db->file_format, 0); + sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1); + sqlite3VdbeAddOp(v, OP_Integer, db->enc, 0); + sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4); + + sqlite3OpenMasterTable(v, iDb); + sqlite3VdbeAddOp(v, OP_NewRecno, 0, 0); + sqlite3VdbeAddOp(v, OP_Dup, 0, 0); + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + sqlite3VdbeAddOp(v, OP_PutIntKey, 0, 0); + } +} + +/* +** Add a new column to the table currently being constructed. +** +** The parser calls this routine once for each column declaration +** in a CREATE TABLE statement. sqlite3StartTable() gets called +** first to get things going. Then this routine is called for each +** column. +*/ +void sqlite3AddColumn(Parse *pParse, Token *pName){ + Table *p; + int i; + char *z; + Column *pCol; + if( (p = pParse->pNewTable)==0 ) return; + z = sqlite3NameFromToken(pName); + if( z==0 ) return; + for(i=0; i<p->nCol; i++){ + if( sqlite3StrICmp(z, p->aCol[i].zName)==0 ){ + sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); + sqliteFree(z); + return; + } + } + if( (p->nCol & 0x7)==0 ){ + Column *aNew; + aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0])); + if( aNew==0 ) return; + p->aCol = aNew; + } + pCol = &p->aCol[p->nCol]; + memset(pCol, 0, sizeof(p->aCol[0])); + pCol->zName = z; + + /* If there is no type specified, columns have the default affinity + ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will + ** be called next to set pCol->affinity correctly. + */ + pCol->affinity = SQLITE_AFF_NONE; + pCol->pColl = pParse->db->pDfltColl; + p->nCol++; +} + +/* +** This routine is called by the parser while in the middle of +** parsing a CREATE TABLE statement. A "NOT NULL" constraint has +** been seen on a column. This routine sets the notNull flag on +** the column currently under construction. +*/ +void sqlite3AddNotNull(Parse *pParse, int onError){ + Table *p; + int i; + if( (p = pParse->pNewTable)==0 ) return; + i = p->nCol-1; + if( i>=0 ) p->aCol[i].notNull = onError; +} + +/* +** This routine is called by the parser while in the middle of +** parsing a CREATE TABLE statement. The pFirst token is the first +** token in the sequence of tokens that describe the type of the +** column currently under construction. pLast is the last token +** in the sequence. Use this information to construct a string +** that contains the typename of the column and store that string +** in zType. +*/ +void sqlite3AddColumnType(Parse *pParse, Token *pFirst, Token *pLast){ + Table *p; + int i, j; + int n; + char *z, **pz; + Column *pCol; + if( (p = pParse->pNewTable)==0 ) return; + i = p->nCol-1; + if( i<0 ) return; + pCol = &p->aCol[i]; + pz = &pCol->zType; + n = pLast->n + (pLast->z - pFirst->z); + assert( pCol->zType==0 ); + z = pCol->zType = sqlite3MPrintf("%.*s", n, pFirst->z); + if( z==0 ) return; + for(i=j=0; z[i]; i++){ + int c = z[i]; + if( isspace(c) ) continue; + z[j++] = c; + } + z[j] = 0; + pCol->affinity = sqlite3AffinityType(z, n); +} + +/* +** The given token is the default value for the last column added to +** the table currently under construction. If "minusFlag" is true, it +** means the value token was preceded by a minus sign. +** +** This routine is called by the parser while in the middle of +** parsing a CREATE TABLE statement. +*/ +void sqlite3AddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){ + Table *p; + int i; + char *z; + if( (p = pParse->pNewTable)==0 ) return; + i = p->nCol-1; + if( i<0 ) return; + assert( p->aCol[i].zDflt==0 ); + z = p->aCol[i].zDflt = sqlite3MPrintf("%s%T", minusFlag ? "-" : "", pVal); + sqlite3Dequote(z); +} + +/* +** Designate the PRIMARY KEY for the table. pList is a list of names +** of columns that form the primary key. If pList is NULL, then the +** most recently added column of the table is the primary key. +** +** A table can have at most one primary key. If the table already has +** a primary key (and this is the second primary key) then create an +** error. +** +** If the PRIMARY KEY is on a single column whose datatype is INTEGER, +** then we will try to use that column as the row id. (Exception: +** For backwards compatibility with older databases, do not do this +** if the file format version number is less than 1.) Set the Table.iPKey +** field of the table under construction to be the index of the +** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is +** no INTEGER PRIMARY KEY. +** +** If the key is not an INTEGER PRIMARY KEY, then create a unique +** index for the key. No index is created for INTEGER PRIMARY KEYs. +*/ +void sqlite3AddPrimaryKey(Parse *pParse, ExprList *pList, int onError){ + Table *pTab = pParse->pNewTable; + char *zType = 0; + int iCol = -1, i; + if( pTab==0 ) goto primary_key_exit; + if( pTab->hasPrimKey ){ + sqlite3ErrorMsg(pParse, + "table \"%s\" has more than one primary key", pTab->zName); + goto primary_key_exit; + } + pTab->hasPrimKey = 1; + if( pList==0 ){ + iCol = pTab->nCol - 1; + pTab->aCol[iCol].isPrimKey = 1; + }else{ + for(i=0; i<pList->nExpr; i++){ + for(iCol=0; iCol<pTab->nCol; iCol++){ + if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ + break; + } + } + if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1; + } + if( pList->nExpr>1 ) iCol = -1; + } + if( iCol>=0 && iCol<pTab->nCol ){ + zType = pTab->aCol[iCol].zType; + } + if( zType && sqlite3StrICmp(zType, "INTEGER")==0 ){ + pTab->iPKey = iCol; + pTab->keyConf = onError; + }else{ + sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0); + pList = 0; + } + +primary_key_exit: + sqlite3ExprListDelete(pList); + return; +} + +/* +** Set the collation function of the most recently parsed table column +** to the CollSeq given. +*/ +void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){ + Table *p; + Index *pIdx; + CollSeq *pColl; + int i; + + if( (p = pParse->pNewTable)==0 ) return; + i = p->nCol-1; + + pColl = sqlite3LocateCollSeq(pParse, zType, nType); + p->aCol[i].pColl = pColl; + + /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", + ** then an index may have been created on this column before the + ** collation type was added. Correct this if it is the case. + */ + for(pIdx = p->pIndex; pIdx; pIdx=pIdx->pNext){ + assert( pIdx->nColumn==1 ); + if( pIdx->aiColumn[0]==i ) pIdx->keyInfo.aColl[0] = pColl; + } +} + +/* +** Locate and return an entry from the db.aCollSeq hash table. If the entry +** specified by zName and nName is not found and parameter 'create' is +** true, then create a new entry. Otherwise return NULL. +** +** Each pointer stored in the sqlite3.aCollSeq hash table contains an +** array of three CollSeq structures. The first is the collation sequence +** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be. +** +** Stored immediately after the three collation sequences is a copy of +** the collation sequence name. A pointer to this string is stored in +** each collation sequence structure. +*/ +static CollSeq * findCollSeqEntry( + sqlite3 *db, + const char *zName, + int nName, + int create +){ + CollSeq *pColl; + if( nName<0 ) nName = strlen(zName); + pColl = sqlite3HashFind(&db->aCollSeq, zName, nName); + + if( 0==pColl && create ){ + pColl = sqliteMalloc( 3*sizeof(*pColl) + nName + 1 ); + if( pColl ){ + pColl[0].zName = (char*)&pColl[3]; + pColl[0].enc = SQLITE_UTF8; + pColl[1].zName = (char*)&pColl[3]; + pColl[1].enc = SQLITE_UTF16LE; + pColl[2].zName = (char*)&pColl[3]; + pColl[2].enc = SQLITE_UTF16BE; + memcpy(pColl[0].zName, zName, nName); + pColl[0].zName[nName] = 0; + sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl); + } + } + return pColl; +} + +/* +** Parameter zName points to a UTF-8 encoded string nName bytes long. +** Return the CollSeq* pointer for the collation sequence named zName +** for the encoding 'enc' from the database 'db'. +** +** If the entry specified is not found and 'create' is true, then create a +** new entry. Otherwise return NULL. +*/ +CollSeq *sqlite3FindCollSeq( + sqlite3 *db, + u8 enc, + const char *zName, + int nName, + int create +){ + CollSeq *pColl = findCollSeqEntry(db, zName, nName, create); + assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); + assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE ); + if( pColl ) pColl += enc-1; + return pColl; +} + +/* +** Invoke the 'collation needed' callback to request a collation sequence +** in the database text encoding of name zName, length nName. +** If the collation sequence +*/ +static void callCollNeeded(sqlite3 *db, const char *zName, int nName){ + assert( !db->xCollNeeded || !db->xCollNeeded16 ); + if( nName<0 ) nName = strlen(zName); + if( db->xCollNeeded ){ + char *zExternal = sqliteStrNDup(zName, nName); + if( !zExternal ) return; + db->xCollNeeded(db->pCollNeededArg, db, (int)db->enc, zExternal); + sqliteFree(zExternal); + } + if( db->xCollNeeded16 ){ + char const *zExternal; + sqlite3_value *pTmp = sqlite3GetTransientValue(db); + sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC); + zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE); + if( !zExternal ) return; + db->xCollNeeded16(db->pCollNeededArg, db, (int)db->enc, zExternal); + } +} + +/* +** This routine is called if the collation factory fails to deliver a +** collation function in the best encoding but there may be other versions +** of this collation function (for other text encodings) available. Use one +** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if +** possible. +*/ +static int synthCollSeq(Parse *pParse, CollSeq *pColl){ + CollSeq *pColl2; + char *z = pColl->zName; + int n = strlen(z); + sqlite3 *db = pParse->db; + int i; + static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 }; + for(i=0; i<3; i++){ + pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, n, 0); + if( pColl2->xCmp!=0 ){ + memcpy(pColl, pColl2, sizeof(CollSeq)); + return SQLITE_OK; + } + } + if( pParse->nErr==0 ){ + sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", n, z); + } + pParse->nErr++; + return SQLITE_ERROR; +} + +/* +** This routine is called on a collation sequence before it is used to +** check that it is defined. An undefined collation sequence exists when +** a database is loaded that contains references to collation sequences +** that have not been defined by sqlite3_create_collation() etc. +** +** If required, this routine calls the 'collation needed' callback to +** request a definition of the collating sequence. If this doesn't work, +** an equivalent collating sequence that uses a text encoding different +** from the main database is substituted, if one is available. +*/ +int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){ + if( pColl && !pColl->xCmp ){ + /* No collation sequence of this type for this encoding is registered. + ** Call the collation factory to see if it can supply us with one. + */ + callCollNeeded(pParse->db, pColl->zName, strlen(pColl->zName)); + if( !pColl->xCmp && synthCollSeq(pParse, pColl) ){ + return SQLITE_ERROR; + } + } + return SQLITE_OK; +} + +/* +** Call sqlite3CheckCollSeq() for all collating sequences in an index, +** in order to verify that all the necessary collating sequences are +** loaded. +*/ +int sqlite3CheckIndexCollSeq(Parse *pParse, Index *pIdx){ + if( pIdx ){ + int i; + for(i=0; i<pIdx->nColumn; i++){ + if( sqlite3CheckCollSeq(pParse, pIdx->keyInfo.aColl[i]) ){ + return SQLITE_ERROR; + } + } + } + return SQLITE_OK; +} + +/* +** This function returns the collation sequence for database native text +** encoding identified by the string zName, length nName. +** +** If the requested collation sequence is not available, or not available +** in the database native encoding, the collation factory is invoked to +** request it. If the collation factory does not supply such a sequence, +** and the sequence is available in another text encoding, then that is +** returned instead. +** +** If no versions of the requested collations sequence are available, or +** another error occurs, NULL is returned and an error message written into +** pParse. +*/ +CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){ + u8 enc = pParse->db->enc; + u8 initbusy = pParse->db->init.busy; + CollSeq *pColl = sqlite3FindCollSeq(pParse->db, enc, zName, nName, initbusy); + if( nName<0 ) nName = strlen(zName); + if( !initbusy && (!pColl || !pColl->xCmp) ){ + /* No collation sequence of this type for this encoding is registered. + ** Call the collation factory to see if it can supply us with one. + */ + callCollNeeded(pParse->db, zName, nName); + pColl = sqlite3FindCollSeq(pParse->db, enc, zName, nName, 0); + if( pColl && !pColl->xCmp ){ + /* There may be a version of the collation sequence that requires + ** translation between encodings. Search for it with synthCollSeq(). + */ + if( synthCollSeq(pParse, pColl) ){ + return 0; + } + } + } + + /* If nothing has been found, write the error message into pParse */ + if( !initbusy && (!pColl || !pColl->xCmp) ){ + if( pParse->nErr==0 ){ + sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName); + } + pColl = 0; + } + return pColl; +} + + + +/* +** Scan the column type name zType (length nType) and return the +** associated affinity type. +*/ +char sqlite3AffinityType(const char *zType, int nType){ + int n, i; + static const struct { + const char *zSub; /* Keywords substring to search for */ + char nSub; /* length of zSub */ + char affinity; /* Affinity to return if it matches */ + } substrings[] = { + {"INT", 3, SQLITE_AFF_INTEGER}, + {"CHAR", 4, SQLITE_AFF_TEXT}, + {"CLOB", 4, SQLITE_AFF_TEXT}, + {"TEXT", 4, SQLITE_AFF_TEXT}, + {"BLOB", 4, SQLITE_AFF_NONE}, + }; + + if( nType==0 ){ + return SQLITE_AFF_NONE; + } + for(i=0; i<sizeof(substrings)/sizeof(substrings[0]); i++){ + int c1 = substrings[i].zSub[0]; + int c2 = tolower(c1); + int limit = nType - substrings[i].nSub; + const char *z = substrings[i].zSub; + for(n=0; n<=limit; n++){ + int c = zType[n]; + if( (c==c1 || c==c2) + && 0==sqlite3StrNICmp(&zType[n], z, substrings[i].nSub) ){ + return substrings[i].affinity; + } + } + } + return SQLITE_AFF_NUMERIC; +} + +/* +** Generate code that will increment the schema cookie. +** +** The schema cookie is used to determine when the schema for the +** database changes. After each schema change, the cookie value +** changes. When a process first reads the schema it records the +** cookie. Thereafter, whenever it goes to access the database, +** it checks the cookie to make sure the schema has not changed +** since it was last read. +** +** This plan is not completely bullet-proof. It is possible for +** the schema to change multiple times and for the cookie to be +** set back to prior value. But schema changes are infrequent +** and the probability of hitting the same cookie value is only +** 1 chance in 2^32. So we're safe enough. +*/ +void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){ + sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].schema_cookie+1, 0); + sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0); +} + +/* +** Measure the number of characters needed to output the given +** identifier. The number returned includes any quotes used +** but does not include the null terminator. +** +** The estimate is conservative. It might be larger that what is +** really needed. +*/ +static int identLength(const char *z){ + int n; + for(n=0; *z; n++, z++){ + if( *z=='"' ){ n++; } + } + return n + 2; +} + +/* +** Write an identifier onto the end of the given string. Add +** quote characters as needed. +*/ +static void identPut(char *z, int *pIdx, char *zSignedIdent){ + unsigned char *zIdent = (unsigned char*)zSignedIdent; + int i, j, needQuote; + i = *pIdx; + for(j=0; zIdent[j]; j++){ + if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break; + } + needQuote = zIdent[j]!=0 || isdigit(zIdent[0]) + || sqlite3KeywordCode(zIdent, j)!=TK_ID; + if( needQuote ) z[i++] = '"'; + for(j=0; zIdent[j]; j++){ + z[i++] = zIdent[j]; + if( zIdent[j]=='"' ) z[i++] = '"'; + } + if( needQuote ) z[i++] = '"'; + z[i] = 0; + *pIdx = i; +} + +/* +** Generate a CREATE TABLE statement appropriate for the given +** table. Memory to hold the text of the statement is obtained +** from sqliteMalloc() and must be freed by the calling function. +*/ +static char *createTableStmt(Table *p){ + int i, k, n; + char *zStmt; + char *zSep, *zSep2, *zEnd, *z; + Column *pCol; + n = 0; + for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ + n += identLength(pCol->zName); + z = pCol->zType; + if( z ){ + n += (strlen(z) + 1); + } + } + n += identLength(p->zName); + if( n<50 ){ + zSep = ""; + zSep2 = ","; + zEnd = ")"; + }else{ + zSep = "\n "; + zSep2 = ",\n "; + zEnd = "\n)"; + } + n += 35 + 6*p->nCol; + zStmt = sqliteMallocRaw( n ); + if( zStmt==0 ) return 0; + strcpy(zStmt, p->iDb==1 ? "CREATE TEMP TABLE " : "CREATE TABLE "); + k = strlen(zStmt); + identPut(zStmt, &k, p->zName); + zStmt[k++] = '('; + for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ + strcpy(&zStmt[k], zSep); + k += strlen(&zStmt[k]); + zSep = zSep2; + identPut(zStmt, &k, pCol->zName); + if( (z = pCol->zType)!=0 ){ + zStmt[k++] = ' '; + strcpy(&zStmt[k], z); + k += strlen(z); + } + } + strcpy(&zStmt[k], zEnd); + return zStmt; +} + +/* +** This routine is called to report the final ")" that terminates +** a CREATE TABLE statement. +** +** The table structure that other action routines have been building +** is added to the internal hash tables, assuming no errors have +** occurred. +** +** An entry for the table is made in the master table on disk, unless +** this is a temporary table or db->init.busy==1. When db->init.busy==1 +** it means we are reading the sqlite_master table because we just +** connected to the database or because the sqlite_master table has +** recently changes, so the entry for this table already exists in +** the sqlite_master table. We do not want to create it again. +** +** If the pSelect argument is not NULL, it means that this routine +** was called to create a table generated from a +** "CREATE TABLE ... AS SELECT ..." statement. The column names of +** the new table will match the result set of the SELECT. +*/ +void sqlite3EndTable(Parse *pParse, Token *pEnd, Select *pSelect){ + Table *p; + sqlite3 *db = pParse->db; + + if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite3_malloc_failed ) return; + p = pParse->pNewTable; + if( p==0 ) return; + + assert( !db->init.busy || !pSelect ); + + /* If the db->init.busy is 1 it means we are reading the SQL off the + ** "sqlite_master" or "sqlite_temp_master" table on the disk. + ** So do not write to the disk again. Extract the root page number + ** for the table from the db->init.newTnum field. (The page number + ** should have been put there by the sqliteOpenCb routine.) + */ + if( db->init.busy ){ + p->tnum = db->init.newTnum; + } + + /* If not initializing, then create a record for the new table + ** in the SQLITE_MASTER table of the database. The record number + ** for the new table entry should already be on the stack. + ** + ** If this is a TEMPORARY table, write the entry into the auxiliary + ** file instead of into the main database file. + */ + if( !db->init.busy ){ + int n; + Vdbe *v; + + v = sqlite3GetVdbe(pParse); + if( v==0 ) return; + + if( p->pSelect==0 ){ + /* A regular table */ + sqlite3VdbeAddOp(v, OP_CreateTable, p->iDb, 0); + }else{ + /* A view */ + sqlite3VdbeAddOp(v, OP_Integer, 0, 0); + } + + sqlite3VdbeAddOp(v, OP_Close, 0, 0); + + /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT + ** statement to populate the new table. The root-page number for the + ** new table is on the top of the vdbe stack. + ** + ** Once the SELECT has been coded by sqlite3Select(), it is in a + ** suitable state to query for the column names and types to be used + ** by the new table. + */ + if( pSelect ){ + Table *pSelTab; + sqlite3VdbeAddOp(v, OP_Dup, 0, 0); + sqlite3VdbeAddOp(v, OP_Integer, p->iDb, 0); + sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0); + pParse->nTab = 2; + sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0); + sqlite3VdbeAddOp(v, OP_Close, 1, 0); + if( pParse->nErr==0 ){ + pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect); + if( pSelTab==0 ) return; + assert( p->aCol==0 ); + p->nCol = pSelTab->nCol; + p->aCol = pSelTab->aCol; + pSelTab->nCol = 0; + pSelTab->aCol = 0; + sqlite3DeleteTable(0, pSelTab); + } + } + + sqlite3OpenMasterTable(v, p->iDb); + + sqlite3VdbeOp3(v, OP_String8, 0, 0, p->pSelect==0?"table":"view",P3_STATIC); + sqlite3VdbeOp3(v, OP_String8, 0, 0, p->zName, 0); + sqlite3VdbeOp3(v, OP_String8, 0, 0, p->zName, 0); + sqlite3VdbeAddOp(v, OP_Pull, 3, 0); + + if( pSelect ){ + char *z = createTableStmt(p); + n = z ? strlen(z) : 0; + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + sqlite3VdbeChangeP3(v, -1, z, n); + sqliteFree(z); + }else{ + if( p->pSelect ){ + sqlite3VdbeOp3(v, OP_String8, 0, 0, "CREATE VIEW ", P3_STATIC); + }else{ + sqlite3VdbeOp3(v, OP_String8, 0, 0, "CREATE TABLE ", P3_STATIC); + } + assert( pEnd!=0 ); + n = Addr(pEnd->z) - Addr(pParse->sNameToken.z) + 1; + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + sqlite3VdbeChangeP3(v, -1, pParse->sNameToken.z, n); + sqlite3VdbeAddOp(v, OP_Concat, 0, 0); + } + sqlite3VdbeOp3(v, OP_MakeRecord, 5, 0, "tttit", P3_STATIC); + sqlite3VdbeAddOp(v, OP_PutIntKey, 0, 0); + sqlite3ChangeCookie(db, v, p->iDb); + sqlite3VdbeAddOp(v, OP_Close, 0, 0); + sqlite3VdbeOp3(v, OP_ParseSchema, p->iDb, 0, + sqlite3MPrintf("tbl_name='%q'",p->zName), P3_DYNAMIC); + } + + /* Add the table to the in-memory representation of the database. + */ + if( db->init.busy && pParse->nErr==0 ){ + Table *pOld; + FKey *pFKey; + Db *pDb = &db->aDb[p->iDb]; + pOld = sqlite3HashInsert(&pDb->tblHash, p->zName, strlen(p->zName)+1, p); + if( pOld ){ + assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ + return; + } + for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){ + int nTo = strlen(pFKey->zTo) + 1; + pFKey->pNextTo = sqlite3HashFind(&pDb->aFKey, pFKey->zTo, nTo); + sqlite3HashInsert(&pDb->aFKey, pFKey->zTo, nTo, pFKey); + } + pParse->pNewTable = 0; + db->nTable++; + db->flags |= SQLITE_InternChanges; + } +} + +/* +** The parser calls this routine in order to create a new VIEW +*/ +void sqlite3CreateView( + Parse *pParse, /* The parsing context */ + Token *pBegin, /* The CREATE token that begins the statement */ + Token *pName1, /* The token that holds the name of the view */ + Token *pName2, /* The token that holds the name of the view */ + Select *pSelect, /* A SELECT statement that will become the new view */ + int isTemp /* TRUE for a TEMPORARY view */ +){ + Table *p; + int n; + const unsigned char *z; + Token sEnd; + DbFixer sFix; + Token *pName; + + sqlite3StartTable(pParse, pBegin, pName1, pName2, isTemp, 1); + p = pParse->pNewTable; + if( p==0 || pParse->nErr ){ + sqlite3SelectDelete(pSelect); + return; + } + sqlite3TwoPartName(pParse, pName1, pName2, &pName); + if( sqlite3FixInit(&sFix, pParse, p->iDb, "view", pName) + && sqlite3FixSelect(&sFix, pSelect) + ){ + sqlite3SelectDelete(pSelect); + return; + } + + /* Make a copy of the entire SELECT statement that defines the view. + ** This will force all the Expr.token.z values to be dynamically + ** allocated rather than point to the input string - which means that + ** they will persist after the current sqlite3_exec() call returns. + */ + p->pSelect = sqlite3SelectDup(pSelect); + sqlite3SelectDelete(pSelect); + if( !pParse->db->init.busy ){ + sqlite3ViewGetColumnNames(pParse, p); + } + + /* Locate the end of the CREATE VIEW statement. Make sEnd point to + ** the end. + */ + sEnd = pParse->sLastToken; + if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){ + sEnd.z += sEnd.n; + } + sEnd.n = 0; + n = sEnd.z - pBegin->z; + z = (const unsigned char*)pBegin->z; + while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; } + sEnd.z = &z[n-1]; + sEnd.n = 1; + + /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ + sqlite3EndTable(pParse, &sEnd, 0); + return; +} + +/* +** The Table structure pTable is really a VIEW. Fill in the names of +** the columns of the view in the pTable structure. Return the number +** of errors. If an error is seen leave an error message in pParse->zErrMsg. +*/ +int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ + ExprList *pEList; + Select *pSel; + Table *pSelTab; + int nErr = 0; + + assert( pTable ); + + /* A positive nCol means the columns names for this view are + ** already known. + */ + if( pTable->nCol>0 ) return 0; + + /* A negative nCol is a special marker meaning that we are currently + ** trying to compute the column names. If we enter this routine with + ** a negative nCol, it means two or more views form a loop, like this: + ** + ** CREATE VIEW one AS SELECT * FROM two; + ** CREATE VIEW two AS SELECT * FROM one; + ** + ** Actually, this error is caught previously and so the following test + ** should always fail. But we will leave it in place just to be safe. + */ + if( pTable->nCol<0 ){ + sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); + return 1; + } + + /* If we get this far, it means we need to compute the table names. + */ + assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */ + pSel = pTable->pSelect; + + /* Note that the call to sqlite3ResultSetOfSelect() will expand any + ** "*" elements in this list. But we will need to restore the list + ** back to its original configuration afterwards, so we save a copy of + ** the original in pEList. + */ + pEList = pSel->pEList; + pSel->pEList = sqlite3ExprListDup(pEList); + if( pSel->pEList==0 ){ + pSel->pEList = pEList; + return 1; /* Malloc failed */ + } + pTable->nCol = -1; + pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel); + if( pSelTab ){ + assert( pTable->aCol==0 ); + pTable->nCol = pSelTab->nCol; + pTable->aCol = pSelTab->aCol; + pSelTab->nCol = 0; + pSelTab->aCol = 0; + sqlite3DeleteTable(0, pSelTab); + DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews); + }else{ + pTable->nCol = 0; + nErr++; + } + sqlite3SelectUnbind(pSel); + sqlite3ExprListDelete(pSel->pEList); + pSel->pEList = pEList; + return nErr; +} + +/* +** Clear the column names from every VIEW in database idx. +*/ +static void sqliteViewResetAll(sqlite3 *db, int idx){ + HashElem *i; + if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; + for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){ + Table *pTab = sqliteHashData(i); + if( pTab->pSelect ){ + sqliteResetColumnNames(pTab); + } + } + DbClearProperty(db, idx, DB_UnresetViews); +} + +/* +** This routine is called to do the work of a DROP TABLE statement. +** pName is the name of the table to be dropped. +*/ +void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView){ + Table *pTab; + Vdbe *v; + int base; + sqlite3 *db = pParse->db; + int iDb; + + if( pParse->nErr || sqlite3_malloc_failed ) goto exit_drop_table; + assert( pName->nSrc==1 ); + pTab = sqlite3LocateTable(pParse, pName->a[0].zName, pName->a[0].zDatabase); + + if( pTab==0 ) goto exit_drop_table; + iDb = pTab->iDb; + assert( iDb>=0 && iDb<db->nDb ); +#ifndef SQLITE_OMIT_AUTHORIZATION + { + int code; + const char *zTab = SCHEMA_TABLE(pTab->iDb); + const char *zDb = db->aDb[pTab->iDb].zName; + if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ + goto exit_drop_table; + } + if( isView ){ + if( iDb==1 ){ + code = SQLITE_DROP_TEMP_VIEW; + }else{ + code = SQLITE_DROP_VIEW; + } + }else{ + if( iDb==1 ){ + code = SQLITE_DROP_TEMP_TABLE; + }else{ + code = SQLITE_DROP_TABLE; + } + } + if( sqlite3AuthCheck(pParse, code, pTab->zName, 0, zDb) ){ + goto exit_drop_table; + } + if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ + goto exit_drop_table; + } + } +#endif + if( pTab->readOnly ){ + sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); + pParse->nErr++; + goto exit_drop_table; + } + if( isView && pTab->pSelect==0 ){ + sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); + goto exit_drop_table; + } + if( !isView && pTab->pSelect ){ + sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); + goto exit_drop_table; + } + + /* Generate code to remove the table from the master table + ** on disk. + */ + v = sqlite3GetVdbe(pParse); + if( v ){ + static const VdbeOpList dropTable[] = { + { OP_Rewind, 0, ADDR(13), 0}, + { OP_String8, 0, 0, 0}, /* 1 */ + { OP_MemStore, 1, 1, 0}, + { OP_MemLoad, 1, 0, 0}, /* 3 */ + { OP_Column, 0, 2, 0}, /* sqlite_master.tbl_name */ + { OP_Ne, 0, ADDR(12), 0}, + { OP_String8, 0, 0, "trigger"}, + { OP_Column, 0, 2, 0}, /* sqlite_master.type */ + { OP_Eq, 0, ADDR(12), 0}, + { OP_Delete, 0, 0, 0}, + { OP_Rewind, 0, ADDR(13), 0}, + { OP_Goto, 0, ADDR(3), 0}, + { OP_Next, 0, ADDR(3), 0}, /* 12 */ + }; + Index *pIdx; + Trigger *pTrigger; + sqlite3BeginWriteOperation(pParse, 0, pTab->iDb); + + /* Drop all triggers associated with the table being dropped. Code + ** is generated to remove entries from sqlite_master and/or + ** sqlite_temp_master if required. + */ + pTrigger = pTab->pTrigger; + while( pTrigger ){ + assert( pTrigger->iDb==pTab->iDb || pTrigger->iDb==1 ); + sqlite3DropTriggerPtr(pParse, pTrigger, 1); + pTrigger = pTrigger->pNext; + } + + /* Drop all SQLITE_MASTER table and index entries that refer to the + ** table. The program name loops through the master table and deletes + ** every row that refers to a table of the same name as the one being + ** dropped. Triggers are handled seperately because a trigger can be + ** created in the temp database that refers to a table in another + ** database. + */ + sqlite3OpenMasterTable(v, pTab->iDb); + base = sqlite3VdbeAddOpList(v, ArraySize(dropTable), dropTable); + sqlite3VdbeChangeP3(v, base+1, pTab->zName, 0); + sqlite3ChangeCookie(db, v, pTab->iDb); + sqlite3VdbeAddOp(v, OP_Close, 0, 0); + if( !isView ){ + sqlite3VdbeAddOp(v, OP_Destroy, pTab->tnum, pTab->iDb); + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + sqlite3VdbeAddOp(v, OP_Destroy, pIdx->tnum, pIdx->iDb); + } + } + sqlite3VdbeOp3(v, OP_DropTable, pTab->iDb, 0, pTab->zName, 0); + } + sqliteViewResetAll(db, iDb); + +exit_drop_table: + sqlite3SrcListDelete(pName); +} + +/* +** This routine is called to create a new foreign key on the table +** currently under construction. pFromCol determines which columns +** in the current table point to the foreign key. If pFromCol==0 then +** connect the key to the last column inserted. pTo is the name of +** the table referred to. pToCol is a list of tables in the other +** pTo table that the foreign key points to. flags contains all +** information about the conflict resolution algorithms specified +** in the ON DELETE, ON UPDATE and ON INSERT clauses. +** +** An FKey structure is created and added to the table currently +** under construction in the pParse->pNewTable field. The new FKey +** is not linked into db->aFKey at this point - that does not happen +** until sqlite3EndTable(). +** +** The foreign key is set for IMMEDIATE processing. A subsequent call +** to sqlite3DeferForeignKey() might change this to DEFERRED. +*/ +void sqlite3CreateForeignKey( + Parse *pParse, /* Parsing context */ + ExprList *pFromCol, /* Columns in this table that point to other table */ + Token *pTo, /* Name of the other table */ + ExprList *pToCol, /* Columns in the other table */ + int flags /* Conflict resolution algorithms. */ +){ + Table *p = pParse->pNewTable; + int nByte; + int i; + int nCol; + char *z; + FKey *pFKey = 0; + + assert( pTo!=0 ); + if( p==0 || pParse->nErr ) goto fk_end; + if( pFromCol==0 ){ + int iCol = p->nCol-1; + if( iCol<0 ) goto fk_end; + if( pToCol && pToCol->nExpr!=1 ){ + sqlite3ErrorMsg(pParse, "foreign key on %s" + " should reference only one column of table %T", + p->aCol[iCol].zName, pTo); + goto fk_end; + } + nCol = 1; + }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ + sqlite3ErrorMsg(pParse, + "number of columns in foreign key does not match the number of " + "columns in the referenced table"); + goto fk_end; + }else{ + nCol = pFromCol->nExpr; + } + nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1; + if( pToCol ){ + for(i=0; i<pToCol->nExpr; i++){ + nByte += strlen(pToCol->a[i].zName) + 1; + } + } + pFKey = sqliteMalloc( nByte ); + if( pFKey==0 ) goto fk_end; + pFKey->pFrom = p; + pFKey->pNextFrom = p->pFKey; + z = (char*)&pFKey[1]; + pFKey->aCol = (struct sColMap*)z; + z += sizeof(struct sColMap)*nCol; + pFKey->zTo = z; + memcpy(z, pTo->z, pTo->n); + z[pTo->n] = 0; + z += pTo->n+1; + pFKey->pNextTo = 0; + pFKey->nCol = nCol; + if( pFromCol==0 ){ + pFKey->aCol[0].iFrom = p->nCol-1; + }else{ + for(i=0; i<nCol; i++){ + int j; + for(j=0; j<p->nCol; j++){ + if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ + pFKey->aCol[i].iFrom = j; + break; + } + } + if( j>=p->nCol ){ + sqlite3ErrorMsg(pParse, + "unknown column \"%s\" in foreign key definition", + pFromCol->a[i].zName); + goto fk_end; + } + } + } + if( pToCol ){ + for(i=0; i<nCol; i++){ + int n = strlen(pToCol->a[i].zName); + pFKey->aCol[i].zCol = z; + memcpy(z, pToCol->a[i].zName, n); + z[n] = 0; + z += n+1; + } + } + pFKey->isDeferred = 0; + pFKey->deleteConf = flags & 0xff; + pFKey->updateConf = (flags >> 8 ) & 0xff; + pFKey->insertConf = (flags >> 16 ) & 0xff; + + /* Link the foreign key to the table as the last step. + */ + p->pFKey = pFKey; + pFKey = 0; + +fk_end: + sqliteFree(pFKey); + sqlite3ExprListDelete(pFromCol); + sqlite3ExprListDelete(pToCol); +} + +/* +** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED +** clause is seen as part of a foreign key definition. The isDeferred +** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. +** The behavior of the most recently created foreign key is adjusted +** accordingly. +*/ +void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ + Table *pTab; + FKey *pFKey; + if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; + pFKey->isDeferred = isDeferred; +} + +/* +** Create a new index for an SQL table. pIndex is the name of the index +** and pTable is the name of the table that is to be indexed. Both will +** be NULL for a primary key or an index that is created to satisfy a +** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable +** as the table to be indexed. pParse->pNewTable is a table that is +** currently being constructed by a CREATE TABLE statement. +** +** pList is a list of columns to be indexed. pList will be NULL if this +** is a primary key or unique-constraint on the most recent column added +** to the table currently under construction. +*/ +void sqlite3CreateIndex( + Parse *pParse, /* All information about this parse */ + Token *pName1, /* First part of index name. May be NULL */ + Token *pName2, /* Second part of index name. May be NULL */ + SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ + ExprList *pList, /* A list of columns to be indexed */ + int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ + Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */ + Token *pEnd /* The ")" that closes the CREATE INDEX statement */ +){ + Table *pTab = 0; /* Table to be indexed */ + Index *pIndex = 0; /* The index to be created */ + char *zName = 0; + int i, j; + Token nullId; /* Fake token for an empty ID list */ + DbFixer sFix; /* For assigning database names to pTable */ + int isTemp; /* True for a temporary index */ + sqlite3 *db = pParse->db; + + int iDb; /* Index of the database that is being written */ + Token *pName = 0; /* Unqualified name of the index to create */ + + if( pParse->nErr || sqlite3_malloc_failed ) goto exit_create_index; + + /* + ** Find the table that is to be indexed. Return early if not found. + */ + if( pTblName!=0 ){ + + /* Use the two-part index name to determine the database + ** to search for the table. 'Fix' the table name to this db + ** before looking up the table. + */ + assert( pName1 && pName2 ); + iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); + if( iDb<0 ) goto exit_create_index; + + /* If the index name was unqualified, check if the the table + ** is a temp table. If so, set the database to 1. + */ + pTab = sqlite3SrcListLookup(pParse, pTblName); + if( pName2 && pName2->n==0 && pTab && pTab->iDb==1 ){ + iDb = 1; + } + + if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && + sqlite3FixSrcList(&sFix, pTblName) + ){ + goto exit_create_index; + } + pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName, + pTblName->a[0].zDatabase); + if( !pTab ) goto exit_create_index; + assert( iDb==pTab->iDb ); + }else{ + assert( pName==0 ); + pTab = pParse->pNewTable; + iDb = pTab->iDb; + } + + if( pTab==0 || pParse->nErr ) goto exit_create_index; + if( pTab->readOnly ){ + sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); + goto exit_create_index; + } + if( pTab->pSelect ){ + sqlite3ErrorMsg(pParse, "views may not be indexed"); + goto exit_create_index; + } + isTemp = pTab->iDb==1; + + /* + ** Find the name of the index. Make sure there is not already another + ** index or table with the same name. + ** + ** Exception: If we are reading the names of permanent indices from the + ** sqlite_master table (because some other process changed the schema) and + ** one of the index names collides with the name of a temporary table or + ** index, then we will continue to process this index. + ** + ** If pName==0 it means that we are + ** dealing with a primary key or UNIQUE constraint. We have to invent our + ** own name. + */ + if( pName ){ + zName = sqlite3NameFromToken(pName); + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; + if( zName==0 ) goto exit_create_index; + if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ + goto exit_create_index; + } + if( !db->init.busy ){ + Index *pISameName; /* Another index with the same name */ + Table *pTSameName; /* A table with same name as the index */ + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; + if( (pISameName = sqlite3FindIndex(db, zName, db->aDb[iDb].zName))!=0 ){ + sqlite3ErrorMsg(pParse, "index %s already exists", zName); + goto exit_create_index; + } + if( (pTSameName = sqlite3FindTable(db, zName, 0))!=0 ){ + sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); + goto exit_create_index; + } + } + }else if( pName==0 ){ + char zBuf[30]; + int n; + Index *pLoop; + for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} + sprintf(zBuf,"_%d",n); + zName = 0; + sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0); + if( zName==0 ) goto exit_create_index; + } + + /* Check for authorization to create an index. + */ +#ifndef SQLITE_OMIT_AUTHORIZATION + { + const char *zDb = db->aDb[pTab->iDb].zName; + if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ + goto exit_create_index; + } + i = SQLITE_CREATE_INDEX; + if( isTemp ) i = SQLITE_CREATE_TEMP_INDEX; + if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ + goto exit_create_index; + } + } +#endif + + /* If pList==0, it means this routine was called to make a primary + ** key out of the last column added to the table under construction. + ** So create a fake list to simulate this. + */ + if( pList==0 ){ + nullId.z = pTab->aCol[pTab->nCol-1].zName; + nullId.n = strlen(nullId.z); + pList = sqlite3ExprListAppend(0, 0, &nullId); + if( pList==0 ) goto exit_create_index; + } + + /* + ** Allocate the index structure. + */ + pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 + + (sizeof(int) + sizeof(CollSeq*))*pList->nExpr ); + if( pIndex==0 ) goto exit_create_index; + pIndex->aiColumn = (int*)&pIndex->keyInfo.aColl[pList->nExpr]; + pIndex->zName = (char*)&pIndex->aiColumn[pList->nExpr]; + strcpy(pIndex->zName, zName); + pIndex->pTable = pTab; + pIndex->nColumn = pList->nExpr; + pIndex->onError = onError; + pIndex->autoIndex = pName==0; + pIndex->iDb = iDb; + + /* Scan the names of the columns of the table to be indexed and + ** load the column indices into the Index structure. Report an error + ** if any column is not found. + */ + for(i=0; i<pList->nExpr; i++){ + for(j=0; j<pTab->nCol; j++){ + if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break; + } + if( j>=pTab->nCol ){ + sqlite3ErrorMsg(pParse, "table %s has no column named %s", + pTab->zName, pList->a[i].zName); + goto exit_create_index; + } + pIndex->aiColumn[i] = j; + if( pList->a[i].pExpr ){ + assert( pList->a[i].pExpr->pColl ); + pIndex->keyInfo.aColl[i] = pList->a[i].pExpr->pColl; + }else{ + pIndex->keyInfo.aColl[i] = pTab->aCol[j].pColl; + } + assert( pIndex->keyInfo.aColl[i] ); + if( !db->init.busy && + sqlite3CheckCollSeq(pParse, pIndex->keyInfo.aColl[i]) + ){ + goto exit_create_index; + } + } + pIndex->keyInfo.nField = pList->nExpr; + + if( pTab==pParse->pNewTable ){ + /* This routine has been called to create an automatic index as a + ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or + ** a PRIMARY KEY or UNIQUE clause following the column definitions. + ** i.e. one of: + ** + ** CREATE TABLE t(x PRIMARY KEY, y); + ** CREATE TABLE t(x, y, UNIQUE(x, y)); + ** + ** Either way, check to see if the table already has such an index. If + ** so, don't bother creating this one. This only applies to + ** automatically created indices. Users can do as they wish with + ** explicit indices. + */ + Index *pIdx; + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + int k; + assert( pIdx->onError!=OE_None ); + assert( pIdx->autoIndex ); + assert( pIndex->onError!=OE_None ); + + if( pIdx->nColumn!=pIndex->nColumn ) continue; + for(k=0; k<pIdx->nColumn; k++){ + if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; + if( pIdx->keyInfo.aColl[k]!=pIndex->keyInfo.aColl[k] ) break; + } + if( k==pIdx->nColumn ){ + if( pIdx->onError!=pIndex->onError ){ + /* This constraint creates the same index as a previous + ** constraint specified somewhere in the CREATE TABLE statement. + ** However the ON CONFLICT clauses are different. If both this + ** constraint and the previous equivalent constraint have explicit + ** ON CONFLICT clauses this is an error. Otherwise, use the + ** explicitly specified behaviour for the index. + */ + if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ + sqlite3ErrorMsg(pParse, + "conflicting ON CONFLICT clauses specified", 0); + } + if( pIdx->onError==OE_Default ){ + pIdx->onError = pIndex->onError; + } + } + goto exit_create_index; + } + } + } + + /* Link the new Index structure to its table and to the other + ** in-memory database structures. + */ + if( db->init.busy ){ + Index *p; + p = sqlite3HashInsert(&db->aDb[pIndex->iDb].idxHash, + pIndex->zName, strlen(pIndex->zName)+1, pIndex); + if( p ){ + assert( p==pIndex ); /* Malloc must have failed */ + goto exit_create_index; + } + db->flags |= SQLITE_InternChanges; + if( pTblName!=0 ){ + pIndex->tnum = db->init.newTnum; + } + } + + /* If the db->init.busy is 0 then create the index on disk. This + ** involves writing the index into the master table and filling in the + ** index with the current table contents. + ** + ** The db->init.busy is 0 when the user first enters a CREATE INDEX + ** command. db->init.busy is 1 when a database is opened and + ** CREATE INDEX statements are read out of the master table. In + ** the latter case the index already exists on disk, which is why + ** we don't want to recreate it. + ** + ** If pTblName==0 it means this index is generated as a primary key + ** or UNIQUE constraint of a CREATE TABLE statement. Since the table + ** has just been created, it contains no data and the index initialization + ** step can be skipped. + */ + else if( db->init.busy==0 ){ + int n; + Vdbe *v; + int lbl1, lbl2; + + v = sqlite3GetVdbe(pParse); + if( v==0 ) goto exit_create_index; + if( pTblName!=0 ){ + sqlite3BeginWriteOperation(pParse, 0, iDb); + sqlite3OpenMasterTable(v, iDb); + } + sqlite3VdbeAddOp(v, OP_NewRecno, 0, 0); + sqlite3VdbeOp3(v, OP_String8, 0, 0, "index", P3_STATIC); + sqlite3VdbeOp3(v, OP_String8, 0, 0, pIndex->zName, 0); + sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0); + sqlite3VdbeAddOp(v, OP_CreateIndex, iDb, 0); + if( pTblName ){ + sqlite3VdbeAddOp(v, OP_Dup, 0, 0); + sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); + sqlite3VdbeOp3(v, OP_OpenWrite, 1, 0, + (char*)&pIndex->keyInfo, P3_KEYINFO); + } + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + if( pStart && pEnd ){ + if( onError==OE_None ){ + sqlite3VdbeChangeP3(v, -1, "CREATE INDEX ", P3_STATIC); + }else{ + sqlite3VdbeChangeP3(v, -1, "CREATE UNIQUE INDEX ", P3_STATIC); + } + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + n = Addr(pEnd->z) - Addr(pName->z) + 1; + sqlite3VdbeChangeP3(v, -1, pName->z, n); + sqlite3VdbeAddOp(v, OP_Concat, 0, 0); + } + sqlite3VdbeOp3(v, OP_MakeRecord, 5, 0, "tttit", P3_STATIC); + sqlite3VdbeAddOp(v, OP_PutIntKey, 0, 0); + if( pTblName ){ + sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0); + sqlite3VdbeAddOp(v, OP_OpenRead, 2, pTab->tnum); + /* VdbeComment((v, "%s", pTab->zName)); */ + sqlite3VdbeAddOp(v, OP_SetNumColumns, 2, pTab->nCol); + lbl2 = sqlite3VdbeMakeLabel(v); + sqlite3VdbeAddOp(v, OP_Rewind, 2, lbl2); + lbl1 = sqlite3VdbeCurrentAddr(v); + sqlite3GenerateIndexKey(v, pIndex, 2); + sqlite3VdbeOp3(v, OP_IdxPut, 1, pIndex->onError!=OE_None, + "indexed columns are not unique", P3_STATIC); + sqlite3VdbeAddOp(v, OP_Next, 2, lbl1); + sqlite3VdbeResolveLabel(v, lbl2); + sqlite3VdbeAddOp(v, OP_Close, 2, 0); + sqlite3VdbeAddOp(v, OP_Close, 1, 0); + sqlite3ChangeCookie(db, v, iDb); + sqlite3VdbeAddOp(v, OP_Close, 0, 0); + sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, + sqlite3MPrintf("name='%q'", pIndex->zName), P3_DYNAMIC); + } + } + + /* When adding an index to the list of indices for a table, make + ** sure all indices labeled OE_Replace come after all those labeled + ** OE_Ignore. This is necessary for the correct operation of UPDATE + ** and INSERT. + */ + if( db->init.busy || pTblName==0 ){ + if( onError!=OE_Replace || pTab->pIndex==0 + || pTab->pIndex->onError==OE_Replace){ + pIndex->pNext = pTab->pIndex; + pTab->pIndex = pIndex; + }else{ + Index *pOther = pTab->pIndex; + while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ + pOther = pOther->pNext; + } + pIndex->pNext = pOther->pNext; + pOther->pNext = pIndex; + } + pIndex = 0; + } + + /* Clean up before exiting */ +exit_create_index: + if( pIndex ){ + freeIndex(pIndex); + } + sqlite3ExprListDelete(pList); + sqlite3SrcListDelete(pTblName); + sqliteFree(zName); + return; +} + +/* +** This routine will drop an existing named index. This routine +** implements the DROP INDEX statement. +*/ +void sqlite3DropIndex(Parse *pParse, SrcList *pName){ + Index *pIndex; + Vdbe *v; + sqlite3 *db = pParse->db; + + if( pParse->nErr || sqlite3_malloc_failed ) return; + assert( pName->nSrc==1 ); + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) return; + pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); + if( pIndex==0 ){ + sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); + pParse->checkSchema = 1; + goto exit_drop_index; + } + if( pIndex->autoIndex ){ + sqlite3ErrorMsg(pParse, "index associated with UNIQUE " + "or PRIMARY KEY constraint cannot be dropped", 0); + goto exit_drop_index; + } +#ifndef SQLITE_OMIT_AUTHORIZATION + { + int code = SQLITE_DROP_INDEX; + Table *pTab = pIndex->pTable; + const char *zDb = db->aDb[pIndex->iDb].zName; + const char *zTab = SCHEMA_TABLE(pIndex->iDb); + if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ + goto exit_drop_index; + } + if( pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX; + if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ + goto exit_drop_index; + } + } +#endif + + /* Generate code to remove the index and from the master table */ + v = sqlite3GetVdbe(pParse); + if( v ){ + static const VdbeOpList dropIndex[] = { + { OP_Rewind, 0, ADDR(9), 0}, + { OP_String8, 0, 0, 0}, /* 1 */ + { OP_MemStore, 1, 1, 0}, + { OP_MemLoad, 1, 0, 0}, /* 3 */ + { OP_Column, 0, 1, 0}, + { OP_Eq, 0, ADDR(8), 0}, + { OP_Next, 0, ADDR(3), 0}, + { OP_Goto, 0, ADDR(9), 0}, + { OP_Delete, 0, 0, 0}, /* 8 */ + }; + int base; + + sqlite3BeginWriteOperation(pParse, 0, pIndex->iDb); + sqlite3OpenMasterTable(v, pIndex->iDb); + base = sqlite3VdbeAddOpList(v, ArraySize(dropIndex), dropIndex); + sqlite3VdbeChangeP3(v, base+1, pIndex->zName, 0); + sqlite3ChangeCookie(db, v, pIndex->iDb); + sqlite3VdbeAddOp(v, OP_Close, 0, 0); + sqlite3VdbeAddOp(v, OP_Destroy, pIndex->tnum, pIndex->iDb); + sqlite3VdbeOp3(v, OP_DropIndex, pIndex->iDb, 0, pIndex->zName, 0); + } + +exit_drop_index: + sqlite3SrcListDelete(pName); +} + +/* +** Append a new element to the given IdList. Create a new IdList if +** need be. +** +** A new IdList is returned, or NULL if malloc() fails. +*/ +IdList *sqlite3IdListAppend(IdList *pList, Token *pToken){ + if( pList==0 ){ + pList = sqliteMalloc( sizeof(IdList) ); + if( pList==0 ) return 0; + pList->nAlloc = 0; + } + if( pList->nId>=pList->nAlloc ){ + struct IdList_item *a; + pList->nAlloc = pList->nAlloc*2 + 5; + a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]) ); + if( a==0 ){ + sqlite3IdListDelete(pList); + return 0; + } + pList->a = a; + } + memset(&pList->a[pList->nId], 0, sizeof(pList->a[0])); + pList->a[pList->nId].zName = sqlite3NameFromToken(pToken); + pList->nId++; + return pList; +} + +/* +** Append a new table name to the given SrcList. Create a new SrcList if +** need be. A new entry is created in the SrcList even if pToken is NULL. +** +** A new SrcList is returned, or NULL if malloc() fails. +** +** If pDatabase is not null, it means that the table has an optional +** database name prefix. Like this: "database.table". The pDatabase +** points to the table name and the pTable points to the database name. +** The SrcList.a[].zName field is filled with the table name which might +** come from pTable (if pDatabase is NULL) or from pDatabase. +** SrcList.a[].zDatabase is filled with the database name from pTable, +** or with NULL if no database is specified. +** +** In other words, if call like this: +** +** sqlite3SrcListAppend(A,B,0); +** +** Then B is a table name and the database name is unspecified. If called +** like this: +** +** sqlite3SrcListAppend(A,B,C); +** +** Then C is the table name and B is the database name. +*/ +SrcList *sqlite3SrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){ + struct SrcList_item *pItem; + if( pList==0 ){ + pList = sqliteMalloc( sizeof(SrcList) ); + if( pList==0 ) return 0; + pList->nAlloc = 1; + } + if( pList->nSrc>=pList->nAlloc ){ + SrcList *pNew; + pList->nAlloc *= 2; + pNew = sqliteRealloc(pList, + sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) ); + if( pNew==0 ){ + sqlite3SrcListDelete(pList); + return 0; + } + pList = pNew; + } + pItem = &pList->a[pList->nSrc]; + memset(pItem, 0, sizeof(pList->a[0])); + if( pDatabase && pDatabase->z==0 ){ + pDatabase = 0; + } + if( pDatabase && pTable ){ + Token *pTemp = pDatabase; + pDatabase = pTable; + pTable = pTemp; + } + pItem->zName = sqlite3NameFromToken(pTable); + pItem->zDatabase = sqlite3NameFromToken(pDatabase); + pItem->iCursor = -1; + pList->nSrc++; + return pList; +} + +/* +** Assign cursors to all tables in a SrcList +*/ +void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ + int i; + for(i=0; i<pList->nSrc; i++){ + if( pList->a[i].iCursor<0 ){ + pList->a[i].iCursor = pParse->nTab++; + } + } +} + +/* +** Add an alias to the last identifier on the given identifier list. +*/ +void sqlite3SrcListAddAlias(SrcList *pList, Token *pToken){ + if( pList && pList->nSrc>0 ){ + pList->a[pList->nSrc-1].zAlias = sqlite3NameFromToken(pToken); + } +} + +/* +** Delete an IdList. +*/ +void sqlite3IdListDelete(IdList *pList){ + int i; + if( pList==0 ) return; + for(i=0; i<pList->nId; i++){ + sqliteFree(pList->a[i].zName); + } + sqliteFree(pList->a); + sqliteFree(pList); +} + +/* +** Return the index in pList of the identifier named zId. Return -1 +** if not found. +*/ +int sqlite3IdListIndex(IdList *pList, const char *zName){ + int i; + if( pList==0 ) return -1; + for(i=0; i<pList->nId; i++){ + if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; + } + return -1; +} + +/* +** Delete an entire SrcList including all its substructure. +*/ +void sqlite3SrcListDelete(SrcList *pList){ + int i; + struct SrcList_item *pItem; + if( pList==0 ) return; + for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ + sqliteFree(pItem->zDatabase); + sqliteFree(pItem->zName); + sqliteFree(pItem->zAlias); + if( pItem->pTab && pItem->pTab->isTransient ){ + sqlite3DeleteTable(0, pItem->pTab); + } + sqlite3SelectDelete(pItem->pSelect); + sqlite3ExprDelete(pItem->pOn); + sqlite3IdListDelete(pItem->pUsing); + } + sqliteFree(pList); +} + +/* +** Begin a transaction +*/ +void sqlite3BeginTransaction(Parse *pParse, int type){ + sqlite3 *db; + Vdbe *v; + int i; + + if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; + if( pParse->nErr || sqlite3_malloc_failed ) return; + if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return; + + v = sqlite3GetVdbe(pParse); + if( !v ) return; + if( type!=TK_DEFERRED ){ + for(i=0; i<db->nDb; i++){ + sqlite3VdbeAddOp(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); + } + } + sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0); +} + +/* +** Commit a transaction +*/ +void sqlite3CommitTransaction(Parse *pParse){ + sqlite3 *db; + Vdbe *v; + + if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; + if( pParse->nErr || sqlite3_malloc_failed ) return; + if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return; + + v = sqlite3GetVdbe(pParse); + if( v ){ + sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0); + } +} + +/* +** Rollback a transaction +*/ +void sqlite3RollbackTransaction(Parse *pParse){ + sqlite3 *db; + Vdbe *v; + + if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; + if( pParse->nErr || sqlite3_malloc_failed ) return; + if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return; + + v = sqlite3GetVdbe(pParse); + if( v ){ + sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1); + } +} + +/* +** Make sure the TEMP database is open and available for use. Return +** the number of errors. Leave any error messages in the pParse structure. +*/ +static int sqlite3OpenTempDatabase(Parse *pParse){ + sqlite3 *db = pParse->db; + if( db->aDb[1].pBt==0 && !pParse->explain ){ + int rc = sqlite3BtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt); + if( rc!=SQLITE_OK ){ + sqlite3ErrorMsg(pParse, "unable to open a temporary database " + "file for storing temporary tables"); + pParse->rc = rc; + return 1; + } + if( db->flags & !db->autoCommit ){ + rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1); + if( rc!=SQLITE_OK ){ + sqlite3ErrorMsg(pParse, "unable to get a write lock on " + "the temporary database file"); + pParse->rc = rc; + return 1; + } + } + } + return 0; +} + +/* +** Generate VDBE code that will verify the schema cookie and start +** a read-transaction for all named database files. +** +** It is important that all schema cookies be verified and all +** read transactions be started before anything else happens in +** the VDBE program. But this routine can be called after much other +** code has been generated. So here is what we do: +** +** The first time this routine is called, we code an OP_Goto that +** will jump to a subroutine at the end of the program. Then we +** record every database that needs its schema verified in the +** pParse->cookieMask field. Later, after all other code has been +** generated, the subroutine that does the cookie verifications and +** starts the transactions will be coded and the OP_Goto P2 value +** will be made to point to that subroutine. The generation of the +** cookie verification subroutine code happens in sqlite3FinishCoding(). +** +** If iDb<0 then code the OP_Goto only - don't set flag to verify the +** schema on any databases. This can be used to position the OP_Goto +** early in the code, before we know if any database tables will be used. +*/ +void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ + sqlite3 *db; + Vdbe *v; + int mask; + + v = sqlite3GetVdbe(pParse); + if( v==0 ) return; /* This only happens if there was a prior error */ + db = pParse->db; + if( pParse->cookieGoto==0 ){ + pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0)+1; + } + if( iDb>=0 ){ + assert( iDb<db->nDb ); + assert( db->aDb[iDb].pBt!=0 || iDb==1 ); + assert( iDb<32 ); + mask = 1<<iDb; + if( (pParse->cookieMask & mask)==0 ){ + pParse->cookieMask |= mask; + pParse->cookieValue[iDb] = db->aDb[iDb].schema_cookie; + if( iDb==1 ){ + sqlite3OpenTempDatabase(pParse); + } + } + } +} + +/* +** Generate VDBE code that prepares for doing an operation that +** might change the database. +** +** This routine starts a new transaction if we are not already within +** a transaction. If we are already within a transaction, then a checkpoint +** is set if the setStatement parameter is true. A checkpoint should +** be set for operations that might fail (due to a constraint) part of +** the way through and which will need to undo some writes without having to +** rollback the whole transaction. For operations where all constraints +** can be checked before any changes are made to the database, it is never +** necessary to undo a write and the checkpoint should not be set. +** +** Only database iDb and the temp database are made writable by this call. +** If iDb==0, then the main and temp databases are made writable. If +** iDb==1 then only the temp database is made writable. If iDb>1 then the +** specified auxiliary database and the temp database are made writable. +*/ +void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ + Vdbe *v = sqlite3GetVdbe(pParse); + if( v==0 ) return; + sqlite3CodeVerifySchema(pParse, iDb); + pParse->writeMask |= 1<<iDb; + if( setStatement ){ + sqlite3VdbeAddOp(v, OP_Statement, iDb, 0); + } + if( iDb!=1 && pParse->db->aDb[1].pBt!=0 ){ + sqlite3BeginWriteOperation(pParse, setStatement, 1); + } +} + +/* +** Return the transient sqlite3_value object used for encoding conversions +** during SQL compilation. +*/ +sqlite3_value *sqlite3GetTransientValue(sqlite3 *db){ + if( !db->pValue ){ + db->pValue = sqlite3ValueNew(); + } + return db->pValue; +} diff --git a/kopete/plugins/statistics/sqlite/date.c b/kopete/plugins/statistics/sqlite/date.c new file mode 100644 index 00000000..634e81d5 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/date.c @@ -0,0 +1,893 @@ +/* +** 2003 October 31 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement date and time +** functions for SQLite. +** +** There is only one exported symbol in this file - the function +** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. +** All other code has file scope. +** +** $Id$ +** +** NOTES: +** +** SQLite processes all times and dates as Julian Day numbers. The +** dates and times are stored as the number of days since noon +** in Greenwich on November 24, 4714 B.C. according to the Gregorian +** calendar system. +** +** 1970-01-01 00:00:00 is JD 2440587.5 +** 2000-01-01 00:00:00 is JD 2451544.5 +** +** This implemention requires years to be expressed as a 4-digit number +** which means that only dates between 0000-01-01 and 9999-12-31 can +** be represented, even though julian day numbers allow a much wider +** range of dates. +** +** The Gregorian calendar system is used for all dates and times, +** even those that predate the Gregorian calendar. Historians usually +** use the Julian calendar for dates prior to 1582-10-15 and for some +** dates afterwards, depending on locale. Beware of this difference. +** +** The conversion algorithms are implemented based on descriptions +** in the following text: +** +** Jean Meeus +** Astronomical Algorithms, 2nd Edition, 1998 +** ISBM 0-943396-61-1 +** Willmann-Bell, Inc +** Richmond, Virginia (USA) +*/ +#include "sqliteInt.h" +#include "os.h" +#include <ctype.h> +#include <stdlib.h> +#include <assert.h> +#include <time.h> + +#ifndef SQLITE_OMIT_DATETIME_FUNCS + +/* +** A structure for holding a single date and time. +*/ +typedef struct DateTime DateTime; +struct DateTime { + double rJD; /* The julian day number */ + int Y, M, D; /* Year, month, and day */ + int h, m; /* Hour and minutes */ + int tz; /* Timezone offset in minutes */ + double s; /* Seconds */ + char validYMD; /* True if Y,M,D are valid */ + char validHMS; /* True if h,m,s are valid */ + char validJD; /* True if rJD is valid */ + char validTZ; /* True if tz is valid */ +}; + + +/* +** Convert zDate into one or more integers. Additional arguments +** come in groups of 5 as follows: +** +** N number of digits in the integer +** min minimum allowed value of the integer +** max maximum allowed value of the integer +** nextC first character after the integer +** pVal where to write the integers value. +** +** Conversions continue until one with nextC==0 is encountered. +** The function returns the number of successful conversions. +*/ +static int getDigits(const char *zDate, ...){ + va_list ap; + int val; + int N; + int min; + int max; + int nextC; + int *pVal; + int cnt = 0; + va_start(ap, zDate); + do{ + N = va_arg(ap, int); + min = va_arg(ap, int); + max = va_arg(ap, int); + nextC = va_arg(ap, int); + pVal = va_arg(ap, int*); + val = 0; + while( N-- ){ + if( !isdigit(*(u8*)zDate) ){ + return cnt; + } + val = val*10 + *zDate - '0'; + zDate++; + } + if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){ + return cnt; + } + *pVal = val; + zDate++; + cnt++; + }while( nextC ); + return cnt; +} + +/* +** Read text from z[] and convert into a floating point number. Return +** the number of digits converted. +*/ +static int getValue(const char *z, double *pR){ + const char *zEnd; + *pR = sqlite3AtoF(z, &zEnd); + return zEnd - z; +} + +/* +** Parse a timezone extension on the end of a date-time. +** The extension is of the form: +** +** (+/-)HH:MM +** +** If the parse is successful, write the number of minutes +** of change in *pnMin and return 0. If a parser error occurs, +** return 0. +** +** A missing specifier is not considered an error. +*/ +static int parseTimezone(const char *zDate, DateTime *p){ + int sgn = 0; + int nHr, nMn; + while( isspace(*(u8*)zDate) ){ zDate++; } + p->tz = 0; + if( *zDate=='-' ){ + sgn = -1; + }else if( *zDate=='+' ){ + sgn = +1; + }else{ + return *zDate!=0; + } + zDate++; + if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){ + return 1; + } + zDate += 5; + p->tz = sgn*(nMn + nHr*60); + while( isspace(*(u8*)zDate) ){ zDate++; } + return *zDate!=0; +} + +/* +** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. +** The HH, MM, and SS must each be exactly 2 digits. The +** fractional seconds FFFF can be one or more digits. +** +** Return 1 if there is a parsing error and 0 on success. +*/ +static int parseHhMmSs(const char *zDate, DateTime *p){ + int h, m, s; + double ms = 0.0; + if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){ + return 1; + } + zDate += 5; + if( *zDate==':' ){ + zDate++; + if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){ + return 1; + } + zDate += 2; + if( *zDate=='.' && isdigit((u8)zDate[1]) ){ + double rScale = 1.0; + zDate++; + while( isdigit(*(u8*)zDate) ){ + ms = ms*10.0 + *zDate - '0'; + rScale *= 10.0; + zDate++; + } + ms /= rScale; + } + }else{ + s = 0; + } + p->validJD = 0; + p->validHMS = 1; + p->h = h; + p->m = m; + p->s = s + ms; + if( parseTimezone(zDate, p) ) return 1; + p->validTZ = p->tz!=0; + return 0; +} + +/* +** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume +** that the YYYY-MM-DD is according to the Gregorian calendar. +** +** Reference: Meeus page 61 +*/ +static void computeJD(DateTime *p){ + int Y, M, D, A, B, X1, X2; + + if( p->validJD ) return; + if( p->validYMD ){ + Y = p->Y; + M = p->M; + D = p->D; + }else{ + Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ + M = 1; + D = 1; + } + if( M<=2 ){ + Y--; + M += 12; + } + A = Y/100; + B = 2 - A + (A/4); + X1 = 365.25*(Y+4716); + X2 = 30.6001*(M+1); + p->rJD = X1 + X2 + D + B - 1524.5; + p->validJD = 1; + p->validYMD = 0; + if( p->validHMS ){ + p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0; + if( p->validTZ ){ + p->rJD += p->tz*60/86400.0; + p->validHMS = 0; + p->validTZ = 0; + } + } +} + +/* +** Parse dates of the form +** +** YYYY-MM-DD HH:MM:SS.FFF +** YYYY-MM-DD HH:MM:SS +** YYYY-MM-DD HH:MM +** YYYY-MM-DD +** +** Write the result into the DateTime structure and return 0 +** on success and 1 if the input string is not a well-formed +** date. +*/ +static int parseYyyyMmDd(const char *zDate, DateTime *p){ + int Y, M, D, neg; + + if( zDate[0]=='-' ){ + zDate++; + neg = 1; + }else{ + neg = 0; + } + if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){ + return 1; + } + zDate += 10; + while( isspace(*(u8*)zDate) ){ zDate++; } + if( parseHhMmSs(zDate, p)==0 ){ + /* We got the time */ + }else if( *zDate==0 ){ + p->validHMS = 0; + }else{ + return 1; + } + p->validJD = 0; + p->validYMD = 1; + p->Y = neg ? -Y : Y; + p->M = M; + p->D = D; + if( p->validTZ ){ + computeJD(p); + } + return 0; +} + +/* +** Attempt to parse the given string into a Julian Day Number. Return +** the number of errors. +** +** The following are acceptable forms for the input string: +** +** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM +** DDDD.DD +** now +** +** In the first form, the +/-HH:MM is always optional. The fractional +** seconds extension (the ".FFF") is optional. The seconds portion +** (":SS.FFF") is option. The year and date can be omitted as long +** as there is a time string. The time string can be omitted as long +** as there is a year and date. +*/ +static int parseDateOrTime(const char *zDate, DateTime *p){ + memset(p, 0, sizeof(*p)); + if( parseYyyyMmDd(zDate,p)==0 ){ + return 0; + }else if( parseHhMmSs(zDate, p)==0 ){ + return 0; + }else if( sqlite3StrICmp(zDate,"now")==0){ + double r; + if( sqlite3OsCurrentTime(&r)==0 ){ + p->rJD = r; + p->validJD = 1; + return 0; + } + return 1; + }else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){ + p->rJD = sqlite3AtoF(zDate, 0); + p->validJD = 1; + return 0; + } + return 1; +} + +/* +** Compute the Year, Month, and Day from the julian day number. +*/ +static void computeYMD(DateTime *p){ + int Z, A, B, C, D, E, X1; + if( p->validYMD ) return; + if( !p->validJD ){ + p->Y = 2000; + p->M = 1; + p->D = 1; + }else{ + Z = p->rJD + 0.5; + A = (Z - 1867216.25)/36524.25; + A = Z + 1 + A - (A/4); + B = A + 1524; + C = (B - 122.1)/365.25; + D = 365.25*C; + E = (B-D)/30.6001; + X1 = 30.6001*E; + p->D = B - D - X1; + p->M = E<14 ? E-1 : E-13; + p->Y = p->M>2 ? C - 4716 : C - 4715; + } + p->validYMD = 1; +} + +/* +** Compute the Hour, Minute, and Seconds from the julian day number. +*/ +static void computeHMS(DateTime *p){ + int Z, s; + if( p->validHMS ) return; + Z = p->rJD + 0.5; + s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5; + p->s = 0.001*s; + s = p->s; + p->s -= s; + p->h = s/3600; + s -= p->h*3600; + p->m = s/60; + p->s += s - p->m*60; + p->validHMS = 1; +} + +/* +** Compute both YMD and HMS +*/ +static void computeYMD_HMS(DateTime *p){ + computeYMD(p); + computeHMS(p); +} + +/* +** Clear the YMD and HMS and the TZ +*/ +static void clearYMD_HMS_TZ(DateTime *p){ + p->validYMD = 0; + p->validHMS = 0; + p->validTZ = 0; +} + +/* +** Compute the difference (in days) between localtime and UTC (a.k.a. GMT) +** for the time value p where p is in UTC. +*/ +static double localtimeOffset(DateTime *p){ + DateTime x, y; + time_t t; + struct tm *pTm; + x = *p; + computeYMD_HMS(&x); + if( x.Y<1971 || x.Y>=2038 ){ + x.Y = 2000; + x.M = 1; + x.D = 1; + x.h = 0; + x.m = 0; + x.s = 0.0; + } else { + int s = x.s + 0.5; + x.s = s; + } + x.tz = 0; + x.validJD = 0; + computeJD(&x); + t = (x.rJD-2440587.5)*86400.0 + 0.5; + sqlite3OsEnterMutex(); + pTm = localtime(&t); + y.Y = pTm->tm_year + 1900; + y.M = pTm->tm_mon + 1; + y.D = pTm->tm_mday; + y.h = pTm->tm_hour; + y.m = pTm->tm_min; + y.s = pTm->tm_sec; + sqlite3OsLeaveMutex(); + y.validYMD = 1; + y.validHMS = 1; + y.validJD = 0; + y.validTZ = 0; + computeJD(&y); + return y.rJD - x.rJD; +} + +/* +** Process a modifier to a date-time stamp. The modifiers are +** as follows: +** +** NNN days +** NNN hours +** NNN minutes +** NNN.NNNN seconds +** NNN months +** NNN years +** start of month +** start of year +** start of week +** start of day +** weekday N +** unixepoch +** localtime +** utc +** +** Return 0 on success and 1 if there is any kind of error. +*/ +static int parseModifier(const char *zMod, DateTime *p){ + int rc = 1; + int n; + double r; + char *z, zBuf[30]; + z = zBuf; + for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){ + z[n] = tolower(zMod[n]); + } + z[n] = 0; + switch( z[0] ){ + case 'l': { + /* localtime + ** + ** Assuming the current time value is UTC (a.k.a. GMT), shift it to + ** show local time. + */ + if( strcmp(z, "localtime")==0 ){ + computeJD(p); + p->rJD += localtimeOffset(p); + clearYMD_HMS_TZ(p); + rc = 0; + } + break; + } + case 'u': { + /* + ** unixepoch + ** + ** Treat the current value of p->rJD as the number of + ** seconds since 1970. Convert to a real julian day number. + */ + if( strcmp(z, "unixepoch")==0 && p->validJD ){ + p->rJD = p->rJD/86400.0 + 2440587.5; + clearYMD_HMS_TZ(p); + rc = 0; + }else if( strcmp(z, "utc")==0 ){ + double c1; + computeJD(p); + c1 = localtimeOffset(p); + p->rJD -= c1; + clearYMD_HMS_TZ(p); + p->rJD += c1 - localtimeOffset(p); + rc = 0; + } + break; + } + case 'w': { + /* + ** weekday N + ** + ** Move the date to the same time on the next occurrence of + ** weekday N where 0==Sunday, 1==Monday, and so forth. If the + ** date is already on the appropriate weekday, this is a no-op. + */ + if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0 + && (n=r)==r && n>=0 && r<7 ){ + int Z; + computeYMD_HMS(p); + p->validTZ = 0; + p->validJD = 0; + computeJD(p); + Z = p->rJD + 1.5; + Z %= 7; + if( Z>n ) Z -= 7; + p->rJD += n - Z; + clearYMD_HMS_TZ(p); + rc = 0; + } + break; + } + case 's': { + /* + ** start of TTTTT + ** + ** Move the date backwards to the beginning of the current day, + ** or month or year. + */ + if( strncmp(z, "start of ", 9)!=0 ) break; + z += 9; + computeYMD(p); + p->validHMS = 1; + p->h = p->m = 0; + p->s = 0.0; + p->validTZ = 0; + p->validJD = 0; + if( strcmp(z,"month")==0 ){ + p->D = 1; + rc = 0; + }else if( strcmp(z,"year")==0 ){ + computeYMD(p); + p->M = 1; + p->D = 1; + rc = 0; + }else if( strcmp(z,"day")==0 ){ + rc = 0; + } + break; + } + case '+': + case '-': + case '0': + case '1': + case '2': + case '3': + case '4': + case '5': + case '6': + case '7': + case '8': + case '9': { + n = getValue(z, &r); + if( n<=0 ) break; + if( z[n]==':' ){ + /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the + ** specified number of hours, minutes, seconds, and fractional seconds + ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be + ** omitted. + */ + const char *z2 = z; + DateTime tx; + int day; + if( !isdigit(*(u8*)z2) ) z2++; + memset(&tx, 0, sizeof(tx)); + if( parseHhMmSs(z2, &tx) ) break; + computeJD(&tx); + tx.rJD -= 0.5; + day = (int)tx.rJD; + tx.rJD -= day; + if( z[0]=='-' ) tx.rJD = -tx.rJD; + computeJD(p); + clearYMD_HMS_TZ(p); + p->rJD += tx.rJD; + rc = 0; + break; + } + z += n; + while( isspace(*(u8*)z) ) z++; + n = strlen(z); + if( n>10 || n<3 ) break; + if( z[n-1]=='s' ){ z[n-1] = 0; n--; } + computeJD(p); + rc = 0; + if( n==3 && strcmp(z,"day")==0 ){ + p->rJD += r; + }else if( n==4 && strcmp(z,"hour")==0 ){ + p->rJD += r/24.0; + }else if( n==6 && strcmp(z,"minute")==0 ){ + p->rJD += r/(24.0*60.0); + }else if( n==6 && strcmp(z,"second")==0 ){ + p->rJD += r/(24.0*60.0*60.0); + }else if( n==5 && strcmp(z,"month")==0 ){ + int x, y; + computeYMD_HMS(p); + p->M += r; + x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; + p->Y += x; + p->M -= x*12; + p->validJD = 0; + computeJD(p); + y = r; + if( y!=r ){ + p->rJD += (r - y)*30.0; + } + }else if( n==4 && strcmp(z,"year")==0 ){ + computeYMD_HMS(p); + p->Y += r; + p->validJD = 0; + computeJD(p); + }else{ + rc = 1; + } + clearYMD_HMS_TZ(p); + break; + } + default: { + break; + } + } + return rc; +} + +/* +** Process time function arguments. argv[0] is a date-time stamp. +** argv[1] and following are modifiers. Parse them all and write +** the resulting time into the DateTime structure p. Return 0 +** on success and 1 if there are any errors. +*/ +static int isDate(int argc, sqlite3_value **argv, DateTime *p){ + int i; + if( argc==0 ) return 1; + if( SQLITE_NULL==sqlite3_value_type(argv[0]) || + parseDateOrTime(sqlite3_value_text(argv[0]), p) ) return 1; + for(i=1; i<argc; i++){ + if( SQLITE_NULL==sqlite3_value_type(argv[i]) || + parseModifier(sqlite3_value_text(argv[i]), p) ) return 1; + } + return 0; +} + + +/* +** The following routines implement the various date and time functions +** of SQLite. +*/ + +/* +** julianday( TIMESTRING, MOD, MOD, ...) +** +** Return the julian day number of the date specified in the arguments +*/ +static void juliandayFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + DateTime x; + if( isDate(argc, argv, &x)==0 ){ + computeJD(&x); + sqlite3_result_double(context, x.rJD); + } +} + +/* +** datetime( TIMESTRING, MOD, MOD, ...) +** +** Return YYYY-MM-DD HH:MM:SS +*/ +static void datetimeFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + DateTime x; + if( isDate(argc, argv, &x)==0 ){ + char zBuf[100]; + computeYMD_HMS(&x); + sprintf(zBuf, "%04d-%02d-%02d %02d:%02d:%02d",x.Y, x.M, x.D, x.h, x.m, + (int)(x.s)); + sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); + } +} + +/* +** time( TIMESTRING, MOD, MOD, ...) +** +** Return HH:MM:SS +*/ +static void timeFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + DateTime x; + if( isDate(argc, argv, &x)==0 ){ + char zBuf[100]; + computeHMS(&x); + sprintf(zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); + sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); + } +} + +/* +** date( TIMESTRING, MOD, MOD, ...) +** +** Return YYYY-MM-DD +*/ +static void dateFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + DateTime x; + if( isDate(argc, argv, &x)==0 ){ + char zBuf[100]; + computeYMD(&x); + sprintf(zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); + sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); + } +} + +/* +** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) +** +** Return a string described by FORMAT. Conversions as follows: +** +** %d day of month +** %f ** fractional seconds SS.SSS +** %H hour 00-24 +** %j day of year 000-366 +** %J ** Julian day number +** %m month 01-12 +** %M minute 00-59 +** %s seconds since 1970-01-01 +** %S seconds 00-59 +** %w day of week 0-6 sunday==0 +** %W week of year 00-53 +** %Y year 0000-9999 +** %% % +*/ +static void strftimeFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + DateTime x; + int n, i, j; + char *z; + const char *zFmt = sqlite3_value_text(argv[0]); + char zBuf[100]; + if( zFmt==0 || isDate(argc-1, argv+1, &x) ) return; + for(i=0, n=1; zFmt[i]; i++, n++){ + if( zFmt[i]=='%' ){ + switch( zFmt[i+1] ){ + case 'd': + case 'H': + case 'm': + case 'M': + case 'S': + case 'W': + n++; + /* fall thru */ + case 'w': + case '%': + break; + case 'f': + n += 8; + break; + case 'j': + n += 3; + break; + case 'Y': + n += 8; + break; + case 's': + case 'J': + n += 50; + break; + default: + return; /* ERROR. return a NULL */ + } + i++; + } + } + if( n<sizeof(zBuf) ){ + z = zBuf; + }else{ + z = sqliteMalloc( n ); + if( z==0 ) return; + } + computeJD(&x); + computeYMD_HMS(&x); + for(i=j=0; zFmt[i]; i++){ + if( zFmt[i]!='%' ){ + z[j++] = zFmt[i]; + }else{ + i++; + switch( zFmt[i] ){ + case 'd': sprintf(&z[j],"%02d",x.D); j+=2; break; + case 'f': { + int s = x.s; + int ms = (x.s - s)*1000.0; + sprintf(&z[j],"%02d.%03d",s,ms); + j += strlen(&z[j]); + break; + } + case 'H': sprintf(&z[j],"%02d",x.h); j+=2; break; + case 'W': /* Fall thru */ + case 'j': { + int n; /* Number of days since 1st day of year */ + DateTime y = x; + y.validJD = 0; + y.M = 1; + y.D = 1; + computeJD(&y); + n = x.rJD - y.rJD; + if( zFmt[i]=='W' ){ + int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ + wd = ((int)(x.rJD+0.5)) % 7; + sprintf(&z[j],"%02d",(n+7-wd)/7); + j += 2; + }else{ + sprintf(&z[j],"%03d",n+1); + j += 3; + } + break; + } + case 'J': sprintf(&z[j],"%.16g",x.rJD); j+=strlen(&z[j]); break; + case 'm': sprintf(&z[j],"%02d",x.M); j+=2; break; + case 'M': sprintf(&z[j],"%02d",x.m); j+=2; break; + case 's': { + sprintf(&z[j],"%d",(int)((x.rJD-2440587.5)*86400.0 + 0.5)); + j += strlen(&z[j]); + break; + } + case 'S': sprintf(&z[j],"%02d",(int)(x.s+0.5)); j+=2; break; + case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break; + case 'Y': sprintf(&z[j],"%04d",x.Y); j+=strlen(&z[j]); break; + case '%': z[j++] = '%'; break; + } + } + } + z[j] = 0; + sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT); + if( z!=zBuf ){ + sqliteFree(z); + } +} + + +#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ + +/* +** This function registered all of the above C functions as SQL +** functions. This should be the only routine in this file with +** external linkage. +*/ +void sqlite3RegisterDateTimeFunctions(sqlite3 *db){ +#ifndef SQLITE_OMIT_DATETIME_FUNCS + static const struct { + char *zName; + int nArg; + void (*xFunc)(sqlite3_context*,int,sqlite3_value**); + } aFuncs[] = { + { "julianday", -1, juliandayFunc }, + { "date", -1, dateFunc }, + { "time", -1, timeFunc }, + { "datetime", -1, datetimeFunc }, + { "strftime", -1, strftimeFunc }, + }; + int i; + + for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){ + sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg, + SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0); + } +#endif +} diff --git a/kopete/plugins/statistics/sqlite/delete.c b/kopete/plugins/statistics/sqlite/delete.c new file mode 100644 index 00000000..866da61d --- /dev/null +++ b/kopete/plugins/statistics/sqlite/delete.c @@ -0,0 +1,419 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that are called by the parser +** to handle DELETE FROM statements. +** +** $Id$ +*/ +#include "sqliteInt.h" + +/* +** Look up every table that is named in pSrc. If any table is not found, +** add an error message to pParse->zErrMsg and return NULL. If all tables +** are found, return a pointer to the last table. +*/ +Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){ + Table *pTab = 0; + int i; + struct SrcList_item *pItem; + for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ + pTab = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase); + pItem->pTab = pTab; + } + return pTab; +} + +/* +** Check to make sure the given table is writable. If it is not +** writable, generate an error message and return 1. If it is +** writable return 0; +*/ +int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){ + if( pTab->readOnly ){ + sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName); + return 1; + } + if( !viewOk && pTab->pSelect ){ + sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName); + return 1; + } + return 0; +} + +/* +** Generate code that will open a table for reading. +*/ +void sqlite3OpenTableForReading( + Vdbe *v, /* Generate code into this VDBE */ + int iCur, /* The cursor number of the table */ + Table *pTab /* The table to be opened */ +){ + sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0); + sqlite3VdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum); + VdbeComment((v, "# %s", pTab->zName)); + sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, pTab->nCol); +} + + +/* +** Process a DELETE FROM statement. +*/ +void sqlite3DeleteFrom( + Parse *pParse, /* The parser context */ + SrcList *pTabList, /* The table from which we should delete things */ + Expr *pWhere /* The WHERE clause. May be null */ +){ + Vdbe *v; /* The virtual database engine */ + Table *pTab; /* The table from which records will be deleted */ + const char *zDb; /* Name of database holding pTab */ + int end, addr = 0; /* A couple addresses of generated code */ + int i; /* Loop counter */ + WhereInfo *pWInfo; /* Information about the WHERE clause */ + Index *pIdx; /* For looping over indices of the table */ + int iCur; /* VDBE Cursor number for pTab */ + sqlite3 *db; /* Main database structure */ + int isView; /* True if attempting to delete from a view */ + AuthContext sContext; /* Authorization context */ + + int row_triggers_exist = 0; /* True if any triggers exist */ + int before_triggers; /* True if there are BEFORE triggers */ + int after_triggers; /* True if there are AFTER triggers */ + int oldIdx = -1; /* Cursor for the OLD table of AFTER triggers */ + + sContext.pParse = 0; + if( pParse->nErr || sqlite3_malloc_failed ){ + pTabList = 0; + goto delete_from_cleanup; + } + db = pParse->db; + assert( pTabList->nSrc==1 ); + + /* Locate the table which we want to delete. This table has to be + ** put in an SrcList structure because some of the subroutines we + ** will be calling are designed to work with multiple tables and expect + ** an SrcList* parameter instead of just a Table* parameter. + */ + pTab = sqlite3SrcListLookup(pParse, pTabList); + if( pTab==0 ) goto delete_from_cleanup; + before_triggers = sqlite3TriggersExist(pParse, pTab->pTrigger, + TK_DELETE, TK_BEFORE, TK_ROW, 0); + after_triggers = sqlite3TriggersExist(pParse, pTab->pTrigger, + TK_DELETE, TK_AFTER, TK_ROW, 0); + row_triggers_exist = before_triggers || after_triggers; + isView = pTab->pSelect!=0; + if( sqlite3IsReadOnly(pParse, pTab, before_triggers) ){ + goto delete_from_cleanup; + } + assert( pTab->iDb<db->nDb ); + zDb = db->aDb[pTab->iDb].zName; + if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ + goto delete_from_cleanup; + } + + /* If pTab is really a view, make sure it has been initialized. + */ + if( isView && sqlite3ViewGetColumnNames(pParse, pTab) ){ + goto delete_from_cleanup; + } + + /* Allocate a cursor used to store the old.* data for a trigger. + */ + if( row_triggers_exist ){ + oldIdx = pParse->nTab++; + } + + /* Resolve the column names in all the expressions. + */ + assert( pTabList->nSrc==1 ); + iCur = pTabList->a[0].iCursor = pParse->nTab++; + if( sqlite3ExprResolveAndCheck(pParse, pTabList, 0, pWhere, 0, 0) ){ + goto delete_from_cleanup; + } + + /* Start the view context + */ + if( isView ){ + sqlite3AuthContextPush(pParse, &sContext, pTab->zName); + } + + /* Begin generating code. + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ){ + goto delete_from_cleanup; + } + sqlite3VdbeCountChanges(v); + sqlite3BeginWriteOperation(pParse, row_triggers_exist, pTab->iDb); + + /* If we are trying to delete from a view, construct that view into + ** a temporary table. + */ + if( isView ){ + Select *pView = sqlite3SelectDup(pTab->pSelect); + sqlite3Select(pParse, pView, SRT_TempTable, iCur, 0, 0, 0, 0); + sqlite3SelectDelete(pView); + } + + /* Initialize the counter of the number of rows deleted, if + ** we are counting rows. + */ + if( db->flags & SQLITE_CountRows ){ + sqlite3VdbeAddOp(v, OP_Integer, 0, 0); + } + + /* Special case: A DELETE without a WHERE clause deletes everything. + ** It is easier just to erase the whole table. Note, however, that + ** this means that the row change count will be incorrect. + */ + if( pWhere==0 && !row_triggers_exist ){ + if( db->flags & SQLITE_CountRows ){ + /* If counting rows deleted, just count the total number of + ** entries in the table. */ + int endOfLoop = sqlite3VdbeMakeLabel(v); + int addr; + if( !isView ){ + sqlite3OpenTableForReading(v, iCur, pTab); + } + sqlite3VdbeAddOp(v, OP_Rewind, iCur, sqlite3VdbeCurrentAddr(v)+2); + addr = sqlite3VdbeAddOp(v, OP_AddImm, 1, 0); + sqlite3VdbeAddOp(v, OP_Next, iCur, addr); + sqlite3VdbeResolveLabel(v, endOfLoop); + sqlite3VdbeAddOp(v, OP_Close, iCur, 0); + } + if( !isView ){ + sqlite3VdbeAddOp(v, OP_Clear, pTab->tnum, pTab->iDb); + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + sqlite3VdbeAddOp(v, OP_Clear, pIdx->tnum, pIdx->iDb); + } + } + } + + /* The usual case: There is a WHERE clause so we have to scan through + ** the table and pick which records to delete. + */ + else{ + /* Ensure all required collation sequences are available. */ + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + if( sqlite3CheckIndexCollSeq(pParse, pIdx) ){ + goto delete_from_cleanup; + } + } + + /* Begin the database scan + */ + pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 1, 0); + if( pWInfo==0 ) goto delete_from_cleanup; + + /* Remember the key of every item to be deleted. + */ + sqlite3VdbeAddOp(v, OP_ListWrite, 0, 0); + if( db->flags & SQLITE_CountRows ){ + sqlite3VdbeAddOp(v, OP_AddImm, 1, 0); + } + + /* End the database scan loop. + */ + sqlite3WhereEnd(pWInfo); + + /* Open the pseudo-table used to store OLD if there are triggers. + */ + if( row_triggers_exist ){ + sqlite3VdbeAddOp(v, OP_OpenPseudo, oldIdx, 0); + sqlite3VdbeAddOp(v, OP_SetNumColumns, oldIdx, pTab->nCol); + } + + /* Delete every item whose key was written to the list during the + ** database scan. We have to delete items after the scan is complete + ** because deleting an item can change the scan order. + */ + sqlite3VdbeAddOp(v, OP_ListRewind, 0, 0); + end = sqlite3VdbeMakeLabel(v); + + /* This is the beginning of the delete loop when there are + ** row triggers. + */ + if( row_triggers_exist ){ + addr = sqlite3VdbeAddOp(v, OP_ListRead, 0, end); + sqlite3VdbeAddOp(v, OP_Dup, 0, 0); + if( !isView ){ + sqlite3OpenTableForReading(v, iCur, pTab); + } + sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); + sqlite3VdbeAddOp(v, OP_Recno, iCur, 0); + sqlite3VdbeAddOp(v, OP_RowData, iCur, 0); + sqlite3VdbeAddOp(v, OP_PutIntKey, oldIdx, 0); + if( !isView ){ + sqlite3VdbeAddOp(v, OP_Close, iCur, 0); + } + + sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TK_BEFORE, pTab, -1, + oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default, + addr); + } + + if( !isView ){ + /* Open cursors for the table we are deleting from and all its + ** indices. If there are row triggers, this happens inside the + ** OP_ListRead loop because the cursor have to all be closed + ** before the trigger fires. If there are no row triggers, the + ** cursors are opened only once on the outside the loop. + */ + sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite); + + /* This is the beginning of the delete loop when there are no + ** row triggers */ + if( !row_triggers_exist ){ + addr = sqlite3VdbeAddOp(v, OP_ListRead, 0, end); + } + + /* Delete the row */ + sqlite3GenerateRowDelete(db, v, pTab, iCur, 1); + } + + /* If there are row triggers, close all cursors then invoke + ** the AFTER triggers + */ + if( row_triggers_exist ){ + if( !isView ){ + for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ + sqlite3VdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum); + } + sqlite3VdbeAddOp(v, OP_Close, iCur, 0); + } + sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TK_AFTER, pTab, -1, + oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default, + addr); + } + + /* End of the delete loop */ + sqlite3VdbeAddOp(v, OP_Goto, 0, addr); + sqlite3VdbeResolveLabel(v, end); + sqlite3VdbeAddOp(v, OP_ListReset, 0, 0); + + /* Close the cursors after the loop if there are no row triggers */ + if( !row_triggers_exist ){ + for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ + sqlite3VdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum); + } + sqlite3VdbeAddOp(v, OP_Close, iCur, 0); + } + } + + /* + ** Return the number of rows that were deleted. + */ + if( db->flags & SQLITE_CountRows ){ + sqlite3VdbeAddOp(v, OP_Callback, 1, 0); + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, "rows deleted", P3_STATIC); + } + +delete_from_cleanup: + sqlite3AuthContextPop(&sContext); + sqlite3SrcListDelete(pTabList); + sqlite3ExprDelete(pWhere); + return; +} + +/* +** This routine generates VDBE code that causes a single row of a +** single table to be deleted. +** +** The VDBE must be in a particular state when this routine is called. +** These are the requirements: +** +** 1. A read/write cursor pointing to pTab, the table containing the row +** to be deleted, must be opened as cursor number "base". +** +** 2. Read/write cursors for all indices of pTab must be open as +** cursor number base+i for the i-th index. +** +** 3. The record number of the row to be deleted must be on the top +** of the stack. +** +** This routine pops the top of the stack to remove the record number +** and then generates code to remove both the table record and all index +** entries that point to that record. +*/ +void sqlite3GenerateRowDelete( + sqlite3 *db, /* The database containing the index */ + Vdbe *v, /* Generate code into this VDBE */ + Table *pTab, /* Table containing the row to be deleted */ + int iCur, /* Cursor number for the table */ + int count /* Increment the row change counter */ +){ + int addr; + addr = sqlite3VdbeAddOp(v, OP_NotExists, iCur, 0); + sqlite3GenerateRowIndexDelete(db, v, pTab, iCur, 0); + sqlite3VdbeAddOp(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0)); + sqlite3VdbeChangeP2(v, addr, sqlite3VdbeCurrentAddr(v)); +} + +/* +** This routine generates VDBE code that causes the deletion of all +** index entries associated with a single row of a single table. +** +** The VDBE must be in a particular state when this routine is called. +** These are the requirements: +** +** 1. A read/write cursor pointing to pTab, the table containing the row +** to be deleted, must be opened as cursor number "iCur". +** +** 2. Read/write cursors for all indices of pTab must be open as +** cursor number iCur+i for the i-th index. +** +** 3. The "iCur" cursor must be pointing to the row that is to be +** deleted. +*/ +void sqlite3GenerateRowIndexDelete( + sqlite3 *db, /* The database containing the index */ + Vdbe *v, /* Generate code into this VDBE */ + Table *pTab, /* Table containing the row to be deleted */ + int iCur, /* Cursor number for the table */ + char *aIdxUsed /* Only delete if aIdxUsed!=0 && aIdxUsed[i]!=0 */ +){ + int i; + Index *pIdx; + + for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ + if( aIdxUsed!=0 && aIdxUsed[i-1]==0 ) continue; + sqlite3GenerateIndexKey(v, pIdx, iCur); + sqlite3VdbeAddOp(v, OP_IdxDelete, iCur+i, 0); + } +} + +/* +** Generate code that will assemble an index key and put it on the top +** of the tack. The key with be for index pIdx which is an index on pTab. +** iCur is the index of a cursor open on the pTab table and pointing to +** the entry that needs indexing. +*/ +void sqlite3GenerateIndexKey( + Vdbe *v, /* Generate code into this VDBE */ + Index *pIdx, /* The index for which to generate a key */ + int iCur /* Cursor number for the pIdx->pTable table */ +){ + int j; + Table *pTab = pIdx->pTable; + + sqlite3VdbeAddOp(v, OP_Recno, iCur, 0); + for(j=0; j<pIdx->nColumn; j++){ + int idx = pIdx->aiColumn[j]; + if( idx==pTab->iPKey ){ + sqlite3VdbeAddOp(v, OP_Dup, j, 0); + }else{ + sqlite3VdbeAddOp(v, OP_Column, iCur, idx); + } + } + sqlite3VdbeAddOp(v, OP_MakeRecord, pIdx->nColumn, (1<<24)); + sqlite3IndexAffinityStr(v, pIdx); +} diff --git a/kopete/plugins/statistics/sqlite/encode.c b/kopete/plugins/statistics/sqlite/encode.c new file mode 100644 index 00000000..b10c96b3 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/encode.c @@ -0,0 +1,257 @@ +/* +** 2002 April 25 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains helper routines used to translate binary data into +** a null-terminated string (suitable for use in SQLite) and back again. +** These are convenience routines for use by people who want to store binary +** data in an SQLite database. The code in this file is not used by any other +** part of the SQLite library. +** +** $Id$ +*/ +#include <string.h> +#include <assert.h> + +/* +** How This Encoder Works +** +** The output is allowed to contain any character except 0x27 (') and +** 0x00. This is accomplished by using an escape character to encode +** 0x27 and 0x00 as a two-byte sequence. The escape character is always +** 0x01. An 0x00 is encoded as the two byte sequence 0x01 0x01. The +** 0x27 character is encoded as the two byte sequence 0x01 0x28. Finally, +** the escape character itself is encoded as the two-character sequence +** 0x01 0x02. +** +** To summarize, the encoder works by using an escape sequences as follows: +** +** 0x00 -> 0x01 0x01 +** 0x01 -> 0x01 0x02 +** 0x27 -> 0x01 0x28 +** +** If that were all the encoder did, it would work, but in certain cases +** it could double the size of the encoded string. For example, to +** encode a string of 100 0x27 characters would require 100 instances of +** the 0x01 0x03 escape sequence resulting in a 200-character output. +** We would prefer to keep the size of the encoded string smaller than +** this. +** +** To minimize the encoding size, we first add a fixed offset value to each +** byte in the sequence. The addition is modulo 256. (That is to say, if +** the sum of the original character value and the offset exceeds 256, then +** the higher order bits are truncated.) The offset is chosen to minimize +** the number of characters in the string that need to be escaped. For +** example, in the case above where the string was composed of 100 0x27 +** characters, the offset might be 0x01. Each of the 0x27 characters would +** then be converted into an 0x28 character which would not need to be +** escaped at all and so the 100 character input string would be converted +** into just 100 characters of output. Actually 101 characters of output - +** we have to record the offset used as the first byte in the sequence so +** that the string can be decoded. Since the offset value is stored as +** part of the output string and the output string is not allowed to contain +** characters 0x00 or 0x27, the offset cannot be 0x00 or 0x27. +** +** Here, then, are the encoding steps: +** +** (1) Choose an offset value and make it the first character of +** output. +** +** (2) Copy each input character into the output buffer, one by +** one, adding the offset value as you copy. +** +** (3) If the value of an input character plus offset is 0x00, replace +** that one character by the two-character sequence 0x01 0x01. +** If the sum is 0x01, replace it with 0x01 0x02. If the sum +** is 0x27, replace it with 0x01 0x03. +** +** (4) Put a 0x00 terminator at the end of the output. +** +** Decoding is obvious: +** +** (5) Copy encoded characters except the first into the decode +** buffer. Set the first encoded character aside for use as +** the offset in step 7 below. +** +** (6) Convert each 0x01 0x01 sequence into a single character 0x00. +** Convert 0x01 0x02 into 0x01. Convert 0x01 0x28 into 0x27. +** +** (7) Subtract the offset value that was the first character of +** the encoded buffer from all characters in the output buffer. +** +** The only tricky part is step (1) - how to compute an offset value to +** minimize the size of the output buffer. This is accomplished by testing +** all offset values and picking the one that results in the fewest number +** of escapes. To do that, we first scan the entire input and count the +** number of occurances of each character value in the input. Suppose +** the number of 0x00 characters is N(0), the number of occurances of 0x01 +** is N(1), and so forth up to the number of occurances of 0xff is N(255). +** An offset of 0 is not allowed so we don't have to test it. The number +** of escapes required for an offset of 1 is N(1)+N(2)+N(40). The number +** of escapes required for an offset of 2 is N(2)+N(3)+N(41). And so forth. +** In this way we find the offset that gives the minimum number of escapes, +** and thus minimizes the length of the output string. +*/ + +/* +** Encode a binary buffer "in" of size n bytes so that it contains +** no instances of characters '\'' or '\000'. The output is +** null-terminated and can be used as a string value in an INSERT +** or UPDATE statement. Use sqlite_decode_binary() to convert the +** string back into its original binary. +** +** The result is written into a preallocated output buffer "out". +** "out" must be able to hold at least 2 +(257*n)/254 bytes. +** In other words, the output will be expanded by as much as 3 +** bytes for every 254 bytes of input plus 2 bytes of fixed overhead. +** (This is approximately 2 + 1.0118*n or about a 1.2% size increase.) +** +** The return value is the number of characters in the encoded +** string, excluding the "\000" terminator. +** +** If out==NULL then no output is generated but the routine still returns +** the number of characters that would have been generated if out had +** not been NULL. +*/ +int sqlite_encode_binary(const unsigned char *in, int n, unsigned char *out){ + int i, j, e, m; + unsigned char x; + int cnt[256]; + if( n<=0 ){ + if( out ){ + out[0] = 'x'; + out[1] = 0; + } + return 1; + } + memset(cnt, 0, sizeof(cnt)); + for(i=n-1; i>=0; i--){ cnt[in[i]]++; } + m = n; + for(i=1; i<256; i++){ + int sum; + if( i=='\'' ) continue; + sum = cnt[i] + cnt[(i+1)&0xff] + cnt[(i+'\'')&0xff]; + if( sum<m ){ + m = sum; + e = i; + if( m==0 ) break; + } + } + if( out==0 ){ + return n+m+1; + } + out[0] = e; + j = 1; + for(i=0; i<n; i++){ + x = in[i] - e; + if( x==0 || x==1 || x=='\''){ + out[j++] = 1; + x++; + } + out[j++] = x; + } + out[j] = 0; + assert( j==n+m+1 ); + return j; +} + +/* +** Decode the string "in" into binary data and write it into "out". +** This routine reverses the encoding created by sqlite_encode_binary(). +** The output will always be a few bytes less than the input. The number +** of bytes of output is returned. If the input is not a well-formed +** encoding, -1 is returned. +** +** The "in" and "out" parameters may point to the same buffer in order +** to decode a string in place. +*/ +int sqlite_decode_binary(const unsigned char *in, unsigned char *out){ + int i, e; + unsigned char c; + e = *(in++); + i = 0; + while( (c = *(in++))!=0 ){ + if( c==1 ){ + c = *(in++) - 1; + } + out[i++] = c + e; + } + return i; +} + +#ifdef ENCODER_TEST +#include <stdio.h> +/* +** The subroutines above are not tested by the usual test suite. To test +** these routines, compile just this one file with a -DENCODER_TEST=1 option +** and run the result. +*/ +int main(int argc, char **argv){ + int i, j, n, m, nOut, nByteIn, nByteOut; + unsigned char in[30000]; + unsigned char out[33000]; + + nByteIn = nByteOut = 0; + for(i=0; i<sizeof(in); i++){ + printf("Test %d: ", i+1); + n = rand() % (i+1); + if( i%100==0 ){ + int k; + for(j=k=0; j<n; j++){ + /* if( k==0 || k=='\'' ) k++; */ + in[j] = k; + k = (k+1)&0xff; + } + }else{ + for(j=0; j<n; j++) in[j] = rand() & 0xff; + } + nByteIn += n; + nOut = sqlite_encode_binary(in, n, out); + nByteOut += nOut; + if( nOut!=strlen(out) ){ + printf(" ERROR return value is %d instead of %d\n", nOut, strlen(out)); + exit(1); + } + if( nOut!=sqlite_encode_binary(in, n, 0) ){ + printf(" ERROR actual output size disagrees with predicted size\n"); + exit(1); + } + m = (256*n + 1262)/253; + printf("size %d->%d (max %d)", n, strlen(out)+1, m); + if( strlen(out)+1>m ){ + printf(" ERROR output too big\n"); + exit(1); + } + for(j=0; out[j]; j++){ + if( out[j]=='\'' ){ + printf(" ERROR contains (')\n"); + exit(1); + } + } + j = sqlite_decode_binary(out, out); + if( j!=n ){ + printf(" ERROR decode size %d\n", j); + exit(1); + } + if( memcmp(in, out, n)!=0 ){ + printf(" ERROR decode mismatch\n"); + exit(1); + } + printf(" OK\n"); + } + fprintf(stderr,"Finished. Total encoding: %d->%d bytes\n", + nByteIn, nByteOut); + fprintf(stderr,"Avg size increase: %.3f%%\n", + (nByteOut-nByteIn)*100.0/(double)nByteIn); +} +#endif /* ENCODER_TEST */ + + + diff --git a/kopete/plugins/statistics/sqlite/expr.c b/kopete/plugins/statistics/sqlite/expr.c new file mode 100644 index 00000000..2da3645b --- /dev/null +++ b/kopete/plugins/statistics/sqlite/expr.c @@ -0,0 +1,1927 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains routines used for analyzing expressions and +** for generating VDBE code that evaluates expressions in SQLite. +** +** $Id$ +*/ +#include "sqliteInt.h" +#include <ctype.h> + +/* +** Return the 'affinity' of the expression pExpr if any. +** +** If pExpr is a column, a reference to a column via an 'AS' alias, +** or a sub-select with a column as the return value, then the +** affinity of that column is returned. Otherwise, 0x00 is returned, +** indicating no affinity for the expression. +** +** i.e. the WHERE clause expresssions in the following statements all +** have an affinity: +** +** CREATE TABLE t1(a); +** SELECT * FROM t1 WHERE a; +** SELECT a AS b FROM t1 WHERE b; +** SELECT * FROM t1 WHERE (select a from t1); +*/ +char sqlite3ExprAffinity(Expr *pExpr){ + if( pExpr->op==TK_AS ){ + return sqlite3ExprAffinity(pExpr->pLeft); + } + if( pExpr->op==TK_SELECT ){ + return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); + } + return pExpr->affinity; +} + +/* +** Return the default collation sequence for the expression pExpr. If +** there is no default collation type, return 0. +*/ +CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ + CollSeq *pColl = 0; + if( pExpr ){ + pColl = pExpr->pColl; + if( pExpr->op==TK_AS && !pColl ){ + return sqlite3ExprCollSeq(pParse, pExpr->pLeft); + } + } + if( sqlite3CheckCollSeq(pParse, pColl) ){ + pColl = 0; + } + return pColl; +} + +/* +** pExpr is the left operand of a comparison operator. aff2 is the +** type affinity of the right operand. This routine returns the +** type affinity that should be used for the comparison operator. +*/ +char sqlite3CompareAffinity(Expr *pExpr, char aff2){ + char aff1 = sqlite3ExprAffinity(pExpr); + if( aff1 && aff2 ){ + /* Both sides of the comparison are columns. If one has numeric or + ** integer affinity, use that. Otherwise use no affinity. + */ + if( aff1==SQLITE_AFF_INTEGER || aff2==SQLITE_AFF_INTEGER ){ + return SQLITE_AFF_INTEGER; + }else if( aff1==SQLITE_AFF_NUMERIC || aff2==SQLITE_AFF_NUMERIC ){ + return SQLITE_AFF_NUMERIC; + }else{ + return SQLITE_AFF_NONE; + } + }else if( !aff1 && !aff2 ){ + /* Neither side of the comparison is a column. Compare the + ** results directly. + */ + /* return SQLITE_AFF_NUMERIC; // Ticket #805 */ + return SQLITE_AFF_NONE; + }else{ + /* One side is a column, the other is not. Use the columns affinity. */ + return (aff1 + aff2); + } +} + +/* +** pExpr is a comparison operator. Return the type affinity that should +** be applied to both operands prior to doing the comparison. +*/ +static char comparisonAffinity(Expr *pExpr){ + char aff; + assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || + pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || + pExpr->op==TK_NE ); + assert( pExpr->pLeft ); + aff = sqlite3ExprAffinity(pExpr->pLeft); + if( pExpr->pRight ){ + aff = sqlite3CompareAffinity(pExpr->pRight, aff); + } + else if( pExpr->pSelect ){ + aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); + } + else if( !aff ){ + aff = SQLITE_AFF_NUMERIC; + } + return aff; +} + +/* +** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. +** idx_affinity is the affinity of an indexed column. Return true +** if the index with affinity idx_affinity may be used to implement +** the comparison in pExpr. +*/ +int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ + char aff = comparisonAffinity(pExpr); + return + (aff==SQLITE_AFF_NONE) || + (aff==SQLITE_AFF_NUMERIC && idx_affinity==SQLITE_AFF_INTEGER) || + (aff==SQLITE_AFF_INTEGER && idx_affinity==SQLITE_AFF_NUMERIC) || + (aff==idx_affinity); +} + +/* +** Return the P1 value that should be used for a binary comparison +** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. +** If jumpIfNull is true, then set the low byte of the returned +** P1 value to tell the opcode to jump if either expression +** evaluates to NULL. +*/ +static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ + char aff = sqlite3ExprAffinity(pExpr2); + return (((int)sqlite3CompareAffinity(pExpr1, aff))<<8)+(jumpIfNull?1:0); +} + +/* +** Return a pointer to the collation sequence that should be used by +** a binary comparison operator comparing pLeft and pRight. +** +** If the left hand expression has a collating sequence type, then it is +** used. Otherwise the collation sequence for the right hand expression +** is used, or the default (BINARY) if neither expression has a collating +** type. +*/ +static CollSeq* binaryCompareCollSeq(Parse *pParse, Expr *pLeft, Expr *pRight){ + CollSeq *pColl = sqlite3ExprCollSeq(pParse, pLeft); + if( !pColl ){ + pColl = sqlite3ExprCollSeq(pParse, pRight); + } + return pColl; +} + +/* +** Generate code for a comparison operator. +*/ +static int codeCompare( + Parse *pParse, /* The parsing (and code generating) context */ + Expr *pLeft, /* The left operand */ + Expr *pRight, /* The right operand */ + int opcode, /* The comparison opcode */ + int dest, /* Jump here if true. */ + int jumpIfNull /* If true, jump if either operand is NULL */ +){ + int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); + CollSeq *p3 = binaryCompareCollSeq(pParse, pLeft, pRight); + return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ); +} + +/* +** Construct a new expression node and return a pointer to it. Memory +** for this node is obtained from sqliteMalloc(). The calling function +** is responsible for making sure the node eventually gets freed. +*/ +Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, Token *pToken){ + Expr *pNew; + pNew = sqliteMalloc( sizeof(Expr) ); + if( pNew==0 ){ + /* When malloc fails, we leak memory from pLeft and pRight */ + return 0; + } + pNew->op = op; + pNew->pLeft = pLeft; + pNew->pRight = pRight; + if( pToken ){ + assert( pToken->dyn==0 ); + pNew->span = pNew->token = *pToken; + }else if( pLeft && pRight ){ + sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); + } + return pNew; +} + +/* +** Join two expressions using an AND operator. If either expression is +** NULL, then just return the other expression. +*/ +Expr *sqlite3ExprAnd(Expr *pLeft, Expr *pRight){ + if( pLeft==0 ){ + return pRight; + }else if( pRight==0 ){ + return pLeft; + }else{ + return sqlite3Expr(TK_AND, pLeft, pRight, 0); + } +} + +/* +** Set the Expr.span field of the given expression to span all +** text between the two given tokens. +*/ +void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ + assert( pRight!=0 ); + assert( pLeft!=0 ); + if( !sqlite3_malloc_failed && pRight->z && pLeft->z ){ + assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); + if( pLeft->dyn==0 && pRight->dyn==0 ){ + pExpr->span.z = pLeft->z; + pExpr->span.n = pRight->n + Addr(pRight->z) - Addr(pLeft->z); + }else{ + pExpr->span.z = 0; + } + } +} + +/* +** Construct a new expression node for a function with multiple +** arguments. +*/ +Expr *sqlite3ExprFunction(ExprList *pList, Token *pToken){ + Expr *pNew; + pNew = sqliteMalloc( sizeof(Expr) ); + if( pNew==0 ){ + /* sqlite3ExprListDelete(pList); // Leak pList when malloc fails */ + return 0; + } + pNew->op = TK_FUNCTION; + pNew->pList = pList; + if( pToken ){ + assert( pToken->dyn==0 ); + pNew->token = *pToken; + }else{ + pNew->token.z = 0; + } + pNew->span = pNew->token; + return pNew; +} + +/* +** Assign a variable number to an expression that encodes a wildcard +** in the original SQL statement. +** +** Wildcards consisting of a single "?" are assigned the next sequential +** variable number. +** +** Wildcards of the form "?nnn" are assigned the number "nnn". We make +** sure "nnn" is not too be to avoid a denial of service attack when +** the SQL statement comes from an external source. +** +** Wildcards of the form ":aaa" or "$aaa" are assigned the same number +** as the previous instance of the same wildcard. Or if this is the first +** instance of the wildcard, the next sequenial variable number is +** assigned. +*/ +void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ + Token *pToken; + if( pExpr==0 ) return; + pToken = &pExpr->token; + assert( pToken->n>=1 ); + assert( pToken->z!=0 ); + assert( pToken->z[0]!=0 ); + if( pToken->n==1 ){ + /* Wildcard of the form "?". Assign the next variable number */ + pExpr->iTable = ++pParse->nVar; + }else if( pToken->z[0]=='?' ){ + /* Wildcard of the form "?nnn". Convert "nnn" to an integer and + ** use it as the variable number */ + int i; + pExpr->iTable = i = atoi(&pToken->z[1]); + if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ + sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", + SQLITE_MAX_VARIABLE_NUMBER); + } + if( i>pParse->nVar ){ + pParse->nVar = i; + } + }else{ + /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable + ** number as the prior appearance of the same name, or if the name + ** has never appeared before, reuse the same variable number + */ + int i, n; + n = pToken->n; + for(i=0; i<pParse->nVarExpr; i++){ + Expr *pE; + if( (pE = pParse->apVarExpr[i])!=0 + && pE->token.n==n + && memcmp(pE->token.z, pToken->z, n)==0 ){ + pExpr->iTable = pE->iTable; + break; + } + } + if( i>=pParse->nVarExpr ){ + pExpr->iTable = ++pParse->nVar; + if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ + pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; + pParse->apVarExpr = sqliteRealloc(pParse->apVarExpr, + pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) ); + } + if( !sqlite3_malloc_failed ){ + assert( pParse->apVarExpr!=0 ); + pParse->apVarExpr[pParse->nVarExpr++] = pExpr; + } + } + } +} + +/* +** Recursively delete an expression tree. +*/ +void sqlite3ExprDelete(Expr *p){ + if( p==0 ) return; + if( p->span.dyn ) sqliteFree((char*)p->span.z); + if( p->token.dyn ) sqliteFree((char*)p->token.z); + sqlite3ExprDelete(p->pLeft); + sqlite3ExprDelete(p->pRight); + sqlite3ExprListDelete(p->pList); + sqlite3SelectDelete(p->pSelect); + sqliteFree(p); +} + + +/* +** The following group of routines make deep copies of expressions, +** expression lists, ID lists, and select statements. The copies can +** be deleted (by being passed to their respective ...Delete() routines) +** without effecting the originals. +** +** The expression list, ID, and source lists return by sqlite3ExprListDup(), +** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded +** by subsequent calls to sqlite*ListAppend() routines. +** +** Any tables that the SrcList might point to are not duplicated. +*/ +Expr *sqlite3ExprDup(Expr *p){ + Expr *pNew; + if( p==0 ) return 0; + pNew = sqliteMallocRaw( sizeof(*p) ); + if( pNew==0 ) return 0; + memcpy(pNew, p, sizeof(*pNew)); + if( p->token.z!=0 ){ + pNew->token.z = sqliteStrDup(p->token.z); + pNew->token.dyn = 1; + }else{ + assert( pNew->token.z==0 ); + } + pNew->span.z = 0; + pNew->pLeft = sqlite3ExprDup(p->pLeft); + pNew->pRight = sqlite3ExprDup(p->pRight); + pNew->pList = sqlite3ExprListDup(p->pList); + pNew->pSelect = sqlite3SelectDup(p->pSelect); + return pNew; +} +void sqlite3TokenCopy(Token *pTo, Token *pFrom){ + if( pTo->dyn ) sqliteFree((char*)pTo->z); + if( pFrom->z ){ + pTo->n = pFrom->n; + pTo->z = sqliteStrNDup(pFrom->z, pFrom->n); + pTo->dyn = 1; + }else{ + pTo->z = 0; + } +} +ExprList *sqlite3ExprListDup(ExprList *p){ + ExprList *pNew; + struct ExprList_item *pItem, *pOldItem; + int i; + if( p==0 ) return 0; + pNew = sqliteMalloc( sizeof(*pNew) ); + if( pNew==0 ) return 0; + pNew->nExpr = pNew->nAlloc = p->nExpr; + pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) ); + if( pItem==0 ){ + sqliteFree(pNew); + return 0; + } + pOldItem = p->a; + for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ + Expr *pNewExpr, *pOldExpr; + pItem->pExpr = pNewExpr = sqlite3ExprDup(pOldExpr = pOldItem->pExpr); + if( pOldExpr->span.z!=0 && pNewExpr ){ + /* Always make a copy of the span for top-level expressions in the + ** expression list. The logic in SELECT processing that determines + ** the names of columns in the result set needs this information */ + sqlite3TokenCopy(&pNewExpr->span, &pOldExpr->span); + } + assert( pNewExpr==0 || pNewExpr->span.z!=0 + || pOldExpr->span.z==0 || sqlite3_malloc_failed ); + pItem->zName = sqliteStrDup(pOldItem->zName); + pItem->sortOrder = pOldItem->sortOrder; + pItem->isAgg = pOldItem->isAgg; + pItem->done = 0; + } + return pNew; +} +SrcList *sqlite3SrcListDup(SrcList *p){ + SrcList *pNew; + int i; + int nByte; + if( p==0 ) return 0; + nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); + pNew = sqliteMallocRaw( nByte ); + if( pNew==0 ) return 0; + pNew->nSrc = pNew->nAlloc = p->nSrc; + for(i=0; i<p->nSrc; i++){ + struct SrcList_item *pNewItem = &pNew->a[i]; + struct SrcList_item *pOldItem = &p->a[i]; + pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase); + pNewItem->zName = sqliteStrDup(pOldItem->zName); + pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias); + pNewItem->jointype = pOldItem->jointype; + pNewItem->iCursor = pOldItem->iCursor; + pNewItem->pTab = 0; + pNewItem->pSelect = sqlite3SelectDup(pOldItem->pSelect); + pNewItem->pOn = sqlite3ExprDup(pOldItem->pOn); + pNewItem->pUsing = sqlite3IdListDup(pOldItem->pUsing); + } + return pNew; +} +IdList *sqlite3IdListDup(IdList *p){ + IdList *pNew; + int i; + if( p==0 ) return 0; + pNew = sqliteMallocRaw( sizeof(*pNew) ); + if( pNew==0 ) return 0; + pNew->nId = pNew->nAlloc = p->nId; + pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) ); + if( pNew->a==0 ) return 0; + for(i=0; i<p->nId; i++){ + struct IdList_item *pNewItem = &pNew->a[i]; + struct IdList_item *pOldItem = &p->a[i]; + pNewItem->zName = sqliteStrDup(pOldItem->zName); + pNewItem->idx = pOldItem->idx; + } + return pNew; +} +Select *sqlite3SelectDup(Select *p){ + Select *pNew; + if( p==0 ) return 0; + pNew = sqliteMallocRaw( sizeof(*p) ); + if( pNew==0 ) return 0; + pNew->isDistinct = p->isDistinct; + pNew->pEList = sqlite3ExprListDup(p->pEList); + pNew->pSrc = sqlite3SrcListDup(p->pSrc); + pNew->pWhere = sqlite3ExprDup(p->pWhere); + pNew->pGroupBy = sqlite3ExprListDup(p->pGroupBy); + pNew->pHaving = sqlite3ExprDup(p->pHaving); + pNew->pOrderBy = sqlite3ExprListDup(p->pOrderBy); + pNew->op = p->op; + pNew->pPrior = sqlite3SelectDup(p->pPrior); + pNew->nLimit = p->nLimit; + pNew->nOffset = p->nOffset; + pNew->zSelect = 0; + pNew->iLimit = -1; + pNew->iOffset = -1; + pNew->ppOpenTemp = 0; + return pNew; +} + + +/* +** Add a new element to the end of an expression list. If pList is +** initially NULL, then create a new expression list. +*/ +ExprList *sqlite3ExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){ + if( pList==0 ){ + pList = sqliteMalloc( sizeof(ExprList) ); + if( pList==0 ){ + /* sqlite3ExprDelete(pExpr); // Leak memory if malloc fails */ + return 0; + } + assert( pList->nAlloc==0 ); + } + if( pList->nAlloc<=pList->nExpr ){ + pList->nAlloc = pList->nAlloc*2 + 4; + pList->a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0])); + if( pList->a==0 ){ + /* sqlite3ExprDelete(pExpr); // Leak memory if malloc fails */ + pList->nExpr = pList->nAlloc = 0; + return pList; + } + } + assert( pList->a!=0 ); + if( pExpr || pName ){ + struct ExprList_item *pItem = &pList->a[pList->nExpr++]; + memset(pItem, 0, sizeof(*pItem)); + pItem->pExpr = pExpr; + pItem->zName = sqlite3NameFromToken(pName); + } + return pList; +} + +/* +** Delete an entire expression list. +*/ +void sqlite3ExprListDelete(ExprList *pList){ + int i; + struct ExprList_item *pItem; + if( pList==0 ) return; + assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); + assert( pList->nExpr<=pList->nAlloc ); + for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ + sqlite3ExprDelete(pItem->pExpr); + sqliteFree(pItem->zName); + } + sqliteFree(pList->a); + sqliteFree(pList); +} + +/* +** Walk an expression tree. Return 1 if the expression is constant +** and 0 if it involves variables. +** +** For the purposes of this function, a double-quoted string (ex: "abc") +** is considered a variable but a single-quoted string (ex: 'abc') is +** a constant. +*/ +int sqlite3ExprIsConstant(Expr *p){ + switch( p->op ){ + case TK_ID: + case TK_COLUMN: + case TK_DOT: + case TK_FUNCTION: + return 0; + case TK_NULL: + case TK_STRING: + case TK_BLOB: + case TK_INTEGER: + case TK_FLOAT: + case TK_VARIABLE: + return 1; + default: { + if( p->pLeft && !sqlite3ExprIsConstant(p->pLeft) ) return 0; + if( p->pRight && !sqlite3ExprIsConstant(p->pRight) ) return 0; + if( p->pList ){ + int i; + for(i=0; i<p->pList->nExpr; i++){ + if( !sqlite3ExprIsConstant(p->pList->a[i].pExpr) ) return 0; + } + } + return p->pLeft!=0 || p->pRight!=0 || (p->pList && p->pList->nExpr>0); + } + } + return 0; +} + +/* +** If the given expression codes a constant integer that is small enough +** to fit in a 32-bit integer, return 1 and put the value of the integer +** in *pValue. If the expression is not an integer or if it is too big +** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. +*/ +int sqlite3ExprIsInteger(Expr *p, int *pValue){ + switch( p->op ){ + case TK_INTEGER: { + if( sqlite3GetInt32(p->token.z, pValue) ){ + return 1; + } + break; + } + case TK_STRING: { + const u8 *z = (u8*)p->token.z; + int n = p->token.n; + if( n>0 && z[0]=='-' ){ z++; n--; } + while( n>0 && *z && isdigit(*z) ){ z++; n--; } + if( n==0 && sqlite3GetInt32(p->token.z, pValue) ){ + return 1; + } + break; + } + case TK_UPLUS: { + return sqlite3ExprIsInteger(p->pLeft, pValue); + } + case TK_UMINUS: { + int v; + if( sqlite3ExprIsInteger(p->pLeft, &v) ){ + *pValue = -v; + return 1; + } + break; + } + default: break; + } + return 0; +} + +/* +** Return TRUE if the given string is a row-id column name. +*/ +int sqlite3IsRowid(const char *z){ + if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; + if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; + if( sqlite3StrICmp(z, "OID")==0 ) return 1; + return 0; +} + +/* +** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up +** that name in the set of source tables in pSrcList and make the pExpr +** expression node refer back to that source column. The following changes +** are made to pExpr: +** +** pExpr->iDb Set the index in db->aDb[] of the database holding +** the table. +** pExpr->iTable Set to the cursor number for the table obtained +** from pSrcList. +** pExpr->iColumn Set to the column number within the table. +** pExpr->op Set to TK_COLUMN. +** pExpr->pLeft Any expression this points to is deleted +** pExpr->pRight Any expression this points to is deleted. +** +** The pDbToken is the name of the database (the "X"). This value may be +** NULL meaning that name is of the form Y.Z or Z. Any available database +** can be used. The pTableToken is the name of the table (the "Y"). This +** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it +** means that the form of the name is Z and that columns from any table +** can be used. +** +** If the name cannot be resolved unambiguously, leave an error message +** in pParse and return non-zero. Return zero on success. +*/ +static int lookupName( + Parse *pParse, /* The parsing context */ + Token *pDbToken, /* Name of the database containing table, or NULL */ + Token *pTableToken, /* Name of table containing column, or NULL */ + Token *pColumnToken, /* Name of the column. */ + SrcList *pSrcList, /* List of tables used to resolve column names */ + ExprList *pEList, /* List of expressions used to resolve "AS" */ + Expr *pExpr /* Make this EXPR node point to the selected column */ +){ + char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ + char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ + char *zCol = 0; /* Name of the column. The "Z" */ + int i, j; /* Loop counters */ + int cnt = 0; /* Number of matching column names */ + int cntTab = 0; /* Number of matching table names */ + sqlite3 *db = pParse->db; /* The database */ + + assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ + zDb = sqlite3NameFromToken(pDbToken); + zTab = sqlite3NameFromToken(pTableToken); + zCol = sqlite3NameFromToken(pColumnToken); + if( sqlite3_malloc_failed ){ + return 1; /* Leak memory (zDb and zTab) if malloc fails */ + } + assert( zTab==0 || pEList==0 ); + + pExpr->iTable = -1; + for(i=0; i<pSrcList->nSrc; i++){ + struct SrcList_item *pItem = &pSrcList->a[i]; + Table *pTab = pItem->pTab; + Column *pCol; + + if( pTab==0 ) continue; + assert( pTab->nCol>0 ); + if( zTab ){ + if( pItem->zAlias ){ + char *zTabName = pItem->zAlias; + if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; + }else{ + char *zTabName = pTab->zName; + if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; + if( zDb!=0 && sqlite3StrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){ + continue; + } + } + } + if( 0==(cntTab++) ){ + pExpr->iTable = pItem->iCursor; + pExpr->iDb = pTab->iDb; + } + for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ + if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ + cnt++; + pExpr->iTable = pItem->iCursor; + pExpr->iDb = pTab->iDb; + /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ + pExpr->iColumn = j==pTab->iPKey ? -1 : j; + pExpr->affinity = pTab->aCol[j].affinity; + pExpr->pColl = pTab->aCol[j].pColl; + break; + } + } + } + + /* If we have not already resolved the name, then maybe + ** it is a new.* or old.* trigger argument reference + */ + if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ + TriggerStack *pTriggerStack = pParse->trigStack; + Table *pTab = 0; + if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ + pExpr->iTable = pTriggerStack->newIdx; + assert( pTriggerStack->pTab ); + pTab = pTriggerStack->pTab; + }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab) == 0 ){ + pExpr->iTable = pTriggerStack->oldIdx; + assert( pTriggerStack->pTab ); + pTab = pTriggerStack->pTab; + } + + if( pTab ){ + int j; + Column *pCol = pTab->aCol; + + pExpr->iDb = pTab->iDb; + cntTab++; + for(j=0; j < pTab->nCol; j++, pCol++) { + if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ + cnt++; + pExpr->iColumn = j==pTab->iPKey ? -1 : j; + pExpr->affinity = pTab->aCol[j].affinity; + pExpr->pColl = pTab->aCol[j].pColl; + break; + } + } + } + } + + /* + ** Perhaps the name is a reference to the ROWID + */ + if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ + cnt = 1; + pExpr->iColumn = -1; + pExpr->affinity = SQLITE_AFF_INTEGER; + } + + /* + ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z + ** might refer to an result-set alias. This happens, for example, when + ** we are resolving names in the WHERE clause of the following command: + ** + ** SELECT a+b AS x FROM table WHERE x<10; + ** + ** In cases like this, replace pExpr with a copy of the expression that + ** forms the result set entry ("a+b" in the example) and return immediately. + ** Note that the expression in the result set should have already been + ** resolved by the time the WHERE clause is resolved. + */ + if( cnt==0 && pEList!=0 ){ + for(j=0; j<pEList->nExpr; j++){ + char *zAs = pEList->a[j].zName; + if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ + assert( pExpr->pLeft==0 && pExpr->pRight==0 ); + pExpr->op = TK_AS; + pExpr->iColumn = j; + pExpr->pLeft = sqlite3ExprDup(pEList->a[j].pExpr); + sqliteFree(zCol); + assert( zTab==0 && zDb==0 ); + return 0; + } + } + } + + /* + ** If X and Y are NULL (in other words if only the column name Z is + ** supplied) and the value of Z is enclosed in double-quotes, then + ** Z is a string literal if it doesn't match any column names. In that + ** case, we need to return right away and not make any changes to + ** pExpr. + */ + if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ + sqliteFree(zCol); + return 0; + } + + /* + ** cnt==0 means there was not match. cnt>1 means there were two or + ** more matches. Either way, we have an error. + */ + if( cnt!=1 ){ + char *z = 0; + char *zErr; + zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s"; + if( zDb ){ + sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, 0); + }else if( zTab ){ + sqlite3SetString(&z, zTab, ".", zCol, 0); + }else{ + z = sqliteStrDup(zCol); + } + sqlite3ErrorMsg(pParse, zErr, z); + sqliteFree(z); + } + + /* Clean up and return + */ + sqliteFree(zDb); + sqliteFree(zTab); + sqliteFree(zCol); + sqlite3ExprDelete(pExpr->pLeft); + pExpr->pLeft = 0; + sqlite3ExprDelete(pExpr->pRight); + pExpr->pRight = 0; + pExpr->op = TK_COLUMN; + sqlite3AuthRead(pParse, pExpr, pSrcList); + return cnt!=1; +} + +/* +** This routine walks an expression tree and resolves references to +** table columns. Nodes of the form ID.ID or ID resolve into an +** index to the table in the table list and a column offset. The +** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable +** value is changed to the index of the referenced table in pTabList +** plus the "base" value. The base value will ultimately become the +** VDBE cursor number for a cursor that is pointing into the referenced +** table. The Expr.iColumn value is changed to the index of the column +** of the referenced table. The Expr.iColumn value for the special +** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an +** alias for ROWID. +** +** We also check for instances of the IN operator. IN comes in two +** forms: +** +** expr IN (exprlist) +** and +** expr IN (SELECT ...) +** +** The first form is handled by creating a set holding the list +** of allowed values. The second form causes the SELECT to generate +** a temporary table. +** +** This routine also looks for scalar SELECTs that are part of an expression. +** If it finds any, it generates code to write the value of that select +** into a memory cell. +** +** Unknown columns or tables provoke an error. The function returns +** the number of errors seen and leaves an error message on pParse->zErrMsg. +*/ +int sqlite3ExprResolveIds( + Parse *pParse, /* The parser context */ + SrcList *pSrcList, /* List of tables used to resolve column names */ + ExprList *pEList, /* List of expressions used to resolve "AS" */ + Expr *pExpr /* The expression to be analyzed. */ +){ + int i; + + if( pExpr==0 || pSrcList==0 ) return 0; + for(i=0; i<pSrcList->nSrc; i++){ + assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab ); + } + switch( pExpr->op ){ + /* Double-quoted strings (ex: "abc") are used as identifiers if + ** possible. Otherwise they remain as strings. Single-quoted + ** strings (ex: 'abc') are always string literals. + */ + case TK_STRING: { + if( pExpr->token.z[0]=='\'' ) break; + /* Fall thru into the TK_ID case if this is a double-quoted string */ + } + /* A lone identifier is the name of a columnd. + */ + case TK_ID: { + if( lookupName(pParse, 0, 0, &pExpr->token, pSrcList, pEList, pExpr) ){ + return 1; + } + break; + } + + /* A table name and column name: ID.ID + ** Or a database, table and column: ID.ID.ID + */ + case TK_DOT: { + Token *pColumn; + Token *pTable; + Token *pDb; + Expr *pRight; + + pRight = pExpr->pRight; + if( pRight->op==TK_ID ){ + pDb = 0; + pTable = &pExpr->pLeft->token; + pColumn = &pRight->token; + }else{ + assert( pRight->op==TK_DOT ); + pDb = &pExpr->pLeft->token; + pTable = &pRight->pLeft->token; + pColumn = &pRight->pRight->token; + } + if( lookupName(pParse, pDb, pTable, pColumn, pSrcList, 0, pExpr) ){ + return 1; + } + break; + } + + case TK_IN: { + char affinity; + Vdbe *v = sqlite3GetVdbe(pParse); + KeyInfo keyInfo; + int addr; /* Address of OP_OpenTemp instruction */ + + if( v==0 ) return 1; + if( sqlite3ExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){ + return 1; + } + affinity = sqlite3ExprAffinity(pExpr->pLeft); + + /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' + ** expression it is handled the same way. A temporary table is + ** filled with single-field index keys representing the results + ** from the SELECT or the <exprlist>. + ** + ** If the 'x' expression is a column value, or the SELECT... + ** statement returns a column value, then the affinity of that + ** column is used to build the index keys. If both 'x' and the + ** SELECT... statement are columns, then numeric affinity is used + ** if either column has NUMERIC or INTEGER affinity. If neither + ** 'x' nor the SELECT... statement are columns, then numeric affinity + ** is used. + */ + pExpr->iTable = pParse->nTab++; + addr = sqlite3VdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 0); + memset(&keyInfo, 0, sizeof(keyInfo)); + keyInfo.nField = 1; + sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); + + if( pExpr->pSelect ){ + /* Case 1: expr IN (SELECT ...) + ** + ** Generate code to write the results of the select into the temporary + ** table allocated and opened above. + */ + int iParm = pExpr->iTable + (((int)affinity)<<16); + ExprList *pEList; + assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); + sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0); + pEList = pExpr->pSelect->pEList; + if( pEList && pEList->nExpr>0 ){ + keyInfo.aColl[0] = binaryCompareCollSeq(pParse, pExpr->pLeft, + pEList->a[0].pExpr); + } + }else if( pExpr->pList ){ + /* Case 2: expr IN (exprlist) + ** + ** For each expression, build an index key from the evaluation and + ** store it in the temporary table. If <expr> is a column, then use + ** that columns affinity when building index keys. If <expr> is not + ** a column, use numeric affinity. + */ + int i; + if( !affinity ){ + affinity = SQLITE_AFF_NUMERIC; + } + keyInfo.aColl[0] = pExpr->pLeft->pColl; + + /* Loop through each expression in <exprlist>. */ + for(i=0; i<pExpr->pList->nExpr; i++){ + Expr *pE2 = pExpr->pList->a[i].pExpr; + + /* Check that the expression is constant and valid. */ + if( !sqlite3ExprIsConstant(pE2) ){ + sqlite3ErrorMsg(pParse, + "right-hand side of IN operator must be constant"); + return 1; + } + if( sqlite3ExprCheck(pParse, pE2, 0, 0) ){ + return 1; + } + + /* Evaluate the expression and insert it into the temp table */ + sqlite3ExprCode(pParse, pE2); + sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + sqlite3VdbeAddOp(v, OP_PutStrKey, pExpr->iTable, 0); + } + } + sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO); + + break; + } + + case TK_SELECT: { + /* This has to be a scalar SELECT. Generate code to put the + ** value of this select in a memory cell and record the number + ** of the memory cell in iColumn. + */ + pExpr->iColumn = pParse->nMem++; + if(sqlite3Select(pParse, pExpr->pSelect, SRT_Mem,pExpr->iColumn,0,0,0,0)){ + return 1; + } + break; + } + + /* For all else, just recursively walk the tree */ + default: { + if( pExpr->pLeft + && sqlite3ExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){ + return 1; + } + if( pExpr->pRight + && sqlite3ExprResolveIds(pParse, pSrcList, pEList, pExpr->pRight) ){ + return 1; + } + if( pExpr->pList ){ + int i; + ExprList *pList = pExpr->pList; + for(i=0; i<pList->nExpr; i++){ + Expr *pArg = pList->a[i].pExpr; + if( sqlite3ExprResolveIds(pParse, pSrcList, pEList, pArg) ){ + return 1; + } + } + } + } + } + return 0; +} + +/* +** pExpr is a node that defines a function of some kind. It might +** be a syntactic function like "count(x)" or it might be a function +** that implements an operator, like "a LIKE b". +** +** This routine makes *pzName point to the name of the function and +** *pnName hold the number of characters in the function name. +*/ +static void getFunctionName(Expr *pExpr, const char **pzName, int *pnName){ + switch( pExpr->op ){ + case TK_FUNCTION: { + *pzName = pExpr->token.z; + *pnName = pExpr->token.n; + break; + } + case TK_LIKE: { + *pzName = "like"; + *pnName = 4; + break; + } + case TK_GLOB: { + *pzName = "glob"; + *pnName = 4; + break; + } + default: { + *pzName = "can't happen"; + *pnName = 12; + break; + } + } +} + +/* +** Error check the functions in an expression. Make sure all +** function names are recognized and all functions have the correct +** number of arguments. Leave an error message in pParse->zErrMsg +** if anything is amiss. Return the number of errors. +** +** if pIsAgg is not null and this expression is an aggregate function +** (like count(*) or max(value)) then write a 1 into *pIsAgg. +*/ +int sqlite3ExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){ + int nErr = 0; + if( pExpr==0 ) return 0; + switch( pExpr->op ){ + case TK_GLOB: + case TK_LIKE: + case TK_FUNCTION: { + int n = pExpr->pList ? pExpr->pList->nExpr : 0; /* Number of arguments */ + int no_such_func = 0; /* True if no such function exists */ + int wrong_num_args = 0; /* True if wrong number of arguments */ + int is_agg = 0; /* True if is an aggregate function */ + int i; + int nId; /* Number of characters in function name */ + const char *zId; /* The function name. */ + FuncDef *pDef; + int enc = pParse->db->enc; + + getFunctionName(pExpr, &zId, &nId); + pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); + if( pDef==0 ){ + pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); + if( pDef==0 ){ + no_such_func = 1; + }else{ + wrong_num_args = 1; + } + }else{ + is_agg = pDef->xFunc==0; + } + if( is_agg && !allowAgg ){ + sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId, zId); + nErr++; + is_agg = 0; + }else if( no_such_func ){ + sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); + nErr++; + }else if( wrong_num_args ){ + sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", + nId, zId); + nErr++; + } + if( is_agg ){ + pExpr->op = TK_AGG_FUNCTION; + if( pIsAgg ) *pIsAgg = 1; + } + for(i=0; nErr==0 && i<n; i++){ + nErr = sqlite3ExprCheck(pParse, pExpr->pList->a[i].pExpr, + allowAgg && !is_agg, pIsAgg); + } + /* FIX ME: Compute pExpr->affinity based on the expected return + ** type of the function + */ + } + default: { + if( pExpr->pLeft ){ + nErr = sqlite3ExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg); + } + if( nErr==0 && pExpr->pRight ){ + nErr = sqlite3ExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg); + } + if( nErr==0 && pExpr->pList ){ + int n = pExpr->pList->nExpr; + int i; + for(i=0; nErr==0 && i<n; i++){ + Expr *pE2 = pExpr->pList->a[i].pExpr; + nErr = sqlite3ExprCheck(pParse, pE2, allowAgg, pIsAgg); + } + } + break; + } + } + return nErr; +} + +/* +** Call sqlite3ExprResolveIds() followed by sqlite3ExprCheck(). +** +** This routine is provided as a convenience since it is very common +** to call ResolveIds() and Check() back to back. +*/ +int sqlite3ExprResolveAndCheck( + Parse *pParse, /* The parser context */ + SrcList *pSrcList, /* List of tables used to resolve column names */ + ExprList *pEList, /* List of expressions used to resolve "AS" */ + Expr *pExpr, /* The expression to be analyzed. */ + int allowAgg, /* True to allow aggregate expressions */ + int *pIsAgg /* Set to TRUE if aggregates are found */ +){ + if( pExpr==0 ) return 0; + if( sqlite3ExprResolveIds(pParse,pSrcList,pEList,pExpr) ){ + return 1; + } + return sqlite3ExprCheck(pParse, pExpr, allowAgg, pIsAgg); +} + +/* +** Generate an instruction that will put the integer describe by +** text z[0..n-1] on the stack. +*/ +static void codeInteger(Vdbe *v, const char *z, int n){ + int i; + if( sqlite3GetInt32(z, &i) ){ + sqlite3VdbeAddOp(v, OP_Integer, i, 0); + }else if( sqlite3FitsIn64Bits(z) ){ + sqlite3VdbeOp3(v, OP_Integer, 0, 0, z, n); + }else{ + sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n); + } +} + +/* +** Generate code into the current Vdbe to evaluate the given +** expression and leave the result on the top of stack. +** +** This code depends on the fact that certain token values (ex: TK_EQ) +** are the same as opcode values (ex: OP_Eq) that implement the corresponding +** operation. Special comments in vdbe.c and the mkopcodeh.awk script in +** the make process cause these values to align. Assert()s in the code +** below verify that the numbers are aligned correctly. +*/ +void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ + Vdbe *v = pParse->pVdbe; + int op; + if( v==0 || pExpr==0 ) return; + op = pExpr->op; + switch( op ){ + case TK_COLUMN: { + if( pParse->useAgg ){ + sqlite3VdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg); + }else if( pExpr->iColumn>=0 ){ + sqlite3VdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn); +#ifndef NDEBUG + if( pExpr->span.z && pExpr->span.n>0 && pExpr->span.n<100 ){ + VdbeComment((v, "# %T", &pExpr->span)); + } +#endif + }else{ + sqlite3VdbeAddOp(v, OP_Recno, pExpr->iTable, 0); + } + break; + } + case TK_INTEGER: { + codeInteger(v, pExpr->token.z, pExpr->token.n); + break; + } + case TK_FLOAT: + case TK_STRING: { + assert( TK_FLOAT==OP_Real ); + assert( TK_STRING==OP_String8 ); + sqlite3VdbeOp3(v, op, 0, 0, pExpr->token.z, pExpr->token.n); + sqlite3VdbeDequoteP3(v, -1); + break; + } + case TK_BLOB: { + assert( TK_BLOB==OP_HexBlob ); + sqlite3VdbeOp3(v, op, 0, 0, pExpr->token.z+1, pExpr->token.n-1); + sqlite3VdbeDequoteP3(v, -1); + break; + } + case TK_NULL: { + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + break; + } + case TK_VARIABLE: { + sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); + if( pExpr->token.n>1 ){ + sqlite3VdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n); + } + break; + } + case TK_LT: + case TK_LE: + case TK_GT: + case TK_GE: + case TK_NE: + case TK_EQ: { + assert( TK_LT==OP_Lt ); + assert( TK_LE==OP_Le ); + assert( TK_GT==OP_Gt ); + assert( TK_GE==OP_Ge ); + assert( TK_EQ==OP_Eq ); + assert( TK_NE==OP_Ne ); + sqlite3ExprCode(pParse, pExpr->pLeft); + sqlite3ExprCode(pParse, pExpr->pRight); + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); + break; + } + case TK_AND: + case TK_OR: + case TK_PLUS: + case TK_STAR: + case TK_MINUS: + case TK_REM: + case TK_BITAND: + case TK_BITOR: + case TK_SLASH: + case TK_LSHIFT: + case TK_RSHIFT: + case TK_CONCAT: { + assert( TK_AND==OP_And ); + assert( TK_OR==OP_Or ); + assert( TK_PLUS==OP_Add ); + assert( TK_MINUS==OP_Subtract ); + assert( TK_REM==OP_Remainder ); + assert( TK_BITAND==OP_BitAnd ); + assert( TK_BITOR==OP_BitOr ); + assert( TK_SLASH==OP_Divide ); + assert( TK_LSHIFT==OP_ShiftLeft ); + assert( TK_RSHIFT==OP_ShiftRight ); + assert( TK_CONCAT==OP_Concat ); + sqlite3ExprCode(pParse, pExpr->pLeft); + sqlite3ExprCode(pParse, pExpr->pRight); + sqlite3VdbeAddOp(v, op, 0, 0); + break; + } + case TK_UMINUS: { + Expr *pLeft = pExpr->pLeft; + assert( pLeft ); + if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ + Token *p = &pLeft->token; + char *z = sqliteMalloc( p->n + 2 ); + sprintf(z, "-%.*s", p->n, p->z); + if( pLeft->op==TK_FLOAT ){ + sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1); + }else{ + codeInteger(v, z, p->n+1); + } + sqliteFree(z); + break; + } + /* Fall through into TK_NOT */ + } + case TK_BITNOT: + case TK_NOT: { + assert( TK_BITNOT==OP_BitNot ); + assert( TK_NOT==OP_Not ); + sqlite3ExprCode(pParse, pExpr->pLeft); + sqlite3VdbeAddOp(v, op, 0, 0); + break; + } + case TK_ISNULL: + case TK_NOTNULL: { + int dest; + assert( TK_ISNULL==OP_IsNull ); + assert( TK_NOTNULL==OP_NotNull ); + sqlite3VdbeAddOp(v, OP_Integer, 1, 0); + sqlite3ExprCode(pParse, pExpr->pLeft); + dest = sqlite3VdbeCurrentAddr(v) + 2; + sqlite3VdbeAddOp(v, op, 1, dest); + sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); + break; + } + case TK_AGG_FUNCTION: { + sqlite3VdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg); + break; + } + case TK_GLOB: + case TK_LIKE: + case TK_FUNCTION: { + ExprList *pList = pExpr->pList; + int nExpr = pList ? pList->nExpr : 0; + FuncDef *pDef; + int nId; + const char *zId; + int p2 = 0; + int i; + u8 enc = pParse->db->enc; + CollSeq *pColl = 0; + getFunctionName(pExpr, &zId, &nId); + pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); + assert( pDef!=0 ); + nExpr = sqlite3ExprCodeExprList(pParse, pList); + for(i=0; i<nExpr && i<32; i++){ + if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ + p2 |= (1<<i); + } + if( pDef->needCollSeq && !pColl ){ + pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); + } + } + if( pDef->needCollSeq ){ + if( !pColl ) pColl = pParse->db->pDfltColl; + sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); + } + sqlite3VdbeOp3(v, OP_Function, nExpr, p2, (char*)pDef, P3_FUNCDEF); + break; + } + case TK_SELECT: { + sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); + VdbeComment((v, "# load subquery result")); + break; + } + case TK_IN: { + int addr; + char affinity; + + /* Figure out the affinity to use to create a key from the results + ** of the expression. affinityStr stores a static string suitable for + ** P3 of OP_MakeRecord. + */ + affinity = comparisonAffinity(pExpr); + + sqlite3VdbeAddOp(v, OP_Integer, 1, 0); + + /* Code the <expr> from "<expr> IN (...)". The temporary table + ** pExpr->iTable contains the values that make up the (...) set. + */ + sqlite3ExprCode(pParse, pExpr->pLeft); + addr = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ + sqlite3VdbeAddOp(v, OP_Pop, 2, 0); + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7); + sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */ + sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7); + sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ + + break; + } + case TK_BETWEEN: { + Expr *pLeft = pExpr->pLeft; + struct ExprList_item *pLItem = pExpr->pList->a; + Expr *pRight = pLItem->pExpr; + sqlite3ExprCode(pParse, pLeft); + sqlite3VdbeAddOp(v, OP_Dup, 0, 0); + sqlite3ExprCode(pParse, pRight); + codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); + sqlite3VdbeAddOp(v, OP_Pull, 1, 0); + pLItem++; + pRight = pLItem->pExpr; + sqlite3ExprCode(pParse, pRight); + codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); + sqlite3VdbeAddOp(v, OP_And, 0, 0); + break; + } + case TK_UPLUS: + case TK_AS: { + sqlite3ExprCode(pParse, pExpr->pLeft); + break; + } + case TK_CASE: { + int expr_end_label; + int jumpInst; + int addr; + int nExpr; + int i; + ExprList *pEList; + struct ExprList_item *aListelem; + + assert(pExpr->pList); + assert((pExpr->pList->nExpr % 2) == 0); + assert(pExpr->pList->nExpr > 0); + pEList = pExpr->pList; + aListelem = pEList->a; + nExpr = pEList->nExpr; + expr_end_label = sqlite3VdbeMakeLabel(v); + if( pExpr->pLeft ){ + sqlite3ExprCode(pParse, pExpr->pLeft); + } + for(i=0; i<nExpr; i=i+2){ + sqlite3ExprCode(pParse, aListelem[i].pExpr); + if( pExpr->pLeft ){ + sqlite3VdbeAddOp(v, OP_Dup, 1, 1); + jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, + OP_Ne, 0, 1); + sqlite3VdbeAddOp(v, OP_Pop, 1, 0); + }else{ + jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); + } + sqlite3ExprCode(pParse, aListelem[i+1].pExpr); + sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); + addr = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeChangeP2(v, jumpInst, addr); + } + if( pExpr->pLeft ){ + sqlite3VdbeAddOp(v, OP_Pop, 1, 0); + } + if( pExpr->pRight ){ + sqlite3ExprCode(pParse, pExpr->pRight); + }else{ + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + } + sqlite3VdbeResolveLabel(v, expr_end_label); + break; + } + case TK_RAISE: { + if( !pParse->trigStack ){ + sqlite3ErrorMsg(pParse, + "RAISE() may only be used within a trigger-program"); + return; + } + if( pExpr->iColumn!=OE_Ignore ){ + assert( pExpr->iColumn==OE_Rollback || + pExpr->iColumn == OE_Abort || + pExpr->iColumn == OE_Fail ); + sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, + pExpr->token.z, pExpr->token.n); + sqlite3VdbeDequoteP3(v, -1); + } else { + assert( pExpr->iColumn == OE_Ignore ); + sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); + sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); + VdbeComment((v, "# raise(IGNORE)")); + } + } + break; + } +} + +/* +** Generate code that pushes the value of every element of the given +** expression list onto the stack. +** +** Return the number of elements pushed onto the stack. +*/ +int sqlite3ExprCodeExprList( + Parse *pParse, /* Parsing context */ + ExprList *pList /* The expression list to be coded */ +){ + struct ExprList_item *pItem; + int i, n; + Vdbe *v; + if( pList==0 ) return 0; + v = sqlite3GetVdbe(pParse); + n = pList->nExpr; + for(pItem=pList->a, i=0; i<n; i++, pItem++){ + sqlite3ExprCode(pParse, pItem->pExpr); + } + return n; +} + +/* +** Generate code for a boolean expression such that a jump is made +** to the label "dest" if the expression is true but execution +** continues straight thru if the expression is false. +** +** If the expression evaluates to NULL (neither true nor false), then +** take the jump if the jumpIfNull flag is true. +** +** This code depends on the fact that certain token values (ex: TK_EQ) +** are the same as opcode values (ex: OP_Eq) that implement the corresponding +** operation. Special comments in vdbe.c and the mkopcodeh.awk script in +** the make process cause these values to align. Assert()s in the code +** below verify that the numbers are aligned correctly. +*/ +void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ + Vdbe *v = pParse->pVdbe; + int op = 0; + if( v==0 || pExpr==0 ) return; + op = pExpr->op; + switch( op ){ + case TK_AND: { + int d2 = sqlite3VdbeMakeLabel(v); + sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); + sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); + sqlite3VdbeResolveLabel(v, d2); + break; + } + case TK_OR: { + sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); + sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); + break; + } + case TK_NOT: { + sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); + break; + } + case TK_LT: + case TK_LE: + case TK_GT: + case TK_GE: + case TK_NE: + case TK_EQ: { + assert( TK_LT==OP_Lt ); + assert( TK_LE==OP_Le ); + assert( TK_GT==OP_Gt ); + assert( TK_GE==OP_Ge ); + assert( TK_EQ==OP_Eq ); + assert( TK_NE==OP_Ne ); + sqlite3ExprCode(pParse, pExpr->pLeft); + sqlite3ExprCode(pParse, pExpr->pRight); + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); + break; + } + case TK_ISNULL: + case TK_NOTNULL: { + assert( TK_ISNULL==OP_IsNull ); + assert( TK_NOTNULL==OP_NotNull ); + sqlite3ExprCode(pParse, pExpr->pLeft); + sqlite3VdbeAddOp(v, op, 1, dest); + break; + } + case TK_BETWEEN: { + /* The expression "x BETWEEN y AND z" is implemented as: + ** + ** 1 IF (x < y) GOTO 3 + ** 2 IF (x <= z) GOTO <dest> + ** 3 ... + */ + int addr; + Expr *pLeft = pExpr->pLeft; + Expr *pRight = pExpr->pList->a[0].pExpr; + sqlite3ExprCode(pParse, pLeft); + sqlite3VdbeAddOp(v, OP_Dup, 0, 0); + sqlite3ExprCode(pParse, pRight); + addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); + + pRight = pExpr->pList->a[1].pExpr; + sqlite3ExprCode(pParse, pRight); + codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); + + sqlite3VdbeAddOp(v, OP_Integer, 0, 0); + sqlite3VdbeChangeP2(v, addr, sqlite3VdbeCurrentAddr(v)); + sqlite3VdbeAddOp(v, OP_Pop, 1, 0); + break; + } + default: { + sqlite3ExprCode(pParse, pExpr); + sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); + break; + } + } +} + +/* +** Generate code for a boolean expression such that a jump is made +** to the label "dest" if the expression is false but execution +** continues straight thru if the expression is true. +** +** If the expression evaluates to NULL (neither true nor false) then +** jump if jumpIfNull is true or fall through if jumpIfNull is false. +*/ +void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ + Vdbe *v = pParse->pVdbe; + int op = 0; + if( v==0 || pExpr==0 ) return; + + /* The value of pExpr->op and op are related as follows: + ** + ** pExpr->op op + ** --------- ---------- + ** TK_ISNULL OP_NotNull + ** TK_NOTNULL OP_IsNull + ** TK_NE OP_Eq + ** TK_EQ OP_Ne + ** TK_GT OP_Le + ** TK_LE OP_Gt + ** TK_GE OP_Lt + ** TK_LT OP_Ge + ** + ** For other values of pExpr->op, op is undefined and unused. + ** The value of TK_ and OP_ constants are arranged such that we + ** can compute the mapping above using the following expression. + ** Assert()s verify that the computation is correct. + */ + op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); + + /* Verify correct alignment of TK_ and OP_ constants + */ + assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); + assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); + assert( pExpr->op!=TK_NE || op==OP_Eq ); + assert( pExpr->op!=TK_EQ || op==OP_Ne ); + assert( pExpr->op!=TK_LT || op==OP_Ge ); + assert( pExpr->op!=TK_LE || op==OP_Gt ); + assert( pExpr->op!=TK_GT || op==OP_Le ); + assert( pExpr->op!=TK_GE || op==OP_Lt ); + + switch( pExpr->op ){ + case TK_AND: { + sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); + sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); + break; + } + case TK_OR: { + int d2 = sqlite3VdbeMakeLabel(v); + sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); + sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); + sqlite3VdbeResolveLabel(v, d2); + break; + } + case TK_NOT: { + sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); + break; + } + case TK_LT: + case TK_LE: + case TK_GT: + case TK_GE: + case TK_NE: + case TK_EQ: { + sqlite3ExprCode(pParse, pExpr->pLeft); + sqlite3ExprCode(pParse, pExpr->pRight); + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); + break; + } + case TK_ISNULL: + case TK_NOTNULL: { + sqlite3ExprCode(pParse, pExpr->pLeft); + sqlite3VdbeAddOp(v, op, 1, dest); + break; + } + case TK_BETWEEN: { + /* The expression is "x BETWEEN y AND z". It is implemented as: + ** + ** 1 IF (x >= y) GOTO 3 + ** 2 GOTO <dest> + ** 3 IF (x > z) GOTO <dest> + */ + int addr; + Expr *pLeft = pExpr->pLeft; + Expr *pRight = pExpr->pList->a[0].pExpr; + sqlite3ExprCode(pParse, pLeft); + sqlite3VdbeAddOp(v, OP_Dup, 0, 0); + sqlite3ExprCode(pParse, pRight); + addr = sqlite3VdbeCurrentAddr(v); + codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); + + sqlite3VdbeAddOp(v, OP_Pop, 1, 0); + sqlite3VdbeAddOp(v, OP_Goto, 0, dest); + pRight = pExpr->pList->a[1].pExpr; + sqlite3ExprCode(pParse, pRight); + codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); + break; + } + default: { + sqlite3ExprCode(pParse, pExpr); + sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); + break; + } + } +} + +/* +** Do a deep comparison of two expression trees. Return TRUE (non-zero) +** if they are identical and return FALSE if they differ in any way. +*/ +int sqlite3ExprCompare(Expr *pA, Expr *pB){ + int i; + if( pA==0 ){ + return pB==0; + }else if( pB==0 ){ + return 0; + } + if( pA->op!=pB->op ) return 0; + if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; + if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; + if( pA->pList ){ + if( pB->pList==0 ) return 0; + if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; + for(i=0; i<pA->pList->nExpr; i++){ + if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ + return 0; + } + } + }else if( pB->pList ){ + return 0; + } + if( pA->pSelect || pB->pSelect ) return 0; + if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; + if( pA->token.z ){ + if( pB->token.z==0 ) return 0; + if( pB->token.n!=pA->token.n ) return 0; + if( sqlite3StrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0; + } + return 1; +} + +/* +** Add a new element to the pParse->aAgg[] array and return its index. +*/ +static int appendAggInfo(Parse *pParse){ + if( (pParse->nAgg & 0x7)==0 ){ + int amt = pParse->nAgg + 8; + AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0])); + if( aAgg==0 ){ + return -1; + } + pParse->aAgg = aAgg; + } + memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0])); + return pParse->nAgg++; +} + +/* +** Analyze the given expression looking for aggregate functions and +** for variables that need to be added to the pParse->aAgg[] array. +** Make additional entries to the pParse->aAgg[] array as necessary. +** +** This routine should only be called after the expression has been +** analyzed by sqlite3ExprResolveIds() and sqlite3ExprCheck(). +** +** If errors are seen, leave an error message in zErrMsg and return +** the number of errors. +*/ +int sqlite3ExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){ + int i; + AggExpr *aAgg; + int nErr = 0; + + if( pExpr==0 ) return 0; + switch( pExpr->op ){ + case TK_COLUMN: { + aAgg = pParse->aAgg; + for(i=0; i<pParse->nAgg; i++){ + if( aAgg[i].isAgg ) continue; + if( aAgg[i].pExpr->iTable==pExpr->iTable + && aAgg[i].pExpr->iColumn==pExpr->iColumn ){ + break; + } + } + if( i>=pParse->nAgg ){ + i = appendAggInfo(pParse); + if( i<0 ) return 1; + pParse->aAgg[i].isAgg = 0; + pParse->aAgg[i].pExpr = pExpr; + } + pExpr->iAgg = i; + break; + } + case TK_AGG_FUNCTION: { + aAgg = pParse->aAgg; + for(i=0; i<pParse->nAgg; i++){ + if( !aAgg[i].isAgg ) continue; + if( sqlite3ExprCompare(aAgg[i].pExpr, pExpr) ){ + break; + } + } + if( i>=pParse->nAgg ){ + u8 enc = pParse->db->enc; + i = appendAggInfo(pParse); + if( i<0 ) return 1; + pParse->aAgg[i].isAgg = 1; + pParse->aAgg[i].pExpr = pExpr; + pParse->aAgg[i].pFunc = sqlite3FindFunction(pParse->db, + pExpr->token.z, pExpr->token.n, + pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); + } + pExpr->iAgg = i; + break; + } + default: { + if( pExpr->pLeft ){ + nErr = sqlite3ExprAnalyzeAggregates(pParse, pExpr->pLeft); + } + if( nErr==0 && pExpr->pRight ){ + nErr = sqlite3ExprAnalyzeAggregates(pParse, pExpr->pRight); + } + if( nErr==0 && pExpr->pList ){ + int n = pExpr->pList->nExpr; + int i; + for(i=0; nErr==0 && i<n; i++){ + nErr = sqlite3ExprAnalyzeAggregates(pParse, pExpr->pList->a[i].pExpr); + } + } + break; + } + } + return nErr; +} + +/* +** Locate a user function given a name, a number of arguments and a flag +** indicating whether the function prefers UTF-16 over UTF-8. Return a +** pointer to the FuncDef structure that defines that function, or return +** NULL if the function does not exist. +** +** If the createFlag argument is true, then a new (blank) FuncDef +** structure is created and liked into the "db" structure if a +** no matching function previously existed. When createFlag is true +** and the nArg parameter is -1, then only a function that accepts +** any number of arguments will be returned. +** +** If createFlag is false and nArg is -1, then the first valid +** function found is returned. A function is valid if either xFunc +** or xStep is non-zero. +** +** If createFlag is false, then a function with the required name and +** number of arguments may be returned even if the eTextRep flag does not +** match that requested. +*/ +FuncDef *sqlite3FindFunction( + sqlite3 *db, /* An open database */ + const char *zName, /* Name of the function. Not null-terminated */ + int nName, /* Number of characters in the name */ + int nArg, /* Number of arguments. -1 means any number */ + u8 enc, /* Preferred text encoding */ + int createFlag /* Create new entry if true and does not otherwise exist */ +){ + FuncDef *p; /* Iterator variable */ + FuncDef *pFirst; /* First function with this name */ + FuncDef *pBest = 0; /* Best match found so far */ + int bestmatch = 0; + + + assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); + if( nArg<-1 ) nArg = -1; + + pFirst = (FuncDef*)sqlite3HashFind(&db->aFunc, zName, nName); + for(p=pFirst; p; p=p->pNext){ + /* During the search for the best function definition, bestmatch is set + ** as follows to indicate the quality of the match with the definition + ** pointed to by pBest: + ** + ** 0: pBest is NULL. No match has been found. + ** 1: A variable arguments function that prefers UTF-8 when a UTF-16 + ** encoding is requested, or vice versa. + ** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is + ** requested, or vice versa. + ** 3: A variable arguments function using the same text encoding. + ** 4: A function with the exact number of arguments requested that + ** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa. + ** 5: A function with the exact number of arguments requested that + ** prefers UTF-16LE when UTF-16BE is requested, or vice versa. + ** 6: An exact match. + ** + ** A larger value of 'matchqual' indicates a more desirable match. + */ + if( p->nArg==-1 || p->nArg==nArg || nArg==-1 ){ + int match = 1; /* Quality of this match */ + if( p->nArg==nArg || nArg==-1 ){ + match = 4; + } + if( enc==p->iPrefEnc ){ + match += 2; + } + else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) || + (enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){ + match += 1; + } + + if( match>bestmatch ){ + pBest = p; + bestmatch = match; + } + } + } + + /* If the createFlag parameter is true, and the seach did not reveal an + ** exact match for the name, number of arguments and encoding, then add a + ** new entry to the hash table and return it. + */ + if( createFlag && bestmatch<6 && + (pBest = sqliteMalloc(sizeof(*pBest)+nName+1)) ){ + pBest->nArg = nArg; + pBest->pNext = pFirst; + pBest->zName = (char*)&pBest[1]; + pBest->iPrefEnc = enc; + memcpy(pBest->zName, zName, nName); + pBest->zName[nName] = 0; + sqlite3HashInsert(&db->aFunc, pBest->zName, nName, (void*)pBest); + } + + if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){ + return pBest; + } + return 0; +} diff --git a/kopete/plugins/statistics/sqlite/func.c b/kopete/plugins/statistics/sqlite/func.c new file mode 100644 index 00000000..f61bdae3 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/func.c @@ -0,0 +1,1018 @@ +/* +** 2002 February 23 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement various SQL +** functions of SQLite. +** +** There is only one exported symbol in this file - the function +** sqliteRegisterBuildinFunctions() found at the bottom of the file. +** All other code has file scope. +** +** $Id$ +*/ +#include <ctype.h> +#include <math.h> +#include <stdlib.h> +#include <assert.h> +#include "sqliteInt.h" +#include "vdbeInt.h" +#include "os.h" + +static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){ + return context->pColl; +} + +/* +** Implementation of the non-aggregate min() and max() functions +*/ +static void minmaxFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int i; + int mask; /* 0 for min() or 0xffffffff for max() */ + int iBest; + CollSeq *pColl; + + if( argc==0 ) return; + mask = sqlite3_user_data(context)==0 ? 0 : -1; + pColl = sqlite3GetFuncCollSeq(context); + assert( pColl ); + assert( mask==-1 || mask==0 ); + iBest = 0; + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + for(i=1; i<argc; i++){ + if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return; + if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){ + iBest = i; + } + } + sqlite3_result_value(context, argv[iBest]); +} + +/* +** Return the type of the argument. +*/ +static void typeofFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const char *z = 0; + switch( sqlite3_value_type(argv[0]) ){ + case SQLITE_NULL: z = "null"; break; + case SQLITE_INTEGER: z = "integer"; break; + case SQLITE_TEXT: z = "text"; break; + case SQLITE_FLOAT: z = "real"; break; + case SQLITE_BLOB: z = "blob"; break; + } + sqlite3_result_text(context, z, -1, SQLITE_STATIC); +} + +/* +** Implementation of the length() function +*/ +static void lengthFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int len; + + assert( argc==1 ); + switch( sqlite3_value_type(argv[0]) ){ + case SQLITE_BLOB: + case SQLITE_INTEGER: + case SQLITE_FLOAT: { + sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); + break; + } + case SQLITE_TEXT: { + const char *z = sqlite3_value_text(argv[0]); + for(len=0; *z; z++){ if( (0xc0&*z)!=0x80 ) len++; } + sqlite3_result_int(context, len); + break; + } + default: { + sqlite3_result_null(context); + break; + } + } +} + +/* +** Implementation of the abs() function +*/ +static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + assert( argc==1 ); + switch( sqlite3_value_type(argv[0]) ){ + case SQLITE_INTEGER: { + i64 iVal = sqlite3_value_int64(argv[0]); + if( iVal<0 ) iVal = iVal * -1; + sqlite3_result_int64(context, iVal); + break; + } + case SQLITE_NULL: { + sqlite3_result_null(context); + break; + } + default: { + double rVal = sqlite3_value_double(argv[0]); + if( rVal<0 ) rVal = rVal * -1.0; + sqlite3_result_double(context, rVal); + break; + } + } +} + +/* +** Implementation of the substr() function +*/ +static void substrFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const char *z; + const char *z2; + int i; + int p1, p2, len; + + assert( argc==3 ); + z = sqlite3_value_text(argv[0]); + if( z==0 ) return; + p1 = sqlite3_value_int(argv[1]); + p2 = sqlite3_value_int(argv[2]); + for(len=0, z2=z; *z2; z2++){ if( (0xc0&*z2)!=0x80 ) len++; } + if( p1<0 ){ + p1 += len; + if( p1<0 ){ + p2 += p1; + p1 = 0; + } + }else if( p1>0 ){ + p1--; + } + if( p1+p2>len ){ + p2 = len-p1; + } + for(i=0; i<p1 && z[i]; i++){ + if( (z[i]&0xc0)==0x80 ) p1++; + } + while( z[i] && (z[i]&0xc0)==0x80 ){ i++; p1++; } + for(; i<p1+p2 && z[i]; i++){ + if( (z[i]&0xc0)==0x80 ) p2++; + } + while( z[i] && (z[i]&0xc0)==0x80 ){ i++; p2++; } + if( p2<0 ) p2 = 0; + sqlite3_result_text(context, &z[p1], p2, SQLITE_TRANSIENT); +} + +/* +** Implementation of the round() function +*/ +static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + int n = 0; + double r; + char zBuf[100]; + assert( argc==1 || argc==2 ); + if( argc==2 ){ + if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return; + n = sqlite3_value_int(argv[1]); + if( n>30 ) n = 30; + if( n<0 ) n = 0; + } + if( SQLITE_NULL==sqlite3_value_type(argv[0]) ) return; + r = sqlite3_value_double(argv[0]); + sprintf(zBuf,"%.*f",n,r); + sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); +} + +/* +** Implementation of the upper() and lower() SQL functions. +*/ +static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + unsigned char *z; + int i; + if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return; + z = sqliteMalloc(sqlite3_value_bytes(argv[0])+1); + if( z==0 ) return; + strcpy(z, sqlite3_value_text(argv[0])); + for(i=0; z[i]; i++){ + z[i] = toupper(z[i]); + } + sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT); + sqliteFree(z); +} +static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + unsigned char *z; + int i; + if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return; + z = sqliteMalloc(sqlite3_value_bytes(argv[0])+1); + if( z==0 ) return; + strcpy(z, sqlite3_value_text(argv[0])); + for(i=0; z[i]; i++){ + z[i] = tolower(z[i]); + } + sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT); + sqliteFree(z); +} + +/* +** Implementation of the IFNULL(), NVL(), and COALESCE() functions. +** All three do the same thing. They return the first non-NULL +** argument. +*/ +static void ifnullFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int i; + for(i=0; i<argc; i++){ + if( SQLITE_NULL!=sqlite3_value_type(argv[i]) ){ + sqlite3_result_value(context, argv[i]); + break; + } + } +} + +/* +** Implementation of random(). Return a random integer. +*/ +static void randomFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int r; + sqlite3Randomness(sizeof(r), &r); + sqlite3_result_int(context, r); +} + +/* +** Implementation of the last_insert_rowid() SQL function. The return +** value is the same as the sqlite3_last_insert_rowid() API function. +*/ +static void last_insert_rowid( + sqlite3_context *context, + int arg, + sqlite3_value **argv +){ + sqlite3 *db = sqlite3_user_data(context); + sqlite3_result_int64(context, sqlite3_last_insert_rowid(db)); +} + +/* +** Implementation of the changes() SQL function. The return value is the +** same as the sqlite3_changes() API function. +*/ +static void changes( + sqlite3_context *context, + int arg, + sqlite3_value **argv +){ + sqlite3 *db = sqlite3_user_data(context); + sqlite3_result_int(context, sqlite3_changes(db)); +} + +/* +** Implementation of the total_changes() SQL function. The return value is +** the same as the sqlite3_total_changes() API function. +*/ +static void total_changes( + sqlite3_context *context, + int arg, + sqlite3_value **argv +){ + sqlite3 *db = sqlite3_user_data(context); + sqlite3_result_int(context, sqlite3_total_changes(db)); +} + +/* +** A structure defining how to do GLOB-style comparisons. +*/ +struct compareInfo { + u8 matchAll; + u8 matchOne; + u8 matchSet; + u8 noCase; +}; +static const struct compareInfo globInfo = { '*', '?', '[', 0 }; +static const struct compareInfo likeInfo = { '%', '_', 0, 1 }; + +/* +** X is a pointer to the first byte of a UTF-8 character. Increment +** X so that it points to the next character. This only works right +** if X points to a well-formed UTF-8 string. +*/ +#define sqliteNextChar(X) while( (0xc0&*++(X))==0x80 ){} +#define sqliteCharVal(X) sqlite3ReadUtf8(X) + + +/* +** Compare two UTF-8 strings for equality where the first string can +** potentially be a "glob" expression. Return true (1) if they +** are the same and false (0) if they are different. +** +** Globbing rules: +** +** '*' Matches any sequence of zero or more characters. +** +** '?' Matches exactly one character. +** +** [...] Matches one character from the enclosed list of +** characters. +** +** [^...] Matches one character not in the enclosed list. +** +** With the [...] and [^...] matching, a ']' character can be included +** in the list by making it the first character after '[' or '^'. A +** range of characters can be specified using '-'. Example: +** "[a-z]" matches any single lower-case letter. To match a '-', make +** it the last character in the list. +** +** This routine is usually quick, but can be N**2 in the worst case. +** +** Hints: to match '*' or '?', put them in "[]". Like this: +** +** abc[*]xyz Matches "abc*xyz" only +*/ +int patternCompare( + const u8 *zPattern, /* The glob pattern */ + const u8 *zString, /* The string to compare against the glob */ + const struct compareInfo *pInfo /* Information about how to do the compare */ +){ + register int c; + int invert; + int seen; + int c2; + u8 matchOne = pInfo->matchOne; + u8 matchAll = pInfo->matchAll; + u8 matchSet = pInfo->matchSet; + u8 noCase = pInfo->noCase; + + while( (c = *zPattern)!=0 ){ + if( c==matchAll ){ + while( (c=zPattern[1]) == matchAll || c == matchOne ){ + if( c==matchOne ){ + if( *zString==0 ) return 0; + sqliteNextChar(zString); + } + zPattern++; + } + if( c==0 ) return 1; + if( c==matchSet ){ + while( *zString && patternCompare(&zPattern[1],zString,pInfo)==0 ){ + sqliteNextChar(zString); + } + return *zString!=0; + }else{ + while( (c2 = *zString)!=0 ){ + if( noCase ){ + c2 = sqlite3UpperToLower[c2]; + c = sqlite3UpperToLower[c]; + while( c2 != 0 && c2 != c ){ c2 = sqlite3UpperToLower[*++zString]; } + }else{ + while( c2 != 0 && c2 != c ){ c2 = *++zString; } + } + if( c2==0 ) return 0; + if( patternCompare(&zPattern[1],zString,pInfo) ) return 1; + sqliteNextChar(zString); + } + return 0; + } + }else if( c==matchOne ){ + if( *zString==0 ) return 0; + sqliteNextChar(zString); + zPattern++; + }else if( c==matchSet ){ + int prior_c = 0; + seen = 0; + invert = 0; + c = sqliteCharVal(zString); + if( c==0 ) return 0; + c2 = *++zPattern; + if( c2=='^' ){ invert = 1; c2 = *++zPattern; } + if( c2==']' ){ + if( c==']' ) seen = 1; + c2 = *++zPattern; + } + while( (c2 = sqliteCharVal(zPattern))!=0 && c2!=']' ){ + if( c2=='-' && zPattern[1]!=']' && zPattern[1]!=0 && prior_c>0 ){ + zPattern++; + c2 = sqliteCharVal(zPattern); + if( c>=prior_c && c<=c2 ) seen = 1; + prior_c = 0; + }else if( c==c2 ){ + seen = 1; + prior_c = c2; + }else{ + prior_c = c2; + } + sqliteNextChar(zPattern); + } + if( c2==0 || (seen ^ invert)==0 ) return 0; + sqliteNextChar(zString); + zPattern++; + }else{ + if( noCase ){ + if( sqlite3UpperToLower[c] != sqlite3UpperToLower[*zString] ) return 0; + }else{ + if( c != *zString ) return 0; + } + zPattern++; + zString++; + } + } + return *zString==0; +} + + +/* +** Implementation of the like() SQL function. This function implements +** the build-in LIKE operator. The first argument to the function is the +** pattern and the second argument is the string. So, the SQL statements: +** +** A LIKE B +** +** is implemented as like(B,A). +** +** If the pointer retrieved by via a call to sqlite3_user_data() is +** not NULL, then this function uses UTF-16. Otherwise UTF-8. +*/ +static void likeFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const unsigned char *zA = sqlite3_value_text(argv[0]); + const unsigned char *zB = sqlite3_value_text(argv[1]); + if( zA && zB ){ + sqlite3_result_int(context, patternCompare(zA, zB, &likeInfo)); + } +} + +/* +** Implementation of the glob() SQL function. This function implements +** the build-in GLOB operator. The first argument to the function is the +** string and the second argument is the pattern. So, the SQL statements: +** +** A GLOB B +** +** is implemented as glob(A,B). +*/ +static void globFunc(sqlite3_context *context, int arg, sqlite3_value **argv){ + const unsigned char *zA = sqlite3_value_text(argv[0]); + const unsigned char *zB = sqlite3_value_text(argv[1]); + if( zA && zB ){ + sqlite3_result_int(context, patternCompare(zA, zB, &globInfo)); + } +} + +/* +** Implementation of the NULLIF(x,y) function. The result is the first +** argument if the arguments are different. The result is NULL if the +** arguments are equal to each other. +*/ +static void nullifFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + CollSeq *pColl = sqlite3GetFuncCollSeq(context); + if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){ + sqlite3_result_value(context, argv[0]); + } +} + +/* +** Implementation of the VERSION(*) function. The result is the version +** of the SQLite library that is running. +*/ +static void versionFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC); +} + +/* +** EXPERIMENTAL - This is not an official function. The interface may +** change. This function may disappear. Do not write code that depends +** on this function. +** +** Implementation of the QUOTE() function. This function takes a single +** argument. If the argument is numeric, the return value is the same as +** the argument. If the argument is NULL, the return value is the string +** "NULL". Otherwise, the argument is enclosed in single quotes with +** single-quote escapes. +*/ +static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + if( argc<1 ) return; + switch( sqlite3_value_type(argv[0]) ){ + case SQLITE_NULL: { + sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC); + break; + } + case SQLITE_INTEGER: + case SQLITE_FLOAT: { + sqlite3_result_value(context, argv[0]); + break; + } + case SQLITE_BLOB: { + static const char hexdigits[] = { + '0', '1', '2', '3', '4', '5', '6', '7', + '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' + }; + char *zText = 0; + int nBlob = sqlite3_value_bytes(argv[0]); + char const *zBlob = sqlite3_value_blob(argv[0]); + + zText = (char *)sqliteMalloc((2*nBlob)+4); + if( !zText ){ + sqlite3_result_error(context, "out of memory", -1); + }else{ + int i; + for(i=0; i<nBlob; i++){ + zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F]; + zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F]; + } + zText[(nBlob*2)+2] = '\''; + zText[(nBlob*2)+3] = '\0'; + zText[0] = 'X'; + zText[1] = '\''; + sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT); + sqliteFree(zText); + } + break; + } + case SQLITE_TEXT: { + int i,j,n; + const char *zArg = sqlite3_value_text(argv[0]); + char *z; + + for(i=n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; } + z = sqliteMalloc( i+n+3 ); + if( z==0 ) return; + z[0] = '\''; + for(i=0, j=1; zArg[i]; i++){ + z[j++] = zArg[i]; + if( zArg[i]=='\'' ){ + z[j++] = '\''; + } + } + z[j++] = '\''; + z[j] = 0; + sqlite3_result_text(context, z, j, SQLITE_TRANSIENT); + sqliteFree(z); + } + } +} + +#ifdef SQLITE_SOUNDEX +/* +** Compute the soundex encoding of a word. +*/ +static void soundexFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + char zResult[8]; + const u8 *zIn; + int i, j; + static const unsigned char iCode[] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, + 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, + 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, + 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, + }; + assert( argc==1 ); + zIn = (u8*)sqlite3_value_text(argv[0]); + for(i=0; zIn[i] && !isalpha(zIn[i]); i++){} + if( zIn[i] ){ + zResult[0] = toupper(zIn[i]); + for(j=1; j<4 && zIn[i]; i++){ + int code = iCode[zIn[i]&0x7f]; + if( code>0 ){ + zResult[j++] = code + '0'; + } + } + while( j<4 ){ + zResult[j++] = '0'; + } + zResult[j] = 0; + sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT); + }else{ + sqlite3_result_text(context, "?000", 4, SQLITE_STATIC); + } +} +#endif + +#ifdef SQLITE_TEST +/* +** This function generates a string of random characters. Used for +** generating test data. +*/ +static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){ + static const unsigned char zSrc[] = + "abcdefghijklmnopqrstuvwxyz" + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + "0123456789" + ".-!,:*^+=_|?/<> "; + int iMin, iMax, n, r, i; + unsigned char zBuf[1000]; + if( argc>=1 ){ + iMin = sqlite3_value_int(argv[0]); + if( iMin<0 ) iMin = 0; + if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1; + }else{ + iMin = 1; + } + if( argc>=2 ){ + iMax = sqlite3_value_int(argv[1]); + if( iMax<iMin ) iMax = iMin; + if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1; + }else{ + iMax = 50; + } + n = iMin; + if( iMax>iMin ){ + sqlite3Randomness(sizeof(r), &r); + r &= 0x7fffffff; + n += r%(iMax + 1 - iMin); + } + assert( n<sizeof(zBuf) ); + sqlite3Randomness(n, zBuf); + for(i=0; i<n; i++){ + zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)]; + } + zBuf[n] = 0; + sqlite3_result_text(context, zBuf, n, SQLITE_TRANSIENT); +} +#endif /* SQLITE_TEST */ + +#ifdef SQLITE_TEST +/* +** The following two SQL functions are used to test returning a text +** result with a destructor. Function 'test_destructor' takes one argument +** and returns the same argument interpreted as TEXT. A destructor is +** passed with the sqlite3_result_text() call. +** +** SQL function 'test_destructor_count' returns the number of outstanding +** allocations made by 'test_destructor'; +** +** WARNING: Not threadsafe. +*/ +static int test_destructor_count_var = 0; +static void destructor(void *p){ + char *zVal = (char *)p; + assert(zVal); + zVal--; + sqliteFree(zVal); + test_destructor_count_var--; +} +static void test_destructor( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ + char *zVal; + int len; + sqlite3 *db = sqlite3_user_data(pCtx); + + test_destructor_count_var++; + assert( nArg==1 ); + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + len = sqlite3ValueBytes(argv[0], db->enc); + zVal = sqliteMalloc(len+3); + zVal[len] = 0; + zVal[len-1] = 0; + assert( zVal ); + zVal++; + memcpy(zVal, sqlite3ValueText(argv[0], db->enc), len); + if( db->enc==SQLITE_UTF8 ){ + sqlite3_result_text(pCtx, zVal, -1, destructor); + }else if( db->enc==SQLITE_UTF16LE ){ + sqlite3_result_text16le(pCtx, zVal, -1, destructor); + }else{ + sqlite3_result_text16be(pCtx, zVal, -1, destructor); + } +} +static void test_destructor_count( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ + sqlite3_result_int(pCtx, test_destructor_count_var); +} +#endif /* SQLITE_TEST */ + +#ifdef SQLITE_TEST +/* +** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata() +** interface. +** +** The test_auxdata() SQL function attempts to register each of its arguments +** as auxiliary data. If there are no prior registrations of aux data for +** that argument (meaning the argument is not a constant or this is its first +** call) then the result for that argument is 0. If there is a prior +** registration, the result for that argument is 1. The overall result +** is the individual argument results separated by spaces. +*/ +static void free_test_auxdata(void *p) {sqliteFree(p);} +static void test_auxdata( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ + int i; + char *zRet = sqliteMalloc(nArg*2); + if( !zRet ) return; + for(i=0; i<nArg; i++){ + char const *z = sqlite3_value_text(argv[i]); + if( z ){ + char *zAux = sqlite3_get_auxdata(pCtx, i); + if( zAux ){ + zRet[i*2] = '1'; + if( strcmp(zAux, z) ){ + sqlite3_result_error(pCtx, "Auxilary data corruption", -1); + return; + } + }else{ + zRet[i*2] = '0'; + zAux = sqliteStrDup(z); + sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata); + } + zRet[i*2+1] = ' '; + } + } + sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata); +} +#endif /* SQLITE_TEST */ + +/* +** An instance of the following structure holds the context of a +** sum() or avg() aggregate computation. +*/ +typedef struct SumCtx SumCtx; +struct SumCtx { + double sum; /* Sum of terms */ + int cnt; /* Number of elements summed */ +}; + +/* +** Routines used to compute the sum or average. +*/ +static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){ + SumCtx *p; + if( argc<1 ) return; + p = sqlite3_aggregate_context(context, sizeof(*p)); + if( p && SQLITE_NULL!=sqlite3_value_type(argv[0]) ){ + p->sum += sqlite3_value_double(argv[0]); + p->cnt++; + } +} +static void sumFinalize(sqlite3_context *context){ + SumCtx *p; + p = sqlite3_aggregate_context(context, sizeof(*p)); + sqlite3_result_double(context, p ? p->sum : 0.0); +} +static void avgFinalize(sqlite3_context *context){ + SumCtx *p; + p = sqlite3_aggregate_context(context, sizeof(*p)); + if( p && p->cnt>0 ){ + sqlite3_result_double(context, p->sum/(double)p->cnt); + } +} + +/* +** An instance of the following structure holds the context of a +** variance or standard deviation computation. +*/ +typedef struct StdDevCtx StdDevCtx; +struct StdDevCtx { + double sum; /* Sum of terms */ + double sum2; /* Sum of the squares of terms */ + int cnt; /* Number of terms counted */ +}; + +#if 0 /* Omit because math library is required */ +/* +** Routines used to compute the standard deviation as an aggregate. +*/ +static void stdDevStep(sqlite3_context *context, int argc, const char **argv){ + StdDevCtx *p; + double x; + if( argc<1 ) return; + p = sqlite3_aggregate_context(context, sizeof(*p)); + if( p && argv[0] ){ + x = sqlite3AtoF(argv[0], 0); + p->sum += x; + p->sum2 += x*x; + p->cnt++; + } +} +static void stdDevFinalize(sqlite3_context *context){ + double rN = sqlite3_aggregate_count(context); + StdDevCtx *p = sqlite3_aggregate_context(context, sizeof(*p)); + if( p && p->cnt>1 ){ + double rCnt = cnt; + sqlite3_set_result_double(context, + sqrt((p->sum2 - p->sum*p->sum/rCnt)/(rCnt-1.0))); + } +} +#endif + +/* +** The following structure keeps track of state information for the +** count() aggregate function. +*/ +typedef struct CountCtx CountCtx; +struct CountCtx { + int n; +}; + +/* +** Routines to implement the count() aggregate function. +*/ +static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){ + CountCtx *p; + p = sqlite3_aggregate_context(context, sizeof(*p)); + if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){ + p->n++; + } +} +static void countFinalize(sqlite3_context *context){ + CountCtx *p; + p = sqlite3_aggregate_context(context, sizeof(*p)); + sqlite3_result_int(context, p ? p->n : 0); +} + +/* +** This function tracks state information for the min() and max() +** aggregate functions. +*/ +typedef struct MinMaxCtx MinMaxCtx; +struct MinMaxCtx { + char *z; /* The best so far */ + char zBuf[28]; /* Space that can be used for storage */ +}; + +/* +** Routines to implement min() and max() aggregate functions. +*/ +static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){ + Mem *pArg = (Mem *)argv[0]; + Mem *pBest; + + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest)); + if( !pBest ) return; + + if( pBest->flags ){ + int max; + int cmp; + CollSeq *pColl = sqlite3GetFuncCollSeq(context); + /* This step function is used for both the min() and max() aggregates, + ** the only difference between the two being that the sense of the + ** comparison is inverted. For the max() aggregate, the + ** sqlite3_user_data() function returns (void *)-1. For min() it + ** returns (void *)db, where db is the sqlite3* database pointer. + ** Therefore the next statement sets variable 'max' to 1 for the max() + ** aggregate, or 0 for min(). + */ + max = ((sqlite3_user_data(context)==(void *)-1)?1:0); + cmp = sqlite3MemCompare(pBest, pArg, pColl); + if( (max && cmp<0) || (!max && cmp>0) ){ + sqlite3VdbeMemCopy(pBest, pArg); + } + }else{ + sqlite3VdbeMemCopy(pBest, pArg); + } +} +static void minMaxFinalize(sqlite3_context *context){ + sqlite3_value *pRes; + pRes = (sqlite3_value *)sqlite3_aggregate_context(context, sizeof(Mem)); + if( pRes->flags ){ + sqlite3_result_value(context, pRes); + } + sqlite3VdbeMemRelease(pRes); +} + + +/* +** This function registered all of the above C functions as SQL +** functions. This should be the only routine in this file with +** external linkage. +*/ +void sqlite3RegisterBuiltinFunctions(sqlite3 *db){ + static const struct { + char *zName; + signed char nArg; + u8 argType; /* 0: none. 1: db 2: (-1) */ + u8 eTextRep; /* 1: UTF-16. 0: UTF-8 */ + u8 needCollSeq; + void (*xFunc)(sqlite3_context*,int,sqlite3_value **); + } aFuncs[] = { + { "min", -1, 0, SQLITE_UTF8, 1, minmaxFunc }, + { "min", 0, 0, SQLITE_UTF8, 1, 0 }, + { "max", -1, 2, SQLITE_UTF8, 1, minmaxFunc }, + { "max", 0, 2, SQLITE_UTF8, 1, 0 }, + { "typeof", 1, 0, SQLITE_UTF8, 0, typeofFunc }, + { "length", 1, 0, SQLITE_UTF8, 0, lengthFunc }, + { "substr", 3, 0, SQLITE_UTF8, 0, substrFunc }, + { "substr", 3, 0, SQLITE_UTF16LE, 0, sqlite3utf16Substr }, + { "abs", 1, 0, SQLITE_UTF8, 0, absFunc }, + { "round", 1, 0, SQLITE_UTF8, 0, roundFunc }, + { "round", 2, 0, SQLITE_UTF8, 0, roundFunc }, + { "upper", 1, 0, SQLITE_UTF8, 0, upperFunc }, + { "lower", 1, 0, SQLITE_UTF8, 0, lowerFunc }, + { "coalesce", -1, 0, SQLITE_UTF8, 0, ifnullFunc }, + { "coalesce", 0, 0, SQLITE_UTF8, 0, 0 }, + { "coalesce", 1, 0, SQLITE_UTF8, 0, 0 }, + { "ifnull", 2, 0, SQLITE_UTF8, 1, ifnullFunc }, + { "random", -1, 0, SQLITE_UTF8, 0, randomFunc }, + { "like", 2, 0, SQLITE_UTF8, 0, likeFunc }, + { "glob", 2, 0, SQLITE_UTF8, 0, globFunc }, + { "nullif", 2, 0, SQLITE_UTF8, 1, nullifFunc }, + { "sqlite_version", 0, 0, SQLITE_UTF8, 0, versionFunc}, + { "quote", 1, 0, SQLITE_UTF8, 0, quoteFunc }, + { "last_insert_rowid", 0, 1, SQLITE_UTF8, 0, last_insert_rowid }, + { "changes", 0, 1, SQLITE_UTF8, 0, changes }, + { "total_changes", 0, 1, SQLITE_UTF8, 0, total_changes }, +#ifdef SQLITE_SOUNDEX + { "soundex", 1, 0, SQLITE_UTF8, 0, soundexFunc}, +#endif +#ifdef SQLITE_TEST + { "randstr", 2, 0, SQLITE_UTF8, 0, randStr }, + { "test_destructor", 1, 1, SQLITE_UTF8, 0, test_destructor}, + { "test_destructor_count", 0, 0, SQLITE_UTF8, 0, test_destructor_count}, + { "test_auxdata", -1, 0, SQLITE_UTF8, 0, test_auxdata}, +#endif + }; + static const struct { + char *zName; + signed char nArg; + u8 argType; + u8 needCollSeq; + void (*xStep)(sqlite3_context*,int,sqlite3_value**); + void (*xFinalize)(sqlite3_context*); + } aAggs[] = { + { "min", 1, 0, 1, minmaxStep, minMaxFinalize }, + { "max", 1, 2, 1, minmaxStep, minMaxFinalize }, + { "sum", 1, 0, 0, sumStep, sumFinalize }, + { "avg", 1, 0, 0, sumStep, avgFinalize }, + { "count", 0, 0, 0, countStep, countFinalize }, + { "count", 1, 0, 0, countStep, countFinalize }, +#if 0 + { "stddev", 1, 0, stdDevStep, stdDevFinalize }, +#endif + }; + int i; + + for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){ + void *pArg = 0; + switch( aFuncs[i].argType ){ + case 1: pArg = db; break; + case 2: pArg = (void *)(-1); break; + } + sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg, + aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0); + if( aFuncs[i].needCollSeq ){ + FuncDef *pFunc = sqlite3FindFunction(db, aFuncs[i].zName, + strlen(aFuncs[i].zName), aFuncs[i].nArg, aFuncs[i].eTextRep, 0); + if( pFunc && aFuncs[i].needCollSeq ){ + pFunc->needCollSeq = 1; + } + } + } + for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){ + void *pArg = 0; + switch( aAggs[i].argType ){ + case 1: pArg = db; break; + case 2: pArg = (void *)(-1); break; + } + sqlite3_create_function(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8, + pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize); + if( aAggs[i].needCollSeq ){ + FuncDef *pFunc = sqlite3FindFunction( db, aAggs[i].zName, + strlen(aAggs[i].zName), aAggs[i].nArg, SQLITE_UTF8, 0); + if( pFunc && aAggs[i].needCollSeq ){ + pFunc->needCollSeq = 1; + } + } + } + sqlite3RegisterDateTimeFunctions(db); +} diff --git a/kopete/plugins/statistics/sqlite/hash.c b/kopete/plugins/statistics/sqlite/hash.c new file mode 100644 index 00000000..23e2e197 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/hash.c @@ -0,0 +1,380 @@ +/* +** 2001 September 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the implementation of generic hash-tables +** used in SQLite. +** +** $Id$ +*/ +#include "sqliteInt.h" +#include <assert.h> + +/* Turn bulk memory into a hash table object by initializing the +** fields of the Hash structure. +** +** "pNew" is a pointer to the hash table that is to be initialized. +** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER, +** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass +** determines what kind of key the hash table will use. "copyKey" is +** true if the hash table should make its own private copy of keys and +** false if it should just use the supplied pointer. CopyKey only makes +** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored +** for other key classes. +*/ +void sqlite3HashInit(Hash *pNew, int keyClass, int copyKey){ + assert( pNew!=0 ); + assert( keyClass>=SQLITE_HASH_STRING && keyClass<=SQLITE_HASH_BINARY ); + pNew->keyClass = keyClass; +#if 0 + if( keyClass==SQLITE_HASH_POINTER || keyClass==SQLITE_HASH_INT ) copyKey = 0; +#endif + pNew->copyKey = copyKey; + pNew->first = 0; + pNew->count = 0; + pNew->htsize = 0; + pNew->ht = 0; +} + +/* Remove all entries from a hash table. Reclaim all memory. +** Call this routine to delete a hash table or to reset a hash table +** to the empty state. +*/ +void sqlite3HashClear(Hash *pH){ + HashElem *elem; /* For looping over all elements of the table */ + + assert( pH!=0 ); + elem = pH->first; + pH->first = 0; + if( pH->ht ) sqliteFree(pH->ht); + pH->ht = 0; + pH->htsize = 0; + while( elem ){ + HashElem *next_elem = elem->next; + if( pH->copyKey && elem->pKey ){ + sqliteFree(elem->pKey); + } + sqliteFree(elem); + elem = next_elem; + } + pH->count = 0; +} + +#if 0 /* NOT USED */ +/* +** Hash and comparison functions when the mode is SQLITE_HASH_INT +*/ +static int intHash(const void *pKey, int nKey){ + return nKey ^ (nKey<<8) ^ (nKey>>8); +} +static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){ + return n2 - n1; +} +#endif + +#if 0 /* NOT USED */ +/* +** Hash and comparison functions when the mode is SQLITE_HASH_POINTER +*/ +static int ptrHash(const void *pKey, int nKey){ + uptr x = Addr(pKey); + return x ^ (x<<8) ^ (x>>8); +} +static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){ + if( pKey1==pKey2 ) return 0; + if( pKey1<pKey2 ) return -1; + return 1; +} +#endif + +/* +** Hash and comparison functions when the mode is SQLITE_HASH_STRING +*/ +static int strHash(const void *pKey, int nKey){ + return sqlite3HashNoCase((const char*)pKey, nKey); +} +static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){ + if( n1!=n2 ) return 1; + return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1); +} + +/* +** Hash and comparison functions when the mode is SQLITE_HASH_BINARY +*/ +static int binHash(const void *pKey, int nKey){ + int h = 0; + const char *z = (const char *)pKey; + while( nKey-- > 0 ){ + h = (h<<3) ^ h ^ *(z++); + } + return h & 0x7fffffff; +} +static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){ + if( n1!=n2 ) return 1; + return memcmp(pKey1,pKey2,n1); +} + +/* +** Return a pointer to the appropriate hash function given the key class. +** +** The C syntax in this function definition may be unfamilar to some +** programmers, so we provide the following additional explanation: +** +** The name of the function is "hashFunction". The function takes a +** single parameter "keyClass". The return value of hashFunction() +** is a pointer to another function. Specifically, the return value +** of hashFunction() is a pointer to a function that takes two parameters +** with types "const void*" and "int" and returns an "int". +*/ +static int (*hashFunction(int keyClass))(const void*,int){ +#if 0 /* HASH_INT and HASH_POINTER are never used */ + switch( keyClass ){ + case SQLITE_HASH_INT: return &intHash; + case SQLITE_HASH_POINTER: return &ptrHash; + case SQLITE_HASH_STRING: return &strHash; + case SQLITE_HASH_BINARY: return &binHash;; + default: break; + } + return 0; +#else + if( keyClass==SQLITE_HASH_STRING ){ + return &strHash; + }else{ + assert( keyClass==SQLITE_HASH_BINARY ); + return &binHash; + } +#endif +} + +/* +** Return a pointer to the appropriate hash function given the key class. +** +** For help in interpreted the obscure C code in the function definition, +** see the header comment on the previous function. +*/ +static int (*compareFunction(int keyClass))(const void*,int,const void*,int){ +#if 0 /* HASH_INT and HASH_POINTER are never used */ + switch( keyClass ){ + case SQLITE_HASH_INT: return &intCompare; + case SQLITE_HASH_POINTER: return &ptrCompare; + case SQLITE_HASH_STRING: return &strCompare; + case SQLITE_HASH_BINARY: return &binCompare; + default: break; + } + return 0; +#else + if( keyClass==SQLITE_HASH_STRING ){ + return &strCompare; + }else{ + assert( keyClass==SQLITE_HASH_BINARY ); + return &binCompare; + } +#endif +} + +/* Link an element into the hash table +*/ +static void insertElement( + Hash *pH, /* The complete hash table */ + struct _ht *pEntry, /* The entry into which pNew is inserted */ + HashElem *pNew /* The element to be inserted */ +){ + HashElem *pHead; /* First element already in pEntry */ + pHead = pEntry->chain; + if( pHead ){ + pNew->next = pHead; + pNew->prev = pHead->prev; + if( pHead->prev ){ pHead->prev->next = pNew; } + else { pH->first = pNew; } + pHead->prev = pNew; + }else{ + pNew->next = pH->first; + if( pH->first ){ pH->first->prev = pNew; } + pNew->prev = 0; + pH->first = pNew; + } + pEntry->count++; + pEntry->chain = pNew; +} + + +/* Resize the hash table so that it cantains "new_size" buckets. +** "new_size" must be a power of 2. The hash table might fail +** to resize if sqliteMalloc() fails. +*/ +static void rehash(Hash *pH, int new_size){ + struct _ht *new_ht; /* The new hash table */ + HashElem *elem, *next_elem; /* For looping over existing elements */ + int (*xHash)(const void*,int); /* The hash function */ + + assert( (new_size & (new_size-1))==0 ); + new_ht = (struct _ht *)sqliteMalloc( new_size*sizeof(struct _ht) ); + if( new_ht==0 ) return; + if( pH->ht ) sqliteFree(pH->ht); + pH->ht = new_ht; + pH->htsize = new_size; + xHash = hashFunction(pH->keyClass); + for(elem=pH->first, pH->first=0; elem; elem = next_elem){ + int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1); + next_elem = elem->next; + insertElement(pH, &new_ht[h], elem); + } +} + +/* This function (for internal use only) locates an element in an +** hash table that matches the given key. The hash for this key has +** already been computed and is passed as the 4th parameter. +*/ +static HashElem *findElementGivenHash( + const Hash *pH, /* The pH to be searched */ + const void *pKey, /* The key we are searching for */ + int nKey, + int h /* The hash for this key. */ +){ + HashElem *elem; /* Used to loop thru the element list */ + int count; /* Number of elements left to test */ + int (*xCompare)(const void*,int,const void*,int); /* comparison function */ + + if( pH->ht ){ + struct _ht *pEntry = &pH->ht[h]; + elem = pEntry->chain; + count = pEntry->count; + xCompare = compareFunction(pH->keyClass); + while( count-- && elem ){ + if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ + return elem; + } + elem = elem->next; + } + } + return 0; +} + +/* Remove a single entry from the hash table given a pointer to that +** element and a hash on the element's key. +*/ +static void removeElementGivenHash( + Hash *pH, /* The pH containing "elem" */ + HashElem* elem, /* The element to be removed from the pH */ + int h /* Hash value for the element */ +){ + struct _ht *pEntry; + if( elem->prev ){ + elem->prev->next = elem->next; + }else{ + pH->first = elem->next; + } + if( elem->next ){ + elem->next->prev = elem->prev; + } + pEntry = &pH->ht[h]; + if( pEntry->chain==elem ){ + pEntry->chain = elem->next; + } + pEntry->count--; + if( pEntry->count<=0 ){ + pEntry->chain = 0; + } + if( pH->copyKey && elem->pKey ){ + sqliteFree(elem->pKey); + } + sqliteFree( elem ); + pH->count--; +} + +/* Attempt to locate an element of the hash table pH with a key +** that matches pKey,nKey. Return the data for this element if it is +** found, or NULL if there is no match. +*/ +void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){ + int h; /* A hash on key */ + HashElem *elem; /* The element that matches key */ + int (*xHash)(const void*,int); /* The hash function */ + + if( pH==0 || pH->ht==0 ) return 0; + xHash = hashFunction(pH->keyClass); + assert( xHash!=0 ); + h = (*xHash)(pKey,nKey); + assert( (pH->htsize & (pH->htsize-1))==0 ); + elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1)); + return elem ? elem->data : 0; +} + +/* Insert an element into the hash table pH. The key is pKey,nKey +** and the data is "data". +** +** If no element exists with a matching key, then a new +** element is created. A copy of the key is made if the copyKey +** flag is set. NULL is returned. +** +** If another element already exists with the same key, then the +** new data replaces the old data and the old data is returned. +** The key is not copied in this instance. If a malloc fails, then +** the new data is returned and the hash table is unchanged. +** +** If the "data" parameter to this function is NULL, then the +** element corresponding to "key" is removed from the hash table. +*/ +void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){ + int hraw; /* Raw hash value of the key */ + int h; /* the hash of the key modulo hash table size */ + HashElem *elem; /* Used to loop thru the element list */ + HashElem *new_elem; /* New element added to the pH */ + int (*xHash)(const void*,int); /* The hash function */ + + assert( pH!=0 ); + xHash = hashFunction(pH->keyClass); + assert( xHash!=0 ); + hraw = (*xHash)(pKey, nKey); + assert( (pH->htsize & (pH->htsize-1))==0 ); + h = hraw & (pH->htsize-1); + elem = findElementGivenHash(pH,pKey,nKey,h); + if( elem ){ + void *old_data = elem->data; + if( data==0 ){ + removeElementGivenHash(pH,elem,h); + }else{ + elem->data = data; + } + return old_data; + } + if( data==0 ) return 0; + new_elem = (HashElem*)sqliteMalloc( sizeof(HashElem) ); + if( new_elem==0 ) return data; + if( pH->copyKey && pKey!=0 ){ + new_elem->pKey = sqliteMallocRaw( nKey ); + if( new_elem->pKey==0 ){ + sqliteFree(new_elem); + return data; + } + memcpy((void*)new_elem->pKey, pKey, nKey); + }else{ + new_elem->pKey = (void*)pKey; + } + new_elem->nKey = nKey; + pH->count++; + if( pH->htsize==0 ){ + rehash(pH,8); + if( pH->htsize==0 ){ + pH->count = 0; + sqliteFree(new_elem); + return data; + } + } + if( pH->count > pH->htsize ){ + rehash(pH,pH->htsize*2); + } + assert( pH->htsize>0 ); + assert( (pH->htsize & (pH->htsize-1))==0 ); + h = hraw & (pH->htsize-1); + insertElement(pH, &pH->ht[h], new_elem); + new_elem->data = data; + return 0; +} diff --git a/kopete/plugins/statistics/sqlite/hash.h b/kopete/plugins/statistics/sqlite/hash.h new file mode 100644 index 00000000..cf004ddc --- /dev/null +++ b/kopete/plugins/statistics/sqlite/hash.h @@ -0,0 +1,109 @@ +/* +** 2001 September 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the header file for the generic hash-table implemenation +** used in SQLite. +** +** $Id$ +*/ +#ifndef _SQLITE_HASH_H_ +#define _SQLITE_HASH_H_ + +/* Forward declarations of structures. */ +typedef struct Hash Hash; +typedef struct HashElem HashElem; + +/* A complete hash table is an instance of the following structure. +** The internals of this structure are intended to be opaque -- client +** code should not attempt to access or modify the fields of this structure +** directly. Change this structure only by using the routines below. +** However, many of the "procedures" and "functions" for modifying and +** accessing this structure are really macros, so we can't really make +** this structure opaque. +*/ +struct Hash { + char keyClass; /* SQLITE_HASH_INT, _POINTER, _STRING, _BINARY */ + char copyKey; /* True if copy of key made on insert */ + int count; /* Number of entries in this table */ + HashElem *first; /* The first element of the array */ + int htsize; /* Number of buckets in the hash table */ + struct _ht { /* the hash table */ + int count; /* Number of entries with this hash */ + HashElem *chain; /* Pointer to first entry with this hash */ + } *ht; +}; + +/* Each element in the hash table is an instance of the following +** structure. All elements are stored on a single doubly-linked list. +** +** Again, this structure is intended to be opaque, but it can't really +** be opaque because it is used by macros. +*/ +struct HashElem { + HashElem *next, *prev; /* Next and previous elements in the table */ + void *data; /* Data associated with this element */ + void *pKey; int nKey; /* Key associated with this element */ +}; + +/* +** There are 4 different modes of operation for a hash table: +** +** SQLITE_HASH_INT nKey is used as the key and pKey is ignored. +** +** SQLITE_HASH_POINTER pKey is used as the key and nKey is ignored. +** +** SQLITE_HASH_STRING pKey points to a string that is nKey bytes long +** (including the null-terminator, if any). Case +** is ignored in comparisons. +** +** SQLITE_HASH_BINARY pKey points to binary data nKey bytes long. +** memcmp() is used to compare keys. +** +** A copy of the key is made for SQLITE_HASH_STRING and SQLITE_HASH_BINARY +** if the copyKey parameter to HashInit is 1. +*/ +/* #define SQLITE_HASH_INT 1 // NOT USED */ +/* #define SQLITE_HASH_POINTER 2 // NOT USED */ +#define SQLITE_HASH_STRING 3 +#define SQLITE_HASH_BINARY 4 + +/* +** Access routines. To delete, insert a NULL pointer. +*/ +void sqlite3HashInit(Hash*, int keytype, int copyKey); +void *sqlite3HashInsert(Hash*, const void *pKey, int nKey, void *pData); +void *sqlite3HashFind(const Hash*, const void *pKey, int nKey); +void sqlite3HashClear(Hash*); + +/* +** Macros for looping over all elements of a hash table. The idiom is +** like this: +** +** Hash h; +** HashElem *p; +** ... +** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){ +** SomeStructure *pData = sqliteHashData(p); +** // do something with pData +** } +*/ +#define sqliteHashFirst(H) ((H)->first) +#define sqliteHashNext(E) ((E)->next) +#define sqliteHashData(E) ((E)->data) +#define sqliteHashKey(E) ((E)->pKey) +#define sqliteHashKeysize(E) ((E)->nKey) + +/* +** Number of entries in a hash table +*/ +#define sqliteHashCount(H) ((H)->count) + +#endif /* _SQLITE_HASH_H_ */ diff --git a/kopete/plugins/statistics/sqlite/insert.c b/kopete/plugins/statistics/sqlite/insert.c new file mode 100644 index 00000000..65cbdc8f --- /dev/null +++ b/kopete/plugins/statistics/sqlite/insert.c @@ -0,0 +1,1018 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that are called by the parser +** to handle INSERT statements in SQLite. +** +** $Id$ +*/ +#include "sqliteInt.h" + +/* +** Set P3 of the most recently inserted opcode to a column affinity +** string for index pIdx. A column affinity string has one character +** for each column in the table, according to the affinity of the column: +** +** Character Column affinity +** ------------------------------ +** 'n' NUMERIC +** 'i' INTEGER +** 't' TEXT +** 'o' NONE +*/ +void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ + if( !pIdx->zColAff ){ + /* The first time a column affinity string for a particular index is + ** required, it is allocated and populated here. It is then stored as + ** a member of the Index structure for subsequent use. + ** + ** The column affinity string will eventually be deleted by + ** sqliteDeleteIndex() when the Index structure itself is cleaned + ** up. + */ + int n; + Table *pTab = pIdx->pTable; + pIdx->zColAff = (char *)sqliteMalloc(pIdx->nColumn+1); + if( !pIdx->zColAff ){ + return; + } + for(n=0; n<pIdx->nColumn; n++){ + pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; + } + pIdx->zColAff[pIdx->nColumn] = '\0'; + } + + sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0); +} + +/* +** Set P3 of the most recently inserted opcode to a column affinity +** string for table pTab. A column affinity string has one character +** for each column indexed by the index, according to the affinity of the +** column: +** +** Character Column affinity +** ------------------------------ +** 'n' NUMERIC +** 'i' INTEGER +** 't' TEXT +** 'o' NONE +*/ +void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ + /* The first time a column affinity string for a particular table + ** is required, it is allocated and populated here. It is then + ** stored as a member of the Table structure for subsequent use. + ** + ** The column affinity string will eventually be deleted by + ** sqlite3DeleteTable() when the Table structure itself is cleaned up. + */ + if( !pTab->zColAff ){ + char *zColAff; + int i; + + zColAff = (char *)sqliteMalloc(pTab->nCol+1); + if( !zColAff ){ + return; + } + + for(i=0; i<pTab->nCol; i++){ + zColAff[i] = pTab->aCol[i].affinity; + } + zColAff[pTab->nCol] = '\0'; + + pTab->zColAff = zColAff; + } + + sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0); +} + + +/* +** This routine is call to handle SQL of the following forms: +** +** insert into TABLE (IDLIST) values(EXPRLIST) +** insert into TABLE (IDLIST) select +** +** The IDLIST following the table name is always optional. If omitted, +** then a list of all columns for the table is substituted. The IDLIST +** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. +** +** The pList parameter holds EXPRLIST in the first form of the INSERT +** statement above, and pSelect is NULL. For the second form, pList is +** NULL and pSelect is a pointer to the select statement used to generate +** data for the insert. +** +** The code generated follows one of three templates. For a simple +** select with data coming from a VALUES clause, the code executes +** once straight down through. The template looks like this: +** +** open write cursor to <table> and its indices +** puts VALUES clause expressions onto the stack +** write the resulting record into <table> +** cleanup +** +** If the statement is of the form +** +** INSERT INTO <table> SELECT ... +** +** And the SELECT clause does not read from <table> at any time, then +** the generated code follows this template: +** +** goto B +** A: setup for the SELECT +** loop over the tables in the SELECT +** gosub C +** end loop +** cleanup after the SELECT +** goto D +** B: open write cursor to <table> and its indices +** goto A +** C: insert the select result into <table> +** return +** D: cleanup +** +** The third template is used if the insert statement takes its +** values from a SELECT but the data is being inserted into a table +** that is also read as part of the SELECT. In the third form, +** we have to use a intermediate table to store the results of +** the select. The template is like this: +** +** goto B +** A: setup for the SELECT +** loop over the tables in the SELECT +** gosub C +** end loop +** cleanup after the SELECT +** goto D +** C: insert the select result into the intermediate table +** return +** B: open a cursor to an intermediate table +** goto A +** D: open write cursor to <table> and its indices +** loop over the intermediate table +** transfer values form intermediate table into <table> +** end the loop +** cleanup +*/ +void sqlite3Insert( + Parse *pParse, /* Parser context */ + SrcList *pTabList, /* Name of table into which we are inserting */ + ExprList *pList, /* List of values to be inserted */ + Select *pSelect, /* A SELECT statement to use as the data source */ + IdList *pColumn, /* Column names corresponding to IDLIST. */ + int onError /* How to handle constraint errors */ +){ + Table *pTab; /* The table to insert into */ + char *zTab; /* Name of the table into which we are inserting */ + const char *zDb; /* Name of the database holding this table */ + int i, j, idx; /* Loop counters */ + Vdbe *v; /* Generate code into this virtual machine */ + Index *pIdx; /* For looping over indices of the table */ + int nColumn; /* Number of columns in the data */ + int base = 0; /* VDBE Cursor number for pTab */ + int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */ + sqlite3 *db; /* The main database structure */ + int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ + int endOfLoop; /* Label for the end of the insertion loop */ + int useTempTable; /* Store SELECT results in intermediate table */ + int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ + int iSelectLoop = 0; /* Address of code that implements the SELECT */ + int iCleanup = 0; /* Address of the cleanup code */ + int iInsertBlock = 0; /* Address of the subroutine used to insert data */ + int iCntMem = 0; /* Memory cell used for the row counter */ + int isView; /* True if attempting to insert into a view */ + + int row_triggers_exist = 0; /* True if there are FOR EACH ROW triggers */ + int before_triggers; /* True if there are BEFORE triggers */ + int after_triggers; /* True if there are AFTER triggers */ + int newIdx = -1; /* Cursor for the NEW table */ + + if( pParse->nErr || sqlite3_malloc_failed ) goto insert_cleanup; + db = pParse->db; + + /* Locate the table into which we will be inserting new information. + */ + assert( pTabList->nSrc==1 ); + zTab = pTabList->a[0].zName; + if( zTab==0 ) goto insert_cleanup; + pTab = sqlite3SrcListLookup(pParse, pTabList); + if( pTab==0 ){ + goto insert_cleanup; + } + assert( pTab->iDb<db->nDb ); + zDb = db->aDb[pTab->iDb].zName; + if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ + goto insert_cleanup; + } + + /* Ensure that: + * (a) the table is not read-only, + * (b) that if it is a view then ON INSERT triggers exist + */ + before_triggers = sqlite3TriggersExist(pParse, pTab->pTrigger, TK_INSERT, + TK_BEFORE, TK_ROW, 0); + after_triggers = sqlite3TriggersExist(pParse, pTab->pTrigger, TK_INSERT, + TK_AFTER, TK_ROW, 0); + row_triggers_exist = before_triggers || after_triggers; + isView = pTab->pSelect!=0; + if( sqlite3IsReadOnly(pParse, pTab, before_triggers) ){ + goto insert_cleanup; + } + if( pTab==0 ) goto insert_cleanup; + + /* If pTab is really a view, make sure it has been initialized. + */ + if( isView && sqlite3ViewGetColumnNames(pParse, pTab) ){ + goto insert_cleanup; + } + + /* Ensure all required collation sequences are available. */ + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + if( sqlite3CheckIndexCollSeq(pParse, pIdx) ){ + goto insert_cleanup; + } + } + + /* Allocate a VDBE + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ) goto insert_cleanup; + sqlite3VdbeCountChanges(v); + sqlite3BeginWriteOperation(pParse, pSelect || row_triggers_exist, pTab->iDb); + + /* if there are row triggers, allocate a temp table for new.* references. */ + if( row_triggers_exist ){ + newIdx = pParse->nTab++; + } + + /* Figure out how many columns of data are supplied. If the data + ** is coming from a SELECT statement, then this step also generates + ** all the code to implement the SELECT statement and invoke a subroutine + ** to process each row of the result. (Template 2.) If the SELECT + ** statement uses the the table that is being inserted into, then the + ** subroutine is also coded here. That subroutine stores the SELECT + ** results in a temporary table. (Template 3.) + */ + if( pSelect ){ + /* Data is coming from a SELECT. Generate code to implement that SELECT + */ + int rc, iInitCode; + iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); + iSelectLoop = sqlite3VdbeCurrentAddr(v); + iInsertBlock = sqlite3VdbeMakeLabel(v); + rc = sqlite3Select(pParse, pSelect, SRT_Subroutine, iInsertBlock, 0,0,0,0); + if( rc || pParse->nErr || sqlite3_malloc_failed ) goto insert_cleanup; + iCleanup = sqlite3VdbeMakeLabel(v); + sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup); + assert( pSelect->pEList ); + nColumn = pSelect->pEList->nExpr; + + /* Set useTempTable to TRUE if the result of the SELECT statement + ** should be written into a temporary table. Set to FALSE if each + ** row of the SELECT can be written directly into the result table. + ** + ** A temp table must be used if the table being updated is also one + ** of the tables being read by the SELECT statement. Also use a + ** temp table in the case of row triggers. + */ + if( row_triggers_exist ){ + useTempTable = 1; + }else{ + int addr = 0; + useTempTable = 0; + while( useTempTable==0 ){ + VdbeOp *pOp; + addr = sqlite3VdbeFindOp(v, addr, OP_OpenRead, pTab->tnum); + if( addr==0 ) break; + pOp = sqlite3VdbeGetOp(v, addr-2); + if( pOp->opcode==OP_Integer && pOp->p1==pTab->iDb ){ + useTempTable = 1; + } + } + } + + if( useTempTable ){ + /* Generate the subroutine that SELECT calls to process each row of + ** the result. Store the result in a temporary table + */ + srcTab = pParse->nTab++; + sqlite3VdbeResolveLabel(v, iInsertBlock); + sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); + sqlite3TableAffinityStr(v, pTab); + sqlite3VdbeAddOp(v, OP_NewRecno, srcTab, 0); + sqlite3VdbeAddOp(v, OP_Pull, 1, 0); + sqlite3VdbeAddOp(v, OP_PutIntKey, srcTab, 0); + sqlite3VdbeAddOp(v, OP_Return, 0, 0); + + /* The following code runs first because the GOTO at the very top + ** of the program jumps to it. Create the temporary table, then jump + ** back up and execute the SELECT code above. + */ + sqlite3VdbeChangeP2(v, iInitCode, sqlite3VdbeCurrentAddr(v)); + sqlite3VdbeAddOp(v, OP_OpenTemp, srcTab, 0); + sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn); + sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop); + sqlite3VdbeResolveLabel(v, iCleanup); + }else{ + sqlite3VdbeChangeP2(v, iInitCode, sqlite3VdbeCurrentAddr(v)); + } + }else{ + /* This is the case if the data for the INSERT is coming from a VALUES + ** clause + */ + SrcList dummy; + assert( pList!=0 ); + srcTab = -1; + useTempTable = 0; + assert( pList ); + nColumn = pList->nExpr; + dummy.nSrc = 0; + for(i=0; i<nColumn; i++){ + if( sqlite3ExprResolveAndCheck(pParse,&dummy,0,pList->a[i].pExpr,0,0) ){ + goto insert_cleanup; + } + } + } + + /* Make sure the number of columns in the source data matches the number + ** of columns to be inserted into the table. + */ + if( pColumn==0 && nColumn!=pTab->nCol ){ + sqlite3ErrorMsg(pParse, + "table %S has %d columns but %d values were supplied", + pTabList, 0, pTab->nCol, nColumn); + goto insert_cleanup; + } + if( pColumn!=0 && nColumn!=pColumn->nId ){ + sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); + goto insert_cleanup; + } + + /* If the INSERT statement included an IDLIST term, then make sure + ** all elements of the IDLIST really are columns of the table and + ** remember the column indices. + ** + ** If the table has an INTEGER PRIMARY KEY column and that column + ** is named in the IDLIST, then record in the keyColumn variable + ** the index into IDLIST of the primary key column. keyColumn is + ** the index of the primary key as it appears in IDLIST, not as + ** is appears in the original table. (The index of the primary + ** key in the original table is pTab->iPKey.) + */ + if( pColumn ){ + for(i=0; i<pColumn->nId; i++){ + pColumn->a[i].idx = -1; + } + for(i=0; i<pColumn->nId; i++){ + for(j=0; j<pTab->nCol; j++){ + if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ + pColumn->a[i].idx = j; + if( j==pTab->iPKey ){ + keyColumn = i; + } + break; + } + } + if( j>=pTab->nCol ){ + if( sqlite3IsRowid(pColumn->a[i].zName) ){ + keyColumn = i; + }else{ + sqlite3ErrorMsg(pParse, "table %S has no column named %s", + pTabList, 0, pColumn->a[i].zName); + pParse->nErr++; + goto insert_cleanup; + } + } + } + } + + /* If there is no IDLIST term but the table has an integer primary + ** key, the set the keyColumn variable to the primary key column index + ** in the original table definition. + */ + if( pColumn==0 ){ + keyColumn = pTab->iPKey; + } + + /* Open the temp table for FOR EACH ROW triggers + */ + if( row_triggers_exist ){ + sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0); + sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol); + } + + /* Initialize the count of rows to be inserted + */ + if( db->flags & SQLITE_CountRows ){ + iCntMem = pParse->nMem++; + sqlite3VdbeAddOp(v, OP_Integer, 0, 0); + sqlite3VdbeAddOp(v, OP_MemStore, iCntMem, 1); + } + + /* Open tables and indices if there are no row triggers */ + if( !row_triggers_exist ){ + base = pParse->nTab; + sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite); + } + + /* If the data source is a temporary table, then we have to create + ** a loop because there might be multiple rows of data. If the data + ** source is a subroutine call from the SELECT statement, then we need + ** to launch the SELECT statement processing. + */ + if( useTempTable ){ + iBreak = sqlite3VdbeMakeLabel(v); + sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak); + iCont = sqlite3VdbeCurrentAddr(v); + }else if( pSelect ){ + sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop); + sqlite3VdbeResolveLabel(v, iInsertBlock); + } + + /* Run the BEFORE and INSTEAD OF triggers, if there are any + */ + endOfLoop = sqlite3VdbeMakeLabel(v); + if( before_triggers ){ + + /* build the NEW.* reference row. Note that if there is an INTEGER + ** PRIMARY KEY into which a NULL is being inserted, that NULL will be + ** translated into a unique ID for the row. But on a BEFORE trigger, + ** we do not know what the unique ID will be (because the insert has + ** not happened yet) so we substitute a rowid of -1 + */ + if( keyColumn<0 ){ + sqlite3VdbeAddOp(v, OP_Integer, -1, 0); + }else if( useTempTable ){ + sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn); + }else if( pSelect ){ + sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1); + }else{ + sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr); + sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); + sqlite3VdbeAddOp(v, OP_Pop, 1, 0); + sqlite3VdbeAddOp(v, OP_Integer, -1, 0); + sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); + } + + /* Create the new column data + */ + for(i=0; i<pTab->nCol; i++){ + if( pColumn==0 ){ + j = i; + }else{ + for(j=0; j<pColumn->nId; j++){ + if( pColumn->a[j].idx==i ) break; + } + } + if( pColumn && j>=pColumn->nId ){ + sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[i].zDflt, P3_STATIC); + }else if( useTempTable ){ + sqlite3VdbeAddOp(v, OP_Column, srcTab, j); + }else if( pSelect ){ + sqlite3VdbeAddOp(v, OP_Dup, nColumn-j-1, 1); + }else{ + sqlite3ExprCode(pParse, pList->a[j].pExpr); + } + } + sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); + + /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, + ** do not attempt any conversions before assembling the record. + ** If this is a real table, attempt conversions as required by the + ** table column affinities. + */ + if( !isView ){ + sqlite3TableAffinityStr(v, pTab); + } + sqlite3VdbeAddOp(v, OP_PutIntKey, newIdx, 0); + + /* Fire BEFORE or INSTEAD OF triggers */ + if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TK_BEFORE, pTab, + newIdx, -1, onError, endOfLoop) ){ + goto insert_cleanup; + } + } + + /* If any triggers exists, the opening of tables and indices is deferred + ** until now. + */ + if( row_triggers_exist && !isView ){ + base = pParse->nTab; + sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite); + } + + /* Push the record number for the new entry onto the stack. The + ** record number is a randomly generate integer created by NewRecno + ** except when the table has an INTEGER PRIMARY KEY column, in which + ** case the record number is the same as that column. + */ + if( !isView ){ + if( keyColumn>=0 ){ + if( useTempTable ){ + sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn); + }else if( pSelect ){ + sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1); + }else{ + sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr); + } + /* If the PRIMARY KEY expression is NULL, then use OP_NewRecno + ** to generate a unique primary key value. + */ + sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); + sqlite3VdbeAddOp(v, OP_Pop, 1, 0); + sqlite3VdbeAddOp(v, OP_NewRecno, base, 0); + sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); + }else{ + sqlite3VdbeAddOp(v, OP_NewRecno, base, 0); + } + + /* Push onto the stack, data for all columns of the new entry, beginning + ** with the first column. + */ + for(i=0; i<pTab->nCol; i++){ + if( i==pTab->iPKey ){ + /* The value of the INTEGER PRIMARY KEY column is always a NULL. + ** Whenever this column is read, the record number will be substituted + ** in its place. So will fill this column with a NULL to avoid + ** taking up data space with information that will never be used. */ + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + continue; + } + if( pColumn==0 ){ + j = i; + }else{ + for(j=0; j<pColumn->nId; j++){ + if( pColumn->a[j].idx==i ) break; + } + } + if( pColumn && j>=pColumn->nId ){ + sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[i].zDflt, P3_STATIC); + }else if( useTempTable ){ + sqlite3VdbeAddOp(v, OP_Column, srcTab, j); + }else if( pSelect ){ + sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j, 1); + }else{ + sqlite3ExprCode(pParse, pList->a[j].pExpr); + } + } + + /* Generate code to check constraints and generate index keys and + ** do the insertion. + */ + sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0, + 0, onError, endOfLoop); + sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0, + after_triggers ? newIdx : -1); + } + + /* Update the count of rows that are inserted + */ + if( (db->flags & SQLITE_CountRows)!=0 ){ + sqlite3VdbeAddOp(v, OP_MemIncr, iCntMem, 0); + } + + if( row_triggers_exist ){ + /* Close all tables opened */ + if( !isView ){ + sqlite3VdbeAddOp(v, OP_Close, base, 0); + for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ + sqlite3VdbeAddOp(v, OP_Close, idx+base, 0); + } + } + + /* Code AFTER triggers */ + if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TK_AFTER, pTab, newIdx, -1, + onError, endOfLoop) ){ + goto insert_cleanup; + } + } + + /* The bottom of the loop, if the data source is a SELECT statement + */ + sqlite3VdbeResolveLabel(v, endOfLoop); + if( useTempTable ){ + sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont); + sqlite3VdbeResolveLabel(v, iBreak); + sqlite3VdbeAddOp(v, OP_Close, srcTab, 0); + }else if( pSelect ){ + sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); + sqlite3VdbeAddOp(v, OP_Return, 0, 0); + sqlite3VdbeResolveLabel(v, iCleanup); + } + + if( !row_triggers_exist ){ + /* Close all tables opened */ + sqlite3VdbeAddOp(v, OP_Close, base, 0); + for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ + sqlite3VdbeAddOp(v, OP_Close, idx+base, 0); + } + } + + /* + ** Return the number of rows inserted. + */ + if( db->flags & SQLITE_CountRows ){ + sqlite3VdbeAddOp(v, OP_MemLoad, iCntMem, 0); + sqlite3VdbeAddOp(v, OP_Callback, 1, 0); + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, "rows inserted", P3_STATIC); + } + +insert_cleanup: + sqlite3SrcListDelete(pTabList); + if( pList ) sqlite3ExprListDelete(pList); + if( pSelect ) sqlite3SelectDelete(pSelect); + sqlite3IdListDelete(pColumn); +} + +/* +** Generate code to do a constraint check prior to an INSERT or an UPDATE. +** +** When this routine is called, the stack contains (from bottom to top) +** the following values: +** +** 1. The recno of the row to be updated before the update. This +** value is omitted unless we are doing an UPDATE that involves a +** change to the record number. +** +** 2. The recno of the row after the update. +** +** 3. The data in the first column of the entry after the update. +** +** i. Data from middle columns... +** +** N. The data in the last column of the entry after the update. +** +** The old recno shown as entry (1) above is omitted unless both isUpdate +** and recnoChng are 1. isUpdate is true for UPDATEs and false for +** INSERTs and recnoChng is true if the record number is being changed. +** +** The code generated by this routine pushes additional entries onto +** the stack which are the keys for new index entries for the new record. +** The order of index keys is the same as the order of the indices on +** the pTable->pIndex list. A key is only created for index i if +** aIdxUsed!=0 and aIdxUsed[i]!=0. +** +** This routine also generates code to check constraints. NOT NULL, +** CHECK, and UNIQUE constraints are all checked. If a constraint fails, +** then the appropriate action is performed. There are five possible +** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. +** +** Constraint type Action What Happens +** --------------- ---------- ---------------------------------------- +** any ROLLBACK The current transaction is rolled back and +** sqlite3_exec() returns immediately with a +** return code of SQLITE_CONSTRAINT. +** +** any ABORT Back out changes from the current command +** only (do not do a complete rollback) then +** cause sqlite3_exec() to return immediately +** with SQLITE_CONSTRAINT. +** +** any FAIL Sqlite_exec() returns immediately with a +** return code of SQLITE_CONSTRAINT. The +** transaction is not rolled back and any +** prior changes are retained. +** +** any IGNORE The record number and data is popped from +** the stack and there is an immediate jump +** to label ignoreDest. +** +** NOT NULL REPLACE The NULL value is replace by the default +** value for that column. If the default value +** is NULL, the action is the same as ABORT. +** +** UNIQUE REPLACE The other row that conflicts with the row +** being inserted is removed. +** +** CHECK REPLACE Illegal. The results in an exception. +** +** Which action to take is determined by the overrideError parameter. +** Or if overrideError==OE_Default, then the pParse->onError parameter +** is used. Or if pParse->onError==OE_Default then the onError value +** for the constraint is used. +** +** The calling routine must open a read/write cursor for pTab with +** cursor number "base". All indices of pTab must also have open +** read/write cursors with cursor number base+i for the i-th cursor. +** Except, if there is no possibility of a REPLACE action then +** cursors do not need to be open for indices where aIdxUsed[i]==0. +** +** If the isUpdate flag is true, it means that the "base" cursor is +** initially pointing to an entry that is being updated. The isUpdate +** flag causes extra code to be generated so that the "base" cursor +** is still pointing at the same entry after the routine returns. +** Without the isUpdate flag, the "base" cursor might be moved. +*/ +void sqlite3GenerateConstraintChecks( + Parse *pParse, /* The parser context */ + Table *pTab, /* the table into which we are inserting */ + int base, /* Index of a read/write cursor pointing at pTab */ + char *aIdxUsed, /* Which indices are used. NULL means all are used */ + int recnoChng, /* True if the record number will change */ + int isUpdate, /* True for UPDATE, False for INSERT */ + int overrideError, /* Override onError to this if not OE_Default */ + int ignoreDest /* Jump to this label on an OE_Ignore resolution */ +){ + int i; + Vdbe *v; + int nCol; + int onError; + int addr; + int extra; + int iCur; + Index *pIdx; + int seenReplace = 0; + int jumpInst1=0, jumpInst2; + int contAddr; + int hasTwoRecnos = (isUpdate && recnoChng); + + v = sqlite3GetVdbe(pParse); + assert( v!=0 ); + assert( pTab->pSelect==0 ); /* This table is not a VIEW */ + nCol = pTab->nCol; + + /* Test all NOT NULL constraints. + */ + for(i=0; i<nCol; i++){ + if( i==pTab->iPKey ){ + continue; + } + onError = pTab->aCol[i].notNull; + if( onError==OE_None ) continue; + if( overrideError!=OE_Default ){ + onError = overrideError; + }else if( onError==OE_Default ){ + onError = OE_Abort; + } + if( onError==OE_Replace && pTab->aCol[i].zDflt==0 ){ + onError = OE_Abort; + } + sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1); + addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0); + switch( onError ){ + case OE_Rollback: + case OE_Abort: + case OE_Fail: { + char *zMsg = 0; + sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError); + sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName, + " may not be NULL", (char*)0); + sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC); + break; + } + case OE_Ignore: { + sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0); + sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); + break; + } + case OE_Replace: { + sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[i].zDflt, P3_STATIC); + sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0); + break; + } + default: assert(0); + } + sqlite3VdbeChangeP2(v, addr, sqlite3VdbeCurrentAddr(v)); + } + + /* Test all CHECK constraints + */ + /**** TBD ****/ + + /* If we have an INTEGER PRIMARY KEY, make sure the primary key + ** of the new record does not previously exist. Except, if this + ** is an UPDATE and the primary key is not changing, that is OK. + */ + if( recnoChng ){ + onError = pTab->keyConf; + if( overrideError!=OE_Default ){ + onError = overrideError; + }else if( onError==OE_Default ){ + onError = OE_Abort; + } + + if( isUpdate ){ + sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); + sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); + jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0); + } + sqlite3VdbeAddOp(v, OP_Dup, nCol, 1); + jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0); + switch( onError ){ + default: { + onError = OE_Abort; + /* Fall thru into the next case */ + } + case OE_Rollback: + case OE_Abort: + case OE_Fail: { + sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, + "PRIMARY KEY must be unique", P3_STATIC); + break; + } + case OE_Replace: { + sqlite3GenerateRowIndexDelete(pParse->db, v, pTab, base, 0); + if( isUpdate ){ + sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRecnos, 1); + sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); + } + seenReplace = 1; + break; + } + case OE_Ignore: { + assert( seenReplace==0 ); + sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0); + sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); + break; + } + } + contAddr = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeChangeP2(v, jumpInst2, contAddr); + if( isUpdate ){ + sqlite3VdbeChangeP2(v, jumpInst1, contAddr); + sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); + sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); + } + } + + /* Test all UNIQUE constraints by creating entries for each UNIQUE + ** index and making sure that duplicate entries do not already exist. + ** Add the new records to the indices as we go. + */ + extra = -1; + for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ + if( aIdxUsed && aIdxUsed[iCur]==0 ) continue; /* Skip unused indices */ + extra++; + + /* Create a key for accessing the index entry */ + sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1); + for(i=0; i<pIdx->nColumn; i++){ + int idx = pIdx->aiColumn[i]; + if( idx==pTab->iPKey ){ + sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1); + }else{ + sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1); + } + } + jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeRecord, pIdx->nColumn, (1<<24)); + sqlite3IndexAffinityStr(v, pIdx); + + /* Find out what action to take in case there is an indexing conflict */ + onError = pIdx->onError; + if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */ + if( overrideError!=OE_Default ){ + onError = overrideError; + }else if( onError==OE_Default ){ + onError = OE_Abort; + } + if( seenReplace ){ + if( onError==OE_Ignore ) onError = OE_Replace; + else if( onError==OE_Fail ) onError = OE_Abort; + } + + + /* Check to see if the new index entry will be unique */ + sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRecnos, 1); + jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0); + + /* Generate code that executes if the new index entry is not unique */ + switch( onError ){ + case OE_Rollback: + case OE_Abort: + case OE_Fail: { + int j, n1, n2; + char zErrMsg[200]; + strcpy(zErrMsg, pIdx->nColumn>1 ? "columns " : "column "); + n1 = strlen(zErrMsg); + for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){ + char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; + n2 = strlen(zCol); + if( j>0 ){ + strcpy(&zErrMsg[n1], ", "); + n1 += 2; + } + if( n1+n2>sizeof(zErrMsg)-30 ){ + strcpy(&zErrMsg[n1], "..."); + n1 += 3; + break; + }else{ + strcpy(&zErrMsg[n1], zCol); + n1 += n2; + } + } + strcpy(&zErrMsg[n1], + pIdx->nColumn>1 ? " are not unique" : " is not unique"); + sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0); + break; + } + case OE_Ignore: { + assert( seenReplace==0 ); + sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRecnos, 0); + sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); + break; + } + case OE_Replace: { + sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0); + if( isUpdate ){ + sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRecnos, 1); + sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); + } + seenReplace = 1; + break; + } + default: assert(0); + } + contAddr = sqlite3VdbeCurrentAddr(v); + assert( contAddr<(1<<24) ); +#if NULL_DISTINCT_FOR_UNIQUE + sqlite3VdbeChangeP2(v, jumpInst1, contAddr | (1<<24)); +#endif + sqlite3VdbeChangeP2(v, jumpInst2, contAddr); + } +} + +/* +** This routine generates code to finish the INSERT or UPDATE operation +** that was started by a prior call to sqlite3GenerateConstraintChecks. +** The stack must contain keys for all active indices followed by data +** and the recno for the new entry. This routine creates the new +** entries in all indices and in the main table. +** +** The arguments to this routine should be the same as the first six +** arguments to sqlite3GenerateConstraintChecks. +*/ +void sqlite3CompleteInsertion( + Parse *pParse, /* The parser context */ + Table *pTab, /* the table into which we are inserting */ + int base, /* Index of a read/write cursor pointing at pTab */ + char *aIdxUsed, /* Which indices are used. NULL means all are used */ + int recnoChng, /* True if the record number will change */ + int isUpdate, /* True for UPDATE, False for INSERT */ + int newIdx /* Index of NEW table for triggers. -1 if none */ +){ + int i; + Vdbe *v; + int nIdx; + Index *pIdx; + int pik_flags; + + v = sqlite3GetVdbe(pParse); + assert( v!=0 ); + assert( pTab->pSelect==0 ); /* This table is not a VIEW */ + for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} + for(i=nIdx-1; i>=0; i--){ + if( aIdxUsed && aIdxUsed[i]==0 ) continue; + sqlite3VdbeAddOp(v, OP_IdxPut, base+i+1, 0); + } + sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); + sqlite3TableAffinityStr(v, pTab); + if( newIdx>=0 ){ + sqlite3VdbeAddOp(v, OP_Dup, 1, 0); + sqlite3VdbeAddOp(v, OP_Dup, 1, 0); + sqlite3VdbeAddOp(v, OP_PutIntKey, newIdx, 0); + } + pik_flags = (OPFLAG_NCHANGE|(isUpdate?0:OPFLAG_LASTROWID)); + sqlite3VdbeAddOp(v, OP_PutIntKey, base, pik_flags); + + if( isUpdate && recnoChng ){ + sqlite3VdbeAddOp(v, OP_Pop, 1, 0); + } +} + +/* +** Generate code that will open cursors for a table and for all +** indices of that table. The "base" parameter is the cursor number used +** for the table. Indices are opened on subsequent cursors. +*/ +void sqlite3OpenTableAndIndices( + Parse *pParse, /* Parsing context */ + Table *pTab, /* Table to be opened */ + int base, /* Cursor number assigned to the table */ + int op /* OP_OpenRead or OP_OpenWrite */ +){ + int i; + Index *pIdx; + Vdbe *v = sqlite3GetVdbe(pParse); + assert( v!=0 ); + sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0); + sqlite3VdbeAddOp(v, op, base, pTab->tnum); + VdbeComment((v, "# %s", pTab->zName)); + sqlite3VdbeAddOp(v, OP_SetNumColumns, base, pTab->nCol); + for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ + sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0); + sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, + (char*)&pIdx->keyInfo, P3_KEYINFO); + } + if( pParse->nTab<=base+i ){ + pParse->nTab = base+i; + } +} diff --git a/kopete/plugins/statistics/sqlite/legacy.c b/kopete/plugins/statistics/sqlite/legacy.c new file mode 100644 index 00000000..f575f1f0 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/legacy.c @@ -0,0 +1,138 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Main file for the SQLite library. The routines in this file +** implement the programmer interface to the library. Routines in +** other files are for internal use by SQLite and should not be +** accessed by users of the library. +** +** $Id$ +*/ + +#include "sqliteInt.h" +#include "os.h" +#include <ctype.h> + +/* +** Execute SQL code. Return one of the SQLITE_ success/failure +** codes. Also write an error message into memory obtained from +** malloc() and make *pzErrMsg point to that message. +** +** If the SQL is a query, then for each row in the query result +** the xCallback() function is called. pArg becomes the first +** argument to xCallback(). If xCallback=NULL then no callback +** is invoked, even for queries. +*/ +int sqlite3_exec( + sqlite3 *db, /* The database on which the SQL executes */ + const char *zSql, /* The SQL to be executed */ + sqlite3_callback xCallback, /* Invoke this callback routine */ + void *pArg, /* First argument to xCallback() */ + char **pzErrMsg /* Write error messages here */ +){ + int rc = SQLITE_OK; + const char *zLeftover; + sqlite3_stmt *pStmt = 0; + char **azCols = 0; + + int nRetry = 0; + int nChange = 0; + int nCallback; + + if( zSql==0 ) return SQLITE_OK; + while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){ + int nCol; + char **azVals = 0; + + pStmt = 0; + rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover); + if( rc!=SQLITE_OK ){ + if( pStmt ) sqlite3_finalize(pStmt); + continue; + } + if( !pStmt ){ + /* this happens for a comment or white-space */ + zSql = zLeftover; + continue; + } + + db->nChange += nChange; + nCallback = 0; + + nCol = sqlite3_column_count(pStmt); + azCols = sqliteMalloc(2*nCol*sizeof(const char *)); + if( nCol && !azCols ){ + rc = SQLITE_NOMEM; + goto exec_out; + } + + while( 1 ){ + int i; + rc = sqlite3_step(pStmt); + + /* Invoke the callback function if required */ + if( xCallback && (SQLITE_ROW==rc || + (SQLITE_DONE==rc && !nCallback && db->flags&SQLITE_NullCallback)) ){ + if( 0==nCallback ){ + for(i=0; i<nCol; i++){ + azCols[i] = (char *)sqlite3_column_name(pStmt, i); + } + nCallback++; + } + if( rc==SQLITE_ROW ){ + azVals = &azCols[nCol]; + for(i=0; i<nCol; i++){ + azVals[i] = (char *)sqlite3_column_text(pStmt, i); + } + } + if( xCallback(pArg, nCol, azVals, azCols) ){ + rc = SQLITE_ABORT; + goto exec_out; + } + } + + if( rc!=SQLITE_ROW ){ + rc = sqlite3_finalize(pStmt); + pStmt = 0; + if( db->pVdbe==0 ){ + nChange = db->nChange; + } + if( rc!=SQLITE_SCHEMA ){ + nRetry = 0; + zSql = zLeftover; + while( isspace((unsigned char)zSql[0]) ) zSql++; + } + break; + } + } + + sqliteFree(azCols); + azCols = 0; + } + +exec_out: + if( pStmt ) sqlite3_finalize(pStmt); + if( azCols ) sqliteFree(azCols); + + if( sqlite3_malloc_failed ){ + rc = SQLITE_NOMEM; + } + if( rc!=SQLITE_OK && rc==sqlite3_errcode(db) && pzErrMsg ){ + *pzErrMsg = malloc(1+strlen(sqlite3_errmsg(db))); + if( *pzErrMsg ){ + strcpy(*pzErrMsg, sqlite3_errmsg(db)); + } + }else if( pzErrMsg ){ + *pzErrMsg = 0; + } + + return rc; +} diff --git a/kopete/plugins/statistics/sqlite/lempar.c b/kopete/plugins/statistics/sqlite/lempar.c new file mode 100644 index 00000000..ee1edbfa --- /dev/null +++ b/kopete/plugins/statistics/sqlite/lempar.c @@ -0,0 +1,687 @@ +/* Driver template for the LEMON parser generator. +** The author disclaims copyright to this source code. +*/ +/* First off, code is include which follows the "include" declaration +** in the input file. */ +#include <stdio.h> +%% +/* Next is all token values, in a form suitable for use by makeheaders. +** This section will be null unless lemon is run with the -m switch. +*/ +/* +** These constants (all generated automatically by the parser generator) +** specify the various kinds of tokens (terminals) that the parser +** understands. +** +** Each symbol here is a terminal symbol in the grammar. +*/ +%% +/* Make sure the INTERFACE macro is defined. +*/ +#ifndef INTERFACE +# define INTERFACE 1 +#endif +/* The next thing included is series of defines which control +** various aspects of the generated parser. +** YYCODETYPE is the data type used for storing terminal +** and nonterminal numbers. "unsigned char" is +** used if there are fewer than 250 terminals +** and nonterminals. "int" is used otherwise. +** YYNOCODE is a number of type YYCODETYPE which corresponds +** to no legal terminal or nonterminal number. This +** number is used to fill in empty slots of the hash +** table. +** YYFALLBACK If defined, this indicates that one or more tokens +** have fall-back values which should be used if the +** original value of the token will not parse. +** YYACTIONTYPE is the data type used for storing terminal +** and nonterminal numbers. "unsigned char" is +** used if there are fewer than 250 rules and +** states combined. "int" is used otherwise. +** ParseTOKENTYPE is the data type used for minor tokens given +** directly to the parser from the tokenizer. +** YYMINORTYPE is the data type used for all minor tokens. +** This is typically a union of many types, one of +** which is ParseTOKENTYPE. The entry in the union +** for base tokens is called "yy0". +** YYSTACKDEPTH is the maximum depth of the parser's stack. +** ParseARG_SDECL A static variable declaration for the %extra_argument +** ParseARG_PDECL A parameter declaration for the %extra_argument +** ParseARG_STORE Code to store %extra_argument into yypParser +** ParseARG_FETCH Code to extract %extra_argument from yypParser +** YYNSTATE the combined number of states. +** YYNRULE the number of rules in the grammar +** YYERRORSYMBOL is the code number of the error symbol. If not +** defined, then do no error processing. +*/ +%% +#define YY_NO_ACTION (YYNSTATE+YYNRULE+2) +#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1) +#define YY_ERROR_ACTION (YYNSTATE+YYNRULE) + +/* Next are that tables used to determine what action to take based on the +** current state and lookahead token. These tables are used to implement +** functions that take a state number and lookahead value and return an +** action integer. +** +** Suppose the action integer is N. Then the action is determined as +** follows +** +** 0 <= N < YYNSTATE Shift N. That is, push the lookahead +** token onto the stack and goto state N. +** +** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE. +** +** N == YYNSTATE+YYNRULE A syntax error has occurred. +** +** N == YYNSTATE+YYNRULE+1 The parser accepts its input. +** +** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused +** slots in the yy_action[] table. +** +** The action table is constructed as a single large table named yy_action[]. +** Given state S and lookahead X, the action is computed as +** +** yy_action[ yy_shift_ofst[S] + X ] +** +** If the index value yy_shift_ofst[S]+X is out of range or if the value +** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S] +** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table +** and that yy_default[S] should be used instead. +** +** The formula above is for computing the action when the lookahead is +** a terminal symbol. If the lookahead is a non-terminal (as occurs after +** a reduce action) then the yy_reduce_ofst[] array is used in place of +** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of +** YY_SHIFT_USE_DFLT. +** +** The following are the tables generated in this section: +** +** yy_action[] A single table containing all actions. +** yy_lookahead[] A table containing the lookahead for each entry in +** yy_action. Used to detect hash collisions. +** yy_shift_ofst[] For each state, the offset into yy_action for +** shifting terminals. +** yy_reduce_ofst[] For each state, the offset into yy_action for +** shifting non-terminals after a reduce. +** yy_default[] Default action for each state. +*/ +%% +#define YY_SZ_ACTTAB (sizeof(yy_action)/sizeof(yy_action[0])) + +/* The next table maps tokens into fallback tokens. If a construct +** like the following: +** +** %fallback ID X Y Z. +** +** appears in the grammer, then ID becomes a fallback token for X, Y, +** and Z. Whenever one of the tokens X, Y, or Z is input to the parser +** but it does not parse, the type of the token is changed to ID and +** the parse is retried before an error is thrown. +*/ +#ifdef YYFALLBACK +static const YYCODETYPE yyFallback[] = { +%% +}; +#endif /* YYFALLBACK */ + +/* The following structure represents a single element of the +** parser's stack. Information stored includes: +** +** + The state number for the parser at this level of the stack. +** +** + The value of the token stored at this level of the stack. +** (In other words, the "major" token.) +** +** + The semantic value stored at this level of the stack. This is +** the information used by the action routines in the grammar. +** It is sometimes called the "minor" token. +*/ +struct yyStackEntry { + int stateno; /* The state-number */ + int major; /* The major token value. This is the code + ** number for the token at this stack level */ + YYMINORTYPE minor; /* The user-supplied minor token value. This + ** is the value of the token */ +}; +typedef struct yyStackEntry yyStackEntry; + +/* The state of the parser is completely contained in an instance of +** the following structure */ +struct yyParser { + int yyidx; /* Index of top element in stack */ + int yyerrcnt; /* Shifts left before out of the error */ + ParseARG_SDECL /* A place to hold %extra_argument */ + yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */ +}; +typedef struct yyParser yyParser; + +#ifndef NDEBUG +#include <stdio.h> +static FILE *yyTraceFILE = 0; +static char *yyTracePrompt = 0; +#endif /* NDEBUG */ + +#ifndef NDEBUG +/* +** Turn parser tracing on by giving a stream to which to write the trace +** and a prompt to preface each trace message. Tracing is turned off +** by making either argument NULL +** +** Inputs: +** <ul> +** <li> A FILE* to which trace output should be written. +** If NULL, then tracing is turned off. +** <li> A prefix string written at the beginning of every +** line of trace output. If NULL, then tracing is +** turned off. +** </ul> +** +** Outputs: +** None. +*/ +void ParseTrace(FILE *TraceFILE, char *zTracePrompt){ + yyTraceFILE = TraceFILE; + yyTracePrompt = zTracePrompt; + if( yyTraceFILE==0 ) yyTracePrompt = 0; + else if( yyTracePrompt==0 ) yyTraceFILE = 0; +} +#endif /* NDEBUG */ + +#ifndef NDEBUG +/* For tracing shifts, the names of all terminals and nonterminals +** are required. The following table supplies these names */ +static const char *yyTokenName[] = { +%% +}; +#endif /* NDEBUG */ + +#ifndef NDEBUG +/* For tracing reduce actions, the names of all rules are required. +*/ +static const char *yyRuleName[] = { +%% +}; +#endif /* NDEBUG */ + +/* +** This function returns the symbolic name associated with a token +** value. +*/ +const char *ParseTokenName(int tokenType){ +#ifndef NDEBUG + if( tokenType>0 && tokenType<(sizeof(yyTokenName)/sizeof(yyTokenName[0])) ){ + return yyTokenName[tokenType]; + }else{ + return "Unknown"; + } +#else + return ""; +#endif +} + +/* +** This function allocates a new parser. +** The only argument is a pointer to a function which works like +** malloc. +** +** Inputs: +** A pointer to the function used to allocate memory. +** +** Outputs: +** A pointer to a parser. This pointer is used in subsequent calls +** to Parse and ParseFree. +*/ +void *ParseAlloc(void *(*mallocProc)(size_t)){ + yyParser *pParser; + pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) ); + if( pParser ){ + pParser->yyidx = -1; + } + return pParser; +} + +/* The following function deletes the value associated with a +** symbol. The symbol can be either a terminal or nonterminal. +** "yymajor" is the symbol code, and "yypminor" is a pointer to +** the value. +*/ +static void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor){ + switch( yymajor ){ + /* Here is inserted the actions which take place when a + ** terminal or non-terminal is destroyed. This can happen + ** when the symbol is popped from the stack during a + ** reduce or during error processing or when a parser is + ** being destroyed before it is finished parsing. + ** + ** Note: during a reduce, the only symbols destroyed are those + ** which appear on the RHS of the rule, but which are not used + ** inside the C code. + */ +%% + default: break; /* If no destructor action specified: do nothing */ + } +} + +/* +** Pop the parser's stack once. +** +** If there is a destructor routine associated with the token which +** is popped from the stack, then call it. +** +** Return the major token number for the symbol popped. +*/ +static int yy_pop_parser_stack(yyParser *pParser){ + YYCODETYPE yymajor; + yyStackEntry *yytos = &pParser->yystack[pParser->yyidx]; + + if( pParser->yyidx<0 ) return 0; +#ifndef NDEBUG + if( yyTraceFILE && pParser->yyidx>=0 ){ + fprintf(yyTraceFILE,"%sPopping %s\n", + yyTracePrompt, + yyTokenName[yytos->major]); + } +#endif + yymajor = yytos->major; + yy_destructor( yymajor, &yytos->minor); + pParser->yyidx--; + return yymajor; +} + +/* +** Deallocate and destroy a parser. Destructors are all called for +** all stack elements before shutting the parser down. +** +** Inputs: +** <ul> +** <li> A pointer to the parser. This should be a pointer +** obtained from ParseAlloc. +** <li> A pointer to a function used to reclaim memory obtained +** from malloc. +** </ul> +*/ +void ParseFree( + void *p, /* The parser to be deleted */ + void (*freeProc)(void*) /* Function used to reclaim memory */ +){ + yyParser *pParser = (yyParser*)p; + if( pParser==0 ) return; + while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser); + (*freeProc)((void*)pParser); +} + +/* +** Find the appropriate action for a parser given the terminal +** look-ahead token iLookAhead. +** +** If the look-ahead token is YYNOCODE, then check to see if the action is +** independent of the look-ahead. If it is, return the action, otherwise +** return YY_NO_ACTION. +*/ +static int yy_find_shift_action( + yyParser *pParser, /* The parser */ + int iLookAhead /* The look-ahead token */ +){ + int i; + int stateno = pParser->yystack[pParser->yyidx].stateno; + + /* if( pParser->yyidx<0 ) return YY_NO_ACTION; */ + i = yy_shift_ofst[stateno]; + if( i==YY_SHIFT_USE_DFLT ){ + return yy_default[stateno]; + } + if( iLookAhead==YYNOCODE ){ + return YY_NO_ACTION; + } + i += iLookAhead; + if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){ +#ifdef YYFALLBACK + int iFallback; /* Fallback token */ + if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0]) + && (iFallback = yyFallback[iLookAhead])!=0 ){ +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n", + yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]); + } +#endif + return yy_find_shift_action(pParser, iFallback); + } +#endif + return yy_default[stateno]; + }else{ + return yy_action[i]; + } +} + +/* +** Find the appropriate action for a parser given the non-terminal +** look-ahead token iLookAhead. +** +** If the look-ahead token is YYNOCODE, then check to see if the action is +** independent of the look-ahead. If it is, return the action, otherwise +** return YY_NO_ACTION. +*/ +static int yy_find_reduce_action( + yyParser *pParser, /* The parser */ + int iLookAhead /* The look-ahead token */ +){ + int i; + int stateno = pParser->yystack[pParser->yyidx].stateno; + + i = yy_reduce_ofst[stateno]; + if( i==YY_REDUCE_USE_DFLT ){ + return yy_default[stateno]; + } + if( iLookAhead==YYNOCODE ){ + return YY_NO_ACTION; + } + i += iLookAhead; + if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){ + return yy_default[stateno]; + }else{ + return yy_action[i]; + } +} + +/* +** Perform a shift action. +*/ +static void yy_shift( + yyParser *yypParser, /* The parser to be shifted */ + int yyNewState, /* The new state to shift in */ + int yyMajor, /* The major token to shift in */ + YYMINORTYPE *yypMinor /* Pointer ot the minor token to shift in */ +){ + yyStackEntry *yytos; + yypParser->yyidx++; + if( yypParser->yyidx>=YYSTACKDEPTH ){ + ParseARG_FETCH; + yypParser->yyidx--; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt); + } +#endif + while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); + /* Here code is inserted which will execute if the parser + ** stack every overflows */ +%% + ParseARG_STORE; /* Suppress warning about unused %extra_argument var */ + return; + } + yytos = &yypParser->yystack[yypParser->yyidx]; + yytos->stateno = yyNewState; + yytos->major = yyMajor; + yytos->minor = *yypMinor; +#ifndef NDEBUG + if( yyTraceFILE && yypParser->yyidx>0 ){ + int i; + fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState); + fprintf(yyTraceFILE,"%sStack:",yyTracePrompt); + for(i=1; i<=yypParser->yyidx; i++) + fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]); + fprintf(yyTraceFILE,"\n"); + } +#endif +} + +/* The following table contains information about every rule that +** is used during the reduce. +*/ +static struct { + YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */ + unsigned char nrhs; /* Number of right-hand side symbols in the rule */ +} yyRuleInfo[] = { +%% +}; + +static void yy_accept(yyParser*); /* Forward Declaration */ + +/* +** Perform a reduce action and the shift that must immediately +** follow the reduce. +*/ +static void yy_reduce( + yyParser *yypParser, /* The parser */ + int yyruleno /* Number of the rule by which to reduce */ +){ + int yygoto; /* The next state */ + int yyact; /* The next action */ + YYMINORTYPE yygotominor; /* The LHS of the rule reduced */ + yyStackEntry *yymsp; /* The top of the parser's stack */ + int yysize; /* Amount to pop the stack */ + ParseARG_FETCH; + yymsp = &yypParser->yystack[yypParser->yyidx]; +#ifndef NDEBUG + if( yyTraceFILE && yyruleno>=0 + && yyruleno<sizeof(yyRuleName)/sizeof(yyRuleName[0]) ){ + fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt, + yyRuleName[yyruleno]); + } +#endif /* NDEBUG */ + + switch( yyruleno ){ + /* Beginning here are the reduction cases. A typical example + ** follows: + ** case 0: + ** #line <lineno> <grammarfile> + ** { ... } // User supplied code + ** #line <lineno> <thisfile> + ** break; + */ +%% + }; + yygoto = yyRuleInfo[yyruleno].lhs; + yysize = yyRuleInfo[yyruleno].nrhs; + yypParser->yyidx -= yysize; + yyact = yy_find_reduce_action(yypParser,yygoto); + if( yyact < YYNSTATE ){ + yy_shift(yypParser,yyact,yygoto,&yygotominor); + }else if( yyact == YYNSTATE + YYNRULE + 1 ){ + yy_accept(yypParser); + } +} + +/* +** The following code executes when the parse fails +*/ +static void yy_parse_failed( + yyParser *yypParser /* The parser */ +){ + ParseARG_FETCH; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt); + } +#endif + while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); + /* Here code is inserted which will be executed whenever the + ** parser fails */ +%% + ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */ +} + +/* +** The following code executes when a syntax error first occurs. +*/ +static void yy_syntax_error( + yyParser *yypParser, /* The parser */ + int yymajor, /* The major type of the error token */ + YYMINORTYPE yyminor /* The minor type of the error token */ +){ + ParseARG_FETCH; +#define TOKEN (yyminor.yy0) +%% + ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */ +} + +/* +** The following is executed when the parser accepts +*/ +static void yy_accept( + yyParser *yypParser /* The parser */ +){ + ParseARG_FETCH; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt); + } +#endif + while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); + /* Here code is inserted which will be executed whenever the + ** parser accepts */ +%% + ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */ +} + +/* The main parser program. +** The first argument is a pointer to a structure obtained from +** "ParseAlloc" which describes the current state of the parser. +** The second argument is the major token number. The third is +** the minor token. The fourth optional argument is whatever the +** user wants (and specified in the grammar) and is available for +** use by the action routines. +** +** Inputs: +** <ul> +** <li> A pointer to the parser (an opaque structure.) +** <li> The major token number. +** <li> The minor token number. +** <li> An option argument of a grammar-specified type. +** </ul> +** +** Outputs: +** None. +*/ +void Parse( + void *yyp, /* The parser */ + int yymajor, /* The major token code number */ + ParseTOKENTYPE yyminor /* The value for the token */ + ParseARG_PDECL /* Optional %extra_argument parameter */ +){ + YYMINORTYPE yyminorunion; + int yyact; /* The parser action. */ + int yyendofinput; /* True if we are at the end of input */ + int yyerrorhit = 0; /* True if yymajor has invoked an error */ + yyParser *yypParser; /* The parser */ + + /* (re)initialize the parser, if necessary */ + yypParser = (yyParser*)yyp; + if( yypParser->yyidx<0 ){ + if( yymajor==0 ) return; + yypParser->yyidx = 0; + yypParser->yyerrcnt = -1; + yypParser->yystack[0].stateno = 0; + yypParser->yystack[0].major = 0; + } + yyminorunion.yy0 = yyminor; + yyendofinput = (yymajor==0); + ParseARG_STORE; + +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]); + } +#endif + + do{ + yyact = yy_find_shift_action(yypParser,yymajor); + if( yyact<YYNSTATE ){ + yy_shift(yypParser,yyact,yymajor,&yyminorunion); + yypParser->yyerrcnt--; + if( yyendofinput && yypParser->yyidx>=0 ){ + yymajor = 0; + }else{ + yymajor = YYNOCODE; + } + }else if( yyact < YYNSTATE + YYNRULE ){ + yy_reduce(yypParser,yyact-YYNSTATE); + }else if( yyact == YY_ERROR_ACTION ){ + int yymx; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt); + } +#endif +#ifdef YYERRORSYMBOL + /* A syntax error has occurred. + ** The response to an error depends upon whether or not the + ** grammar defines an error token "ERROR". + ** + ** This is what we do if the grammar does define ERROR: + ** + ** * Call the %syntax_error function. + ** + ** * Begin popping the stack until we enter a state where + ** it is legal to shift the error symbol, then shift + ** the error symbol. + ** + ** * Set the error count to three. + ** + ** * Begin accepting and shifting new tokens. No new error + ** processing will occur until three tokens have been + ** shifted successfully. + ** + */ + if( yypParser->yyerrcnt<0 ){ + yy_syntax_error(yypParser,yymajor,yyminorunion); + } + yymx = yypParser->yystack[yypParser->yyidx].major; + if( yymx==YYERRORSYMBOL || yyerrorhit ){ +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sDiscard input token %s\n", + yyTracePrompt,yyTokenName[yymajor]); + } +#endif + yy_destructor(yymajor,&yyminorunion); + yymajor = YYNOCODE; + }else{ + while( + yypParser->yyidx >= 0 && + yymx != YYERRORSYMBOL && + (yyact = yy_find_shift_action(yypParser,YYERRORSYMBOL)) >= YYNSTATE + ){ + yy_pop_parser_stack(yypParser); + } + if( yypParser->yyidx < 0 || yymajor==0 ){ + yy_destructor(yymajor,&yyminorunion); + yy_parse_failed(yypParser); + yymajor = YYNOCODE; + }else if( yymx!=YYERRORSYMBOL ){ + YYMINORTYPE u2; + u2.YYERRSYMDT = 0; + yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2); + } + } + yypParser->yyerrcnt = 3; + yyerrorhit = 1; +#else /* YYERRORSYMBOL is not defined */ + /* This is what we do if the grammar does not define ERROR: + ** + ** * Report an error message, and throw away the input token. + ** + ** * If the input token is $, then fail the parse. + ** + ** As before, subsequent error messages are suppressed until + ** three input tokens have been successfully shifted. + */ + if( yypParser->yyerrcnt<=0 ){ + yy_syntax_error(yypParser,yymajor,yyminorunion); + } + yypParser->yyerrcnt = 3; + yy_destructor(yymajor,&yyminorunion); + if( yyendofinput ){ + yy_parse_failed(yypParser); + } + yymajor = YYNOCODE; +#endif + }else{ + yy_accept(yypParser); + yymajor = YYNOCODE; + } + }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 ); + return; +} diff --git a/kopete/plugins/statistics/sqlite/main.c b/kopete/plugins/statistics/sqlite/main.c new file mode 100644 index 00000000..0ae7e1b2 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/main.c @@ -0,0 +1,1346 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Main file for the SQLite library. The routines in this file +** implement the programmer interface to the library. Routines in +** other files are for internal use by SQLite and should not be +** accessed by users of the library. +** +** $Id$ +*/ +#include "sqliteInt.h" +#include "os.h" +#include <ctype.h> + +/* +** The following constant value is used by the SQLITE_BIGENDIAN and +** SQLITE_LITTLEENDIAN macros. +*/ +const int sqlite3one = 1; + +/* +** Fill the InitData structure with an error message that indicates +** that the database is corrupt. +*/ +static void corruptSchema(InitData *pData, const char *zExtra){ + if( !sqlite3_malloc_failed ){ + sqlite3SetString(pData->pzErrMsg, "malformed database schema", + zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0); + } +} + +/* +** This is the callback routine for the code that initializes the +** database. See sqlite3Init() below for additional information. +** This routine is also called from the OP_ParseSchema opcode of the VDBE. +** +** Each callback contains the following information: +** +** argv[0] = name of thing being created +** argv[1] = root page number for table or index. NULL for trigger or view. +** argv[2] = SQL text for the CREATE statement. +** argv[3] = "1" for temporary files, "0" for main database, "2" or more +** for auxiliary database files. +** +*/ +int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){ + InitData *pData = (InitData*)pInit; + sqlite3 *db = pData->db; + int iDb; + + assert( argc==4 ); + if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ + if( argv[1]==0 || argv[3]==0 ){ + corruptSchema(pData, 0); + return 1; + } + iDb = atoi(argv[3]); + assert( iDb>=0 && iDb<db->nDb ); + if( argv[2] && argv[2][0] ){ + /* Call the parser to process a CREATE TABLE, INDEX or VIEW. + ** But because db->init.busy is set to 1, no VDBE code is generated + ** or executed. All the parser does is build the internal data + ** structures that describe the table, index, or view. + */ + char *zErr; + int rc; + assert( db->init.busy ); + db->init.iDb = iDb; + db->init.newTnum = atoi(argv[1]); + rc = sqlite3_exec(db, argv[2], 0, 0, &zErr); + db->init.iDb = 0; + if( SQLITE_OK!=rc ){ + corruptSchema(pData, zErr); + sqlite3_free(zErr); + return rc; + } + }else{ + /* If the SQL column is blank it means this is an index that + ** was created to be the PRIMARY KEY or to fulfill a UNIQUE + ** constraint for a CREATE TABLE. The index should have already + ** been created when we processed the CREATE TABLE. All we have + ** to do here is record the root page number for that index. + */ + Index *pIndex; + pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zName); + if( pIndex==0 || pIndex->tnum!=0 ){ + /* This can occur if there exists an index on a TEMP table which + ** has the same name as another index on a permanent index. Since + ** the permanent table is hidden by the TEMP table, we can also + ** safely ignore the index on the permanent table. + */ + /* Do Nothing */; + }else{ + pIndex->tnum = atoi(argv[1]); + } + } + return 0; +} + +/* +** Attempt to read the database schema and initialize internal +** data structures for a single database file. The index of the +** database file is given by iDb. iDb==0 is used for the main +** database. iDb==1 should never be used. iDb>=2 is used for +** auxiliary databases. Return one of the SQLITE_ error codes to +** indicate success or failure. +*/ +static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){ + int rc; + BtCursor *curMain; + int size; + Table *pTab; + char const *azArg[5]; + char zDbNum[30]; + int meta[10]; + InitData initData; + char const *zMasterSchema; + char const *zMasterName; + + /* + ** The master database table has a structure like this + */ + static const char master_schema[] = + "CREATE TABLE sqlite_master(\n" + " type text,\n" + " name text,\n" + " tbl_name text,\n" + " rootpage integer,\n" + " sql text\n" + ")" + ; + static const char temp_master_schema[] = + "CREATE TEMP TABLE sqlite_temp_master(\n" + " type text,\n" + " name text,\n" + " tbl_name text,\n" + " rootpage integer,\n" + " sql text\n" + ")" + ; + + assert( iDb>=0 && iDb<db->nDb ); + + /* zMasterSchema and zInitScript are set to point at the master schema + ** and initialisation script appropriate for the database being + ** initialised. zMasterName is the name of the master table. + */ + if( iDb==1 ){ + zMasterSchema = temp_master_schema; + zMasterName = TEMP_MASTER_NAME; + }else{ + zMasterSchema = master_schema; + zMasterName = MASTER_NAME; + } + + /* Construct the schema tables. */ + sqlite3SafetyOff(db); + azArg[0] = zMasterName; + azArg[1] = "1"; + azArg[2] = zMasterSchema; + sprintf(zDbNum, "%d", iDb); + azArg[3] = zDbNum; + azArg[4] = 0; + initData.db = db; + initData.pzErrMsg = pzErrMsg; + rc = sqlite3InitCallback(&initData, 4, (char **)azArg, 0); + if( rc!=SQLITE_OK ){ + sqlite3SafetyOn(db); + return rc; + } + pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName); + if( pTab ){ + pTab->readOnly = 1; + } + sqlite3SafetyOn(db); + + /* Create a cursor to hold the database open + */ + if( db->aDb[iDb].pBt==0 ){ + if( iDb==1 ) DbSetProperty(db, 1, DB_SchemaLoaded); + return SQLITE_OK; + } + rc = sqlite3BtreeCursor(db->aDb[iDb].pBt, MASTER_ROOT, 0, 0, 0, &curMain); + if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){ + sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0); + return rc; + } + + /* Get the database meta information. + ** + ** Meta values are as follows: + ** meta[0] Schema cookie. Changes with each schema change. + ** meta[1] File format of schema layer. + ** meta[2] Size of the page cache. + ** meta[3] Use freelist if 0. Autovacuum if greater than zero. + ** meta[4] Db text encoding. 1:UTF-8 3:UTF-16 LE 4:UTF-16 BE + ** meta[5] + ** meta[6] + ** meta[7] + ** meta[8] + ** meta[9] + ** + ** Note: The hash defined SQLITE_UTF* symbols in sqliteInt.h correspond to + ** the possible values of meta[4]. + */ + if( rc==SQLITE_OK ){ + int i; + for(i=0; rc==SQLITE_OK && i<sizeof(meta)/sizeof(meta[0]); i++){ + rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, i+1, (u32 *)&meta[i]); + } + if( rc ){ + sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0); + sqlite3BtreeCloseCursor(curMain); + return rc; + } + }else{ + memset(meta, 0, sizeof(meta)); + } + db->aDb[iDb].schema_cookie = meta[0]; + + /* If opening a non-empty database, check the text encoding. For the + ** main database, set sqlite3.enc to the encoding of the main database. + ** For an attached db, it is an error if the encoding is not the same + ** as sqlite3.enc. + */ + if( meta[4] ){ /* text encoding */ + if( iDb==0 ){ + /* If opening the main database, set db->enc. */ + db->enc = (u8)meta[4]; + db->pDfltColl = sqlite3FindCollSeq(db, db->enc, "BINARY", 6, 0); + }else{ + /* If opening an attached database, the encoding much match db->enc */ + if( meta[4]!=db->enc ){ + sqlite3BtreeCloseCursor(curMain); + sqlite3SetString(pzErrMsg, "attached databases must use the same" + " text encoding as main database", (char*)0); + return SQLITE_ERROR; + } + } + } + + size = meta[2]; + if( size==0 ){ size = MAX_PAGES; } + db->aDb[iDb].cache_size = size; + + if( iDb==0 ){ + db->file_format = meta[1]; + if( db->file_format==0 ){ + /* This happens if the database was initially empty */ + db->file_format = 1; + } + } + + /* + ** file_format==1 Version 3.0.0. + */ + if( meta[1]>1 ){ + sqlite3BtreeCloseCursor(curMain); + sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0); + return SQLITE_ERROR; + } + + sqlite3BtreeSetCacheSize(db->aDb[iDb].pBt, db->aDb[iDb].cache_size); + + /* Read the schema information out of the schema tables + */ + assert( db->init.busy ); + if( rc==SQLITE_EMPTY ){ + /* For an empty database, there is nothing to read */ + rc = SQLITE_OK; + }else{ + char *zSql; + zSql = sqlite3MPrintf( + "SELECT name, rootpage, sql, %s FROM '%q'.%s", + zDbNum, db->aDb[iDb].zName, zMasterName); + sqlite3SafetyOff(db); + rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); + sqlite3SafetyOn(db); + sqliteFree(zSql); + sqlite3BtreeCloseCursor(curMain); + } + if( sqlite3_malloc_failed ){ + sqlite3SetString(pzErrMsg, "out of memory", (char*)0); + rc = SQLITE_NOMEM; + sqlite3ResetInternalSchema(db, 0); + } + if( rc==SQLITE_OK ){ + DbSetProperty(db, iDb, DB_SchemaLoaded); + }else{ + sqlite3ResetInternalSchema(db, iDb); + } + return rc; +} + +/* +** Initialize all database files - the main database file, the file +** used to store temporary tables, and any additional database files +** created using ATTACH statements. Return a success code. If an +** error occurs, write an error message into *pzErrMsg. +** +** After the database is initialized, the SQLITE_Initialized +** bit is set in the flags field of the sqlite structure. +*/ +int sqlite3Init(sqlite3 *db, char **pzErrMsg){ + int i, rc; + + if( db->init.busy ) return SQLITE_OK; + assert( (db->flags & SQLITE_Initialized)==0 ); + rc = SQLITE_OK; + db->init.busy = 1; + for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ + if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue; + rc = sqlite3InitOne(db, i, pzErrMsg); + if( rc ){ + sqlite3ResetInternalSchema(db, i); + } + } + + /* Once all the other databases have been initialised, load the schema + ** for the TEMP database. This is loaded last, as the TEMP database + ** schema may contain references to objects in other databases. + */ + if( rc==SQLITE_OK && db->nDb>1 && !DbHasProperty(db, 1, DB_SchemaLoaded) ){ + rc = sqlite3InitOne(db, 1, pzErrMsg); + if( rc ){ + sqlite3ResetInternalSchema(db, 1); + } + } + + db->init.busy = 0; + if( rc==SQLITE_OK ){ + db->flags |= SQLITE_Initialized; + sqlite3CommitInternalChanges(db); + } + + if( rc!=SQLITE_OK ){ + db->flags &= ~SQLITE_Initialized; + } + return rc; +} + +/* +** This routine is a no-op if the database schema is already initialised. +** Otherwise, the schema is loaded. An error code is returned. +*/ +int sqlite3ReadSchema(Parse *pParse){ + int rc = SQLITE_OK; + sqlite3 *db = pParse->db; + if( !db->init.busy ){ + if( (db->flags & SQLITE_Initialized)==0 ){ + rc = sqlite3Init(db, &pParse->zErrMsg); + } + } + assert( rc!=SQLITE_OK || (db->flags & SQLITE_Initialized)||db->init.busy ); + if( rc!=SQLITE_OK ){ + pParse->rc = rc; + pParse->nErr++; + } + return rc; +} + +/* +** The version of the library +*/ +const char rcsid3[] = "@(#) \044Id: SQLite version " SQLITE_VERSION " $"; +const char sqlite3_version[] = SQLITE_VERSION; +const char *sqlite3_libversion(void){ return sqlite3_version; } + +/* +** This is the default collating function named "BINARY" which is always +** available. +*/ +static int binaryCollatingFunc( + void *NotUsed, + int nKey1, const void *pKey1, + int nKey2, const void *pKey2 +){ + int rc, n; + n = nKey1<nKey2 ? nKey1 : nKey2; + rc = memcmp(pKey1, pKey2, n); + if( rc==0 ){ + rc = nKey1 - nKey2; + } + return rc; +} + +/* +** Another built-in collating sequence: NOCASE. +** +** This collating sequence is intended to be used for "case independant +** comparison". SQLite's knowledge of upper and lower case equivalents +** extends only to the 26 characters used in the English language. +** +** At the moment there is only a UTF-8 implementation. +*/ +static int nocaseCollatingFunc( + void *NotUsed, + int nKey1, const void *pKey1, + int nKey2, const void *pKey2 +){ + int r = sqlite3StrNICmp( + (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); + if( 0==r ){ + r = nKey1-nKey2; + } + return r; +} + +/* +** Return the ROWID of the most recent insert +*/ +sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ + return db->lastRowid; +} + +/* +** Return the number of changes in the most recent call to sqlite3_exec(). +*/ +int sqlite3_changes(sqlite3 *db){ + return db->nChange; +} + +/* +** Return the number of changes since the database handle was opened. +*/ +int sqlite3_total_changes(sqlite3 *db){ + return db->nTotalChange; +} + +/* +** Close an existing SQLite database +*/ +int sqlite3_close(sqlite3 *db){ + HashElem *i; + int j; + + if( !db ){ + return SQLITE_OK; + } + if( sqlite3SafetyCheck(db) ){ + return SQLITE_MISUSE; + } + + /* If there are any outstanding VMs, return SQLITE_BUSY. */ + if( db->pVdbe ){ + sqlite3Error(db, SQLITE_BUSY, + "Unable to close due to unfinalised statements"); + return SQLITE_BUSY; + } + assert( !sqlite3SafetyCheck(db) ); + + /* FIX ME: db->magic may be set to SQLITE_MAGIC_CLOSED if the database + ** cannot be opened for some reason. So this routine needs to run in + ** that case. But maybe there should be an extra magic value for the + ** "failed to open" state. + */ + if( db->magic!=SQLITE_MAGIC_CLOSED && sqlite3SafetyOn(db) ){ + /* printf("DID NOT CLOSE\n"); fflush(stdout); */ + return SQLITE_ERROR; + } + + for(j=0; j<db->nDb; j++){ + struct Db *pDb = &db->aDb[j]; + if( pDb->pBt ){ + sqlite3BtreeClose(pDb->pBt); + pDb->pBt = 0; + } + } + sqlite3ResetInternalSchema(db, 0); + assert( db->nDb<=2 ); + assert( db->aDb==db->aDbStatic ); + for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){ + FuncDef *pFunc, *pNext; + for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){ + pNext = pFunc->pNext; + sqliteFree(pFunc); + } + } + + for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ + CollSeq *pColl = (CollSeq *)sqliteHashData(i); + sqliteFree(pColl); + } + sqlite3HashClear(&db->aCollSeq); + + sqlite3HashClear(&db->aFunc); + sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ + if( db->pValue ){ + sqlite3ValueFree(db->pValue); + } + if( db->pErr ){ + sqlite3ValueFree(db->pErr); + } + + db->magic = SQLITE_MAGIC_ERROR; + sqliteFree(db); + return SQLITE_OK; +} + +/* +** Rollback all database files. +*/ +void sqlite3RollbackAll(sqlite3 *db){ + int i; + for(i=0; i<db->nDb; i++){ + if( db->aDb[i].pBt ){ + sqlite3BtreeRollback(db->aDb[i].pBt); + db->aDb[i].inTrans = 0; + } + } + sqlite3ResetInternalSchema(db, 0); +} + +/* +** Return a static string that describes the kind of error specified in the +** argument. +*/ +const char *sqlite3ErrStr(int rc){ + const char *z; + switch( rc ){ + case SQLITE_ROW: + case SQLITE_DONE: + case SQLITE_OK: z = "not an error"; break; + case SQLITE_ERROR: z = "SQL logic error or missing database"; break; + case SQLITE_INTERNAL: z = "internal SQLite implementation flaw"; break; + case SQLITE_PERM: z = "access permission denied"; break; + case SQLITE_ABORT: z = "callback requested query abort"; break; + case SQLITE_BUSY: z = "database is locked"; break; + case SQLITE_LOCKED: z = "database table is locked"; break; + case SQLITE_NOMEM: z = "out of memory"; break; + case SQLITE_READONLY: z = "attempt to write a readonly database"; break; + case SQLITE_INTERRUPT: z = "interrupted"; break; + case SQLITE_IOERR: z = "disk I/O error"; break; + case SQLITE_CORRUPT: z = "database disk image is malformed"; break; + case SQLITE_NOTFOUND: z = "table or record not found"; break; + case SQLITE_FULL: z = "database is full"; break; + case SQLITE_CANTOPEN: z = "unable to open database file"; break; + case SQLITE_PROTOCOL: z = "database locking protocol failure"; break; + case SQLITE_EMPTY: z = "table contains no data"; break; + case SQLITE_SCHEMA: z = "database schema has changed"; break; + case SQLITE_TOOBIG: z = "too much data for one table row"; break; + case SQLITE_CONSTRAINT: z = "constraint failed"; break; + case SQLITE_MISMATCH: z = "datatype mismatch"; break; + case SQLITE_MISUSE: z = "library routine called out of sequence";break; + case SQLITE_NOLFS: z = "kernel lacks large file support"; break; + case SQLITE_AUTH: z = "authorization denied"; break; + case SQLITE_FORMAT: z = "auxiliary database format error"; break; + case SQLITE_RANGE: z = "bind index out of range"; break; + case SQLITE_NOTADB: z = "file is encrypted or is not a database";break; + default: z = "unknown error"; break; + } + return z; +} + +/* +** This routine implements a busy callback that sleeps and tries +** again until a timeout value is reached. The timeout value is +** an integer number of milliseconds passed in as the first +** argument. +*/ +static int sqliteDefaultBusyCallback( + void *Timeout, /* Maximum amount of time to wait */ + int count /* Number of times table has been busy */ +){ +#if SQLITE_MIN_SLEEP_MS==1 + static const char delays[] = + { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 50, 100}; + static const short int totals[] = + { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228, 287}; +# define NDELAY (sizeof(delays)/sizeof(delays[0])) + ptr timeout = (ptr)Timeout; + ptr delay, prior; + + if( count <= NDELAY ){ + delay = delays[count-1]; + prior = totals[count-1]; + }else{ + delay = delays[NDELAY-1]; + prior = totals[NDELAY-1] + delay*(count-NDELAY-1); + } + if( prior + delay > timeout ){ + delay = timeout - prior; + if( delay<=0 ) return 0; + } + sqlite3OsSleep(delay); + return 1; +#else + int timeout = (int)Timeout; + if( (count+1)*1000 > timeout ){ + return 0; + } + sqlite3OsSleep(1000); + return 1; +#endif +} + +/* +** This routine sets the busy callback for an Sqlite database to the +** given callback function with the given argument. +*/ +int sqlite3_busy_handler( + sqlite3 *db, + int (*xBusy)(void*,int), + void *pArg +){ + if( sqlite3SafetyCheck(db) ){ + return SQLITE_MISUSE; + } + db->busyHandler.xFunc = xBusy; + db->busyHandler.pArg = pArg; + return SQLITE_OK; +} + +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK +/* +** This routine sets the progress callback for an Sqlite database to the +** given callback function with the given argument. The progress callback will +** be invoked every nOps opcodes. +*/ +void sqlite3_progress_handler( + sqlite3 *db, + int nOps, + int (*xProgress)(void*), + void *pArg +){ + if( !sqlite3SafetyCheck(db) ){ + if( nOps>0 ){ + db->xProgress = xProgress; + db->nProgressOps = nOps; + db->pProgressArg = pArg; + }else{ + db->xProgress = 0; + db->nProgressOps = 0; + db->pProgressArg = 0; + } + } +} +#endif + + +/* +** This routine installs a default busy handler that waits for the +** specified number of milliseconds before returning 0. +*/ +int sqlite3_busy_timeout(sqlite3 *db, int ms){ + if( ms>0 ){ + sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)(ptr)ms); + }else{ + sqlite3_busy_handler(db, 0, 0); + } + return SQLITE_OK; +} + +/* +** Cause any pending operation to stop at its earliest opportunity. +*/ +void sqlite3_interrupt(sqlite3 *db){ + if( !sqlite3SafetyCheck(db) ){ + db->flags |= SQLITE_Interrupt; + } +} + +/* +** Windows systems should call this routine to free memory that +** is returned in the in the errmsg parameter of sqlite3_open() when +** SQLite is a DLL. For some reason, it does not work to call free() +** directly. +** +** Note that we need to call free() not sqliteFree() here. +*/ +void sqlite3_free(char *p){ free(p); } + +/* +** Create new user functions. +*/ +int sqlite3_create_function( + sqlite3 *db, + const char *zFunctionName, + int nArg, + int enc, + void *pUserData, + void (*xFunc)(sqlite3_context*,int,sqlite3_value **), + void (*xStep)(sqlite3_context*,int,sqlite3_value **), + void (*xFinal)(sqlite3_context*) +){ + FuncDef *p; + int nName; + + if( sqlite3SafetyCheck(db) ){ + return SQLITE_MISUSE; + } + if( zFunctionName==0 || + (xFunc && (xFinal || xStep)) || + (!xFunc && (xFinal && !xStep)) || + (!xFunc && (!xFinal && xStep)) || + (nArg<-1 || nArg>127) || + (255<(nName = strlen(zFunctionName))) ){ + return SQLITE_ERROR; + } + + /* If SQLITE_UTF16 is specified as the encoding type, transform this + ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the + ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. + ** + ** If SQLITE_ANY is specified, add three versions of the function + ** to the hash table. + */ + if( enc==SQLITE_UTF16 ){ + enc = SQLITE_UTF16NATIVE; + }else if( enc==SQLITE_ANY ){ + int rc; + rc = sqlite3_create_function(db, zFunctionName, nArg, SQLITE_UTF8, + pUserData, xFunc, xStep, xFinal); + if( rc!=SQLITE_OK ) return rc; + rc = sqlite3_create_function(db, zFunctionName, nArg, SQLITE_UTF16LE, + pUserData, xFunc, xStep, xFinal); + if( rc!=SQLITE_OK ) return rc; + enc = SQLITE_UTF16BE; + } + + p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 1); + if( p==0 ) return SQLITE_NOMEM; + p->xFunc = xFunc; + p->xStep = xStep; + p->xFinalize = xFinal; + p->pUserData = pUserData; + return SQLITE_OK; +} +int sqlite3_create_function16( + sqlite3 *db, + const void *zFunctionName, + int nArg, + int eTextRep, + void *pUserData, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +){ + int rc; + char const *zFunc8; + sqlite3_value *pTmp; + + if( sqlite3SafetyCheck(db) ){ + return SQLITE_MISUSE; + } + pTmp = sqlite3GetTransientValue(db); + sqlite3ValueSetStr(pTmp, -1, zFunctionName, SQLITE_UTF16NATIVE,SQLITE_STATIC); + zFunc8 = sqlite3ValueText(pTmp, SQLITE_UTF8); + + if( !zFunc8 ){ + return SQLITE_NOMEM; + } + rc = sqlite3_create_function(db, zFunc8, nArg, eTextRep, + pUserData, xFunc, xStep, xFinal); + return rc; +} + +/* +** Register a trace function. The pArg from the previously registered trace +** is returned. +** +** A NULL trace function means that no tracing is executes. A non-NULL +** trace is a pointer to a function that is invoked at the start of each +** sqlite3_exec(). +*/ +void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ + void *pOld = db->pTraceArg; + db->xTrace = xTrace; + db->pTraceArg = pArg; + return pOld; +} + +/*** EXPERIMENTAL *** +** +** Register a function to be invoked when a transaction comments. +** If either function returns non-zero, then the commit becomes a +** rollback. +*/ +void *sqlite3_commit_hook( + sqlite3 *db, /* Attach the hook to this database */ + int (*xCallback)(void*), /* Function to invoke on each commit */ + void *pArg /* Argument to the function */ +){ + void *pOld = db->pCommitArg; + db->xCommitCallback = xCallback; + db->pCommitArg = pArg; + return pOld; +} + + +/* +** This routine is called to create a connection to a database BTree +** driver. If zFilename is the name of a file, then that file is +** opened and used. If zFilename is the magic name ":memory:" then +** the database is stored in memory (and is thus forgotten as soon as +** the connection is closed.) If zFilename is NULL then the database +** is for temporary use only and is deleted as soon as the connection +** is closed. +** +** A temporary database can be either a disk file (that is automatically +** deleted when the file is closed) or a set of red-black trees held in memory, +** depending on the values of the TEMP_STORE compile-time macro and the +** db->temp_store variable, according to the following chart: +** +** TEMP_STORE db->temp_store Location of temporary database +** ---------- -------------- ------------------------------ +** 0 any file +** 1 1 file +** 1 2 memory +** 1 0 file +** 2 1 file +** 2 2 memory +** 2 0 memory +** 3 any memory +*/ +int sqlite3BtreeFactory( + const sqlite3 *db, /* Main database when opening aux otherwise 0 */ + const char *zFilename, /* Name of the file containing the BTree database */ + int omitJournal, /* if TRUE then do not journal this file */ + int nCache, /* How many pages in the page cache */ + Btree **ppBtree /* Pointer to new Btree object written here */ +){ + int btree_flags = 0; + int rc; + + assert( ppBtree != 0); + if( omitJournal ){ + btree_flags |= BTREE_OMIT_JOURNAL; + } + if( zFilename==0 ){ +#ifndef TEMP_STORE +# define TEMP_STORE 1 +#endif +#if TEMP_STORE==0 + /* Do nothing */ +#endif +#if TEMP_STORE==1 + if( db->temp_store==2 ) zFilename = ":memory:"; +#endif +#if TEMP_STORE==2 + if( db->temp_store!=1 ) zFilename = ":memory:"; +#endif +#if TEMP_STORE==3 + zFilename = ":memory:"; +#endif + } + + rc = sqlite3BtreeOpen(zFilename, ppBtree, btree_flags); + if( rc==SQLITE_OK ){ + sqlite3BtreeSetBusyHandler(*ppBtree, (void*)&db->busyHandler); + sqlite3BtreeSetCacheSize(*ppBtree, nCache); + } + return rc; +} + +/* +** Return UTF-8 encoded English language explanation of the most recent +** error. +*/ +const char *sqlite3_errmsg(sqlite3 *db){ + const char *z; + if( sqlite3_malloc_failed ){ + return sqlite3ErrStr(SQLITE_NOMEM); + } + if( sqlite3SafetyCheck(db) || db->errCode==SQLITE_MISUSE ){ + return sqlite3ErrStr(SQLITE_MISUSE); + } + z = sqlite3_value_text(db->pErr); + if( z==0 ){ + z = sqlite3ErrStr(db->errCode); + } + return z; +} + +/* +** Return UTF-16 encoded English language explanation of the most recent +** error. +*/ +const void *sqlite3_errmsg16(sqlite3 *db){ + /* Because all the characters in the string are in the unicode + ** range 0x00-0xFF, if we pad the big-endian string with a + ** zero byte, we can obtain the little-endian string with + ** &big_endian[1]. + */ + static const char outOfMemBe[] = { + 0, 'o', 0, 'u', 0, 't', 0, ' ', + 0, 'o', 0, 'f', 0, ' ', + 0, 'm', 0, 'e', 0, 'm', 0, 'o', 0, 'r', 0, 'y', 0, 0, 0 + }; + static const char misuseBe [] = { + 0, 'l', 0, 'i', 0, 'b', 0, 'r', 0, 'a', 0, 'r', 0, 'y', 0, ' ', + 0, 'r', 0, 'o', 0, 'u', 0, 't', 0, 'i', 0, 'n', 0, 'e', 0, ' ', + 0, 'c', 0, 'a', 0, 'l', 0, 'l', 0, 'e', 0, 'd', 0, ' ', + 0, 'o', 0, 'u', 0, 't', 0, ' ', + 0, 'o', 0, 'f', 0, ' ', + 0, 's', 0, 'e', 0, 'q', 0, 'u', 0, 'e', 0, 'n', 0, 'c', 0, 'e', 0, 0, 0 + }; + + const void *z; + if( sqlite3_malloc_failed ){ + return (void *)(&outOfMemBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]); + } + if( sqlite3SafetyCheck(db) || db->errCode==SQLITE_MISUSE ){ + return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]); + } + z = sqlite3_value_text16(db->pErr); + if( z==0 ){ + sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode), + SQLITE_UTF8, SQLITE_STATIC); + z = sqlite3_value_text16(db->pErr); + } + return z; +} + +/* +** Return the most recent error code generated by an SQLite routine. +*/ +int sqlite3_errcode(sqlite3 *db){ + if( sqlite3_malloc_failed ){ + return SQLITE_NOMEM; + } + if( sqlite3SafetyCheck(db) ){ + return SQLITE_MISUSE; + } + return db->errCode; +} + +/* +** Check schema cookies in all databases. If any cookie is out +** of date, return 0. If all schema cookies are current, return 1. +*/ +static int schemaIsValid(sqlite3 *db){ + int iDb; + int rc; + BtCursor *curTemp; + int cookie; + int allOk = 1; + + for(iDb=0; allOk && iDb<db->nDb; iDb++){ + Btree *pBt; + pBt = db->aDb[iDb].pBt; + if( pBt==0 ) continue; + rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, 0, &curTemp); + if( rc==SQLITE_OK ){ + rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie); + if( rc==SQLITE_OK && cookie!=db->aDb[iDb].schema_cookie ){ + allOk = 0; + } + sqlite3BtreeCloseCursor(curTemp); + } + } + return allOk; +} + +/* +** Compile the UTF-8 encoded SQL statement zSql into a statement handle. +*/ +int sqlite3_prepare( + sqlite3 *db, /* Database handle. */ + const char *zSql, /* UTF-8 encoded SQL statement. */ + int nBytes, /* Length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ + const char** pzTail /* OUT: End of parsed string */ +){ + Parse sParse; + char *zErrMsg = 0; + int rc = SQLITE_OK; + + if( sqlite3_malloc_failed ){ + return SQLITE_NOMEM; + } + + assert( ppStmt ); + *ppStmt = 0; + if( sqlite3SafetyOn(db) ){ + return SQLITE_MISUSE; + } + + memset(&sParse, 0, sizeof(sParse)); + sParse.db = db; + sqlite3RunParser(&sParse, zSql, &zErrMsg); + + if( sqlite3_malloc_failed ){ + rc = SQLITE_NOMEM; + sqlite3RollbackAll(db); + sqlite3ResetInternalSchema(db, 0); + db->flags &= ~SQLITE_InTrans; + goto prepare_out; + } + if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK; + if( sParse.rc!=SQLITE_OK && sParse.checkSchema && !schemaIsValid(db) ){ + sParse.rc = SQLITE_SCHEMA; + } + if( sParse.rc==SQLITE_SCHEMA ){ + sqlite3ResetInternalSchema(db, 0); + } + if( pzTail ) *pzTail = sParse.zTail; + rc = sParse.rc; + + if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){ + sqlite3VdbeSetNumCols(sParse.pVdbe, 5); + sqlite3VdbeSetColName(sParse.pVdbe, 0, "addr", P3_STATIC); + sqlite3VdbeSetColName(sParse.pVdbe, 1, "opcode", P3_STATIC); + sqlite3VdbeSetColName(sParse.pVdbe, 2, "p1", P3_STATIC); + sqlite3VdbeSetColName(sParse.pVdbe, 3, "p2", P3_STATIC); + sqlite3VdbeSetColName(sParse.pVdbe, 4, "p3", P3_STATIC); + } + +prepare_out: + if( sqlite3SafetyOff(db) ){ + rc = SQLITE_MISUSE; + } + if( rc==SQLITE_OK ){ + *ppStmt = (sqlite3_stmt*)sParse.pVdbe; + }else if( sParse.pVdbe ){ + sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe); + } + + if( zErrMsg ){ + sqlite3Error(db, rc, "%s", zErrMsg); + sqliteFree(zErrMsg); + }else{ + sqlite3Error(db, rc, 0); + } + return rc; +} + +/* +** Compile the UTF-16 encoded SQL statement zSql into a statement handle. +*/ +int sqlite3_prepare16( + sqlite3 *db, /* Database handle. */ + const void *zSql, /* UTF-8 encoded SQL statement. */ + int nBytes, /* Length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ + const void **pzTail /* OUT: End of parsed string */ +){ + /* This function currently works by first transforming the UTF-16 + ** encoded string to UTF-8, then invoking sqlite3_prepare(). The + ** tricky bit is figuring out the pointer to return in *pzTail. + */ + char const *zSql8 = 0; + char const *zTail8 = 0; + int rc; + sqlite3_value *pTmp; + + if( sqlite3SafetyCheck(db) ){ + return SQLITE_MISUSE; + } + pTmp = sqlite3GetTransientValue(db); + sqlite3ValueSetStr(pTmp, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC); + zSql8 = sqlite3ValueText(pTmp, SQLITE_UTF8); + if( !zSql8 ){ + sqlite3Error(db, SQLITE_NOMEM, 0); + return SQLITE_NOMEM; + } + rc = sqlite3_prepare(db, zSql8, -1, ppStmt, &zTail8); + + if( zTail8 && pzTail ){ + /* If sqlite3_prepare returns a tail pointer, we calculate the + ** equivalent pointer into the UTF-16 string by counting the unicode + ** characters between zSql8 and zTail8, and then returning a pointer + ** the same number of characters into the UTF-16 string. + */ + int chars_parsed = sqlite3utf8CharLen(zSql8, zTail8-zSql8); + *pzTail = (u8 *)zSql + sqlite3utf16ByteLen(zSql, chars_parsed); + } + + return rc; +} + +/* +** This routine does the work of opening a database on behalf of +** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" +** is UTF-8 encoded. The fourth argument, "def_enc" is one of the TEXT_* +** macros from sqliteInt.h. If we end up creating a new database file +** (not opening an existing one), the text encoding of the database +** will be set to this value. +*/ +static int openDatabase( + const char *zFilename, /* Database filename UTF-8 encoded */ + sqlite3 **ppDb /* OUT: Returned database handle */ +){ + sqlite3 *db; + int rc, i; + char *zErrMsg = 0; + + /* Allocate the sqlite data structure */ + db = sqliteMalloc( sizeof(sqlite3) ); + if( db==0 ) goto opendb_out; + db->priorNewRowid = 0; + db->magic = SQLITE_MAGIC_BUSY; + db->nDb = 2; + db->aDb = db->aDbStatic; + db->enc = SQLITE_UTF8; + db->autoCommit = 1; + /* db->flags |= SQLITE_ShortColNames; */ + sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 0); + sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0); + for(i=0; i<db->nDb; i++){ + sqlite3HashInit(&db->aDb[i].tblHash, SQLITE_HASH_STRING, 0); + sqlite3HashInit(&db->aDb[i].idxHash, SQLITE_HASH_STRING, 0); + sqlite3HashInit(&db->aDb[i].trigHash, SQLITE_HASH_STRING, 0); + sqlite3HashInit(&db->aDb[i].aFKey, SQLITE_HASH_STRING, 1); + } + + /* Add the default collation sequence BINARY. BINARY works for both UTF-8 + ** and UTF-16, so add a version for each to avoid any unnecessary + ** conversions. The only error that can occur here is a malloc() failure. + */ + sqlite3_create_collation(db, "BINARY", SQLITE_UTF8, 0,binaryCollatingFunc); + sqlite3_create_collation(db, "BINARY", SQLITE_UTF16LE, 0,binaryCollatingFunc); + sqlite3_create_collation(db, "BINARY", SQLITE_UTF16BE, 0,binaryCollatingFunc); + db->pDfltColl = sqlite3FindCollSeq(db, db->enc, "BINARY", 6, 0); + if( !db->pDfltColl ){ + rc = db->errCode; + assert( rc!=SQLITE_OK ); + db->magic = SQLITE_MAGIC_CLOSED; + goto opendb_out; + } + + /* Also add a UTF-8 case-insensitive collation sequence. */ + sqlite3_create_collation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc); + + /* Open the backend database driver */ + rc = sqlite3BtreeFactory(db, zFilename, 0, MAX_PAGES, &db->aDb[0].pBt); + if( rc!=SQLITE_OK ){ + sqlite3Error(db, rc, 0); + db->magic = SQLITE_MAGIC_CLOSED; + goto opendb_out; + } + db->aDb[0].zName = "main"; + db->aDb[1].zName = "temp"; + + /* The default safety_level for the main database is 'full' for the temp + ** database it is 'NONE'. This matches the pager layer defaults. */ + db->aDb[0].safety_level = 3; + db->aDb[1].safety_level = 1; + + /* Register all built-in functions, but do not attempt to read the + ** database schema yet. This is delayed until the first time the database + ** is accessed. + */ + sqlite3RegisterBuiltinFunctions(db); + if( rc==SQLITE_OK ){ + sqlite3Error(db, SQLITE_OK, 0); + db->magic = SQLITE_MAGIC_OPEN; + }else{ + sqlite3Error(db, rc, "%s", zErrMsg, 0); + if( zErrMsg ) sqliteFree(zErrMsg); + db->magic = SQLITE_MAGIC_CLOSED; + } + +opendb_out: + if( sqlite3_errcode(db)==SQLITE_OK && sqlite3_malloc_failed ){ + sqlite3Error(db, SQLITE_NOMEM, 0); + } + *ppDb = db; + return sqlite3_errcode(db); +} + +/* +** Open a new database handle. +*/ +int sqlite3_open( + const char *zFilename, + sqlite3 **ppDb +){ + return openDatabase(zFilename, ppDb); +} + +/* +** Open a new database handle. +*/ +int sqlite3_open16( + const void *zFilename, + sqlite3 **ppDb +){ + char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ + int rc = SQLITE_NOMEM; + sqlite3_value *pVal; + + assert( ppDb ); + *ppDb = 0; + pVal = sqlite3ValueNew(); + sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); + zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); + if( zFilename8 ){ + rc = openDatabase(zFilename8, ppDb); + if( rc==SQLITE_OK && *ppDb ){ + sqlite3_exec(*ppDb, "PRAGMA encoding = 'UTF-16'", 0, 0, 0); + } + } + if( pVal ){ + sqlite3ValueFree(pVal); + } + + return rc; +} + +/* +** The following routine destroys a virtual machine that is created by +** the sqlite3_compile() routine. The integer returned is an SQLITE_ +** success/failure code that describes the result of executing the virtual +** machine. +** +** This routine sets the error code and string returned by +** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). +*/ +int sqlite3_finalize(sqlite3_stmt *pStmt){ + int rc; + if( pStmt==0 ){ + rc = SQLITE_OK; + }else{ + rc = sqlite3VdbeFinalize((Vdbe*)pStmt); + } + return rc; +} + +/* +** Terminate the current execution of an SQL statement and reset it +** back to its starting state so that it can be reused. A success code from +** the prior execution is returned. +** +** This routine sets the error code and string returned by +** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). +*/ +int sqlite3_reset(sqlite3_stmt *pStmt){ + int rc; + if( pStmt==0 ){ + rc = SQLITE_OK; + }else{ + rc = sqlite3VdbeReset((Vdbe*)pStmt); + sqlite3VdbeMakeReady((Vdbe*)pStmt, -1, 0, 0, 0); + } + return rc; +} + +/* +** Register a new collation sequence with the database handle db. +*/ +int sqlite3_create_collation( + sqlite3* db, + const char *zName, + int enc, + void* pCtx, + int(*xCompare)(void*,int,const void*,int,const void*) +){ + CollSeq *pColl; + int rc = SQLITE_OK; + + if( sqlite3SafetyCheck(db) ){ + return SQLITE_MISUSE; + } + + /* If SQLITE_UTF16 is specified as the encoding type, transform this + ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the + ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. + */ + if( enc==SQLITE_UTF16 ){ + enc = SQLITE_UTF16NATIVE; + } + + if( enc!=SQLITE_UTF8 && enc!=SQLITE_UTF16LE && enc!=SQLITE_UTF16BE ){ + sqlite3Error(db, SQLITE_ERROR, + "Param 3 to sqlite3_create_collation() must be one of " + "SQLITE_UTF8, SQLITE_UTF16, SQLITE_UTF16LE or SQLITE_UTF16BE" + ); + return SQLITE_ERROR; + } + pColl = sqlite3FindCollSeq(db, (u8)enc, zName, strlen(zName), 1); + if( 0==pColl ){ + rc = SQLITE_NOMEM; + }else{ + pColl->xCmp = xCompare; + pColl->pUser = pCtx; + pColl->enc = enc; + } + sqlite3Error(db, rc, 0); + return rc; +} + +/* +** Register a new collation sequence with the database handle db. +*/ +int sqlite3_create_collation16( + sqlite3* db, + const char *zName, + int enc, + void* pCtx, + int(*xCompare)(void*,int,const void*,int,const void*) +){ + char const *zName8; + sqlite3_value *pTmp; + if( sqlite3SafetyCheck(db) ){ + return SQLITE_MISUSE; + } + pTmp = sqlite3GetTransientValue(db); + sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF16NATIVE, SQLITE_STATIC); + zName8 = sqlite3ValueText(pTmp, SQLITE_UTF8); + return sqlite3_create_collation(db, zName8, enc, pCtx, xCompare); +} + +/* +** Register a collation sequence factory callback with the database handle +** db. Replace any previously installed collation sequence factory. +*/ +int sqlite3_collation_needed( + sqlite3 *db, + void *pCollNeededArg, + void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) +){ + if( sqlite3SafetyCheck(db) ){ + return SQLITE_MISUSE; + } + db->xCollNeeded = xCollNeeded; + db->xCollNeeded16 = 0; + db->pCollNeededArg = pCollNeededArg; + return SQLITE_OK; +} + +/* +** Register a collation sequence factory callback with the database handle +** db. Replace any previously installed collation sequence factory. +*/ +int sqlite3_collation_needed16( + sqlite3 *db, + void *pCollNeededArg, + void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) +){ + if( sqlite3SafetyCheck(db) ){ + return SQLITE_MISUSE; + } + db->xCollNeeded = 0; + db->xCollNeeded16 = xCollNeeded16; + db->pCollNeededArg = pCollNeededArg; + return SQLITE_OK; +} diff --git a/kopete/plugins/statistics/sqlite/opcodes.c b/kopete/plugins/statistics/sqlite/opcodes.c new file mode 100644 index 00000000..b6f01219 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/opcodes.c @@ -0,0 +1,128 @@ +/* Automatically generated. Do not edit */ +/* See the mkopcodec.h script for details. */ +const char *const sqlite3OpcodeNames[] = { "?", + "ContextPop", + "IntegrityCk", + "DropTrigger", + "DropIndex", + "Recno", + "KeyAsData", + "Delete", + "MoveGt", + "VerifyCookie", + "Push", + "Dup", + "Blob", + "IdxGT", + "IdxRecno", + "RowKey", + "PutStrKey", + "IsUnique", + "SetNumColumns", + "IdxIsNull", + "NullRow", + "OpenPseudo", + "OpenWrite", + "OpenRead", + "Transaction", + "AutoCommit", + "Pop", + "Halt", + "Vacuum", + "ListRead", + "RowData", + "NotExists", + "MoveLe", + "SetCookie", + "Variable", + "AggNext", + "AggReset", + "Sort", + "IdxDelete", + "ResetCount", + "OpenTemp", + "IdxColumn", + "Integer", + "AggSet", + "CreateIndex", + "IdxPut", + "MoveLt", + "Return", + "MemLoad", + "SortNext", + "IdxLT", + "Rewind", + "AddImm", + "AggFunc", + "AggInit", + "MemIncr", + "ListReset", + "Clear", + "Or", + "And", + "Not", + "PutIntKey", + "If", + "Callback", + "IsNull", + "NotNull", + "Ne", + "Eq", + "Gt", + "Le", + "Lt", + "Ge", + "BitAnd", + "BitOr", + "ShiftLeft", + "ShiftRight", + "Add", + "Subtract", + "Multiply", + "Divide", + "Remainder", + "Concat", + "Negative", + "SortReset", + "BitNot", + "String8", + "SortPut", + "Last", + "NotFound", + "MakeRecord", + "String", + "Goto", + "AggFocus", + "DropTable", + "Column", + "Noop", + "AggGet", + "CreateTable", + "NewRecno", + "Found", + "Distinct", + "Close", + "Statement", + "IfNot", + "Pull", + "MemStore", + "Next", + "Prev", + "MoveGe", + "MustBeInt", + "ForceInt", + "CollSeq", + "Gosub", + "ContextPush", + "ListRewind", + "ListWrite", + "ParseSchema", + "Destroy", + "IdxGE", + "FullKey", + "ReadCookie", + "AbsValue", + "Real", + "HexBlob", + "Function", +}; diff --git a/kopete/plugins/statistics/sqlite/opcodes.h b/kopete/plugins/statistics/sqlite/opcodes.h new file mode 100644 index 00000000..7b792c5a --- /dev/null +++ b/kopete/plugins/statistics/sqlite/opcodes.h @@ -0,0 +1,126 @@ +/* Automatically generated. Do not edit */ +/* See the mkopcodeh.awk script for details */ +#define OP_ContextPop 1 +#define OP_IntegrityCk 2 +#define OP_DropTrigger 3 +#define OP_DropIndex 4 +#define OP_Recno 5 +#define OP_KeyAsData 6 +#define OP_Delete 7 +#define OP_MoveGt 8 +#define OP_VerifyCookie 9 +#define OP_Push 10 +#define OP_Dup 11 +#define OP_Blob 12 +#define OP_IdxGT 13 +#define OP_IdxRecno 14 +#define OP_RowKey 15 +#define OP_PutStrKey 16 +#define OP_IsUnique 17 +#define OP_SetNumColumns 18 +#define OP_Eq 67 +#define OP_IdxIsNull 19 +#define OP_NullRow 20 +#define OP_OpenPseudo 21 +#define OP_OpenWrite 22 +#define OP_OpenRead 23 +#define OP_Transaction 24 +#define OP_AutoCommit 25 +#define OP_Negative 82 +#define OP_Pop 26 +#define OP_Halt 27 +#define OP_Vacuum 28 +#define OP_ListRead 29 +#define OP_RowData 30 +#define OP_NotExists 31 +#define OP_MoveLe 32 +#define OP_SetCookie 33 +#define OP_Variable 34 +#define OP_AggNext 35 +#define OP_AggReset 36 +#define OP_Sort 37 +#define OP_IdxDelete 38 +#define OP_ResetCount 39 +#define OP_OpenTemp 40 +#define OP_IdxColumn 41 +#define OP_NotNull 65 +#define OP_Ge 71 +#define OP_Remainder 80 +#define OP_Divide 79 +#define OP_Integer 42 +#define OP_AggSet 43 +#define OP_CreateIndex 44 +#define OP_IdxPut 45 +#define OP_MoveLt 46 +#define OP_And 59 +#define OP_ShiftLeft 74 +#define OP_Real 122 +#define OP_Return 47 +#define OP_MemLoad 48 +#define OP_SortNext 49 +#define OP_IdxLT 50 +#define OP_Rewind 51 +#define OP_Gt 68 +#define OP_AddImm 52 +#define OP_Subtract 77 +#define OP_AggFunc 53 +#define OP_AggInit 54 +#define OP_MemIncr 55 +#define OP_ListReset 56 +#define OP_Clear 57 +#define OP_PutIntKey 61 +#define OP_IsNull 64 +#define OP_If 62 +#define OP_Callback 63 +#define OP_SortReset 83 +#define OP_SortPut 86 +#define OP_Last 87 +#define OP_NotFound 88 +#define OP_MakeRecord 89 +#define OP_BitAnd 72 +#define OP_Add 76 +#define OP_HexBlob 123 +#define OP_String 90 +#define OP_Goto 91 +#define OP_AggFocus 92 +#define OP_DropTable 93 +#define OP_Column 94 +#define OP_Noop 95 +#define OP_Not 60 +#define OP_Le 69 +#define OP_BitOr 73 +#define OP_Multiply 78 +#define OP_String8 85 +#define OP_AggGet 96 +#define OP_CreateTable 97 +#define OP_NewRecno 98 +#define OP_Found 99 +#define OP_Distinct 100 +#define OP_Close 101 +#define OP_Statement 102 +#define OP_IfNot 103 +#define OP_Pull 104 +#define OP_MemStore 105 +#define OP_Next 106 +#define OP_Prev 107 +#define OP_MoveGe 108 +#define OP_Lt 70 +#define OP_Ne 66 +#define OP_MustBeInt 109 +#define OP_ForceInt 110 +#define OP_ShiftRight 75 +#define OP_CollSeq 111 +#define OP_Gosub 112 +#define OP_ContextPush 113 +#define OP_ListRewind 114 +#define OP_ListWrite 115 +#define OP_ParseSchema 116 +#define OP_Destroy 117 +#define OP_IdxGE 118 +#define OP_FullKey 119 +#define OP_ReadCookie 120 +#define OP_BitNot 84 +#define OP_AbsValue 121 +#define OP_Or 58 +#define OP_Function 124 +#define OP_Concat 81 diff --git a/kopete/plugins/statistics/sqlite/os.h b/kopete/plugins/statistics/sqlite/os.h new file mode 100644 index 00000000..fc478baa --- /dev/null +++ b/kopete/plugins/statistics/sqlite/os.h @@ -0,0 +1,197 @@ +/* +** 2001 September 16 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This header file (together with is companion C source-code file +** "os.c") attempt to abstract the underlying operating system so that +** the SQLite library will work on both POSIX and windows systems. +*/ +#ifndef _SQLITE_OS_H_ +#define _SQLITE_OS_H_ + +/* +** Figure out if we are dealing with Unix, Windows or MacOS. +** +** N.B. MacOS means Mac Classic (or Carbon). Treat Darwin (OS X) as Unix. +** The MacOS build is designed to use CodeWarrior (tested with v8) +*/ +#if !defined(OS_UNIX) && !defined(OS_TEST) +# ifndef OS_WIN +# ifndef OS_MAC +# if defined(__MACOS__) +# define OS_MAC 1 +# define OS_WIN 0 +# define OS_UNIX 0 +# elif defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__) +# define OS_MAC 0 +# define OS_WIN 1 +# define OS_UNIX 0 +# else +# define OS_MAC 0 +# define OS_WIN 0 +# define OS_UNIX 1 +# endif +# else +# define OS_WIN 0 +# define OS_UNIX 0 +# endif +# else +# define OS_MAC 0 +# define OS_UNIX 0 +# endif +#else +# define OS_MAC 0 +# ifndef OS_WIN +# define OS_WIN 0 +# endif +#endif + +/* +** Invoke the appropriate operating-system specific header file. +*/ +#if OS_TEST +# include "os_test.h" +#endif +#if OS_UNIX +# include "os_unix.h" +#endif +#if OS_WIN +# include "os_win.h" +#endif +#if OS_MAC +# include "os_mac.h" +#endif + +/* +** Temporary files are named starting with this prefix followed by 16 random +** alphanumeric characters, and no file extension. They are stored in the +** OS's standard temporary file directory, and are deleted prior to exit. +** If sqlite is being embedded in another program, you may wish to change the +** prefix to reflect your program's name, so that if your program exits +** prematurely, old temporary files can be easily identified. This can be done +** using -DTEMP_FILE_PREFIX=myprefix_ on the compiler command line. +*/ +#ifndef TEMP_FILE_PREFIX +# define TEMP_FILE_PREFIX "sqlite_" +#endif + +/* +** The following values may be passed as the second argument to +** sqlite3OsLock(). The various locks exhibit the following semantics: +** +** SHARED: Any number of processes may hold a SHARED lock simultaneously. +** RESERVED: A single process may hold a RESERVED lock on a file at +** any time. Other processes may hold and obtain new SHARED locks. +** PENDING: A single process may hold a PENDING lock on a file at +** any one time. Existing SHARED locks may persist, but no new +** SHARED locks may be obtained by other processes. +** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks. +** +** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a +** process that requests an EXCLUSIVE lock may actually obtain a PENDING +** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to +** sqlite3OsLock(). +*/ +#define NO_LOCK 0 +#define SHARED_LOCK 1 +#define RESERVED_LOCK 2 +#define PENDING_LOCK 3 +#define EXCLUSIVE_LOCK 4 + +/* +** File Locking Notes: (Mostly about windows but also some info for Unix) +** +** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because +** those functions are not available. So we use only LockFile() and +** UnlockFile(). +** +** LockFile() prevents not just writing but also reading by other processes. +** A SHARED_LOCK is obtained by locking a single randomly-chosen +** byte out of a specific range of bytes. The lock byte is obtained at +** random so two separate readers can probably access the file at the +** same time, unless they are unlucky and choose the same lock byte. +** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range. +** There can only be one writer. A RESERVED_LOCK is obtained by locking +** a single byte of the file that is designated as the reserved lock byte. +** A PENDING_LOCK is obtained by locking a designated byte different from +** the RESERVED_LOCK byte. +** +** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available, +** which means we can use reader/writer locks. When reader/writer locks +** are used, the lock is placed on the same range of bytes that is used +** for probabilistic locking in Win95/98/ME. Hence, the locking scheme +** will support two or more Win95 readers or two or more WinNT readers. +** But a single Win95 reader will lock out all WinNT readers and a single +** WinNT reader will lock out all other Win95 readers. +** +** The following #defines specify the range of bytes used for locking. +** SHARED_SIZE is the number of bytes available in the pool from which +** a random byte is selected for a shared lock. The pool of bytes for +** shared locks begins at SHARED_FIRST. +** +** These #defines are available in os.h so that Unix can use the same +** byte ranges for locking. This leaves open the possiblity of having +** clients on win95, winNT, and unix all talking to the same shared file +** and all locking correctly. To do so would require that samba (or whatever +** tool is being used for file sharing) implements locks correctly between +** windows and unix. I'm guessing that isn't likely to happen, but by +** using the same locking range we are at least open to the possibility. +** +** Locking in windows is manditory. For this reason, we cannot store +** actual data in the bytes used for locking. The pager never allocates +** the pages involved in locking therefore. SHARED_SIZE is selected so +** that all locks will fit on a single page even at the minimum page size. +** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE +** is set high so that we don't have to allocate an unused page except +** for very large databases. But one should test the page skipping logic +** by setting PENDING_BYTE low and running the entire regression suite. +** +** Changing the value of PENDING_BYTE results in a subtly incompatible +** file format. Depending on how it is changed, you might not notice +** the incompatibility right away, even running a full regression test. +** The default location of PENDING_BYTE is the first byte past the +** 1GB boundary. +** +*/ +#define PENDING_BYTE 0x40000000 /* First byte past the 1GB boundary */ +/* #define PENDING_BYTE 0x5400 // Page 20 - for testing */ +#define RESERVED_BYTE (PENDING_BYTE+1) +#define SHARED_FIRST (PENDING_BYTE+2) +#define SHARED_SIZE 510 + + +int sqlite3OsDelete(const char*); +int sqlite3OsFileExists(const char*); +int sqlite3OsOpenReadWrite(const char*, OsFile*, int*); +int sqlite3OsOpenExclusive(const char*, OsFile*, int); +int sqlite3OsOpenReadOnly(const char*, OsFile*); +int sqlite3OsOpenDirectory(const char*, OsFile*); +int sqlite3OsSyncDirectory(const char*); +int sqlite3OsTempFileName(char*); +int sqlite3OsClose(OsFile*); +int sqlite3OsRead(OsFile*, void*, int amt); +int sqlite3OsWrite(OsFile*, const void*, int amt); +int sqlite3OsSeek(OsFile*, i64 offset); +int sqlite3OsSync(OsFile*); +int sqlite3OsTruncate(OsFile*, i64 size); +int sqlite3OsFileSize(OsFile*, i64 *pSize); +int sqlite3OsRandomSeed(char*); +int sqlite3OsSleep(int ms); +int sqlite3OsCurrentTime(double*); +int sqlite3OsFileModTime(OsFile*, double*); +void sqlite3OsEnterMutex(void); +void sqlite3OsLeaveMutex(void); +char *sqlite3OsFullPathname(const char*); +int sqlite3OsLock(OsFile*, int); +int sqlite3OsUnlock(OsFile*, int); +int sqlite3OsCheckReservedLock(OsFile *id); + +#endif /* _SQLITE_OS_H_ */ diff --git a/kopete/plugins/statistics/sqlite/os_common.h b/kopete/plugins/statistics/sqlite/os_common.h new file mode 100644 index 00000000..94311b96 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/os_common.h @@ -0,0 +1,107 @@ +/* +** 2004 May 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains macros and a little bit of code that is common to +** all of the platform-specific files (os_*.c) and is #included into those +** files. +** +** This file should be #included by the os_*.c files only. It is not a +** general purpose header file. +*/ + +/* +** At least two bugs have slipped in because we changed the MEMORY_DEBUG +** macro to SQLITE_DEBUG and some older makefiles have not yet made the +** switch. The following code should catch this problem at compile-time. +*/ +#ifdef MEMORY_DEBUG +# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead." +#endif + + +int sqlite3_os_trace = 0; +#ifdef SQLITE_DEBUG +static int last_page = 0; +#define SEEK(X) last_page=(X) +#define TRACE1(X) if( sqlite3_os_trace ) sqlite3DebugPrintf(X) +#define TRACE2(X,Y) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y) +#define TRACE3(X,Y,Z) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z) +#define TRACE4(X,Y,Z,A) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A) +#define TRACE5(X,Y,Z,A,B) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A,B) +#define TRACE6(X,Y,Z,A,B,C) if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C) +#define TRACE7(X,Y,Z,A,B,C,D) \ + if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D) +#else +#define SEEK(X) +#define TRACE1(X) +#define TRACE2(X,Y) +#define TRACE3(X,Y,Z) +#define TRACE4(X,Y,Z,A) +#define TRACE5(X,Y,Z,A,B) +#define TRACE6(X,Y,Z,A,B,C) +#define TRACE7(X,Y,Z,A,B,C,D) +#endif + +/* +** Macros for performance tracing. Normally turned off. Only works +** on i486 hardware. +*/ +#ifdef SQLITE_PERFORMANCE_TRACE +__inline__ unsigned long long int hwtime(void){ + unsigned long long int x; + __asm__("rdtsc\n\t" + "mov %%edx, %%ecx\n\t" + :"=A" (x)); + return x; +} +static unsigned long long int g_start; +static unsigned int elapse; +#define TIMER_START g_start=hwtime() +#define TIMER_END elapse=hwtime()-g_start +#define TIMER_ELAPSED elapse +#else +#define TIMER_START +#define TIMER_END +#define TIMER_ELAPSED 0 +#endif + +/* +** If we compile with the SQLITE_TEST macro set, then the following block +** of code will give us the ability to simulate a disk I/O error. This +** is used for testing the I/O recovery logic. +*/ +#ifdef SQLITE_TEST +int sqlite3_io_error_pending = 0; +int sqlite3_diskfull_pending = 0; +#define SimulateIOError(A) \ + if( sqlite3_io_error_pending ) \ + if( sqlite3_io_error_pending-- == 1 ){ local_ioerr(); return A; } +static void local_ioerr(){ + sqlite3_io_error_pending = 0; /* Really just a place to set a breakpoint */ +} +#define SimulateDiskfullError \ + if( sqlite3_diskfull_pending ) \ + if( sqlite3_diskfull_pending-- == 1 ){ local_ioerr(); return SQLITE_FULL; } +#else +#define SimulateIOError(A) +#define SimulateDiskfullError +#endif + +/* +** When testing, keep a count of the number of open files. +*/ +#ifdef SQLITE_TEST +int sqlite3_open_file_count = 0; +#define OpenCounter(X) sqlite3_open_file_count+=(X) +#else +#define OpenCounter(X) +#endif diff --git a/kopete/plugins/statistics/sqlite/os_mac.c b/kopete/plugins/statistics/sqlite/os_mac.c new file mode 100644 index 00000000..f84c168d --- /dev/null +++ b/kopete/plugins/statistics/sqlite/os_mac.c @@ -0,0 +1,738 @@ +/* +** 2004 May 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains code that is specific classic mac. Mac OS X +** uses the os_unix.c file, not this one. +*/ +#include "sqliteInt.h" +#include "os.h" +#if OS_MAC /* This file used on classic mac only */ + +#include <extras.h> +#include <path2fss.h> +#include <TextUtils.h> +#include <FinderRegistry.h> +#include <Folders.h> +#include <Timer.h> +#include <OSUtils.h> + +/* +** Macros used to determine whether or not to use threads. +*/ +#if defined(THREADSAFE) && THREADSAFE +# include <Multiprocessing.h> +# define SQLITE_MACOS_MULTITASKING 1 +#endif + +/* +** Include code that is common to all os_*.c files +*/ +#include "os_common.h" + +/* +** Delete the named file +*/ +int sqlite3OsDelete(const char *zFilename){ + unlink(zFilename); + return SQLITE_OK; +} + +/* +** Return TRUE if the named file exists. +*/ +int sqlite3OsFileExists(const char *zFilename){ + return access(zFilename, 0)==0; +} + +/* +** Attempt to open a file for both reading and writing. If that +** fails, try opening it read-only. If the file does not exist, +** try to create it. +** +** On success, a handle for the open file is written to *id +** and *pReadonly is set to 0 if the file was opened for reading and +** writing or 1 if the file was opened read-only. The function returns +** SQLITE_OK. +** +** On failure, the function returns SQLITE_CANTOPEN and leaves +** *id and *pReadonly unchanged. +*/ +int sqlite3OsOpenReadWrite( + const char *zFilename, + OsFile *id, + int *pReadonly +){ + FSSpec fsSpec; +# ifdef _LARGE_FILE + HFSUniStr255 dfName; + FSRef fsRef; + if( __path2fss(zFilename, &fsSpec) != noErr ){ + if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr ) + return SQLITE_CANTOPEN; + } + if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr ) + return SQLITE_CANTOPEN; + FSGetDataForkName(&dfName); + if( FSOpenFork(&fsRef, dfName.length, dfName.unicode, + fsRdWrShPerm, &(id->refNum)) != noErr ){ + if( FSOpenFork(&fsRef, dfName.length, dfName.unicode, + fsRdWrPerm, &(id->refNum)) != noErr ){ + if (FSOpenFork(&fsRef, dfName.length, dfName.unicode, + fsRdPerm, &(id->refNum)) != noErr ) + return SQLITE_CANTOPEN; + else + *pReadonly = 1; + } else + *pReadonly = 0; + } else + *pReadonly = 0; +# else + __path2fss(zFilename, &fsSpec); + if( !sqlite3OsFileExists(zFilename) ){ + if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr ) + return SQLITE_CANTOPEN; + } + if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNum)) != noErr ){ + if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrPerm, &(id->refNum)) != noErr ){ + if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdPerm, &(id->refNum)) != noErr ) + return SQLITE_CANTOPEN; + else + *pReadonly = 1; + } else + *pReadonly = 0; + } else + *pReadonly = 0; +# endif + if( HOpenRF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNumRF)) != noErr){ + id->refNumRF = -1; + } + id->locked = 0; + id->delOnClose = 0; + OpenCounter(+1); + return SQLITE_OK; +} + + +/* +** Attempt to open a new file for exclusive access by this process. +** The file will be opened for both reading and writing. To avoid +** a potential security problem, we do not allow the file to have +** previously existed. Nor do we allow the file to be a symbolic +** link. +** +** If delFlag is true, then make arrangements to automatically delete +** the file when it is closed. +** +** On success, write the file handle into *id and return SQLITE_OK. +** +** On failure, return SQLITE_CANTOPEN. +*/ +int sqlite3OsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){ + FSSpec fsSpec; +# ifdef _LARGE_FILE + HFSUniStr255 dfName; + FSRef fsRef; + __path2fss(zFilename, &fsSpec); + if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr ) + return SQLITE_CANTOPEN; + if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr ) + return SQLITE_CANTOPEN; + FSGetDataForkName(&dfName); + if( FSOpenFork(&fsRef, dfName.length, dfName.unicode, + fsRdWrPerm, &(id->refNum)) != noErr ) + return SQLITE_CANTOPEN; +# else + __path2fss(zFilename, &fsSpec); + if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr ) + return SQLITE_CANTOPEN; + if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrPerm, &(id->refNum)) != noErr ) + return SQLITE_CANTOPEN; +# endif + id->refNumRF = -1; + id->locked = 0; + id->delOnClose = delFlag; + if (delFlag) + id->pathToDel = sqlite3OsFullPathname(zFilename); + OpenCounter(+1); + return SQLITE_OK; +} + +/* +** Attempt to open a new file for read-only access. +** +** On success, write the file handle into *id and return SQLITE_OK. +** +** On failure, return SQLITE_CANTOPEN. +*/ +int sqlite3OsOpenReadOnly(const char *zFilename, OsFile *id){ + FSSpec fsSpec; +# ifdef _LARGE_FILE + HFSUniStr255 dfName; + FSRef fsRef; + if( __path2fss(zFilename, &fsSpec) != noErr ) + return SQLITE_CANTOPEN; + if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr ) + return SQLITE_CANTOPEN; + FSGetDataForkName(&dfName); + if( FSOpenFork(&fsRef, dfName.length, dfName.unicode, + fsRdPerm, &(id->refNum)) != noErr ) + return SQLITE_CANTOPEN; +# else + __path2fss(zFilename, &fsSpec); + if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdPerm, &(id->refNum)) != noErr ) + return SQLITE_CANTOPEN; +# endif + if( HOpenRF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNumRF)) != noErr){ + id->refNumRF = -1; + } + id->locked = 0; + id->delOnClose = 0; + OpenCounter(+1); + return SQLITE_OK; +} + +/* +** Attempt to open a file descriptor for the directory that contains a +** file. This file descriptor can be used to fsync() the directory +** in order to make sure the creation of a new file is actually written +** to disk. +** +** This routine is only meaningful for Unix. It is a no-op under +** windows since windows does not support hard links. +** +** On success, a handle for a previously open file is at *id is +** updated with the new directory file descriptor and SQLITE_OK is +** returned. +** +** On failure, the function returns SQLITE_CANTOPEN and leaves +** *id unchanged. +*/ +int sqlite3OsOpenDirectory( + const char *zDirname, + OsFile *id +){ + return SQLITE_OK; +} + +/* +** Create a temporary file name in zBuf. zBuf must be big enough to +** hold at least SQLITE_TEMPNAME_SIZE characters. +*/ +int sqlite3OsTempFileName(char *zBuf){ + static char zChars[] = + "abcdefghijklmnopqrstuvwxyz" + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + "0123456789"; + int i, j; + char zTempPath[SQLITE_TEMPNAME_SIZE]; + char zdirName[32]; + CInfoPBRec infoRec; + Str31 dirName; + memset(&infoRec, 0, sizeof(infoRec)); + memset(zTempPath, 0, SQLITE_TEMPNAME_SIZE); + if( FindFolder(kOnSystemDisk, kTemporaryFolderType, kCreateFolder, + &(infoRec.dirInfo.ioVRefNum), &(infoRec.dirInfo.ioDrParID)) == noErr ){ + infoRec.dirInfo.ioNamePtr = dirName; + do{ + infoRec.dirInfo.ioFDirIndex = -1; + infoRec.dirInfo.ioDrDirID = infoRec.dirInfo.ioDrParID; + if( PBGetCatInfoSync(&infoRec) == noErr ){ + CopyPascalStringToC(dirName, zdirName); + i = strlen(zdirName); + memmove(&(zTempPath[i+1]), zTempPath, strlen(zTempPath)); + strcpy(zTempPath, zdirName); + zTempPath[i] = ':'; + }else{ + *zTempPath = 0; + break; + } + } while( infoRec.dirInfo.ioDrDirID != fsRtDirID ); + } + if( *zTempPath == 0 ) + getcwd(zTempPath, SQLITE_TEMPNAME_SIZE-24); + for(;;){ + sprintf(zBuf, "%s"TEMP_FILE_PREFIX, zTempPath); + j = strlen(zBuf); + sqlite3Randomness(15, &zBuf[j]); + for(i=0; i<15; i++, j++){ + zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; + } + zBuf[j] = 0; + if( !sqlite3OsFileExists(zBuf) ) break; + } + return SQLITE_OK; +} + +/* +** Close a file. +*/ +int sqlite3OsClose(OsFile *id){ + if( id->refNumRF!=-1 ) + FSClose(id->refNumRF); +# ifdef _LARGE_FILE + FSCloseFork(id->refNum); +# else + FSClose(id->refNum); +# endif + if( id->delOnClose ){ + unlink(id->pathToDel); + sqliteFree(id->pathToDel); + } + OpenCounter(-1); + return SQLITE_OK; +} + +/* +** Read data from a file into a buffer. Return SQLITE_OK if all +** bytes were read successfully and SQLITE_IOERR if anything goes +** wrong. +*/ +int sqlite3OsRead(OsFile *id, void *pBuf, int amt){ + int got; + SimulateIOError(SQLITE_IOERR); + TRACE2("READ %d\n", last_page); +# ifdef _LARGE_FILE + FSReadFork(id->refNum, fsAtMark, 0, (ByteCount)amt, pBuf, (ByteCount*)&got); +# else + got = amt; + FSRead(id->refNum, &got, pBuf); +# endif + if( got==amt ){ + return SQLITE_OK; + }else{ + return SQLITE_IOERR; + } +} + +/* +** Write data from a buffer into a file. Return SQLITE_OK on success +** or some other error code on failure. +*/ +int sqlite3OsWrite(OsFile *id, const void *pBuf, int amt){ + OSErr oserr; + int wrote = 0; + SimulateIOError(SQLITE_IOERR); + TRACE2("WRITE %d\n", last_page); + while( amt>0 ){ +# ifdef _LARGE_FILE + oserr = FSWriteFork(id->refNum, fsAtMark, 0, + (ByteCount)amt, pBuf, (ByteCount*)&wrote); +# else + wrote = amt; + oserr = FSWrite(id->refNum, &wrote, pBuf); +# endif + if( wrote == 0 || oserr != noErr) + break; + amt -= wrote; + pBuf = &((char*)pBuf)[wrote]; + } + if( oserr != noErr || amt>wrote ){ + return SQLITE_FULL; + } + return SQLITE_OK; +} + +/* +** Move the read/write pointer in a file. +*/ +int sqlite3OsSeek(OsFile *id, off_t offset){ + off_t curSize; + SEEK(offset/1024 + 1); + if( sqlite3OsFileSize(id, &curSize) != SQLITE_OK ){ + return SQLITE_IOERR; + } + if( offset >= curSize ){ + if( sqlite3OsTruncate(id, offset+1) != SQLITE_OK ){ + return SQLITE_IOERR; + } + } +# ifdef _LARGE_FILE + if( FSSetForkPosition(id->refNum, fsFromStart, offset) != noErr ){ +# else + if( SetFPos(id->refNum, fsFromStart, offset) != noErr ){ +# endif + return SQLITE_IOERR; + }else{ + return SQLITE_OK; + } +} + +/* +** Make sure all writes to a particular file are committed to disk. +** +** Under Unix, also make sure that the directory entry for the file +** has been created by fsync-ing the directory that contains the file. +** If we do not do this and we encounter a power failure, the directory +** entry for the journal might not exist after we reboot. The next +** SQLite to access the file will not know that the journal exists (because +** the directory entry for the journal was never created) and the transaction +** will not roll back - possibly leading to database corruption. +*/ +int sqlite3OsSync(OsFile *id){ +# ifdef _LARGE_FILE + if( FSFlushFork(id->refNum) != noErr ){ +# else + ParamBlockRec params; + memset(¶ms, 0, sizeof(ParamBlockRec)); + params.ioParam.ioRefNum = id->refNum; + if( PBFlushFileSync(¶ms) != noErr ){ +# endif + return SQLITE_IOERR; + }else{ + return SQLITE_OK; + } +} + +/* +** Sync the directory zDirname. This is a no-op on operating systems other +** than UNIX. +*/ +int sqlite3OsSyncDirectory(const char *zDirname){ + SimulateIOError(SQLITE_IOERR); + return SQLITE_OK; +} + +/* +** Truncate an open file to a specified size +*/ +int sqlite3OsTruncate(OsFile *id, off_t nByte){ + SimulateIOError(SQLITE_IOERR); +# ifdef _LARGE_FILE + if( FSSetForkSize(id->refNum, fsFromStart, nByte) != noErr){ +# else + if( SetEOF(id->refNum, nByte) != noErr ){ +# endif + return SQLITE_IOERR; + }else{ + return SQLITE_OK; + } +} + +/* +** Determine the current size of a file in bytes +*/ +int sqlite3OsFileSize(OsFile *id, off_t *pSize){ +# ifdef _LARGE_FILE + if( FSGetForkSize(id->refNum, pSize) != noErr){ +# else + if( GetEOF(id->refNum, pSize) != noErr ){ +# endif + return SQLITE_IOERR; + }else{ + return SQLITE_OK; + } +} + +/* +** Windows file locking notes: [similar issues apply to MacOS] +** +** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because +** those functions are not available. So we use only LockFile() and +** UnlockFile(). +** +** LockFile() prevents not just writing but also reading by other processes. +** (This is a design error on the part of Windows, but there is nothing +** we can do about that.) So the region used for locking is at the +** end of the file where it is unlikely to ever interfere with an +** actual read attempt. +** +** A database read lock is obtained by locking a single randomly-chosen +** byte out of a specific range of bytes. The lock byte is obtained at +** random so two separate readers can probably access the file at the +** same time, unless they are unlucky and choose the same lock byte. +** A database write lock is obtained by locking all bytes in the range. +** There can only be one writer. +** +** A lock is obtained on the first byte of the lock range before acquiring +** either a read lock or a write lock. This prevents two processes from +** attempting to get a lock at a same time. The semantics of +** sqlite3OsReadLock() require that if there is already a write lock, that +** lock is converted into a read lock atomically. The lock on the first +** byte allows us to drop the old write lock and get the read lock without +** another process jumping into the middle and messing us up. The same +** argument applies to sqlite3OsWriteLock(). +** +** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available, +** which means we can use reader/writer locks. When reader writer locks +** are used, the lock is placed on the same range of bytes that is used +** for probabilistic locking in Win95/98/ME. Hence, the locking scheme +** will support two or more Win95 readers or two or more WinNT readers. +** But a single Win95 reader will lock out all WinNT readers and a single +** WinNT reader will lock out all other Win95 readers. +** +** Note: On MacOS we use the resource fork for locking. +** +** The following #defines specify the range of bytes used for locking. +** N_LOCKBYTE is the number of bytes available for doing the locking. +** The first byte used to hold the lock while the lock is changing does +** not count toward this number. FIRST_LOCKBYTE is the address of +** the first byte in the range of bytes used for locking. +*/ +#define N_LOCKBYTE 10239 +#define FIRST_LOCKBYTE (0x000fffff - N_LOCKBYTE) + +/* +** Change the status of the lock on the file "id" to be a readlock. +** If the file was write locked, then this reduces the lock to a read. +** If the file was read locked, then this acquires a new read lock. +** +** Return SQLITE_OK on success and SQLITE_BUSY on failure. If this +** library was compiled with large file support (LFS) but LFS is not +** available on the host, then an SQLITE_NOLFS is returned. +*/ +int sqlite3OsReadLock(OsFile *id){ + int rc; + if( id->locked>0 || id->refNumRF == -1 ){ + rc = SQLITE_OK; + }else{ + int lk; + OSErr res; + int cnt = 5; + ParamBlockRec params; + sqlite3Randomness(sizeof(lk), &lk); + lk = (lk & 0x7fffffff)%N_LOCKBYTE + 1; + memset(¶ms, 0, sizeof(params)); + params.ioParam.ioRefNum = id->refNumRF; + params.ioParam.ioPosMode = fsFromStart; + params.ioParam.ioPosOffset = FIRST_LOCKBYTE; + params.ioParam.ioReqCount = 1; + while( cnt-->0 && (res = PBLockRangeSync(¶ms))!=noErr ){ + UInt32 finalTicks; + Delay(1, &finalTicks); /* 1/60 sec */ + } + if( res == noErr ){ + params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1; + params.ioParam.ioReqCount = N_LOCKBYTE; + PBUnlockRangeSync(¶ms); + params.ioParam.ioPosOffset = FIRST_LOCKBYTE+lk; + params.ioParam.ioReqCount = 1; + res = PBLockRangeSync(¶ms); + params.ioParam.ioPosOffset = FIRST_LOCKBYTE; + params.ioParam.ioReqCount = 1; + PBUnlockRangeSync(¶ms); + } + if( res == noErr ){ + id->locked = lk; + rc = SQLITE_OK; + }else{ + rc = SQLITE_BUSY; + } + } + return rc; +} + +/* +** Change the lock status to be an exclusive or write lock. Return +** SQLITE_OK on success and SQLITE_BUSY on a failure. If this +** library was compiled with large file support (LFS) but LFS is not +** available on the host, then an SQLITE_NOLFS is returned. +*/ +int sqlite3OsWriteLock(OsFile *id){ + int rc; + if( id->locked<0 || id->refNumRF == -1 ){ + rc = SQLITE_OK; + }else{ + OSErr res; + int cnt = 5; + ParamBlockRec params; + memset(¶ms, 0, sizeof(params)); + params.ioParam.ioRefNum = id->refNumRF; + params.ioParam.ioPosMode = fsFromStart; + params.ioParam.ioPosOffset = FIRST_LOCKBYTE; + params.ioParam.ioReqCount = 1; + while( cnt-->0 && (res = PBLockRangeSync(¶ms))!=noErr ){ + UInt32 finalTicks; + Delay(1, &finalTicks); /* 1/60 sec */ + } + if( res == noErr ){ + params.ioParam.ioPosOffset = FIRST_LOCKBYTE + id->locked; + params.ioParam.ioReqCount = 1; + if( id->locked==0 + || PBUnlockRangeSync(¶ms)==noErr ){ + params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1; + params.ioParam.ioReqCount = N_LOCKBYTE; + res = PBLockRangeSync(¶ms); + }else{ + res = afpRangeNotLocked; + } + params.ioParam.ioPosOffset = FIRST_LOCKBYTE; + params.ioParam.ioReqCount = 1; + PBUnlockRangeSync(¶ms); + } + if( res == noErr ){ + id->locked = -1; + rc = SQLITE_OK; + }else{ + rc = SQLITE_BUSY; + } + } + return rc; +} + +/* +** Unlock the given file descriptor. If the file descriptor was +** not previously locked, then this routine is a no-op. If this +** library was compiled with large file support (LFS) but LFS is not +** available on the host, then an SQLITE_NOLFS is returned. +*/ +int sqlite3OsUnlock(OsFile *id){ + int rc; + ParamBlockRec params; + memset(¶ms, 0, sizeof(params)); + params.ioParam.ioRefNum = id->refNumRF; + params.ioParam.ioPosMode = fsFromStart; + if( id->locked==0 || id->refNumRF == -1 ){ + rc = SQLITE_OK; + }else if( id->locked<0 ){ + params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1; + params.ioParam.ioReqCount = N_LOCKBYTE; + PBUnlockRangeSync(¶ms); + rc = SQLITE_OK; + id->locked = 0; + }else{ + params.ioParam.ioPosOffset = FIRST_LOCKBYTE+id->locked; + params.ioParam.ioReqCount = 1; + PBUnlockRangeSync(¶ms); + rc = SQLITE_OK; + id->locked = 0; + } + return rc; +} + +/* +** Get information to seed the random number generator. The seed +** is written into the buffer zBuf[256]. The calling function must +** supply a sufficiently large buffer. +*/ +int sqlite3OsRandomSeed(char *zBuf){ + /* We have to initialize zBuf to prevent valgrind from reporting + ** errors. The reports issued by valgrind are incorrect - we would + ** prefer that the randomness be increased by making use of the + ** uninitialized space in zBuf - but valgrind errors tend to worry + ** some users. Rather than argue, it seems easier just to initialize + ** the whole array and silence valgrind, even if that means less randomness + ** in the random seed. + ** + ** When testing, initializing zBuf[] to zero is all we do. That means + ** that we always use the same random number sequence.* This makes the + ** tests repeatable. + */ + memset(zBuf, 0, 256); +#if !defined(SQLITE_TEST) + { + int pid; + Microseconds((UnsignedWide*)zBuf); + pid = getpid(); + memcpy(&zBuf[sizeof(UnsignedWide)], &pid, sizeof(pid)); + } +#endif + return SQLITE_OK; +} + +/* +** Sleep for a little while. Return the amount of time slept. +*/ +int sqlite3OsSleep(int ms){ + UInt32 finalTicks; + UInt32 ticks = (((UInt32)ms+16)*3)/50; /* 1/60 sec per tick */ + Delay(ticks, &finalTicks); + return (int)((ticks*50)/3); +} + +/* +** Static variables used for thread synchronization +*/ +static int inMutex = 0; +#ifdef SQLITE_MACOS_MULTITASKING + static MPCriticalRegionID criticalRegion; +#endif + +/* +** The following pair of routine implement mutual exclusion for +** multi-threaded processes. Only a single thread is allowed to +** executed code that is surrounded by EnterMutex() and LeaveMutex(). +** +** SQLite uses only a single Mutex. There is not much critical +** code and what little there is executes quickly and without blocking. +*/ +void sqlite3OsEnterMutex(){ +#ifdef SQLITE_MACOS_MULTITASKING + static volatile int notInit = 1; + if( notInit ){ + if( notInit == 2 ) /* as close as you can get to thread safe init */ + MPYield(); + else{ + notInit = 2; + MPCreateCriticalRegion(&criticalRegion); + notInit = 0; + } + } + MPEnterCriticalRegion(criticalRegion, kDurationForever); +#endif + assert( !inMutex ); + inMutex = 1; +} +void sqlite3OsLeaveMutex(){ + assert( inMutex ); + inMutex = 0; +#ifdef SQLITE_MACOS_MULTITASKING + MPExitCriticalRegion(criticalRegion); +#endif +} + +/* +** Turn a relative pathname into a full pathname. Return a pointer +** to the full pathname stored in space obtained from sqliteMalloc(). +** The calling function is responsible for freeing this space once it +** is no longer needed. +*/ +char *sqlite3OsFullPathname(const char *zRelative){ + char *zFull = 0; + if( zRelative[0]==':' ){ + char zBuf[_MAX_PATH+1]; + sqlite3SetString(&zFull, getcwd(zBuf, sizeof(zBuf)), &(zRelative[1]), + (char*)0); + }else{ + if( strchr(zRelative, ':') ){ + sqlite3SetString(&zFull, zRelative, (char*)0); + }else{ + char zBuf[_MAX_PATH+1]; + sqlite3SetString(&zFull, getcwd(zBuf, sizeof(zBuf)), zRelative, (char*)0); + } + } + return zFull; +} + +/* +** The following variable, if set to a non-zero value, becomes the result +** returned from sqlite3OsCurrentTime(). This is used for testing. +*/ +#ifdef SQLITE_TEST +int sqlite3_current_time = 0; +#endif + +/* +** Find the current time (in Universal Coordinated Time). Write the +** current time and date as a Julian Day number into *prNow and +** return 0. Return 1 if the time and date cannot be found. +*/ +int sqlite3OsCurrentTime(double *prNow){ + *prNow = 0.0; /**** FIX ME *****/ +#ifdef SQLITE_TEST + if( sqlite3_current_time ){ + *prNow = sqlite3_current_time/86400.0 + 2440587.5; + } +#endif + return 0; +} + +#endif /* OS_MAC */ diff --git a/kopete/plugins/statistics/sqlite/os_mac.h b/kopete/plugins/statistics/sqlite/os_mac.h new file mode 100644 index 00000000..5b60f818 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/os_mac.h @@ -0,0 +1,41 @@ +/* +** 2004 May 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This header file defines OS-specific features of classic Mac. +** OS X uses the os_unix.h file, not this one. +*/ +#ifndef _SQLITE_OS_MAC_H_ +#define _SQLITE_OS_MAC_H_ + + +#include <unistd.h> +#include <Files.h> +#define SQLITE_TEMPNAME_SIZE _MAX_PATH +#define SQLITE_MIN_SLEEP_MS 17 + +/* +** The OsFile structure is a operating-system independing representation +** of an open file handle. It is defined differently for each architecture. +** +** This is the definition for class Mac. +*/ +typedef struct OsFile OsFile; +struct OsFile { + SInt16 refNum; /* Data fork/file reference number */ + SInt16 refNumRF; /* Resource fork reference number (for locking) */ + int locked; /* 0: unlocked, <0: write lock, >0: read lock */ + int delOnClose; /* True if file is to be deleted on close */ + char *pathToDel; /* Name of file to delete on close */ +}; + + +#endif /* _SQLITE_OS_MAC_H_ */ diff --git a/kopete/plugins/statistics/sqlite/os_unix.c b/kopete/plugins/statistics/sqlite/os_unix.c new file mode 100644 index 00000000..94fca701 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/os_unix.c @@ -0,0 +1,1276 @@ +/* +** 2004 May 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains code that is specific to Unix systems. +*/ +#include "sqliteInt.h" +#include "os.h" +#if OS_UNIX /* This file is used on unix only */ + + +#include <time.h> +#include <errno.h> +#include <unistd.h> +#ifndef O_LARGEFILE +# define O_LARGEFILE 0 +#endif +#ifdef SQLITE_DISABLE_LFS +# undef O_LARGEFILE +# define O_LARGEFILE 0 +#endif +#ifndef O_NOFOLLOW +# define O_NOFOLLOW 0 +#endif +#ifndef O_BINARY +# define O_BINARY 0 +#endif + + +/* +** The DJGPP compiler environment looks mostly like Unix, but it +** lacks the fcntl() system call. So redefine fcntl() to be something +** that always succeeds. This means that locking does not occur under +** DJGPP. But its DOS - what did you expect? +*/ +#ifdef __DJGPP__ +# define fcntl(A,B,C) 0 +#endif + +/* +** Macros used to determine whether or not to use threads. The +** SQLITE_UNIX_THREADS macro is defined if we are synchronizing for +** Posix threads and SQLITE_W32_THREADS is defined if we are +** synchronizing using Win32 threads. +*/ +#if defined(THREADSAFE) && THREADSAFE +# include <pthread.h> +# define SQLITE_UNIX_THREADS 1 +#endif + + +/* +** Include code that is common to all os_*.c files +*/ +#include "os_common.h" + +#if defined(THREADSAFE) && THREADSAFE && defined(__linux__) +#define getpid pthread_self +#endif + +/* +** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996) +** section 6.5.2.2 lines 483 through 490 specify that when a process +** sets or clears a lock, that operation overrides any prior locks set +** by the same process. It does not explicitly say so, but this implies +** that it overrides locks set by the same process using a different +** file descriptor. Consider this test case: +** +** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644); +** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644); +** +** Suppose ./file1 and ./file2 are really the same file (because +** one is a hard or symbolic link to the other) then if you set +** an exclusive lock on fd1, then try to get an exclusive lock +** on fd2, it works. I would have expected the second lock to +** fail since there was already a lock on the file due to fd1. +** But not so. Since both locks came from the same process, the +** second overrides the first, even though they were on different +** file descriptors opened on different file names. +** +** Bummer. If you ask me, this is broken. Badly broken. It means +** that we cannot use POSIX locks to synchronize file access among +** competing threads of the same process. POSIX locks will work fine +** to synchronize access for threads in separate processes, but not +** threads within the same process. +** +** To work around the problem, SQLite has to manage file locks internally +** on its own. Whenever a new database is opened, we have to find the +** specific inode of the database file (the inode is determined by the +** st_dev and st_ino fields of the stat structure that fstat() fills in) +** and check for locks already existing on that inode. When locks are +** created or removed, we have to look at our own internal record of the +** locks to see if another thread has previously set a lock on that same +** inode. +** +** The OsFile structure for POSIX is no longer just an integer file +** descriptor. It is now a structure that holds the integer file +** descriptor and a pointer to a structure that describes the internal +** locks on the corresponding inode. There is one locking structure +** per inode, so if the same inode is opened twice, both OsFile structures +** point to the same locking structure. The locking structure keeps +** a reference count (so we will know when to delete it) and a "cnt" +** field that tells us its internal lock status. cnt==0 means the +** file is unlocked. cnt==-1 means the file has an exclusive lock. +** cnt>0 means there are cnt shared locks on the file. +** +** Any attempt to lock or unlock a file first checks the locking +** structure. The fcntl() system call is only invoked to set a +** POSIX lock if the internal lock structure transitions between +** a locked and an unlocked state. +** +** 2004-Jan-11: +** More recent discoveries about POSIX advisory locks. (The more +** I discover, the more I realize the a POSIX advisory locks are +** an abomination.) +** +** If you close a file descriptor that points to a file that has locks, +** all locks on that file that are owned by the current process are +** released. To work around this problem, each OsFile structure contains +** a pointer to an openCnt structure. There is one openCnt structure +** per open inode, which means that multiple OsFiles can point to a single +** openCnt. When an attempt is made to close an OsFile, if there are +** other OsFiles open on the same inode that are holding locks, the call +** to close() the file descriptor is deferred until all of the locks clear. +** The openCnt structure keeps a list of file descriptors that need to +** be closed and that list is walked (and cleared) when the last lock +** clears. +** +** First, under Linux threads, because each thread has a separate +** process ID, lock operations in one thread do not override locks +** to the same file in other threads. Linux threads behave like +** separate processes in this respect. But, if you close a file +** descriptor in linux threads, all locks are cleared, even locks +** on other threads and even though the other threads have different +** process IDs. Linux threads is inconsistent in this respect. +** (I'm beginning to think that linux threads is an abomination too.) +** The consequence of this all is that the hash table for the lockInfo +** structure has to include the process id as part of its key because +** locks in different threads are treated as distinct. But the +** openCnt structure should not include the process id in its +** key because close() clears lock on all threads, not just the current +** thread. Were it not for this goofiness in linux threads, we could +** combine the lockInfo and openCnt structures into a single structure. +** +** 2004-Jun-28: +** On some versions of linux, threads can override each others locks. +** On others not. Sometimes you can change the behavior on the same +** system by setting the LD_ASSUME_KERNEL environment variable. The +** POSIX standard is silent as to which behavior is correct, as far +** as I can tell, so other versions of unix might show the same +** inconsistency. There is no little doubt in my mind that posix +** advisory locks and linux threads are profoundly broken. +** +** To work around the inconsistencies, we have to test at runtime +** whether or not threads can override each others locks. This test +** is run once, the first time any lock is attempted. A static +** variable is set to record the results of this test for future +** use. +*/ + +/* +** An instance of the following structure serves as the key used +** to locate a particular lockInfo structure given its inode. +** +** If threads cannot override each others locks, then we set the +** lockKey.tid field to the thread ID. If threads can override +** each others locks then tid is always set to zero. tid is also +** set to zero if we compile without threading support. +*/ +struct lockKey { + dev_t dev; /* Device number */ + ino_t ino; /* Inode number */ +#ifdef SQLITE_UNIX_THREADS + pthread_t tid; /* Thread ID or zero if threads cannot override each other */ +#endif +}; + +/* +** An instance of the following structure is allocated for each open +** inode on each thread with a different process ID. (Threads have +** different process IDs on linux, but not on most other unixes.) +** +** A single inode can have multiple file descriptors, so each OsFile +** structure contains a pointer to an instance of this object and this +** object keeps a count of the number of OsFiles pointing to it. +*/ +struct lockInfo { + struct lockKey key; /* The lookup key */ + int cnt; /* Number of SHARED locks held */ + int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */ + int nRef; /* Number of pointers to this structure */ +}; + +/* +** An instance of the following structure serves as the key used +** to locate a particular openCnt structure given its inode. This +** is the same as the lockKey except that the thread ID is omitted. +*/ +struct openKey { + dev_t dev; /* Device number */ + ino_t ino; /* Inode number */ +}; + +/* +** An instance of the following structure is allocated for each open +** inode. This structure keeps track of the number of locks on that +** inode. If a close is attempted against an inode that is holding +** locks, the close is deferred until all locks clear by adding the +** file descriptor to be closed to the pending list. +*/ +struct openCnt { + struct openKey key; /* The lookup key */ + int nRef; /* Number of pointers to this structure */ + int nLock; /* Number of outstanding locks */ + int nPending; /* Number of pending close() operations */ + int *aPending; /* Malloced space holding fd's awaiting a close() */ +}; + +/* +** These hash table maps inodes and process IDs into lockInfo and openCnt +** structures. Access to these hash tables must be protected by a mutex. +*/ +static Hash lockHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 }; +static Hash openHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 }; + + +#ifdef SQLITE_UNIX_THREADS +/* +** This variable records whether or not threads can override each others +** locks. +** +** 0: No. Threads cannot override each others locks. +** 1: Yes. Threads can override each others locks. +** -1: We don't know yet. +*/ +static int threadsOverrideEachOthersLocks = -1; + +/* +** This structure holds information passed into individual test +** threads by the testThreadLockingBehavior() routine. +*/ +struct threadTestData { + int fd; /* File to be locked */ + struct flock lock; /* The locking operation */ + int result; /* Result of the locking operation */ +}; + +/* +** The testThreadLockingBehavior() routine launches two separate +** threads on this routine. This routine attempts to lock a file +** descriptor then returns. The success or failure of that attempt +** allows the testThreadLockingBehavior() procedure to determine +** whether or not threads can override each others locks. +*/ +static void *threadLockingTest(void *pArg){ + struct threadTestData *pData = (struct threadTestData*)pArg; + pData->result = fcntl(pData->fd, F_SETLK, &pData->lock); + return pArg; +} + +/* +** This procedure attempts to determine whether or not threads +** can override each others locks then sets the +** threadsOverrideEachOthersLocks variable appropriately. +*/ +static void testThreadLockingBehavior(fd_orig){ + int fd; + struct threadTestData d[2]; + pthread_t t[2]; + + fd = dup(fd_orig); + if( fd<0 ) return; + memset(d, 0, sizeof(d)); + d[0].fd = fd; + d[0].lock.l_type = F_RDLCK; + d[0].lock.l_len = 1; + d[0].lock.l_start = 0; + d[0].lock.l_whence = SEEK_SET; + d[1] = d[0]; + d[1].lock.l_type = F_WRLCK; + pthread_create(&t[0], 0, threadLockingTest, &d[0]); + pthread_create(&t[1], 0, threadLockingTest, &d[1]); + pthread_join(t[0], 0); + pthread_join(t[1], 0); + close(fd); + threadsOverrideEachOthersLocks = d[0].result==0 && d[1].result==0; +} +#endif /* SQLITE_UNIX_THREADS */ + +/* +** Release a lockInfo structure previously allocated by findLockInfo(). +*/ +static void releaseLockInfo(struct lockInfo *pLock){ + pLock->nRef--; + if( pLock->nRef==0 ){ + sqlite3HashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0); + sqliteFree(pLock); + } +} + +/* +** Release a openCnt structure previously allocated by findLockInfo(). +*/ +static void releaseOpenCnt(struct openCnt *pOpen){ + pOpen->nRef--; + if( pOpen->nRef==0 ){ + sqlite3HashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0); + sqliteFree(pOpen->aPending); + sqliteFree(pOpen); + } +} + +/* +** Given a file descriptor, locate lockInfo and openCnt structures that +** describes that file descriptor. Create a new ones if necessary. The +** return values might be unset if an error occurs. +** +** Return the number of errors. +*/ +static int findLockInfo( + int fd, /* The file descriptor used in the key */ + struct lockInfo **ppLock, /* Return the lockInfo structure here */ + struct openCnt **ppOpen /* Return the openCnt structure here */ +){ + int rc; + struct lockKey key1; + struct openKey key2; + struct stat statbuf; + struct lockInfo *pLock; + struct openCnt *pOpen; + rc = fstat(fd, &statbuf); + if( rc!=0 ) return 1; + memset(&key1, 0, sizeof(key1)); + key1.dev = statbuf.st_dev; + key1.ino = statbuf.st_ino; +#ifdef SQLITE_UNIX_THREADS + if( threadsOverrideEachOthersLocks<0 ){ + testThreadLockingBehavior(fd); + } + key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self(); +#endif + memset(&key2, 0, sizeof(key2)); + key2.dev = statbuf.st_dev; + key2.ino = statbuf.st_ino; + pLock = (struct lockInfo*)sqlite3HashFind(&lockHash, &key1, sizeof(key1)); + if( pLock==0 ){ + struct lockInfo *pOld; + pLock = sqliteMallocRaw( sizeof(*pLock) ); + if( pLock==0 ) return 1; + pLock->key = key1; + pLock->nRef = 1; + pLock->cnt = 0; + pLock->locktype = 0; + pOld = sqlite3HashInsert(&lockHash, &pLock->key, sizeof(key1), pLock); + if( pOld!=0 ){ + assert( pOld==pLock ); + sqliteFree(pLock); + return 1; + } + }else{ + pLock->nRef++; + } + *ppLock = pLock; + pOpen = (struct openCnt*)sqlite3HashFind(&openHash, &key2, sizeof(key2)); + if( pOpen==0 ){ + struct openCnt *pOld; + pOpen = sqliteMallocRaw( sizeof(*pOpen) ); + if( pOpen==0 ){ + releaseLockInfo(pLock); + return 1; + } + pOpen->key = key2; + pOpen->nRef = 1; + pOpen->nLock = 0; + pOpen->nPending = 0; + pOpen->aPending = 0; + pOld = sqlite3HashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen); + if( pOld!=0 ){ + assert( pOld==pOpen ); + sqliteFree(pOpen); + releaseLockInfo(pLock); + return 1; + } + }else{ + pOpen->nRef++; + } + *ppOpen = pOpen; + return 0; +} + +/* +** Delete the named file +*/ +int sqlite3OsDelete(const char *zFilename){ + unlink(zFilename); + return SQLITE_OK; +} + +/* +** Return TRUE if the named file exists. +*/ +int sqlite3OsFileExists(const char *zFilename){ + return access(zFilename, 0)==0; +} + +/* +** Attempt to open a file for both reading and writing. If that +** fails, try opening it read-only. If the file does not exist, +** try to create it. +** +** On success, a handle for the open file is written to *id +** and *pReadonly is set to 0 if the file was opened for reading and +** writing or 1 if the file was opened read-only. The function returns +** SQLITE_OK. +** +** On failure, the function returns SQLITE_CANTOPEN and leaves +** *id and *pReadonly unchanged. +*/ +int sqlite3OsOpenReadWrite( + const char *zFilename, + OsFile *id, + int *pReadonly +){ + int rc; + assert( !id->isOpen ); + id->dirfd = -1; + id->h = open(zFilename, O_RDWR|O_CREAT|O_LARGEFILE|O_BINARY, 0644); + if( id->h<0 ){ +#ifdef EISDIR + if( errno==EISDIR ){ + return SQLITE_CANTOPEN; + } +#endif + id->h = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY); + if( id->h<0 ){ + return SQLITE_CANTOPEN; + } + *pReadonly = 1; + }else{ + *pReadonly = 0; + } + sqlite3OsEnterMutex(); + rc = findLockInfo(id->h, &id->pLock, &id->pOpen); + sqlite3OsLeaveMutex(); + if( rc ){ + close(id->h); + return SQLITE_NOMEM; + } + id->locktype = 0; + id->isOpen = 1; + TRACE3("OPEN %-3d %s\n", id->h, zFilename); + OpenCounter(+1); + return SQLITE_OK; +} + + +/* +** Attempt to open a new file for exclusive access by this process. +** The file will be opened for both reading and writing. To avoid +** a potential security problem, we do not allow the file to have +** previously existed. Nor do we allow the file to be a symbolic +** link. +** +** If delFlag is true, then make arrangements to automatically delete +** the file when it is closed. +** +** On success, write the file handle into *id and return SQLITE_OK. +** +** On failure, return SQLITE_CANTOPEN. +*/ +int sqlite3OsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){ + int rc; + assert( !id->isOpen ); + if( access(zFilename, 0)==0 ){ + return SQLITE_CANTOPEN; + } + id->dirfd = -1; + id->h = open(zFilename, + O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW|O_LARGEFILE|O_BINARY, 0600); + if( id->h<0 ){ + return SQLITE_CANTOPEN; + } + sqlite3OsEnterMutex(); + rc = findLockInfo(id->h, &id->pLock, &id->pOpen); + sqlite3OsLeaveMutex(); + if( rc ){ + close(id->h); + unlink(zFilename); + return SQLITE_NOMEM; + } + id->locktype = 0; + id->isOpen = 1; + if( delFlag ){ + unlink(zFilename); + } + TRACE3("OPEN-EX %-3d %s\n", id->h, zFilename); + OpenCounter(+1); + return SQLITE_OK; +} + +/* +** Attempt to open a new file for read-only access. +** +** On success, write the file handle into *id and return SQLITE_OK. +** +** On failure, return SQLITE_CANTOPEN. +*/ +int sqlite3OsOpenReadOnly(const char *zFilename, OsFile *id){ + int rc; + assert( !id->isOpen ); + id->dirfd = -1; + id->h = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY); + if( id->h<0 ){ + return SQLITE_CANTOPEN; + } + sqlite3OsEnterMutex(); + rc = findLockInfo(id->h, &id->pLock, &id->pOpen); + sqlite3OsLeaveMutex(); + if( rc ){ + close(id->h); + return SQLITE_NOMEM; + } + id->locktype = 0; + id->isOpen = 1; + TRACE3("OPEN-RO %-3d %s\n", id->h, zFilename); + OpenCounter(+1); + return SQLITE_OK; +} + +/* +** Attempt to open a file descriptor for the directory that contains a +** file. This file descriptor can be used to fsync() the directory +** in order to make sure the creation of a new file is actually written +** to disk. +** +** This routine is only meaningful for Unix. It is a no-op under +** windows since windows does not support hard links. +** +** On success, a handle for a previously open file is at *id is +** updated with the new directory file descriptor and SQLITE_OK is +** returned. +** +** On failure, the function returns SQLITE_CANTOPEN and leaves +** *id unchanged. +*/ +int sqlite3OsOpenDirectory( + const char *zDirname, + OsFile *id +){ + if( !id->isOpen ){ + /* Do not open the directory if the corresponding file is not already + ** open. */ + return SQLITE_CANTOPEN; + } + assert( id->dirfd<0 ); + id->dirfd = open(zDirname, O_RDONLY|O_BINARY, 0644); + if( id->dirfd<0 ){ + return SQLITE_CANTOPEN; + } + TRACE3("OPENDIR %-3d %s\n", id->dirfd, zDirname); + return SQLITE_OK; +} + +/* +** If the following global variable points to a string which is the +** name of a directory, then that directory will be used to store +** temporary files. +*/ +const char *sqlite3_temp_directory = 0; + +/* +** Create a temporary file name in zBuf. zBuf must be big enough to +** hold at least SQLITE_TEMPNAME_SIZE characters. +*/ +int sqlite3OsTempFileName(char *zBuf){ + static const char *azDirs[] = { + 0, + "/var/tmp", + "/usr/tmp", + "/tmp", + ".", + }; + static const unsigned char zChars[] = + "abcdefghijklmnopqrstuvwxyz" + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + "0123456789"; + int i, j; + struct stat buf; + const char *zDir = "."; + azDirs[0] = sqlite3_temp_directory; + for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){ + if( azDirs[i]==0 ) continue; + if( stat(azDirs[i], &buf) ) continue; + if( !S_ISDIR(buf.st_mode) ) continue; + if( access(azDirs[i], 07) ) continue; + zDir = azDirs[i]; + break; + } + do{ + sprintf(zBuf, "%s/"TEMP_FILE_PREFIX, zDir); + j = strlen(zBuf); + sqlite3Randomness(15, &zBuf[j]); + for(i=0; i<15; i++, j++){ + zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; + } + zBuf[j] = 0; + }while( access(zBuf,0)==0 ); + return SQLITE_OK; +} + +/* +** Read data from a file into a buffer. Return SQLITE_OK if all +** bytes were read successfully and SQLITE_IOERR if anything goes +** wrong. +*/ +int sqlite3OsRead(OsFile *id, void *pBuf, int amt){ + int got; + assert( id->isOpen ); + SimulateIOError(SQLITE_IOERR); + TIMER_START; + got = read(id->h, pBuf, amt); + TIMER_END; + TRACE4("READ %-3d %7d %d\n", id->h, last_page, TIMER_ELAPSED); + SEEK(0); + /* if( got<0 ) got = 0; */ + if( got==amt ){ + return SQLITE_OK; + }else{ + return SQLITE_IOERR; + } +} + +/* +** Write data from a buffer into a file. Return SQLITE_OK on success +** or some other error code on failure. +*/ +int sqlite3OsWrite(OsFile *id, const void *pBuf, int amt){ + int wrote = 0; + assert( id->isOpen ); + SimulateIOError(SQLITE_IOERR); + SimulateDiskfullError; + TIMER_START; + while( amt>0 && (wrote = write(id->h, pBuf, amt))>0 ){ + amt -= wrote; + pBuf = &((char*)pBuf)[wrote]; + } + TIMER_END; + TRACE4("WRITE %-3d %7d %d\n", id->h, last_page, TIMER_ELAPSED); + SEEK(0); + if( amt>0 ){ + return SQLITE_FULL; + } + return SQLITE_OK; +} + +/* +** Move the read/write pointer in a file. +*/ +int sqlite3OsSeek(OsFile *id, i64 offset){ + assert( id->isOpen ); + SEEK(offset/1024 + 1); + lseek(id->h, offset, SEEK_SET); + return SQLITE_OK; +} + +/* +** The fsync() system call does not work as advertised on many +** unix systems. The following procedure is an attempt to make +** it work better. +*/ +static int full_fsync(int fd){ + int rc; +#ifdef F_FULLFSYNC + rc = fcntl(fd, F_FULLFSYNC, 0); + if( rc ) rc = fsync(fd); +#else + rc = fsync(fd); +#endif + return rc; +} + +/* +** Make sure all writes to a particular file are committed to disk. +** +** Under Unix, also make sure that the directory entry for the file +** has been created by fsync-ing the directory that contains the file. +** If we do not do this and we encounter a power failure, the directory +** entry for the journal might not exist after we reboot. The next +** SQLite to access the file will not know that the journal exists (because +** the directory entry for the journal was never created) and the transaction +** will not roll back - possibly leading to database corruption. +*/ +int sqlite3OsSync(OsFile *id){ + assert( id->isOpen ); + SimulateIOError(SQLITE_IOERR); + TRACE2("SYNC %-3d\n", id->h); + if( full_fsync(id->h) ){ + return SQLITE_IOERR; + } + if( id->dirfd>=0 ){ + TRACE2("DIRSYNC %-3d\n", id->dirfd); + full_fsync(id->dirfd); + close(id->dirfd); /* Only need to sync once, so close the directory */ + id->dirfd = -1; /* when we are done. */ + } + return SQLITE_OK; +} + +/* +** Sync the directory zDirname. This is a no-op on operating systems other +** than UNIX. +*/ +int sqlite3OsSyncDirectory(const char *zDirname){ + int fd; + int r; + SimulateIOError(SQLITE_IOERR); + fd = open(zDirname, O_RDONLY|O_BINARY, 0644); + TRACE3("DIRSYNC %-3d (%s)\n", fd, zDirname); + if( fd<0 ){ + return SQLITE_CANTOPEN; + } + r = fsync(fd); + close(fd); + return ((r==0)?SQLITE_OK:SQLITE_IOERR); +} + +/* +** Truncate an open file to a specified size +*/ +int sqlite3OsTruncate(OsFile *id, i64 nByte){ + assert( id->isOpen ); + SimulateIOError(SQLITE_IOERR); + return ftruncate(id->h, nByte)==0 ? SQLITE_OK : SQLITE_IOERR; +} + +/* +** Determine the current size of a file in bytes +*/ +int sqlite3OsFileSize(OsFile *id, i64 *pSize){ + struct stat buf; + assert( id->isOpen ); + SimulateIOError(SQLITE_IOERR); + if( fstat(id->h, &buf)!=0 ){ + return SQLITE_IOERR; + } + *pSize = buf.st_size; + return SQLITE_OK; +} + +/* +** This routine checks if there is a RESERVED lock held on the specified +** file by this or any other process. If such a lock is held, return +** non-zero. If the file is unlocked or holds only SHARED locks, then +** return zero. +*/ +int sqlite3OsCheckReservedLock(OsFile *id){ + int r = 0; + + assert( id->isOpen ); + sqlite3OsEnterMutex(); /* Needed because id->pLock is shared across threads */ + + /* Check if a thread in this process holds such a lock */ + if( id->pLock->locktype>SHARED_LOCK ){ + r = 1; + } + + /* Otherwise see if some other process holds it. + */ + if( !r ){ + struct flock lock; + lock.l_whence = SEEK_SET; + lock.l_start = RESERVED_BYTE; + lock.l_len = 1; + lock.l_type = F_WRLCK; + fcntl(id->h, F_GETLK, &lock); + if( lock.l_type!=F_UNLCK ){ + r = 1; + } + } + + sqlite3OsLeaveMutex(); + TRACE3("TEST WR-LOCK %d %d\n", id->h, r); + + return r; +} + +#ifdef SQLITE_DEBUG +/* +** Helper function for printing out trace information from debugging +** binaries. This returns the string represetation of the supplied +** integer lock-type. +*/ +static const char * locktypeName(int locktype){ + switch( locktype ){ + case NO_LOCK: return "NONE"; + case SHARED_LOCK: return "SHARED"; + case RESERVED_LOCK: return "RESERVED"; + case PENDING_LOCK: return "PENDING"; + case EXCLUSIVE_LOCK: return "EXCLUSIVE"; + } + return "ERROR"; +} +#endif + +/* +** Lock the file with the lock specified by parameter locktype - one +** of the following: +** +** (1) SHARED_LOCK +** (2) RESERVED_LOCK +** (3) PENDING_LOCK +** (4) EXCLUSIVE_LOCK +** +** Sometimes when requesting one lock state, additional lock states +** are inserted in between. The locking might fail on one of the later +** transitions leaving the lock state different from what it started but +** still short of its goal. The following chart shows the allowed +** transitions and the inserted intermediate states: +** +** UNLOCKED -> SHARED +** SHARED -> RESERVED +** SHARED -> (PENDING) -> EXCLUSIVE +** RESERVED -> (PENDING) -> EXCLUSIVE +** PENDING -> EXCLUSIVE +** +** This routine will only increase a lock. Use the sqlite3OsUnlock() +** routine to lower a locking level. +*/ +int sqlite3OsLock(OsFile *id, int locktype){ + /* The following describes the implementation of the various locks and + ** lock transitions in terms of the POSIX advisory shared and exclusive + ** lock primitives (called read-locks and write-locks below, to avoid + ** confusion with SQLite lock names). The algorithms are complicated + ** slightly in order to be compatible with windows systems simultaneously + ** accessing the same database file, in case that is ever required. + ** + ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved + ** byte', each single bytes at well known offsets, and the 'shared byte + ** range', a range of 510 bytes at a well known offset. + ** + ** To obtain a SHARED lock, a read-lock is obtained on the 'pending + ** byte'. If this is successful, a random byte from the 'shared byte + ** range' is read-locked and the lock on the 'pending byte' released. + ** + ** A process may only obtain a RESERVED lock after it has a SHARED lock. + ** A RESERVED lock is implemented by grabbing a write-lock on the + ** 'reserved byte'. + ** + ** A process may only obtain a PENDING lock after it has obtained a + ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock + ** on the 'pending byte'. This ensures that no new SHARED locks can be + ** obtained, but existing SHARED locks are allowed to persist. A process + ** does not have to obtain a RESERVED lock on the way to a PENDING lock. + ** This property is used by the algorithm for rolling back a journal file + ** after a crash. + ** + ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is + ** implemented by obtaining a write-lock on the entire 'shared byte + ** range'. Since all other locks require a read-lock on one of the bytes + ** within this range, this ensures that no other locks are held on the + ** database. + ** + ** The reason a single byte cannot be used instead of the 'shared byte + ** range' is that some versions of windows do not support read-locks. By + ** locking a random byte from a range, concurrent SHARED locks may exist + ** even if the locking primitive used is always a write-lock. + */ + int rc = SQLITE_OK; + struct lockInfo *pLock = id->pLock; + struct flock lock; + int s; + + assert( id->isOpen ); + TRACE7("LOCK %d %s was %s(%s,%d) pid=%d\n", id->h, locktypeName(locktype), + locktypeName(id->locktype), locktypeName(pLock->locktype), pLock->cnt + ,getpid() ); + + /* If there is already a lock of this type or more restrictive on the + ** OsFile, do nothing. Don't use the end_lock: exit path, as + ** sqlite3OsEnterMutex() hasn't been called yet. + */ + if( id->locktype>=locktype ){ + TRACE3("LOCK %d %s ok (already held)\n", id->h, locktypeName(locktype)); + return SQLITE_OK; + } + + /* Make sure the locking sequence is correct + */ + assert( id->locktype!=NO_LOCK || locktype==SHARED_LOCK ); + assert( locktype!=PENDING_LOCK ); + assert( locktype!=RESERVED_LOCK || id->locktype==SHARED_LOCK ); + + /* This mutex is needed because id->pLock is shared across threads + */ + sqlite3OsEnterMutex(); + + /* If some thread using this PID has a lock via a different OsFile* + ** handle that precludes the requested lock, return BUSY. + */ + if( (id->locktype!=pLock->locktype && + (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK)) + ){ + rc = SQLITE_BUSY; + goto end_lock; + } + + /* If a SHARED lock is requested, and some thread using this PID already + ** has a SHARED or RESERVED lock, then increment reference counts and + ** return SQLITE_OK. + */ + if( locktype==SHARED_LOCK && + (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){ + assert( locktype==SHARED_LOCK ); + assert( id->locktype==0 ); + assert( pLock->cnt>0 ); + id->locktype = SHARED_LOCK; + pLock->cnt++; + id->pOpen->nLock++; + goto end_lock; + } + + lock.l_len = 1L; + lock.l_whence = SEEK_SET; + + /* A PENDING lock is needed before acquiring a SHARED lock and before + ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will + ** be released. + */ + if( locktype==SHARED_LOCK + || (locktype==EXCLUSIVE_LOCK && id->locktype<PENDING_LOCK) + ){ + lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK); + lock.l_start = PENDING_BYTE; + s = fcntl(id->h, F_SETLK, &lock); + if( s ){ + rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY; + goto end_lock; + } + } + + + /* If control gets to this point, then actually go ahead and make + ** operating system calls for the specified lock. + */ + if( locktype==SHARED_LOCK ){ + assert( pLock->cnt==0 ); + assert( pLock->locktype==0 ); + + /* Now get the read-lock */ + lock.l_start = SHARED_FIRST; + lock.l_len = SHARED_SIZE; + s = fcntl(id->h, F_SETLK, &lock); + + /* Drop the temporary PENDING lock */ + lock.l_start = PENDING_BYTE; + lock.l_len = 1L; + lock.l_type = F_UNLCK; + fcntl(id->h, F_SETLK, &lock); + if( s ){ + rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY; + }else{ + id->locktype = SHARED_LOCK; + id->pOpen->nLock++; + pLock->cnt = 1; + } + }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){ + /* We are trying for an exclusive lock but another thread in this + ** same process is still holding a shared lock. */ + rc = SQLITE_BUSY; + }else{ + /* The request was for a RESERVED or EXCLUSIVE lock. It is + ** assumed that there is a SHARED or greater lock on the file + ** already. + */ + assert( 0!=id->locktype ); + lock.l_type = F_WRLCK; + switch( locktype ){ + case RESERVED_LOCK: + lock.l_start = RESERVED_BYTE; + break; + case EXCLUSIVE_LOCK: + lock.l_start = SHARED_FIRST; + lock.l_len = SHARED_SIZE; + break; + default: + assert(0); + } + s = fcntl(id->h, F_SETLK, &lock); + if( s ){ + rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY; + } + } + + if( rc==SQLITE_OK ){ + id->locktype = locktype; + pLock->locktype = locktype; + }else if( locktype==EXCLUSIVE_LOCK ){ + id->locktype = PENDING_LOCK; + pLock->locktype = PENDING_LOCK; + } + +end_lock: + sqlite3OsLeaveMutex(); + TRACE4("LOCK %d %s %s\n", id->h, locktypeName(locktype), + rc==SQLITE_OK ? "ok" : "failed"); + return rc; +} + +/* +** Lower the locking level on file descriptor id to locktype. locktype +** must be either NO_LOCK or SHARED_LOCK. +** +** If the locking level of the file descriptor is already at or below +** the requested locking level, this routine is a no-op. +** +** It is not possible for this routine to fail if the second argument +** is NO_LOCK. If the second argument is SHARED_LOCK, this routine +** might return SQLITE_IOERR instead of SQLITE_OK. +*/ +int sqlite3OsUnlock(OsFile *id, int locktype){ + struct lockInfo *pLock; + struct flock lock; + int rc = SQLITE_OK; + + assert( id->isOpen ); + TRACE7("UNLOCK %d %d was %d(%d,%d) pid=%d\n", id->h, locktype, id->locktype, + id->pLock->locktype, id->pLock->cnt, getpid()); + + assert( locktype<=SHARED_LOCK ); + if( id->locktype<=locktype ){ + return SQLITE_OK; + } + sqlite3OsEnterMutex(); + pLock = id->pLock; + assert( pLock->cnt!=0 ); + if( id->locktype>SHARED_LOCK ){ + assert( pLock->locktype==id->locktype ); + if( locktype==SHARED_LOCK ){ + lock.l_type = F_RDLCK; + lock.l_whence = SEEK_SET; + lock.l_start = SHARED_FIRST; + lock.l_len = SHARED_SIZE; + if( fcntl(id->h, F_SETLK, &lock)!=0 ){ + /* This should never happen */ + rc = SQLITE_IOERR; + } + } + lock.l_type = F_UNLCK; + lock.l_whence = SEEK_SET; + lock.l_start = PENDING_BYTE; + lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); + fcntl(id->h, F_SETLK, &lock); + pLock->locktype = SHARED_LOCK; + } + if( locktype==NO_LOCK ){ + struct openCnt *pOpen; + + /* Decrement the shared lock counter. Release the lock using an + ** OS call only when all threads in this same process have released + ** the lock. + */ + pLock->cnt--; + if( pLock->cnt==0 ){ + lock.l_type = F_UNLCK; + lock.l_whence = SEEK_SET; + lock.l_start = lock.l_len = 0L; + fcntl(id->h, F_SETLK, &lock); + pLock->locktype = NO_LOCK; + } + + /* Decrement the count of locks against this same file. When the + ** count reaches zero, close any other file descriptors whose close + ** was deferred because of outstanding locks. + */ + pOpen = id->pOpen; + pOpen->nLock--; + assert( pOpen->nLock>=0 ); + if( pOpen->nLock==0 && pOpen->nPending>0 ){ + int i; + for(i=0; i<pOpen->nPending; i++){ + close(pOpen->aPending[i]); + } + sqliteFree(pOpen->aPending); + pOpen->nPending = 0; + pOpen->aPending = 0; + } + } + sqlite3OsLeaveMutex(); + id->locktype = locktype; + return rc; +} + +/* +** Close a file. +*/ +int sqlite3OsClose(OsFile *id){ + if( !id->isOpen ) return SQLITE_OK; + sqlite3OsUnlock(id, NO_LOCK); + if( id->dirfd>=0 ) close(id->dirfd); + id->dirfd = -1; + sqlite3OsEnterMutex(); + if( id->pOpen->nLock ){ + /* If there are outstanding locks, do not actually close the file just + ** yet because that would clear those locks. Instead, add the file + ** descriptor to pOpen->aPending. It will be automatically closed when + ** the last lock is cleared. + */ + int *aNew; + struct openCnt *pOpen = id->pOpen; + pOpen->nPending++; + aNew = sqliteRealloc( pOpen->aPending, pOpen->nPending*sizeof(int) ); + if( aNew==0 ){ + /* If a malloc fails, just leak the file descriptor */ + }else{ + pOpen->aPending = aNew; + pOpen->aPending[pOpen->nPending-1] = id->h; + } + }else{ + /* There are no outstanding locks so we can close the file immediately */ + close(id->h); + } + releaseLockInfo(id->pLock); + releaseOpenCnt(id->pOpen); + sqlite3OsLeaveMutex(); + id->isOpen = 0; + TRACE2("CLOSE %-3d\n", id->h); + OpenCounter(-1); + return SQLITE_OK; +} + +/* +** Get information to seed the random number generator. The seed +** is written into the buffer zBuf[256]. The calling function must +** supply a sufficiently large buffer. +*/ +int sqlite3OsRandomSeed(char *zBuf){ + /* We have to initialize zBuf to prevent valgrind from reporting + ** errors. The reports issued by valgrind are incorrect - we would + ** prefer that the randomness be increased by making use of the + ** uninitialized space in zBuf - but valgrind errors tend to worry + ** some users. Rather than argue, it seems easier just to initialize + ** the whole array and silence valgrind, even if that means less randomness + ** in the random seed. + ** + ** When testing, initializing zBuf[] to zero is all we do. That means + ** that we always use the same random number sequence.* This makes the + ** tests repeatable. + */ + memset(zBuf, 0, 256); +#if !defined(SQLITE_TEST) + { + int pid; + time((time_t*)zBuf); + pid = getpid(); + memcpy(&zBuf[sizeof(time_t)], &pid, sizeof(pid)); + } +#endif + return SQLITE_OK; +} + +/* +** Sleep for a little while. Return the amount of time slept. +*/ +int sqlite3OsSleep(int ms){ +#if defined(HAVE_USLEEP) && HAVE_USLEEP + usleep(ms*1000); + return ms; +#else + sleep((ms+999)/1000); + return 1000*((ms+999)/1000); +#endif +} + +/* +** Static variables used for thread synchronization +*/ +static int inMutex = 0; +#ifdef SQLITE_UNIX_THREADS +static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; +#endif + +/* +** The following pair of routine implement mutual exclusion for +** multi-threaded processes. Only a single thread is allowed to +** executed code that is surrounded by EnterMutex() and LeaveMutex(). +** +** SQLite uses only a single Mutex. There is not much critical +** code and what little there is executes quickly and without blocking. +*/ +void sqlite3OsEnterMutex(){ +#ifdef SQLITE_UNIX_THREADS + pthread_mutex_lock(&mutex); +#endif + assert( !inMutex ); + inMutex = 1; +} +void sqlite3OsLeaveMutex(){ + assert( inMutex ); + inMutex = 0; +#ifdef SQLITE_UNIX_THREADS + pthread_mutex_unlock(&mutex); +#endif +} + +/* +** Turn a relative pathname into a full pathname. Return a pointer +** to the full pathname stored in space obtained from sqliteMalloc(). +** The calling function is responsible for freeing this space once it +** is no longer needed. +*/ +char *sqlite3OsFullPathname(const char *zRelative){ + char *zFull = 0; + if( zRelative[0]=='/' ){ + sqlite3SetString(&zFull, zRelative, (char*)0); + }else{ + char zBuf[5000]; + sqlite3SetString(&zFull, getcwd(zBuf, sizeof(zBuf)), "/", zRelative, + (char*)0); + } + return zFull; +} + +/* +** The following variable, if set to a non-zero value, becomes the result +** returned from sqlite3OsCurrentTime(). This is used for testing. +*/ +#ifdef SQLITE_TEST +int sqlite3_current_time = 0; +#endif + +/* +** Find the current time (in Universal Coordinated Time). Write the +** current time and date as a Julian Day number into *prNow and +** return 0. Return 1 if the time and date cannot be found. +*/ +int sqlite3OsCurrentTime(double *prNow){ + time_t t; + time(&t); + *prNow = t/86400.0 + 2440587.5; +#ifdef SQLITE_TEST + if( sqlite3_current_time ){ + *prNow = sqlite3_current_time/86400.0 + 2440587.5; + } +#endif + return 0; +} + +#if 0 /* NOT USED */ +/* +** Find the time that the file was last modified. Write the +** modification time and date as a Julian Day number into *prNow and +** return SQLITE_OK. Return SQLITE_ERROR if the modification +** time cannot be found. +*/ +int sqlite3OsFileModTime(OsFile *id, double *prNow){ + int rc; + struct stat statbuf; + if( fstat(id->h, &statbuf)==0 ){ + *prNow = statbuf.st_mtime/86400.0 + 2440587.5; + rc = SQLITE_OK; + }else{ + rc = SQLITE_ERROR; + } + return rc; +} +#endif /* NOT USED */ + +#endif /* OS_UNIX */ diff --git a/kopete/plugins/statistics/sqlite/os_unix.h b/kopete/plugins/statistics/sqlite/os_unix.h new file mode 100644 index 00000000..72f818be --- /dev/null +++ b/kopete/plugins/statistics/sqlite/os_unix.h @@ -0,0 +1,89 @@ +/* +** 2004 May 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This header file defined OS-specific features for Unix. +*/ +#ifndef _SQLITE_OS_UNIX_H_ +#define _SQLITE_OS_UNIX_H_ + +/* +** Helpful hint: To get this to compile on HP/UX, add -D_INCLUDE_POSIX_SOURCE +** to the compiler command line. +*/ + +/* +** These #defines should enable >2GB file support on Posix if the +** underlying operating system supports it. If the OS lacks +** large file support, or if the OS is windows, these should be no-ops. +** +** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch +** on the compiler command line. This is necessary if you are compiling +** on a recent machine (ex: RedHat 7.2) but you want your code to work +** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 +** without this option, LFS is enable. But LFS does not exist in the kernel +** in RedHat 6.0, so the code won't work. Hence, for maximum binary +** portability you should omit LFS. +** +** Similar is true for MacOS. LFS is only supported on MacOS 9 and later. +*/ +#ifndef SQLITE_DISABLE_LFS +# define _LARGE_FILE 1 +# ifndef _FILE_OFFSET_BITS +# define _FILE_OFFSET_BITS 64 +# endif +# define _LARGEFILE_SOURCE 1 +#endif + +/* +** standard include files. +*/ +#include <sys/types.h> +#include <sys/stat.h> +#include <fcntl.h> +#include <unistd.h> + +/* +** The OsFile structure is a operating-system independing representation +** of an open file handle. It is defined differently for each architecture. +** +** This is the definition for Unix. +** +** OsFile.locktype takes one of the values SHARED_LOCK, RESERVED_LOCK, +** PENDING_LOCK or EXCLUSIVE_LOCK. +*/ +typedef struct OsFile OsFile; +struct OsFile { + struct Pager *pPager; /* The pager that owns this OsFile. Might be 0 */ + struct openCnt *pOpen; /* Info about all open fd's on this inode */ + struct lockInfo *pLock; /* Info about locks on this inode */ + int h; /* The file descriptor */ + unsigned char locktype; /* The type of lock held on this fd */ + unsigned char isOpen; /* True if needs to be closed */ + int dirfd; /* File descriptor for the directory */ +}; + +/* +** Maximum number of characters in a temporary file name +*/ +#define SQLITE_TEMPNAME_SIZE 200 + +/* +** Minimum interval supported by sqlite3OsSleep(). +*/ +#if defined(HAVE_USLEEP) && HAVE_USLEEP +# define SQLITE_MIN_SLEEP_MS 1 +#else +# define SQLITE_MIN_SLEEP_MS 1000 +#endif + + +#endif /* _SQLITE_OS_UNIX_H_ */ diff --git a/kopete/plugins/statistics/sqlite/os_win.c b/kopete/plugins/statistics/sqlite/os_win.c new file mode 100644 index 00000000..f6e3e3ea --- /dev/null +++ b/kopete/plugins/statistics/sqlite/os_win.c @@ -0,0 +1,747 @@ +/* +** 2004 May 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains code that is specific to windows. +*/ +#include "sqliteInt.h" +#include "os.h" +#if OS_WIN /* This file is used for windows only */ + +#include <winbase.h> + +/* +** Macros used to determine whether or not to use threads. +*/ +#if defined(THREADSAFE) && THREADSAFE +# define SQLITE_W32_THREADS 1 +#endif + +/* +** Include code that is common to all os_*.c files +*/ +#include "os_common.h" + +/* +** Delete the named file +*/ +int sqlite3OsDelete(const char *zFilename){ + DeleteFileA(zFilename); + TRACE2("DELETE \"%s\"\n", zFilename); + return SQLITE_OK; +} + +/* +** Return TRUE if the named file exists. +*/ +int sqlite3OsFileExists(const char *zFilename){ + return GetFileAttributesA(zFilename) != 0xffffffff; +} + +/* +** Attempt to open a file for both reading and writing. If that +** fails, try opening it read-only. If the file does not exist, +** try to create it. +** +** On success, a handle for the open file is written to *id +** and *pReadonly is set to 0 if the file was opened for reading and +** writing or 1 if the file was opened read-only. The function returns +** SQLITE_OK. +** +** On failure, the function returns SQLITE_CANTOPEN and leaves +** *id and *pReadonly unchanged. +*/ +int sqlite3OsOpenReadWrite( + const char *zFilename, + OsFile *id, + int *pReadonly +){ + HANDLE h; + assert( !id->isOpen ); + h = CreateFileA(zFilename, + GENERIC_READ | GENERIC_WRITE, + FILE_SHARE_READ | FILE_SHARE_WRITE, + NULL, + OPEN_ALWAYS, + FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS, + NULL + ); + if( h==INVALID_HANDLE_VALUE ){ + h = CreateFileA(zFilename, + GENERIC_READ, + FILE_SHARE_READ, + NULL, + OPEN_ALWAYS, + FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS, + NULL + ); + if( h==INVALID_HANDLE_VALUE ){ + return SQLITE_CANTOPEN; + } + *pReadonly = 1; + }else{ + *pReadonly = 0; + } + id->h = h; + id->locktype = NO_LOCK; + id->sharedLockByte = 0; + id->isOpen = 1; + OpenCounter(+1); + TRACE3("OPEN R/W %d \"%s\"\n", h, zFilename); + return SQLITE_OK; +} + + +/* +** Attempt to open a new file for exclusive access by this process. +** The file will be opened for both reading and writing. To avoid +** a potential security problem, we do not allow the file to have +** previously existed. Nor do we allow the file to be a symbolic +** link. +** +** If delFlag is true, then make arrangements to automatically delete +** the file when it is closed. +** +** On success, write the file handle into *id and return SQLITE_OK. +** +** On failure, return SQLITE_CANTOPEN. +*/ +int sqlite3OsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){ + HANDLE h; + int fileflags; + assert( !id->isOpen ); + if( delFlag ){ + fileflags = FILE_ATTRIBUTE_TEMPORARY | FILE_FLAG_RANDOM_ACCESS + | FILE_FLAG_DELETE_ON_CLOSE; + }else{ + fileflags = FILE_FLAG_RANDOM_ACCESS; + } + h = CreateFileA(zFilename, + GENERIC_READ | GENERIC_WRITE, + 0, + NULL, + CREATE_ALWAYS, + fileflags, + NULL + ); + if( h==INVALID_HANDLE_VALUE ){ + return SQLITE_CANTOPEN; + } + id->h = h; + id->locktype = NO_LOCK; + id->sharedLockByte = 0; + id->isOpen = 1; + OpenCounter(+1); + TRACE3("OPEN EX %d \"%s\"\n", h, zFilename); + return SQLITE_OK; +} + +/* +** Attempt to open a new file for read-only access. +** +** On success, write the file handle into *id and return SQLITE_OK. +** +** On failure, return SQLITE_CANTOPEN. +*/ +int sqlite3OsOpenReadOnly(const char *zFilename, OsFile *id){ + HANDLE h; + assert( !id->isOpen ); + h = CreateFileA(zFilename, + GENERIC_READ, + 0, + NULL, + OPEN_EXISTING, + FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS, + NULL + ); + if( h==INVALID_HANDLE_VALUE ){ + return SQLITE_CANTOPEN; + } + id->h = h; + id->locktype = NO_LOCK; + id->sharedLockByte = 0; + id->isOpen = 1; + OpenCounter(+1); + TRACE3("OPEN RO %d \"%s\"\n", h, zFilename); + return SQLITE_OK; +} + +/* +** Attempt to open a file descriptor for the directory that contains a +** file. This file descriptor can be used to fsync() the directory +** in order to make sure the creation of a new file is actually written +** to disk. +** +** This routine is only meaningful for Unix. It is a no-op under +** windows since windows does not support hard links. +** +** On success, a handle for a previously open file is at *id is +** updated with the new directory file descriptor and SQLITE_OK is +** returned. +** +** On failure, the function returns SQLITE_CANTOPEN and leaves +** *id unchanged. +*/ +int sqlite3OsOpenDirectory( + const char *zDirname, + OsFile *id +){ + return SQLITE_OK; +} + +/* +** If the following global variable points to a string which is the +** name of a directory, then that directory will be used to store +** temporary files. +*/ +const char *sqlite3_temp_directory = 0; + +/* +** Create a temporary file name in zBuf. zBuf must be big enough to +** hold at least SQLITE_TEMPNAME_SIZE characters. +*/ +int sqlite3OsTempFileName(char *zBuf){ + static char zChars[] = + "abcdefghijklmnopqrstuvwxyz" + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + "0123456789"; + int i, j; + char zTempPath[SQLITE_TEMPNAME_SIZE]; + if( sqlite3_temp_directory ){ + strncpy(zTempPath, sqlite3_temp_directory, SQLITE_TEMPNAME_SIZE-30); + zTempPath[SQLITE_TEMPNAME_SIZE-30] = 0; + }else{ + GetTempPathA(SQLITE_TEMPNAME_SIZE-30, zTempPath); + } + for(i=strlen(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){} + zTempPath[i] = 0; + for(;;){ + sprintf(zBuf, "%s\\"TEMP_FILE_PREFIX, zTempPath); + j = strlen(zBuf); + sqlite3Randomness(15, &zBuf[j]); + for(i=0; i<15; i++, j++){ + zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; + } + zBuf[j] = 0; + if( !sqlite3OsFileExists(zBuf) ) break; + } + TRACE2("TEMP FILENAME: %s\n", zBuf); + return SQLITE_OK; +} + +/* +** Close a file. +*/ +int sqlite3OsClose(OsFile *id){ + if( id->isOpen ){ + TRACE2("CLOSE %d\n", id->h); + CloseHandle(id->h); + OpenCounter(-1); + id->isOpen = 0; + } + return SQLITE_OK; +} + +/* +** Read data from a file into a buffer. Return SQLITE_OK if all +** bytes were read successfully and SQLITE_IOERR if anything goes +** wrong. +*/ +int sqlite3OsRead(OsFile *id, void *pBuf, int amt){ + DWORD got; + assert( id->isOpen ); + SimulateIOError(SQLITE_IOERR); + TRACE3("READ %d lock=%d\n", id->h, id->locktype); + if( !ReadFile(id->h, pBuf, amt, &got, 0) ){ + got = 0; + } + if( got==(DWORD)amt ){ + return SQLITE_OK; + }else{ + return SQLITE_IOERR; + } +} + +/* +** Write data from a buffer into a file. Return SQLITE_OK on success +** or some other error code on failure. +*/ +int sqlite3OsWrite(OsFile *id, const void *pBuf, int amt){ + int rc; + DWORD wrote; + assert( id->isOpen ); + SimulateIOError(SQLITE_IOERR); + SimulateDiskfullError; + TRACE3("WRITE %d lock=%d\n", id->h, id->locktype); + while( amt>0 && (rc = WriteFile(id->h, pBuf, amt, &wrote, 0))!=0 && wrote>0 ){ + amt -= wrote; + pBuf = &((char*)pBuf)[wrote]; + } + if( !rc || amt>(int)wrote ){ + return SQLITE_FULL; + } + return SQLITE_OK; +} + +/* +** Move the read/write pointer in a file. +*/ +int sqlite3OsSeek(OsFile *id, i64 offset){ + LONG upperBits = offset>>32; + LONG lowerBits = offset & 0xffffffff; + DWORD rc; + assert( id->isOpen ); + SEEK(offset/1024 + 1); + rc = SetFilePointer(id->h, lowerBits, &upperBits, FILE_BEGIN); + TRACE3("SEEK %d %lld\n", id->h, offset); + return SQLITE_OK; +} + +/* +** Make sure all writes to a particular file are committed to disk. +*/ +int sqlite3OsSync(OsFile *id){ + assert( id->isOpen ); + TRACE3("SYNC %d lock=%d\n", id->h, id->locktype); + if( FlushFileBuffers(id->h) ){ + return SQLITE_OK; + }else{ + return SQLITE_IOERR; + } +} + +/* +** Sync the directory zDirname. This is a no-op on operating systems other +** than UNIX. +*/ +int sqlite3OsSyncDirectory(const char *zDirname){ + SimulateIOError(SQLITE_IOERR); + return SQLITE_OK; +} + +/* +** Truncate an open file to a specified size +*/ +int sqlite3OsTruncate(OsFile *id, i64 nByte){ + LONG upperBits = nByte>>32; + assert( id->isOpen ); + TRACE3("TRUNCATE %d %lld\n", id->h, nByte); + SimulateIOError(SQLITE_IOERR); + SetFilePointer(id->h, nByte, &upperBits, FILE_BEGIN); + SetEndOfFile(id->h); + return SQLITE_OK; +} + +/* +** Determine the current size of a file in bytes +*/ +int sqlite3OsFileSize(OsFile *id, i64 *pSize){ + DWORD upperBits, lowerBits; + assert( id->isOpen ); + SimulateIOError(SQLITE_IOERR); + lowerBits = GetFileSize(id->h, &upperBits); + *pSize = (((i64)upperBits)<<32) + lowerBits; + return SQLITE_OK; +} + +/* +** Return true (non-zero) if we are running under WinNT, Win2K or WinXP. +** Return false (zero) for Win95, Win98, or WinME. +** +** Here is an interesting observation: Win95, Win98, and WinME lack +** the LockFileEx() API. But we can still statically link against that +** API as long as we don't call it win running Win95/98/ME. A call to +** this routine is used to determine if the host is Win95/98/ME or +** WinNT/2K/XP so that we will know whether or not we can safely call +** the LockFileEx() API. +*/ +static int isNT(void){ + static int osType = 0; /* 0=unknown 1=win95 2=winNT */ + if( osType==0 ){ + OSVERSIONINFO sInfo; + sInfo.dwOSVersionInfoSize = sizeof(sInfo); + GetVersionEx(&sInfo); + osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1; + } + return osType==2; +} + +/* +** Acquire a reader lock. +** Different API routines are called depending on whether or not this +** is Win95 or WinNT. +*/ +static int getReadLock(OsFile *id){ + int res; + if( isNT() ){ + OVERLAPPED ovlp; + ovlp.Offset = SHARED_FIRST; + ovlp.OffsetHigh = 0; + ovlp.hEvent = 0; + res = LockFileEx(id->h, LOCKFILE_FAIL_IMMEDIATELY, 0, SHARED_SIZE,0,&ovlp); + }else{ + int lk; + sqlite3Randomness(sizeof(lk), &lk); + id->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1); + res = LockFile(id->h, SHARED_FIRST+id->sharedLockByte, 0, 1, 0); + } + return res; +} + +/* +** Undo a readlock +*/ +static int unlockReadLock(OsFile *id){ + int res; + if( isNT() ){ + res = UnlockFile(id->h, SHARED_FIRST, 0, SHARED_SIZE, 0); + }else{ + res = UnlockFile(id->h, SHARED_FIRST + id->sharedLockByte, 0, 1, 0); + } + return res; +} + +/* +** Lock the file with the lock specified by parameter locktype - one +** of the following: +** +** (1) SHARED_LOCK +** (2) RESERVED_LOCK +** (3) PENDING_LOCK +** (4) EXCLUSIVE_LOCK +** +** Sometimes when requesting one lock state, additional lock states +** are inserted in between. The locking might fail on one of the later +** transitions leaving the lock state different from what it started but +** still short of its goal. The following chart shows the allowed +** transitions and the inserted intermediate states: +** +** UNLOCKED -> SHARED +** SHARED -> RESERVED +** SHARED -> (PENDING) -> EXCLUSIVE +** RESERVED -> (PENDING) -> EXCLUSIVE +** PENDING -> EXCLUSIVE +** +** This routine will only increase a lock. The sqlite3OsUnlock() routine +** erases all locks at once and returns us immediately to locking level 0. +** It is not possible to lower the locking level one step at a time. You +** must go straight to locking level 0. +*/ +int sqlite3OsLock(OsFile *id, int locktype){ + int rc = SQLITE_OK; /* Return code from subroutines */ + int res = 1; /* Result of a windows lock call */ + int newLocktype; /* Set id->locktype to this value before exiting */ + int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */ + + assert( id->isOpen ); + TRACE5("LOCK %d %d was %d(%d)\n", + id->h, locktype, id->locktype, id->sharedLockByte); + + /* If there is already a lock of this type or more restrictive on the + ** OsFile, do nothing. Don't use the end_lock: exit path, as + ** sqlite3OsEnterMutex() hasn't been called yet. + */ + if( id->locktype>=locktype ){ + return SQLITE_OK; + } + + /* Make sure the locking sequence is correct + */ + assert( id->locktype!=NO_LOCK || locktype==SHARED_LOCK ); + assert( locktype!=PENDING_LOCK ); + assert( locktype!=RESERVED_LOCK || id->locktype==SHARED_LOCK ); + + /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or + ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of + ** the PENDING_LOCK byte is temporary. + */ + newLocktype = id->locktype; + if( id->locktype==NO_LOCK + || (locktype==EXCLUSIVE_LOCK && id->locktype==RESERVED_LOCK) + ){ + int cnt = 3; + while( cnt-->0 && (res = LockFile(id->h, PENDING_BYTE, 0, 1, 0))==0 ){ + /* Try 3 times to get the pending lock. The pending lock might be + ** held by another reader process who will release it momentarily. + */ + TRACE2("could not get a PENDING lock. cnt=%d\n", cnt); + Sleep(1); + } + gotPendingLock = res; + } + + /* Acquire a shared lock + */ + if( locktype==SHARED_LOCK && res ){ + assert( id->locktype==NO_LOCK ); + res = getReadLock(id); + if( res ){ + newLocktype = SHARED_LOCK; + } + } + + /* Acquire a RESERVED lock + */ + if( locktype==RESERVED_LOCK && res ){ + assert( id->locktype==SHARED_LOCK ); + res = LockFile(id->h, RESERVED_BYTE, 0, 1, 0); + if( res ){ + newLocktype = RESERVED_LOCK; + } + } + + /* Acquire a PENDING lock + */ + if( locktype==EXCLUSIVE_LOCK && res ){ + newLocktype = PENDING_LOCK; + gotPendingLock = 0; + } + + /* Acquire an EXCLUSIVE lock + */ + if( locktype==EXCLUSIVE_LOCK && res ){ + assert( id->locktype>=SHARED_LOCK ); + res = unlockReadLock(id); + TRACE2("unreadlock = %d\n", res); + res = LockFile(id->h, SHARED_FIRST, 0, SHARED_SIZE, 0); + if( res ){ + newLocktype = EXCLUSIVE_LOCK; + }else{ + TRACE2("error-code = %d\n", GetLastError()); + } + } + + /* If we are holding a PENDING lock that ought to be released, then + ** release it now. + */ + if( gotPendingLock && locktype==SHARED_LOCK ){ + UnlockFile(id->h, PENDING_BYTE, 0, 1, 0); + } + + /* Update the state of the lock has held in the file descriptor then + ** return the appropriate result code. + */ + if( res ){ + rc = SQLITE_OK; + }else{ + TRACE4("LOCK FAILED %d trying for %d but got %d\n", id->h, + locktype, newLocktype); + rc = SQLITE_BUSY; + } + id->locktype = newLocktype; + return rc; +} + +/* +** This routine checks if there is a RESERVED lock held on the specified +** file by this or any other process. If such a lock is held, return +** non-zero, otherwise zero. +*/ +int sqlite3OsCheckReservedLock(OsFile *id){ + int rc; + assert( id->isOpen ); + if( id->locktype>=RESERVED_LOCK ){ + rc = 1; + TRACE3("TEST WR-LOCK %d %d (local)\n", id->h, rc); + }else{ + rc = LockFile(id->h, RESERVED_BYTE, 0, 1, 0); + if( rc ){ + UnlockFile(id->h, RESERVED_BYTE, 0, 1, 0); + } + rc = !rc; + TRACE3("TEST WR-LOCK %d %d (remote)\n", id->h, rc); + } + return rc; +} + +/* +** Lower the locking level on file descriptor id to locktype. locktype +** must be either NO_LOCK or SHARED_LOCK. +** +** If the locking level of the file descriptor is already at or below +** the requested locking level, this routine is a no-op. +** +** It is not possible for this routine to fail if the second argument +** is NO_LOCK. If the second argument is SHARED_LOCK then this routine +** might return SQLITE_IOERR; +*/ +int sqlite3OsUnlock(OsFile *id, int locktype){ + int type; + int rc = SQLITE_OK; + assert( id->isOpen ); + assert( locktype<=SHARED_LOCK ); + TRACE5("UNLOCK %d to %d was %d(%d)\n", id->h, locktype, + id->locktype, id->sharedLockByte); + type = id->locktype; + if( type>=EXCLUSIVE_LOCK ){ + UnlockFile(id->h, SHARED_FIRST, 0, SHARED_SIZE, 0); + if( locktype==SHARED_LOCK && !getReadLock(id) ){ + /* This should never happen. We should always be able to + ** reacquire the read lock */ + rc = SQLITE_IOERR; + } + } + if( type>=RESERVED_LOCK ){ + UnlockFile(id->h, RESERVED_BYTE, 0, 1, 0); + } + if( locktype==NO_LOCK && type>=SHARED_LOCK ){ + unlockReadLock(id); + } + if( type>=PENDING_LOCK ){ + UnlockFile(id->h, PENDING_BYTE, 0, 1, 0); + } + id->locktype = locktype; + return rc; +} + +/* +** Get information to seed the random number generator. The seed +** is written into the buffer zBuf[256]. The calling function must +** supply a sufficiently large buffer. +*/ +int sqlite3OsRandomSeed(char *zBuf){ + /* We have to initialize zBuf to prevent valgrind from reporting + ** errors. The reports issued by valgrind are incorrect - we would + ** prefer that the randomness be increased by making use of the + ** uninitialized space in zBuf - but valgrind errors tend to worry + ** some users. Rather than argue, it seems easier just to initialize + ** the whole array and silence valgrind, even if that means less randomness + ** in the random seed. + ** + ** When testing, initializing zBuf[] to zero is all we do. That means + ** that we always use the same random number sequence.* This makes the + ** tests repeatable. + */ + memset(zBuf, 0, 256); + GetSystemTime((LPSYSTEMTIME)zBuf); + return SQLITE_OK; +} + +/* +** Sleep for a little while. Return the amount of time slept. +*/ +int sqlite3OsSleep(int ms){ + Sleep(ms); + return ms; +} + +/* +** Static variables used for thread synchronization +*/ +static int inMutex = 0; +#ifdef SQLITE_W32_THREADS + static CRITICAL_SECTION cs; +#endif + +/* +** The following pair of routine implement mutual exclusion for +** multi-threaded processes. Only a single thread is allowed to +** executed code that is surrounded by EnterMutex() and LeaveMutex(). +** +** SQLite uses only a single Mutex. There is not much critical +** code and what little there is executes quickly and without blocking. +*/ +void sqlite3OsEnterMutex(){ +#ifdef SQLITE_W32_THREADS + static int isInit = 0; + while( !isInit ){ + static long lock = 0; + if( InterlockedIncrement(&lock)==1 ){ + InitializeCriticalSection(&cs); + isInit = 1; + }else{ + Sleep(1); + } + } + EnterCriticalSection(&cs); +#endif + assert( !inMutex ); + inMutex = 1; +} +void sqlite3OsLeaveMutex(){ + assert( inMutex ); + inMutex = 0; +#ifdef SQLITE_W32_THREADS + LeaveCriticalSection(&cs); +#endif +} + +/* +** Turn a relative pathname into a full pathname. Return a pointer +** to the full pathname stored in space obtained from sqliteMalloc(). +** The calling function is responsible for freeing this space once it +** is no longer needed. +*/ +char *sqlite3OsFullPathname(const char *zRelative){ + char *zNotUsed; + char *zFull; + int nByte; + nByte = GetFullPathNameA(zRelative, 0, 0, &zNotUsed) + 1; + zFull = sqliteMalloc( nByte ); + if( zFull==0 ) return 0; + GetFullPathNameA(zRelative, nByte, zFull, &zNotUsed); + return zFull; +} + +/* +** The following variable, if set to a non-zero value, becomes the result +** returned from sqlite3OsCurrentTime(). This is used for testing. +*/ +#ifdef SQLITE_TEST +int sqlite3_current_time = 0; +#endif + +/* +** Find the current time (in Universal Coordinated Time). Write the +** current time and date as a Julian Day number into *prNow and +** return 0. Return 1 if the time and date cannot be found. +*/ +int sqlite3OsCurrentTime(double *prNow){ + FILETIME ft; + /* FILETIME structure is a 64-bit value representing the number of + 100-nanosecond intervals since January 1, 1601 (= JD 2305813.5). + */ + double now; + GetSystemTimeAsFileTime( &ft ); + now = ((double)ft.dwHighDateTime) * 4294967296.0; + *prNow = (now + ft.dwLowDateTime)/864000000000.0 + 2305813.5; +#ifdef SQLITE_TEST + if( sqlite3_current_time ){ + *prNow = sqlite3_current_time/86400.0 + 2440587.5; + } +#endif + return 0; +} + +/* +** Find the time that the file was last modified. Write the +** modification time and date as a Julian Day number into *prNow and +** return SQLITE_OK. Return SQLITE_ERROR if the modification +** time cannot be found. +*/ +int sqlite3OsFileModTime(OsFile *id, double *prMTime){ + int rc; + FILETIME ft; + /* FILETIME structure is a 64-bit value representing the number of + ** 100-nanosecond intervals since January 1, 1601 (= JD 2305813.5). + */ + if( GetFileTime(id->h, 0, 0, &ft) ){ + double t; + t = ((double)ft.dwHighDateTime) * 4294967296.0; + *prMTime = (t + ft.dwLowDateTime)/864000000000.0 + 2305813.5; + rc = SQLITE_OK; + }else{ + rc = SQLITE_ERROR; + } + return rc; +} + +#endif /* OS_WIN */ diff --git a/kopete/plugins/statistics/sqlite/os_win.h b/kopete/plugins/statistics/sqlite/os_win.h new file mode 100644 index 00000000..baf937b2 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/os_win.h @@ -0,0 +1,40 @@ +/* +** 2004 May 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This header file defines OS-specific features for Win32 +*/ +#ifndef _SQLITE_OS_WIN_H_ +#define _SQLITE_OS_WIN_H_ + +#include <windows.h> +#include <winbase.h> + +/* +** The OsFile structure is a operating-system independing representation +** of an open file handle. It is defined differently for each architecture. +** +** This is the definition for Win32. +*/ +typedef struct OsFile OsFile; +struct OsFile { + HANDLE h; /* Handle for accessing the file */ + unsigned char locktype; /* Type of lock currently held on this file */ + unsigned char isOpen; /* True if needs to be closed */ + short sharedLockByte; /* Randomly chosen byte used as a shared lock */ +}; + + +#define SQLITE_TEMPNAME_SIZE (MAX_PATH+50) +#define SQLITE_MIN_SLEEP_MS 1 + + +#endif /* _SQLITE_OS_WIN_H_ */ diff --git a/kopete/plugins/statistics/sqlite/pager.c b/kopete/plugins/statistics/sqlite/pager.c new file mode 100644 index 00000000..a374562b --- /dev/null +++ b/kopete/plugins/statistics/sqlite/pager.c @@ -0,0 +1,3205 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the implementation of the page cache subsystem or "pager". +** +** The pager is used to access a database disk file. It implements +** atomic commit and rollback through the use of a journal file that +** is separate from the database file. The pager also implements file +** locking to prevent two processes from writing the same database +** file simultaneously, or one process from reading the database while +** another is writing. +** +** @(#) $Id$ +*/ +#include "sqliteInt.h" +#include "os.h" +#include "pager.h" +#include <assert.h> +#include <string.h> + +/* +** Macros for troubleshooting. Normally turned off +*/ +#if 0 +#define TRACE1(X) sqlite3DebugPrintf(X) +#define TRACE2(X,Y) sqlite3DebugPrintf(X,Y) +#define TRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z) +#define TRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W) +#else +#define TRACE1(X) +#define TRACE2(X,Y) +#define TRACE3(X,Y,Z) +#define TRACE4(X,Y,Z,W) +#endif + + +/* +** The page cache as a whole is always in one of the following +** states: +** +** PAGER_UNLOCK The page cache is not currently reading or +** writing the database file. There is no +** data held in memory. This is the initial +** state. +** +** PAGER_SHARED The page cache is reading the database. +** Writing is not permitted. There can be +** multiple readers accessing the same database +** file at the same time. +** +** PAGER_RESERVED This process has reserved the database for writing +** but has not yet made any changes. Only one process +** at a time can reserve the database. The original +** database file has not been modified so other +** processes may still be reading the on-disk +** database file. +** +** PAGER_EXCLUSIVE The page cache is writing the database. +** Access is exclusive. No other processes or +** threads can be reading or writing while one +** process is writing. +** +** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE +** after all dirty pages have been written to the +** database file and the file has been synced to +** disk. All that remains to do is to remove the +** journal file and the transaction will be +** committed. +** +** The page cache comes up in PAGER_UNLOCK. The first time a +** sqlite3pager_get() occurs, the state transitions to PAGER_SHARED. +** After all pages have been released using sqlite_page_unref(), +** the state transitions back to PAGER_UNLOCK. The first time +** that sqlite3pager_write() is called, the state transitions to +** PAGER_RESERVED. (Note that sqlite_page_write() can only be +** called on an outstanding page which means that the pager must +** be in PAGER_SHARED before it transitions to PAGER_RESERVED.) +** The transition to PAGER_EXCLUSIVE occurs when before any changes +** are made to the database file. After an sqlite3pager_rollback() +** or sqlite_pager_commit(), the state goes back to PAGER_SHARED. +*/ +#define PAGER_UNLOCK 0 +#define PAGER_SHARED 1 /* same as SHARED_LOCK */ +#define PAGER_RESERVED 2 /* same as RESERVED_LOCK */ +#define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */ +#define PAGER_SYNCED 5 + +/* +** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time, +** then failed attempts to get a reserved lock will invoke the busy callback. +** This is off by default. To see why, consider the following scenario: +** +** Suppose thread A already has a shared lock and wants a reserved lock. +** Thread B already has a reserved lock and wants an exclusive lock. If +** both threads are using their busy callbacks, it might be a long time +** be for one of the threads give up and allows the other to proceed. +** But if the thread trying to get the reserved lock gives up quickly +** (if it never invokes its busy callback) then the contention will be +** resolved quickly. +*/ +#ifndef SQLITE_BUSY_RESERVED_LOCK +# define SQLITE_BUSY_RESERVED_LOCK 0 +#endif + +/* +** Each in-memory image of a page begins with the following header. +** This header is only visible to this pager module. The client +** code that calls pager sees only the data that follows the header. +** +** Client code should call sqlite3pager_write() on a page prior to making +** any modifications to that page. The first time sqlite3pager_write() +** is called, the original page contents are written into the rollback +** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once +** the journal page has made it onto the disk surface, PgHdr.needSync +** is cleared. The modified page cannot be written back into the original +** database file until the journal pages has been synced to disk and the +** PgHdr.needSync has been cleared. +** +** The PgHdr.dirty flag is set when sqlite3pager_write() is called and +** is cleared again when the page content is written back to the original +** database file. +*/ +typedef struct PgHdr PgHdr; +struct PgHdr { + Pager *pPager; /* The pager to which this page belongs */ + Pgno pgno; /* The page number for this page */ + PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */ + PgHdr *pNextFree, *pPrevFree; /* Freelist of pages where nRef==0 */ + PgHdr *pNextAll; /* A list of all pages */ + PgHdr *pNextStmt, *pPrevStmt; /* List of pages in the statement journal */ + u8 inJournal; /* TRUE if has been written to journal */ + u8 inStmt; /* TRUE if in the statement subjournal */ + u8 dirty; /* TRUE if we need to write back changes */ + u8 needSync; /* Sync journal before writing this page */ + u8 alwaysRollback; /* Disable dont_rollback() for this page */ + short int nRef; /* Number of users of this page */ + PgHdr *pDirty; /* Dirty pages sorted by PgHdr.pgno */ + /* pPager->pageSize bytes of page data follow this header */ + /* Pager.nExtra bytes of local data follow the page data */ +}; + +/* +** For an in-memory only database, some extra information is recorded about +** each page so that changes can be rolled back. (Journal files are not +** used for in-memory databases.) The following information is added to +** the end of every EXTRA block for in-memory databases. +** +** This information could have been added directly to the PgHdr structure. +** But then it would take up an extra 8 bytes of storage on every PgHdr +** even for disk-based databases. Splitting it out saves 8 bytes. This +** is only a savings of 0.8% but those percentages add up. +*/ +typedef struct PgHistory PgHistory; +struct PgHistory { + u8 *pOrig; /* Original page text. Restore to this on a full rollback */ + u8 *pStmt; /* Text as it was at the beginning of the current statement */ +}; + +/* +** A macro used for invoking the codec if there is one +*/ +#ifdef SQLITE_HAS_CODEC +# define CODEC(P,D,N,X) if( P->xCodec ){ P->xCodec(P->pCodecArg,D,N,X); } +#else +# define CODEC(P,D,N,X) +#endif + +/* +** Convert a pointer to a PgHdr into a pointer to its data +** and back again. +*/ +#define PGHDR_TO_DATA(P) ((void*)(&(P)[1])) +#define DATA_TO_PGHDR(D) (&((PgHdr*)(D))[-1]) +#define PGHDR_TO_EXTRA(G,P) ((void*)&((char*)(&(G)[1]))[(P)->pageSize]) +#define PGHDR_TO_HIST(P,PGR) \ + ((PgHistory*)&((char*)(&(P)[1]))[(PGR)->pageSize+(PGR)->nExtra]) + +/* +** How big to make the hash table used for locating in-memory pages +** by page number. +*/ +#define N_PG_HASH 2048 + +/* +** Hash a page number +*/ +#define pager_hash(PN) ((PN)&(N_PG_HASH-1)) + +/* +** A open page cache is an instance of the following structure. +*/ +struct Pager { + char *zFilename; /* Name of the database file */ + char *zJournal; /* Name of the journal file */ + char *zDirectory; /* Directory hold database and journal files */ + OsFile fd, jfd; /* File descriptors for database and journal */ + OsFile stfd; /* File descriptor for the statement subjournal*/ + int dbSize; /* Number of pages in the file */ + int origDbSize; /* dbSize before the current change */ + int stmtSize; /* Size of database (in pages) at stmt_begin() */ + i64 stmtJSize; /* Size of journal at stmt_begin() */ + int nRec; /* Number of pages written to the journal */ + u32 cksumInit; /* Quasi-random value added to every checksum */ + int stmtNRec; /* Number of records in stmt subjournal */ + int nExtra; /* Add this many bytes to each in-memory page */ + void (*xDestructor)(void*,int); /* Call this routine when freeing pages */ + void (*xReiniter)(void*,int); /* Call this routine when reloading pages */ + int pageSize; /* Number of bytes in a page */ + int nPage; /* Total number of in-memory pages */ + int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */ + int mxPage; /* Maximum number of pages to hold in cache */ + int nHit, nMiss, nOvfl; /* Cache hits, missing, and LRU overflows */ + void (*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ + void *pCodecArg; /* First argument to xCodec() */ + u8 journalOpen; /* True if journal file descriptors is valid */ + u8 journalStarted; /* True if header of journal is synced */ + u8 useJournal; /* Use a rollback journal on this file */ + u8 stmtOpen; /* True if the statement subjournal is open */ + u8 stmtInUse; /* True we are in a statement subtransaction */ + u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/ + u8 noSync; /* Do not sync the journal if true */ + u8 fullSync; /* Do extra syncs of the journal for robustness */ + u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */ + u8 errMask; /* One of several kinds of errors */ + u8 tempFile; /* zFilename is a temporary file */ + u8 readOnly; /* True for a read-only database */ + u8 needSync; /* True if an fsync() is needed on the journal */ + u8 dirtyCache; /* True if cached pages have changed */ + u8 alwaysRollback; /* Disable dont_rollback() for all pages */ + u8 memDb; /* True to inhibit all file I/O */ + u8 *aInJournal; /* One bit for each page in the database file */ + u8 *aInStmt; /* One bit for each page in the database */ + u8 setMaster; /* True if a m-j name has been written to jrnl */ + BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */ + PgHdr *pFirst, *pLast; /* List of free pages */ + PgHdr *pFirstSynced; /* First free page with PgHdr.needSync==0 */ + PgHdr *pAll; /* List of all pages */ + PgHdr *pStmt; /* List of pages in the statement subjournal */ + i64 journalOff; /* Current byte offset in the journal file */ + i64 journalHdr; /* Byte offset to previous journal header */ + i64 stmtHdrOff; /* First journal header written this statement */ + i64 stmtCksum; /* cksumInit when statement was started */ + int sectorSize; /* Assumed sector size during rollback */ + PgHdr *aHash[N_PG_HASH]; /* Hash table to map page number to PgHdr */ +}; + +/* +** These are bits that can be set in Pager.errMask. +*/ +#define PAGER_ERR_FULL 0x01 /* a write() failed */ +#define PAGER_ERR_MEM 0x02 /* malloc() failed */ +#define PAGER_ERR_LOCK 0x04 /* error in the locking protocol */ +#define PAGER_ERR_CORRUPT 0x08 /* database or journal corruption */ +#define PAGER_ERR_DISK 0x10 /* general disk I/O error - bad hard drive? */ + +/* +** Journal files begin with the following magic string. The data +** was obtained from /dev/random. It is used only as a sanity check. +** +** Since version 2.8.0, the journal format contains additional sanity +** checking information. If the power fails while the journal is begin +** written, semi-random garbage data might appear in the journal +** file after power is restored. If an attempt is then made +** to roll the journal back, the database could be corrupted. The additional +** sanity checking data is an attempt to discover the garbage in the +** journal and ignore it. +** +** The sanity checking information for the new journal format consists +** of a 32-bit checksum on each page of data. The checksum covers both +** the page number and the pPager->pageSize bytes of data for the page. +** This cksum is initialized to a 32-bit random value that appears in the +** journal file right after the header. The random initializer is important, +** because garbage data that appears at the end of a journal is likely +** data that was once in other files that have now been deleted. If the +** garbage data came from an obsolete journal file, the checksums might +** be correct. But by initializing the checksum to random value which +** is different for every journal, we minimize that risk. +*/ +static const unsigned char aJournalMagic[] = { + 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, +}; + +/* +** The size of the header and of each page in the journal is determined +** by the following macros. +*/ +#define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) + +/* +** The journal header size for this pager. In the future, this could be +** set to some value read from the disk controller. The important +** characteristic is that it is the same size as a disk sector. +*/ +#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) + +#define PAGER_SECTOR_SIZE 512 + +/* +** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is +** reserved for working around a windows/posix incompatibility). It is +** used in the journal to signify that the remainder of the journal file +** is devoted to storing a master journal name - there are no more pages to +** roll back. See comments for function writeMasterJournal() for details. +*/ +#define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) + +/* +** Enable reference count tracking (for debugging) here: +*/ +#ifdef SQLITE_TEST + int pager3_refinfo_enable = 0; + static void pager_refinfo(PgHdr *p){ + static int cnt = 0; + if( !pager3_refinfo_enable ) return; + sqlite3DebugPrintf( + "REFCNT: %4d addr=%p nRef=%d\n", + p->pgno, PGHDR_TO_DATA(p), p->nRef + ); + cnt++; /* Something to set a breakpoint on */ + } +# define REFINFO(X) pager_refinfo(X) +#else +# define REFINFO(X) +#endif + +/* +** Read a 32-bit integer from the given file descriptor. Store the integer +** that is read in *pRes. Return SQLITE_OK if everything worked, or an +** error code is something goes wrong. +** +** All values are stored on disk as big-endian. +*/ +static int read32bits(OsFile *fd, u32 *pRes){ + u32 res; + int rc; + rc = sqlite3OsRead(fd, &res, sizeof(res)); + if( rc==SQLITE_OK ){ + unsigned char ac[4]; + memcpy(ac, &res, 4); + res = (ac[0]<<24) | (ac[1]<<16) | (ac[2]<<8) | ac[3]; + } + *pRes = res; + return rc; +} + +/* +** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK +** on success or an error code is something goes wrong. +*/ +static int write32bits(OsFile *fd, u32 val){ + unsigned char ac[4]; + ac[0] = (val>>24) & 0xff; + ac[1] = (val>>16) & 0xff; + ac[2] = (val>>8) & 0xff; + ac[3] = val & 0xff; + return sqlite3OsWrite(fd, ac, 4); +} + +/* +** Write the 32-bit integer 'val' into the page identified by page header +** 'p' at offset 'offset'. +*/ +static void store32bits(u32 val, PgHdr *p, int offset){ + unsigned char *ac; + ac = &((unsigned char*)PGHDR_TO_DATA(p))[offset]; + ac[0] = (val>>24) & 0xff; + ac[1] = (val>>16) & 0xff; + ac[2] = (val>>8) & 0xff; + ac[3] = val & 0xff; +} + +/* +** Read a 32-bit integer at offset 'offset' from the page identified by +** page header 'p'. +*/ +static u32 retrieve32bits(PgHdr *p, int offset){ + unsigned char *ac; + ac = &((unsigned char*)PGHDR_TO_DATA(p))[offset]; + return (ac[0]<<24) | (ac[1]<<16) | (ac[2]<<8) | ac[3]; +} + + +/* +** Convert the bits in the pPager->errMask into an approprate +** return code. +*/ +static int pager_errcode(Pager *pPager){ + int rc = SQLITE_OK; + if( pPager->errMask & PAGER_ERR_LOCK ) rc = SQLITE_PROTOCOL; + if( pPager->errMask & PAGER_ERR_DISK ) rc = SQLITE_IOERR; + if( pPager->errMask & PAGER_ERR_FULL ) rc = SQLITE_FULL; + if( pPager->errMask & PAGER_ERR_MEM ) rc = SQLITE_NOMEM; + if( pPager->errMask & PAGER_ERR_CORRUPT ) rc = SQLITE_CORRUPT; + return rc; +} + +/* +** When this is called the journal file for pager pPager must be open. +** The master journal file name is read from the end of the file and +** written into memory obtained from sqliteMalloc(). *pzMaster is +** set to point at the memory and SQLITE_OK returned. The caller must +** sqliteFree() *pzMaster. +** +** If no master journal file name is present *pzMaster is set to 0 and +** SQLITE_OK returned. +*/ +static int readMasterJournal(OsFile *pJrnl, char **pzMaster){ + int rc; + u32 len; + i64 szJ; + u32 cksum; + int i; + unsigned char aMagic[8]; /* A buffer to hold the magic header */ + + *pzMaster = 0; + + rc = sqlite3OsFileSize(pJrnl, &szJ); + if( rc!=SQLITE_OK || szJ<16 ) return rc; + + rc = sqlite3OsSeek(pJrnl, szJ-16); + if( rc!=SQLITE_OK ) return rc; + + rc = read32bits(pJrnl, &len); + if( rc!=SQLITE_OK ) return rc; + + rc = read32bits(pJrnl, &cksum); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3OsRead(pJrnl, aMagic, 8); + if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc; + + rc = sqlite3OsSeek(pJrnl, szJ-16-len); + if( rc!=SQLITE_OK ) return rc; + + *pzMaster = (char *)sqliteMalloc(len+1); + if( !*pzMaster ){ + return SQLITE_NOMEM; + } + rc = sqlite3OsRead(pJrnl, *pzMaster, len); + if( rc!=SQLITE_OK ){ + sqliteFree(*pzMaster); + *pzMaster = 0; + return rc; + } + + /* See if the checksum matches the master journal name */ + for(i=0; i<len; i++){ + cksum -= (*pzMaster)[i]; + } + if( cksum ){ + /* If the checksum doesn't add up, then one or more of the disk sectors + ** containing the master journal filename is corrupted. This means + ** definitely roll back, so just return SQLITE_OK and report a (nul) + ** master-journal filename. + */ + sqliteFree(*pzMaster); + *pzMaster = 0; + } + (*pzMaster)[len] = '\0'; + + return SQLITE_OK; +} + +/* +** Seek the journal file descriptor to the next sector boundary where a +** journal header may be read or written. Pager.journalOff is updated with +** the new seek offset. +** +** i.e for a sector size of 512: +** +** Input Offset Output Offset +** --------------------------------------- +** 0 0 +** 512 512 +** 100 512 +** 2000 2048 +** +*/ +static int seekJournalHdr(Pager *pPager){ + i64 offset = 0; + i64 c = pPager->journalOff; + if( c ){ + offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); + } + assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); + assert( offset>=c ); + assert( (offset-c)<JOURNAL_HDR_SZ(pPager) ); + pPager->journalOff = offset; + return sqlite3OsSeek(&pPager->jfd, pPager->journalOff); +} + +/* +** The journal file must be open when this routine is called. A journal +** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the +** current location. +** +** The format for the journal header is as follows: +** - 8 bytes: Magic identifying journal format. +** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. +** - 4 bytes: Random number used for page hash. +** - 4 bytes: Initial database page count. +** - 4 bytes: Sector size used by the process that wrote this journal. +** +** Followed by (JOURNAL_HDR_SZ - 24) bytes of unused space. +*/ +static int writeJournalHdr(Pager *pPager){ + + int rc = seekJournalHdr(pPager); + if( rc ) return rc; + + pPager->journalHdr = pPager->journalOff; + if( pPager->stmtHdrOff==0 ){ + pPager->stmtHdrOff = pPager->journalHdr; + } + pPager->journalOff += JOURNAL_HDR_SZ(pPager); + + /* FIX ME: + ** + ** Possibly for a pager not in no-sync mode, the journal magic should not + ** be written until nRec is filled in as part of next syncJournal(). + ** + ** Actually maybe the whole journal header should be delayed until that + ** point. Think about this. + */ + rc = sqlite3OsWrite(&pPager->jfd, aJournalMagic, sizeof(aJournalMagic)); + + if( rc==SQLITE_OK ){ + /* The nRec Field. 0xFFFFFFFF for no-sync journals. */ + rc = write32bits(&pPager->jfd, pPager->noSync ? 0xffffffff : 0); + } + if( rc==SQLITE_OK ){ + /* The random check-hash initialiser */ + sqlite3Randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); + rc = write32bits(&pPager->jfd, pPager->cksumInit); + } + if( rc==SQLITE_OK ){ + /* The initial database size */ + rc = write32bits(&pPager->jfd, pPager->dbSize); + } + if( rc==SQLITE_OK ){ + /* The assumed sector size for this process */ + rc = write32bits(&pPager->jfd, pPager->sectorSize); + } + + /* The journal header has been written successfully. Seek the journal + ** file descriptor to the end of the journal header sector. + */ + if( rc==SQLITE_OK ){ + sqlite3OsSeek(&pPager->jfd, pPager->journalOff-1); + rc = sqlite3OsWrite(&pPager->jfd, "\000", 1); + } + return rc; +} + +/* +** The journal file must be open when this is called. A journal header file +** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal +** file. See comments above function writeJournalHdr() for a description of +** the journal header format. +** +** If the header is read successfully, *nRec is set to the number of +** page records following this header and *dbSize is set to the size of the +** database before the transaction began, in pages. Also, pPager->cksumInit +** is set to the value read from the journal header. SQLITE_OK is returned +** in this case. +** +** If the journal header file appears to be corrupted, SQLITE_DONE is +** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes +** cannot be read from the journal file an error code is returned. +*/ +static int readJournalHdr( + Pager *pPager, + i64 journalSize, + u32 *pNRec, + u32 *pDbSize +){ + int rc; + unsigned char aMagic[8]; /* A buffer to hold the magic header */ + + rc = seekJournalHdr(pPager); + if( rc ) return rc; + + if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ + return SQLITE_DONE; + } + + rc = sqlite3OsRead(&pPager->jfd, aMagic, sizeof(aMagic)); + if( rc ) return rc; + + if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ + return SQLITE_DONE; + } + + rc = read32bits(&pPager->jfd, pNRec); + if( rc ) return rc; + + rc = read32bits(&pPager->jfd, &pPager->cksumInit); + if( rc ) return rc; + + rc = read32bits(&pPager->jfd, pDbSize); + if( rc ) return rc; + + /* Update the assumed sector-size to match the value used by + ** the process that created this journal. If this journal was + ** created by a process other than this one, then this routine + ** is being called from within pager_playback(). The local value + ** of Pager.sectorSize is restored at the end of that routine. + */ + rc = read32bits(&pPager->jfd, (u32 *)&pPager->sectorSize); + if( rc ) return rc; + + pPager->journalOff += JOURNAL_HDR_SZ(pPager); + rc = sqlite3OsSeek(&pPager->jfd, pPager->journalOff); + return rc; +} + + +/* +** Write the supplied master journal name into the journal file for pager +** pPager at the current location. The master journal name must be the last +** thing written to a journal file. If the pager is in full-sync mode, the +** journal file descriptor is advanced to the next sector boundary before +** anything is written. The format is: +** +** + 4 bytes: PAGER_MJ_PGNO. +** + N bytes: length of master journal name. +** + 4 bytes: N +** + 4 bytes: Master journal name checksum. +** + 8 bytes: aJournalMagic[]. +** +** The master journal page checksum is the sum of the bytes in the master +** journal name. +*/ +static int writeMasterJournal(Pager *pPager, const char *zMaster){ + int rc; + int len; + int i; + u32 cksum = 0; + + if( !zMaster || pPager->setMaster) return SQLITE_OK; + pPager->setMaster = 1; + + len = strlen(zMaster); + for(i=0; i<len; i++){ + cksum += zMaster[i]; + } + + /* If in full-sync mode, advance to the next disk sector before writing + ** the master journal name. This is in case the previous page written to + ** the journal has already been synced. + */ + if( pPager->fullSync ){ + rc = seekJournalHdr(pPager); + if( rc!=SQLITE_OK ) return rc; + } + pPager->journalOff += (len+20); + + rc = write32bits(&pPager->jfd, PAGER_MJ_PGNO(pPager)); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3OsWrite(&pPager->jfd, zMaster, len); + if( rc!=SQLITE_OK ) return rc; + + rc = write32bits(&pPager->jfd, len); + if( rc!=SQLITE_OK ) return rc; + + rc = write32bits(&pPager->jfd, cksum); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3OsWrite(&pPager->jfd, aJournalMagic, sizeof(aJournalMagic)); + pPager->needSync = 1; + return rc; +} + +/* +** Add or remove a page from the list of all pages that are in the +** statement journal. +** +** The Pager keeps a separate list of pages that are currently in +** the statement journal. This helps the sqlite3pager_stmt_commit() +** routine run MUCH faster for the common case where there are many +** pages in memory but only a few are in the statement journal. +*/ +static void page_add_to_stmt_list(PgHdr *pPg){ + Pager *pPager = pPg->pPager; + if( pPg->inStmt ) return; + assert( pPg->pPrevStmt==0 && pPg->pNextStmt==0 ); + pPg->pPrevStmt = 0; + if( pPager->pStmt ){ + pPager->pStmt->pPrevStmt = pPg; + } + pPg->pNextStmt = pPager->pStmt; + pPager->pStmt = pPg; + pPg->inStmt = 1; +} +static void page_remove_from_stmt_list(PgHdr *pPg){ + if( !pPg->inStmt ) return; + if( pPg->pPrevStmt ){ + assert( pPg->pPrevStmt->pNextStmt==pPg ); + pPg->pPrevStmt->pNextStmt = pPg->pNextStmt; + }else{ + assert( pPg->pPager->pStmt==pPg ); + pPg->pPager->pStmt = pPg->pNextStmt; + } + if( pPg->pNextStmt ){ + assert( pPg->pNextStmt->pPrevStmt==pPg ); + pPg->pNextStmt->pPrevStmt = pPg->pPrevStmt; + } + pPg->pNextStmt = 0; + pPg->pPrevStmt = 0; + pPg->inStmt = 0; +} + +/* +** Find a page in the hash table given its page number. Return +** a pointer to the page or NULL if not found. +*/ +static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){ + PgHdr *p = pPager->aHash[pager_hash(pgno)]; + while( p && p->pgno!=pgno ){ + p = p->pNextHash; + } + return p; +} + +/* +** Unlock the database and clear the in-memory cache. This routine +** sets the state of the pager back to what it was when it was first +** opened. Any outstanding pages are invalidated and subsequent attempts +** to access those pages will likely result in a coredump. +*/ +static void pager_reset(Pager *pPager){ + PgHdr *pPg, *pNext; + for(pPg=pPager->pAll; pPg; pPg=pNext){ + pNext = pPg->pNextAll; + sqliteFree(pPg); + } + pPager->pFirst = 0; + pPager->pFirstSynced = 0; + pPager->pLast = 0; + pPager->pAll = 0; + memset(pPager->aHash, 0, sizeof(pPager->aHash)); + pPager->nPage = 0; + if( pPager->state>=PAGER_RESERVED ){ + sqlite3pager_rollback(pPager); + } + sqlite3OsUnlock(&pPager->fd, NO_LOCK); + pPager->state = PAGER_UNLOCK; + pPager->dbSize = -1; + pPager->nRef = 0; + assert( pPager->journalOpen==0 ); +} + +/* +** When this routine is called, the pager has the journal file open and +** a RESERVED or EXCLUSIVE lock on the database. This routine releases +** the database lock and acquires a SHARED lock in its place. The journal +** file is deleted and closed. +** +** TODO: Consider keeping the journal file open for temporary databases. +** This might give a performance improvement on windows where opening +** a file is an expensive operation. +*/ +static int pager_unwritelock(Pager *pPager){ + PgHdr *pPg; + int rc; + assert( !pPager->memDb ); + if( pPager->state<PAGER_RESERVED ){ + return SQLITE_OK; + } + sqlite3pager_stmt_commit(pPager); + if( pPager->stmtOpen ){ + sqlite3OsClose(&pPager->stfd); + pPager->stmtOpen = 0; + } + if( pPager->journalOpen ){ + sqlite3OsClose(&pPager->jfd); + pPager->journalOpen = 0; + sqlite3OsDelete(pPager->zJournal); + sqliteFree( pPager->aInJournal ); + pPager->aInJournal = 0; + for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ + pPg->inJournal = 0; + pPg->dirty = 0; + pPg->needSync = 0; + } + pPager->dirtyCache = 0; + pPager->nRec = 0; + }else{ + assert( pPager->dirtyCache==0 || pPager->useJournal==0 ); + } + rc = sqlite3OsUnlock(&pPager->fd, SHARED_LOCK); + pPager->state = PAGER_SHARED; + pPager->origDbSize = 0; + pPager->setMaster = 0; + return rc; +} + +/* +** Compute and return a checksum for the page of data. +** +** This is not a real checksum. It is really just the sum of the +** random initial value and the page number. We experimented with +** a checksum of the entire data, but that was found to be too slow. +** +** Note that the page number is stored at the beginning of data and +** the checksum is stored at the end. This is important. If journal +** corruption occurs due to a power failure, the most likely scenario +** is that one end or the other of the record will be changed. It is +** much less likely that the two ends of the journal record will be +** correct and the middle be corrupt. Thus, this "checksum" scheme, +** though fast and simple, catches the mostly likely kind of corruption. +** +** FIX ME: Consider adding every 200th (or so) byte of the data to the +** checksum. That way if a single page spans 3 or more disk sectors and +** only the middle sector is corrupt, we will still have a reasonable +** chance of failing the checksum and thus detecting the problem. +*/ +static u32 pager_cksum(Pager *pPager, Pgno pgno, const char *aData){ + u32 cksum = pPager->cksumInit; + int i = pPager->pageSize-200; + while( i>0 ){ + cksum += aData[i]; + i -= 200; + } + return cksum; +} + +/* +** Read a single page from the journal file opened on file descriptor +** jfd. Playback this one page. +** +** If useCksum==0 it means this journal does not use checksums. Checksums +** are not used in statement journals because statement journals do not +** need to survive power failures. +*/ +static int pager_playback_one_page(Pager *pPager, OsFile *jfd, int useCksum){ + int rc; + PgHdr *pPg; /* An existing page in the cache */ + Pgno pgno; /* The page number of a page in journal */ + u32 cksum; /* Checksum used for sanity checking */ + u8 aData[SQLITE_MAX_PAGE_SIZE]; /* Temp storage for a page */ + + rc = read32bits(jfd, &pgno); + if( rc!=SQLITE_OK ) return rc; + rc = sqlite3OsRead(jfd, &aData, pPager->pageSize); + if( rc!=SQLITE_OK ) return rc; + pPager->journalOff += pPager->pageSize + 4; + + /* Sanity checking on the page. This is more important that I originally + ** thought. If a power failure occurs while the journal is being written, + ** it could cause invalid data to be written into the journal. We need to + ** detect this invalid data (with high probability) and ignore it. + */ + if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ + return SQLITE_DONE; + } + if( pgno>(unsigned)pPager->dbSize ){ + return SQLITE_OK; + } + if( useCksum ){ + rc = read32bits(jfd, &cksum); + if( rc ) return rc; + pPager->journalOff += 4; + if( pager_cksum(pPager, pgno, aData)!=cksum ){ + return SQLITE_DONE; + } + } + + assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE ); + + /* If the pager is in RESERVED state, then there must be a copy of this + ** page in the pager cache. In this case just update the pager cache, + ** not the database file. The page is left marked dirty in this case. + ** + ** If in EXCLUSIVE state, then we update the pager cache if it exists + ** and the main file. The page is then marked not dirty. + */ + pPg = pager_lookup(pPager, pgno); + assert( pPager->state>=PAGER_EXCLUSIVE || pPg ); + TRACE3("PLAYBACK %d page %d\n", pPager->fd.h, pgno); + if( pPager->state>=PAGER_EXCLUSIVE ){ + sqlite3OsSeek(&pPager->fd, (pgno-1)*(i64)pPager->pageSize); + rc = sqlite3OsWrite(&pPager->fd, aData, pPager->pageSize); + } + if( pPg ){ + /* No page should ever be rolled back that is in use, except for page + ** 1 which is held in use in order to keep the lock on the database + ** active. + */ + void *pData; + assert( pPg->nRef==0 || pPg->pgno==1 ); + pData = PGHDR_TO_DATA(pPg); + memcpy(pData, aData, pPager->pageSize); + if( pPager->xDestructor ){ /*** FIX ME: Should this be xReinit? ***/ + pPager->xDestructor(pData, pPager->pageSize); + } + if( pPager->state>=PAGER_EXCLUSIVE ){ + pPg->dirty = 0; + pPg->needSync = 0; + } + CODEC(pPager, pData, pPg->pgno, 3); + } + return rc; +} + +/* +** Parameter zMaster is the name of a master journal file. A single journal +** file that referred to the master journal file has just been rolled back. +** This routine checks if it is possible to delete the master journal file, +** and does so if it is. +** +** The master journal file contains the names of all child journals. +** To tell if a master journal can be deleted, check to each of the +** children. If all children are either missing or do not refer to +** a different master journal, then this master journal can be deleted. +*/ +static int pager_delmaster(const char *zMaster){ + int rc; + int master_open = 0; + OsFile master; + char *zMasterJournal = 0; /* Contents of master journal file */ + i64 nMasterJournal; /* Size of master journal file */ + + /* Open the master journal file exclusively in case some other process + ** is running this routine also. Not that it makes too much difference. + */ + memset(&master, 0, sizeof(master)); + rc = sqlite3OsOpenReadOnly(zMaster, &master); + if( rc!=SQLITE_OK ) goto delmaster_out; + master_open = 1; + rc = sqlite3OsFileSize(&master, &nMasterJournal); + if( rc!=SQLITE_OK ) goto delmaster_out; + + if( nMasterJournal>0 ){ + char *zJournal; + char *zMasterPtr = 0; + + /* Load the entire master journal file into space obtained from + ** sqliteMalloc() and pointed to by zMasterJournal. + */ + zMasterJournal = (char *)sqliteMalloc(nMasterJournal); + if( !zMasterJournal ){ + rc = SQLITE_NOMEM; + goto delmaster_out; + } + rc = sqlite3OsRead(&master, zMasterJournal, nMasterJournal); + if( rc!=SQLITE_OK ) goto delmaster_out; + + zJournal = zMasterJournal; + while( (zJournal-zMasterJournal)<nMasterJournal ){ + if( sqlite3OsFileExists(zJournal) ){ + /* One of the journals pointed to by the master journal exists. + ** Open it and check if it points at the master journal. If + ** so, return without deleting the master journal file. + */ + OsFile journal; + + memset(&journal, 0, sizeof(journal)); + rc = sqlite3OsOpenReadOnly(zJournal, &journal); + if( rc!=SQLITE_OK ){ + goto delmaster_out; + } + + rc = readMasterJournal(&journal, &zMasterPtr); + sqlite3OsClose(&journal); + if( rc!=SQLITE_OK ){ + goto delmaster_out; + } + + if( zMasterPtr && !strcmp(zMasterPtr, zMaster) ){ + /* We have a match. Do not delete the master journal file. */ + goto delmaster_out; + } + } + zJournal += (strlen(zJournal)+1); + } + } + + sqlite3OsDelete(zMaster); + +delmaster_out: + if( zMasterJournal ){ + sqliteFree(zMasterJournal); + } + if( master_open ){ + sqlite3OsClose(&master); + } + return rc; +} + +/* +** Make every page in the cache agree with what is on disk. In other words, +** reread the disk to reset the state of the cache. +** +** This routine is called after a rollback in which some of the dirty cache +** pages had never been written out to disk. We need to roll back the +** cache content and the easiest way to do that is to reread the old content +** back from the disk. +*/ +static int pager_reload_cache(Pager *pPager){ + PgHdr *pPg; + int rc = SQLITE_OK; + for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ + char zBuf[SQLITE_MAX_PAGE_SIZE]; + if( !pPg->dirty ) continue; + if( (int)pPg->pgno <= pPager->origDbSize ){ + sqlite3OsSeek(&pPager->fd, pPager->pageSize*(i64)(pPg->pgno-1)); + rc = sqlite3OsRead(&pPager->fd, zBuf, pPager->pageSize); + TRACE3("REFETCH %d page %d\n", pPager->fd.h, pPg->pgno); + if( rc ) break; + CODEC(pPager, zBuf, pPg->pgno, 2); + }else{ + memset(zBuf, 0, pPager->pageSize); + } + if( pPg->nRef==0 || memcmp(zBuf, PGHDR_TO_DATA(pPg), pPager->pageSize) ){ + memcpy(PGHDR_TO_DATA(pPg), zBuf, pPager->pageSize); + if( pPager->xReiniter ){ + pPager->xReiniter(PGHDR_TO_DATA(pPg), pPager->pageSize); + }else{ + memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra); + } + } + pPg->needSync = 0; + pPg->dirty = 0; + } + return rc; +} + +/* +** Truncate the main file of the given pager to the number of pages +** indicated. +*/ +static int pager_truncate(Pager *pPager, int nPage){ + return sqlite3OsTruncate(&pPager->fd, pPager->pageSize*(i64)nPage); +} + +/* +** Playback the journal and thus restore the database file to +** the state it was in before we started making changes. +** +** The journal file format is as follows: +** +** (1) 8 byte prefix. A copy of aJournalMagic[]. +** (2) 4 byte big-endian integer which is the number of valid page records +** in the journal. If this value is 0xffffffff, then compute the +** number of page records from the journal size. +** (3) 4 byte big-endian integer which is the initial value for the +** sanity checksum. +** (4) 4 byte integer which is the number of pages to truncate the +** database to during a rollback. +** (5) 4 byte integer which is the number of bytes in the master journal +** name. The value may be zero (indicate that there is no master +** journal.) +** (6) N bytes of the master journal name. The name will be nul-terminated +** and might be shorter than the value read from (5). If the first byte +** of the name is \000 then there is no master journal. The master +** journal name is stored in UTF-8. +** (7) Zero or more pages instances, each as follows: +** + 4 byte page number. +** + pPager->pageSize bytes of data. +** + 4 byte checksum +** +** When we speak of the journal header, we mean the first 6 items above. +** Each entry in the journal is an instance of the 7th item. +** +** Call the value from the second bullet "nRec". nRec is the number of +** valid page entries in the journal. In most cases, you can compute the +** value of nRec from the size of the journal file. But if a power +** failure occurred while the journal was being written, it could be the +** case that the size of the journal file had already been increased but +** the extra entries had not yet made it safely to disk. In such a case, +** the value of nRec computed from the file size would be too large. For +** that reason, we always use the nRec value in the header. +** +** If the nRec value is 0xffffffff it means that nRec should be computed +** from the file size. This value is used when the user selects the +** no-sync option for the journal. A power failure could lead to corruption +** in this case. But for things like temporary table (which will be +** deleted when the power is restored) we don't care. +** +** If the file opened as the journal file is not a well-formed +** journal file then all pages up to the first corrupted page are rolled +** back (or no pages if the journal header is corrupted). The journal file +** is then deleted and SQLITE_OK returned, just as if no corruption had +** been encountered. +** +** If an I/O or malloc() error occurs, the journal-file is not deleted +** and an error code is returned. +*/ +static int pager_playback(Pager *pPager){ + i64 szJ; /* Size of the journal file in bytes */ + u32 nRec; /* Number of Records in the journal */ + int i; /* Loop counter */ + Pgno mxPg = 0; /* Size of the original file in pages */ + int rc; /* Result code of a subroutine */ + char *zMaster = 0; /* Name of master journal file if any */ + + /* Figure out how many records are in the journal. Abort early if + ** the journal is empty. + */ + assert( pPager->journalOpen ); + rc = sqlite3OsFileSize(&pPager->jfd, &szJ); + if( rc!=SQLITE_OK ){ + goto end_playback; + } + + /* Read the master journal name from the journal, if it is present. + ** If a master journal file name is specified, but the file is not + ** present on disk, then the journal is not hot and does not need to be + ** played back. + */ + rc = readMasterJournal(&pPager->jfd, &zMaster); + assert( rc!=SQLITE_DONE ); + if( rc!=SQLITE_OK || (zMaster && !sqlite3OsFileExists(zMaster)) ){ + sqliteFree(zMaster); + zMaster = 0; + if( rc==SQLITE_DONE ) rc = SQLITE_OK; + goto end_playback; + } + sqlite3OsSeek(&pPager->jfd, 0); + pPager->journalOff = 0; + + /* This loop terminates either when the readJournalHdr() call returns + ** SQLITE_DONE or an IO error occurs. */ + while( 1 ){ + + /* Read the next journal header from the journal file. If there are + ** not enough bytes left in the journal file for a complete header, or + ** it is corrupted, then a process must of failed while writing it. + ** This indicates nothing more needs to be rolled back. + */ + rc = readJournalHdr(pPager, szJ, &nRec, &mxPg); + if( rc!=SQLITE_OK ){ + if( rc==SQLITE_DONE ){ + rc = SQLITE_OK; + } + goto end_playback; + } + + /* If nRec is 0xffffffff, then this journal was created by a process + ** working in no-sync mode. This means that the rest of the journal + ** file consists of pages, there are no more journal headers. Compute + ** the value of nRec based on this assumption. + */ + if( nRec==0xffffffff ){ + assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); + nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager); + } + + /* If this is the first header read from the journal, truncate the + ** database file back to it's original size. + */ + if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ + assert( pPager->origDbSize==0 || pPager->origDbSize==mxPg ); + rc = pager_truncate(pPager, mxPg); + if( rc!=SQLITE_OK ){ + goto end_playback; + } + pPager->dbSize = mxPg; + } + + /* rc = sqlite3OsSeek(&pPager->jfd, JOURNAL_HDR_SZ(pPager)); */ + if( rc!=SQLITE_OK ) goto end_playback; + + /* Copy original pages out of the journal and back into the database file. + */ + for(i=0; i<nRec; i++){ + rc = pager_playback_one_page(pPager, &pPager->jfd, 1); + if( rc!=SQLITE_OK ){ + if( rc==SQLITE_DONE ){ + rc = SQLITE_OK; + pPager->journalOff = szJ; + break; + }else{ + goto end_playback; + } + } + } + } + + /* Pages that have been written to the journal but never synced + ** where not restored by the loop above. We have to restore those + ** pages by reading them back from the original database. + */ + assert( rc==SQLITE_OK ); + pager_reload_cache(pPager); + +end_playback: + if( rc==SQLITE_OK ){ + rc = pager_unwritelock(pPager); + } + if( zMaster ){ + /* If there was a master journal and this routine will return true, + ** see if it is possible to delete the master journal. If errors + ** occur during this process, ignore them. + */ + if( rc==SQLITE_OK ){ + pager_delmaster(zMaster); + } + sqliteFree(zMaster); + } + + /* The Pager.sectorSize variable may have been updated while rolling + ** back a journal created by a process with a different PAGER_SECTOR_SIZE + ** value. Reset it to the correct value for this process. + */ + pPager->sectorSize = PAGER_SECTOR_SIZE; + return rc; +} + +/* +** Playback the statement journal. +** +** This is similar to playing back the transaction journal but with +** a few extra twists. +** +** (1) The number of pages in the database file at the start of +** the statement is stored in pPager->stmtSize, not in the +** journal file itself. +** +** (2) In addition to playing back the statement journal, also +** playback all pages of the transaction journal beginning +** at offset pPager->stmtJSize. +*/ +static int pager_stmt_playback(Pager *pPager){ + i64 szJ; /* Size of the full journal */ + i64 hdrOff; + int nRec; /* Number of Records */ + int i; /* Loop counter */ + int rc; + + szJ = pPager->journalOff; +#ifndef NDEBUG + { + i64 os_szJ; + rc = sqlite3OsFileSize(&pPager->jfd, &os_szJ); + if( rc!=SQLITE_OK ) return rc; + assert( szJ==os_szJ ); + } +#endif + + /* Set hdrOff to be the offset to the first journal header written + ** this statement transaction, or the end of the file if no journal + ** header was written. + */ + hdrOff = pPager->stmtHdrOff; + assert( pPager->fullSync || !hdrOff ); + if( !hdrOff ){ + hdrOff = szJ; + } + + + /* Truncate the database back to its original size. + */ + rc = pager_truncate(pPager, pPager->stmtSize); + pPager->dbSize = pPager->stmtSize; + + /* Figure out how many records are in the statement journal. + */ + assert( pPager->stmtInUse && pPager->journalOpen ); + sqlite3OsSeek(&pPager->stfd, 0); + nRec = pPager->stmtNRec; + + /* Copy original pages out of the statement journal and back into the + ** database file. Note that the statement journal omits checksums from + ** each record since power-failure recovery is not important to statement + ** journals. + */ + for(i=nRec-1; i>=0; i--){ + rc = pager_playback_one_page(pPager, &pPager->stfd, 0); + assert( rc!=SQLITE_DONE ); + if( rc!=SQLITE_OK ) goto end_stmt_playback; + } + + /* Now roll some pages back from the transaction journal. Pager.stmtJSize + ** was the size of the journal file when this statement was started, so + ** everything after that needs to be rolled back, either into the + ** database, the memory cache, or both. + ** + ** If it is not zero, then Pager.stmtHdrOff is the offset to the start + ** of the first journal header written during this statement transaction. + */ + rc = sqlite3OsSeek(&pPager->jfd, pPager->stmtJSize); + if( rc!=SQLITE_OK ){ + goto end_stmt_playback; + } + pPager->journalOff = pPager->stmtJSize; + pPager->cksumInit = pPager->stmtCksum; + assert( JOURNAL_HDR_SZ(pPager)<(pPager->pageSize+8) ); + while( pPager->journalOff <= (hdrOff-(pPager->pageSize+8)) ){ + rc = pager_playback_one_page(pPager, &pPager->jfd, 1); + assert( rc!=SQLITE_DONE ); + if( rc!=SQLITE_OK ) goto end_stmt_playback; + } + + while( pPager->journalOff < szJ ){ + u32 nRec; + u32 dummy; + rc = readJournalHdr(pPager, szJ, &nRec, &dummy); + if( rc!=SQLITE_OK ){ + assert( rc!=SQLITE_DONE ); + goto end_stmt_playback; + } + if( nRec==0 ){ + nRec = (szJ - pPager->journalOff) / (pPager->pageSize+8); + } + for(i=nRec-1; i>=0 && pPager->journalOff < szJ; i--){ + rc = pager_playback_one_page(pPager, &pPager->jfd, 1); + assert( rc!=SQLITE_DONE ); + if( rc!=SQLITE_OK ) goto end_stmt_playback; + } + } + + pPager->journalOff = szJ; + +end_stmt_playback: + if( rc!=SQLITE_OK ){ + pPager->errMask |= PAGER_ERR_CORRUPT; + rc = SQLITE_CORRUPT; /* bkpt-CORRUPT */ + }else{ + pPager->journalOff = szJ; + /* pager_reload_cache(pPager); */ + } + return rc; +} + +/* +** Change the maximum number of in-memory pages that are allowed. +** +** The maximum number is the absolute value of the mxPage parameter. +** If mxPage is negative, the noSync flag is also set. noSync bypasses +** calls to sqlite3OsSync(). The pager runs much faster with noSync on, +** but if the operating system crashes or there is an abrupt power +** failure, the database file might be left in an inconsistent and +** unrepairable state. +*/ +void sqlite3pager_set_cachesize(Pager *pPager, int mxPage){ + if( mxPage>=0 ){ + pPager->noSync = pPager->tempFile; + if( pPager->noSync ) pPager->needSync = 0; + }else{ + pPager->noSync = 1; + mxPage = -mxPage; + } + if( mxPage>10 ){ + pPager->mxPage = mxPage; + }else{ + pPager->mxPage = 10; + } +} + +/* +** Adjust the robustness of the database to damage due to OS crashes +** or power failures by changing the number of syncs()s when writing +** the rollback journal. There are three levels: +** +** OFF sqlite3OsSync() is never called. This is the default +** for temporary and transient files. +** +** NORMAL The journal is synced once before writes begin on the +** database. This is normally adequate protection, but +** it is theoretically possible, though very unlikely, +** that an inopertune power failure could leave the journal +** in a state which would cause damage to the database +** when it is rolled back. +** +** FULL The journal is synced twice before writes begin on the +** database (with some additional information - the nRec field +** of the journal header - being written in between the two +** syncs). If we assume that writing a +** single disk sector is atomic, then this mode provides +** assurance that the journal will not be corrupted to the +** point of causing damage to the database during rollback. +** +** Numeric values associated with these states are OFF==1, NORMAL=2, +** and FULL=3. +*/ +void sqlite3pager_set_safety_level(Pager *pPager, int level){ + pPager->noSync = level==1 || pPager->tempFile; + pPager->fullSync = level==3 && !pPager->tempFile; + if( pPager->noSync ) pPager->needSync = 0; +} + +/* +** Open a temporary file. Write the name of the file into zName +** (zName must be at least SQLITE_TEMPNAME_SIZE bytes long.) Write +** the file descriptor into *fd. Return SQLITE_OK on success or some +** other error code if we fail. +** +** The OS will automatically delete the temporary file when it is +** closed. +*/ +static int sqlite3pager_opentemp(char *zFile, OsFile *fd){ + int cnt = 8; + int rc; + do{ + cnt--; + sqlite3OsTempFileName(zFile); + rc = sqlite3OsOpenExclusive(zFile, fd, 1); + }while( cnt>0 && rc!=SQLITE_OK && rc!=SQLITE_NOMEM ); + return rc; +} + +/* +** Create a new page cache and put a pointer to the page cache in *ppPager. +** The file to be cached need not exist. The file is not locked until +** the first call to sqlite3pager_get() and is only held open until the +** last page is released using sqlite3pager_unref(). +** +** If zFilename is NULL then a randomly-named temporary file is created +** and used as the file to be cached. The file will be deleted +** automatically when it is closed. +** +** If zFilename is ":memory:" then all information is held in cache. +** It is never written to disk. This can be used to implement an +** in-memory database. +*/ +int sqlite3pager_open( + Pager **ppPager, /* Return the Pager structure here */ + const char *zFilename, /* Name of the database file to open */ + int nExtra, /* Extra bytes append to each in-memory page */ + int useJournal /* TRUE to use a rollback journal on this file */ +){ + Pager *pPager; + char *zFullPathname = 0; + int nameLen; + OsFile fd; + int rc = SQLITE_OK; + int i; + int tempFile = 0; + int memDb = 0; + int readOnly = 0; + char zTemp[SQLITE_TEMPNAME_SIZE]; + + *ppPager = 0; + memset(&fd, 0, sizeof(fd)); + if( sqlite3_malloc_failed ){ + return SQLITE_NOMEM; + } + if( zFilename && zFilename[0] ){ + if( strcmp(zFilename,":memory:")==0 ){ + memDb = 1; + zFullPathname = sqliteStrDup(""); + rc = SQLITE_OK; + }else{ + zFullPathname = sqlite3OsFullPathname(zFilename); + if( zFullPathname ){ + rc = sqlite3OsOpenReadWrite(zFullPathname, &fd, &readOnly); + } + } + }else{ + rc = sqlite3pager_opentemp(zTemp, &fd); + zFilename = zTemp; + zFullPathname = sqlite3OsFullPathname(zFilename); + if( rc==SQLITE_OK ){ + tempFile = 1; + } + } + if( !zFullPathname ){ + sqlite3OsClose(&fd); + return SQLITE_NOMEM; + } + if( rc!=SQLITE_OK ){ + sqlite3OsClose(&fd); + sqliteFree(zFullPathname); + return rc; + } + nameLen = strlen(zFullPathname); + pPager = sqliteMalloc( sizeof(*pPager) + nameLen*3 + 30 ); + if( pPager==0 ){ + sqlite3OsClose(&fd); + sqliteFree(zFullPathname); + return SQLITE_NOMEM; + } + TRACE3("OPEN %d %s\n", fd.h, zFullPathname); + pPager->zFilename = (char*)&pPager[1]; + pPager->zDirectory = &pPager->zFilename[nameLen+1]; + pPager->zJournal = &pPager->zDirectory[nameLen+1]; + strcpy(pPager->zFilename, zFullPathname); + strcpy(pPager->zDirectory, zFullPathname); + for(i=nameLen; i>0 && pPager->zDirectory[i-1]!='/'; i--){} + if( i>0 ) pPager->zDirectory[i-1] = 0; + strcpy(pPager->zJournal, zFullPathname); + sqliteFree(zFullPathname); + strcpy(&pPager->zJournal[nameLen], "-journal"); + pPager->fd = fd; +#if OS_UNIX + pPager->fd.pPager = pPager; +#endif + pPager->journalOpen = 0; + pPager->useJournal = useJournal && !memDb; + pPager->stmtOpen = 0; + pPager->stmtInUse = 0; + pPager->nRef = 0; + pPager->dbSize = memDb-1; + pPager->pageSize = SQLITE_DEFAULT_PAGE_SIZE; + pPager->stmtSize = 0; + pPager->stmtJSize = 0; + pPager->nPage = 0; + pPager->mxPage = 100; + pPager->state = PAGER_UNLOCK; + pPager->errMask = 0; + pPager->tempFile = tempFile; + pPager->memDb = memDb; + pPager->readOnly = readOnly; + pPager->needSync = 0; + pPager->noSync = pPager->tempFile || !useJournal; + pPager->fullSync = (pPager->noSync?0:1); + pPager->pFirst = 0; + pPager->pFirstSynced = 0; + pPager->pLast = 0; + pPager->nExtra = nExtra; + pPager->sectorSize = PAGER_SECTOR_SIZE; + pPager->pBusyHandler = 0; + memset(pPager->aHash, 0, sizeof(pPager->aHash)); + *ppPager = pPager; + return SQLITE_OK; +} + +/* +** Set the busy handler function. +*/ +void sqlite3pager_set_busyhandler(Pager *pPager, BusyHandler *pBusyHandler){ + pPager->pBusyHandler = pBusyHandler; +} + +/* +** Set the destructor for this pager. If not NULL, the destructor is called +** when the reference count on each page reaches zero. The destructor can +** be used to clean up information in the extra segment appended to each page. +** +** The destructor is not called as a result sqlite3pager_close(). +** Destructors are only called by sqlite3pager_unref(). +*/ +void sqlite3pager_set_destructor(Pager *pPager, void (*xDesc)(void*,int)){ + pPager->xDestructor = xDesc; +} + +/* +** Set the reinitializer for this pager. If not NULL, the reinitializer +** is called when the content of a page in cache is restored to its original +** value as a result of a rollback. The callback gives higher-level code +** an opportunity to restore the EXTRA section to agree with the restored +** page data. +*/ +void sqlite3pager_set_reiniter(Pager *pPager, void (*xReinit)(void*,int)){ + pPager->xReiniter = xReinit; +} + +/* +** Set the page size. +** +** The page size must only be changed when the cache is empty. +*/ +void sqlite3pager_set_pagesize(Pager *pPager, int pageSize){ + assert( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE ); + pPager->pageSize = pageSize; +} + +/* +** Read the first N bytes from the beginning of the file into memory +** that pDest points to. No error checking is done. +*/ +void sqlite3pager_read_fileheader(Pager *pPager, int N, unsigned char *pDest){ + memset(pDest, 0, N); + if( pPager->memDb==0 ){ + sqlite3OsSeek(&pPager->fd, 0); + sqlite3OsRead(&pPager->fd, pDest, N); + } +} + +/* +** Return the total number of pages in the disk file associated with +** pPager. +*/ +int sqlite3pager_pagecount(Pager *pPager){ + i64 n; + assert( pPager!=0 ); + if( pPager->dbSize>=0 ){ + return pPager->dbSize; + } + if( sqlite3OsFileSize(&pPager->fd, &n)!=SQLITE_OK ){ + pPager->errMask |= PAGER_ERR_DISK; + return 0; + } + n /= pPager->pageSize; + if( !pPager->memDb && n==PENDING_BYTE/pPager->pageSize ){ + n++; + } + if( pPager->state!=PAGER_UNLOCK ){ + pPager->dbSize = n; + } + return n; +} + +/* +** Forward declaration +*/ +static int syncJournal(Pager*); + + +/* +** Unlink a page from the free list (the list of all pages where nRef==0) +** and from its hash collision chain. +*/ +static void unlinkPage(PgHdr *pPg){ + Pager *pPager = pPg->pPager; + + /* Keep the pFirstSynced pointer pointing at the first synchronized page */ + if( pPg==pPager->pFirstSynced ){ + PgHdr *p = pPg->pNextFree; + while( p && p->needSync ){ p = p->pNextFree; } + pPager->pFirstSynced = p; + } + + /* Unlink from the freelist */ + if( pPg->pPrevFree ){ + pPg->pPrevFree->pNextFree = pPg->pNextFree; + }else{ + assert( pPager->pFirst==pPg ); + pPager->pFirst = pPg->pNextFree; + } + if( pPg->pNextFree ){ + pPg->pNextFree->pPrevFree = pPg->pPrevFree; + }else{ + assert( pPager->pLast==pPg ); + pPager->pLast = pPg->pPrevFree; + } + pPg->pNextFree = pPg->pPrevFree = 0; + + /* Unlink from the pgno hash table */ + if( pPg->pNextHash ){ + pPg->pNextHash->pPrevHash = pPg->pPrevHash; + } + if( pPg->pPrevHash ){ + pPg->pPrevHash->pNextHash = pPg->pNextHash; + }else{ + int h = pager_hash(pPg->pgno); + assert( pPager->aHash[h]==pPg ); + pPager->aHash[h] = pPg->pNextHash; + } + pPg->pNextHash = pPg->pPrevHash = 0; +} + +/* +** This routine is used to truncate an in-memory database. Delete +** all pages whose pgno is larger than pPager->dbSize and is unreferenced. +** Referenced pages larger than pPager->dbSize are zeroed. +*/ +static void memoryTruncate(Pager *pPager){ + PgHdr *pPg; + PgHdr **ppPg; + int dbSize = pPager->dbSize; + + ppPg = &pPager->pAll; + while( (pPg = *ppPg)!=0 ){ + if( pPg->pgno<=dbSize ){ + ppPg = &pPg->pNextAll; + }else if( pPg->nRef>0 ){ + memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); + ppPg = &pPg->pNextAll; + }else{ + *ppPg = pPg->pNextAll; + unlinkPage(pPg); + sqliteFree(pPg); + pPager->nPage--; + } + } +} + +/* +** Truncate the file to the number of pages specified. +*/ +int sqlite3pager_truncate(Pager *pPager, Pgno nPage){ + int rc; + sqlite3pager_pagecount(pPager); + if( pPager->errMask!=0 ){ + rc = pager_errcode(pPager); + return rc; + } + if( nPage>=(unsigned)pPager->dbSize ){ + return SQLITE_OK; + } + if( pPager->memDb ){ + pPager->dbSize = nPage; + memoryTruncate(pPager); + return SQLITE_OK; + } + rc = syncJournal(pPager); + if( rc!=SQLITE_OK ){ + return rc; + } + rc = pager_truncate(pPager, nPage); + if( rc==SQLITE_OK ){ + pPager->dbSize = nPage; + } + return rc; +} + +/* +** Shutdown the page cache. Free all memory and close all files. +** +** If a transaction was in progress when this routine is called, that +** transaction is rolled back. All outstanding pages are invalidated +** and their memory is freed. Any attempt to use a page associated +** with this page cache after this function returns will likely +** result in a coredump. +*/ +int sqlite3pager_close(Pager *pPager){ + PgHdr *pPg, *pNext; + switch( pPager->state ){ + case PAGER_RESERVED: + case PAGER_SYNCED: + case PAGER_EXCLUSIVE: { + sqlite3pager_rollback(pPager); + if( !pPager->memDb ){ + sqlite3OsUnlock(&pPager->fd, NO_LOCK); + } + assert( pPager->journalOpen==0 ); + break; + } + case PAGER_SHARED: { + if( !pPager->memDb ){ + sqlite3OsUnlock(&pPager->fd, NO_LOCK); + } + break; + } + default: { + /* Do nothing */ + break; + } + } + for(pPg=pPager->pAll; pPg; pPg=pNext){ +#ifndef NDEBUG + if( pPager->memDb ){ + PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); + assert( !pPg->alwaysRollback ); + assert( !pHist->pOrig ); + assert( !pHist->pStmt ); + } +#endif + pNext = pPg->pNextAll; + sqliteFree(pPg); + } + TRACE2("CLOSE %d\n", pPager->fd.h); + sqlite3OsClose(&pPager->fd); + assert( pPager->journalOpen==0 ); + /* Temp files are automatically deleted by the OS + ** if( pPager->tempFile ){ + ** sqlite3OsDelete(pPager->zFilename); + ** } + */ + if( pPager->zFilename!=(char*)&pPager[1] ){ + assert( 0 ); /* Cannot happen */ + sqliteFree(pPager->zFilename); + sqliteFree(pPager->zJournal); + sqliteFree(pPager->zDirectory); + } + sqliteFree(pPager); + return SQLITE_OK; +} + +/* +** Return the page number for the given page data. +*/ +Pgno sqlite3pager_pagenumber(void *pData){ + PgHdr *p = DATA_TO_PGHDR(pData); + return p->pgno; +} + +/* +** The page_ref() function increments the reference count for a page. +** If the page is currently on the freelist (the reference count is zero) then +** remove it from the freelist. +** +** For non-test systems, page_ref() is a macro that calls _page_ref() +** online of the reference count is zero. For test systems, page_ref() +** is a real function so that we can set breakpoints and trace it. +*/ +static void _page_ref(PgHdr *pPg){ + if( pPg->nRef==0 ){ + /* The page is currently on the freelist. Remove it. */ + if( pPg==pPg->pPager->pFirstSynced ){ + PgHdr *p = pPg->pNextFree; + while( p && p->needSync ){ p = p->pNextFree; } + pPg->pPager->pFirstSynced = p; + } + if( pPg->pPrevFree ){ + pPg->pPrevFree->pNextFree = pPg->pNextFree; + }else{ + pPg->pPager->pFirst = pPg->pNextFree; + } + if( pPg->pNextFree ){ + pPg->pNextFree->pPrevFree = pPg->pPrevFree; + }else{ + pPg->pPager->pLast = pPg->pPrevFree; + } + pPg->pPager->nRef++; + } + pPg->nRef++; + REFINFO(pPg); +} +#ifdef SQLITE_TEST + static void page_ref(PgHdr *pPg){ + if( pPg->nRef==0 ){ + _page_ref(pPg); + }else{ + pPg->nRef++; + REFINFO(pPg); + } + } +#else +# define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++) +#endif + +/* +** Increment the reference count for a page. The input pointer is +** a reference to the page data. +*/ +int sqlite3pager_ref(void *pData){ + PgHdr *pPg = DATA_TO_PGHDR(pData); + page_ref(pPg); + return SQLITE_OK; +} + +/* +** Sync the journal. In other words, make sure all the pages that have +** been written to the journal have actually reached the surface of the +** disk. It is not safe to modify the original database file until after +** the journal has been synced. If the original database is modified before +** the journal is synced and a power failure occurs, the unsynced journal +** data would be lost and we would be unable to completely rollback the +** database changes. Database corruption would occur. +** +** This routine also updates the nRec field in the header of the journal. +** (See comments on the pager_playback() routine for additional information.) +** If the sync mode is FULL, two syncs will occur. First the whole journal +** is synced, then the nRec field is updated, then a second sync occurs. +** +** For temporary databases, we do not care if we are able to rollback +** after a power failure, so sync occurs. +** +** This routine clears the needSync field of every page current held in +** memory. +*/ +static int syncJournal(Pager *pPager){ + PgHdr *pPg; + int rc = SQLITE_OK; + + /* Sync the journal before modifying the main database + ** (assuming there is a journal and it needs to be synced.) + */ + if( pPager->needSync ){ + if( !pPager->tempFile ){ + assert( pPager->journalOpen ); + /* assert( !pPager->noSync ); // noSync might be set if synchronous + ** was turned off after the transaction was started. Ticket #615 */ +#ifndef NDEBUG + { + /* Make sure the pPager->nRec counter we are keeping agrees + ** with the nRec computed from the size of the journal file. + */ + i64 jSz; + rc = sqlite3OsFileSize(&pPager->jfd, &jSz); + if( rc!=0 ) return rc; + assert( pPager->journalOff==jSz ); + } +#endif + { + /* Write the nRec value into the journal file header. If in + ** full-synchronous mode, sync the journal first. This ensures that + ** all data has really hit the disk before nRec is updated to mark + ** it as a candidate for rollback. + */ + if( pPager->fullSync ){ + TRACE2("SYNC journal of %d\n", pPager->fd.h); + rc = sqlite3OsSync(&pPager->jfd); + if( rc!=0 ) return rc; + } + sqlite3OsSeek(&pPager->jfd, pPager->journalHdr + sizeof(aJournalMagic)); + rc = write32bits(&pPager->jfd, pPager->nRec); + if( rc ) return rc; + + sqlite3OsSeek(&pPager->jfd, pPager->journalOff); + } + TRACE2("SYNC journal of %d\n", pPager->fd.h); + rc = sqlite3OsSync(&pPager->jfd); + if( rc!=0 ) return rc; + pPager->journalStarted = 1; + } + pPager->needSync = 0; + + /* Erase the needSync flag from every page. + */ + for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ + pPg->needSync = 0; + } + pPager->pFirstSynced = pPager->pFirst; + } + +#ifndef NDEBUG + /* If the Pager.needSync flag is clear then the PgHdr.needSync + ** flag must also be clear for all pages. Verify that this + ** invariant is true. + */ + else{ + for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ + assert( pPg->needSync==0 ); + } + assert( pPager->pFirstSynced==pPager->pFirst ); + } +#endif + + return rc; +} + +/* +** Try to obtain a lock on a file. Invoke the busy callback if the lock +** is currently not available. Repeate until the busy callback returns +** false or until the lock succeeds. +** +** Return SQLITE_OK on success and an error code if we cannot obtain +** the lock. +*/ +static int pager_wait_on_lock(Pager *pPager, int locktype){ + int rc; + assert( PAGER_SHARED==SHARED_LOCK ); + assert( PAGER_RESERVED==RESERVED_LOCK ); + assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK ); + if( pPager->state>=locktype ){ + rc = SQLITE_OK; + }else{ + int busy = 1; + do { + rc = sqlite3OsLock(&pPager->fd, locktype); + }while( rc==SQLITE_BUSY && + pPager->pBusyHandler && + pPager->pBusyHandler->xFunc && + pPager->pBusyHandler->xFunc(pPager->pBusyHandler->pArg, busy++) + ); + if( rc==SQLITE_OK ){ + pPager->state = locktype; + } + } + return rc; +} + +/* +** Given a list of pages (connected by the PgHdr.pDirty pointer) write +** every one of those pages out to the database file and mark them all +** as clean. +*/ +static int pager_write_pagelist(PgHdr *pList){ + Pager *pPager; + int rc; + + if( pList==0 ) return SQLITE_OK; + pPager = pList->pPager; + + /* At this point there may be either a RESERVED or EXCLUSIVE lock on the + ** database file. If there is already an EXCLUSIVE lock, the following + ** calls to sqlite3OsLock() are no-ops. + ** + ** Moving the lock from RESERVED to EXCLUSIVE actually involves going + ** through an intermediate state PENDING. A PENDING lock prevents new + ** readers from attaching to the database but is unsufficient for us to + ** write. The idea of a PENDING lock is to prevent new readers from + ** coming in while we wait for existing readers to clear. + ** + ** While the pager is in the RESERVED state, the original database file + ** is unchanged and we can rollback without having to playback the + ** journal into the original database file. Once we transition to + ** EXCLUSIVE, it means the database file has been changed and any rollback + ** will require a journal playback. + */ + rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); + if( rc!=SQLITE_OK ){ + return rc; + } + + while( pList ){ + assert( pList->dirty ); + sqlite3OsSeek(&pPager->fd, (pList->pgno-1)*(i64)pPager->pageSize); + CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6); + TRACE3("STORE %d page %d\n", pPager->fd.h, pList->pgno); + rc = sqlite3OsWrite(&pPager->fd, PGHDR_TO_DATA(pList), pPager->pageSize); + CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 0); + if( rc ) return rc; + pList->dirty = 0; + pList = pList->pDirty; + } + return SQLITE_OK; +} + +/* +** Collect every dirty page into a dirty list and +** return a pointer to the head of that list. All pages are +** collected even if they are still in use. +*/ +static PgHdr *pager_get_all_dirty_pages(Pager *pPager){ + PgHdr *p, *pList; + pList = 0; + for(p=pPager->pAll; p; p=p->pNextAll){ + if( p->dirty ){ + p->pDirty = pList; + pList = p; + } + } + return pList; +} + +/* +** Acquire a page. +** +** A read lock on the disk file is obtained when the first page is acquired. +** This read lock is dropped when the last page is released. +** +** A _get works for any page number greater than 0. If the database +** file is smaller than the requested page, then no actual disk +** read occurs and the memory image of the page is initialized to +** all zeros. The extra data appended to a page is always initialized +** to zeros the first time a page is loaded into memory. +** +** The acquisition might fail for several reasons. In all cases, +** an appropriate error code is returned and *ppPage is set to NULL. +** +** See also sqlite3pager_lookup(). Both this routine and _lookup() attempt +** to find a page in the in-memory cache first. If the page is not already +** in memory, this routine goes to disk to read it in whereas _lookup() +** just returns 0. This routine acquires a read-lock the first time it +** has to go to disk, and could also playback an old journal if necessary. +** Since _lookup() never goes to disk, it never has to deal with locks +** or journal files. +*/ +int sqlite3pager_get(Pager *pPager, Pgno pgno, void **ppPage){ + PgHdr *pPg; + int rc; + + /* Make sure we have not hit any critical errors. + */ + assert( pPager!=0 ); + assert( pgno!=0 ); + *ppPage = 0; + if( pPager->errMask & ~(PAGER_ERR_FULL) ){ + return pager_errcode(pPager); + } + + /* If this is the first page accessed, then get a SHARED lock + ** on the database file. + */ + if( pPager->nRef==0 && !pPager->memDb ){ + rc = pager_wait_on_lock(pPager, SHARED_LOCK); + if( rc!=SQLITE_OK ){ + return rc; + } + + /* If a journal file exists, and there is no RESERVED lock on the + ** database file, then it either needs to be played back or deleted. + */ + if( pPager->useJournal && + sqlite3OsFileExists(pPager->zJournal) && + !sqlite3OsCheckReservedLock(&pPager->fd) + ){ + int rc; + + /* Get an EXCLUSIVE lock on the database file. At this point it is + ** important that a RESERVED lock is not obtained on the way to the + ** EXCLUSIVE lock. If it were, another process might open the + ** database file, detect the RESERVED lock, and conclude that the + ** database is safe to read while this process is still rolling it + ** back. + ** + ** Because the intermediate RESERVED lock is not requested, the + ** second process will get to this point in the code and fail to + ** obtain it's own EXCLUSIVE lock on the database file. + */ + rc = sqlite3OsLock(&pPager->fd, EXCLUSIVE_LOCK); + if( rc!=SQLITE_OK ){ + sqlite3OsUnlock(&pPager->fd, NO_LOCK); + pPager->state = PAGER_UNLOCK; + return rc; + } + pPager->state = PAGER_EXCLUSIVE; + + /* Open the journal for reading only. Return SQLITE_BUSY if + ** we are unable to open the journal file. + ** + ** The journal file does not need to be locked itself. The + ** journal file is never open unless the main database file holds + ** a write lock, so there is never any chance of two or more + ** processes opening the journal at the same time. + */ + rc = sqlite3OsOpenReadOnly(pPager->zJournal, &pPager->jfd); + if( rc!=SQLITE_OK ){ + sqlite3OsUnlock(&pPager->fd, NO_LOCK); + pPager->state = PAGER_UNLOCK; + return SQLITE_BUSY; + } + pPager->journalOpen = 1; + pPager->journalStarted = 0; + pPager->journalOff = 0; + pPager->setMaster = 0; + pPager->journalHdr = 0; + + /* Playback and delete the journal. Drop the database write + ** lock and reacquire the read lock. + */ + rc = pager_playback(pPager); + if( rc!=SQLITE_OK ){ + return rc; + } + } + pPg = 0; + }else{ + /* Search for page in cache */ + pPg = pager_lookup(pPager, pgno); + if( pPager->memDb && pPager->state==PAGER_UNLOCK ){ + pPager->state = PAGER_SHARED; + } + } + if( pPg==0 ){ + /* The requested page is not in the page cache. */ + int h; + pPager->nMiss++; + if( pPager->nPage<pPager->mxPage || pPager->pFirst==0 || pPager->memDb ){ + /* Create a new page */ + pPg = sqliteMallocRaw( sizeof(*pPg) + pPager->pageSize + + sizeof(u32) + pPager->nExtra + + pPager->memDb*sizeof(PgHistory) ); + if( pPg==0 ){ + if( !pPager->memDb ){ + pager_unwritelock(pPager); + } + pPager->errMask |= PAGER_ERR_MEM; + return SQLITE_NOMEM; + } + memset(pPg, 0, sizeof(*pPg)); + if( pPager->memDb ){ + memset(PGHDR_TO_HIST(pPg, pPager), 0, sizeof(PgHistory)); + } + pPg->pPager = pPager; + pPg->pNextAll = pPager->pAll; + pPager->pAll = pPg; + pPager->nPage++; + }else{ + /* Find a page to recycle. Try to locate a page that does not + ** require us to do an fsync() on the journal. + */ + pPg = pPager->pFirstSynced; + + /* If we could not find a page that does not require an fsync() + ** on the journal file then fsync the journal file. This is a + ** very slow operation, so we work hard to avoid it. But sometimes + ** it can't be helped. + */ + if( pPg==0 ){ + int rc = syncJournal(pPager); + if( rc!=0 ){ + sqlite3pager_rollback(pPager); + return SQLITE_IOERR; + } + if( pPager->fullSync ){ + /* If in full-sync mode, write a new journal header into the + ** journal file. This is done to avoid ever modifying a journal + ** header that is involved in the rollback of pages that have + ** already been written to the database (in case the header is + ** trashed when the nRec field is updated). + */ + pPager->nRec = 0; + assert( pPager->journalOff > 0 ); + rc = writeJournalHdr(pPager); + if( rc!=0 ){ + sqlite3pager_rollback(pPager); + return SQLITE_IOERR; + } + } + pPg = pPager->pFirst; + } + assert( pPg->nRef==0 ); + + /* Write the page to the database file if it is dirty. + */ + if( pPg->dirty ){ + assert( pPg->needSync==0 ); + pPg->pDirty = 0; + rc = pager_write_pagelist( pPg ); + if( rc!=SQLITE_OK ){ + sqlite3pager_rollback(pPager); + return SQLITE_IOERR; + } + } + assert( pPg->dirty==0 ); + + /* If the page we are recycling is marked as alwaysRollback, then + ** set the global alwaysRollback flag, thus disabling the + ** sqlite_dont_rollback() optimization for the rest of this transaction. + ** It is necessary to do this because the page marked alwaysRollback + ** might be reloaded at a later time but at that point we won't remember + ** that is was marked alwaysRollback. This means that all pages must + ** be marked as alwaysRollback from here on out. + */ + if( pPg->alwaysRollback ){ + pPager->alwaysRollback = 1; + } + + /* Unlink the old page from the free list and the hash table + */ + unlinkPage(pPg); + pPager->nOvfl++; + } + pPg->pgno = pgno; + if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){ + sqlite3CheckMemory(pPager->aInJournal, pgno/8); + assert( pPager->journalOpen ); + pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0; + pPg->needSync = 0; + }else{ + pPg->inJournal = 0; + pPg->needSync = 0; + } + if( pPager->aInStmt && (int)pgno<=pPager->stmtSize + && (pPager->aInStmt[pgno/8] & (1<<(pgno&7)))!=0 ){ + page_add_to_stmt_list(pPg); + }else{ + page_remove_from_stmt_list(pPg); + } + pPg->dirty = 0; + pPg->nRef = 1; + REFINFO(pPg); + pPager->nRef++; + h = pager_hash(pgno); + pPg->pNextHash = pPager->aHash[h]; + pPager->aHash[h] = pPg; + if( pPg->pNextHash ){ + assert( pPg->pNextHash->pPrevHash==0 ); + pPg->pNextHash->pPrevHash = pPg; + } + if( pPager->nExtra>0 ){ + memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra); + } + sqlite3pager_pagecount(pPager); + if( pPager->errMask!=0 ){ + sqlite3pager_unref(PGHDR_TO_DATA(pPg)); + rc = pager_errcode(pPager); + return rc; + } + if( pPager->dbSize<(int)pgno ){ + memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); + }else{ + int rc; + assert( pPager->memDb==0 ); + sqlite3OsSeek(&pPager->fd, (pgno-1)*(i64)pPager->pageSize); + rc = sqlite3OsRead(&pPager->fd, PGHDR_TO_DATA(pPg), pPager->pageSize); + TRACE3("FETCH %d page %d\n", pPager->fd.h, pPg->pgno); + CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3); + if( rc!=SQLITE_OK ){ + i64 fileSize; + if( sqlite3OsFileSize(&pPager->fd,&fileSize)!=SQLITE_OK + || fileSize>=pgno*pPager->pageSize ){ + sqlite3pager_unref(PGHDR_TO_DATA(pPg)); + return rc; + }else{ + memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); + } + } + } + }else{ + /* The requested page is in the page cache. */ + pPager->nHit++; + page_ref(pPg); + } + *ppPage = PGHDR_TO_DATA(pPg); + return SQLITE_OK; +} + +/* +** Acquire a page if it is already in the in-memory cache. Do +** not read the page from disk. Return a pointer to the page, +** or 0 if the page is not in cache. +** +** See also sqlite3pager_get(). The difference between this routine +** and sqlite3pager_get() is that _get() will go to the disk and read +** in the page if the page is not already in cache. This routine +** returns NULL if the page is not in cache or if a disk I/O error +** has ever happened. +*/ +void *sqlite3pager_lookup(Pager *pPager, Pgno pgno){ + PgHdr *pPg; + + assert( pPager!=0 ); + assert( pgno!=0 ); + if( pPager->errMask & ~(PAGER_ERR_FULL) ){ + return 0; + } + pPg = pager_lookup(pPager, pgno); + if( pPg==0 ) return 0; + page_ref(pPg); + return PGHDR_TO_DATA(pPg); +} + +/* +** Release a page. +** +** If the number of references to the page drop to zero, then the +** page is added to the LRU list. When all references to all pages +** are released, a rollback occurs and the lock on the database is +** removed. +*/ +int sqlite3pager_unref(void *pData){ + PgHdr *pPg; + + /* Decrement the reference count for this page + */ + pPg = DATA_TO_PGHDR(pData); + assert( pPg->nRef>0 ); + pPg->nRef--; + REFINFO(pPg); + + /* When the number of references to a page reach 0, call the + ** destructor and add the page to the freelist. + */ + if( pPg->nRef==0 ){ + Pager *pPager; + pPager = pPg->pPager; + pPg->pNextFree = 0; + pPg->pPrevFree = pPager->pLast; + pPager->pLast = pPg; + if( pPg->pPrevFree ){ + pPg->pPrevFree->pNextFree = pPg; + }else{ + pPager->pFirst = pPg; + } + if( pPg->needSync==0 && pPager->pFirstSynced==0 ){ + pPager->pFirstSynced = pPg; + } + if( pPager->xDestructor ){ + pPager->xDestructor(pData, pPager->pageSize); + } + + /* When all pages reach the freelist, drop the read lock from + ** the database file. + */ + pPager->nRef--; + assert( pPager->nRef>=0 ); + if( pPager->nRef==0 && !pPager->memDb ){ + pager_reset(pPager); + } + } + return SQLITE_OK; +} + +/* +** Create a journal file for pPager. There should already be a RESERVED +** or EXCLUSIVE lock on the database file when this routine is called. +** +** Return SQLITE_OK if everything. Return an error code and release the +** write lock if anything goes wrong. +*/ +static int pager_open_journal(Pager *pPager){ + int rc; + assert( !pPager->memDb ); + assert( pPager->state>=PAGER_RESERVED ); + assert( pPager->journalOpen==0 ); + assert( pPager->useJournal ); + sqlite3pager_pagecount(pPager); + pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 ); + if( pPager->aInJournal==0 ){ + rc = SQLITE_NOMEM; + goto failed_to_open_journal; + } + rc = sqlite3OsOpenExclusive(pPager->zJournal, &pPager->jfd,pPager->tempFile); + pPager->journalOff = 0; + pPager->setMaster = 0; + pPager->journalHdr = 0; + if( rc!=SQLITE_OK ){ + goto failed_to_open_journal; + } + sqlite3OsOpenDirectory(pPager->zDirectory, &pPager->jfd); + pPager->journalOpen = 1; + pPager->journalStarted = 0; + pPager->needSync = 0; + pPager->alwaysRollback = 0; + pPager->nRec = 0; + if( pPager->errMask!=0 ){ + rc = pager_errcode(pPager); + return rc; + } + pPager->origDbSize = pPager->dbSize; + + rc = writeJournalHdr(pPager); + + if( pPager->stmtAutoopen && rc==SQLITE_OK ){ + rc = sqlite3pager_stmt_begin(pPager); + } + if( rc!=SQLITE_OK ){ + rc = pager_unwritelock(pPager); + if( rc==SQLITE_OK ){ + rc = SQLITE_FULL; + } + } + return rc; + +failed_to_open_journal: + sqliteFree(pPager->aInJournal); + pPager->aInJournal = 0; + sqlite3OsUnlock(&pPager->fd, NO_LOCK); + pPager->state = PAGER_UNLOCK; + return rc; +} + +/* +** Acquire a write-lock on the database. The lock is removed when +** the any of the following happen: +** +** * sqlite3pager_commit() is called. +** * sqlite3pager_rollback() is called. +** * sqlite3pager_close() is called. +** * sqlite3pager_unref() is called to on every outstanding page. +** +** The first parameter to this routine is a pointer to any open page of the +** database file. Nothing changes about the page - it is used merely to +** acquire a pointer to the Pager structure and as proof that there is +** already a read-lock on the database. +** +** The second parameter indicates how much space in bytes to reserve for a +** master journal file-name at the start of the journal when it is created. +** +** A journal file is opened if this is not a temporary file. For temporary +** files, the opening of the journal file is deferred until there is an +** actual need to write to the journal. +** +** If the database is already reserved for writing, this routine is a no-op. +** +** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file +** immediately instead of waiting until we try to flush the cache. The +** exFlag is ignored if a transaction is already active. +*/ +int sqlite3pager_begin(void *pData, int exFlag){ + PgHdr *pPg = DATA_TO_PGHDR(pData); + Pager *pPager = pPg->pPager; + int rc = SQLITE_OK; + assert( pPg->nRef>0 ); + assert( pPager->state!=PAGER_UNLOCK ); + if( pPager->state==PAGER_SHARED ){ + assert( pPager->aInJournal==0 ); + if( pPager->memDb ){ + pPager->state = PAGER_EXCLUSIVE; + pPager->origDbSize = pPager->dbSize; + }else{ + if( SQLITE_BUSY_RESERVED_LOCK || exFlag ){ + rc = pager_wait_on_lock(pPager, RESERVED_LOCK); + }else{ + rc = sqlite3OsLock(&pPager->fd, RESERVED_LOCK); + } + if( rc==SQLITE_OK ){ + pPager->state = PAGER_RESERVED; + if( exFlag ){ + rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); + } + } + if( rc!=SQLITE_OK ){ + return rc; + } + pPager->dirtyCache = 0; + TRACE2("TRANSACTION %d\n", pPager->fd.h); + if( pPager->useJournal && !pPager->tempFile ){ + rc = pager_open_journal(pPager); + } + } + } + return rc; +} + +/* +** Mark a data page as writeable. The page is written into the journal +** if it is not there already. This routine must be called before making +** changes to a page. +** +** The first time this routine is called, the pager creates a new +** journal and acquires a RESERVED lock on the database. If the RESERVED +** lock could not be acquired, this routine returns SQLITE_BUSY. The +** calling routine must check for that return value and be careful not to +** change any page data until this routine returns SQLITE_OK. +** +** If the journal file could not be written because the disk is full, +** then this routine returns SQLITE_FULL and does an immediate rollback. +** All subsequent write attempts also return SQLITE_FULL until there +** is a call to sqlite3pager_commit() or sqlite3pager_rollback() to +** reset. +*/ +int sqlite3pager_write(void *pData){ + PgHdr *pPg = DATA_TO_PGHDR(pData); + Pager *pPager = pPg->pPager; + int rc = SQLITE_OK; + + /* Check for errors + */ + if( pPager->errMask ){ + return pager_errcode(pPager); + } + if( pPager->readOnly ){ + return SQLITE_PERM; + } + + assert( !pPager->setMaster ); + + /* Mark the page as dirty. If the page has already been written + ** to the journal then we can return right away. + */ + pPg->dirty = 1; + if( pPg->inJournal && (pPg->inStmt || pPager->stmtInUse==0) ){ + pPager->dirtyCache = 1; + return SQLITE_OK; + } + + /* If we get this far, it means that the page needs to be + ** written to the transaction journal or the ckeckpoint journal + ** or both. + ** + ** First check to see that the transaction journal exists and + ** create it if it does not. + */ + assert( pPager->state!=PAGER_UNLOCK ); + rc = sqlite3pager_begin(pData, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + assert( pPager->state>=PAGER_RESERVED ); + if( !pPager->journalOpen && pPager->useJournal ){ + rc = pager_open_journal(pPager); + if( rc!=SQLITE_OK ) return rc; + } + assert( pPager->journalOpen || !pPager->useJournal ); + pPager->dirtyCache = 1; + + /* The transaction journal now exists and we have a RESERVED or an + ** EXCLUSIVE lock on the main database file. Write the current page to + ** the transaction journal if it is not there already. + */ + if( !pPg->inJournal && (pPager->useJournal || pPager->memDb) ){ + if( (int)pPg->pgno <= pPager->origDbSize ){ + int szPg; + u32 saved; + if( pPager->memDb ){ + PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); + TRACE3("JOURNAL %d page %d\n", pPager->fd.h, pPg->pgno); + assert( pHist->pOrig==0 ); + pHist->pOrig = sqliteMallocRaw( pPager->pageSize ); + if( pHist->pOrig ){ + memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize); + } + }else{ + u32 cksum; + CODEC(pPager, pData, pPg->pgno, 7); + cksum = pager_cksum(pPager, pPg->pgno, pData); + saved = *(u32*)PGHDR_TO_EXTRA(pPg, pPager); + store32bits(cksum, pPg, pPager->pageSize); + szPg = pPager->pageSize+8; + store32bits(pPg->pgno, pPg, -4); + rc = sqlite3OsWrite(&pPager->jfd, &((char*)pData)[-4], szPg); + pPager->journalOff += szPg; + TRACE4("JOURNAL %d page %d needSync=%d\n", + pPager->fd.h, pPg->pgno, pPg->needSync); + CODEC(pPager, pData, pPg->pgno, 0); + *(u32*)PGHDR_TO_EXTRA(pPg, pPager) = saved; + if( rc!=SQLITE_OK ){ + sqlite3pager_rollback(pPager); + pPager->errMask |= PAGER_ERR_FULL; + return rc; + } + pPager->nRec++; + assert( pPager->aInJournal!=0 ); + pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7); + pPg->needSync = !pPager->noSync; + if( pPager->stmtInUse ){ + pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); + page_add_to_stmt_list(pPg); + } + } + }else{ + pPg->needSync = !pPager->journalStarted && !pPager->noSync; + TRACE4("APPEND %d page %d needSync=%d\n", + pPager->fd.h, pPg->pgno, pPg->needSync); + } + if( pPg->needSync ){ + pPager->needSync = 1; + } + pPg->inJournal = 1; + } + + /* If the statement journal is open and the page is not in it, + ** then write the current page to the statement journal. Note that + ** the statement journal format differs from the standard journal format + ** in that it omits the checksums and the header. + */ + if( pPager->stmtInUse && !pPg->inStmt && (int)pPg->pgno<=pPager->stmtSize ){ + assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize ); + if( pPager->memDb ){ + PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); + assert( pHist->pStmt==0 ); + pHist->pStmt = sqliteMallocRaw( pPager->pageSize ); + if( pHist->pStmt ){ + memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize); + } + TRACE3("STMT-JOURNAL %d page %d\n", pPager->fd.h, pPg->pgno); + }else{ + store32bits(pPg->pgno, pPg, -4); + CODEC(pPager, pData, pPg->pgno, 7); + rc = sqlite3OsWrite(&pPager->stfd, ((char*)pData)-4, pPager->pageSize+4); + TRACE3("STMT-JOURNAL %d page %d\n", pPager->fd.h, pPg->pgno); + CODEC(pPager, pData, pPg->pgno, 0); + if( rc!=SQLITE_OK ){ + sqlite3pager_rollback(pPager); + pPager->errMask |= PAGER_ERR_FULL; + return rc; + } + pPager->stmtNRec++; + assert( pPager->aInStmt!=0 ); + pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); + } + page_add_to_stmt_list(pPg); + } + + /* Update the database size and return. + */ + if( pPager->dbSize<(int)pPg->pgno ){ + pPager->dbSize = pPg->pgno; + if( !pPager->memDb && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){ + pPager->dbSize++; + } + } + return rc; +} + +/* +** Return TRUE if the page given in the argument was previously passed +** to sqlite3pager_write(). In other words, return TRUE if it is ok +** to change the content of the page. +*/ +int sqlite3pager_iswriteable(void *pData){ + PgHdr *pPg = DATA_TO_PGHDR(pData); + return pPg->dirty; +} + +/* +** Replace the content of a single page with the information in the third +** argument. +*/ +int sqlite3pager_overwrite(Pager *pPager, Pgno pgno, void *pData){ + void *pPage; + int rc; + + rc = sqlite3pager_get(pPager, pgno, &pPage); + if( rc==SQLITE_OK ){ + rc = sqlite3pager_write(pPage); + if( rc==SQLITE_OK ){ + memcpy(pPage, pData, pPager->pageSize); + } + sqlite3pager_unref(pPage); + } + return rc; +} + +/* +** A call to this routine tells the pager that it is not necessary to +** write the information on page "pgno" back to the disk, even though +** that page might be marked as dirty. +** +** The overlying software layer calls this routine when all of the data +** on the given page is unused. The pager marks the page as clean so +** that it does not get written to disk. +** +** Tests show that this optimization, together with the +** sqlite3pager_dont_rollback() below, more than double the speed +** of large INSERT operations and quadruple the speed of large DELETEs. +** +** When this routine is called, set the alwaysRollback flag to true. +** Subsequent calls to sqlite3pager_dont_rollback() for the same page +** will thereafter be ignored. This is necessary to avoid a problem +** where a page with data is added to the freelist during one part of +** a transaction then removed from the freelist during a later part +** of the same transaction and reused for some other purpose. When it +** is first added to the freelist, this routine is called. When reused, +** the dont_rollback() routine is called. But because the page contains +** critical data, we still need to be sure it gets rolled back in spite +** of the dont_rollback() call. +*/ +void sqlite3pager_dont_write(Pager *pPager, Pgno pgno){ + PgHdr *pPg; + + if( pPager->memDb ) return; + + pPg = pager_lookup(pPager, pgno); + pPg->alwaysRollback = 1; + if( pPg && pPg->dirty ){ + if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){ + /* If this pages is the last page in the file and the file has grown + ** during the current transaction, then do NOT mark the page as clean. + ** When the database file grows, we must make sure that the last page + ** gets written at least once so that the disk file will be the correct + ** size. If you do not write this page and the size of the file + ** on the disk ends up being too small, that can lead to database + ** corruption during the next transaction. + */ + }else{ + TRACE3("DONT_WRITE page %d of %d\n", pgno, pPager->fd.h); + pPg->dirty = 0; + } + } +} + +/* +** A call to this routine tells the pager that if a rollback occurs, +** it is not necessary to restore the data on the given page. This +** means that the pager does not have to record the given page in the +** rollback journal. +*/ +void sqlite3pager_dont_rollback(void *pData){ + PgHdr *pPg = DATA_TO_PGHDR(pData); + Pager *pPager = pPg->pPager; + + if( pPager->state!=PAGER_EXCLUSIVE || pPager->journalOpen==0 ) return; + if( pPg->alwaysRollback || pPager->alwaysRollback || pPager->memDb ) return; + if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){ + assert( pPager->aInJournal!=0 ); + pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7); + pPg->inJournal = 1; + if( pPager->stmtInUse ){ + pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); + page_add_to_stmt_list(pPg); + } + TRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, pPager->fd.h); + } + if( pPager->stmtInUse && !pPg->inStmt && (int)pPg->pgno<=pPager->stmtSize ){ + assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize ); + assert( pPager->aInStmt!=0 ); + pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); + page_add_to_stmt_list(pPg); + } +} + + +/* +** Clear a PgHistory block +*/ +static void clearHistory(PgHistory *pHist){ + sqliteFree(pHist->pOrig); + sqliteFree(pHist->pStmt); + pHist->pOrig = 0; + pHist->pStmt = 0; +} + +/* +** Commit all changes to the database and release the write lock. +** +** If the commit fails for any reason, a rollback attempt is made +** and an error code is returned. If the commit worked, SQLITE_OK +** is returned. +*/ +int sqlite3pager_commit(Pager *pPager){ + int rc; + PgHdr *pPg; + + if( pPager->errMask==PAGER_ERR_FULL ){ + rc = sqlite3pager_rollback(pPager); + if( rc==SQLITE_OK ){ + rc = SQLITE_FULL; + } + return rc; + } + if( pPager->errMask!=0 ){ + rc = pager_errcode(pPager); + return rc; + } + if( pPager->state<PAGER_RESERVED ){ + return SQLITE_ERROR; + } + TRACE2("COMMIT %d\n", pPager->fd.h); + if( pPager->memDb ){ + pPg = pager_get_all_dirty_pages(pPager); + while( pPg ){ + clearHistory(PGHDR_TO_HIST(pPg, pPager)); + pPg->dirty = 0; + pPg->inJournal = 0; + pPg->inStmt = 0; + pPg->pPrevStmt = pPg->pNextStmt = 0; + pPg = pPg->pDirty; + } +#ifndef NDEBUG + for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ + PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); + assert( !pPg->alwaysRollback ); + assert( !pHist->pOrig ); + assert( !pHist->pStmt ); + } +#endif + pPager->pStmt = 0; + pPager->state = PAGER_SHARED; + return SQLITE_OK; + } + if( pPager->dirtyCache==0 ){ + /* Exit early (without doing the time-consuming sqlite3OsSync() calls) + ** if there have been no changes to the database file. */ + assert( pPager->needSync==0 ); + rc = pager_unwritelock(pPager); + pPager->dbSize = -1; + return rc; + } + assert( pPager->journalOpen ); + rc = sqlite3pager_sync(pPager, 0); + if( rc!=SQLITE_OK ){ + goto commit_abort; + } + rc = pager_unwritelock(pPager); + pPager->dbSize = -1; + return rc; + + /* Jump here if anything goes wrong during the commit process. + */ +commit_abort: + sqlite3pager_rollback(pPager); + return rc; +} + +/* +** Rollback all changes. The database falls back to PAGER_SHARED mode. +** All in-memory cache pages revert to their original data contents. +** The journal is deleted. +** +** This routine cannot fail unless some other process is not following +** the correct locking protocol (SQLITE_PROTOCOL) or unless some other +** process is writing trash into the journal file (SQLITE_CORRUPT) or +** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error +** codes are returned for all these occasions. Otherwise, +** SQLITE_OK is returned. +*/ +int sqlite3pager_rollback(Pager *pPager){ + int rc; + TRACE2("ROLLBACK %d\n", pPager->fd.h); + if( pPager->memDb ){ + PgHdr *p; + for(p=pPager->pAll; p; p=p->pNextAll){ + PgHistory *pHist; + assert( !p->alwaysRollback ); + if( !p->dirty ){ + assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig ); + assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt ); + continue; + } + + pHist = PGHDR_TO_HIST(p, pPager); + if( pHist->pOrig ){ + memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize); + TRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, pPager->fd.h); + }else{ + TRACE3("PAGE %d is clean on %d\n", p->pgno, pPager->fd.h); + } + clearHistory(pHist); + p->dirty = 0; + p->inJournal = 0; + p->inStmt = 0; + p->pPrevStmt = p->pNextStmt = 0; + + if( pPager->xReiniter ){ + pPager->xReiniter(PGHDR_TO_DATA(p), pPager->pageSize); + } + + } + pPager->pStmt = 0; + pPager->dbSize = pPager->origDbSize; + memoryTruncate(pPager); + pPager->stmtInUse = 0; + pPager->state = PAGER_SHARED; + return SQLITE_OK; + } + + if( !pPager->dirtyCache || !pPager->journalOpen ){ + rc = pager_unwritelock(pPager); + pPager->dbSize = -1; + return rc; + } + + if( pPager->errMask!=0 && pPager->errMask!=PAGER_ERR_FULL ){ + if( pPager->state>=PAGER_EXCLUSIVE ){ + pager_playback(pPager); + } + return pager_errcode(pPager); + } + if( pPager->state==PAGER_RESERVED ){ + int rc2, rc3; + rc = pager_reload_cache(pPager); + rc2 = pager_truncate(pPager, pPager->origDbSize); + rc3 = pager_unwritelock(pPager); + if( rc==SQLITE_OK ){ + rc = rc2; + if( rc3 ) rc = rc3; + } + }else{ + rc = pager_playback(pPager); + } + if( rc!=SQLITE_OK ){ + rc = SQLITE_CORRUPT; /* bkpt-CORRUPT */ + pPager->errMask |= PAGER_ERR_CORRUPT; + } + pPager->dbSize = -1; + return rc; +} + +/* +** Return TRUE if the database file is opened read-only. Return FALSE +** if the database is (in theory) writable. +*/ +int sqlite3pager_isreadonly(Pager *pPager){ + return pPager->readOnly; +} + +/* +** This routine is used for testing and analysis only. +*/ +int *sqlite3pager_stats(Pager *pPager){ + static int a[9]; + a[0] = pPager->nRef; + a[1] = pPager->nPage; + a[2] = pPager->mxPage; + a[3] = pPager->dbSize; + a[4] = pPager->state; + a[5] = pPager->errMask; + a[6] = pPager->nHit; + a[7] = pPager->nMiss; + a[8] = pPager->nOvfl; + return a; +} + +/* +** Set the statement rollback point. +** +** This routine should be called with the transaction journal already +** open. A new statement journal is created that can be used to rollback +** changes of a single SQL command within a larger transaction. +*/ +int sqlite3pager_stmt_begin(Pager *pPager){ + int rc; + char zTemp[SQLITE_TEMPNAME_SIZE]; + assert( !pPager->stmtInUse ); + assert( pPager->dbSize>=0 ); + TRACE2("STMT-BEGIN %d\n", pPager->fd.h); + if( pPager->memDb ){ + pPager->stmtInUse = 1; + pPager->stmtSize = pPager->dbSize; + return SQLITE_OK; + } + if( !pPager->journalOpen ){ + pPager->stmtAutoopen = 1; + return SQLITE_OK; + } + assert( pPager->journalOpen ); + pPager->aInStmt = sqliteMalloc( pPager->dbSize/8 + 1 ); + if( pPager->aInStmt==0 ){ + sqlite3OsLock(&pPager->fd, SHARED_LOCK); + return SQLITE_NOMEM; + } +#ifndef NDEBUG + rc = sqlite3OsFileSize(&pPager->jfd, &pPager->stmtJSize); + if( rc ) goto stmt_begin_failed; + assert( pPager->stmtJSize == pPager->journalOff ); +#endif + pPager->stmtJSize = pPager->journalOff; + pPager->stmtSize = pPager->dbSize; + pPager->stmtHdrOff = 0; + pPager->stmtCksum = pPager->cksumInit; + if( !pPager->stmtOpen ){ + rc = sqlite3pager_opentemp(zTemp, &pPager->stfd); + if( rc ) goto stmt_begin_failed; + pPager->stmtOpen = 1; + pPager->stmtNRec = 0; + } + pPager->stmtInUse = 1; + return SQLITE_OK; + +stmt_begin_failed: + if( pPager->aInStmt ){ + sqliteFree(pPager->aInStmt); + pPager->aInStmt = 0; + } + return rc; +} + +/* +** Commit a statement. +*/ +int sqlite3pager_stmt_commit(Pager *pPager){ + if( pPager->stmtInUse ){ + PgHdr *pPg, *pNext; + TRACE2("STMT-COMMIT %d\n", pPager->fd.h); + if( !pPager->memDb ){ + sqlite3OsSeek(&pPager->stfd, 0); + /* sqlite3OsTruncate(&pPager->stfd, 0); */ + sqliteFree( pPager->aInStmt ); + pPager->aInStmt = 0; + } + for(pPg=pPager->pStmt; pPg; pPg=pNext){ + pNext = pPg->pNextStmt; + assert( pPg->inStmt ); + pPg->inStmt = 0; + pPg->pPrevStmt = pPg->pNextStmt = 0; + if( pPager->memDb ){ + PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); + sqliteFree(pHist->pStmt); + pHist->pStmt = 0; + } + } + pPager->stmtNRec = 0; + pPager->stmtInUse = 0; + pPager->pStmt = 0; + } + pPager->stmtAutoopen = 0; + return SQLITE_OK; +} + +/* +** Rollback a statement. +*/ +int sqlite3pager_stmt_rollback(Pager *pPager){ + int rc; + if( pPager->stmtInUse ){ + TRACE2("STMT-ROLLBACK %d\n", pPager->fd.h); + if( pPager->memDb ){ + PgHdr *pPg; + for(pPg=pPager->pStmt; pPg; pPg=pPg->pNextStmt){ + PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); + if( pHist->pStmt ){ + memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize); + sqliteFree(pHist->pStmt); + pHist->pStmt = 0; + } + } + pPager->dbSize = pPager->stmtSize; + memoryTruncate(pPager); + rc = SQLITE_OK; + }else{ + rc = pager_stmt_playback(pPager); + } + sqlite3pager_stmt_commit(pPager); + }else{ + rc = SQLITE_OK; + } + pPager->stmtAutoopen = 0; + return rc; +} + +/* +** Return the full pathname of the database file. +*/ +const char *sqlite3pager_filename(Pager *pPager){ + return pPager->zFilename; +} + +/* +** Return the directory of the database file. +*/ +const char *sqlite3pager_dirname(Pager *pPager){ + return pPager->zDirectory; +} + +/* +** Return the full pathname of the journal file. +*/ +const char *sqlite3pager_journalname(Pager *pPager){ + return pPager->zJournal; +} + +/* +** Set the codec for this pager +*/ +void sqlite3pager_set_codec( + Pager *pPager, + void (*xCodec)(void*,void*,Pgno,int), + void *pCodecArg +){ + pPager->xCodec = xCodec; + pPager->pCodecArg = pCodecArg; +} + +/* +** This routine is called to increment the database file change-counter, +** stored at byte 24 of the pager file. +*/ +static int pager_incr_changecounter(Pager *pPager){ + void *pPage; + PgHdr *pPgHdr; + u32 change_counter; + int rc; + + /* Open page 1 of the file for writing. */ + rc = sqlite3pager_get(pPager, 1, &pPage); + if( rc!=SQLITE_OK ) return rc; + rc = sqlite3pager_write(pPage); + if( rc!=SQLITE_OK ) return rc; + + /* Read the current value at byte 24. */ + pPgHdr = DATA_TO_PGHDR(pPage); + change_counter = retrieve32bits(pPgHdr, 24); + + /* Increment the value just read and write it back to byte 24. */ + change_counter++; + store32bits(change_counter, pPgHdr, 24); + + /* Release the page reference. */ + sqlite3pager_unref(pPage); + return SQLITE_OK; +} + +/* +** Sync the database file for the pager pPager. zMaster points to the name +** of a master journal file that should be written into the individual +** journal file. zMaster may be NULL, which is interpreted as no master +** journal (a single database transaction). +** +** This routine ensures that the journal is synced, all dirty pages written +** to the database file and the database file synced. The only thing that +** remains to commit the transaction is to delete the journal file (or +** master journal file if specified). +** +** Note that if zMaster==NULL, this does not overwrite a previous value +** passed to an sqlite3pager_sync() call. +*/ +int sqlite3pager_sync(Pager *pPager, const char *zMaster){ + int rc = SQLITE_OK; + + /* If this is an in-memory db, or no pages have been written to, or this + ** function has already been called, it is a no-op. + */ + if( pPager->state!=PAGER_SYNCED && !pPager->memDb && pPager->dirtyCache ){ + PgHdr *pPg; + assert( pPager->journalOpen ); + + /* If a master journal file name has already been written to the + ** journal file, then no sync is required. This happens when it is + ** written, then the process fails to upgrade from a RESERVED to an + ** EXCLUSIVE lock. The next time the process tries to commit the + ** transaction the m-j name will have already been written. + */ + if( !pPager->setMaster ){ + rc = pager_incr_changecounter(pPager); + if( rc!=SQLITE_OK ) goto sync_exit; + rc = writeMasterJournal(pPager, zMaster); + if( rc!=SQLITE_OK ) goto sync_exit; + rc = syncJournal(pPager); + if( rc!=SQLITE_OK ) goto sync_exit; + } + + /* Write all dirty pages to the database file */ + pPg = pager_get_all_dirty_pages(pPager); + rc = pager_write_pagelist(pPg); + if( rc!=SQLITE_OK ) goto sync_exit; + + /* Sync the database file. */ + if( !pPager->noSync ){ + rc = sqlite3OsSync(&pPager->fd); + } + + pPager->state = PAGER_SYNCED; + } + +sync_exit: + return rc; +} + +#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) +/* +** Return the current state of the file lock for the given pager. +** The return value is one of NO_LOCK, SHARED_LOCK, RESERVED_LOCK, +** PENDING_LOCK, or EXCLUSIVE_LOCK. +*/ +int sqlite3pager_lockstate(Pager *pPager){ +#ifdef OS_TEST + return pPager->fd->fd.locktype; +#else + return pPager->fd.locktype; +#endif +} +#endif + +#ifdef SQLITE_TEST +/* +** Print a listing of all referenced pages and their ref count. +*/ +void sqlite3pager_refdump(Pager *pPager){ + PgHdr *pPg; + for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ + if( pPg->nRef<=0 ) continue; + sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n", + pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef); + } +} +#endif diff --git a/kopete/plugins/statistics/sqlite/pager.h b/kopete/plugins/statistics/sqlite/pager.h new file mode 100644 index 00000000..0231e27a --- /dev/null +++ b/kopete/plugins/statistics/sqlite/pager.h @@ -0,0 +1,102 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the sqlite page cache +** subsystem. The page cache subsystem reads and writes a file a page +** at a time and provides a journal for rollback. +** +** @(#) $Id$ +*/ + +/* +** The default size of a database page. +*/ +#ifndef SQLITE_DEFAULT_PAGE_SIZE +# define SQLITE_DEFAULT_PAGE_SIZE 1024 +#endif + +/* Maximum page size. The upper bound on this value is 65536 (a limit +** imposed by the 2-byte size of cell array pointers.) The +** maximum page size determines the amount of stack space allocated +** by many of the routines in pager.c and btree.c On embedded architectures +** or any machine where memory and especially stack memory is limited, +** one may wish to chose a smaller value for the maximum page size. +*/ +#ifndef SQLITE_MAX_PAGE_SIZE +# define SQLITE_MAX_PAGE_SIZE 8192 +#endif + +/* +** Maximum number of pages in one database. +*/ +#define SQLITE_MAX_PAGE 1073741823 + +/* +** The type used to represent a page number. The first page in a file +** is called page 1. 0 is used to represent "not a page". +*/ +typedef unsigned int Pgno; + +/* +** Each open file is managed by a separate instance of the "Pager" structure. +*/ +typedef struct Pager Pager; + + +/* +** See source code comments for a detailed description of the following +** routines: +*/ +int sqlite3pager_open(Pager **ppPager, const char *zFilename, + int nExtra, int useJournal); +void sqlite3pager_set_busyhandler(Pager*, BusyHandler *pBusyHandler); +void sqlite3pager_set_destructor(Pager*, void(*)(void*,int)); +void sqlite3pager_set_reiniter(Pager*, void(*)(void*,int)); +void sqlite3pager_set_pagesize(Pager*, int); +void sqlite3pager_read_fileheader(Pager*, int, unsigned char*); +void sqlite3pager_set_cachesize(Pager*, int); +int sqlite3pager_close(Pager *pPager); +int sqlite3pager_get(Pager *pPager, Pgno pgno, void **ppPage); +void *sqlite3pager_lookup(Pager *pPager, Pgno pgno); +int sqlite3pager_ref(void*); +int sqlite3pager_unref(void*); +Pgno sqlite3pager_pagenumber(void*); +int sqlite3pager_write(void*); +int sqlite3pager_iswriteable(void*); +int sqlite3pager_overwrite(Pager *pPager, Pgno pgno, void*); +int sqlite3pager_pagecount(Pager*); +int sqlite3pager_truncate(Pager*,Pgno); +int sqlite3pager_begin(void*, int exFlag); +int sqlite3pager_commit(Pager*); +int sqlite3pager_sync(Pager*,const char *zMaster); +int sqlite3pager_rollback(Pager*); +int sqlite3pager_isreadonly(Pager*); +int sqlite3pager_stmt_begin(Pager*); +int sqlite3pager_stmt_commit(Pager*); +int sqlite3pager_stmt_rollback(Pager*); +void sqlite3pager_dont_rollback(void*); +void sqlite3pager_dont_write(Pager*, Pgno); +int *sqlite3pager_stats(Pager*); +void sqlite3pager_set_safety_level(Pager*,int); +const char *sqlite3pager_filename(Pager*); +const char *sqlite3pager_dirname(Pager*); +const char *sqlite3pager_journalname(Pager*); +int sqlite3pager_rename(Pager*, const char *zNewName); +void sqlite3pager_set_codec(Pager*,void(*)(void*,void*,Pgno,int),void*); + +#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) +int sqlite3pager_lockstate(Pager*); +#endif + +#ifdef SQLITE_TEST +void sqlite3pager_refdump(Pager*); +int pager3_refinfo_enable; +#endif diff --git a/kopete/plugins/statistics/sqlite/parse.c b/kopete/plugins/statistics/sqlite/parse.c new file mode 100644 index 00000000..d3e68e02 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/parse.c @@ -0,0 +1,3143 @@ +/* Driver template for the LEMON parser generator. +** The author disclaims copyright to this source code. +*/ +/* First off, code is include which follows the "include" declaration +** in the input file. */ +#include <stdio.h> +#line 33 "parse.y" + +#include "sqliteInt.h" +#include "parse.h" + +/* +** An instance of this structure holds information about the +** LIMIT clause of a SELECT statement. +*/ +struct LimitVal { + int limit; /* The LIMIT value. -1 if there is no limit */ + int offset; /* The OFFSET. 0 if there is none */ +}; + +/* +** An instance of this structure is used to store the LIKE, +** GLOB, NOT LIKE, and NOT GLOB operators. +*/ +struct LikeOp { + int opcode; /* Either TK_GLOB or TK_LIKE */ + int not; /* True if the NOT keyword is present */ +}; + +/* +** An instance of the following structure describes the event of a +** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, +** TK_DELETE, or TK_INSTEAD. If the event is of the form +** +** UPDATE ON (a,b,c) +** +** Then the "b" IdList records the list "a,b,c". +*/ +struct TrigEvent { int a; IdList * b; }; + +/* +** An instance of this structure holds the ATTACH key and the key type. +*/ +struct AttachKey { int type; Token key; }; + +#line 48 "parse.c" +/* Next is all token values, in a form suitable for use by makeheaders. +** This section will be null unless lemon is run with the -m switch. +*/ +/* +** These constants (all generated automatically by the parser generator) +** specify the various kinds of tokens (terminals) that the parser +** understands. +** +** Each symbol here is a terminal symbol in the grammar. +*/ +/* Make sure the INTERFACE macro is defined. +*/ +#ifndef INTERFACE +# define INTERFACE 1 +#endif +/* The next thing included is series of defines which control +** various aspects of the generated parser. +** YYCODETYPE is the data type used for storing terminal +** and nonterminal numbers. "unsigned char" is +** used if there are fewer than 250 terminals +** and nonterminals. "int" is used otherwise. +** YYNOCODE is a number of type YYCODETYPE which corresponds +** to no legal terminal or nonterminal number. This +** number is used to fill in empty slots of the hash +** table. +** YYFALLBACK If defined, this indicates that one or more tokens +** have fall-back values which should be used if the +** original value of the token will not parse. +** YYACTIONTYPE is the data type used for storing terminal +** and nonterminal numbers. "unsigned char" is +** used if there are fewer than 250 rules and +** states combined. "int" is used otherwise. +** sqlite3ParserTOKENTYPE is the data type used for minor tokens given +** directly to the parser from the tokenizer. +** YYMINORTYPE is the data type used for all minor tokens. +** This is typically a union of many types, one of +** which is sqlite3ParserTOKENTYPE. The entry in the union +** for base tokens is called "yy0". +** YYSTACKDEPTH is the maximum depth of the parser's stack. +** sqlite3ParserARG_SDECL A static variable declaration for the %extra_argument +** sqlite3ParserARG_PDECL A parameter declaration for the %extra_argument +** sqlite3ParserARG_STORE Code to store %extra_argument into yypParser +** sqlite3ParserARG_FETCH Code to extract %extra_argument from yypParser +** YYNSTATE the combined number of states. +** YYNRULE the number of rules in the grammar +** YYERRORSYMBOL is the code number of the error symbol. If not +** defined, then do no error processing. +*/ +#define YYCODETYPE unsigned char +#define YYNOCODE 225 +#define YYACTIONTYPE unsigned short int +#define sqlite3ParserTOKENTYPE Token +typedef union { + sqlite3ParserTOKENTYPE yy0; + struct {int value; int mask;} yy47; + TriggerStep* yy91; + Token yy98; + Select* yy107; + struct TrigEvent yy146; + ExprList* yy210; + Expr* yy258; + SrcList* yy259; + IdList* yy272; + int yy284; + struct AttachKey yy292; + struct LikeOp yy342; + struct LimitVal yy404; + int yy449; +} YYMINORTYPE; +#define YYSTACKDEPTH 100 +#define sqlite3ParserARG_SDECL Parse *pParse; +#define sqlite3ParserARG_PDECL ,Parse *pParse +#define sqlite3ParserARG_FETCH Parse *pParse = yypParser->pParse +#define sqlite3ParserARG_STORE yypParser->pParse = pParse +#define YYNSTATE 537 +#define YYNRULE 292 +#define YYERRORSYMBOL 130 +#define YYERRSYMDT yy449 +#define YYFALLBACK 1 +#define YY_NO_ACTION (YYNSTATE+YYNRULE+2) +#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1) +#define YY_ERROR_ACTION (YYNSTATE+YYNRULE) + +/* Next are that tables used to determine what action to take based on the +** current state and lookahead token. These tables are used to implement +** functions that take a state number and lookahead value and return an +** action integer. +** +** Suppose the action integer is N. Then the action is determined as +** follows +** +** 0 <= N < YYNSTATE Shift N. That is, push the lookahead +** token onto the stack and goto state N. +** +** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE. +** +** N == YYNSTATE+YYNRULE A syntax error has occurred. +** +** N == YYNSTATE+YYNRULE+1 The parser accepts its input. +** +** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused +** slots in the yy_action[] table. +** +** The action table is constructed as a single large table named yy_action[]. +** Given state S and lookahead X, the action is computed as +** +** yy_action[ yy_shift_ofst[S] + X ] +** +** If the index value yy_shift_ofst[S]+X is out of range or if the value +** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S] +** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table +** and that yy_default[S] should be used instead. +** +** The formula above is for computing the action when the lookahead is +** a terminal symbol. If the lookahead is a non-terminal (as occurs after +** a reduce action) then the yy_reduce_ofst[] array is used in place of +** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of +** YY_SHIFT_USE_DFLT. +** +** The following are the tables generated in this section: +** +** yy_action[] A single table containing all actions. +** yy_lookahead[] A table containing the lookahead for each entry in +** yy_action. Used to detect hash collisions. +** yy_shift_ofst[] For each state, the offset into yy_action for +** shifting terminals. +** yy_reduce_ofst[] For each state, the offset into yy_action for +** shifting non-terminals after a reduce. +** yy_default[] Default action for each state. +*/ +static const YYACTIONTYPE yy_action[] = { + /* 0 */ 257, 325, 255, 138, 140, 142, 144, 146, 148, 150, + /* 10 */ 152, 154, 156, 89, 87, 88, 159, 12, 4, 6, + /* 20 */ 158, 537, 38, 24, 830, 1, 536, 3, 329, 488, + /* 30 */ 534, 535, 319, 50, 124, 112, 160, 169, 174, 179, + /* 40 */ 168, 173, 134, 136, 128, 130, 126, 132, 138, 140, + /* 50 */ 142, 144, 146, 148, 150, 152, 154, 156, 26, 73, + /* 60 */ 384, 256, 39, 58, 64, 66, 299, 330, 612, 611, + /* 70 */ 351, 30, 92, 332, 326, 159, 13, 14, 353, 158, + /* 80 */ 5, 355, 361, 366, 499, 146, 148, 150, 152, 154, + /* 90 */ 156, 12, 369, 124, 112, 160, 169, 174, 179, 168, + /* 100 */ 173, 134, 136, 128, 130, 126, 132, 138, 140, 142, + /* 110 */ 144, 146, 148, 150, 152, 154, 156, 128, 130, 126, + /* 120 */ 132, 138, 140, 142, 144, 146, 148, 150, 152, 154, + /* 130 */ 156, 659, 353, 244, 62, 355, 361, 366, 79, 12, + /* 140 */ 63, 98, 96, 289, 159, 280, 369, 349, 158, 181, + /* 150 */ 13, 14, 27, 12, 546, 383, 32, 10, 368, 273, + /* 160 */ 515, 765, 124, 112, 160, 169, 174, 179, 168, 173, + /* 170 */ 134, 136, 128, 130, 126, 132, 138, 140, 142, 144, + /* 180 */ 146, 148, 150, 152, 154, 156, 810, 349, 47, 73, + /* 190 */ 222, 763, 223, 114, 246, 31, 32, 48, 13, 14, + /* 200 */ 74, 274, 252, 166, 175, 180, 275, 304, 49, 8, + /* 210 */ 255, 45, 13, 14, 159, 290, 350, 382, 158, 245, + /* 220 */ 441, 46, 378, 183, 247, 185, 186, 15, 16, 17, + /* 230 */ 73, 205, 124, 112, 160, 169, 174, 179, 168, 173, + /* 240 */ 134, 136, 128, 130, 126, 132, 138, 140, 142, 144, + /* 250 */ 146, 148, 150, 152, 154, 156, 542, 306, 438, 159, + /* 260 */ 98, 96, 332, 158, 272, 475, 447, 437, 12, 256, + /* 270 */ 288, 12, 304, 339, 287, 50, 77, 124, 112, 160, + /* 280 */ 169, 174, 179, 168, 173, 134, 136, 128, 130, 126, + /* 290 */ 132, 138, 140, 142, 144, 146, 148, 150, 152, 154, + /* 300 */ 156, 547, 36, 335, 39, 58, 64, 66, 299, 330, + /* 310 */ 35, 334, 291, 545, 114, 332, 114, 329, 12, 625, + /* 320 */ 353, 187, 306, 355, 361, 366, 422, 13, 14, 159, + /* 330 */ 13, 14, 184, 158, 369, 636, 188, 259, 188, 764, + /* 340 */ 91, 87, 88, 100, 87, 88, 219, 124, 112, 160, + /* 350 */ 169, 174, 179, 168, 173, 134, 136, 128, 130, 126, + /* 360 */ 132, 138, 140, 142, 144, 146, 148, 150, 152, 154, + /* 370 */ 156, 297, 282, 114, 292, 51, 237, 13, 14, 150, + /* 380 */ 152, 154, 156, 114, 12, 225, 53, 225, 159, 166, + /* 390 */ 175, 180, 158, 380, 303, 111, 433, 658, 69, 92, + /* 400 */ 379, 183, 92, 185, 186, 111, 124, 112, 160, 169, + /* 410 */ 174, 179, 168, 173, 134, 136, 128, 130, 126, 132, + /* 420 */ 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, + /* 430 */ 103, 230, 561, 159, 773, 12, 286, 158, 631, 534, + /* 440 */ 535, 105, 815, 13, 14, 166, 175, 180, 203, 808, + /* 450 */ 215, 124, 112, 160, 169, 174, 179, 168, 173, 134, + /* 460 */ 136, 128, 130, 126, 132, 138, 140, 142, 144, 146, + /* 470 */ 148, 150, 152, 154, 156, 2, 3, 183, 159, 185, + /* 480 */ 186, 813, 158, 43, 44, 569, 33, 633, 41, 348, + /* 490 */ 340, 413, 415, 414, 13, 14, 124, 112, 160, 169, + /* 500 */ 174, 179, 168, 173, 134, 136, 128, 130, 126, 132, + /* 510 */ 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, + /* 520 */ 249, 336, 697, 159, 337, 338, 183, 158, 185, 186, + /* 530 */ 56, 57, 183, 11, 185, 186, 183, 416, 185, 186, + /* 540 */ 402, 124, 112, 160, 169, 174, 179, 168, 173, 134, + /* 550 */ 136, 128, 130, 126, 132, 138, 140, 142, 144, 146, + /* 560 */ 148, 150, 152, 154, 156, 342, 87, 88, 159, 345, + /* 570 */ 87, 88, 158, 98, 96, 183, 404, 185, 186, 240, + /* 580 */ 9, 183, 92, 185, 186, 802, 124, 177, 160, 169, + /* 590 */ 174, 179, 168, 173, 134, 136, 128, 130, 126, 132, + /* 600 */ 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, + /* 610 */ 787, 341, 257, 159, 255, 255, 183, 158, 185, 186, + /* 620 */ 94, 95, 480, 518, 92, 307, 314, 316, 92, 548, + /* 630 */ 325, 171, 112, 160, 169, 174, 179, 168, 173, 134, + /* 640 */ 136, 128, 130, 126, 132, 138, 140, 142, 144, 146, + /* 650 */ 148, 150, 152, 154, 156, 255, 25, 486, 159, 482, + /* 660 */ 170, 358, 158, 19, 241, 242, 252, 266, 513, 267, + /* 670 */ 259, 553, 72, 256, 256, 402, 68, 244, 160, 169, + /* 680 */ 174, 179, 168, 173, 134, 136, 128, 130, 126, 132, + /* 690 */ 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, + /* 700 */ 207, 255, 72, 326, 780, 260, 68, 267, 514, 47, + /* 710 */ 189, 428, 388, 385, 256, 325, 259, 21, 48, 162, + /* 720 */ 395, 12, 114, 161, 516, 517, 195, 193, 294, 49, + /* 730 */ 207, 484, 209, 312, 191, 70, 71, 387, 246, 113, + /* 740 */ 189, 164, 165, 73, 198, 114, 363, 396, 114, 391, + /* 750 */ 73, 277, 529, 313, 436, 182, 195, 193, 72, 467, + /* 760 */ 256, 623, 68, 245, 191, 70, 71, 188, 163, 113, + /* 770 */ 188, 119, 120, 121, 122, 197, 114, 803, 691, 72, + /* 780 */ 13, 14, 92, 68, 73, 73, 207, 77, 326, 73, + /* 790 */ 199, 807, 99, 436, 452, 293, 189, 223, 474, 325, + /* 800 */ 309, 119, 120, 121, 122, 197, 423, 207, 221, 460, + /* 810 */ 434, 419, 195, 193, 418, 90, 224, 189, 77, 225, + /* 820 */ 191, 70, 71, 73, 442, 113, 420, 114, 325, 444, + /* 830 */ 372, 468, 114, 195, 193, 283, 325, 311, 310, 402, + /* 840 */ 470, 191, 70, 71, 114, 7, 113, 41, 460, 474, + /* 850 */ 18, 20, 22, 386, 296, 114, 457, 119, 120, 121, + /* 860 */ 122, 197, 766, 446, 521, 554, 123, 430, 444, 23, + /* 870 */ 531, 114, 326, 114, 114, 481, 114, 125, 119, 120, + /* 880 */ 121, 122, 197, 510, 72, 441, 114, 238, 68, 114, + /* 890 */ 508, 506, 114, 127, 114, 129, 131, 114, 133, 411, + /* 900 */ 412, 322, 114, 114, 114, 114, 407, 114, 135, 326, + /* 910 */ 660, 137, 207, 114, 139, 114, 141, 451, 114, 143, + /* 920 */ 114, 114, 189, 114, 145, 147, 149, 151, 114, 153, + /* 930 */ 489, 493, 437, 114, 114, 155, 479, 157, 195, 193, + /* 940 */ 167, 77, 176, 178, 114, 190, 191, 70, 71, 114, + /* 950 */ 192, 113, 114, 114, 114, 194, 196, 114, 691, 114, + /* 960 */ 269, 320, 343, 321, 344, 269, 204, 114, 359, 284, + /* 970 */ 321, 206, 114, 555, 216, 218, 220, 114, 364, 234, + /* 980 */ 321, 239, 660, 119, 120, 121, 122, 197, 373, 271, + /* 990 */ 321, 281, 114, 114, 367, 227, 227, 269, 431, 408, + /* 1000 */ 321, 503, 439, 44, 465, 473, 267, 471, 114, 77, + /* 1010 */ 402, 402, 402, 402, 455, 459, 265, 457, 402, 402, + /* 1020 */ 823, 417, 504, 507, 556, 471, 28, 29, 560, 37, + /* 1030 */ 472, 73, 34, 55, 40, 41, 42, 54, 59, 67, + /* 1040 */ 570, 571, 52, 75, 60, 78, 483, 485, 487, 491, + /* 1050 */ 61, 65, 76, 464, 495, 501, 101, 527, 77, 238, + /* 1060 */ 233, 235, 85, 93, 86, 80, 97, 238, 102, 81, + /* 1070 */ 104, 82, 108, 107, 109, 110, 83, 115, 497, 84, + /* 1080 */ 117, 116, 156, 172, 637, 217, 638, 118, 202, 226, + /* 1090 */ 639, 208, 106, 211, 227, 210, 213, 214, 212, 229, + /* 1100 */ 228, 231, 236, 223, 200, 243, 201, 251, 248, 250, + /* 1110 */ 254, 253, 232, 258, 261, 270, 264, 263, 262, 268, + /* 1120 */ 276, 278, 285, 295, 318, 279, 300, 303, 301, 305, + /* 1130 */ 333, 346, 298, 323, 327, 356, 357, 362, 370, 302, + /* 1140 */ 371, 53, 374, 394, 399, 354, 331, 375, 401, 409, + /* 1150 */ 308, 347, 315, 324, 406, 317, 405, 328, 795, 390, + /* 1160 */ 389, 392, 397, 410, 421, 800, 360, 381, 365, 393, + /* 1170 */ 398, 352, 376, 403, 801, 377, 400, 425, 426, 424, + /* 1180 */ 427, 429, 771, 432, 772, 435, 440, 698, 443, 794, + /* 1190 */ 445, 438, 809, 449, 699, 450, 453, 448, 454, 456, + /* 1200 */ 811, 458, 461, 462, 463, 469, 812, 814, 476, 630, + /* 1210 */ 478, 632, 779, 821, 490, 477, 690, 492, 494, 496, + /* 1220 */ 498, 693, 500, 505, 696, 509, 781, 511, 782, 783, + /* 1230 */ 466, 784, 785, 502, 512, 786, 520, 822, 519, 530, + /* 1240 */ 524, 824, 523, 825, 525, 528, 533, 828, 518, 518, + /* 1250 */ 518, 518, 518, 518, 522, 518, 526, 518, 518, 532, +}; +static const YYCODETYPE yy_lookahead[] = { + /* 0 */ 24, 139, 26, 72, 73, 74, 75, 76, 77, 78, + /* 10 */ 79, 80, 81, 154, 155, 156, 40, 26, 135, 136, + /* 20 */ 44, 0, 158, 140, 131, 132, 133, 134, 164, 146, + /* 30 */ 9, 10, 170, 60, 58, 59, 60, 61, 62, 63, + /* 40 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, + /* 50 */ 74, 75, 76, 77, 78, 79, 80, 81, 22, 176, + /* 60 */ 24, 85, 89, 90, 91, 92, 93, 94, 23, 23, + /* 70 */ 25, 25, 213, 100, 212, 40, 85, 86, 87, 44, + /* 80 */ 9, 90, 91, 92, 201, 76, 77, 78, 79, 80, + /* 90 */ 81, 26, 101, 58, 59, 60, 61, 62, 63, 64, + /* 100 */ 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, + /* 110 */ 75, 76, 77, 78, 79, 80, 81, 68, 69, 70, + /* 120 */ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, + /* 130 */ 81, 23, 87, 25, 29, 90, 91, 92, 179, 26, + /* 140 */ 35, 76, 77, 23, 40, 186, 101, 139, 44, 22, + /* 150 */ 85, 86, 144, 26, 9, 147, 148, 12, 159, 146, + /* 160 */ 95, 126, 58, 59, 60, 61, 62, 63, 64, 65, + /* 170 */ 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, + /* 180 */ 76, 77, 78, 79, 80, 81, 17, 139, 18, 176, + /* 190 */ 23, 17, 25, 139, 86, 147, 148, 27, 85, 86, + /* 200 */ 146, 188, 189, 204, 205, 206, 193, 45, 38, 137, + /* 210 */ 26, 41, 85, 86, 40, 161, 168, 169, 44, 111, + /* 220 */ 51, 51, 60, 103, 111, 105, 106, 13, 14, 15, + /* 230 */ 176, 127, 58, 59, 60, 61, 62, 63, 64, 65, + /* 240 */ 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, + /* 250 */ 76, 77, 78, 79, 80, 81, 9, 95, 58, 40, + /* 260 */ 76, 77, 100, 44, 22, 96, 97, 98, 26, 85, + /* 270 */ 104, 26, 45, 89, 108, 60, 107, 58, 59, 60, + /* 280 */ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, + /* 290 */ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, + /* 300 */ 81, 9, 87, 88, 89, 90, 91, 92, 93, 94, + /* 310 */ 157, 158, 23, 9, 139, 100, 139, 164, 26, 119, + /* 320 */ 87, 23, 95, 90, 91, 92, 21, 85, 86, 40, + /* 330 */ 85, 86, 104, 44, 101, 107, 161, 152, 161, 17, + /* 340 */ 154, 155, 156, 154, 155, 156, 127, 58, 59, 60, + /* 350 */ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, + /* 360 */ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, + /* 370 */ 81, 23, 187, 139, 199, 89, 199, 85, 86, 78, + /* 380 */ 79, 80, 81, 139, 26, 210, 100, 210, 40, 204, + /* 390 */ 205, 206, 44, 164, 165, 161, 91, 23, 22, 213, + /* 400 */ 171, 103, 213, 105, 106, 161, 58, 59, 60, 61, + /* 410 */ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, + /* 420 */ 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + /* 430 */ 196, 197, 9, 40, 129, 26, 78, 44, 9, 9, + /* 440 */ 10, 197, 9, 85, 86, 204, 205, 206, 126, 11, + /* 450 */ 128, 58, 59, 60, 61, 62, 63, 64, 65, 66, + /* 460 */ 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, + /* 470 */ 77, 78, 79, 80, 81, 133, 134, 103, 40, 105, + /* 480 */ 106, 9, 44, 173, 174, 109, 149, 9, 95, 152, + /* 490 */ 153, 96, 97, 98, 85, 86, 58, 59, 60, 61, + /* 500 */ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, + /* 510 */ 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + /* 520 */ 111, 152, 9, 40, 155, 156, 103, 44, 105, 106, + /* 530 */ 13, 14, 103, 139, 105, 106, 103, 47, 105, 106, + /* 540 */ 139, 58, 59, 60, 61, 62, 63, 64, 65, 66, + /* 550 */ 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, + /* 560 */ 77, 78, 79, 80, 81, 154, 155, 156, 40, 154, + /* 570 */ 155, 156, 44, 76, 77, 103, 175, 105, 106, 25, + /* 580 */ 138, 103, 213, 105, 106, 95, 58, 59, 60, 61, + /* 590 */ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, + /* 600 */ 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + /* 610 */ 9, 22, 24, 40, 26, 26, 103, 44, 105, 106, + /* 620 */ 121, 122, 20, 22, 213, 96, 97, 98, 213, 9, + /* 630 */ 139, 60, 59, 60, 61, 62, 63, 64, 65, 66, + /* 640 */ 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, + /* 650 */ 77, 78, 79, 80, 81, 26, 141, 55, 40, 57, + /* 660 */ 89, 170, 44, 138, 110, 188, 189, 23, 67, 25, + /* 670 */ 152, 9, 22, 85, 85, 139, 26, 25, 60, 61, + /* 680 */ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, + /* 690 */ 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + /* 700 */ 50, 26, 22, 212, 9, 187, 26, 25, 139, 18, + /* 710 */ 60, 175, 20, 146, 85, 139, 152, 138, 27, 40, + /* 720 */ 146, 26, 139, 44, 155, 156, 76, 77, 78, 38, + /* 730 */ 50, 129, 41, 32, 84, 85, 86, 142, 86, 89, + /* 740 */ 60, 62, 63, 176, 161, 139, 170, 55, 139, 57, + /* 750 */ 176, 187, 123, 52, 146, 146, 76, 77, 22, 146, + /* 760 */ 85, 9, 26, 111, 84, 85, 86, 161, 89, 89, + /* 770 */ 161, 121, 122, 123, 124, 125, 139, 95, 9, 22, + /* 780 */ 85, 86, 213, 26, 176, 176, 50, 107, 212, 176, + /* 790 */ 207, 11, 25, 146, 25, 23, 60, 25, 161, 139, + /* 800 */ 99, 121, 122, 123, 124, 125, 211, 50, 199, 201, + /* 810 */ 215, 28, 76, 77, 31, 48, 210, 60, 107, 210, + /* 820 */ 84, 85, 86, 176, 216, 89, 43, 139, 139, 221, + /* 830 */ 170, 120, 139, 76, 77, 78, 139, 88, 89, 139, + /* 840 */ 203, 84, 85, 86, 139, 11, 89, 95, 201, 161, + /* 850 */ 16, 17, 18, 19, 161, 139, 139, 121, 122, 123, + /* 860 */ 124, 125, 126, 216, 30, 9, 161, 170, 221, 138, + /* 870 */ 36, 139, 212, 139, 139, 175, 139, 161, 121, 122, + /* 880 */ 123, 124, 125, 49, 22, 51, 139, 118, 26, 139, + /* 890 */ 56, 203, 139, 161, 139, 161, 161, 139, 161, 53, + /* 900 */ 54, 212, 139, 139, 139, 139, 126, 139, 161, 212, + /* 910 */ 24, 161, 50, 139, 161, 139, 161, 200, 139, 161, + /* 920 */ 139, 139, 60, 139, 161, 161, 161, 161, 139, 161, + /* 930 */ 96, 97, 98, 139, 139, 161, 102, 161, 76, 77, + /* 940 */ 161, 107, 161, 161, 139, 161, 84, 85, 86, 139, + /* 950 */ 161, 89, 139, 139, 139, 161, 161, 139, 9, 139, + /* 960 */ 139, 23, 23, 25, 25, 139, 161, 139, 23, 139, + /* 970 */ 25, 161, 139, 9, 161, 161, 161, 139, 23, 161, + /* 980 */ 25, 161, 95, 121, 122, 123, 124, 125, 23, 161, + /* 990 */ 25, 161, 139, 139, 161, 109, 109, 139, 23, 161, + /* 1000 */ 25, 146, 173, 174, 23, 23, 25, 25, 139, 107, + /* 1010 */ 139, 139, 139, 139, 161, 161, 195, 139, 139, 139, + /* 1020 */ 9, 195, 120, 23, 9, 25, 145, 23, 9, 139, + /* 1030 */ 161, 176, 150, 42, 159, 95, 33, 167, 46, 22, + /* 1040 */ 109, 109, 159, 177, 160, 178, 175, 175, 175, 175, + /* 1050 */ 159, 159, 176, 195, 175, 175, 113, 46, 107, 118, + /* 1060 */ 116, 115, 185, 214, 117, 180, 214, 118, 114, 181, + /* 1070 */ 25, 182, 94, 160, 26, 151, 183, 109, 200, 184, + /* 1080 */ 109, 139, 81, 89, 107, 126, 107, 139, 17, 139, + /* 1090 */ 107, 22, 198, 174, 109, 23, 139, 23, 25, 143, + /* 1100 */ 139, 198, 114, 25, 208, 190, 209, 111, 139, 139, + /* 1110 */ 143, 139, 160, 139, 191, 95, 22, 112, 192, 139, + /* 1120 */ 23, 191, 109, 23, 22, 192, 139, 165, 162, 139, + /* 1130 */ 167, 23, 159, 198, 198, 46, 22, 22, 46, 163, + /* 1140 */ 22, 100, 93, 24, 217, 139, 151, 139, 95, 39, + /* 1150 */ 166, 152, 166, 160, 220, 166, 219, 160, 11, 143, + /* 1160 */ 139, 139, 139, 37, 47, 95, 159, 169, 159, 143, + /* 1170 */ 143, 169, 162, 143, 95, 163, 218, 139, 143, 129, + /* 1180 */ 95, 22, 9, 159, 129, 11, 172, 119, 17, 9, + /* 1190 */ 9, 58, 17, 139, 119, 99, 139, 172, 67, 181, + /* 1200 */ 9, 67, 119, 139, 22, 22, 9, 9, 110, 9, + /* 1210 */ 181, 9, 9, 9, 110, 139, 9, 181, 172, 99, + /* 1220 */ 181, 9, 119, 22, 9, 139, 9, 139, 9, 9, + /* 1230 */ 202, 9, 9, 202, 143, 9, 23, 9, 139, 34, + /* 1240 */ 24, 9, 152, 9, 139, 152, 139, 9, 224, 224, + /* 1250 */ 224, 224, 224, 224, 222, 224, 223, 224, 224, 222, +}; +#define YY_SHIFT_USE_DFLT (-70) +static const short yy_shift_ofst[] = { + /* 0 */ 430, 21, -70, 834, 71, -70, 247, 214, 145, 304, + /* 10 */ 292, 620, -70, -70, -70, -70, -70, -70, 145, 662, + /* 20 */ 145, 856, 145, 964, 36, 1015, 245, 46, 1004, 1019, + /* 30 */ -9, -70, 675, -70, 215, -70, 245, -27, -70, 940, + /* 40 */ -70, 1003, 170, -70, -70, -70, -70, -70, -70, -70, + /* 50 */ 286, 940, -70, 991, -70, 517, -70, -70, 992, 105, + /* 60 */ 940, -70, -70, -70, 940, -70, 1017, 862, 376, 650, + /* 70 */ 931, 932, 680, -70, 120, 951, -70, 166, -70, 554, + /* 80 */ 941, 946, 944, 943, 947, -70, 497, -70, -70, 767, + /* 90 */ 497, -70, 499, -70, -70, -70, 499, -70, -70, 497, + /* 100 */ -70, 954, 862, 1045, 862, 978, 105, -70, 1048, -70, + /* 110 */ -70, 483, 862, -70, 968, 245, 971, 245, -70, -70, + /* 120 */ -70, -70, -70, 618, 862, 573, 862, -69, 862, -69, + /* 130 */ 862, -69, 862, -69, 862, 49, 862, 49, 862, 9, + /* 140 */ 862, 9, 862, 9, 862, 9, 862, 301, 862, 301, + /* 150 */ 862, 1001, 862, 1001, 862, 1001, 862, -70, -70, -70, + /* 160 */ 679, -70, -70, -70, -70, -70, 862, 49, -70, 571, + /* 170 */ -70, 994, -70, -70, -70, 862, 528, 862, 49, -70, + /* 180 */ 127, 680, 298, 228, 977, 979, 983, -70, 483, 862, + /* 190 */ 618, 862, -70, 862, -70, 862, -70, 736, 35, 959, + /* 200 */ 322, 1071, -70, 862, 104, 862, 483, 1069, 691, 1072, + /* 210 */ -70, 1073, 245, 1074, -70, 862, 174, 862, 219, 862, + /* 220 */ 483, 167, -70, 862, -70, -70, 985, 245, -70, -70, + /* 230 */ 978, 105, -70, 862, 483, 988, 862, 1078, 862, 483, + /* 240 */ -70, -70, 652, -70, -70, -70, 113, -70, 409, -70, + /* 250 */ 996, -70, 242, 985, 588, -70, -70, 245, -70, -70, + /* 260 */ 1020, 1005, -70, 1094, 245, 644, -70, 245, -70, -70, + /* 270 */ 862, 483, 951, 374, 108, 1097, 588, 1020, 1005, -70, + /* 280 */ 757, -24, -70, -70, 1013, 358, -70, -70, -70, -70, + /* 290 */ 289, -70, 772, -70, 1100, -70, 348, 940, -70, 245, + /* 300 */ 1102, -70, 227, -70, 245, -70, 529, 701, -70, 749, + /* 310 */ -70, -70, -70, -70, 701, -70, 701, -70, 245, 938, + /* 320 */ -70, 245, 978, 105, -70, -70, 978, 105, -70, -70, + /* 330 */ 1048, -70, 991, -70, -70, 184, -70, -70, -70, -70, + /* 340 */ 589, 497, 939, -70, 497, 1108, -70, -70, -70, -70, + /* 350 */ 45, 233, -70, 245, -70, 1089, 1114, 245, 945, 940, + /* 360 */ -70, 1115, 245, 955, 940, -70, 862, 393, -70, 1092, + /* 370 */ 1118, 245, 965, 1049, 245, 1102, -70, 162, 1041, -70, + /* 380 */ -70, -70, -70, -70, 951, 423, 305, 692, 245, 985, + /* 390 */ -70, 245, 886, 1119, 951, 429, 245, 985, 783, 395, + /* 400 */ 1053, 245, 985, -70, 1110, 780, 1147, 862, 438, 1126, + /* 410 */ 846, -70, -70, 1070, 1079, 490, 245, 682, -70, -70, + /* 420 */ 1117, -70, -70, 1050, 245, 887, 1085, 245, 1159, 245, + /* 430 */ 975, 752, 1173, 1055, 1174, 169, 433, 200, 170, -70, + /* 440 */ 1068, 1075, 1171, 1180, 1181, 169, 1175, 1133, 245, 1096, + /* 450 */ 245, 769, 245, 1131, 862, 483, 1191, 1134, 862, 483, + /* 460 */ 1083, 245, 1182, 245, 981, -70, 711, 472, 1183, 862, + /* 470 */ 982, 862, 483, 1197, 483, 1098, 245, 949, 1198, 602, + /* 480 */ 245, 1200, 245, 1202, 245, 1203, 245, 1204, 478, 1104, + /* 490 */ 245, 949, 1207, 1133, 245, 1120, 245, 769, 1212, 1103, + /* 500 */ 245, 1182, 902, 513, 1201, 862, 1000, 1215, 695, 1217, + /* 510 */ 245, 985, 601, 65, 1219, 1220, 1222, 1223, 245, 1213, + /* 520 */ 1226, 1205, 675, 1216, 245, 1011, 1228, 629, 1232, 1234, + /* 530 */ -70, 1205, 245, 1238, -70, -70, -70, +}; +#define YY_REDUCE_USE_DFLT (-142) +static const short yy_reduce_ofst[] = { + /* 0 */ -107, 342, -142, -117, -142, -142, -142, 72, 442, -142, + /* 10 */ 394, -142, -142, -142, -142, -142, -142, -142, 525, -142, + /* 20 */ 579, -142, 731, -142, 515, -142, 8, 881, -142, -142, + /* 30 */ 48, -142, 337, 882, 153, -142, 890, -136, -142, 875, + /* 40 */ -142, -142, 310, -142, -142, -142, -142, -142, -142, -142, + /* 50 */ -142, 883, -142, 870, -142, -142, -142, -142, -142, 884, + /* 60 */ 891, -142, -142, -142, 892, -142, -142, 693, -142, 175, + /* 70 */ -142, -142, 54, -142, 866, 876, -142, 867, -41, 885, + /* 80 */ 888, 889, 893, 895, 877, -142, -141, -142, -142, -142, + /* 90 */ 186, -142, 849, -142, -142, -142, 852, -142, -142, 189, + /* 100 */ -142, -142, 234, -142, 244, 894, 913, -142, 924, -142, + /* 110 */ -142, 241, 705, -142, -142, 942, -142, 948, -142, -142, + /* 120 */ -142, -142, -142, 241, 716, 241, 732, 241, 734, 241, + /* 130 */ 735, 241, 737, 241, 747, 241, 750, 241, 753, 241, + /* 140 */ 755, 241, 758, 241, 763, 241, 764, 241, 765, 241, + /* 150 */ 766, 241, 768, 241, 774, 241, 776, 241, -142, -142, + /* 160 */ -142, -142, -142, -142, -142, -142, 779, 241, -142, -142, + /* 170 */ -142, -142, -142, -142, -142, 781, 241, 782, 241, -142, + /* 180 */ 950, 609, 866, -142, -142, -142, -142, -142, 241, 784, + /* 190 */ 241, 789, 241, 794, 241, 795, 241, 583, 241, 896, + /* 200 */ 897, -142, -142, 805, 241, 810, 241, -142, 919, -142, + /* 210 */ -142, -142, 957, -142, -142, 813, 241, 814, 241, 815, + /* 220 */ 241, -142, -142, 606, -142, -142, 956, 961, -142, -142, + /* 230 */ 903, 952, -142, 818, 241, -142, 177, -142, 820, 241, + /* 240 */ -142, 477, 915, -142, -142, -142, 969, -142, 970, -142, + /* 250 */ -142, -142, 972, 967, 518, -142, -142, 974, -142, -142, + /* 260 */ 923, 926, -142, -142, 821, -142, -142, 980, -142, -142, + /* 270 */ 828, 241, 13, 866, 915, -142, 564, 930, 933, -142, + /* 280 */ 830, 185, -142, -142, -142, 942, -142, -142, -142, -142, + /* 290 */ 241, -142, -142, -142, -142, -142, 241, 973, -142, 987, + /* 300 */ 966, 976, 962, -142, 990, -142, -142, 984, -142, -142, + /* 310 */ -142, -142, -142, -142, 986, -142, 989, -142, -138, -142, + /* 320 */ -142, 689, 935, 993, -142, -142, 936, 997, -142, -142, + /* 330 */ 995, -142, 963, -142, -142, 369, -142, -142, -142, -142, + /* 340 */ 999, 411, -142, -142, 415, -142, -142, -142, -142, -142, + /* 350 */ 998, 1002, -142, 1006, -142, -142, -142, 491, -142, 1007, + /* 360 */ -142, -142, 576, -142, 1009, -142, 833, -1, -142, -142, + /* 370 */ -142, 660, -142, -142, 1008, 1010, 1012, 229, -142, -142, + /* 380 */ -142, -142, -142, -142, 567, 866, 595, -142, 1021, 1016, + /* 390 */ -142, 1022, 1026, -142, 574, 866, 1023, 1027, 927, 958, + /* 400 */ -142, 401, 1030, -142, 937, 934, -142, 838, 241, -142, + /* 410 */ -142, -142, -142, -142, -142, -142, 826, -142, -142, -142, + /* 420 */ -142, -142, -142, -142, 1038, 1035, -142, 536, -142, 697, + /* 430 */ -142, 1024, -142, -142, -142, 608, 866, 1014, 829, -142, + /* 440 */ -142, -142, -142, -142, -142, 647, -142, 1025, 1054, -142, + /* 450 */ 717, 1018, 1057, -142, 853, 241, -142, -142, 854, 241, + /* 460 */ -142, 1064, 1028, 858, -142, -142, 613, 866, -142, 637, + /* 470 */ -142, 869, 241, -142, 241, -142, 1076, 1029, -142, -142, + /* 480 */ 700, -142, 871, -142, 872, -142, 873, -142, 866, -142, + /* 490 */ 874, 1036, -142, 1046, 879, -142, 878, 1039, -142, -142, + /* 500 */ 880, 1031, 855, 866, -142, 688, -142, -142, 1086, -142, + /* 510 */ 1088, 1091, -142, 569, -142, -142, -142, -142, 1099, -142, + /* 520 */ -142, 1032, 1090, -142, 1105, 1033, -142, 1093, -142, -142, + /* 530 */ -142, 1037, 1107, -142, -142, -142, -142, +}; +static const YYACTIONTYPE yy_default[] = { + /* 0 */ 544, 544, 538, 829, 829, 540, 829, 549, 829, 829, + /* 10 */ 829, 829, 569, 570, 571, 550, 551, 552, 829, 829, + /* 20 */ 829, 829, 829, 829, 829, 829, 829, 829, 829, 829, + /* 30 */ 829, 562, 572, 581, 564, 580, 829, 829, 582, 623, + /* 40 */ 588, 829, 829, 624, 627, 628, 629, 818, 819, 820, + /* 50 */ 829, 623, 589, 608, 606, 829, 609, 610, 829, 679, + /* 60 */ 623, 590, 677, 678, 623, 591, 829, 829, 708, 770, + /* 70 */ 714, 709, 829, 634, 829, 829, 635, 643, 645, 652, + /* 80 */ 691, 682, 684, 672, 686, 640, 793, 578, 579, 687, + /* 90 */ 793, 688, 829, 788, 790, 791, 829, 789, 792, 793, + /* 100 */ 689, 829, 829, 673, 829, 680, 679, 674, 829, 566, + /* 110 */ 681, 676, 829, 707, 829, 829, 710, 829, 711, 712, + /* 120 */ 713, 715, 716, 719, 829, 720, 829, 721, 829, 722, + /* 130 */ 829, 723, 829, 724, 829, 725, 829, 726, 829, 727, + /* 140 */ 829, 728, 829, 729, 829, 730, 829, 731, 829, 732, + /* 150 */ 829, 733, 829, 734, 829, 735, 829, 736, 737, 738, + /* 160 */ 829, 739, 740, 745, 753, 756, 829, 741, 742, 829, + /* 170 */ 743, 829, 746, 744, 752, 829, 829, 829, 754, 755, + /* 180 */ 829, 770, 829, 829, 829, 829, 829, 758, 769, 829, + /* 190 */ 747, 829, 748, 829, 749, 829, 750, 829, 829, 829, + /* 200 */ 829, 829, 760, 829, 829, 829, 761, 829, 829, 829, + /* 210 */ 816, 829, 829, 829, 817, 829, 829, 829, 829, 829, + /* 220 */ 762, 829, 757, 770, 767, 768, 660, 829, 661, 759, + /* 230 */ 680, 679, 675, 829, 685, 829, 770, 683, 829, 692, + /* 240 */ 644, 655, 653, 654, 663, 664, 829, 665, 829, 666, + /* 250 */ 829, 667, 829, 660, 651, 567, 568, 829, 649, 650, + /* 260 */ 669, 671, 656, 829, 829, 829, 670, 829, 704, 705, + /* 270 */ 829, 668, 655, 829, 829, 829, 651, 669, 671, 657, + /* 280 */ 829, 651, 646, 647, 829, 829, 648, 641, 642, 751, + /* 290 */ 829, 706, 829, 717, 829, 718, 829, 623, 592, 829, + /* 300 */ 774, 596, 593, 597, 829, 598, 829, 829, 599, 829, + /* 310 */ 602, 603, 604, 605, 829, 600, 829, 601, 829, 829, + /* 320 */ 775, 829, 680, 679, 776, 778, 680, 679, 777, 594, + /* 330 */ 829, 595, 608, 607, 583, 793, 584, 585, 586, 587, + /* 340 */ 573, 793, 829, 574, 793, 829, 575, 577, 576, 565, + /* 350 */ 829, 829, 613, 829, 616, 829, 829, 829, 829, 623, + /* 360 */ 617, 829, 829, 829, 623, 618, 829, 623, 619, 829, + /* 370 */ 829, 829, 829, 829, 829, 774, 596, 621, 829, 620, + /* 380 */ 622, 614, 615, 563, 829, 829, 559, 829, 829, 660, + /* 390 */ 557, 829, 829, 829, 829, 829, 829, 660, 799, 829, + /* 400 */ 829, 829, 660, 662, 804, 829, 829, 829, 829, 829, + /* 410 */ 829, 805, 806, 829, 829, 829, 829, 829, 796, 797, + /* 420 */ 829, 798, 558, 829, 829, 829, 829, 829, 829, 829, + /* 430 */ 829, 829, 829, 829, 829, 829, 829, 829, 829, 626, + /* 440 */ 829, 829, 829, 829, 829, 829, 829, 625, 829, 829, + /* 450 */ 829, 829, 829, 829, 829, 694, 829, 829, 829, 695, + /* 460 */ 829, 829, 702, 829, 829, 703, 829, 829, 829, 829, + /* 470 */ 829, 829, 700, 829, 701, 829, 829, 829, 829, 829, + /* 480 */ 829, 829, 829, 829, 829, 829, 829, 829, 829, 829, + /* 490 */ 829, 829, 829, 625, 829, 829, 829, 829, 829, 829, + /* 500 */ 829, 702, 829, 829, 829, 829, 829, 829, 829, 829, + /* 510 */ 829, 660, 829, 793, 829, 829, 829, 829, 829, 829, + /* 520 */ 829, 827, 829, 829, 829, 829, 829, 829, 829, 829, + /* 530 */ 826, 827, 829, 829, 541, 543, 539, +}; +#define YY_SZ_ACTTAB (sizeof(yy_action)/sizeof(yy_action[0])) + +/* The next table maps tokens into fallback tokens. If a construct +** like the following: +** +** %fallback ID X Y Z. +** +** appears in the grammer, then ID becomes a fallback token for X, Y, +** and Z. Whenever one of the tokens X, Y, or Z is input to the parser +** but it does not parse, the type of the token is changed to ID and +** the parse is retried before an error is thrown. +*/ +#ifdef YYFALLBACK +static const YYCODETYPE yyFallback[] = { + 0, /* $ => nothing */ + 0, /* END_OF_FILE => nothing */ + 0, /* ILLEGAL => nothing */ + 0, /* SPACE => nothing */ + 0, /* UNCLOSED_STRING => nothing */ + 0, /* COMMENT => nothing */ + 0, /* FUNCTION => nothing */ + 0, /* COLUMN => nothing */ + 0, /* AGG_FUNCTION => nothing */ + 0, /* SEMI => nothing */ + 26, /* EXPLAIN => ID */ + 26, /* BEGIN => ID */ + 0, /* TRANSACTION => nothing */ + 26, /* DEFERRED => ID */ + 26, /* IMMEDIATE => ID */ + 26, /* EXCLUSIVE => ID */ + 0, /* COMMIT => nothing */ + 26, /* END => ID */ + 0, /* ROLLBACK => nothing */ + 0, /* CREATE => nothing */ + 0, /* TABLE => nothing */ + 26, /* TEMP => ID */ + 0, /* LP => nothing */ + 0, /* RP => nothing */ + 0, /* AS => nothing */ + 0, /* COMMA => nothing */ + 0, /* ID => nothing */ + 26, /* ABORT => ID */ + 26, /* AFTER => ID */ + 26, /* ASC => ID */ + 26, /* ATTACH => ID */ + 26, /* BEFORE => ID */ + 26, /* CASCADE => ID */ + 26, /* CONFLICT => ID */ + 26, /* DATABASE => ID */ + 26, /* DESC => ID */ + 26, /* DETACH => ID */ + 26, /* EACH => ID */ + 26, /* FAIL => ID */ + 26, /* FOR => ID */ + 26, /* GLOB => ID */ + 26, /* IGNORE => ID */ + 26, /* INITIALLY => ID */ + 26, /* INSTEAD => ID */ + 26, /* LIKE => ID */ + 26, /* MATCH => ID */ + 26, /* KEY => ID */ + 26, /* OF => ID */ + 26, /* OFFSET => ID */ + 26, /* PRAGMA => ID */ + 26, /* RAISE => ID */ + 26, /* REPLACE => ID */ + 26, /* RESTRICT => ID */ + 26, /* ROW => ID */ + 26, /* STATEMENT => ID */ + 26, /* TRIGGER => ID */ + 26, /* VACUUM => ID */ + 26, /* VIEW => ID */ + 0, /* OR => nothing */ + 0, /* AND => nothing */ + 0, /* NOT => nothing */ + 0, /* IS => nothing */ + 0, /* BETWEEN => nothing */ + 0, /* IN => nothing */ + 0, /* ISNULL => nothing */ + 0, /* NOTNULL => nothing */ + 0, /* NE => nothing */ + 0, /* EQ => nothing */ + 0, /* GT => nothing */ + 0, /* LE => nothing */ + 0, /* LT => nothing */ + 0, /* GE => nothing */ + 0, /* BITAND => nothing */ + 0, /* BITOR => nothing */ + 0, /* LSHIFT => nothing */ + 0, /* RSHIFT => nothing */ + 0, /* PLUS => nothing */ + 0, /* MINUS => nothing */ + 0, /* STAR => nothing */ + 0, /* SLASH => nothing */ + 0, /* REM => nothing */ + 0, /* CONCAT => nothing */ + 0, /* UMINUS => nothing */ + 0, /* UPLUS => nothing */ + 0, /* BITNOT => nothing */ + 0, /* STRING => nothing */ + 0, /* JOIN_KW => nothing */ + 0, /* CONSTRAINT => nothing */ + 0, /* DEFAULT => nothing */ + 0, /* NULL => nothing */ + 0, /* PRIMARY => nothing */ + 0, /* UNIQUE => nothing */ + 0, /* CHECK => nothing */ + 0, /* REFERENCES => nothing */ + 0, /* COLLATE => nothing */ + 0, /* ON => nothing */ + 0, /* DELETE => nothing */ + 0, /* UPDATE => nothing */ + 0, /* INSERT => nothing */ + 0, /* SET => nothing */ + 0, /* DEFERRABLE => nothing */ + 0, /* FOREIGN => nothing */ + 0, /* DROP => nothing */ + 0, /* UNION => nothing */ + 0, /* ALL => nothing */ + 0, /* INTERSECT => nothing */ + 0, /* EXCEPT => nothing */ + 0, /* SELECT => nothing */ + 0, /* DISTINCT => nothing */ + 0, /* DOT => nothing */ + 0, /* FROM => nothing */ + 0, /* JOIN => nothing */ + 0, /* USING => nothing */ + 0, /* ORDER => nothing */ + 0, /* BY => nothing */ + 0, /* GROUP => nothing */ + 0, /* HAVING => nothing */ + 0, /* LIMIT => nothing */ + 0, /* WHERE => nothing */ + 0, /* INTO => nothing */ + 0, /* VALUES => nothing */ + 0, /* INTEGER => nothing */ + 0, /* FLOAT => nothing */ + 0, /* BLOB => nothing */ + 0, /* VARIABLE => nothing */ + 0, /* CASE => nothing */ + 0, /* WHEN => nothing */ + 0, /* THEN => nothing */ + 0, /* ELSE => nothing */ + 0, /* INDEX => nothing */ +}; +#endif /* YYFALLBACK */ + +/* The following structure represents a single element of the +** parser's stack. Information stored includes: +** +** + The state number for the parser at this level of the stack. +** +** + The value of the token stored at this level of the stack. +** (In other words, the "major" token.) +** +** + The semantic value stored at this level of the stack. This is +** the information used by the action routines in the grammar. +** It is sometimes called the "minor" token. +*/ +struct yyStackEntry { + int stateno; /* The state-number */ + int major; /* The major token value. This is the code + ** number for the token at this stack level */ + YYMINORTYPE minor; /* The user-supplied minor token value. This + ** is the value of the token */ +}; +typedef struct yyStackEntry yyStackEntry; + +/* The state of the parser is completely contained in an instance of +** the following structure */ +struct yyParser { + int yyidx; /* Index of top element in stack */ + int yyerrcnt; /* Shifts left before out of the error */ + sqlite3ParserARG_SDECL /* A place to hold %extra_argument */ + yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */ +}; +typedef struct yyParser yyParser; + +#ifndef NDEBUG +#include <stdio.h> +static FILE *yyTraceFILE = 0; +static char *yyTracePrompt = 0; +#endif /* NDEBUG */ + +#ifndef NDEBUG +/* +** Turn parser tracing on by giving a stream to which to write the trace +** and a prompt to preface each trace message. Tracing is turned off +** by making either argument NULL +** +** Inputs: +** <ul> +** <li> A FILE* to which trace output should be written. +** If NULL, then tracing is turned off. +** <li> A prefix string written at the beginning of every +** line of trace output. If NULL, then tracing is +** turned off. +** </ul> +** +** Outputs: +** None. +*/ +void sqlite3ParserTrace(FILE *TraceFILE, char *zTracePrompt){ + yyTraceFILE = TraceFILE; + yyTracePrompt = zTracePrompt; + if( yyTraceFILE==0 ) yyTracePrompt = 0; + else if( yyTracePrompt==0 ) yyTraceFILE = 0; +} +#endif /* NDEBUG */ + +#ifndef NDEBUG +/* For tracing shifts, the names of all terminals and nonterminals +** are required. The following table supplies these names */ +static const char *const yyTokenName[] = { + "$", "END_OF_FILE", "ILLEGAL", "SPACE", + "UNCLOSED_STRING", "COMMENT", "FUNCTION", "COLUMN", + "AGG_FUNCTION", "SEMI", "EXPLAIN", "BEGIN", + "TRANSACTION", "DEFERRED", "IMMEDIATE", "EXCLUSIVE", + "COMMIT", "END", "ROLLBACK", "CREATE", + "TABLE", "TEMP", "LP", "RP", + "AS", "COMMA", "ID", "ABORT", + "AFTER", "ASC", "ATTACH", "BEFORE", + "CASCADE", "CONFLICT", "DATABASE", "DESC", + "DETACH", "EACH", "FAIL", "FOR", + "GLOB", "IGNORE", "INITIALLY", "INSTEAD", + "LIKE", "MATCH", "KEY", "OF", + "OFFSET", "PRAGMA", "RAISE", "REPLACE", + "RESTRICT", "ROW", "STATEMENT", "TRIGGER", + "VACUUM", "VIEW", "OR", "AND", + "NOT", "IS", "BETWEEN", "IN", + "ISNULL", "NOTNULL", "NE", "EQ", + "GT", "LE", "LT", "GE", + "BITAND", "BITOR", "LSHIFT", "RSHIFT", + "PLUS", "MINUS", "STAR", "SLASH", + "REM", "CONCAT", "UMINUS", "UPLUS", + "BITNOT", "STRING", "JOIN_KW", "CONSTRAINT", + "DEFAULT", "NULL", "PRIMARY", "UNIQUE", + "CHECK", "REFERENCES", "COLLATE", "ON", + "DELETE", "UPDATE", "INSERT", "SET", + "DEFERRABLE", "FOREIGN", "DROP", "UNION", + "ALL", "INTERSECT", "EXCEPT", "SELECT", + "DISTINCT", "DOT", "FROM", "JOIN", + "USING", "ORDER", "BY", "GROUP", + "HAVING", "LIMIT", "WHERE", "INTO", + "VALUES", "INTEGER", "FLOAT", "BLOB", + "VARIABLE", "CASE", "WHEN", "THEN", + "ELSE", "INDEX", "error", "input", + "cmdlist", "ecmd", "explain", "cmdx", + "cmd", "transtype", "trans_opt", "nm", + "create_table", "create_table_args", "temp", "dbnm", + "columnlist", "conslist_opt", "select", "column", + "columnid", "type", "carglist", "id", + "ids", "typename", "signed", "plus_num", + "minus_num", "carg", "ccons", "onconf", + "sortorder", "expr", "idxlist_opt", "refargs", + "defer_subclause", "refarg", "refact", "init_deferred_pred_opt", + "conslist", "tcons", "idxlist", "defer_subclause_opt", + "orconf", "resolvetype", "raisetype", "fullname", + "oneselect", "multiselect_op", "distinct", "selcollist", + "from", "where_opt", "groupby_opt", "having_opt", + "orderby_opt", "limit_opt", "sclp", "as", + "seltablist", "stl_prefix", "joinop", "on_opt", + "using_opt", "seltablist_paren", "joinop2", "inscollist", + "sortlist", "sortitem", "collate", "exprlist", + "setlist", "insert_cmd", "inscollist_opt", "itemlist", + "likeop", "between_op", "in_op", "case_operand", + "case_exprlist", "case_else", "expritem", "uniqueflag", + "idxitem", "plus_opt", "number", "trigger_decl", + "trigger_cmd_list", "trigger_time", "trigger_event", "foreach_clause", + "when_clause", "trigger_cmd", "database_kw_opt", "key_opt", +}; +#endif /* NDEBUG */ + +#ifndef NDEBUG +/* For tracing reduce actions, the names of all rules are required. +*/ +static const char *const yyRuleName[] = { + /* 0 */ "input ::= cmdlist", + /* 1 */ "cmdlist ::= cmdlist ecmd", + /* 2 */ "cmdlist ::= ecmd", + /* 3 */ "ecmd ::= explain cmdx SEMI", + /* 4 */ "ecmd ::= SEMI", + /* 5 */ "cmdx ::= cmd", + /* 6 */ "explain ::= EXPLAIN", + /* 7 */ "explain ::=", + /* 8 */ "cmd ::= BEGIN transtype trans_opt", + /* 9 */ "trans_opt ::=", + /* 10 */ "trans_opt ::= TRANSACTION", + /* 11 */ "trans_opt ::= TRANSACTION nm", + /* 12 */ "transtype ::=", + /* 13 */ "transtype ::= DEFERRED", + /* 14 */ "transtype ::= IMMEDIATE", + /* 15 */ "transtype ::= EXCLUSIVE", + /* 16 */ "cmd ::= COMMIT trans_opt", + /* 17 */ "cmd ::= END trans_opt", + /* 18 */ "cmd ::= ROLLBACK trans_opt", + /* 19 */ "cmd ::= create_table create_table_args", + /* 20 */ "create_table ::= CREATE temp TABLE nm dbnm", + /* 21 */ "temp ::= TEMP", + /* 22 */ "temp ::=", + /* 23 */ "create_table_args ::= LP columnlist conslist_opt RP", + /* 24 */ "create_table_args ::= AS select", + /* 25 */ "columnlist ::= columnlist COMMA column", + /* 26 */ "columnlist ::= column", + /* 27 */ "column ::= columnid type carglist", + /* 28 */ "columnid ::= nm", + /* 29 */ "id ::= ID", + /* 30 */ "ids ::= ID", + /* 31 */ "ids ::= STRING", + /* 32 */ "nm ::= ID", + /* 33 */ "nm ::= STRING", + /* 34 */ "nm ::= JOIN_KW", + /* 35 */ "type ::=", + /* 36 */ "type ::= typename", + /* 37 */ "type ::= typename LP signed RP", + /* 38 */ "type ::= typename LP signed COMMA signed RP", + /* 39 */ "typename ::= ids", + /* 40 */ "typename ::= typename ids", + /* 41 */ "signed ::= plus_num", + /* 42 */ "signed ::= minus_num", + /* 43 */ "carglist ::= carglist carg", + /* 44 */ "carglist ::=", + /* 45 */ "carg ::= CONSTRAINT nm ccons", + /* 46 */ "carg ::= ccons", + /* 47 */ "carg ::= DEFAULT ids", + /* 48 */ "carg ::= DEFAULT plus_num", + /* 49 */ "carg ::= DEFAULT minus_num", + /* 50 */ "carg ::= DEFAULT NULL", + /* 51 */ "ccons ::= NULL onconf", + /* 52 */ "ccons ::= NOT NULL onconf", + /* 53 */ "ccons ::= PRIMARY KEY sortorder onconf", + /* 54 */ "ccons ::= UNIQUE onconf", + /* 55 */ "ccons ::= CHECK LP expr RP onconf", + /* 56 */ "ccons ::= REFERENCES nm idxlist_opt refargs", + /* 57 */ "ccons ::= defer_subclause", + /* 58 */ "ccons ::= COLLATE id", + /* 59 */ "refargs ::=", + /* 60 */ "refargs ::= refargs refarg", + /* 61 */ "refarg ::= MATCH nm", + /* 62 */ "refarg ::= ON DELETE refact", + /* 63 */ "refarg ::= ON UPDATE refact", + /* 64 */ "refarg ::= ON INSERT refact", + /* 65 */ "refact ::= SET NULL", + /* 66 */ "refact ::= SET DEFAULT", + /* 67 */ "refact ::= CASCADE", + /* 68 */ "refact ::= RESTRICT", + /* 69 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt", + /* 70 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt", + /* 71 */ "init_deferred_pred_opt ::=", + /* 72 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED", + /* 73 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE", + /* 74 */ "conslist_opt ::=", + /* 75 */ "conslist_opt ::= COMMA conslist", + /* 76 */ "conslist ::= conslist COMMA tcons", + /* 77 */ "conslist ::= conslist tcons", + /* 78 */ "conslist ::= tcons", + /* 79 */ "tcons ::= CONSTRAINT nm", + /* 80 */ "tcons ::= PRIMARY KEY LP idxlist RP onconf", + /* 81 */ "tcons ::= UNIQUE LP idxlist RP onconf", + /* 82 */ "tcons ::= CHECK expr onconf", + /* 83 */ "tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt", + /* 84 */ "defer_subclause_opt ::=", + /* 85 */ "defer_subclause_opt ::= defer_subclause", + /* 86 */ "onconf ::=", + /* 87 */ "onconf ::= ON CONFLICT resolvetype", + /* 88 */ "orconf ::=", + /* 89 */ "orconf ::= OR resolvetype", + /* 90 */ "resolvetype ::= raisetype", + /* 91 */ "resolvetype ::= IGNORE", + /* 92 */ "resolvetype ::= REPLACE", + /* 93 */ "cmd ::= DROP TABLE fullname", + /* 94 */ "cmd ::= CREATE temp VIEW nm dbnm AS select", + /* 95 */ "cmd ::= DROP VIEW fullname", + /* 96 */ "cmd ::= select", + /* 97 */ "select ::= oneselect", + /* 98 */ "select ::= select multiselect_op oneselect", + /* 99 */ "multiselect_op ::= UNION", + /* 100 */ "multiselect_op ::= UNION ALL", + /* 101 */ "multiselect_op ::= INTERSECT", + /* 102 */ "multiselect_op ::= EXCEPT", + /* 103 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt", + /* 104 */ "distinct ::= DISTINCT", + /* 105 */ "distinct ::= ALL", + /* 106 */ "distinct ::=", + /* 107 */ "sclp ::= selcollist COMMA", + /* 108 */ "sclp ::=", + /* 109 */ "selcollist ::= sclp expr as", + /* 110 */ "selcollist ::= sclp STAR", + /* 111 */ "selcollist ::= sclp nm DOT STAR", + /* 112 */ "as ::= AS nm", + /* 113 */ "as ::= ids", + /* 114 */ "as ::=", + /* 115 */ "from ::=", + /* 116 */ "from ::= FROM seltablist", + /* 117 */ "stl_prefix ::= seltablist joinop", + /* 118 */ "stl_prefix ::=", + /* 119 */ "seltablist ::= stl_prefix nm dbnm as on_opt using_opt", + /* 120 */ "seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt", + /* 121 */ "seltablist_paren ::= select", + /* 122 */ "seltablist_paren ::= seltablist", + /* 123 */ "dbnm ::=", + /* 124 */ "dbnm ::= DOT nm", + /* 125 */ "fullname ::= nm dbnm", + /* 126 */ "joinop ::= COMMA", + /* 127 */ "joinop ::= JOIN", + /* 128 */ "joinop ::= JOIN_KW JOIN", + /* 129 */ "joinop ::= JOIN_KW nm JOIN", + /* 130 */ "joinop ::= JOIN_KW nm nm JOIN", + /* 131 */ "on_opt ::= ON expr", + /* 132 */ "on_opt ::=", + /* 133 */ "using_opt ::= USING LP inscollist RP", + /* 134 */ "using_opt ::=", + /* 135 */ "orderby_opt ::=", + /* 136 */ "orderby_opt ::= ORDER BY sortlist", + /* 137 */ "sortlist ::= sortlist COMMA sortitem collate sortorder", + /* 138 */ "sortlist ::= sortitem collate sortorder", + /* 139 */ "sortitem ::= expr", + /* 140 */ "sortorder ::= ASC", + /* 141 */ "sortorder ::= DESC", + /* 142 */ "sortorder ::=", + /* 143 */ "collate ::=", + /* 144 */ "collate ::= COLLATE id", + /* 145 */ "groupby_opt ::=", + /* 146 */ "groupby_opt ::= GROUP BY exprlist", + /* 147 */ "having_opt ::=", + /* 148 */ "having_opt ::= HAVING expr", + /* 149 */ "limit_opt ::=", + /* 150 */ "limit_opt ::= LIMIT signed", + /* 151 */ "limit_opt ::= LIMIT signed OFFSET signed", + /* 152 */ "limit_opt ::= LIMIT signed COMMA signed", + /* 153 */ "cmd ::= DELETE FROM fullname where_opt", + /* 154 */ "where_opt ::=", + /* 155 */ "where_opt ::= WHERE expr", + /* 156 */ "cmd ::= UPDATE orconf fullname SET setlist where_opt", + /* 157 */ "setlist ::= setlist COMMA nm EQ expr", + /* 158 */ "setlist ::= nm EQ expr", + /* 159 */ "cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP", + /* 160 */ "cmd ::= insert_cmd INTO fullname inscollist_opt select", + /* 161 */ "insert_cmd ::= INSERT orconf", + /* 162 */ "insert_cmd ::= REPLACE", + /* 163 */ "itemlist ::= itemlist COMMA expr", + /* 164 */ "itemlist ::= expr", + /* 165 */ "inscollist_opt ::=", + /* 166 */ "inscollist_opt ::= LP inscollist RP", + /* 167 */ "inscollist ::= inscollist COMMA nm", + /* 168 */ "inscollist ::= nm", + /* 169 */ "expr ::= LP expr RP", + /* 170 */ "expr ::= NULL", + /* 171 */ "expr ::= ID", + /* 172 */ "expr ::= JOIN_KW", + /* 173 */ "expr ::= nm DOT nm", + /* 174 */ "expr ::= nm DOT nm DOT nm", + /* 175 */ "expr ::= INTEGER", + /* 176 */ "expr ::= FLOAT", + /* 177 */ "expr ::= STRING", + /* 178 */ "expr ::= BLOB", + /* 179 */ "expr ::= VARIABLE", + /* 180 */ "expr ::= ID LP exprlist RP", + /* 181 */ "expr ::= ID LP STAR RP", + /* 182 */ "expr ::= expr AND expr", + /* 183 */ "expr ::= expr OR expr", + /* 184 */ "expr ::= expr LT expr", + /* 185 */ "expr ::= expr GT expr", + /* 186 */ "expr ::= expr LE expr", + /* 187 */ "expr ::= expr GE expr", + /* 188 */ "expr ::= expr NE expr", + /* 189 */ "expr ::= expr EQ expr", + /* 190 */ "expr ::= expr BITAND expr", + /* 191 */ "expr ::= expr BITOR expr", + /* 192 */ "expr ::= expr LSHIFT expr", + /* 193 */ "expr ::= expr RSHIFT expr", + /* 194 */ "expr ::= expr PLUS expr", + /* 195 */ "expr ::= expr MINUS expr", + /* 196 */ "expr ::= expr STAR expr", + /* 197 */ "expr ::= expr SLASH expr", + /* 198 */ "expr ::= expr REM expr", + /* 199 */ "expr ::= expr CONCAT expr", + /* 200 */ "likeop ::= LIKE", + /* 201 */ "likeop ::= GLOB", + /* 202 */ "likeop ::= NOT LIKE", + /* 203 */ "likeop ::= NOT GLOB", + /* 204 */ "expr ::= expr likeop expr", + /* 205 */ "expr ::= expr ISNULL", + /* 206 */ "expr ::= expr IS NULL", + /* 207 */ "expr ::= expr NOTNULL", + /* 208 */ "expr ::= expr NOT NULL", + /* 209 */ "expr ::= expr IS NOT NULL", + /* 210 */ "expr ::= NOT expr", + /* 211 */ "expr ::= BITNOT expr", + /* 212 */ "expr ::= MINUS expr", + /* 213 */ "expr ::= PLUS expr", + /* 214 */ "expr ::= LP select RP", + /* 215 */ "between_op ::= BETWEEN", + /* 216 */ "between_op ::= NOT BETWEEN", + /* 217 */ "expr ::= expr between_op expr AND expr", + /* 218 */ "in_op ::= IN", + /* 219 */ "in_op ::= NOT IN", + /* 220 */ "expr ::= expr in_op LP exprlist RP", + /* 221 */ "expr ::= expr in_op LP select RP", + /* 222 */ "expr ::= expr in_op nm dbnm", + /* 223 */ "expr ::= CASE case_operand case_exprlist case_else END", + /* 224 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr", + /* 225 */ "case_exprlist ::= WHEN expr THEN expr", + /* 226 */ "case_else ::= ELSE expr", + /* 227 */ "case_else ::=", + /* 228 */ "case_operand ::= expr", + /* 229 */ "case_operand ::=", + /* 230 */ "exprlist ::= exprlist COMMA expritem", + /* 231 */ "exprlist ::= expritem", + /* 232 */ "expritem ::= expr", + /* 233 */ "expritem ::=", + /* 234 */ "cmd ::= CREATE uniqueflag INDEX nm dbnm ON fullname LP idxlist RP onconf", + /* 235 */ "uniqueflag ::= UNIQUE", + /* 236 */ "uniqueflag ::=", + /* 237 */ "idxlist_opt ::=", + /* 238 */ "idxlist_opt ::= LP idxlist RP", + /* 239 */ "idxlist ::= idxlist COMMA idxitem collate sortorder", + /* 240 */ "idxlist ::= idxitem collate sortorder", + /* 241 */ "idxitem ::= nm", + /* 242 */ "cmd ::= DROP INDEX fullname", + /* 243 */ "cmd ::= VACUUM", + /* 244 */ "cmd ::= VACUUM nm", + /* 245 */ "cmd ::= PRAGMA nm dbnm EQ nm", + /* 246 */ "cmd ::= PRAGMA nm dbnm EQ ON", + /* 247 */ "cmd ::= PRAGMA nm dbnm EQ plus_num", + /* 248 */ "cmd ::= PRAGMA nm dbnm EQ minus_num", + /* 249 */ "cmd ::= PRAGMA nm dbnm LP nm RP", + /* 250 */ "cmd ::= PRAGMA nm dbnm", + /* 251 */ "plus_num ::= plus_opt number", + /* 252 */ "minus_num ::= MINUS number", + /* 253 */ "number ::= INTEGER", + /* 254 */ "number ::= FLOAT", + /* 255 */ "plus_opt ::= PLUS", + /* 256 */ "plus_opt ::=", + /* 257 */ "cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END", + /* 258 */ "trigger_decl ::= temp TRIGGER nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause", + /* 259 */ "trigger_time ::= BEFORE", + /* 260 */ "trigger_time ::= AFTER", + /* 261 */ "trigger_time ::= INSTEAD OF", + /* 262 */ "trigger_time ::=", + /* 263 */ "trigger_event ::= DELETE", + /* 264 */ "trigger_event ::= INSERT", + /* 265 */ "trigger_event ::= UPDATE", + /* 266 */ "trigger_event ::= UPDATE OF inscollist", + /* 267 */ "foreach_clause ::=", + /* 268 */ "foreach_clause ::= FOR EACH ROW", + /* 269 */ "foreach_clause ::= FOR EACH STATEMENT", + /* 270 */ "when_clause ::=", + /* 271 */ "when_clause ::= WHEN expr", + /* 272 */ "trigger_cmd_list ::= trigger_cmd SEMI trigger_cmd_list", + /* 273 */ "trigger_cmd_list ::=", + /* 274 */ "trigger_cmd ::= UPDATE orconf nm SET setlist where_opt", + /* 275 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP", + /* 276 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt select", + /* 277 */ "trigger_cmd ::= DELETE FROM nm where_opt", + /* 278 */ "trigger_cmd ::= select", + /* 279 */ "expr ::= RAISE LP IGNORE RP", + /* 280 */ "expr ::= RAISE LP raisetype COMMA nm RP", + /* 281 */ "raisetype ::= ROLLBACK", + /* 282 */ "raisetype ::= ABORT", + /* 283 */ "raisetype ::= FAIL", + /* 284 */ "cmd ::= DROP TRIGGER fullname", + /* 285 */ "cmd ::= ATTACH database_kw_opt ids AS nm key_opt", + /* 286 */ "key_opt ::=", + /* 287 */ "key_opt ::= KEY ids", + /* 288 */ "key_opt ::= KEY BLOB", + /* 289 */ "database_kw_opt ::= DATABASE", + /* 290 */ "database_kw_opt ::=", + /* 291 */ "cmd ::= DETACH database_kw_opt nm", +}; +#endif /* NDEBUG */ + +/* +** This function returns the symbolic name associated with a token +** value. +*/ +const char *sqlite3ParserTokenName(int tokenType){ +#ifndef NDEBUG + if( tokenType>0 && tokenType<(sizeof(yyTokenName)/sizeof(yyTokenName[0])) ){ + return yyTokenName[tokenType]; + }else{ + return "Unknown"; + } +#else + return ""; +#endif +} + +/* +** This function allocates a new parser. +** The only argument is a pointer to a function which works like +** malloc. +** +** Inputs: +** A pointer to the function used to allocate memory. +** +** Outputs: +** A pointer to a parser. This pointer is used in subsequent calls +** to sqlite3Parser and sqlite3ParserFree. +*/ +void *sqlite3ParserAlloc(void *(*mallocProc)(size_t)){ + yyParser *pParser; + pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) ); + if( pParser ){ + pParser->yyidx = -1; + } + return pParser; +} + +/* The following function deletes the value associated with a +** symbol. The symbol can be either a terminal or nonterminal. +** "yymajor" is the symbol code, and "yypminor" is a pointer to +** the value. +*/ +static void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor){ + switch( yymajor ){ + /* Here is inserted the actions which take place when a + ** terminal or non-terminal is destroyed. This can happen + ** when the symbol is popped from the stack during a + ** reduce or during error processing or when a parser is + ** being destroyed before it is finished parsing. + ** + ** Note: during a reduce, the only symbols destroyed are those + ** which appear on the RHS of the rule, but which are not used + ** inside the C code. + */ + case 146: + case 176: + case 193: +#line 303 "parse.y" +{sqlite3SelectDelete((yypminor->yy107));} +#line 1236 "parse.c" + break; + case 161: + case 181: + case 183: + case 191: + case 197: + case 210: +#line 552 "parse.y" +{sqlite3ExprDelete((yypminor->yy258));} +#line 1246 "parse.c" + break; + case 162: + case 170: + case 179: + case 182: + case 184: + case 186: + case 196: + case 199: + case 200: + case 203: + case 208: +#line 744 "parse.y" +{sqlite3ExprListDelete((yypminor->yy210));} +#line 1261 "parse.c" + break; + case 175: + case 180: + case 188: + case 189: +#line 428 "parse.y" +{sqlite3SrcListDelete((yypminor->yy259));} +#line 1269 "parse.c" + break; + case 192: + case 195: + case 202: +#line 446 "parse.y" +{sqlite3IdListDelete((yypminor->yy272));} +#line 1276 "parse.c" + break; + case 216: + case 221: +#line 833 "parse.y" +{sqlite3DeleteTriggerStep((yypminor->yy91));} +#line 1282 "parse.c" + break; + case 218: +#line 817 "parse.y" +{sqlite3IdListDelete((yypminor->yy146).b);} +#line 1287 "parse.c" + break; + default: break; /* If no destructor action specified: do nothing */ + } +} + +/* +** Pop the parser's stack once. +** +** If there is a destructor routine associated with the token which +** is popped from the stack, then call it. +** +** Return the major token number for the symbol popped. +*/ +static int yy_pop_parser_stack(yyParser *pParser){ + YYCODETYPE yymajor; + yyStackEntry *yytos = &pParser->yystack[pParser->yyidx]; + + if( pParser->yyidx<0 ) return 0; +#ifndef NDEBUG + if( yyTraceFILE && pParser->yyidx>=0 ){ + fprintf(yyTraceFILE,"%sPopping %s\n", + yyTracePrompt, + yyTokenName[yytos->major]); + } +#endif + yymajor = yytos->major; + yy_destructor( yymajor, &yytos->minor); + pParser->yyidx--; + return yymajor; +} + +/* +** Deallocate and destroy a parser. Destructors are all called for +** all stack elements before shutting the parser down. +** +** Inputs: +** <ul> +** <li> A pointer to the parser. This should be a pointer +** obtained from sqlite3ParserAlloc. +** <li> A pointer to a function used to reclaim memory obtained +** from malloc. +** </ul> +*/ +void sqlite3ParserFree( + void *p, /* The parser to be deleted */ + void (*freeProc)(void*) /* Function used to reclaim memory */ +){ + yyParser *pParser = (yyParser*)p; + if( pParser==0 ) return; + while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser); + (*freeProc)((void*)pParser); +} + +/* +** Find the appropriate action for a parser given the terminal +** look-ahead token iLookAhead. +** +** If the look-ahead token is YYNOCODE, then check to see if the action is +** independent of the look-ahead. If it is, return the action, otherwise +** return YY_NO_ACTION. +*/ +static int yy_find_shift_action( + yyParser *pParser, /* The parser */ + int iLookAhead /* The look-ahead token */ +){ + int i; + int stateno = pParser->yystack[pParser->yyidx].stateno; + + /* if( pParser->yyidx<0 ) return YY_NO_ACTION; */ + i = yy_shift_ofst[stateno]; + if( i==YY_SHIFT_USE_DFLT ){ + return yy_default[stateno]; + } + if( iLookAhead==YYNOCODE ){ + return YY_NO_ACTION; + } + i += iLookAhead; + if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){ +#ifdef YYFALLBACK + int iFallback; /* Fallback token */ + if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0]) + && (iFallback = yyFallback[iLookAhead])!=0 ){ +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n", + yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]); + } +#endif + return yy_find_shift_action(pParser, iFallback); + } +#endif + return yy_default[stateno]; + }else{ + return yy_action[i]; + } +} + +/* +** Find the appropriate action for a parser given the non-terminal +** look-ahead token iLookAhead. +** +** If the look-ahead token is YYNOCODE, then check to see if the action is +** independent of the look-ahead. If it is, return the action, otherwise +** return YY_NO_ACTION. +*/ +static int yy_find_reduce_action( + yyParser *pParser, /* The parser */ + int iLookAhead /* The look-ahead token */ +){ + int i; + int stateno = pParser->yystack[pParser->yyidx].stateno; + + i = yy_reduce_ofst[stateno]; + if( i==YY_REDUCE_USE_DFLT ){ + return yy_default[stateno]; + } + if( iLookAhead==YYNOCODE ){ + return YY_NO_ACTION; + } + i += iLookAhead; + if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){ + return yy_default[stateno]; + }else{ + return yy_action[i]; + } +} + +/* +** Perform a shift action. +*/ +static void yy_shift( + yyParser *yypParser, /* The parser to be shifted */ + int yyNewState, /* The new state to shift in */ + int yyMajor, /* The major token to shift in */ + YYMINORTYPE *yypMinor /* Pointer ot the minor token to shift in */ +){ + yyStackEntry *yytos; + yypParser->yyidx++; + if( yypParser->yyidx>=YYSTACKDEPTH ){ + sqlite3ParserARG_FETCH; + yypParser->yyidx--; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt); + } +#endif + while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); + /* Here code is inserted which will execute if the parser + ** stack every overflows */ + sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument var */ + return; + } + yytos = &yypParser->yystack[yypParser->yyidx]; + yytos->stateno = yyNewState; + yytos->major = yyMajor; + yytos->minor = *yypMinor; +#ifndef NDEBUG + if( yyTraceFILE && yypParser->yyidx>0 ){ + int i; + fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState); + fprintf(yyTraceFILE,"%sStack:",yyTracePrompt); + for(i=1; i<=yypParser->yyidx; i++) + fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]); + fprintf(yyTraceFILE,"\n"); + } +#endif +} + +/* The following table contains information about every rule that +** is used during the reduce. +*/ +static const struct { + YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */ + unsigned char nrhs; /* Number of right-hand side symbols in the rule */ +} yyRuleInfo[] = { + { 131, 1 }, + { 132, 2 }, + { 132, 1 }, + { 133, 3 }, + { 133, 1 }, + { 135, 1 }, + { 134, 1 }, + { 134, 0 }, + { 136, 3 }, + { 138, 0 }, + { 138, 1 }, + { 138, 2 }, + { 137, 0 }, + { 137, 1 }, + { 137, 1 }, + { 137, 1 }, + { 136, 2 }, + { 136, 2 }, + { 136, 2 }, + { 136, 2 }, + { 140, 5 }, + { 142, 1 }, + { 142, 0 }, + { 141, 4 }, + { 141, 2 }, + { 144, 3 }, + { 144, 1 }, + { 147, 3 }, + { 148, 1 }, + { 151, 1 }, + { 152, 1 }, + { 152, 1 }, + { 139, 1 }, + { 139, 1 }, + { 139, 1 }, + { 149, 0 }, + { 149, 1 }, + { 149, 4 }, + { 149, 6 }, + { 153, 1 }, + { 153, 2 }, + { 154, 1 }, + { 154, 1 }, + { 150, 2 }, + { 150, 0 }, + { 157, 3 }, + { 157, 1 }, + { 157, 2 }, + { 157, 2 }, + { 157, 2 }, + { 157, 2 }, + { 158, 2 }, + { 158, 3 }, + { 158, 4 }, + { 158, 2 }, + { 158, 5 }, + { 158, 4 }, + { 158, 1 }, + { 158, 2 }, + { 163, 0 }, + { 163, 2 }, + { 165, 2 }, + { 165, 3 }, + { 165, 3 }, + { 165, 3 }, + { 166, 2 }, + { 166, 2 }, + { 166, 1 }, + { 166, 1 }, + { 164, 3 }, + { 164, 2 }, + { 167, 0 }, + { 167, 2 }, + { 167, 2 }, + { 145, 0 }, + { 145, 2 }, + { 168, 3 }, + { 168, 2 }, + { 168, 1 }, + { 169, 2 }, + { 169, 6 }, + { 169, 5 }, + { 169, 3 }, + { 169, 10 }, + { 171, 0 }, + { 171, 1 }, + { 159, 0 }, + { 159, 3 }, + { 172, 0 }, + { 172, 2 }, + { 173, 1 }, + { 173, 1 }, + { 173, 1 }, + { 136, 3 }, + { 136, 7 }, + { 136, 3 }, + { 136, 1 }, + { 146, 1 }, + { 146, 3 }, + { 177, 1 }, + { 177, 2 }, + { 177, 1 }, + { 177, 1 }, + { 176, 9 }, + { 178, 1 }, + { 178, 1 }, + { 178, 0 }, + { 186, 2 }, + { 186, 0 }, + { 179, 3 }, + { 179, 2 }, + { 179, 4 }, + { 187, 2 }, + { 187, 1 }, + { 187, 0 }, + { 180, 0 }, + { 180, 2 }, + { 189, 2 }, + { 189, 0 }, + { 188, 6 }, + { 188, 7 }, + { 193, 1 }, + { 193, 1 }, + { 143, 0 }, + { 143, 2 }, + { 175, 2 }, + { 190, 1 }, + { 190, 1 }, + { 190, 2 }, + { 190, 3 }, + { 190, 4 }, + { 191, 2 }, + { 191, 0 }, + { 192, 4 }, + { 192, 0 }, + { 184, 0 }, + { 184, 3 }, + { 196, 5 }, + { 196, 3 }, + { 197, 1 }, + { 160, 1 }, + { 160, 1 }, + { 160, 0 }, + { 198, 0 }, + { 198, 2 }, + { 182, 0 }, + { 182, 3 }, + { 183, 0 }, + { 183, 2 }, + { 185, 0 }, + { 185, 2 }, + { 185, 4 }, + { 185, 4 }, + { 136, 4 }, + { 181, 0 }, + { 181, 2 }, + { 136, 6 }, + { 200, 5 }, + { 200, 3 }, + { 136, 8 }, + { 136, 5 }, + { 201, 2 }, + { 201, 1 }, + { 203, 3 }, + { 203, 1 }, + { 202, 0 }, + { 202, 3 }, + { 195, 3 }, + { 195, 1 }, + { 161, 3 }, + { 161, 1 }, + { 161, 1 }, + { 161, 1 }, + { 161, 3 }, + { 161, 5 }, + { 161, 1 }, + { 161, 1 }, + { 161, 1 }, + { 161, 1 }, + { 161, 1 }, + { 161, 4 }, + { 161, 4 }, + { 161, 3 }, + { 161, 3 }, + { 161, 3 }, + { 161, 3 }, + { 161, 3 }, + { 161, 3 }, + { 161, 3 }, + { 161, 3 }, + { 161, 3 }, + { 161, 3 }, + { 161, 3 }, + { 161, 3 }, + { 161, 3 }, + { 161, 3 }, + { 161, 3 }, + { 161, 3 }, + { 161, 3 }, + { 161, 3 }, + { 204, 1 }, + { 204, 1 }, + { 204, 2 }, + { 204, 2 }, + { 161, 3 }, + { 161, 2 }, + { 161, 3 }, + { 161, 2 }, + { 161, 3 }, + { 161, 4 }, + { 161, 2 }, + { 161, 2 }, + { 161, 2 }, + { 161, 2 }, + { 161, 3 }, + { 205, 1 }, + { 205, 2 }, + { 161, 5 }, + { 206, 1 }, + { 206, 2 }, + { 161, 5 }, + { 161, 5 }, + { 161, 4 }, + { 161, 5 }, + { 208, 5 }, + { 208, 4 }, + { 209, 2 }, + { 209, 0 }, + { 207, 1 }, + { 207, 0 }, + { 199, 3 }, + { 199, 1 }, + { 210, 1 }, + { 210, 0 }, + { 136, 11 }, + { 211, 1 }, + { 211, 0 }, + { 162, 0 }, + { 162, 3 }, + { 170, 5 }, + { 170, 3 }, + { 212, 1 }, + { 136, 3 }, + { 136, 1 }, + { 136, 2 }, + { 136, 5 }, + { 136, 5 }, + { 136, 5 }, + { 136, 5 }, + { 136, 6 }, + { 136, 3 }, + { 155, 2 }, + { 156, 2 }, + { 214, 1 }, + { 214, 1 }, + { 213, 1 }, + { 213, 0 }, + { 136, 5 }, + { 215, 10 }, + { 217, 1 }, + { 217, 1 }, + { 217, 2 }, + { 217, 0 }, + { 218, 1 }, + { 218, 1 }, + { 218, 1 }, + { 218, 3 }, + { 219, 0 }, + { 219, 3 }, + { 219, 3 }, + { 220, 0 }, + { 220, 2 }, + { 216, 3 }, + { 216, 0 }, + { 221, 6 }, + { 221, 8 }, + { 221, 5 }, + { 221, 4 }, + { 221, 1 }, + { 161, 4 }, + { 161, 6 }, + { 174, 1 }, + { 174, 1 }, + { 174, 1 }, + { 136, 3 }, + { 136, 6 }, + { 223, 0 }, + { 223, 2 }, + { 223, 2 }, + { 222, 1 }, + { 222, 0 }, + { 136, 3 }, +}; + +static void yy_accept(yyParser*); /* Forward Declaration */ + +/* +** Perform a reduce action and the shift that must immediately +** follow the reduce. +*/ +static void yy_reduce( + yyParser *yypParser, /* The parser */ + int yyruleno /* Number of the rule by which to reduce */ +){ + int yygoto; /* The next state */ + int yyact; /* The next action */ + YYMINORTYPE yygotominor; /* The LHS of the rule reduced */ + yyStackEntry *yymsp; /* The top of the parser's stack */ + int yysize; /* Amount to pop the stack */ + sqlite3ParserARG_FETCH; + yymsp = &yypParser->yystack[yypParser->yyidx]; +#ifndef NDEBUG + if( yyTraceFILE && yyruleno>=0 + && yyruleno<sizeof(yyRuleName)/sizeof(yyRuleName[0]) ){ + fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt, + yyRuleName[yyruleno]); + } +#endif /* NDEBUG */ + + switch( yyruleno ){ + /* Beginning here are the reduction cases. A typical example + ** follows: + ** case 0: + ** #line <lineno> <grammarfile> + ** { ... } // User supplied code + ** #line <lineno> <thisfile> + ** break; + */ + case 5: +#line 86 "parse.y" +{ sqlite3FinishCoding(pParse); } +#line 1794 "parse.c" + break; + case 6: +#line 87 "parse.y" +{ sqlite3BeginParse(pParse, 1); } +#line 1799 "parse.c" + break; + case 7: +#line 88 "parse.y" +{ sqlite3BeginParse(pParse, 0); } +#line 1804 "parse.c" + break; + case 8: +#line 93 "parse.y" +{sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy284);} +#line 1809 "parse.c" + break; + case 12: +#line 98 "parse.y" +{yygotominor.yy284 = TK_DEFERRED;} +#line 1814 "parse.c" + break; + case 13: + case 14: + case 15: + case 99: + case 101: + case 102: +#line 99 "parse.y" +{yygotominor.yy284 = yymsp[0].major;} +#line 1824 "parse.c" + break; + case 16: + case 17: +#line 102 "parse.y" +{sqlite3CommitTransaction(pParse);} +#line 1830 "parse.c" + break; + case 18: +#line 104 "parse.y" +{sqlite3RollbackTransaction(pParse);} +#line 1835 "parse.c" + break; + case 20: +#line 109 "parse.y" +{ + sqlite3StartTable(pParse,&yymsp[-4].minor.yy0,&yymsp[-1].minor.yy98,&yymsp[0].minor.yy98,yymsp[-3].minor.yy284,0); +} +#line 1842 "parse.c" + break; + case 21: + case 72: + case 104: + case 216: + case 219: +#line 113 "parse.y" +{yygotominor.yy284 = 1;} +#line 1851 "parse.c" + break; + case 22: + case 71: + case 73: + case 84: + case 105: + case 106: + case 215: + case 218: +#line 114 "parse.y" +{yygotominor.yy284 = 0;} +#line 1863 "parse.c" + break; + case 23: +#line 115 "parse.y" +{ + sqlite3EndTable(pParse,&yymsp[0].minor.yy0,0); +} +#line 1870 "parse.c" + break; + case 24: +#line 118 "parse.y" +{ + sqlite3EndTable(pParse,0,yymsp[0].minor.yy107); + sqlite3SelectDelete(yymsp[0].minor.yy107); +} +#line 1878 "parse.c" + break; + case 28: +#line 130 "parse.y" +{sqlite3AddColumn(pParse,&yymsp[0].minor.yy98);} +#line 1883 "parse.c" + break; + case 29: + case 30: + case 31: + case 32: + case 33: + case 34: + case 253: + case 254: +#line 136 "parse.y" +{yygotominor.yy98 = yymsp[0].minor.yy0;} +#line 1895 "parse.c" + break; + case 36: +#line 185 "parse.y" +{sqlite3AddColumnType(pParse,&yymsp[0].minor.yy98,&yymsp[0].minor.yy98);} +#line 1900 "parse.c" + break; + case 37: +#line 186 "parse.y" +{sqlite3AddColumnType(pParse,&yymsp[-3].minor.yy98,&yymsp[0].minor.yy0);} +#line 1905 "parse.c" + break; + case 38: +#line 188 "parse.y" +{sqlite3AddColumnType(pParse,&yymsp[-5].minor.yy98,&yymsp[0].minor.yy0);} +#line 1910 "parse.c" + break; + case 39: + case 112: + case 113: + case 124: + case 144: + case 241: + case 251: + case 252: +#line 190 "parse.y" +{yygotominor.yy98 = yymsp[0].minor.yy98;} +#line 1922 "parse.c" + break; + case 40: +#line 191 "parse.y" +{yygotominor.yy98.z=yymsp[-1].minor.yy98.z; yygotominor.yy98.n=yymsp[0].minor.yy98.n+(yymsp[0].minor.yy98.z-yymsp[-1].minor.yy98.z);} +#line 1927 "parse.c" + break; + case 41: +#line 193 "parse.y" +{ yygotominor.yy284 = atoi(yymsp[0].minor.yy98.z); } +#line 1932 "parse.c" + break; + case 42: +#line 194 "parse.y" +{ yygotominor.yy284 = -atoi(yymsp[0].minor.yy98.z); } +#line 1937 "parse.c" + break; + case 47: + case 48: +#line 199 "parse.y" +{sqlite3AddDefaultValue(pParse,&yymsp[0].minor.yy98,0);} +#line 1943 "parse.c" + break; + case 49: +#line 201 "parse.y" +{sqlite3AddDefaultValue(pParse,&yymsp[0].minor.yy98,1);} +#line 1948 "parse.c" + break; + case 52: +#line 208 "parse.y" +{sqlite3AddNotNull(pParse, yymsp[0].minor.yy284);} +#line 1953 "parse.c" + break; + case 53: +#line 209 "parse.y" +{sqlite3AddPrimaryKey(pParse,0,yymsp[0].minor.yy284);} +#line 1958 "parse.c" + break; + case 54: +#line 210 "parse.y" +{sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy284,0,0);} +#line 1963 "parse.c" + break; + case 56: +#line 213 "parse.y" +{sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy98,yymsp[-1].minor.yy210,yymsp[0].minor.yy284);} +#line 1968 "parse.c" + break; + case 57: +#line 214 "parse.y" +{sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy284);} +#line 1973 "parse.c" + break; + case 58: +#line 215 "parse.y" +{sqlite3AddCollateType(pParse, yymsp[0].minor.yy98.z, yymsp[0].minor.yy98.n);} +#line 1978 "parse.c" + break; + case 59: +#line 223 "parse.y" +{ yygotominor.yy284 = OE_Restrict * 0x010101; } +#line 1983 "parse.c" + break; + case 60: +#line 224 "parse.y" +{ yygotominor.yy284 = (yymsp[-1].minor.yy284 & yymsp[0].minor.yy47.mask) | yymsp[0].minor.yy47.value; } +#line 1988 "parse.c" + break; + case 61: +#line 226 "parse.y" +{ yygotominor.yy47.value = 0; yygotominor.yy47.mask = 0x000000; } +#line 1993 "parse.c" + break; + case 62: +#line 227 "parse.y" +{ yygotominor.yy47.value = yymsp[0].minor.yy284; yygotominor.yy47.mask = 0x0000ff; } +#line 1998 "parse.c" + break; + case 63: +#line 228 "parse.y" +{ yygotominor.yy47.value = yymsp[0].minor.yy284<<8; yygotominor.yy47.mask = 0x00ff00; } +#line 2003 "parse.c" + break; + case 64: +#line 229 "parse.y" +{ yygotominor.yy47.value = yymsp[0].minor.yy284<<16; yygotominor.yy47.mask = 0xff0000; } +#line 2008 "parse.c" + break; + case 65: +#line 231 "parse.y" +{ yygotominor.yy284 = OE_SetNull; } +#line 2013 "parse.c" + break; + case 66: +#line 232 "parse.y" +{ yygotominor.yy284 = OE_SetDflt; } +#line 2018 "parse.c" + break; + case 67: +#line 233 "parse.y" +{ yygotominor.yy284 = OE_Cascade; } +#line 2023 "parse.c" + break; + case 68: +#line 234 "parse.y" +{ yygotominor.yy284 = OE_Restrict; } +#line 2028 "parse.c" + break; + case 69: + case 70: + case 85: + case 87: + case 89: + case 90: + case 161: +#line 236 "parse.y" +{yygotominor.yy284 = yymsp[0].minor.yy284;} +#line 2039 "parse.c" + break; + case 80: +#line 253 "parse.y" +{sqlite3AddPrimaryKey(pParse,yymsp[-2].minor.yy210,yymsp[0].minor.yy284);} +#line 2044 "parse.c" + break; + case 81: +#line 255 "parse.y" +{sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy210,yymsp[0].minor.yy284,0,0);} +#line 2049 "parse.c" + break; + case 83: +#line 258 "parse.y" +{ + sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy210, &yymsp[-3].minor.yy98, yymsp[-2].minor.yy210, yymsp[-1].minor.yy284); + sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy284); +} +#line 2057 "parse.c" + break; + case 86: + case 88: +#line 272 "parse.y" +{yygotominor.yy284 = OE_Default;} +#line 2063 "parse.c" + break; + case 91: +#line 277 "parse.y" +{yygotominor.yy284 = OE_Ignore;} +#line 2068 "parse.c" + break; + case 92: + case 162: +#line 278 "parse.y" +{yygotominor.yy284 = OE_Replace;} +#line 2074 "parse.c" + break; + case 93: +#line 282 "parse.y" +{ + sqlite3DropTable(pParse, yymsp[0].minor.yy259, 0); +} +#line 2081 "parse.c" + break; + case 94: +#line 288 "parse.y" +{ + sqlite3CreateView(pParse, &yymsp[-6].minor.yy0, &yymsp[-3].minor.yy98, &yymsp[-2].minor.yy98, yymsp[0].minor.yy107, yymsp[-5].minor.yy284); +} +#line 2088 "parse.c" + break; + case 95: +#line 291 "parse.y" +{ + sqlite3DropTable(pParse, yymsp[0].minor.yy259, 1); +} +#line 2095 "parse.c" + break; + case 96: +#line 297 "parse.y" +{ + sqlite3Select(pParse, yymsp[0].minor.yy107, SRT_Callback, 0, 0, 0, 0, 0); + sqlite3SelectDelete(yymsp[0].minor.yy107); +} +#line 2103 "parse.c" + break; + case 97: + case 121: +#line 307 "parse.y" +{yygotominor.yy107 = yymsp[0].minor.yy107;} +#line 2109 "parse.c" + break; + case 98: +#line 308 "parse.y" +{ + if( yymsp[0].minor.yy107 ){ + yymsp[0].minor.yy107->op = yymsp[-1].minor.yy284; + yymsp[0].minor.yy107->pPrior = yymsp[-2].minor.yy107; + } + yygotominor.yy107 = yymsp[0].minor.yy107; +} +#line 2120 "parse.c" + break; + case 100: +#line 317 "parse.y" +{yygotominor.yy284 = TK_ALL;} +#line 2125 "parse.c" + break; + case 103: +#line 321 "parse.y" +{ + yygotominor.yy107 = sqlite3SelectNew(yymsp[-6].minor.yy210,yymsp[-5].minor.yy259,yymsp[-4].minor.yy258,yymsp[-3].minor.yy210,yymsp[-2].minor.yy258,yymsp[-1].minor.yy210,yymsp[-7].minor.yy284,yymsp[0].minor.yy404.limit,yymsp[0].minor.yy404.offset); +} +#line 2132 "parse.c" + break; + case 107: + case 238: +#line 342 "parse.y" +{yygotominor.yy210 = yymsp[-1].minor.yy210;} +#line 2138 "parse.c" + break; + case 108: + case 135: + case 145: + case 237: +#line 343 "parse.y" +{yygotominor.yy210 = 0;} +#line 2146 "parse.c" + break; + case 109: +#line 344 "parse.y" +{ + yygotominor.yy210 = sqlite3ExprListAppend(yymsp[-2].minor.yy210,yymsp[-1].minor.yy258,yymsp[0].minor.yy98.n?&yymsp[0].minor.yy98:0); +} +#line 2153 "parse.c" + break; + case 110: +#line 347 "parse.y" +{ + yygotominor.yy210 = sqlite3ExprListAppend(yymsp[-1].minor.yy210, sqlite3Expr(TK_ALL, 0, 0, 0), 0); +} +#line 2160 "parse.c" + break; + case 111: +#line 350 "parse.y" +{ + Expr *pRight = sqlite3Expr(TK_ALL, 0, 0, 0); + Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, &yymsp[-2].minor.yy98); + yygotominor.yy210 = sqlite3ExprListAppend(yymsp[-3].minor.yy210, sqlite3Expr(TK_DOT, pLeft, pRight, 0), 0); +} +#line 2169 "parse.c" + break; + case 114: +#line 362 "parse.y" +{yygotominor.yy98.n = 0;} +#line 2174 "parse.c" + break; + case 115: +#line 374 "parse.y" +{yygotominor.yy259 = sqliteMalloc(sizeof(*yygotominor.yy259));} +#line 2179 "parse.c" + break; + case 116: +#line 375 "parse.y" +{yygotominor.yy259 = yymsp[0].minor.yy259;} +#line 2184 "parse.c" + break; + case 117: +#line 380 "parse.y" +{ + yygotominor.yy259 = yymsp[-1].minor.yy259; + if( yygotominor.yy259 && yygotominor.yy259->nSrc>0 ) yygotominor.yy259->a[yygotominor.yy259->nSrc-1].jointype = yymsp[0].minor.yy284; +} +#line 2192 "parse.c" + break; + case 118: +#line 384 "parse.y" +{yygotominor.yy259 = 0;} +#line 2197 "parse.c" + break; + case 119: +#line 385 "parse.y" +{ + yygotominor.yy259 = sqlite3SrcListAppend(yymsp[-5].minor.yy259,&yymsp[-4].minor.yy98,&yymsp[-3].minor.yy98); + if( yymsp[-2].minor.yy98.n ) sqlite3SrcListAddAlias(yygotominor.yy259,&yymsp[-2].minor.yy98); + if( yymsp[-1].minor.yy258 ){ + if( yygotominor.yy259 && yygotominor.yy259->nSrc>1 ){ yygotominor.yy259->a[yygotominor.yy259->nSrc-2].pOn = yymsp[-1].minor.yy258; } + else { sqlite3ExprDelete(yymsp[-1].minor.yy258); } + } + if( yymsp[0].minor.yy272 ){ + if( yygotominor.yy259 && yygotominor.yy259->nSrc>1 ){ yygotominor.yy259->a[yygotominor.yy259->nSrc-2].pUsing = yymsp[0].minor.yy272; } + else { sqlite3IdListDelete(yymsp[0].minor.yy272); } + } +} +#line 2213 "parse.c" + break; + case 120: +#line 398 "parse.y" +{ + yygotominor.yy259 = sqlite3SrcListAppend(yymsp[-6].minor.yy259,0,0); + yygotominor.yy259->a[yygotominor.yy259->nSrc-1].pSelect = yymsp[-4].minor.yy107; + if( yymsp[-2].minor.yy98.n ) sqlite3SrcListAddAlias(yygotominor.yy259,&yymsp[-2].minor.yy98); + if( yymsp[-1].minor.yy258 ){ + if( yygotominor.yy259 && yygotominor.yy259->nSrc>1 ){ yygotominor.yy259->a[yygotominor.yy259->nSrc-2].pOn = yymsp[-1].minor.yy258; } + else { sqlite3ExprDelete(yymsp[-1].minor.yy258); } + } + if( yymsp[0].minor.yy272 ){ + if( yygotominor.yy259 && yygotominor.yy259->nSrc>1 ){ yygotominor.yy259->a[yygotominor.yy259->nSrc-2].pUsing = yymsp[0].minor.yy272; } + else { sqlite3IdListDelete(yymsp[0].minor.yy272); } + } +} +#line 2230 "parse.c" + break; + case 122: +#line 419 "parse.y" +{ + yygotominor.yy107 = sqlite3SelectNew(0,yymsp[0].minor.yy259,0,0,0,0,0,-1,0); +} +#line 2237 "parse.c" + break; + case 123: +#line 424 "parse.y" +{yygotominor.yy98.z=0; yygotominor.yy98.n=0;} +#line 2242 "parse.c" + break; + case 125: +#line 429 "parse.y" +{yygotominor.yy259 = sqlite3SrcListAppend(0,&yymsp[-1].minor.yy98,&yymsp[0].minor.yy98);} +#line 2247 "parse.c" + break; + case 126: + case 127: +#line 433 "parse.y" +{ yygotominor.yy284 = JT_INNER; } +#line 2253 "parse.c" + break; + case 128: +#line 435 "parse.y" +{ yygotominor.yy284 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); } +#line 2258 "parse.c" + break; + case 129: +#line 436 "parse.y" +{ yygotominor.yy284 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy98,0); } +#line 2263 "parse.c" + break; + case 130: +#line 438 "parse.y" +{ yygotominor.yy284 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy98,&yymsp[-1].minor.yy98); } +#line 2268 "parse.c" + break; + case 131: + case 139: + case 148: + case 155: + case 226: + case 228: + case 232: +#line 442 "parse.y" +{yygotominor.yy258 = yymsp[0].minor.yy258;} +#line 2279 "parse.c" + break; + case 132: + case 147: + case 154: + case 227: + case 229: + case 233: +#line 443 "parse.y" +{yygotominor.yy258 = 0;} +#line 2289 "parse.c" + break; + case 133: + case 166: +#line 447 "parse.y" +{yygotominor.yy272 = yymsp[-1].minor.yy272;} +#line 2295 "parse.c" + break; + case 134: + case 165: +#line 448 "parse.y" +{yygotominor.yy272 = 0;} +#line 2301 "parse.c" + break; + case 136: + case 146: +#line 459 "parse.y" +{yygotominor.yy210 = yymsp[0].minor.yy210;} +#line 2307 "parse.c" + break; + case 137: +#line 460 "parse.y" +{ + yygotominor.yy210 = sqlite3ExprListAppend(yymsp[-4].minor.yy210,yymsp[-2].minor.yy258,yymsp[-1].minor.yy98.n>0?&yymsp[-1].minor.yy98:0); + if( yygotominor.yy210 ) yygotominor.yy210->a[yygotominor.yy210->nExpr-1].sortOrder = yymsp[0].minor.yy284; +} +#line 2315 "parse.c" + break; + case 138: +#line 464 "parse.y" +{ + yygotominor.yy210 = sqlite3ExprListAppend(0,yymsp[-2].minor.yy258,yymsp[-1].minor.yy98.n>0?&yymsp[-1].minor.yy98:0); + if( yygotominor.yy210 && yygotominor.yy210->a ) yygotominor.yy210->a[0].sortOrder = yymsp[0].minor.yy284; +} +#line 2323 "parse.c" + break; + case 140: + case 142: +#line 473 "parse.y" +{yygotominor.yy284 = SQLITE_SO_ASC;} +#line 2329 "parse.c" + break; + case 141: +#line 474 "parse.y" +{yygotominor.yy284 = SQLITE_SO_DESC;} +#line 2334 "parse.c" + break; + case 143: +#line 476 "parse.y" +{yygotominor.yy98.z = 0; yygotominor.yy98.n = 0;} +#line 2339 "parse.c" + break; + case 149: +#line 490 "parse.y" +{yygotominor.yy404.limit = -1; yygotominor.yy404.offset = 0;} +#line 2344 "parse.c" + break; + case 150: +#line 491 "parse.y" +{yygotominor.yy404.limit = yymsp[0].minor.yy284; yygotominor.yy404.offset = 0;} +#line 2349 "parse.c" + break; + case 151: +#line 493 "parse.y" +{yygotominor.yy404.limit = yymsp[-2].minor.yy284; yygotominor.yy404.offset = yymsp[0].minor.yy284;} +#line 2354 "parse.c" + break; + case 152: +#line 495 "parse.y" +{yygotominor.yy404.limit = yymsp[0].minor.yy284; yygotominor.yy404.offset = yymsp[-2].minor.yy284;} +#line 2359 "parse.c" + break; + case 153: +#line 499 "parse.y" +{sqlite3DeleteFrom(pParse,yymsp[-1].minor.yy259,yymsp[0].minor.yy258);} +#line 2364 "parse.c" + break; + case 156: +#line 513 "parse.y" +{sqlite3Update(pParse,yymsp[-3].minor.yy259,yymsp[-1].minor.yy210,yymsp[0].minor.yy258,yymsp[-4].minor.yy284);} +#line 2369 "parse.c" + break; + case 157: +#line 516 "parse.y" +{yygotominor.yy210 = sqlite3ExprListAppend(yymsp[-4].minor.yy210,yymsp[0].minor.yy258,&yymsp[-2].minor.yy98);} +#line 2374 "parse.c" + break; + case 158: +#line 517 "parse.y" +{yygotominor.yy210 = sqlite3ExprListAppend(0,yymsp[0].minor.yy258,&yymsp[-2].minor.yy98);} +#line 2379 "parse.c" + break; + case 159: +#line 523 "parse.y" +{sqlite3Insert(pParse, yymsp[-5].minor.yy259, yymsp[-1].minor.yy210, 0, yymsp[-4].minor.yy272, yymsp[-7].minor.yy284);} +#line 2384 "parse.c" + break; + case 160: +#line 525 "parse.y" +{sqlite3Insert(pParse, yymsp[-2].minor.yy259, 0, yymsp[0].minor.yy107, yymsp[-1].minor.yy272, yymsp[-4].minor.yy284);} +#line 2389 "parse.c" + break; + case 163: + case 230: +#line 535 "parse.y" +{yygotominor.yy210 = sqlite3ExprListAppend(yymsp[-2].minor.yy210,yymsp[0].minor.yy258,0);} +#line 2395 "parse.c" + break; + case 164: + case 231: +#line 536 "parse.y" +{yygotominor.yy210 = sqlite3ExprListAppend(0,yymsp[0].minor.yy258,0);} +#line 2401 "parse.c" + break; + case 167: +#line 545 "parse.y" +{yygotominor.yy272 = sqlite3IdListAppend(yymsp[-2].minor.yy272,&yymsp[0].minor.yy98);} +#line 2406 "parse.c" + break; + case 168: +#line 546 "parse.y" +{yygotominor.yy272 = sqlite3IdListAppend(0,&yymsp[0].minor.yy98);} +#line 2411 "parse.c" + break; + case 169: +#line 554 "parse.y" +{yygotominor.yy258 = yymsp[-1].minor.yy258; sqlite3ExprSpan(yygotominor.yy258,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); } +#line 2416 "parse.c" + break; + case 170: + case 175: + case 176: + case 177: + case 178: +#line 555 "parse.y" +{yygotominor.yy258 = sqlite3Expr(yymsp[0].major, 0, 0, &yymsp[0].minor.yy0);} +#line 2425 "parse.c" + break; + case 171: + case 172: +#line 556 "parse.y" +{yygotominor.yy258 = sqlite3Expr(TK_ID, 0, 0, &yymsp[0].minor.yy0);} +#line 2431 "parse.c" + break; + case 173: +#line 558 "parse.y" +{ + Expr *temp1 = sqlite3Expr(TK_ID, 0, 0, &yymsp[-2].minor.yy98); + Expr *temp2 = sqlite3Expr(TK_ID, 0, 0, &yymsp[0].minor.yy98); + yygotominor.yy258 = sqlite3Expr(TK_DOT, temp1, temp2, 0); +} +#line 2440 "parse.c" + break; + case 174: +#line 563 "parse.y" +{ + Expr *temp1 = sqlite3Expr(TK_ID, 0, 0, &yymsp[-4].minor.yy98); + Expr *temp2 = sqlite3Expr(TK_ID, 0, 0, &yymsp[-2].minor.yy98); + Expr *temp3 = sqlite3Expr(TK_ID, 0, 0, &yymsp[0].minor.yy98); + Expr *temp4 = sqlite3Expr(TK_DOT, temp2, temp3, 0); + yygotominor.yy258 = sqlite3Expr(TK_DOT, temp1, temp4, 0); +} +#line 2451 "parse.c" + break; + case 179: +#line 574 "parse.y" +{ + Token *pToken = &yymsp[0].minor.yy0; + Expr *pExpr = yygotominor.yy258 = sqlite3Expr(TK_VARIABLE, 0, 0, pToken); + sqlite3ExprAssignVarNumber(pParse, pExpr); +} +#line 2460 "parse.c" + break; + case 180: +#line 579 "parse.y" +{ + yygotominor.yy258 = sqlite3ExprFunction(yymsp[-1].minor.yy210, &yymsp[-3].minor.yy0); + sqlite3ExprSpan(yygotominor.yy258,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0); +} +#line 2468 "parse.c" + break; + case 181: +#line 583 "parse.y" +{ + yygotominor.yy258 = sqlite3ExprFunction(0, &yymsp[-3].minor.yy0); + sqlite3ExprSpan(yygotominor.yy258,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0); +} +#line 2476 "parse.c" + break; + case 182: + case 183: + case 184: + case 185: + case 186: + case 187: + case 188: + case 189: + case 190: + case 191: + case 192: + case 193: + case 194: + case 195: + case 196: + case 197: + case 198: + case 199: +#line 587 "parse.y" +{yygotominor.yy258 = sqlite3Expr(yymsp[-1].major, yymsp[-2].minor.yy258, yymsp[0].minor.yy258, 0);} +#line 2498 "parse.c" + break; + case 200: +#line 606 "parse.y" +{yygotominor.yy342.opcode = TK_LIKE; yygotominor.yy342.not = 0;} +#line 2503 "parse.c" + break; + case 201: +#line 607 "parse.y" +{yygotominor.yy342.opcode = TK_GLOB; yygotominor.yy342.not = 0;} +#line 2508 "parse.c" + break; + case 202: +#line 608 "parse.y" +{yygotominor.yy342.opcode = TK_LIKE; yygotominor.yy342.not = 1;} +#line 2513 "parse.c" + break; + case 203: +#line 609 "parse.y" +{yygotominor.yy342.opcode = TK_GLOB; yygotominor.yy342.not = 1;} +#line 2518 "parse.c" + break; + case 204: +#line 610 "parse.y" +{ + ExprList *pList = sqlite3ExprListAppend(0, yymsp[0].minor.yy258, 0); + pList = sqlite3ExprListAppend(pList, yymsp[-2].minor.yy258, 0); + yygotominor.yy258 = sqlite3ExprFunction(pList, 0); + if( yygotominor.yy258 ) yygotominor.yy258->op = yymsp[-1].minor.yy342.opcode; + if( yymsp[-1].minor.yy342.not ) yygotominor.yy258 = sqlite3Expr(TK_NOT, yygotominor.yy258, 0, 0); + sqlite3ExprSpan(yygotominor.yy258, &yymsp[-2].minor.yy258->span, &yymsp[0].minor.yy258->span); +} +#line 2530 "parse.c" + break; + case 205: +#line 618 "parse.y" +{ + yygotominor.yy258 = sqlite3Expr(TK_ISNULL, yymsp[-1].minor.yy258, 0, 0); + sqlite3ExprSpan(yygotominor.yy258,&yymsp[-1].minor.yy258->span,&yymsp[0].minor.yy0); +} +#line 2538 "parse.c" + break; + case 206: +#line 622 "parse.y" +{ + yygotominor.yy258 = sqlite3Expr(TK_ISNULL, yymsp[-2].minor.yy258, 0, 0); + sqlite3ExprSpan(yygotominor.yy258,&yymsp[-2].minor.yy258->span,&yymsp[0].minor.yy0); +} +#line 2546 "parse.c" + break; + case 207: +#line 626 "parse.y" +{ + yygotominor.yy258 = sqlite3Expr(TK_NOTNULL, yymsp[-1].minor.yy258, 0, 0); + sqlite3ExprSpan(yygotominor.yy258,&yymsp[-1].minor.yy258->span,&yymsp[0].minor.yy0); +} +#line 2554 "parse.c" + break; + case 208: +#line 630 "parse.y" +{ + yygotominor.yy258 = sqlite3Expr(TK_NOTNULL, yymsp[-2].minor.yy258, 0, 0); + sqlite3ExprSpan(yygotominor.yy258,&yymsp[-2].minor.yy258->span,&yymsp[0].minor.yy0); +} +#line 2562 "parse.c" + break; + case 209: +#line 634 "parse.y" +{ + yygotominor.yy258 = sqlite3Expr(TK_NOTNULL, yymsp[-3].minor.yy258, 0, 0); + sqlite3ExprSpan(yygotominor.yy258,&yymsp[-3].minor.yy258->span,&yymsp[0].minor.yy0); +} +#line 2570 "parse.c" + break; + case 210: + case 211: +#line 638 "parse.y" +{ + yygotominor.yy258 = sqlite3Expr(yymsp[-1].major, yymsp[0].minor.yy258, 0, 0); + sqlite3ExprSpan(yygotominor.yy258,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy258->span); +} +#line 2579 "parse.c" + break; + case 212: +#line 646 "parse.y" +{ + yygotominor.yy258 = sqlite3Expr(TK_UMINUS, yymsp[0].minor.yy258, 0, 0); + sqlite3ExprSpan(yygotominor.yy258,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy258->span); +} +#line 2587 "parse.c" + break; + case 213: +#line 650 "parse.y" +{ + yygotominor.yy258 = sqlite3Expr(TK_UPLUS, yymsp[0].minor.yy258, 0, 0); + sqlite3ExprSpan(yygotominor.yy258,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy258->span); +} +#line 2595 "parse.c" + break; + case 214: +#line 654 "parse.y" +{ + yygotominor.yy258 = sqlite3Expr(TK_SELECT, 0, 0, 0); + if( yygotominor.yy258 ) yygotominor.yy258->pSelect = yymsp[-1].minor.yy107; + sqlite3ExprSpan(yygotominor.yy258,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); +} +#line 2604 "parse.c" + break; + case 217: +#line 662 "parse.y" +{ + ExprList *pList = sqlite3ExprListAppend(0, yymsp[-2].minor.yy258, 0); + pList = sqlite3ExprListAppend(pList, yymsp[0].minor.yy258, 0); + yygotominor.yy258 = sqlite3Expr(TK_BETWEEN, yymsp[-4].minor.yy258, 0, 0); + if( yygotominor.yy258 ) yygotominor.yy258->pList = pList; + if( yymsp[-3].minor.yy284 ) yygotominor.yy258 = sqlite3Expr(TK_NOT, yygotominor.yy258, 0, 0); + sqlite3ExprSpan(yygotominor.yy258,&yymsp[-4].minor.yy258->span,&yymsp[0].minor.yy258->span); +} +#line 2616 "parse.c" + break; + case 220: +#line 673 "parse.y" +{ + yygotominor.yy258 = sqlite3Expr(TK_IN, yymsp[-4].minor.yy258, 0, 0); + if( yygotominor.yy258 ) yygotominor.yy258->pList = yymsp[-1].minor.yy210; + if( yymsp[-3].minor.yy284 ) yygotominor.yy258 = sqlite3Expr(TK_NOT, yygotominor.yy258, 0, 0); + sqlite3ExprSpan(yygotominor.yy258,&yymsp[-4].minor.yy258->span,&yymsp[0].minor.yy0); +} +#line 2626 "parse.c" + break; + case 221: +#line 679 "parse.y" +{ + yygotominor.yy258 = sqlite3Expr(TK_IN, yymsp[-4].minor.yy258, 0, 0); + if( yygotominor.yy258 ) yygotominor.yy258->pSelect = yymsp[-1].minor.yy107; + if( yymsp[-3].minor.yy284 ) yygotominor.yy258 = sqlite3Expr(TK_NOT, yygotominor.yy258, 0, 0); + sqlite3ExprSpan(yygotominor.yy258,&yymsp[-4].minor.yy258->span,&yymsp[0].minor.yy0); +} +#line 2636 "parse.c" + break; + case 222: +#line 685 "parse.y" +{ + SrcList *pSrc = sqlite3SrcListAppend(0,&yymsp[-1].minor.yy98,&yymsp[0].minor.yy98); + yygotominor.yy258 = sqlite3Expr(TK_IN, yymsp[-3].minor.yy258, 0, 0); + if( yygotominor.yy258 ) yygotominor.yy258->pSelect = sqlite3SelectNew(0,pSrc,0,0,0,0,0,-1,0); + if( yymsp[-2].minor.yy284 ) yygotominor.yy258 = sqlite3Expr(TK_NOT, yygotominor.yy258, 0, 0); + sqlite3ExprSpan(yygotominor.yy258,&yymsp[-3].minor.yy258->span,yymsp[0].minor.yy98.z?&yymsp[0].minor.yy98:&yymsp[-1].minor.yy98); +} +#line 2647 "parse.c" + break; + case 223: +#line 695 "parse.y" +{ + yygotominor.yy258 = sqlite3Expr(TK_CASE, yymsp[-3].minor.yy258, yymsp[-1].minor.yy258, 0); + if( yygotominor.yy258 ) yygotominor.yy258->pList = yymsp[-2].minor.yy210; + sqlite3ExprSpan(yygotominor.yy258, &yymsp[-4].minor.yy0, &yymsp[0].minor.yy0); +} +#line 2656 "parse.c" + break; + case 224: +#line 702 "parse.y" +{ + yygotominor.yy210 = sqlite3ExprListAppend(yymsp[-4].minor.yy210, yymsp[-2].minor.yy258, 0); + yygotominor.yy210 = sqlite3ExprListAppend(yygotominor.yy210, yymsp[0].minor.yy258, 0); +} +#line 2664 "parse.c" + break; + case 225: +#line 706 "parse.y" +{ + yygotominor.yy210 = sqlite3ExprListAppend(0, yymsp[-2].minor.yy258, 0); + yygotominor.yy210 = sqlite3ExprListAppend(yygotominor.yy210, yymsp[0].minor.yy258, 0); +} +#line 2672 "parse.c" + break; + case 234: +#line 731 "parse.y" +{ + if( yymsp[-9].minor.yy284!=OE_None ) yymsp[-9].minor.yy284 = yymsp[0].minor.yy284; + if( yymsp[-9].minor.yy284==OE_Default) yymsp[-9].minor.yy284 = OE_Abort; + sqlite3CreateIndex(pParse, &yymsp[-7].minor.yy98, &yymsp[-6].minor.yy98, yymsp[-4].minor.yy259, yymsp[-2].minor.yy210, yymsp[-9].minor.yy284, &yymsp[-10].minor.yy0, &yymsp[-1].minor.yy0); +} +#line 2681 "parse.c" + break; + case 235: + case 282: +#line 738 "parse.y" +{yygotominor.yy284 = OE_Abort;} +#line 2687 "parse.c" + break; + case 236: +#line 739 "parse.y" +{yygotominor.yy284 = OE_None;} +#line 2692 "parse.c" + break; + case 239: +#line 749 "parse.y" +{ + Expr *p = 0; + if( yymsp[-1].minor.yy98.n>0 ){ + p = sqlite3Expr(TK_COLUMN, 0, 0, 0); + if( p ) p->pColl = sqlite3LocateCollSeq(pParse, yymsp[-1].minor.yy98.z, yymsp[-1].minor.yy98.n); + } + yygotominor.yy210 = sqlite3ExprListAppend(yymsp[-4].minor.yy210, p, &yymsp[-2].minor.yy98); +} +#line 2704 "parse.c" + break; + case 240: +#line 757 "parse.y" +{ + Expr *p = 0; + if( yymsp[-1].minor.yy98.n>0 ){ + p = sqlite3Expr(TK_COLUMN, 0, 0, 0); + if( p ) p->pColl = sqlite3LocateCollSeq(pParse, yymsp[-1].minor.yy98.z, yymsp[-1].minor.yy98.n); + } + yygotominor.yy210 = sqlite3ExprListAppend(0, p, &yymsp[-2].minor.yy98); +} +#line 2716 "parse.c" + break; + case 242: +#line 770 "parse.y" +{sqlite3DropIndex(pParse, yymsp[0].minor.yy259);} +#line 2721 "parse.c" + break; + case 243: + case 244: +#line 774 "parse.y" +{sqlite3Vacuum(pParse,0);} +#line 2727 "parse.c" + break; + case 245: + case 247: +#line 779 "parse.y" +{sqlite3Pragma(pParse,&yymsp[-3].minor.yy98,&yymsp[-2].minor.yy98,&yymsp[0].minor.yy98,0);} +#line 2733 "parse.c" + break; + case 246: +#line 780 "parse.y" +{sqlite3Pragma(pParse,&yymsp[-3].minor.yy98,&yymsp[-2].minor.yy98,&yymsp[0].minor.yy0,0);} +#line 2738 "parse.c" + break; + case 248: +#line 782 "parse.y" +{ + sqlite3Pragma(pParse,&yymsp[-3].minor.yy98,&yymsp[-2].minor.yy98,&yymsp[0].minor.yy98,1); +} +#line 2745 "parse.c" + break; + case 249: +#line 785 "parse.y" +{sqlite3Pragma(pParse,&yymsp[-4].minor.yy98,&yymsp[-3].minor.yy98,&yymsp[-1].minor.yy98,0);} +#line 2750 "parse.c" + break; + case 250: +#line 786 "parse.y" +{sqlite3Pragma(pParse,&yymsp[-1].minor.yy98,&yymsp[0].minor.yy98,0,0);} +#line 2755 "parse.c" + break; + case 257: +#line 796 "parse.y" +{ + Token all; + all.z = yymsp[-3].minor.yy98.z; + all.n = (yymsp[0].minor.yy0.z - yymsp[-3].minor.yy98.z) + yymsp[0].minor.yy0.n; + sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy91, &all); +} +#line 2765 "parse.c" + break; + case 258: +#line 805 "parse.y" +{ + sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy98, &yymsp[-6].minor.yy98, yymsp[-5].minor.yy284, yymsp[-4].minor.yy146.a, yymsp[-4].minor.yy146.b, yymsp[-2].minor.yy259, yymsp[-1].minor.yy284, yymsp[0].minor.yy258, yymsp[-9].minor.yy284); + yygotominor.yy98 = (yymsp[-6].minor.yy98.n==0?yymsp[-7].minor.yy98:yymsp[-6].minor.yy98); +} +#line 2773 "parse.c" + break; + case 259: + case 262: +#line 811 "parse.y" +{ yygotominor.yy284 = TK_BEFORE; } +#line 2779 "parse.c" + break; + case 260: +#line 812 "parse.y" +{ yygotominor.yy284 = TK_AFTER; } +#line 2784 "parse.c" + break; + case 261: +#line 813 "parse.y" +{ yygotominor.yy284 = TK_INSTEAD;} +#line 2789 "parse.c" + break; + case 263: + case 264: + case 265: +#line 818 "parse.y" +{yygotominor.yy146.a = yymsp[0].major; yygotominor.yy146.b = 0;} +#line 2796 "parse.c" + break; + case 266: +#line 821 "parse.y" +{yygotominor.yy146.a = TK_UPDATE; yygotominor.yy146.b = yymsp[0].minor.yy272;} +#line 2801 "parse.c" + break; + case 267: + case 268: +#line 824 "parse.y" +{ yygotominor.yy284 = TK_ROW; } +#line 2807 "parse.c" + break; + case 269: +#line 826 "parse.y" +{ yygotominor.yy284 = TK_STATEMENT; } +#line 2812 "parse.c" + break; + case 270: +#line 829 "parse.y" +{ yygotominor.yy258 = 0; } +#line 2817 "parse.c" + break; + case 271: +#line 830 "parse.y" +{ yygotominor.yy258 = yymsp[0].minor.yy258; } +#line 2822 "parse.c" + break; + case 272: +#line 834 "parse.y" +{ + yymsp[-2].minor.yy91->pNext = yymsp[0].minor.yy91; + yygotominor.yy91 = yymsp[-2].minor.yy91; +} +#line 2830 "parse.c" + break; + case 273: +#line 838 "parse.y" +{ yygotominor.yy91 = 0; } +#line 2835 "parse.c" + break; + case 274: +#line 844 "parse.y" +{ yygotominor.yy91 = sqlite3TriggerUpdateStep(&yymsp[-3].minor.yy98, yymsp[-1].minor.yy210, yymsp[0].minor.yy258, yymsp[-4].minor.yy284); } +#line 2840 "parse.c" + break; + case 275: +#line 849 "parse.y" +{yygotominor.yy91 = sqlite3TriggerInsertStep(&yymsp[-5].minor.yy98, yymsp[-4].minor.yy272, yymsp[-1].minor.yy210, 0, yymsp[-7].minor.yy284);} +#line 2845 "parse.c" + break; + case 276: +#line 852 "parse.y" +{yygotominor.yy91 = sqlite3TriggerInsertStep(&yymsp[-2].minor.yy98, yymsp[-1].minor.yy272, 0, yymsp[0].minor.yy107, yymsp[-4].minor.yy284);} +#line 2850 "parse.c" + break; + case 277: +#line 856 "parse.y" +{yygotominor.yy91 = sqlite3TriggerDeleteStep(&yymsp[-1].minor.yy98, yymsp[0].minor.yy258);} +#line 2855 "parse.c" + break; + case 278: +#line 859 "parse.y" +{yygotominor.yy91 = sqlite3TriggerSelectStep(yymsp[0].minor.yy107); } +#line 2860 "parse.c" + break; + case 279: +#line 862 "parse.y" +{ + yygotominor.yy258 = sqlite3Expr(TK_RAISE, 0, 0, 0); + yygotominor.yy258->iColumn = OE_Ignore; + sqlite3ExprSpan(yygotominor.yy258, &yymsp[-3].minor.yy0, &yymsp[0].minor.yy0); +} +#line 2869 "parse.c" + break; + case 280: +#line 867 "parse.y" +{ + yygotominor.yy258 = sqlite3Expr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy98); + yygotominor.yy258->iColumn = yymsp[-3].minor.yy284; + sqlite3ExprSpan(yygotominor.yy258, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0); +} +#line 2878 "parse.c" + break; + case 281: +#line 873 "parse.y" +{yygotominor.yy284 = OE_Rollback;} +#line 2883 "parse.c" + break; + case 283: +#line 875 "parse.y" +{yygotominor.yy284 = OE_Fail;} +#line 2888 "parse.c" + break; + case 284: +#line 879 "parse.y" +{ + sqlite3DropTrigger(pParse,yymsp[0].minor.yy259); +} +#line 2895 "parse.c" + break; + case 285: +#line 884 "parse.y" +{ + sqlite3Attach(pParse, &yymsp[-3].minor.yy98, &yymsp[-1].minor.yy98, yymsp[0].minor.yy292.type, &yymsp[0].minor.yy292.key); +} +#line 2902 "parse.c" + break; + case 286: +#line 888 "parse.y" +{ yygotominor.yy292.type = 0; } +#line 2907 "parse.c" + break; + case 287: +#line 889 "parse.y" +{ yygotominor.yy292.type=1; yygotominor.yy292.key = yymsp[0].minor.yy98; } +#line 2912 "parse.c" + break; + case 288: +#line 890 "parse.y" +{ yygotominor.yy292.type=2; yygotominor.yy292.key = yymsp[0].minor.yy0; } +#line 2917 "parse.c" + break; + case 291: +#line 896 "parse.y" +{ + sqlite3Detach(pParse, &yymsp[0].minor.yy98); +} +#line 2924 "parse.c" + break; + }; + yygoto = yyRuleInfo[yyruleno].lhs; + yysize = yyRuleInfo[yyruleno].nrhs; + yypParser->yyidx -= yysize; + yyact = yy_find_reduce_action(yypParser,yygoto); + if( yyact < YYNSTATE ){ + yy_shift(yypParser,yyact,yygoto,&yygotominor); + }else if( yyact == YYNSTATE + YYNRULE + 1 ){ + yy_accept(yypParser); + } +} + +/* +** The following code executes when the parse fails +*/ +static void yy_parse_failed( + yyParser *yypParser /* The parser */ +){ + sqlite3ParserARG_FETCH; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt); + } +#endif + while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); + /* Here code is inserted which will be executed whenever the + ** parser fails */ + sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */ +} + +/* +** The following code executes when a syntax error first occurs. +*/ +static void yy_syntax_error( + yyParser *yypParser, /* The parser */ + int yymajor, /* The major type of the error token */ + YYMINORTYPE yyminor /* The minor type of the error token */ +){ + sqlite3ParserARG_FETCH; +#define TOKEN (yyminor.yy0) +#line 23 "parse.y" + + if( pParse->zErrMsg==0 ){ + if( TOKEN.z[0] ){ + sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); + }else{ + sqlite3ErrorMsg(pParse, "incomplete SQL statement"); + } + } +#line 2976 "parse.c" + sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */ +} + +/* +** The following is executed when the parser accepts +*/ +static void yy_accept( + yyParser *yypParser /* The parser */ +){ + sqlite3ParserARG_FETCH; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt); + } +#endif + while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); + /* Here code is inserted which will be executed whenever the + ** parser accepts */ + sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */ +} + +/* The main parser program. +** The first argument is a pointer to a structure obtained from +** "sqlite3ParserAlloc" which describes the current state of the parser. +** The second argument is the major token number. The third is +** the minor token. The fourth optional argument is whatever the +** user wants (and specified in the grammar) and is available for +** use by the action routines. +** +** Inputs: +** <ul> +** <li> A pointer to the parser (an opaque structure.) +** <li> The major token number. +** <li> The minor token number. +** <li> An option argument of a grammar-specified type. +** </ul> +** +** Outputs: +** None. +*/ +void sqlite3Parser( + void *yyp, /* The parser */ + int yymajor, /* The major token code number */ + sqlite3ParserTOKENTYPE yyminor /* The value for the token */ + sqlite3ParserARG_PDECL /* Optional %extra_argument parameter */ +){ + YYMINORTYPE yyminorunion; + int yyact; /* The parser action. */ + int yyendofinput; /* True if we are at the end of input */ + int yyerrorhit = 0; /* True if yymajor has invoked an error */ + yyParser *yypParser; /* The parser */ + + /* (re)initialize the parser, if necessary */ + yypParser = (yyParser*)yyp; + if( yypParser->yyidx<0 ){ + if( yymajor==0 ) return; + yypParser->yyidx = 0; + yypParser->yyerrcnt = -1; + yypParser->yystack[0].stateno = 0; + yypParser->yystack[0].major = 0; + } + yyminorunion.yy0 = yyminor; + yyendofinput = (yymajor==0); + sqlite3ParserARG_STORE; + +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]); + } +#endif + + do{ + yyact = yy_find_shift_action(yypParser,yymajor); + if( yyact<YYNSTATE ){ + yy_shift(yypParser,yyact,yymajor,&yyminorunion); + yypParser->yyerrcnt--; + if( yyendofinput && yypParser->yyidx>=0 ){ + yymajor = 0; + }else{ + yymajor = YYNOCODE; + } + }else if( yyact < YYNSTATE + YYNRULE ){ + yy_reduce(yypParser,yyact-YYNSTATE); + }else if( yyact == YY_ERROR_ACTION ){ + int yymx; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt); + } +#endif +#ifdef YYERRORSYMBOL + /* A syntax error has occurred. + ** The response to an error depends upon whether or not the + ** grammar defines an error token "ERROR". + ** + ** This is what we do if the grammar does define ERROR: + ** + ** * Call the %syntax_error function. + ** + ** * Begin popping the stack until we enter a state where + ** it is legal to shift the error symbol, then shift + ** the error symbol. + ** + ** * Set the error count to three. + ** + ** * Begin accepting and shifting new tokens. No new error + ** processing will occur until three tokens have been + ** shifted successfully. + ** + */ + if( yypParser->yyerrcnt<0 ){ + yy_syntax_error(yypParser,yymajor,yyminorunion); + } + yymx = yypParser->yystack[yypParser->yyidx].major; + if( yymx==YYERRORSYMBOL || yyerrorhit ){ +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sDiscard input token %s\n", + yyTracePrompt,yyTokenName[yymajor]); + } +#endif + yy_destructor(yymajor,&yyminorunion); + yymajor = YYNOCODE; + }else{ + while( + yypParser->yyidx >= 0 && + yymx != YYERRORSYMBOL && + (yyact = yy_find_shift_action(yypParser,YYERRORSYMBOL)) >= YYNSTATE + ){ + yy_pop_parser_stack(yypParser); + } + if( yypParser->yyidx < 0 || yymajor==0 ){ + yy_destructor(yymajor,&yyminorunion); + yy_parse_failed(yypParser); + yymajor = YYNOCODE; + }else if( yymx!=YYERRORSYMBOL ){ + YYMINORTYPE u2; + u2.YYERRSYMDT = 0; + yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2); + } + } + yypParser->yyerrcnt = 3; + yyerrorhit = 1; +#else /* YYERRORSYMBOL is not defined */ + /* This is what we do if the grammar does not define ERROR: + ** + ** * Report an error message, and throw away the input token. + ** + ** * If the input token is $, then fail the parse. + ** + ** As before, subsequent error messages are suppressed until + ** three input tokens have been successfully shifted. + */ + if( yypParser->yyerrcnt<=0 ){ + yy_syntax_error(yypParser,yymajor,yyminorunion); + } + yypParser->yyerrcnt = 3; + yy_destructor(yymajor,&yyminorunion); + if( yyendofinput ){ + yy_parse_failed(yypParser); + } + yymajor = YYNOCODE; +#endif + }else{ + yy_accept(yypParser); + yymajor = YYNOCODE; + } + }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 ); + return; +} diff --git a/kopete/plugins/statistics/sqlite/parse.h b/kopete/plugins/statistics/sqlite/parse.h new file mode 100644 index 00000000..547319ed --- /dev/null +++ b/kopete/plugins/statistics/sqlite/parse.h @@ -0,0 +1,129 @@ +#define TK_END_OF_FILE 1 +#define TK_ILLEGAL 2 +#define TK_SPACE 3 +#define TK_UNCLOSED_STRING 4 +#define TK_COMMENT 5 +#define TK_FUNCTION 6 +#define TK_COLUMN 7 +#define TK_AGG_FUNCTION 8 +#define TK_SEMI 9 +#define TK_EXPLAIN 10 +#define TK_BEGIN 11 +#define TK_TRANSACTION 12 +#define TK_DEFERRED 13 +#define TK_IMMEDIATE 14 +#define TK_EXCLUSIVE 15 +#define TK_COMMIT 16 +#define TK_END 17 +#define TK_ROLLBACK 18 +#define TK_CREATE 19 +#define TK_TABLE 20 +#define TK_TEMP 21 +#define TK_LP 22 +#define TK_RP 23 +#define TK_AS 24 +#define TK_COMMA 25 +#define TK_ID 26 +#define TK_ABORT 27 +#define TK_AFTER 28 +#define TK_ASC 29 +#define TK_ATTACH 30 +#define TK_BEFORE 31 +#define TK_CASCADE 32 +#define TK_CONFLICT 33 +#define TK_DATABASE 34 +#define TK_DESC 35 +#define TK_DETACH 36 +#define TK_EACH 37 +#define TK_FAIL 38 +#define TK_FOR 39 +#define TK_GLOB 40 +#define TK_IGNORE 41 +#define TK_INITIALLY 42 +#define TK_INSTEAD 43 +#define TK_LIKE 44 +#define TK_MATCH 45 +#define TK_KEY 46 +#define TK_OF 47 +#define TK_OFFSET 48 +#define TK_PRAGMA 49 +#define TK_RAISE 50 +#define TK_REPLACE 51 +#define TK_RESTRICT 52 +#define TK_ROW 53 +#define TK_STATEMENT 54 +#define TK_TRIGGER 55 +#define TK_VACUUM 56 +#define TK_VIEW 57 +#define TK_OR 58 +#define TK_AND 59 +#define TK_NOT 60 +#define TK_IS 61 +#define TK_BETWEEN 62 +#define TK_IN 63 +#define TK_ISNULL 64 +#define TK_NOTNULL 65 +#define TK_NE 66 +#define TK_EQ 67 +#define TK_GT 68 +#define TK_LE 69 +#define TK_LT 70 +#define TK_GE 71 +#define TK_BITAND 72 +#define TK_BITOR 73 +#define TK_LSHIFT 74 +#define TK_RSHIFT 75 +#define TK_PLUS 76 +#define TK_MINUS 77 +#define TK_STAR 78 +#define TK_SLASH 79 +#define TK_REM 80 +#define TK_CONCAT 81 +#define TK_UMINUS 82 +#define TK_UPLUS 83 +#define TK_BITNOT 84 +#define TK_STRING 85 +#define TK_JOIN_KW 86 +#define TK_CONSTRAINT 87 +#define TK_DEFAULT 88 +#define TK_NULL 89 +#define TK_PRIMARY 90 +#define TK_UNIQUE 91 +#define TK_CHECK 92 +#define TK_REFERENCES 93 +#define TK_COLLATE 94 +#define TK_ON 95 +#define TK_DELETE 96 +#define TK_UPDATE 97 +#define TK_INSERT 98 +#define TK_SET 99 +#define TK_DEFERRABLE 100 +#define TK_FOREIGN 101 +#define TK_DROP 102 +#define TK_UNION 103 +#define TK_ALL 104 +#define TK_INTERSECT 105 +#define TK_EXCEPT 106 +#define TK_SELECT 107 +#define TK_DISTINCT 108 +#define TK_DOT 109 +#define TK_FROM 110 +#define TK_JOIN 111 +#define TK_USING 112 +#define TK_ORDER 113 +#define TK_BY 114 +#define TK_GROUP 115 +#define TK_HAVING 116 +#define TK_LIMIT 117 +#define TK_WHERE 118 +#define TK_INTO 119 +#define TK_VALUES 120 +#define TK_INTEGER 121 +#define TK_FLOAT 122 +#define TK_BLOB 123 +#define TK_VARIABLE 124 +#define TK_CASE 125 +#define TK_WHEN 126 +#define TK_THEN 127 +#define TK_ELSE 128 +#define TK_INDEX 129 diff --git a/kopete/plugins/statistics/sqlite/pragma.c b/kopete/plugins/statistics/sqlite/pragma.c new file mode 100644 index 00000000..94a21863 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/pragma.c @@ -0,0 +1,754 @@ +/* +** 2003 April 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used to implement the PRAGMA command. +** +** $Id$ +*/ +#include "sqliteInt.h" +#include <ctype.h> + +#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) +# include "pager.h" +# include "btree.h" +#endif + +/* +** Interpret the given string as a boolean value. +*/ +static int getBoolean(const u8 *z){ + static const u8 *azTrue[] = { "yes", "on", "true" }; + int i; + if( z[0]==0 ) return 0; + if( sqlite3IsNumber(z, 0, SQLITE_UTF8) ){ + return atoi(z); + } + for(i=0; i<sizeof(azTrue)/sizeof(azTrue[0]); i++){ + if( sqlite3StrICmp(z,azTrue[i])==0 ) return 1; + } + return 0; +} + +/* +** Interpret the given string as a safety level. Return 0 for OFF, +** 1 for ON or NORMAL and 2 for FULL. Return 1 for an empty or +** unrecognized string argument. +** +** Note that the values returned are one less that the values that +** should be passed into sqlite3BtreeSetSafetyLevel(). The is done +** to support legacy SQL code. The safety level used to be boolean +** and older scripts may have used numbers 0 for OFF and 1 for ON. +*/ +static int getSafetyLevel(u8 *z){ + static const struct { + const u8 *zWord; + int val; + } aKey[] = { + { "no", 0 }, + { "off", 0 }, + { "false", 0 }, + { "yes", 1 }, + { "on", 1 }, + { "true", 1 }, + { "full", 2 }, + }; + int i; + if( z[0]==0 ) return 1; + if( sqlite3IsNumber(z, 0, SQLITE_UTF8) ){ + return atoi(z); + } + for(i=0; i<sizeof(aKey)/sizeof(aKey[0]); i++){ + if( sqlite3StrICmp(z,aKey[i].zWord)==0 ) return aKey[i].val; + } + return 1; +} + +/* +** Interpret the given string as a temp db location. Return 1 for file +** backed temporary databases, 2 for the Red-Black tree in memory database +** and 0 to use the compile-time default. +*/ +static int getTempStore(const char *z){ + if( z[0]>='0' && z[0]<='2' ){ + return z[0] - '0'; + }else if( sqlite3StrICmp(z, "file")==0 ){ + return 1; + }else if( sqlite3StrICmp(z, "memory")==0 ){ + return 2; + }else{ + return 0; + } +} + +/* +** If the TEMP database is open, close it and mark the database schema +** as needing reloading. This must be done when using the TEMP_STORE +** or DEFAULT_TEMP_STORE pragmas. +*/ +static int changeTempStorage(Parse *pParse, const char *zStorageType){ + int ts = getTempStore(zStorageType); + sqlite3 *db = pParse->db; + if( db->temp_store==ts ) return SQLITE_OK; + if( db->aDb[1].pBt!=0 ){ + if( db->flags & SQLITE_InTrans ){ + sqlite3ErrorMsg(pParse, "temporary storage cannot be changed " + "from within a transaction"); + return SQLITE_ERROR; + } + sqlite3BtreeClose(db->aDb[1].pBt); + db->aDb[1].pBt = 0; + sqlite3ResetInternalSchema(db, 0); + } + db->temp_store = ts; + return SQLITE_OK; +} + +/* +** Generate code to return a single integer value. +*/ +static void returnSingleInt(Parse *pParse, const char *zLabel, int value){ + Vdbe *v = sqlite3GetVdbe(pParse); + sqlite3VdbeAddOp(v, OP_Integer, value, 0); + if( pParse->explain==0 ){ + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, zLabel, P3_STATIC); + } + sqlite3VdbeAddOp(v, OP_Callback, 1, 0); +} + +/* +** Check to see if zRight and zLeft refer to a pragma that queries +** or changes one of the flags in db->flags. Return 1 if so and 0 if not. +** Also, implement the pragma. +*/ +static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){ + static const struct { + const char *zName; /* Name of the pragma */ + int mask; /* Mask for the db->flags value */ + } aPragma[] = { + { "vdbe_trace", SQLITE_VdbeTrace }, + { "sql_trace", SQLITE_SqlTrace }, + { "vdbe_listing", SQLITE_VdbeListing }, +#if 1 /* FIX ME: Remove the following pragmas */ + { "full_column_names", SQLITE_FullColNames }, + { "short_column_names", SQLITE_ShortColNames }, + { "count_changes", SQLITE_CountRows }, + { "empty_result_callbacks", SQLITE_NullCallback }, +#endif + }; + int i; + for(i=0; i<sizeof(aPragma)/sizeof(aPragma[0]); i++){ + if( sqlite3StrICmp(zLeft, aPragma[i].zName)==0 ){ + sqlite3 *db = pParse->db; + Vdbe *v; + if( zRight==0 ){ + v = sqlite3GetVdbe(pParse); + if( v ){ + returnSingleInt(pParse, + aPragma[i].zName, (db->flags&aPragma[i].mask)!=0); + } + }else if( getBoolean(zRight) ){ + db->flags |= aPragma[i].mask; + }else{ + db->flags &= ~aPragma[i].mask; + } + return 1; + } + } + return 0; +} + +/* +** Process a pragma statement. +** +** Pragmas are of this form: +** +** PRAGMA [database.]id [= value] +** +** The identifier might also be a string. The value is a string, and +** identifier, or a number. If minusFlag is true, then the value is +** a number that was preceded by a minus sign. +** +** If the left side is "database.id" then pId1 is the database name +** and pId2 is the id. If the left side is just "id" then pId1 is the +** id and pId2 is any empty string. +*/ +void sqlite3Pragma( + Parse *pParse, + Token *pId1, /* First part of [database.]id field */ + Token *pId2, /* Second part of [database.]id field, or NULL */ + Token *pValue, /* Token for <value>, or NULL */ + int minusFlag /* True if a '-' sign preceded <value> */ +){ + char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */ + char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */ + const char *zDb = 0; /* The database name */ + Token *pId; /* Pointer to <id> token */ + int iDb; /* Database index for <database> */ + sqlite3 *db = pParse->db; + Db *pDb; + Vdbe *v = sqlite3GetVdbe(pParse); + if( v==0 ) return; + + /* Interpret the [database.] part of the pragma statement. iDb is the + ** index of the database this pragma is being applied to in db.aDb[]. */ + iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId); + if( iDb<0 ) return; + pDb = &db->aDb[iDb]; + + zLeft = sqlite3NameFromToken(pId); + if( !zLeft ) return; + if( minusFlag ){ + zRight = sqlite3MPrintf("-%T", pValue); + }else{ + zRight = sqlite3NameFromToken(pValue); + } + + zDb = ((iDb>0)?pDb->zName:0); + if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ + goto pragma_out; + } + + /* + ** PRAGMA [database.]default_cache_size + ** PRAGMA [database.]default_cache_size=N + ** + ** The first form reports the current persistent setting for the + ** page cache size. The value returned is the maximum number of + ** pages in the page cache. The second form sets both the current + ** page cache size value and the persistent page cache size value + ** stored in the database file. + ** + ** The default cache size is stored in meta-value 2 of page 1 of the + ** database file. The cache size is actually the absolute value of + ** this memory location. The sign of meta-value 2 determines the + ** synchronous setting. A negative value means synchronous is off + ** and a positive value means synchronous is on. + */ + if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){ + static const VdbeOpList getCacheSize[] = { + { OP_ReadCookie, 0, 2, 0}, /* 0 */ + { OP_AbsValue, 0, 0, 0}, + { OP_Dup, 0, 0, 0}, + { OP_Integer, 0, 0, 0}, + { OP_Ne, 0, 6, 0}, + { OP_Integer, 0, 0, 0}, /* 5 */ + { OP_Callback, 1, 0, 0}, + }; + int addr; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + if( !zRight ){ + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, "cache_size", P3_STATIC); + addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize); + sqlite3VdbeChangeP1(v, addr, iDb); + sqlite3VdbeChangeP1(v, addr+5, MAX_PAGES); + }else{ + int size = atoi(zRight); + if( size<0 ) size = -size; + sqlite3BeginWriteOperation(pParse, 0, iDb); + sqlite3VdbeAddOp(v, OP_Integer, size, 0); + sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 2); + addr = sqlite3VdbeAddOp(v, OP_Integer, 0, 0); + sqlite3VdbeAddOp(v, OP_Ge, 0, addr+3); + sqlite3VdbeAddOp(v, OP_Negative, 0, 0); + sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 2); + pDb->cache_size = size; + sqlite3BtreeSetCacheSize(pDb->pBt, pDb->cache_size); + } + }else + + /* + ** PRAGMA [database.]page_size + ** PRAGMA [database.]page_size=N + ** + ** The first form reports the current setting for the + ** database page size in bytes. The second form sets the + ** database page size value. The value can only be set if + ** the database has not yet been created. + */ + if( sqlite3StrICmp(zLeft,"page_size")==0 ){ + Btree *pBt = pDb->pBt; + if( !zRight ){ + int size = pBt ? sqlite3BtreeGetPageSize(pBt) : 0; + returnSingleInt(pParse, "page_size", size); + }else{ + sqlite3BtreeSetPageSize(pBt, atoi(zRight), sqlite3BtreeGetReserve(pBt)); + } + }else + + /* + ** PRAGMA [database.]cache_size + ** PRAGMA [database.]cache_size=N + ** + ** The first form reports the current local setting for the + ** page cache size. The local setting can be different from + ** the persistent cache size value that is stored in the database + ** file itself. The value returned is the maximum number of + ** pages in the page cache. The second form sets the local + ** page cache size value. It does not change the persistent + ** cache size stored on the disk so the cache size will revert + ** to its default value when the database is closed and reopened. + ** N should be a positive integer. + */ + if( sqlite3StrICmp(zLeft,"cache_size")==0 ){ + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + if( !zRight ){ + returnSingleInt(pParse, "cache_size", pDb->cache_size); + }else{ + int size = atoi(zRight); + if( size<0 ) size = -size; + pDb->cache_size = size; + sqlite3BtreeSetCacheSize(pDb->pBt, pDb->cache_size); + } + }else + + /* + ** PRAGMA temp_store + ** PRAGMA temp_store = "default"|"memory"|"file" + ** + ** Return or set the local value of the temp_store flag. Changing + ** the local value does not make changes to the disk file and the default + ** value will be restored the next time the database is opened. + ** + ** Note that it is possible for the library compile-time options to + ** override this setting + */ + if( sqlite3StrICmp(zLeft, "temp_store")==0 ){ + if( !zRight ){ + returnSingleInt(pParse, "temp_store", db->temp_store); + }else{ + changeTempStorage(pParse, zRight); + } + }else + + /* + ** PRAGMA [database.]synchronous + ** PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL + ** + ** Return or set the local value of the synchronous flag. Changing + ** the local value does not make changes to the disk file and the + ** default value will be restored the next time the database is + ** opened. + */ + if( sqlite3StrICmp(zLeft,"synchronous")==0 ){ + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + if( !zRight ){ + returnSingleInt(pParse, "synchronous", pDb->safety_level-1); + }else{ + if( !db->autoCommit ){ + sqlite3ErrorMsg(pParse, + "Safety level may not be changed inside a transaction"); + }else{ + pDb->safety_level = getSafetyLevel(zRight)+1; + sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level); + } + } + }else + +#if 0 /* Used once during development. No longer needed */ + if( sqlite3StrICmp(zLeft, "trigger_overhead_test")==0 ){ + if( getBoolean(zRight) ){ + sqlite3_always_code_trigger_setup = 1; + }else{ + sqlite3_always_code_trigger_setup = 0; + } + }else +#endif + + if( flagPragma(pParse, zLeft, zRight) ){ + /* The flagPragma() subroutine also generates any necessary code + ** there is nothing more to do here */ + }else + + /* + ** PRAGMA table_info(<table>) + ** + ** Return a single row for each column of the named table. The columns of + ** the returned data set are: + ** + ** cid: Column id (numbered from left to right, starting at 0) + ** name: Column name + ** type: Column declaration type. + ** notnull: True if 'NOT NULL' is part of column declaration + ** dflt_value: The default value for the column, if any. + */ + if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){ + Table *pTab; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + pTab = sqlite3FindTable(db, zRight, zDb); + if( pTab ){ + int i; + sqlite3VdbeSetNumCols(v, 6); + sqlite3VdbeSetColName(v, 0, "cid", P3_STATIC); + sqlite3VdbeSetColName(v, 1, "name", P3_STATIC); + sqlite3VdbeSetColName(v, 2, "type", P3_STATIC); + sqlite3VdbeSetColName(v, 3, "notnull", P3_STATIC); + sqlite3VdbeSetColName(v, 4, "dflt_value", P3_STATIC); + sqlite3VdbeSetColName(v, 5, "pk", P3_STATIC); + sqlite3ViewGetColumnNames(pParse, pTab); + for(i=0; i<pTab->nCol; i++){ + sqlite3VdbeAddOp(v, OP_Integer, i, 0); + sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[i].zName, 0); + sqlite3VdbeOp3(v, OP_String8, 0, 0, + pTab->aCol[i].zType ? pTab->aCol[i].zType : "numeric", 0); + sqlite3VdbeAddOp(v, OP_Integer, pTab->aCol[i].notNull, 0); + sqlite3VdbeOp3(v, OP_String8, 0, 0, + pTab->aCol[i].zDflt, P3_STATIC); + sqlite3VdbeAddOp(v, OP_Integer, pTab->aCol[i].isPrimKey, 0); + sqlite3VdbeAddOp(v, OP_Callback, 6, 0); + } + } + }else + + if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){ + Index *pIdx; + Table *pTab; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + pIdx = sqlite3FindIndex(db, zRight, zDb); + if( pIdx ){ + int i; + pTab = pIdx->pTable; + sqlite3VdbeSetNumCols(v, 3); + sqlite3VdbeSetColName(v, 0, "seqno", P3_STATIC); + sqlite3VdbeSetColName(v, 1, "cid", P3_STATIC); + sqlite3VdbeSetColName(v, 2, "name", P3_STATIC); + for(i=0; i<pIdx->nColumn; i++){ + int cnum = pIdx->aiColumn[i]; + sqlite3VdbeAddOp(v, OP_Integer, i, 0); + sqlite3VdbeAddOp(v, OP_Integer, cnum, 0); + assert( pTab->nCol>cnum ); + sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[cnum].zName, 0); + sqlite3VdbeAddOp(v, OP_Callback, 3, 0); + } + } + }else + + if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){ + Index *pIdx; + Table *pTab; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + pTab = sqlite3FindTable(db, zRight, zDb); + if( pTab ){ + v = sqlite3GetVdbe(pParse); + pIdx = pTab->pIndex; + if( pIdx ){ + int i = 0; + sqlite3VdbeSetNumCols(v, 3); + sqlite3VdbeSetColName(v, 0, "seq", P3_STATIC); + sqlite3VdbeSetColName(v, 1, "name", P3_STATIC); + sqlite3VdbeSetColName(v, 2, "unique", P3_STATIC); + while(pIdx){ + sqlite3VdbeAddOp(v, OP_Integer, i, 0); + sqlite3VdbeOp3(v, OP_String8, 0, 0, pIdx->zName, 0); + sqlite3VdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0); + sqlite3VdbeAddOp(v, OP_Callback, 3, 0); + ++i; + pIdx = pIdx->pNext; + } + } + } + }else + + if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){ + FKey *pFK; + Table *pTab; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + pTab = sqlite3FindTable(db, zRight, zDb); + if( pTab ){ + v = sqlite3GetVdbe(pParse); + pFK = pTab->pFKey; + if( pFK ){ + int i = 0; + sqlite3VdbeSetNumCols(v, 5); + sqlite3VdbeSetColName(v, 0, "id", P3_STATIC); + sqlite3VdbeSetColName(v, 1, "seq", P3_STATIC); + sqlite3VdbeSetColName(v, 2, "table", P3_STATIC); + sqlite3VdbeSetColName(v, 3, "from", P3_STATIC); + sqlite3VdbeSetColName(v, 4, "to", P3_STATIC); + while(pFK){ + int j; + for(j=0; j<pFK->nCol; j++){ + sqlite3VdbeAddOp(v, OP_Integer, i, 0); + sqlite3VdbeAddOp(v, OP_Integer, j, 0); + sqlite3VdbeOp3(v, OP_String8, 0, 0, pFK->zTo, 0); + sqlite3VdbeOp3(v, OP_String8, 0, 0, + pTab->aCol[pFK->aCol[j].iFrom].zName, 0); + sqlite3VdbeOp3(v, OP_String8, 0, 0, pFK->aCol[j].zCol, 0); + sqlite3VdbeAddOp(v, OP_Callback, 5, 0); + } + ++i; + pFK = pFK->pNextFrom; + } + } + } + }else + + if( sqlite3StrICmp(zLeft, "database_list")==0 ){ + int i; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + sqlite3VdbeSetNumCols(v, 3); + sqlite3VdbeSetColName(v, 0, "seq", P3_STATIC); + sqlite3VdbeSetColName(v, 1, "name", P3_STATIC); + sqlite3VdbeSetColName(v, 2, "file", P3_STATIC); + for(i=0; i<db->nDb; i++){ + if( db->aDb[i].pBt==0 ) continue; + assert( db->aDb[i].zName!=0 ); + sqlite3VdbeAddOp(v, OP_Integer, i, 0); + sqlite3VdbeOp3(v, OP_String8, 0, 0, db->aDb[i].zName, 0); + sqlite3VdbeOp3(v, OP_String8, 0, 0, + sqlite3BtreeGetFilename(db->aDb[i].pBt), 0); + sqlite3VdbeAddOp(v, OP_Callback, 3, 0); + } + }else + +#ifndef NDEBUG + if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){ + extern void sqlite3ParserTrace(FILE*, char *); + if( getBoolean(zRight) ){ + sqlite3ParserTrace(stdout, "parser: "); + }else{ + sqlite3ParserTrace(0, 0); + } + }else +#endif + + if( sqlite3StrICmp(zLeft, "integrity_check")==0 ){ + int i, j, addr; + + /* Code that initializes the integrity check program. Set the + ** error count 0 + */ + static const VdbeOpList initCode[] = { + { OP_Integer, 0, 0, 0}, + { OP_MemStore, 0, 1, 0}, + }; + + /* Code that appears at the end of the integrity check. If no error + ** messages have been generated, output OK. Otherwise output the + ** error message + */ + static const VdbeOpList endCode[] = { + { OP_MemLoad, 0, 0, 0}, + { OP_Integer, 0, 0, 0}, + { OP_Ne, 0, 0, 0}, /* 2 */ + { OP_String8, 0, 0, "ok"}, + { OP_Callback, 1, 0, 0}, + }; + + /* Initialize the VDBE program */ + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, "integrity_check", P3_STATIC); + sqlite3VdbeAddOpList(v, ArraySize(initCode), initCode); + + /* Do an integrity check on each database file */ + for(i=0; i<db->nDb; i++){ + HashElem *x; + int cnt = 0; + + sqlite3CodeVerifySchema(pParse, i); + + /* Do an integrity check of the B-Tree + */ + for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){ + Table *pTab = sqliteHashData(x); + Index *pIdx; + sqlite3VdbeAddOp(v, OP_Integer, pTab->tnum, 0); + cnt++; + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + if( sqlite3CheckIndexCollSeq(pParse, pIdx) ) goto pragma_out; + sqlite3VdbeAddOp(v, OP_Integer, pIdx->tnum, 0); + cnt++; + } + } + assert( cnt>0 ); + sqlite3VdbeAddOp(v, OP_IntegrityCk, cnt, i); + sqlite3VdbeAddOp(v, OP_Dup, 0, 1); + addr = sqlite3VdbeOp3(v, OP_String8, 0, 0, "ok", P3_STATIC); + sqlite3VdbeAddOp(v, OP_Eq, 0, addr+6); + sqlite3VdbeOp3(v, OP_String8, 0, 0, + sqlite3MPrintf("*** in database %s ***\n", db->aDb[i].zName), + P3_DYNAMIC); + sqlite3VdbeAddOp(v, OP_Pull, 1, 0); + sqlite3VdbeAddOp(v, OP_Concat, 0, 1); + sqlite3VdbeAddOp(v, OP_Callback, 1, 0); + + /* Make sure all the indices are constructed correctly. + */ + sqlite3CodeVerifySchema(pParse, i); + for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){ + Table *pTab = sqliteHashData(x); + Index *pIdx; + int loopTop; + + if( pTab->pIndex==0 ) continue; + sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead); + sqlite3VdbeAddOp(v, OP_Integer, 0, 0); + sqlite3VdbeAddOp(v, OP_MemStore, 1, 1); + loopTop = sqlite3VdbeAddOp(v, OP_Rewind, 1, 0); + sqlite3VdbeAddOp(v, OP_MemIncr, 1, 0); + for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ + int jmp2; + static const VdbeOpList idxErr[] = { + { OP_MemIncr, 0, 0, 0}, + { OP_String8, 0, 0, "rowid "}, + { OP_Recno, 1, 0, 0}, + { OP_String8, 0, 0, " missing from index "}, + { OP_String8, 0, 0, 0}, /* 4 */ + { OP_Concat, 2, 0, 0}, + { OP_Callback, 1, 0, 0}, + }; + sqlite3GenerateIndexKey(v, pIdx, 1); + jmp2 = sqlite3VdbeAddOp(v, OP_Found, j+2, 0); + addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr); + sqlite3VdbeChangeP3(v, addr+4, pIdx->zName, P3_STATIC); + sqlite3VdbeChangeP2(v, jmp2, sqlite3VdbeCurrentAddr(v)); + } + sqlite3VdbeAddOp(v, OP_Next, 1, loopTop+1); + sqlite3VdbeChangeP2(v, loopTop, sqlite3VdbeCurrentAddr(v)); + for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ + static const VdbeOpList cntIdx[] = { + { OP_Integer, 0, 0, 0}, + { OP_MemStore, 2, 1, 0}, + { OP_Rewind, 0, 0, 0}, /* 2 */ + { OP_MemIncr, 2, 0, 0}, + { OP_Next, 0, 0, 0}, /* 4 */ + { OP_MemLoad, 1, 0, 0}, + { OP_MemLoad, 2, 0, 0}, + { OP_Eq, 0, 0, 0}, /* 7 */ + { OP_MemIncr, 0, 0, 0}, + { OP_String8, 0, 0, "wrong # of entries in index "}, + { OP_String8, 0, 0, 0}, /* 10 */ + { OP_Concat, 0, 0, 0}, + { OP_Callback, 1, 0, 0}, + }; + if( pIdx->tnum==0 ) continue; + addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx); + sqlite3VdbeChangeP1(v, addr+2, j+2); + sqlite3VdbeChangeP2(v, addr+2, addr+5); + sqlite3VdbeChangeP1(v, addr+4, j+2); + sqlite3VdbeChangeP2(v, addr+4, addr+3); + sqlite3VdbeChangeP2(v, addr+7, addr+ArraySize(cntIdx)); + sqlite3VdbeChangeP3(v, addr+10, pIdx->zName, P3_STATIC); + } + } + } + addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode); + sqlite3VdbeChangeP2(v, addr+2, addr+ArraySize(endCode)); + }else + /* + ** PRAGMA encoding + ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be" + ** + ** In it's first form, this pragma returns the encoding of the main + ** database. If the database is not initialized, it is initialized now. + ** + ** The second form of this pragma is a no-op if the main database file + ** has not already been initialized. In this case it sets the default + ** encoding that will be used for the main database file if a new file + ** is created. If an existing main database file is opened, then the + ** default text encoding for the existing database is used. + ** + ** In all cases new databases created using the ATTACH command are + ** created to use the same default text encoding as the main database. If + ** the main database has not been initialized and/or created when ATTACH + ** is executed, this is done before the ATTACH operation. + ** + ** In the second form this pragma sets the text encoding to be used in + ** new database files created using this database handle. It is only + ** useful if invoked immediately after the main database i + */ + if( sqlite3StrICmp(zLeft, "encoding")==0 ){ + static struct EncName { + char *zName; + u8 enc; + } encnames[] = { + { "UTF-8", SQLITE_UTF8 }, + { "UTF8", SQLITE_UTF8 }, + { "UTF-16le", SQLITE_UTF16LE }, + { "UTF16le", SQLITE_UTF16LE }, + { "UTF-16be", SQLITE_UTF16BE }, + { "UTF16be", SQLITE_UTF16BE }, + { "UTF-16", 0 /* Filled in at run-time */ }, + { "UTF16", 0 /* Filled in at run-time */ }, + { 0, 0 } + }; + struct EncName *pEnc; + encnames[6].enc = encnames[7].enc = SQLITE_UTF16NATIVE; + if( !zRight ){ /* "PRAGMA encoding" */ + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, "encoding", P3_STATIC); + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ + if( pEnc->enc==pParse->db->enc ){ + sqlite3VdbeChangeP3(v, -1, pEnc->zName, P3_STATIC); + break; + } + } + sqlite3VdbeAddOp(v, OP_Callback, 1, 0); + }else{ /* "PRAGMA encoding = XXX" */ + /* Only change the value of sqlite.enc if the database handle is not + ** initialized. If the main database exists, the new sqlite.enc value + ** will be overwritten when the schema is next loaded. If it does not + ** already exists, it will be created to use the new encoding value. + */ + if( !(pParse->db->flags&SQLITE_Initialized) ){ + for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ + if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){ + pParse->db->enc = pEnc->enc; + break; + } + } + if( !pEnc->zName ){ + sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight); + } + } + } + }else + +#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) + /* + ** Report the current state of file logs for all databases + */ + if( sqlite3StrICmp(zLeft, "lock_status")==0 ){ + static const char *const azLockName[] = { + "unlocked", "shared", "reserved", "pending", "exclusive" + }; + int i; + Vdbe *v = sqlite3GetVdbe(pParse); + sqlite3VdbeSetNumCols(v, 2); + sqlite3VdbeSetColName(v, 0, "database", P3_STATIC); + sqlite3VdbeSetColName(v, 1, "status", P3_STATIC); + for(i=0; i<db->nDb; i++){ + Btree *pBt; + Pager *pPager; + if( db->aDb[i].zName==0 ) continue; + sqlite3VdbeOp3(v, OP_String, 0, 0, db->aDb[i].zName, P3_STATIC); + pBt = db->aDb[i].pBt; + if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){ + sqlite3VdbeOp3(v, OP_String, 0, 0, "closed", P3_STATIC); + }else{ + int j = sqlite3pager_lockstate(pPager); + sqlite3VdbeOp3(v, OP_String, 0, 0, + (j>=0 && j<=4) ? azLockName[j] : "unknown", P3_STATIC); + } + sqlite3VdbeAddOp(v, OP_Callback, 2, 0); + } + }else +#endif + + {} +pragma_out: + sqliteFree(zLeft); + sqliteFree(zRight); +} diff --git a/kopete/plugins/statistics/sqlite/printf.c b/kopete/plugins/statistics/sqlite/printf.c new file mode 100644 index 00000000..43e12863 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/printf.c @@ -0,0 +1,825 @@ +/* +** The "printf" code that follows dates from the 1980's. It is in +** the public domain. The original comments are included here for +** completeness. They are very out-of-date but might be useful as +** an historical reference. Most of the "enhancements" have been backed +** out so that the functionality is now the same as standard printf(). +** +************************************************************************** +** +** The following modules is an enhanced replacement for the "printf" subroutines +** found in the standard C library. The following enhancements are +** supported: +** +** + Additional functions. The standard set of "printf" functions +** includes printf, fprintf, sprintf, vprintf, vfprintf, and +** vsprintf. This module adds the following: +** +** * snprintf -- Works like sprintf, but has an extra argument +** which is the size of the buffer written to. +** +** * mprintf -- Similar to sprintf. Writes output to memory +** obtained from malloc. +** +** * xprintf -- Calls a function to dispose of output. +** +** * nprintf -- No output, but returns the number of characters +** that would have been output by printf. +** +** * A v- version (ex: vsnprintf) of every function is also +** supplied. +** +** + A few extensions to the formatting notation are supported: +** +** * The "=" flag (similar to "-") causes the output to be +** be centered in the appropriately sized field. +** +** * The %b field outputs an integer in binary notation. +** +** * The %c field now accepts a precision. The character output +** is repeated by the number of times the precision specifies. +** +** * The %' field works like %c, but takes as its character the +** next character of the format string, instead of the next +** argument. For example, printf("%.78'-") prints 78 minus +** signs, the same as printf("%.78c",'-'). +** +** + When compiled using GCC on a SPARC, this version of printf is +** faster than the library printf for SUN OS 4.1. +** +** + All functions are fully reentrant. +** +*/ +#include "sqliteInt.h" + +/* +** Conversion types fall into various categories as defined by the +** following enumeration. +*/ +#define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */ +#define etFLOAT 2 /* Floating point. %f */ +#define etEXP 3 /* Exponentional notation. %e and %E */ +#define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */ +#define etSIZE 5 /* Return number of characters processed so far. %n */ +#define etSTRING 6 /* Strings. %s */ +#define etDYNSTRING 7 /* Dynamically allocated strings. %z */ +#define etPERCENT 8 /* Percent symbol. %% */ +#define etCHARX 9 /* Characters. %c */ +#define etERROR 10 /* Used to indicate no such conversion type */ +/* The rest are extensions, not normally found in printf() */ +#define etCHARLIT 11 /* Literal characters. %' */ +#define etSQLESCAPE 12 /* Strings with '\'' doubled. %q */ +#define etSQLESCAPE2 13 /* Strings with '\'' doubled and enclosed in '', + NULL pointers replaced by SQL NULL. %Q */ +#define etTOKEN 14 /* a pointer to a Token structure */ +#define etSRCLIST 15 /* a pointer to a SrcList */ +#define etPOINTER 16 /* The %p conversion */ + + +/* +** An "etByte" is an 8-bit unsigned value. +*/ +typedef unsigned char etByte; + +/* +** Each builtin conversion character (ex: the 'd' in "%d") is described +** by an instance of the following structure +*/ +typedef struct et_info { /* Information about each format field */ + char fmttype; /* The format field code letter */ + etByte base; /* The base for radix conversion */ + etByte flags; /* One or more of FLAG_ constants below */ + etByte type; /* Conversion paradigm */ + etByte charset; /* Offset into aDigits[] of the digits string */ + etByte prefix; /* Offset into aPrefix[] of the prefix string */ +} et_info; + +/* +** Allowed values for et_info.flags +*/ +#define FLAG_SIGNED 1 /* True if the value to convert is signed */ +#define FLAG_INTERN 2 /* True if for internal use only */ + + +/* +** The following table is searched linearly, so it is good to put the +** most frequently used conversion types first. +*/ +static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; +static const char aPrefix[] = "-x0\000X0"; +static const et_info fmtinfo[] = { + { 'd', 10, 1, etRADIX, 0, 0 }, + { 's', 0, 0, etSTRING, 0, 0 }, + { 'z', 0, 2, etDYNSTRING, 0, 0 }, + { 'q', 0, 0, etSQLESCAPE, 0, 0 }, + { 'Q', 0, 0, etSQLESCAPE2, 0, 0 }, + { 'c', 0, 0, etCHARX, 0, 0 }, + { 'o', 8, 0, etRADIX, 0, 2 }, + { 'u', 10, 0, etRADIX, 0, 0 }, + { 'x', 16, 0, etRADIX, 16, 1 }, + { 'X', 16, 0, etRADIX, 0, 4 }, + { 'f', 0, 1, etFLOAT, 0, 0 }, + { 'e', 0, 1, etEXP, 30, 0 }, + { 'E', 0, 1, etEXP, 14, 0 }, + { 'g', 0, 1, etGENERIC, 30, 0 }, + { 'G', 0, 1, etGENERIC, 14, 0 }, + { 'i', 10, 1, etRADIX, 0, 0 }, + { 'n', 0, 0, etSIZE, 0, 0 }, + { '%', 0, 0, etPERCENT, 0, 0 }, + { 'p', 16, 0, etPOINTER, 0, 1 }, + { 'T', 0, 2, etTOKEN, 0, 0 }, + { 'S', 0, 2, etSRCLIST, 0, 0 }, +}; +#define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0])) + +/* +** If NOFLOATINGPOINT is defined, then none of the floating point +** conversions will work. +*/ +#ifndef etNOFLOATINGPOINT +/* +** "*val" is a double such that 0.1 <= *val < 10.0 +** Return the ascii code for the leading digit of *val, then +** multiply "*val" by 10.0 to renormalize. +** +** Example: +** input: *val = 3.14159 +** output: *val = 1.4159 function return = '3' +** +** The counter *cnt is incremented each time. After counter exceeds +** 16 (the number of significant digits in a 64-bit float) '0' is +** always returned. +*/ +static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ + int digit; + LONGDOUBLE_TYPE d; + if( (*cnt)++ >= 16 ) return '0'; + digit = (int)*val; + d = digit; + digit += '0'; + *val = (*val - d)*10.0; + return digit; +} +#endif + +#define etBUFSIZE 1000 /* Size of the output buffer */ + +/* +** The root program. All variations call this core. +** +** INPUTS: +** func This is a pointer to a function taking three arguments +** 1. A pointer to anything. Same as the "arg" parameter. +** 2. A pointer to the list of characters to be output +** (Note, this list is NOT null terminated.) +** 3. An integer number of characters to be output. +** (Note: This number might be zero.) +** +** arg This is the pointer to anything which will be passed as the +** first argument to "func". Use it for whatever you like. +** +** fmt This is the format string, as in the usual print. +** +** ap This is a pointer to a list of arguments. Same as in +** vfprint. +** +** OUTPUTS: +** The return value is the total number of characters sent to +** the function "func". Returns -1 on a error. +** +** Note that the order in which automatic variables are declared below +** seems to make a big difference in determining how fast this beast +** will run. +*/ +static int vxprintf( + void (*func)(void*,const char*,int), /* Consumer of text */ + void *arg, /* First argument to the consumer */ + int useExtended, /* Allow extended %-conversions */ + const char *fmt, /* Format string */ + va_list ap /* arguments */ +){ + int c; /* Next character in the format string */ + char *bufpt; /* Pointer to the conversion buffer */ + int precision; /* Precision of the current field */ + int length; /* Length of the field */ + int idx; /* A general purpose loop counter */ + int count; /* Total number of characters output */ + int width; /* Width of the current field */ + etByte flag_leftjustify; /* True if "-" flag is present */ + etByte flag_plussign; /* True if "+" flag is present */ + etByte flag_blanksign; /* True if " " flag is present */ + etByte flag_alternateform; /* True if "#" flag is present */ + etByte flag_zeropad; /* True if field width constant starts with zero */ + etByte flag_long; /* True if "l" flag is present */ + etByte flag_longlong; /* True if the "ll" flag is present */ + UINT64_TYPE longvalue; /* Value for integer types */ + LONGDOUBLE_TYPE realvalue; /* Value for real types */ + const et_info *infop; /* Pointer to the appropriate info structure */ + char buf[etBUFSIZE]; /* Conversion buffer */ + char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ + etByte errorflag = 0; /* True if an error is encountered */ + etByte xtype; /* Conversion paradigm */ + char *zExtra; /* Extra memory used for etTCLESCAPE conversions */ + static const char spaces[] = + " "; +#define etSPACESIZE (sizeof(spaces)-1) +#ifndef etNOFLOATINGPOINT + int exp; /* exponent of real numbers */ + double rounder; /* Used for rounding floating point values */ + etByte flag_dp; /* True if decimal point should be shown */ + etByte flag_rtz; /* True if trailing zeros should be removed */ + etByte flag_exp; /* True to force display of the exponent */ + int nsd; /* Number of significant digits returned */ +#endif + + func(arg,"",0); + count = length = 0; + bufpt = 0; + for(; (c=(*fmt))!=0; ++fmt){ + if( c!='%' ){ + int amt; + bufpt = (char *)fmt; + amt = 1; + while( (c=(*++fmt))!='%' && c!=0 ) amt++; + (*func)(arg,bufpt,amt); + count += amt; + if( c==0 ) break; + } + if( (c=(*++fmt))==0 ){ + errorflag = 1; + (*func)(arg,"%",1); + count++; + break; + } + /* Find out what flags are present */ + flag_leftjustify = flag_plussign = flag_blanksign = + flag_alternateform = flag_zeropad = 0; + do{ + switch( c ){ + case '-': flag_leftjustify = 1; c = 0; break; + case '+': flag_plussign = 1; c = 0; break; + case ' ': flag_blanksign = 1; c = 0; break; + case '#': flag_alternateform = 1; c = 0; break; + case '0': flag_zeropad = 1; c = 0; break; + default: break; + } + }while( c==0 && (c=(*++fmt))!=0 ); + /* Get the field width */ + width = 0; + if( c=='*' ){ + width = va_arg(ap,int); + if( width<0 ){ + flag_leftjustify = 1; + width = -width; + } + c = *++fmt; + }else{ + while( c>='0' && c<='9' ){ + width = width*10 + c - '0'; + c = *++fmt; + } + } + if( width > etBUFSIZE-10 ){ + width = etBUFSIZE-10; + } + /* Get the precision */ + if( c=='.' ){ + precision = 0; + c = *++fmt; + if( c=='*' ){ + precision = va_arg(ap,int); + if( precision<0 ) precision = -precision; + c = *++fmt; + }else{ + while( c>='0' && c<='9' ){ + precision = precision*10 + c - '0'; + c = *++fmt; + } + } + /* Limit the precision to prevent overflowing buf[] during conversion */ + if( precision>etBUFSIZE-40 ) precision = etBUFSIZE-40; + }else{ + precision = -1; + } + /* Get the conversion type modifier */ + if( c=='l' ){ + flag_long = 1; + c = *++fmt; + if( c=='l' ){ + flag_longlong = 1; + c = *++fmt; + }else{ + flag_longlong = 0; + } + }else{ + flag_long = flag_longlong = 0; + } + /* Fetch the info entry for the field */ + infop = 0; + xtype = etERROR; + for(idx=0; idx<etNINFO; idx++){ + if( c==fmtinfo[idx].fmttype ){ + infop = &fmtinfo[idx]; + if( useExtended || (infop->flags & FLAG_INTERN)==0 ){ + xtype = infop->type; + } + break; + } + } + zExtra = 0; + + /* + ** At this point, variables are initialized as follows: + ** + ** flag_alternateform TRUE if a '#' is present. + ** flag_plussign TRUE if a '+' is present. + ** flag_leftjustify TRUE if a '-' is present or if the + ** field width was negative. + ** flag_zeropad TRUE if the width began with 0. + ** flag_long TRUE if the letter 'l' (ell) prefixed + ** the conversion character. + ** flag_longlong TRUE if the letter 'll' (ell ell) prefixed + ** the conversion character. + ** flag_blanksign TRUE if a ' ' is present. + ** width The specified field width. This is + ** always non-negative. Zero is the default. + ** precision The specified precision. The default + ** is -1. + ** xtype The class of the conversion. + ** infop Pointer to the appropriate info struct. + */ + switch( xtype ){ + case etPOINTER: + flag_longlong = sizeof(char*)==sizeof(i64); + flag_long = sizeof(char*)==sizeof(long int); + /* Fall through into the next case */ + case etRADIX: + if( infop->flags & FLAG_SIGNED ){ + i64 v; + if( flag_longlong ) v = va_arg(ap,i64); + else if( flag_long ) v = va_arg(ap,long int); + else v = va_arg(ap,int); + if( v<0 ){ + longvalue = -v; + prefix = '-'; + }else{ + longvalue = v; + if( flag_plussign ) prefix = '+'; + else if( flag_blanksign ) prefix = ' '; + else prefix = 0; + } + }else{ + if( flag_longlong ) longvalue = va_arg(ap,u64); + else if( flag_long ) longvalue = va_arg(ap,unsigned long int); + else longvalue = va_arg(ap,unsigned int); + prefix = 0; + } + if( longvalue==0 ) flag_alternateform = 0; + if( flag_zeropad && precision<width-(prefix!=0) ){ + precision = width-(prefix!=0); + } + bufpt = &buf[etBUFSIZE-1]; + { + register const char *cset; /* Use registers for speed */ + register int base; + cset = &aDigits[infop->charset]; + base = infop->base; + do{ /* Convert to ascii */ + *(--bufpt) = cset[longvalue%base]; + longvalue = longvalue/base; + }while( longvalue>0 ); + } + length = &buf[etBUFSIZE-1]-bufpt; + for(idx=precision-length; idx>0; idx--){ + *(--bufpt) = '0'; /* Zero pad */ + } + if( prefix ) *(--bufpt) = prefix; /* Add sign */ + if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ + const char *pre; + char x; + pre = &aPrefix[infop->prefix]; + if( *bufpt!=pre[0] ){ + for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; + } + } + length = &buf[etBUFSIZE-1]-bufpt; + break; + case etFLOAT: + case etEXP: + case etGENERIC: + realvalue = va_arg(ap,double); +#ifndef etNOFLOATINGPOINT + if( precision<0 ) precision = 6; /* Set default precision */ + if( precision>etBUFSIZE-10 ) precision = etBUFSIZE-10; + if( realvalue<0.0 ){ + realvalue = -realvalue; + prefix = '-'; + }else{ + if( flag_plussign ) prefix = '+'; + else if( flag_blanksign ) prefix = ' '; + else prefix = 0; + } + if( infop->type==etGENERIC && precision>0 ) precision--; + rounder = 0.0; +#if 0 + /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */ + for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1); +#else + /* It makes more sense to use 0.5 */ + for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1); +#endif + if( infop->type==etFLOAT ) realvalue += rounder; + /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ + exp = 0; + if( realvalue>0.0 ){ + while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; } + while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; } + while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; } + while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; } + if( exp>350 || exp<-350 ){ + bufpt = "NaN"; + length = 3; + break; + } + } + bufpt = buf; + /* + ** If the field type is etGENERIC, then convert to either etEXP + ** or etFLOAT, as appropriate. + */ + flag_exp = xtype==etEXP; + if( xtype!=etFLOAT ){ + realvalue += rounder; + if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } + } + if( xtype==etGENERIC ){ + flag_rtz = !flag_alternateform; + if( exp<-4 || exp>precision ){ + xtype = etEXP; + }else{ + precision = precision - exp; + xtype = etFLOAT; + } + }else{ + flag_rtz = 0; + } + /* + ** The "exp+precision" test causes output to be of type etEXP if + ** the precision is too large to fit in buf[]. + */ + nsd = 0; + if( xtype==etFLOAT && exp+precision<etBUFSIZE-30 ){ + flag_dp = (precision>0 || flag_alternateform); + if( prefix ) *(bufpt++) = prefix; /* Sign */ + if( exp<0 ) *(bufpt++) = '0'; /* Digits before "." */ + else for(; exp>=0; exp--) *(bufpt++) = et_getdigit(&realvalue,&nsd); + if( flag_dp ) *(bufpt++) = '.'; /* The decimal point */ + for(exp++; exp<0 && precision>0; precision--, exp++){ + *(bufpt++) = '0'; + } + while( (precision--)>0 ) *(bufpt++) = et_getdigit(&realvalue,&nsd); + *(bufpt--) = 0; /* Null terminate */ + if( flag_rtz && flag_dp ){ /* Remove trailing zeros and "." */ + while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0; + if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0; + } + bufpt++; /* point to next free slot */ + }else{ /* etEXP or etGENERIC */ + flag_dp = (precision>0 || flag_alternateform); + if( prefix ) *(bufpt++) = prefix; /* Sign */ + *(bufpt++) = et_getdigit(&realvalue,&nsd); /* First digit */ + if( flag_dp ) *(bufpt++) = '.'; /* Decimal point */ + while( (precision--)>0 ) *(bufpt++) = et_getdigit(&realvalue,&nsd); + bufpt--; /* point to last digit */ + if( flag_rtz && flag_dp ){ /* Remove tail zeros */ + while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0; + if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0; + } + bufpt++; /* point to next free slot */ + if( exp || flag_exp ){ + *(bufpt++) = aDigits[infop->charset]; + if( exp<0 ){ *(bufpt++) = '-'; exp = -exp; } /* sign of exp */ + else { *(bufpt++) = '+'; } + if( exp>=100 ){ + *(bufpt++) = (exp/100)+'0'; /* 100's digit */ + exp %= 100; + } + *(bufpt++) = exp/10+'0'; /* 10's digit */ + *(bufpt++) = exp%10+'0'; /* 1's digit */ + } + } + /* The converted number is in buf[] and zero terminated. Output it. + ** Note that the number is in the usual order, not reversed as with + ** integer conversions. */ + length = bufpt-buf; + bufpt = buf; + + /* Special case: Add leading zeros if the flag_zeropad flag is + ** set and we are not left justified */ + if( flag_zeropad && !flag_leftjustify && length < width){ + int i; + int nPad = width - length; + for(i=width; i>=nPad; i--){ + bufpt[i] = bufpt[i-nPad]; + } + i = prefix!=0; + while( nPad-- ) bufpt[i++] = '0'; + length = width; + } +#endif + break; + case etSIZE: + *(va_arg(ap,int*)) = count; + length = width = 0; + break; + case etPERCENT: + buf[0] = '%'; + bufpt = buf; + length = 1; + break; + case etCHARLIT: + case etCHARX: + c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt); + if( precision>=0 ){ + for(idx=1; idx<precision; idx++) buf[idx] = c; + length = precision; + }else{ + length =1; + } + bufpt = buf; + break; + case etSTRING: + case etDYNSTRING: + bufpt = va_arg(ap,char*); + if( bufpt==0 ){ + bufpt = ""; + }else if( xtype==etDYNSTRING ){ + zExtra = bufpt; + } + length = strlen(bufpt); + if( precision>=0 && precision<length ) length = precision; + break; + case etSQLESCAPE: + case etSQLESCAPE2: + { + int i, j, n, c, isnull; + char *arg = va_arg(ap,char*); + isnull = arg==0; + if( isnull ) arg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); + for(i=n=0; (c=arg[i])!=0; i++){ + if( c=='\'' ) n++; + } + n += i + 1 + ((!isnull && xtype==etSQLESCAPE2) ? 2 : 0); + if( n>etBUFSIZE ){ + bufpt = zExtra = sqliteMalloc( n ); + if( bufpt==0 ) return -1; + }else{ + bufpt = buf; + } + j = 0; + if( !isnull && xtype==etSQLESCAPE2 ) bufpt[j++] = '\''; + for(i=0; (c=arg[i])!=0; i++){ + bufpt[j++] = c; + if( c=='\'' ) bufpt[j++] = c; + } + if( !isnull && xtype==etSQLESCAPE2 ) bufpt[j++] = '\''; + bufpt[j] = 0; + length = j; + if( precision>=0 && precision<length ) length = precision; + } + break; + case etTOKEN: { + Token *pToken = va_arg(ap, Token*); + if( pToken && pToken->z ){ + (*func)(arg, pToken->z, pToken->n); + } + length = width = 0; + break; + } + case etSRCLIST: { + SrcList *pSrc = va_arg(ap, SrcList*); + int k = va_arg(ap, int); + struct SrcList_item *pItem = &pSrc->a[k]; + assert( k>=0 && k<pSrc->nSrc ); + if( pItem->zDatabase && pItem->zDatabase[0] ){ + (*func)(arg, pItem->zDatabase, strlen(pItem->zDatabase)); + (*func)(arg, ".", 1); + } + (*func)(arg, pItem->zName, strlen(pItem->zName)); + length = width = 0; + break; + } + case etERROR: + buf[0] = '%'; + buf[1] = c; + errorflag = 0; + idx = 1+(c!=0); + (*func)(arg,"%",idx); + count += idx; + if( c==0 ) fmt--; + break; + }/* End switch over the format type */ + /* + ** The text of the conversion is pointed to by "bufpt" and is + ** "length" characters long. The field width is "width". Do + ** the output. + */ + if( !flag_leftjustify ){ + register int nspace; + nspace = width-length; + if( nspace>0 ){ + count += nspace; + while( nspace>=etSPACESIZE ){ + (*func)(arg,spaces,etSPACESIZE); + nspace -= etSPACESIZE; + } + if( nspace>0 ) (*func)(arg,spaces,nspace); + } + } + if( length>0 ){ + (*func)(arg,bufpt,length); + count += length; + } + if( flag_leftjustify ){ + register int nspace; + nspace = width-length; + if( nspace>0 ){ + count += nspace; + while( nspace>=etSPACESIZE ){ + (*func)(arg,spaces,etSPACESIZE); + nspace -= etSPACESIZE; + } + if( nspace>0 ) (*func)(arg,spaces,nspace); + } + } + if( zExtra ){ + sqliteFree(zExtra); + } + }/* End for loop over the format string */ + return errorflag ? -1 : count; +} /* End of function */ + + +/* This structure is used to store state information about the +** write to memory that is currently in progress. +*/ +struct sgMprintf { + char *zBase; /* A base allocation */ + char *zText; /* The string collected so far */ + int nChar; /* Length of the string so far */ + int nTotal; /* Output size if unconstrained */ + int nAlloc; /* Amount of space allocated in zText */ + void *(*xRealloc)(void*,int); /* Function used to realloc memory */ +}; + +/* +** This function implements the callback from vxprintf. +** +** This routine add nNewChar characters of text in zNewText to +** the sgMprintf structure pointed to by "arg". +*/ +static void mout(void *arg, const char *zNewText, int nNewChar){ + struct sgMprintf *pM = (struct sgMprintf*)arg; + pM->nTotal += nNewChar; + if( pM->nChar + nNewChar + 1 > pM->nAlloc ){ + if( pM->xRealloc==0 ){ + nNewChar = pM->nAlloc - pM->nChar - 1; + }else{ + pM->nAlloc = pM->nChar + nNewChar*2 + 1; + if( pM->zText==pM->zBase ){ + pM->zText = pM->xRealloc(0, pM->nAlloc); + if( pM->zText && pM->nChar ){ + memcpy(pM->zText, pM->zBase, pM->nChar); + } + }else{ + pM->zText = pM->xRealloc(pM->zText, pM->nAlloc); + } + } + } + if( pM->zText ){ + if( nNewChar>0 ){ + memcpy(&pM->zText[pM->nChar], zNewText, nNewChar); + pM->nChar += nNewChar; + } + pM->zText[pM->nChar] = 0; + } +} + +/* +** This routine is a wrapper around xprintf() that invokes mout() as +** the consumer. +*/ +static char *base_vprintf( + void *(*xRealloc)(void*,int), /* Routine to realloc memory. May be NULL */ + int useInternal, /* Use internal %-conversions if true */ + char *zInitBuf, /* Initially write here, before mallocing */ + int nInitBuf, /* Size of zInitBuf[] */ + const char *zFormat, /* format string */ + va_list ap /* arguments */ +){ + struct sgMprintf sM; + sM.zBase = sM.zText = zInitBuf; + sM.nChar = sM.nTotal = 0; + sM.nAlloc = nInitBuf; + sM.xRealloc = xRealloc; + vxprintf(mout, &sM, useInternal, zFormat, ap); + if( xRealloc ){ + if( sM.zText==sM.zBase ){ + sM.zText = xRealloc(0, sM.nChar+1); + if( sM.zText ){ + memcpy(sM.zText, sM.zBase, sM.nChar+1); + } + }else if( sM.nAlloc>sM.nChar+10 ){ + sM.zText = xRealloc(sM.zText, sM.nChar+1); + } + } + return sM.zText; +} + +/* +** Realloc that is a real function, not a macro. +*/ +static void *printf_realloc(void *old, int size){ + return sqliteRealloc(old,size); +} + +/* +** Print into memory obtained from sqliteMalloc(). Use the internal +** %-conversion extensions. +*/ +char *sqlite3VMPrintf(const char *zFormat, va_list ap){ + char zBase[1000]; + return base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap); +} + +/* +** Print into memory obtained from sqliteMalloc(). Use the internal +** %-conversion extensions. +*/ +char *sqlite3MPrintf(const char *zFormat, ...){ + va_list ap; + char *z; + char zBase[1000]; + va_start(ap, zFormat); + z = base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap); + va_end(ap); + return z; +} + +/* +** Print into memory obtained from malloc(). Do not use the internal +** %-conversion extensions. This routine is for use by external users. +*/ +char *sqlite3_mprintf(const char *zFormat, ...){ + va_list ap; + char *z; + char zBuf[200]; + + va_start(ap,zFormat); + z = base_vprintf((void*(*)(void*,int))realloc, 0, + zBuf, sizeof(zBuf), zFormat, ap); + va_end(ap); + return z; +} + +/* This is the varargs version of sqlite3_mprintf. +*/ +char *sqlite3_vmprintf(const char *zFormat, va_list ap){ + char zBuf[200]; + return base_vprintf((void*(*)(void*,int))realloc, 0, + zBuf, sizeof(zBuf), zFormat, ap); +} + +/* +** sqlite3_snprintf() works like snprintf() except that it ignores the +** current locale settings. This is important for SQLite because we +** are not able to use a "," as the decimal point in place of "." as +** specified by some locales. +*/ +char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ + char *z; + va_list ap; + + va_start(ap,zFormat); + z = base_vprintf(0, 0, zBuf, n, zFormat, ap); + va_end(ap); + return z; +} + +#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) +/* +** A version of printf() that understands %lld. Used for debugging. +** The printf() built into some versions of windows does not understand %lld +** and segfaults if you give it a long long int. +*/ +void sqlite3DebugPrintf(const char *zFormat, ...){ + extern int getpid(void); + va_list ap; + char zBuf[500]; + va_start(ap, zFormat); + base_vprintf(0, 0, zBuf, sizeof(zBuf), zFormat, ap); + va_end(ap); + fprintf(stdout,"%d: %s", getpid(), zBuf); + fflush(stdout); +} +#endif diff --git a/kopete/plugins/statistics/sqlite/random.c b/kopete/plugins/statistics/sqlite/random.c new file mode 100644 index 00000000..de74e291 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/random.c @@ -0,0 +1,100 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code to implement a pseudo-random number +** generator (PRNG) for SQLite. +** +** Random numbers are used by some of the database backends in order +** to generate random integer keys for tables or random filenames. +** +** $Id$ +*/ +#include "sqliteInt.h" +#include "os.h" + + +/* +** Get a single 8-bit random value from the RC4 PRNG. The Mutex +** must be held while executing this routine. +** +** Why not just use a library random generator like lrand48() for this? +** Because the OP_NewRecno opcode in the VDBE depends on having a very +** good source of random numbers. The lrand48() library function may +** well be good enough. But maybe not. Or maybe lrand48() has some +** subtle problems on some systems that could cause problems. It is hard +** to know. To minimize the risk of problems due to bad lrand48() +** implementations, SQLite uses this random number generator based +** on RC4, which we know works very well. +*/ +static int randomByte(){ + unsigned char t; + + /* All threads share a single random number generator. + ** This structure is the current state of the generator. + */ + static struct { + unsigned char isInit; /* True if initialized */ + unsigned char i, j; /* State variables */ + unsigned char s[256]; /* State variables */ + } prng; + + /* Initialize the state of the random number generator once, + ** the first time this routine is called. The seed value does + ** not need to contain a lot of randomness since we are not + ** trying to do secure encryption or anything like that... + ** + ** Nothing in this file or anywhere else in SQLite does any kind of + ** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random + ** number generator) not as an encryption device. + */ + if( !prng.isInit ){ + int i; + char k[256]; + prng.j = 0; + prng.i = 0; + sqlite3OsRandomSeed(k); + for(i=0; i<256; i++){ + prng.s[i] = i; + } + for(i=0; i<256; i++){ + prng.j += prng.s[i] + k[i]; + t = prng.s[prng.j]; + prng.s[prng.j] = prng.s[i]; + prng.s[i] = t; + } + prng.isInit = 1; + } + + /* Generate and return single random byte + */ + prng.i++; + t = prng.s[prng.i]; + prng.j += t; + prng.s[prng.i] = prng.s[prng.j]; + prng.s[prng.j] = t; + t += prng.s[prng.i]; + return prng.s[t]; +} + +/* +** Return N random bytes. +*/ +void sqlite3Randomness(int N, void *pBuf){ + unsigned char *zBuf = pBuf; + sqlite3OsEnterMutex(); + while( N-- ){ + *(zBuf++) = randomByte(); + } + sqlite3OsLeaveMutex(); +} + + + diff --git a/kopete/plugins/statistics/sqlite/select.c b/kopete/plugins/statistics/sqlite/select.c new file mode 100644 index 00000000..8bee7897 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/select.c @@ -0,0 +1,2628 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that are called by the parser +** to handle SELECT statements in SQLite. +** +** $Id$ +*/ +#include "sqliteInt.h" + + +/* +** Allocate a new Select structure and return a pointer to that +** structure. +*/ +Select *sqlite3SelectNew( + ExprList *pEList, /* which columns to include in the result */ + SrcList *pSrc, /* the FROM clause -- which tables to scan */ + Expr *pWhere, /* the WHERE clause */ + ExprList *pGroupBy, /* the GROUP BY clause */ + Expr *pHaving, /* the HAVING clause */ + ExprList *pOrderBy, /* the ORDER BY clause */ + int isDistinct, /* true if the DISTINCT keyword is present */ + int nLimit, /* LIMIT value. -1 means not used */ + int nOffset /* OFFSET value. 0 means no offset */ +){ + Select *pNew; + pNew = sqliteMalloc( sizeof(*pNew) ); + if( pNew==0 ){ + sqlite3ExprListDelete(pEList); + sqlite3SrcListDelete(pSrc); + sqlite3ExprDelete(pWhere); + sqlite3ExprListDelete(pGroupBy); + sqlite3ExprDelete(pHaving); + sqlite3ExprListDelete(pOrderBy); + }else{ + if( pEList==0 ){ + pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0); + } + pNew->pEList = pEList; + pNew->pSrc = pSrc; + pNew->pWhere = pWhere; + pNew->pGroupBy = pGroupBy; + pNew->pHaving = pHaving; + pNew->pOrderBy = pOrderBy; + pNew->isDistinct = isDistinct; + pNew->op = TK_SELECT; + pNew->nLimit = nLimit; + pNew->nOffset = nOffset; + pNew->iLimit = -1; + pNew->iOffset = -1; + } + return pNew; +} + +/* +** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the +** type of join. Return an integer constant that expresses that type +** in terms of the following bit values: +** +** JT_INNER +** JT_OUTER +** JT_NATURAL +** JT_LEFT +** JT_RIGHT +** +** A full outer join is the combination of JT_LEFT and JT_RIGHT. +** +** If an illegal or unsupported join type is seen, then still return +** a join type, but put an error in the pParse structure. +*/ +int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ + int jointype = 0; + Token *apAll[3]; + Token *p; + static const struct { + const char *zKeyword; + u8 nChar; + u8 code; + } keywords[] = { + { "natural", 7, JT_NATURAL }, + { "left", 4, JT_LEFT|JT_OUTER }, + { "right", 5, JT_RIGHT|JT_OUTER }, + { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, + { "outer", 5, JT_OUTER }, + { "inner", 5, JT_INNER }, + { "cross", 5, JT_INNER }, + }; + int i, j; + apAll[0] = pA; + apAll[1] = pB; + apAll[2] = pC; + for(i=0; i<3 && apAll[i]; i++){ + p = apAll[i]; + for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ + if( p->n==keywords[j].nChar + && sqlite3StrNICmp(p->z, keywords[j].zKeyword, p->n)==0 ){ + jointype |= keywords[j].code; + break; + } + } + if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ + jointype |= JT_ERROR; + break; + } + } + if( + (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || + (jointype & JT_ERROR)!=0 + ){ + const char *zSp1 = " "; + const char *zSp2 = " "; + if( pB==0 ){ zSp1++; } + if( pC==0 ){ zSp2++; } + sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " + "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); + jointype = JT_INNER; + }else if( jointype & JT_RIGHT ){ + sqlite3ErrorMsg(pParse, + "RIGHT and FULL OUTER JOINs are not currently supported"); + jointype = JT_INNER; + } + return jointype; +} + +/* +** Return the index of a column in a table. Return -1 if the column +** is not contained in the table. +*/ +static int columnIndex(Table *pTab, const char *zCol){ + int i; + for(i=0; i<pTab->nCol; i++){ + if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; + } + return -1; +} + +/* +** Set the value of a token to a '\000'-terminated string. +*/ +static void setToken(Token *p, const char *z){ + p->z = z; + p->n = strlen(z); + p->dyn = 0; +} + + +/* +** Add a term to the WHERE expression in *ppExpr that requires the +** zCol column to be equal in the two tables pTab1 and pTab2. +*/ +static void addWhereTerm( + const char *zCol, /* Name of the column */ + const Table *pTab1, /* First table */ + const Table *pTab2, /* Second table */ + Expr **ppExpr /* Add the equality term to this expression */ +){ + Token dummy; + Expr *pE1a, *pE1b, *pE1c; + Expr *pE2a, *pE2b, *pE2c; + Expr *pE; + + setToken(&dummy, zCol); + pE1a = sqlite3Expr(TK_ID, 0, 0, &dummy); + pE2a = sqlite3Expr(TK_ID, 0, 0, &dummy); + setToken(&dummy, pTab1->zName); + pE1b = sqlite3Expr(TK_ID, 0, 0, &dummy); + setToken(&dummy, pTab2->zName); + pE2b = sqlite3Expr(TK_ID, 0, 0, &dummy); + pE1c = sqlite3Expr(TK_DOT, pE1b, pE1a, 0); + pE2c = sqlite3Expr(TK_DOT, pE2b, pE2a, 0); + pE = sqlite3Expr(TK_EQ, pE1c, pE2c, 0); + ExprSetProperty(pE, EP_FromJoin); + *ppExpr = sqlite3ExprAnd(*ppExpr, pE); +} + +/* +** Set the EP_FromJoin property on all terms of the given expression. +** +** The EP_FromJoin property is used on terms of an expression to tell +** the LEFT OUTER JOIN processing logic that this term is part of the +** join restriction specified in the ON or USING clause and not a part +** of the more general WHERE clause. These terms are moved over to the +** WHERE clause during join processing but we need to remember that they +** originated in the ON or USING clause. +*/ +static void setJoinExpr(Expr *p){ + while( p ){ + ExprSetProperty(p, EP_FromJoin); + setJoinExpr(p->pLeft); + p = p->pRight; + } +} + +/* +** This routine processes the join information for a SELECT statement. +** ON and USING clauses are converted into extra terms of the WHERE clause. +** NATURAL joins also create extra WHERE clause terms. +** +** The terms of a FROM clause are contained in the Select.pSrc structure. +** The left most table is the first entry in Select.pSrc. The right-most +** table is the last entry. The join operator is held in the entry to +** the left. Thus entry 0 contains the join operator for the join between +** entries 0 and 1. Any ON or USING clauses associated with the join are +** also attached to the left entry. +** +** This routine returns the number of errors encountered. +*/ +static int sqliteProcessJoin(Parse *pParse, Select *p){ + SrcList *pSrc; /* All tables in the FROM clause */ + int i, j; /* Loop counters */ + struct SrcList_item *pLeft; /* Left table being joined */ + struct SrcList_item *pRight; /* Right table being joined */ + + pSrc = p->pSrc; + pLeft = &pSrc->a[0]; + pRight = &pLeft[1]; + for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ + Table *pLeftTab = pLeft->pTab; + Table *pRightTab = pRight->pTab; + + if( pLeftTab==0 || pRightTab==0 ) continue; + + /* When the NATURAL keyword is present, add WHERE clause terms for + ** every column that the two tables have in common. + */ + if( pLeft->jointype & JT_NATURAL ){ + if( pLeft->pOn || pLeft->pUsing ){ + sqlite3ErrorMsg(pParse, "a NATURAL join may not have " + "an ON or USING clause", 0); + return 1; + } + for(j=0; j<pLeftTab->nCol; j++){ + char *zName = pLeftTab->aCol[j].zName; + if( columnIndex(pRightTab, zName)>=0 ){ + addWhereTerm(zName, pLeftTab, pRightTab, &p->pWhere); + } + } + } + + /* Disallow both ON and USING clauses in the same join + */ + if( pLeft->pOn && pLeft->pUsing ){ + sqlite3ErrorMsg(pParse, "cannot have both ON and USING " + "clauses in the same join"); + return 1; + } + + /* Add the ON clause to the end of the WHERE clause, connected by + ** an AND operator. + */ + if( pLeft->pOn ){ + setJoinExpr(pLeft->pOn); + p->pWhere = sqlite3ExprAnd(p->pWhere, pLeft->pOn); + pLeft->pOn = 0; + } + + /* Create extra terms on the WHERE clause for each column named + ** in the USING clause. Example: If the two tables to be joined are + ** A and B and the USING clause names X, Y, and Z, then add this + ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z + ** Report an error if any column mentioned in the USING clause is + ** not contained in both tables to be joined. + */ + if( pLeft->pUsing ){ + IdList *pList = pLeft->pUsing; + for(j=0; j<pList->nId; j++){ + char *zName = pList->a[j].zName; + if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ + sqlite3ErrorMsg(pParse, "cannot join using column %s - column " + "not present in both tables", zName); + return 1; + } + addWhereTerm(zName, pLeftTab, pRightTab, &p->pWhere); + } + } + } + return 0; +} + +/* +** Delete the given Select structure and all of its substructures. +*/ +void sqlite3SelectDelete(Select *p){ + if( p==0 ) return; + sqlite3ExprListDelete(p->pEList); + sqlite3SrcListDelete(p->pSrc); + sqlite3ExprDelete(p->pWhere); + sqlite3ExprListDelete(p->pGroupBy); + sqlite3ExprDelete(p->pHaving); + sqlite3ExprListDelete(p->pOrderBy); + sqlite3SelectDelete(p->pPrior); + sqliteFree(p->zSelect); + sqliteFree(p); +} + +/* +** Delete the aggregate information from the parse structure. +*/ +static void sqliteAggregateInfoReset(Parse *pParse){ + sqliteFree(pParse->aAgg); + pParse->aAgg = 0; + pParse->nAgg = 0; + pParse->useAgg = 0; +} + +/* +** Insert code into "v" that will push the record on the top of the +** stack into the sorter. +*/ +static void pushOntoSorter(Parse *pParse, Vdbe *v, ExprList *pOrderBy){ + int i; + for(i=0; i<pOrderBy->nExpr; i++){ + sqlite3ExprCode(pParse, pOrderBy->a[i].pExpr); + } + sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr, 0); + sqlite3VdbeAddOp(v, OP_SortPut, 0, 0); +} + +/* +** Add code to implement the OFFSET and LIMIT +*/ +static void codeLimiter( + Vdbe *v, /* Generate code into this VM */ + Select *p, /* The SELECT statement being coded */ + int iContinue, /* Jump here to skip the current record */ + int iBreak, /* Jump here to end the loop */ + int nPop /* Number of times to pop stack when jumping */ +){ + if( p->iOffset>=0 ){ + int addr = sqlite3VdbeCurrentAddr(v) + 2; + if( nPop>0 ) addr++; + sqlite3VdbeAddOp(v, OP_MemIncr, p->iOffset, addr); + if( nPop>0 ){ + sqlite3VdbeAddOp(v, OP_Pop, nPop, 0); + } + sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue); + VdbeComment((v, "# skip OFFSET records")); + } + if( p->iLimit>=0 ){ + sqlite3VdbeAddOp(v, OP_MemIncr, p->iLimit, iBreak); + VdbeComment((v, "# exit when LIMIT reached")); + } +} + +/* +** This routine generates the code for the inside of the inner loop +** of a SELECT. +** +** If srcTab and nColumn are both zero, then the pEList expressions +** are evaluated in order to get the data for this row. If nColumn>0 +** then data is pulled from srcTab and pEList is used only to get the +** datatypes for each column. +*/ +static int selectInnerLoop( + Parse *pParse, /* The parser context */ + Select *p, /* The complete select statement being coded */ + ExprList *pEList, /* List of values being extracted */ + int srcTab, /* Pull data from this table */ + int nColumn, /* Number of columns in the source table */ + ExprList *pOrderBy, /* If not NULL, sort results using this key */ + int distinct, /* If >=0, make sure results are distinct */ + int eDest, /* How to dispose of the results */ + int iParm, /* An argument to the disposal method */ + int iContinue, /* Jump here to continue with next row */ + int iBreak, /* Jump here to break out of the inner loop */ + char *aff /* affinity string if eDest is SRT_Union */ +){ + Vdbe *v = pParse->pVdbe; + int i; + int hasDistinct; /* True if the DISTINCT keyword is present */ + + if( v==0 ) return 0; + assert( pEList!=0 ); + + /* If there was a LIMIT clause on the SELECT statement, then do the check + ** to see if this row should be output. + */ + hasDistinct = distinct>=0 && pEList && pEList->nExpr>0; + if( pOrderBy==0 && !hasDistinct ){ + codeLimiter(v, p, iContinue, iBreak, 0); + } + + /* Pull the requested columns. + */ + if( nColumn>0 ){ + for(i=0; i<nColumn; i++){ + sqlite3VdbeAddOp(v, OP_Column, srcTab, i); + } + }else{ + nColumn = pEList->nExpr; + for(i=0; i<pEList->nExpr; i++){ + sqlite3ExprCode(pParse, pEList->a[i].pExpr); + } + } + + /* If the DISTINCT keyword was present on the SELECT statement + ** and this row has been seen before, then do not make this row + ** part of the result. + */ + if( hasDistinct ){ +#if NULL_ALWAYS_DISTINCT + sqlite3VdbeAddOp(v, OP_IsNull, -pEList->nExpr, sqlite3VdbeCurrentAddr(v)+7); +#endif + /* Deliberately leave the affinity string off of the following + ** OP_MakeRecord */ + sqlite3VdbeAddOp(v, OP_MakeRecord, pEList->nExpr * -1, 0); + sqlite3VdbeAddOp(v, OP_Distinct, distinct, sqlite3VdbeCurrentAddr(v)+3); + sqlite3VdbeAddOp(v, OP_Pop, pEList->nExpr+1, 0); + sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue); + VdbeComment((v, "# skip indistinct records")); + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + sqlite3VdbeAddOp(v, OP_PutStrKey, distinct, 0); + if( pOrderBy==0 ){ + codeLimiter(v, p, iContinue, iBreak, nColumn); + } + } + + switch( eDest ){ + /* In this mode, write each query result to the key of the temporary + ** table iParm. + */ + case SRT_Union: { + sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT); + sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + sqlite3VdbeAddOp(v, OP_PutStrKey, iParm, 0); + break; + } + + /* Store the result as data using a unique key. + */ + case SRT_Table: + case SRT_TempTable: { + sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); + if( pOrderBy ){ + pushOntoSorter(pParse, v, pOrderBy); + }else{ + sqlite3VdbeAddOp(v, OP_NewRecno, iParm, 0); + sqlite3VdbeAddOp(v, OP_Pull, 1, 0); + sqlite3VdbeAddOp(v, OP_PutIntKey, iParm, 0); + } + break; + } + + /* Construct a record from the query result, but instead of + ** saving that record, use it as a key to delete elements from + ** the temporary table iParm. + */ + case SRT_Except: { + int addr; + addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT); + sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); + sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3); + sqlite3VdbeAddOp(v, OP_Delete, iParm, 0); + break; + } + + /* If we are creating a set for an "expr IN (SELECT ...)" construct, + ** then there should be a single item on the stack. Write this + ** item into the set table with bogus data. + */ + case SRT_Set: { + int addr1 = sqlite3VdbeCurrentAddr(v); + int addr2; + + assert( nColumn==1 ); + sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3); + sqlite3VdbeAddOp(v, OP_Pop, 1, 0); + addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); + if( pOrderBy ){ + pushOntoSorter(pParse, v, pOrderBy); + }else{ + char aff = (iParm>>16)&0xFF; + aff = sqlite3CompareAffinity(pEList->a[0].pExpr, aff); + sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &aff, 1); + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + sqlite3VdbeAddOp(v, OP_PutStrKey, (iParm&0x0000FFFF), 0); + } + sqlite3VdbeChangeP2(v, addr2, sqlite3VdbeCurrentAddr(v)); + break; + } + + /* If this is a scalar select that is part of an expression, then + ** store the results in the appropriate memory cell and break out + ** of the scan loop. + */ + case SRT_Mem: { + assert( nColumn==1 ); + if( pOrderBy ){ + pushOntoSorter(pParse, v, pOrderBy); + }else{ + sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); + sqlite3VdbeAddOp(v, OP_Goto, 0, iBreak); + } + break; + } + + /* Send the data to the callback function. + */ + case SRT_Callback: + case SRT_Sorter: { + if( pOrderBy ){ + sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); + pushOntoSorter(pParse, v, pOrderBy); + }else{ + assert( eDest==SRT_Callback ); + sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); + } + break; + } + + /* Invoke a subroutine to handle the results. The subroutine itself + ** is responsible for popping the results off of the stack. + */ + case SRT_Subroutine: { + if( pOrderBy ){ + sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); + pushOntoSorter(pParse, v, pOrderBy); + }else{ + sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); + } + break; + } + + /* Discard the results. This is used for SELECT statements inside + ** the body of a TRIGGER. The purpose of such selects is to call + ** user-defined functions that have side effects. We do not care + ** about the actual results of the select. + */ + default: { + assert( eDest==SRT_Discard ); + sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); + break; + } + } + return 0; +} + +/* +** If the inner loop was generated using a non-null pOrderBy argument, +** then the results were placed in a sorter. After the loop is terminated +** we need to run the sorter and output the results. The following +** routine generates the code needed to do that. +*/ +static void generateSortTail( + Parse *pParse, /* The parsing context */ + Select *p, /* The SELECT statement */ + Vdbe *v, /* Generate code into this VDBE */ + int nColumn, /* Number of columns of data */ + int eDest, /* Write the sorted results here */ + int iParm /* Optional parameter associated with eDest */ +){ + int end1 = sqlite3VdbeMakeLabel(v); + int end2 = sqlite3VdbeMakeLabel(v); + int addr; + KeyInfo *pInfo; + ExprList *pOrderBy; + int nCol, i; + sqlite3 *db = pParse->db; + + if( eDest==SRT_Sorter ) return; + pOrderBy = p->pOrderBy; + nCol = pOrderBy->nExpr; + pInfo = sqliteMalloc( sizeof(*pInfo) + nCol*(sizeof(CollSeq*)+1) ); + if( pInfo==0 ) return; + pInfo->aSortOrder = (char*)&pInfo->aColl[nCol]; + pInfo->nField = nCol; + for(i=0; i<nCol; i++){ + /* If a collation sequence was specified explicity, then it + ** is stored in pOrderBy->a[i].zName. Otherwise, use the default + ** collation type for the expression. + */ + pInfo->aColl[i] = sqlite3ExprCollSeq(pParse, pOrderBy->a[i].pExpr); + if( !pInfo->aColl[i] ){ + pInfo->aColl[i] = db->pDfltColl; + } + pInfo->aSortOrder[i] = pOrderBy->a[i].sortOrder; + } + sqlite3VdbeOp3(v, OP_Sort, 0, 0, (char*)pInfo, P3_KEYINFO_HANDOFF); + addr = sqlite3VdbeAddOp(v, OP_SortNext, 0, end1); + codeLimiter(v, p, addr, end2, 1); + switch( eDest ){ + case SRT_Table: + case SRT_TempTable: { + sqlite3VdbeAddOp(v, OP_NewRecno, iParm, 0); + sqlite3VdbeAddOp(v, OP_Pull, 1, 0); + sqlite3VdbeAddOp(v, OP_PutIntKey, iParm, 0); + break; + } + case SRT_Set: { + assert( nColumn==1 ); + sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); + sqlite3VdbeAddOp(v, OP_Pop, 1, 0); + sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); + sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, "n", P3_STATIC); + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + sqlite3VdbeAddOp(v, OP_PutStrKey, (iParm&0x0000FFFF), 0); + break; + } + case SRT_Mem: { + assert( nColumn==1 ); + sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); + sqlite3VdbeAddOp(v, OP_Goto, 0, end1); + break; + } + case SRT_Callback: + case SRT_Subroutine: { + int i; + sqlite3VdbeAddOp(v, OP_Integer, p->pEList->nExpr, 0); + sqlite3VdbeAddOp(v, OP_Pull, 1, 0); + for(i=0; i<nColumn; i++){ + sqlite3VdbeAddOp(v, OP_Column, -1-i, i); + } + if( eDest==SRT_Callback ){ + sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); + }else{ + sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); + } + sqlite3VdbeAddOp(v, OP_Pop, 2, 0); + break; + } + default: { + /* Do nothing */ + break; + } + } + sqlite3VdbeAddOp(v, OP_Goto, 0, addr); + sqlite3VdbeResolveLabel(v, end2); + sqlite3VdbeAddOp(v, OP_Pop, 1, 0); + sqlite3VdbeResolveLabel(v, end1); + sqlite3VdbeAddOp(v, OP_SortReset, 0, 0); +} + +/* +** Return a pointer to a string containing the 'declaration type' of the +** expression pExpr. The string may be treated as static by the caller. +** +** If the declaration type is the exact datatype definition extracted from +** the original CREATE TABLE statement if the expression is a column. +** +** The declaration type for an expression is either TEXT, NUMERIC or ANY. +** The declaration type for a ROWID field is INTEGER. +*/ +static const char *columnType(Parse *pParse, SrcList *pTabList, Expr *pExpr){ + char const *zType; + int j; + if( pExpr==0 || pTabList==0 ) return 0; + + switch( pExpr->op ){ + case TK_COLUMN: { + Table *pTab; + int iCol = pExpr->iColumn; + for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable; j++){} + assert( j<pTabList->nSrc ); + pTab = pTabList->a[j].pTab; + if( iCol<0 ) iCol = pTab->iPKey; + assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); + if( iCol<0 ){ + zType = "INTEGER"; + }else{ + zType = pTab->aCol[iCol].zType; + } + break; + } + case TK_AS: + zType = columnType(pParse, pTabList, pExpr->pLeft); + break; + case TK_SELECT: { + Select *pS = pExpr->pSelect; + zType = columnType(pParse, pS->pSrc, pS->pEList->a[0].pExpr); + break; + } + default: + zType = 0; + } + + return zType; +} + +/* +** Generate code that will tell the VDBE the declaration types of columns +** in the result set. +*/ +static void generateColumnTypes( + Parse *pParse, /* Parser context */ + SrcList *pTabList, /* List of tables */ + ExprList *pEList /* Expressions defining the result set */ +){ + Vdbe *v = pParse->pVdbe; + int i; + for(i=0; i<pEList->nExpr; i++){ + Expr *p = pEList->a[i].pExpr; + const char *zType = columnType(pParse, pTabList, p); + if( zType==0 ) continue; + /* The vdbe must make it's own copy of the column-type, in case the + ** schema is reset before this virtual machine is deleted. + */ + sqlite3VdbeSetColName(v, i+pEList->nExpr, zType, strlen(zType)); + } +} + +/* +** Generate code that will tell the VDBE the names of columns +** in the result set. This information is used to provide the +** azCol[] values in the callback. +*/ +static void generateColumnNames( + Parse *pParse, /* Parser context */ + SrcList *pTabList, /* List of tables */ + ExprList *pEList /* Expressions defining the result set */ +){ + Vdbe *v = pParse->pVdbe; + int i, j; + sqlite3 *db = pParse->db; + int fullNames, shortNames; + + /* If this is an EXPLAIN, skip this step */ + if( pParse->explain ){ + return; + } + + assert( v!=0 ); + if( pParse->colNamesSet || v==0 || sqlite3_malloc_failed ) return; + pParse->colNamesSet = 1; + fullNames = (db->flags & SQLITE_FullColNames)!=0; + shortNames = (db->flags & SQLITE_ShortColNames)!=0; + sqlite3VdbeSetNumCols(v, pEList->nExpr); + for(i=0; i<pEList->nExpr; i++){ + Expr *p; + p = pEList->a[i].pExpr; + if( p==0 ) continue; + if( pEList->a[i].zName ){ + char *zName = pEList->a[i].zName; + sqlite3VdbeSetColName(v, i, zName, strlen(zName)); + continue; + } + if( p->op==TK_COLUMN && pTabList ){ + Table *pTab; + char *zCol; + int iCol = p->iColumn; + for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} + assert( j<pTabList->nSrc ); + pTab = pTabList->a[j].pTab; + if( iCol<0 ) iCol = pTab->iPKey; + assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); + if( iCol<0 ){ + zCol = "_ROWID_"; + }else{ + zCol = pTab->aCol[iCol].zName; + } + if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){ + sqlite3VdbeSetColName(v, i, p->span.z, p->span.n); + }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ + char *zName = 0; + char *zTab; + + zTab = pTabList->a[j].zAlias; + if( fullNames || zTab==0 ) zTab = pTab->zName; + sqlite3SetString(&zName, zTab, ".", zCol, 0); + sqlite3VdbeSetColName(v, i, zName, P3_DYNAMIC); + }else{ + sqlite3VdbeSetColName(v, i, zCol, 0); + } + }else if( p->span.z && p->span.z[0] ){ + sqlite3VdbeSetColName(v, i, p->span.z, p->span.n); + /* sqlite3VdbeCompressSpace(v, addr); */ + }else{ + char zName[30]; + assert( p->op!=TK_COLUMN || pTabList==0 ); + sprintf(zName, "column%d", i+1); + sqlite3VdbeSetColName(v, i, zName, 0); + } + } + generateColumnTypes(pParse, pTabList, pEList); +} + +/* +** Name of the connection operator, used for error messages. +*/ +static const char *selectOpName(int id){ + char *z; + switch( id ){ + case TK_ALL: z = "UNION ALL"; break; + case TK_INTERSECT: z = "INTERSECT"; break; + case TK_EXCEPT: z = "EXCEPT"; break; + default: z = "UNION"; break; + } + return z; +} + +/* +** Forward declaration +*/ +static int fillInColumnList(Parse*, Select*); + +/* +** Given a SELECT statement, generate a Table structure that describes +** the result set of that SELECT. +*/ +Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ + Table *pTab; + int i, j; + ExprList *pEList; + Column *aCol, *pCol; + + if( fillInColumnList(pParse, pSelect) ){ + return 0; + } + pTab = sqliteMalloc( sizeof(Table) ); + if( pTab==0 ){ + return 0; + } + pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0; + pEList = pSelect->pEList; + pTab->nCol = pEList->nExpr; + assert( pTab->nCol>0 ); + pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol ); + for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){ + Expr *pR; + char *zType; + char *zName; + Expr *p = pEList->a[i].pExpr; + assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); + if( (zName = pEList->a[i].zName)!=0 ){ + zName = sqliteStrDup(zName); + }else if( p->op==TK_DOT + && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){ + int cnt; + zName = sqlite3MPrintf("%T", &pR->token); + for(j=cnt=0; j<i; j++){ + if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ + sqliteFree(zName); + zName = sqlite3MPrintf("%T_%d", &pR->token, ++cnt); + j = -1; + } + } + }else if( p->span.z && p->span.z[0] ){ + zName = sqlite3MPrintf("%T", &p->span); + }else{ + zName = sqlite3MPrintf("column%d", i+1); + } + sqlite3Dequote(zName); + pCol->zName = zName; + + zType = sqliteStrDup(columnType(pParse, pSelect->pSrc ,p)); + pCol->zType = zType; + pCol->affinity = SQLITE_AFF_NUMERIC; + if( zType ){ + pCol->affinity = sqlite3AffinityType(zType, strlen(zType)); + } + pCol->pColl = sqlite3ExprCollSeq(pParse, p); + if( !pCol->pColl ){ + pCol->pColl = pParse->db->pDfltColl; + } + } + pTab->iPKey = -1; + return pTab; +} + +/* +** For the given SELECT statement, do three things. +** +** (1) Fill in the pTabList->a[].pTab fields in the SrcList that +** defines the set of tables that should be scanned. For views, +** fill pTabList->a[].pSelect with a copy of the SELECT statement +** that implements the view. A copy is made of the view's SELECT +** statement so that we can freely modify or delete that statement +** without worrying about messing up the presistent representation +** of the view. +** +** (2) Add terms to the WHERE clause to accomodate the NATURAL keyword +** on joins and the ON and USING clause of joins. +** +** (3) Scan the list of columns in the result set (pEList) looking +** for instances of the "*" operator or the TABLE.* operator. +** If found, expand each "*" to be every column in every table +** and TABLE.* to be every column in TABLE. +** +** Return 0 on success. If there are problems, leave an error message +** in pParse and return non-zero. +*/ +static int fillInColumnList(Parse *pParse, Select *p){ + int i, j, k, rc; + SrcList *pTabList; + ExprList *pEList; + Table *pTab; + struct SrcList_item *pFrom; + + if( p==0 || p->pSrc==0 ) return 1; + pTabList = p->pSrc; + pEList = p->pEList; + + /* Look up every table in the table list. + */ + for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ + if( pFrom->pTab ){ + /* This routine has run before! No need to continue */ + return 0; + } + if( pFrom->zName==0 ){ + /* A sub-query in the FROM clause of a SELECT */ + assert( pFrom->pSelect!=0 ); + if( pFrom->zAlias==0 ){ + pFrom->zAlias = + sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect); + } + pFrom->pTab = pTab = + sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); + if( pTab==0 ){ + return 1; + } + /* The isTransient flag indicates that the Table structure has been + ** dynamically allocated and may be freed at any time. In other words, + ** pTab is not pointing to a persistent table structure that defines + ** part of the schema. */ + pTab->isTransient = 1; + }else{ + /* An ordinary table or view name in the FROM clause */ + pFrom->pTab = pTab = + sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase); + if( pTab==0 ){ + return 1; + } + if( pTab->pSelect ){ + /* We reach here if the named table is a really a view */ + if( sqlite3ViewGetColumnNames(pParse, pTab) ){ + return 1; + } + /* If pFrom->pSelect!=0 it means we are dealing with a + ** view within a view. The SELECT structure has already been + ** copied by the outer view so we can skip the copy step here + ** in the inner view. + */ + if( pFrom->pSelect==0 ){ + pFrom->pSelect = sqlite3SelectDup(pTab->pSelect); + } + } + } + } + + /* Process NATURAL keywords, and ON and USING clauses of joins. + */ + if( sqliteProcessJoin(pParse, p) ) return 1; + + /* For every "*" that occurs in the column list, insert the names of + ** all columns in all tables. And for every TABLE.* insert the names + ** of all columns in TABLE. The parser inserted a special expression + ** with the TK_ALL operator for each "*" that it found in the column list. + ** The following code just has to locate the TK_ALL expressions and expand + ** each one to the list of all columns in all tables. + ** + ** The first loop just checks to see if there are any "*" operators + ** that need expanding. + */ + for(k=0; k<pEList->nExpr; k++){ + Expr *pE = pEList->a[k].pExpr; + if( pE->op==TK_ALL ) break; + if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL + && pE->pLeft && pE->pLeft->op==TK_ID ) break; + } + rc = 0; + if( k<pEList->nExpr ){ + /* + ** If we get here it means the result set contains one or more "*" + ** operators that need to be expanded. Loop through each expression + ** in the result set and expand them one by one. + */ + struct ExprList_item *a = pEList->a; + ExprList *pNew = 0; + for(k=0; k<pEList->nExpr; k++){ + Expr *pE = a[k].pExpr; + if( pE->op!=TK_ALL && + (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ + /* This particular expression does not need to be expanded. + */ + pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0); + pNew->a[pNew->nExpr-1].zName = a[k].zName; + a[k].pExpr = 0; + a[k].zName = 0; + }else{ + /* This expression is a "*" or a "TABLE.*" and needs to be + ** expanded. */ + int tableSeen = 0; /* Set to 1 when TABLE matches */ + char *zTName; /* text of name of TABLE */ + if( pE->op==TK_DOT && pE->pLeft ){ + zTName = sqlite3NameFromToken(&pE->pLeft->token); + }else{ + zTName = 0; + } + for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ + Table *pTab = pFrom->pTab; + char *zTabName = pFrom->zAlias; + if( zTabName==0 || zTabName[0]==0 ){ + zTabName = pTab->zName; + } + if( zTName && (zTabName==0 || zTabName[0]==0 || + sqlite3StrICmp(zTName, zTabName)!=0) ){ + continue; + } + tableSeen = 1; + for(j=0; j<pTab->nCol; j++){ + Expr *pExpr, *pLeft, *pRight; + char *zName = pTab->aCol[j].zName; + + if( i>0 ){ + struct SrcList_item *pLeft = &pTabList->a[i-1]; + if( (pLeft->jointype & JT_NATURAL)!=0 && + columnIndex(pLeft->pTab, zName)>=0 ){ + /* In a NATURAL join, omit the join columns from the + ** table on the right */ + continue; + } + if( sqlite3IdListIndex(pLeft->pUsing, zName)>=0 ){ + /* In a join with a USING clause, omit columns in the + ** using clause from the table on the right. */ + continue; + } + } + pRight = sqlite3Expr(TK_ID, 0, 0, 0); + if( pRight==0 ) break; + setToken(&pRight->token, zName); + if( zTabName && pTabList->nSrc>1 ){ + pLeft = sqlite3Expr(TK_ID, 0, 0, 0); + pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0); + if( pExpr==0 ) break; + setToken(&pLeft->token, zTabName); + setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName)); + pExpr->span.dyn = 1; + pExpr->token.z = 0; + pExpr->token.n = 0; + pExpr->token.dyn = 0; + }else{ + pExpr = pRight; + pExpr->span = pExpr->token; + } + pNew = sqlite3ExprListAppend(pNew, pExpr, 0); + } + } + if( !tableSeen ){ + if( zTName ){ + sqlite3ErrorMsg(pParse, "no such table: %s", zTName); + }else{ + sqlite3ErrorMsg(pParse, "no tables specified"); + } + rc = 1; + } + sqliteFree(zTName); + } + } + sqlite3ExprListDelete(pEList); + p->pEList = pNew; + } + return rc; +} + +/* +** This routine recursively unlinks the Select.pSrc.a[].pTab pointers +** in a select structure. It just sets the pointers to NULL. This +** routine is recursive in the sense that if the Select.pSrc.a[].pSelect +** pointer is not NULL, this routine is called recursively on that pointer. +** +** This routine is called on the Select structure that defines a +** VIEW in order to undo any bindings to tables. This is necessary +** because those tables might be DROPed by a subsequent SQL command. +** If the bindings are not removed, then the Select.pSrc->a[].pTab field +** will be left pointing to a deallocated Table structure after the +** DROP and a coredump will occur the next time the VIEW is used. +*/ +void sqlite3SelectUnbind(Select *p){ + int i; + SrcList *pSrc = p->pSrc; + struct SrcList_item *pItem; + Table *pTab; + if( p==0 ) return; + for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ + if( (pTab = pItem->pTab)!=0 ){ + if( pTab->isTransient ){ + sqlite3DeleteTable(0, pTab); + } + pItem->pTab = 0; + if( pItem->pSelect ){ + sqlite3SelectUnbind(pItem->pSelect); + } + } + } +} + +/* +** This routine associates entries in an ORDER BY expression list with +** columns in a result. For each ORDER BY expression, the opcode of +** the top-level node is changed to TK_COLUMN and the iColumn value of +** the top-level node is filled in with column number and the iTable +** value of the top-level node is filled with iTable parameter. +** +** If there are prior SELECT clauses, they are processed first. A match +** in an earlier SELECT takes precedence over a later SELECT. +** +** Any entry that does not match is flagged as an error. The number +** of errors is returned. +*/ +static int matchOrderbyToColumn( + Parse *pParse, /* A place to leave error messages */ + Select *pSelect, /* Match to result columns of this SELECT */ + ExprList *pOrderBy, /* The ORDER BY values to match against columns */ + int iTable, /* Insert this value in iTable */ + int mustComplete /* If TRUE all ORDER BYs must match */ +){ + int nErr = 0; + int i, j; + ExprList *pEList; + + if( pSelect==0 || pOrderBy==0 ) return 1; + if( mustComplete ){ + for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; } + } + if( fillInColumnList(pParse, pSelect) ){ + return 1; + } + if( pSelect->pPrior ){ + if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){ + return 1; + } + } + pEList = pSelect->pEList; + for(i=0; i<pOrderBy->nExpr; i++){ + Expr *pE = pOrderBy->a[i].pExpr; + int iCol = -1; + if( pOrderBy->a[i].done ) continue; + if( sqlite3ExprIsInteger(pE, &iCol) ){ + if( iCol<=0 || iCol>pEList->nExpr ){ + sqlite3ErrorMsg(pParse, + "ORDER BY position %d should be between 1 and %d", + iCol, pEList->nExpr); + nErr++; + break; + } + if( !mustComplete ) continue; + iCol--; + } + for(j=0; iCol<0 && j<pEList->nExpr; j++){ + if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){ + char *zName, *zLabel; + zName = pEList->a[j].zName; + zLabel = sqlite3NameFromToken(&pE->token); + assert( zLabel!=0 ); + if( sqlite3StrICmp(zName, zLabel)==0 ){ + iCol = j; + } + sqliteFree(zLabel); + } + if( iCol<0 && sqlite3ExprCompare(pE, pEList->a[j].pExpr) ){ + iCol = j; + } + } + if( iCol>=0 ){ + pE->op = TK_COLUMN; + pE->iColumn = iCol; + pE->iTable = iTable; + pOrderBy->a[i].done = 1; + } + if( iCol<0 && mustComplete ){ + sqlite3ErrorMsg(pParse, + "ORDER BY term number %d does not match any result column", i+1); + nErr++; + break; + } + } + return nErr; +} + +/* +** Get a VDBE for the given parser context. Create a new one if necessary. +** If an error occurs, return NULL and leave a message in pParse. +*/ +Vdbe *sqlite3GetVdbe(Parse *pParse){ + Vdbe *v = pParse->pVdbe; + if( v==0 ){ + v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); + } + return v; +} + +/* +** Compute the iLimit and iOffset fields of the SELECT based on the +** nLimit and nOffset fields. nLimit and nOffset hold the integers +** that appear in the original SQL statement after the LIMIT and OFFSET +** keywords. Or that hold -1 and 0 if those keywords are omitted. +** iLimit and iOffset are the integer memory register numbers for +** counters used to compute the limit and offset. If there is no +** limit and/or offset, then iLimit and iOffset are negative. +** +** This routine changes the values if iLimit and iOffset only if +** a limit or offset is defined by nLimit and nOffset. iLimit and +** iOffset should have been preset to appropriate default values +** (usually but not always -1) prior to calling this routine. +** Only if nLimit>=0 or nOffset>0 do the limit registers get +** redefined. The UNION ALL operator uses this property to force +** the reuse of the same limit and offset registers across multiple +** SELECT statements. +*/ +static void computeLimitRegisters(Parse *pParse, Select *p){ + /* + ** If the comparison is p->nLimit>0 then "LIMIT 0" shows + ** all rows. It is the same as no limit. If the comparision is + ** p->nLimit>=0 then "LIMIT 0" show no rows at all. + ** "LIMIT -1" always shows all rows. There is some + ** contraversy about what the correct behavior should be. + ** The current implementation interprets "LIMIT 0" to mean + ** no rows. + */ + if( p->nLimit>=0 ){ + int iMem = pParse->nMem++; + Vdbe *v = sqlite3GetVdbe(pParse); + if( v==0 ) return; + sqlite3VdbeAddOp(v, OP_Integer, -p->nLimit, 0); + sqlite3VdbeAddOp(v, OP_MemStore, iMem, 1); + VdbeComment((v, "# LIMIT counter")); + p->iLimit = iMem; + } + if( p->nOffset>0 ){ + int iMem = pParse->nMem++; + Vdbe *v = sqlite3GetVdbe(pParse); + if( v==0 ) return; + sqlite3VdbeAddOp(v, OP_Integer, -p->nOffset, 0); + sqlite3VdbeAddOp(v, OP_MemStore, iMem, 1); + VdbeComment((v, "# OFFSET counter")); + p->iOffset = iMem; + } +} + +/* +** Generate VDBE instructions that will open a transient table that +** will be used for an index or to store keyed results for a compound +** select. In other words, open a transient table that needs a +** KeyInfo structure. The number of columns in the KeyInfo is determined +** by the result set of the SELECT statement in the second argument. +** +** Specifically, this routine is called to open an index table for +** DISTINCT, UNION, INTERSECT and EXCEPT select statements (but not +** UNION ALL). +** +** Make the new table a KeyAsData table if keyAsData is true. +** +** The value returned is the address of the OP_OpenTemp instruction. +*/ +static int openTempIndex(Parse *pParse, Select *p, int iTab, int keyAsData){ + KeyInfo *pKeyInfo; + int nColumn; + sqlite3 *db = pParse->db; + int i; + Vdbe *v = pParse->pVdbe; + int addr; + + if( fillInColumnList(pParse, p) ){ + return 0; + } + nColumn = p->pEList->nExpr; + pKeyInfo = sqliteMalloc( sizeof(*pKeyInfo)+nColumn*sizeof(CollSeq*) ); + if( pKeyInfo==0 ) return 0; + pKeyInfo->enc = db->enc; + pKeyInfo->nField = nColumn; + for(i=0; i<nColumn; i++){ + pKeyInfo->aColl[i] = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); + if( !pKeyInfo->aColl[i] ){ + pKeyInfo->aColl[i] = db->pDfltColl; + } + } + addr = sqlite3VdbeOp3(v, OP_OpenTemp, iTab, 0, + (char*)pKeyInfo, P3_KEYINFO_HANDOFF); + if( keyAsData ){ + sqlite3VdbeAddOp(v, OP_KeyAsData, iTab, 1); + } + return addr; +} + +/* +** Add the address "addr" to the set of all OpenTemp opcode addresses +** that are being accumulated in p->ppOpenTemp. +*/ +static int multiSelectOpenTempAddr(Select *p, int addr){ + IdList *pList = *p->ppOpenTemp = sqlite3IdListAppend(*p->ppOpenTemp, 0); + if( pList==0 ){ + return SQLITE_NOMEM; + } + pList->a[pList->nId-1].idx = addr; + return SQLITE_OK; +} + +/* +** Return the appropriate collating sequence for the iCol-th column of +** the result set for the compound-select statement "p". Return NULL if +** the column has no default collating sequence. +** +** The collating sequence for the compound select is taken from the +** left-most term of the select that has a collating sequence. +*/ +static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ + CollSeq *pRet; + if( p->pPrior ){ + pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); + }else{ + pRet = 0; + } + if( pRet==0 ){ + pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); + } + return pRet; +} + +/* +** This routine is called to process a query that is really the union +** or intersection of two or more separate queries. +** +** "p" points to the right-most of the two queries. the query on the +** left is p->pPrior. The left query could also be a compound query +** in which case this routine will be called recursively. +** +** The results of the total query are to be written into a destination +** of type eDest with parameter iParm. +** +** Example 1: Consider a three-way compound SQL statement. +** +** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 +** +** This statement is parsed up as follows: +** +** SELECT c FROM t3 +** | +** `-----> SELECT b FROM t2 +** | +** `------> SELECT a FROM t1 +** +** The arrows in the diagram above represent the Select.pPrior pointer. +** So if this routine is called with p equal to the t3 query, then +** pPrior will be the t2 query. p->op will be TK_UNION in this case. +** +** Notice that because of the way SQLite parses compound SELECTs, the +** individual selects always group from left to right. +*/ +static int multiSelect( + Parse *pParse, /* Parsing context */ + Select *p, /* The right-most of SELECTs to be coded */ + int eDest, /* \___ Store query results as specified */ + int iParm, /* / by these two parameters. */ + char *aff /* If eDest is SRT_Union, the affinity string */ +){ + int rc = SQLITE_OK; /* Success code from a subroutine */ + Select *pPrior; /* Another SELECT immediately to our left */ + Vdbe *v; /* Generate code to this VDBE */ + IdList *pOpenTemp = 0;/* OP_OpenTemp opcodes that need a KeyInfo */ + int aAddr[5]; /* Addresses of SetNumColumns operators */ + int nAddr = 0; /* Number used */ + int nCol; /* Number of columns in the result set */ + + /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only + ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. + */ + if( p==0 || p->pPrior==0 ){ + rc = 1; + goto multi_select_end; + } + pPrior = p->pPrior; + if( pPrior->pOrderBy ){ + sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", + selectOpName(p->op)); + rc = 1; + goto multi_select_end; + } + if( pPrior->nLimit>=0 || pPrior->nOffset>0 ){ + sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", + selectOpName(p->op)); + rc = 1; + goto multi_select_end; + } + + /* Make sure we have a valid query engine. If not, create a new one. + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ){ + rc = 1; + goto multi_select_end; + } + + /* If *p this is the right-most select statement, then initialize + ** p->ppOpenTemp to point to pOpenTemp. If *p is not the right most + ** statement then p->ppOpenTemp will have already been initialized + ** by a prior call to this same procedure. Pass along the pOpenTemp + ** pointer to pPrior, the next statement to our left. + */ + if( p->ppOpenTemp==0 ){ + p->ppOpenTemp = &pOpenTemp; + } + pPrior->ppOpenTemp = p->ppOpenTemp; + + /* Create the destination temporary table if necessary + */ + if( eDest==SRT_TempTable ){ + assert( p->pEList ); + sqlite3VdbeAddOp(v, OP_OpenTemp, iParm, 0); + assert( nAddr==0 ); + aAddr[nAddr++] = sqlite3VdbeAddOp(v, OP_SetNumColumns, iParm, 0); + eDest = SRT_Table; + } + + /* Generate code for the left and right SELECT statements. + */ + switch( p->op ){ + case TK_ALL: { + if( p->pOrderBy==0 ){ + pPrior->nLimit = p->nLimit; + pPrior->nOffset = p->nOffset; + rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff); + if( rc ){ + goto multi_select_end; + } + p->pPrior = 0; + p->iLimit = pPrior->iLimit; + p->iOffset = pPrior->iOffset; + p->nLimit = -1; + p->nOffset = 0; + rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff); + p->pPrior = pPrior; + if( rc ){ + goto multi_select_end; + } + break; + } + /* For UNION ALL ... ORDER BY fall through to the next case */ + } + case TK_EXCEPT: + case TK_UNION: { + int unionTab; /* Cursor number of the temporary table holding result */ + int op = 0; /* One of the SRT_ operations to apply to self */ + int priorOp; /* The SRT_ operation to apply to prior selects */ + int nLimit, nOffset; /* Saved values of p->nLimit and p->nOffset */ + ExprList *pOrderBy; /* The ORDER BY clause for the right SELECT */ + int addr; + + priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union; + if( eDest==priorOp && p->pOrderBy==0 && p->nLimit<0 && p->nOffset==0 ){ + /* We can reuse a temporary table generated by a SELECT to our + ** right. + */ + unionTab = iParm; + }else{ + /* We will need to create our own temporary table to hold the + ** intermediate results. + */ + unionTab = pParse->nTab++; + if( p->pOrderBy + && matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){ + rc = 1; + goto multi_select_end; + } + addr = sqlite3VdbeAddOp(v, OP_OpenTemp, unionTab, 0); + if( p->op!=TK_ALL ){ + rc = multiSelectOpenTempAddr(p, addr); + if( rc!=SQLITE_OK ){ + goto multi_select_end; + } + sqlite3VdbeAddOp(v, OP_KeyAsData, unionTab, 1); + } + assert( nAddr<sizeof(aAddr)/sizeof(aAddr[0]) ); + aAddr[nAddr++] = sqlite3VdbeAddOp(v, OP_SetNumColumns, unionTab, 0); + assert( p->pEList ); + } + + /* Code the SELECT statements to our left + */ + rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff); + if( rc ){ + goto multi_select_end; + } + + /* Code the current SELECT statement + */ + switch( p->op ){ + case TK_EXCEPT: op = SRT_Except; break; + case TK_UNION: op = SRT_Union; break; + case TK_ALL: op = SRT_Table; break; + } + p->pPrior = 0; + pOrderBy = p->pOrderBy; + p->pOrderBy = 0; + nLimit = p->nLimit; + p->nLimit = -1; + nOffset = p->nOffset; + p->nOffset = 0; + rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff); + p->pPrior = pPrior; + p->pOrderBy = pOrderBy; + p->nLimit = nLimit; + p->nOffset = nOffset; + if( rc ){ + goto multi_select_end; + } + + + /* Convert the data in the temporary table into whatever form + ** it is that we currently need. + */ + if( eDest!=priorOp || unionTab!=iParm ){ + int iCont, iBreak, iStart; + assert( p->pEList ); + if( eDest==SRT_Callback ){ + generateColumnNames(pParse, 0, p->pEList); + } + iBreak = sqlite3VdbeMakeLabel(v); + iCont = sqlite3VdbeMakeLabel(v); + sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak); + computeLimitRegisters(pParse, p); + iStart = sqlite3VdbeCurrentAddr(v); + rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, + p->pOrderBy, -1, eDest, iParm, + iCont, iBreak, 0); + if( rc ){ + rc = 1; + goto multi_select_end; + } + sqlite3VdbeResolveLabel(v, iCont); + sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart); + sqlite3VdbeResolveLabel(v, iBreak); + sqlite3VdbeAddOp(v, OP_Close, unionTab, 0); + } + break; + } + case TK_INTERSECT: { + int tab1, tab2; + int iCont, iBreak, iStart; + int nLimit, nOffset; + int addr; + + /* INTERSECT is different from the others since it requires + ** two temporary tables. Hence it has its own case. Begin + ** by allocating the tables we will need. + */ + tab1 = pParse->nTab++; + tab2 = pParse->nTab++; + if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){ + rc = 1; + goto multi_select_end; + } + + addr = sqlite3VdbeAddOp(v, OP_OpenTemp, tab1, 0); + rc = multiSelectOpenTempAddr(p, addr); + if( rc!=SQLITE_OK ){ + goto multi_select_end; + } + sqlite3VdbeAddOp(v, OP_KeyAsData, tab1, 1); + assert( nAddr<sizeof(aAddr)/sizeof(aAddr[0]) ); + aAddr[nAddr++] = sqlite3VdbeAddOp(v, OP_SetNumColumns, tab1, 0); + assert( p->pEList ); + + /* Code the SELECTs to our left into temporary table "tab1". + */ + rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff); + if( rc ){ + goto multi_select_end; + } + + /* Code the current SELECT into temporary table "tab2" + */ + addr = sqlite3VdbeAddOp(v, OP_OpenTemp, tab2, 0); + rc = multiSelectOpenTempAddr(p, addr); + if( rc!=SQLITE_OK ){ + goto multi_select_end; + } + sqlite3VdbeAddOp(v, OP_KeyAsData, tab2, 1); + assert( nAddr<sizeof(aAddr)/sizeof(aAddr[0]) ); + aAddr[nAddr++] = sqlite3VdbeAddOp(v, OP_SetNumColumns, tab2, 0); + p->pPrior = 0; + nLimit = p->nLimit; + p->nLimit = -1; + nOffset = p->nOffset; + p->nOffset = 0; + rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff); + p->pPrior = pPrior; + p->nLimit = nLimit; + p->nOffset = nOffset; + if( rc ){ + goto multi_select_end; + } + + /* Generate code to take the intersection of the two temporary + ** tables. + */ + assert( p->pEList ); + if( eDest==SRT_Callback ){ + generateColumnNames(pParse, 0, p->pEList); + } + iBreak = sqlite3VdbeMakeLabel(v); + iCont = sqlite3VdbeMakeLabel(v); + sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak); + computeLimitRegisters(pParse, p); + iStart = sqlite3VdbeAddOp(v, OP_FullKey, tab1, 0); + sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont); + rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, + p->pOrderBy, -1, eDest, iParm, + iCont, iBreak, 0); + if( rc ){ + rc = 1; + goto multi_select_end; + } + sqlite3VdbeResolveLabel(v, iCont); + sqlite3VdbeAddOp(v, OP_Next, tab1, iStart); + sqlite3VdbeResolveLabel(v, iBreak); + sqlite3VdbeAddOp(v, OP_Close, tab2, 0); + sqlite3VdbeAddOp(v, OP_Close, tab1, 0); + break; + } + } + + /* Make sure all SELECTs in the statement have the same number of elements + ** in their result sets. + */ + assert( p->pEList && pPrior->pEList ); + if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ + sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" + " do not have the same number of result columns", selectOpName(p->op)); + rc = 1; + goto multi_select_end; + } + + /* Set the number of columns in temporary tables + */ + nCol = p->pEList->nExpr; + while( nAddr>0 ){ + nAddr--; + sqlite3VdbeChangeP2(v, aAddr[nAddr], nCol); + } + + /* Compute collating sequences used by either the ORDER BY clause or + ** by any temporary tables needed to implement the compound select. + ** Attach the KeyInfo structure to all temporary tables. Invoke the + ** ORDER BY processing if there is an ORDER BY clause. + ** + ** This section is run by the right-most SELECT statement only. + ** SELECT statements to the left always skip this part. The right-most + ** SELECT might also skip this part if it has no ORDER BY clause and + ** no temp tables are required. + */ + if( p->pOrderBy || (pOpenTemp && pOpenTemp->nId>0) ){ + int i; /* Loop counter */ + KeyInfo *pKeyInfo; /* Collating sequence for the result set */ + + assert( p->ppOpenTemp == &pOpenTemp ); + pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nCol*sizeof(CollSeq*)); + if( !pKeyInfo ){ + rc = SQLITE_NOMEM; + goto multi_select_end; + } + + pKeyInfo->enc = pParse->db->enc; + pKeyInfo->nField = nCol; + + for(i=0; i<nCol; i++){ + pKeyInfo->aColl[i] = multiSelectCollSeq(pParse, p, i); + if( !pKeyInfo->aColl[i] ){ + pKeyInfo->aColl[i] = pParse->db->pDfltColl; + } + } + + for(i=0; pOpenTemp && i<pOpenTemp->nId; i++){ + int p3type = (i==0?P3_KEYINFO_HANDOFF:P3_KEYINFO); + int addr = pOpenTemp->a[i].idx; + sqlite3VdbeChangeP3(v, addr, (char *)pKeyInfo, p3type); + } + + if( p->pOrderBy ){ + struct ExprList_item *pOrderByTerm = p->pOrderBy->a; + for(i=0; i<p->pOrderBy->nExpr; i++, pOrderByTerm++){ + Expr *pExpr = pOrderByTerm->pExpr; + char *zName = pOrderByTerm->zName; + assert( pExpr->op==TK_COLUMN && pExpr->iColumn<nCol ); + assert( !pExpr->pColl ); + if( zName ){ + pExpr->pColl = sqlite3LocateCollSeq(pParse, zName, -1); + }else{ + pExpr->pColl = pKeyInfo->aColl[pExpr->iColumn]; + } + } + generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm); + } + + if( !pOpenTemp ){ + /* This happens for UNION ALL ... ORDER BY */ + sqliteFree(pKeyInfo); + } + } + +multi_select_end: + if( pOpenTemp ){ + sqlite3IdListDelete(pOpenTemp); + } + p->ppOpenTemp = 0; + return rc; +} + +/* +** Scan through the expression pExpr. Replace every reference to +** a column in table number iTable with a copy of the iColumn-th +** entry in pEList. (But leave references to the ROWID column +** unchanged.) +** +** This routine is part of the flattening procedure. A subquery +** whose result set is defined by pEList appears as entry in the +** FROM clause of a SELECT such that the VDBE cursor assigned to that +** FORM clause entry is iTable. This routine make the necessary +** changes to pExpr so that it refers directly to the source table +** of the subquery rather the result set of the subquery. +*/ +static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */ +static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){ + if( pExpr==0 ) return; + if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ + if( pExpr->iColumn<0 ){ + pExpr->op = TK_NULL; + }else{ + Expr *pNew; + assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); + assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); + pNew = pEList->a[pExpr->iColumn].pExpr; + assert( pNew!=0 ); + pExpr->op = pNew->op; + assert( pExpr->pLeft==0 ); + pExpr->pLeft = sqlite3ExprDup(pNew->pLeft); + assert( pExpr->pRight==0 ); + pExpr->pRight = sqlite3ExprDup(pNew->pRight); + assert( pExpr->pList==0 ); + pExpr->pList = sqlite3ExprListDup(pNew->pList); + pExpr->iTable = pNew->iTable; + pExpr->iColumn = pNew->iColumn; + pExpr->iAgg = pNew->iAgg; + sqlite3TokenCopy(&pExpr->token, &pNew->token); + sqlite3TokenCopy(&pExpr->span, &pNew->span); + } + }else{ + substExpr(pExpr->pLeft, iTable, pEList); + substExpr(pExpr->pRight, iTable, pEList); + substExprList(pExpr->pList, iTable, pEList); + } +} +static void +substExprList(ExprList *pList, int iTable, ExprList *pEList){ + int i; + if( pList==0 ) return; + for(i=0; i<pList->nExpr; i++){ + substExpr(pList->a[i].pExpr, iTable, pEList); + } +} + +/* +** This routine attempts to flatten subqueries in order to speed +** execution. It returns 1 if it makes changes and 0 if no flattening +** occurs. +** +** To understand the concept of flattening, consider the following +** query: +** +** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 +** +** The default way of implementing this query is to execute the +** subquery first and store the results in a temporary table, then +** run the outer query on that temporary table. This requires two +** passes over the data. Furthermore, because the temporary table +** has no indices, the WHERE clause on the outer query cannot be +** optimized. +** +** This routine attempts to rewrite queries such as the above into +** a single flat select, like this: +** +** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 +** +** The code generated for this simpification gives the same result +** but only has to scan the data once. And because indices might +** exist on the table t1, a complete scan of the data might be +** avoided. +** +** Flattening is only attempted if all of the following are true: +** +** (1) The subquery and the outer query do not both use aggregates. +** +** (2) The subquery is not an aggregate or the outer query is not a join. +** +** (3) The subquery is not the right operand of a left outer join, or +** the subquery is not itself a join. (Ticket #306) +** +** (4) The subquery is not DISTINCT or the outer query is not a join. +** +** (5) The subquery is not DISTINCT or the outer query does not use +** aggregates. +** +** (6) The subquery does not use aggregates or the outer query is not +** DISTINCT. +** +** (7) The subquery has a FROM clause. +** +** (8) The subquery does not use LIMIT or the outer query is not a join. +** +** (9) The subquery does not use LIMIT or the outer query does not use +** aggregates. +** +** (10) The subquery does not use aggregates or the outer query does not +** use LIMIT. +** +** (11) The subquery and the outer query do not both have ORDER BY clauses. +** +** (12) The subquery is not the right term of a LEFT OUTER JOIN or the +** subquery has no WHERE clause. (added by ticket #350) +** +** In this routine, the "p" parameter is a pointer to the outer query. +** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query +** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. +** +** If flattening is not attempted, this routine is a no-op and returns 0. +** If flattening is attempted this routine returns 1. +** +** All of the expression analysis must occur on both the outer query and +** the subquery before this routine runs. +*/ +static int flattenSubquery( + Parse *pParse, /* The parsing context */ + Select *p, /* The parent or outer SELECT statement */ + int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ + int isAgg, /* True if outer SELECT uses aggregate functions */ + int subqueryIsAgg /* True if the subquery uses aggregate functions */ +){ + Select *pSub; /* The inner query or "subquery" */ + SrcList *pSrc; /* The FROM clause of the outer query */ + SrcList *pSubSrc; /* The FROM clause of the subquery */ + ExprList *pList; /* The result set of the outer query */ + int iParent; /* VDBE cursor number of the pSub result set temp table */ + int i; /* Loop counter */ + Expr *pWhere; /* The WHERE clause */ + struct SrcList_item *pSubitem; /* The subquery */ + + /* Check to see if flattening is permitted. Return 0 if not. + */ + if( p==0 ) return 0; + pSrc = p->pSrc; + assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); + pSubitem = &pSrc->a[iFrom]; + pSub = pSubitem->pSelect; + assert( pSub!=0 ); + if( isAgg && subqueryIsAgg ) return 0; + if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; + pSubSrc = pSub->pSrc; + assert( pSubSrc ); + if( pSubSrc->nSrc==0 ) return 0; + if( (pSub->isDistinct || pSub->nLimit>=0) && (pSrc->nSrc>1 || isAgg) ){ + return 0; + } + if( (p->isDistinct || p->nLimit>=0) && subqueryIsAgg ) return 0; + if( p->pOrderBy && pSub->pOrderBy ) return 0; + + /* Restriction 3: If the subquery is a join, make sure the subquery is + ** not used as the right operand of an outer join. Examples of why this + ** is not allowed: + ** + ** t1 LEFT OUTER JOIN (t2 JOIN t3) + ** + ** If we flatten the above, we would get + ** + ** (t1 LEFT OUTER JOIN t2) JOIN t3 + ** + ** which is not at all the same thing. + */ + if( pSubSrc->nSrc>1 && iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 ){ + return 0; + } + + /* Restriction 12: If the subquery is the right operand of a left outer + ** join, make sure the subquery has no WHERE clause. + ** An examples of why this is not allowed: + ** + ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) + ** + ** If we flatten the above, we would get + ** + ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 + ** + ** But the t2.x>0 test will always fail on a NULL row of t2, which + ** effectively converts the OUTER JOIN into an INNER JOIN. + */ + if( iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 + && pSub->pWhere!=0 ){ + return 0; + } + + /* If we reach this point, it means flattening is permitted for the + ** iFrom-th entry of the FROM clause in the outer query. + */ + + /* Move all of the FROM elements of the subquery into the + ** the FROM clause of the outer query. Before doing this, remember + ** the cursor number for the original outer query FROM element in + ** iParent. The iParent cursor will never be used. Subsequent code + ** will scan expressions looking for iParent references and replace + ** those references with expressions that resolve to the subquery FROM + ** elements we are now copying in. + */ + iParent = pSubitem->iCursor; + { + int nSubSrc = pSubSrc->nSrc; + int jointype = pSubitem->jointype; + Table *pTab = pSubitem->pTab; + + if( pTab && pTab->isTransient ){ + sqlite3DeleteTable(0, pSubitem->pTab); + } + sqliteFree(pSubitem->zDatabase); + sqliteFree(pSubitem->zName); + sqliteFree(pSubitem->zAlias); + if( nSubSrc>1 ){ + int extra = nSubSrc - 1; + for(i=1; i<nSubSrc; i++){ + pSrc = sqlite3SrcListAppend(pSrc, 0, 0); + } + p->pSrc = pSrc; + for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ + pSrc->a[i] = pSrc->a[i-extra]; + } + } + for(i=0; i<nSubSrc; i++){ + pSrc->a[i+iFrom] = pSubSrc->a[i]; + memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); + } + pSrc->a[iFrom+nSubSrc-1].jointype = jointype; + } + + /* Now begin substituting subquery result set expressions for + ** references to the iParent in the outer query. + ** + ** Example: + ** + ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; + ** \ \_____________ subquery __________/ / + ** \_____________________ outer query ______________________________/ + ** + ** We look at every expression in the outer query and every place we see + ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". + */ + substExprList(p->pEList, iParent, pSub->pEList); + pList = p->pEList; + for(i=0; i<pList->nExpr; i++){ + Expr *pExpr; + if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ + pList->a[i].zName = sqliteStrNDup(pExpr->span.z, pExpr->span.n); + } + } + if( isAgg ){ + substExprList(p->pGroupBy, iParent, pSub->pEList); + substExpr(p->pHaving, iParent, pSub->pEList); + } + if( pSub->pOrderBy ){ + assert( p->pOrderBy==0 ); + p->pOrderBy = pSub->pOrderBy; + pSub->pOrderBy = 0; + }else if( p->pOrderBy ){ + substExprList(p->pOrderBy, iParent, pSub->pEList); + } + if( pSub->pWhere ){ + pWhere = sqlite3ExprDup(pSub->pWhere); + }else{ + pWhere = 0; + } + if( subqueryIsAgg ){ + assert( p->pHaving==0 ); + p->pHaving = p->pWhere; + p->pWhere = pWhere; + substExpr(p->pHaving, iParent, pSub->pEList); + p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving)); + assert( p->pGroupBy==0 ); + p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy); + }else{ + substExpr(p->pWhere, iParent, pSub->pEList); + p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere); + } + + /* The flattened query is distinct if either the inner or the + ** outer query is distinct. + */ + p->isDistinct = p->isDistinct || pSub->isDistinct; + + /* Transfer the limit expression from the subquery to the outer + ** query. + */ + if( pSub->nLimit>=0 ){ + if( p->nLimit<0 ){ + p->nLimit = pSub->nLimit; + }else if( p->nLimit+p->nOffset > pSub->nLimit+pSub->nOffset ){ + p->nLimit = pSub->nLimit + pSub->nOffset - p->nOffset; + } + } + p->nOffset += pSub->nOffset; + + /* Finially, delete what is left of the subquery and return + ** success. + */ + sqlite3SelectDelete(pSub); + return 1; +} + +/* +** Analyze the SELECT statement passed in as an argument to see if it +** is a simple min() or max() query. If it is and this query can be +** satisfied using a single seek to the beginning or end of an index, +** then generate the code for this SELECT and return 1. If this is not a +** simple min() or max() query, then return 0; +** +** A simply min() or max() query looks like this: +** +** SELECT min(a) FROM table; +** SELECT max(a) FROM table; +** +** The query may have only a single table in its FROM argument. There +** can be no GROUP BY or HAVING or WHERE clauses. The result set must +** be the min() or max() of a single column of the table. The column +** in the min() or max() function must be indexed. +** +** The parameters to this routine are the same as for sqlite3Select(). +** See the header comment on that routine for additional information. +*/ +static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){ + Expr *pExpr; + int iCol; + Table *pTab; + Index *pIdx; + int base; + Vdbe *v; + int seekOp; + int cont; + ExprList *pEList, *pList, eList; + struct ExprList_item eListItem; + SrcList *pSrc; + + + /* Check to see if this query is a simple min() or max() query. Return + ** zero if it is not. + */ + if( p->pGroupBy || p->pHaving || p->pWhere ) return 0; + pSrc = p->pSrc; + if( pSrc->nSrc!=1 ) return 0; + pEList = p->pEList; + if( pEList->nExpr!=1 ) return 0; + pExpr = pEList->a[0].pExpr; + if( pExpr->op!=TK_AGG_FUNCTION ) return 0; + pList = pExpr->pList; + if( pList==0 || pList->nExpr!=1 ) return 0; + if( pExpr->token.n!=3 ) return 0; + if( sqlite3StrNICmp(pExpr->token.z,"min",3)==0 ){ + seekOp = OP_Rewind; + }else if( sqlite3StrNICmp(pExpr->token.z,"max",3)==0 ){ + seekOp = OP_Last; + }else{ + return 0; + } + pExpr = pList->a[0].pExpr; + if( pExpr->op!=TK_COLUMN ) return 0; + iCol = pExpr->iColumn; + pTab = pSrc->a[0].pTab; + + /* If we get to here, it means the query is of the correct form. + ** Check to make sure we have an index and make pIdx point to the + ** appropriate index. If the min() or max() is on an INTEGER PRIMARY + ** key column, no index is necessary so set pIdx to NULL. If no + ** usable index is found, return 0. + */ + if( iCol<0 ){ + pIdx = 0; + }else{ + CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr); + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + assert( pIdx->nColumn>=1 ); + if( pIdx->aiColumn[0]==iCol && pIdx->keyInfo.aColl[0]==pColl ) break; + } + if( pIdx==0 ) return 0; + } + + /* Identify column types if we will be using the callback. This + ** step is skipped if the output is going to a table or a memory cell. + ** The column names have already been generated in the calling function. + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ) return 0; + + /* If the output is destined for a temporary table, open that table. + */ + if( eDest==SRT_TempTable ){ + sqlite3VdbeAddOp(v, OP_OpenTemp, iParm, 0); + sqlite3VdbeAddOp(v, OP_SetNumColumns, iParm, 1); + } + + /* Generating code to find the min or the max. Basically all we have + ** to do is find the first or the last entry in the chosen index. If + ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first + ** or last entry in the main table. + */ + sqlite3CodeVerifySchema(pParse, pTab->iDb); + base = pSrc->a[0].iCursor; + computeLimitRegisters(pParse, p); + if( pSrc->a[0].pSelect==0 ){ + sqlite3OpenTableForReading(v, base, pTab); + } + cont = sqlite3VdbeMakeLabel(v); + if( pIdx==0 ){ + sqlite3VdbeAddOp(v, seekOp, base, 0); + }else{ + sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0); + sqlite3VdbeOp3(v, OP_OpenRead, base+1, pIdx->tnum, + (char*)&pIdx->keyInfo, P3_KEYINFO); + if( seekOp==OP_Rewind ){ + sqlite3VdbeAddOp(v, OP_String, 0, 0); + sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0); + seekOp = OP_MoveGt; + } + sqlite3VdbeAddOp(v, seekOp, base+1, 0); + sqlite3VdbeAddOp(v, OP_IdxRecno, base+1, 0); + sqlite3VdbeAddOp(v, OP_Close, base+1, 0); + sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); + } + eList.nExpr = 1; + memset(&eListItem, 0, sizeof(eListItem)); + eList.a = &eListItem; + eList.a[0].pExpr = pExpr; + selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, cont, cont, 0); + sqlite3VdbeResolveLabel(v, cont); + sqlite3VdbeAddOp(v, OP_Close, base, 0); + + return 1; +} + +/* +** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return +** the number of errors seen. +** +** An ORDER BY or GROUP BY is a list of expressions. If any expression +** is an integer constant, then that expression is replaced by the +** corresponding entry in the result set. +*/ +static int processOrderGroupBy( + Parse *pParse, /* Parsing context */ + ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ + SrcList *pTabList, /* The FROM clause */ + ExprList *pEList, /* The result set */ + int isAgg, /* True if aggregate functions are involved */ + const char *zType /* Either "ORDER" or "GROUP", as appropriate */ +){ + int i; + if( pOrderBy==0 ) return 0; + for(i=0; i<pOrderBy->nExpr; i++){ + int iCol; + Expr *pE = pOrderBy->a[i].pExpr; + if( sqlite3ExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){ + sqlite3ExprDelete(pE); + pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr); + } + if( sqlite3ExprResolveAndCheck(pParse, pTabList, pEList, pE, isAgg, 0) ){ + return 1; + } + if( sqlite3ExprIsConstant(pE) ){ + if( sqlite3ExprIsInteger(pE, &iCol)==0 ){ + sqlite3ErrorMsg(pParse, + "%s BY terms must not be non-integer constants", zType); + return 1; + }else if( iCol<=0 || iCol>pEList->nExpr ){ + sqlite3ErrorMsg(pParse, + "%s BY column number %d out of range - should be " + "between 1 and %d", zType, iCol, pEList->nExpr); + return 1; + } + } + } + return 0; +} + +/* +** Generate code for the given SELECT statement. +** +** The results are distributed in various ways depending on the +** value of eDest and iParm. +** +** eDest Value Result +** ------------ ------------------------------------------- +** SRT_Callback Invoke the callback for each row of the result. +** +** SRT_Mem Store first result in memory cell iParm +** +** SRT_Set Store results as keys of table iParm. +** +** SRT_Union Store results as a key in a temporary table iParm +** +** SRT_Except Remove results from the temporary table iParm. +** +** SRT_Table Store results in temporary table iParm +** +** The table above is incomplete. Additional eDist value have be added +** since this comment was written. See the selectInnerLoop() function for +** a complete listing of the allowed values of eDest and their meanings. +** +** This routine returns the number of errors. If any errors are +** encountered, then an appropriate error message is left in +** pParse->zErrMsg. +** +** This routine does NOT free the Select structure passed in. The +** calling function needs to do that. +** +** The pParent, parentTab, and *pParentAgg fields are filled in if this +** SELECT is a subquery. This routine may try to combine this SELECT +** with its parent to form a single flat query. In so doing, it might +** change the parent query from a non-aggregate to an aggregate query. +** For that reason, the pParentAgg flag is passed as a pointer, so it +** can be changed. +** +** Example 1: The meaning of the pParent parameter. +** +** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; +** \ \_______ subquery _______/ / +** \ / +** \____________________ outer query ___________________/ +** +** This routine is called for the outer query first. For that call, +** pParent will be NULL. During the processing of the outer query, this +** routine is called recursively to handle the subquery. For the recursive +** call, pParent will point to the outer query. Because the subquery is +** the second element in a three-way join, the parentTab parameter will +** be 1 (the 2nd value of a 0-indexed array.) +*/ +int sqlite3Select( + Parse *pParse, /* The parser context */ + Select *p, /* The SELECT statement being coded. */ + int eDest, /* How to dispose of the results */ + int iParm, /* A parameter used by the eDest disposal method */ + Select *pParent, /* Another SELECT for which this is a sub-query */ + int parentTab, /* Index in pParent->pSrc of this query */ + int *pParentAgg, /* True if pParent uses aggregate functions */ + char *aff /* If eDest is SRT_Union, the affinity string */ +){ + int i; + WhereInfo *pWInfo; + Vdbe *v; + int isAgg = 0; /* True for select lists like "count(*)" */ + ExprList *pEList; /* List of columns to extract. */ + SrcList *pTabList; /* List of tables to select from */ + Expr *pWhere; /* The WHERE clause. May be NULL */ + ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ + ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ + Expr *pHaving; /* The HAVING clause. May be NULL */ + int isDistinct; /* True if the DISTINCT keyword is present */ + int distinct; /* Table to use for the distinct set */ + int rc = 1; /* Value to return from this function */ + + if( sqlite3_malloc_failed || pParse->nErr || p==0 ) return 1; + if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; + + /* If there is are a sequence of queries, do the earlier ones first. + */ + if( p->pPrior ){ + return multiSelect(pParse, p, eDest, iParm, aff); + } + + /* Make local copies of the parameters for this query. + */ + pTabList = p->pSrc; + pWhere = p->pWhere; + pOrderBy = p->pOrderBy; + pGroupBy = p->pGroupBy; + pHaving = p->pHaving; + isDistinct = p->isDistinct; + + /* Allocate VDBE cursors for each table in the FROM clause + */ + sqlite3SrcListAssignCursors(pParse, pTabList); + + /* + ** Do not even attempt to generate any code if we have already seen + ** errors before this routine starts. + */ + if( pParse->nErr>0 ) goto select_end; + + /* Expand any "*" terms in the result set. (For example the "*" in + ** "SELECT * FROM t1") The fillInColumnlist() routine also does some + ** other housekeeping - see the header comment for details. + */ + if( fillInColumnList(pParse, p) ){ + goto select_end; + } + pWhere = p->pWhere; + pEList = p->pEList; + if( pEList==0 ) goto select_end; + + /* If writing to memory or generating a set + ** only a single column may be output. + */ + if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){ + sqlite3ErrorMsg(pParse, "only a single result allowed for " + "a SELECT that is part of an expression"); + goto select_end; + } + + /* ORDER BY is ignored for some destinations. + */ + switch( eDest ){ + case SRT_Union: + case SRT_Except: + case SRT_Discard: + pOrderBy = 0; + break; + default: + break; + } + + /* At this point, we should have allocated all the cursors that we + ** need to handle subquerys and temporary tables. + ** + ** Resolve the column names and do a semantics check on all the expressions. + */ + for(i=0; i<pEList->nExpr; i++){ + if( sqlite3ExprResolveAndCheck(pParse, pTabList, 0, pEList->a[i].pExpr, + 1, &isAgg) ){ + goto select_end; + } + } + if( sqlite3ExprResolveAndCheck(pParse, pTabList, pEList, pWhere, 0, 0) ){ + goto select_end; + } + if( pHaving ){ + if( pGroupBy==0 ){ + sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); + goto select_end; + } + if( sqlite3ExprResolveAndCheck(pParse, pTabList, pEList,pHaving,1,&isAgg) ){ + goto select_end; + } + } + if( processOrderGroupBy(pParse, pOrderBy, pTabList, pEList, isAgg, "ORDER") + || processOrderGroupBy(pParse, pGroupBy, pTabList, pEList, isAgg, "GROUP") + ){ + goto select_end; + } + + /* Begin generating code. + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ) goto select_end; + + /* Identify column names if we will be using them in a callback. This + ** step is skipped if the output is going to some other destination. + */ + if( eDest==SRT_Callback ){ + generateColumnNames(pParse, pTabList, pEList); + } + + /* Generate code for all sub-queries in the FROM clause + */ + for(i=0; i<pTabList->nSrc; i++){ + const char *zSavedAuthContext = 0; + int needRestoreContext; + + if( pTabList->a[i].pSelect==0 ) continue; + if( pTabList->a[i].zName!=0 ){ + zSavedAuthContext = pParse->zAuthContext; + pParse->zAuthContext = pTabList->a[i].zName; + needRestoreContext = 1; + }else{ + needRestoreContext = 0; + } + sqlite3Select(pParse, pTabList->a[i].pSelect, SRT_TempTable, + pTabList->a[i].iCursor, p, i, &isAgg, 0); + if( needRestoreContext ){ + pParse->zAuthContext = zSavedAuthContext; + } + pTabList = p->pSrc; + pWhere = p->pWhere; + if( eDest!=SRT_Union && eDest!=SRT_Except && eDest!=SRT_Discard ){ + pOrderBy = p->pOrderBy; + } + pGroupBy = p->pGroupBy; + pHaving = p->pHaving; + isDistinct = p->isDistinct; + } + + /* Check for the special case of a min() or max() function by itself + ** in the result set. + */ + if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){ + rc = 0; + goto select_end; + } + + /* Check to see if this is a subquery that can be "flattened" into its parent. + ** If flattening is a possiblity, do so and return immediately. + */ + if( pParent && pParentAgg && + flattenSubquery(pParse, pParent, parentTab, *pParentAgg, isAgg) ){ + if( isAgg ) *pParentAgg = 1; + return rc; + } + + /* If there is an ORDER BY clause, resolve any collation sequences + ** names that have been explicitly specified. + */ + if( pOrderBy ){ + for(i=0; i<pOrderBy->nExpr; i++){ + if( pOrderBy->a[i].zName ){ + pOrderBy->a[i].pExpr->pColl = + sqlite3LocateCollSeq(pParse, pOrderBy->a[i].zName, -1); + } + } + if( pParse->nErr ){ + goto select_end; + } + } + + /* Set the limiter. + */ + computeLimitRegisters(pParse, p); + + /* If the output is destined for a temporary table, open that table. + */ + if( eDest==SRT_TempTable ){ + sqlite3VdbeAddOp(v, OP_OpenTemp, iParm, 0); + sqlite3VdbeAddOp(v, OP_SetNumColumns, iParm, pEList->nExpr); + } + + /* Do an analysis of aggregate expressions. + */ + sqliteAggregateInfoReset(pParse); + if( isAgg || pGroupBy ){ + assert( pParse->nAgg==0 ); + isAgg = 1; + for(i=0; i<pEList->nExpr; i++){ + if( sqlite3ExprAnalyzeAggregates(pParse, pEList->a[i].pExpr) ){ + goto select_end; + } + } + if( pGroupBy ){ + for(i=0; i<pGroupBy->nExpr; i++){ + if( sqlite3ExprAnalyzeAggregates(pParse, pGroupBy->a[i].pExpr) ){ + goto select_end; + } + } + } + if( pHaving && sqlite3ExprAnalyzeAggregates(pParse, pHaving) ){ + goto select_end; + } + if( pOrderBy ){ + for(i=0; i<pOrderBy->nExpr; i++){ + if( sqlite3ExprAnalyzeAggregates(pParse, pOrderBy->a[i].pExpr) ){ + goto select_end; + } + } + } + } + + /* Reset the aggregator + */ + if( isAgg ){ + int addr = sqlite3VdbeAddOp(v, OP_AggReset, (pGroupBy?0:1), pParse->nAgg); + for(i=0; i<pParse->nAgg; i++){ + FuncDef *pFunc; + if( (pFunc = pParse->aAgg[i].pFunc)!=0 && pFunc->xFinalize!=0 ){ + sqlite3VdbeOp3(v, OP_AggInit, 0, i, (char*)pFunc, P3_FUNCDEF); + } + } + if( pGroupBy ){ + int sz = sizeof(KeyInfo) + pGroupBy->nExpr*sizeof(CollSeq*); + KeyInfo *pKey = (KeyInfo *)sqliteMalloc(sz); + if( 0==pKey ){ + goto select_end; + } + pKey->enc = pParse->db->enc; + pKey->nField = pGroupBy->nExpr; + for(i=0; i<pGroupBy->nExpr; i++){ + pKey->aColl[i] = sqlite3ExprCollSeq(pParse, pGroupBy->a[i].pExpr); + if( !pKey->aColl[i] ){ + pKey->aColl[i] = pParse->db->pDfltColl; + } + } + sqlite3VdbeChangeP3(v, addr, (char *)pKey, P3_KEYINFO_HANDOFF); + } + } + + /* Initialize the memory cell to NULL + */ + if( eDest==SRT_Mem ){ + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); + } + + /* Open a temporary table to use for the distinct set. + */ + if( isDistinct ){ + distinct = pParse->nTab++; + openTempIndex(pParse, p, distinct, 0); + }else{ + distinct = -1; + } + + /* Begin the database scan + */ + pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, + pGroupBy ? 0 : &pOrderBy); + if( pWInfo==0 ) goto select_end; + + /* Use the standard inner loop if we are not dealing with + ** aggregates + */ + if( !isAgg ){ + if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest, + iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){ + goto select_end; + } + } + + /* If we are dealing with aggregates, then do the special aggregate + ** processing. + */ + else{ + AggExpr *pAgg; + if( pGroupBy ){ + int lbl1; + for(i=0; i<pGroupBy->nExpr; i++){ + sqlite3ExprCode(pParse, pGroupBy->a[i].pExpr); + } + /* No affinity string is attached to the following OP_MakeRecord + ** because we do not need to do any coercion of datatypes. */ + sqlite3VdbeAddOp(v, OP_MakeRecord, pGroupBy->nExpr, 0); + lbl1 = sqlite3VdbeMakeLabel(v); + sqlite3VdbeAddOp(v, OP_AggFocus, 0, lbl1); + for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){ + if( pAgg->isAgg ) continue; + sqlite3ExprCode(pParse, pAgg->pExpr); + sqlite3VdbeAddOp(v, OP_AggSet, 0, i); + } + sqlite3VdbeResolveLabel(v, lbl1); + } + for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){ + Expr *pE; + int nExpr; + FuncDef *pDef; + if( !pAgg->isAgg ) continue; + assert( pAgg->pFunc!=0 ); + assert( pAgg->pFunc->xStep!=0 ); + pDef = pAgg->pFunc; + pE = pAgg->pExpr; + assert( pE!=0 ); + assert( pE->op==TK_AGG_FUNCTION ); + nExpr = sqlite3ExprCodeExprList(pParse, pE->pList); + sqlite3VdbeAddOp(v, OP_Integer, i, 0); + if( pDef->needCollSeq ){ + CollSeq *pColl = 0; + int j; + for(j=0; !pColl && j<nExpr; j++){ + pColl = sqlite3ExprCollSeq(pParse, pE->pList->a[j].pExpr); + } + if( !pColl ) pColl = pParse->db->pDfltColl; + sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); + } + sqlite3VdbeOp3(v, OP_AggFunc, 0, nExpr, (char*)pDef, P3_POINTER); + } + } + + /* End the database scan loop. + */ + sqlite3WhereEnd(pWInfo); + + /* If we are processing aggregates, we need to set up a second loop + ** over all of the aggregate values and process them. + */ + if( isAgg ){ + int endagg = sqlite3VdbeMakeLabel(v); + int startagg; + startagg = sqlite3VdbeAddOp(v, OP_AggNext, 0, endagg); + pParse->useAgg = 1; + if( pHaving ){ + sqlite3ExprIfFalse(pParse, pHaving, startagg, 1); + } + if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest, + iParm, startagg, endagg, aff) ){ + goto select_end; + } + sqlite3VdbeAddOp(v, OP_Goto, 0, startagg); + sqlite3VdbeResolveLabel(v, endagg); + sqlite3VdbeAddOp(v, OP_Noop, 0, 0); + pParse->useAgg = 0; + } + + /* If there is an ORDER BY clause, then we need to sort the results + ** and send them to the callback one by one. + */ + if( pOrderBy ){ + generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm); + } + + /* If this was a subquery, we have now converted the subquery into a + ** temporary table. So delete the subquery structure from the parent + ** to prevent this subquery from being evaluated again and to force the + ** the use of the temporary table. + */ + if( pParent ){ + assert( pParent->pSrc->nSrc>parentTab ); + assert( pParent->pSrc->a[parentTab].pSelect==p ); + sqlite3SelectDelete(p); + pParent->pSrc->a[parentTab].pSelect = 0; + } + + /* The SELECT was successfully coded. Set the return code to 0 + ** to indicate no errors. + */ + rc = 0; + + /* Control jumps to here if an error is encountered above, or upon + ** successful coding of the SELECT. + */ +select_end: + sqliteAggregateInfoReset(pParse); + return rc; +} diff --git a/kopete/plugins/statistics/sqlite/shell.c b/kopete/plugins/statistics/sqlite/shell.c new file mode 100644 index 00000000..bdd13cc9 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/shell.c @@ -0,0 +1,1786 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code to implement the "sqlite" command line +** utility for accessing SQLite databases. +** +** $Id$ +*/ +#include <stdlib.h> +#include <string.h> +#include <stdio.h> +#include <assert.h> +#include "sqlite3.h" +#include <ctype.h> + +#if !defined(_WIN32) && !defined(WIN32) && !defined(__MACOS__) +# include <signal.h> +# include <pwd.h> +# include <unistd.h> +# include <sys/types.h> +#endif + +#ifdef __MACOS__ +# include <console.h> +# include <signal.h> +# include <unistd.h> +# include <extras.h> +# include <Files.h> +# include <Folders.h> +#endif + +#if defined(HAVE_READLINE) && HAVE_READLINE==1 +# include <readline/readline.h> +# include <readline/history.h> +#else +# define readline(p) local_getline(p,stdin) +# define add_history(X) +# define read_history(X) +# define write_history(X) +# define stifle_history(X) +#endif + +/* Make sure isatty() has a prototype. +*/ +extern int isatty(); + +/* +** The following is the open SQLite database. We make a pointer +** to this database a static variable so that it can be accessed +** by the SIGINT handler to interrupt database processing. +*/ +static sqlite3 *db = 0; + +/* +** True if an interrupt (Control-C) has been received. +*/ +static int seenInterrupt = 0; + +/* +** This is the name of our program. It is set in main(), used +** in a number of other places, mostly for error messages. +*/ +static char *Argv0; + +/* +** Prompt strings. Initialized in main. Settable with +** .prompt main continue +*/ +static char mainPrompt[20]; /* First line prompt. default: "sqlite> "*/ +static char continuePrompt[20]; /* Continuation prompt. default: " ...> " */ + + +/* +** Determines if a string is a number of not. +*/ +static int isNumber(const unsigned char *z, int *realnum){ + if( *z=='-' || *z=='+' ) z++; + if( !isdigit(*z) ){ + return 0; + } + z++; + if( realnum ) *realnum = 0; + while( isdigit(*z) ){ z++; } + if( *z=='.' ){ + z++; + if( !isdigit(*z) ) return 0; + while( isdigit(*z) ){ z++; } + if( realnum ) *realnum = 1; + } + if( *z=='e' || *z=='E' ){ + z++; + if( *z=='+' || *z=='-' ) z++; + if( !isdigit(*z) ) return 0; + while( isdigit(*z) ){ z++; } + if( realnum ) *realnum = 1; + } + return *z==0; +} + +/* +** A global char* and an SQL function to access its current value +** from within an SQL statement. This program used to use the +** sqlite_exec_printf() API to substitue a string into an SQL statement. +** The correct way to do this with sqlite3 is to use the bind API, but +** since the shell is built around the callback paradigm it would be a lot +** of work. Instead just use this hack, which is quite harmless. +*/ +static const char *zShellStatic = 0; +static void shellstaticFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + assert( 0==argc ); + assert( zShellStatic ); + sqlite3_result_text(context, zShellStatic, -1, SQLITE_STATIC); +} + + +/* +** This routine reads a line of text from FILE in, stores +** the text in memory obtained from malloc() and returns a pointer +** to the text. NULL is returned at end of file, or if malloc() +** fails. +** +** The interface is like "readline" but no command-line editing +** is done. +*/ +static char *local_getline(char *zPrompt, FILE *in){ + char *zLine; + int nLine; + int n; + int eol; + + if( zPrompt && *zPrompt ){ + printf("%s",zPrompt); + fflush(stdout); + } + nLine = 100; + zLine = malloc( nLine ); + if( zLine==0 ) return 0; + n = 0; + eol = 0; + while( !eol ){ + if( n+100>nLine ){ + nLine = nLine*2 + 100; + zLine = realloc(zLine, nLine); + if( zLine==0 ) return 0; + } + if( fgets(&zLine[n], nLine - n, in)==0 ){ + if( n==0 ){ + free(zLine); + return 0; + } + zLine[n] = 0; + eol = 1; + break; + } + while( zLine[n] ){ n++; } + if( n>0 && zLine[n-1]=='\n' ){ + n--; + zLine[n] = 0; + eol = 1; + } + } + zLine = realloc( zLine, n+1 ); + return zLine; +} + +/* +** Retrieve a single line of input text. "isatty" is true if text +** is coming from a terminal. In that case, we issue a prompt and +** attempt to use "readline" for command-line editing. If "isatty" +** is false, use "local_getline" instead of "readline" and issue no prompt. +** +** zPrior is a string of prior text retrieved. If not the empty +** string, then issue a continuation prompt. +*/ +static char *one_input_line(const char *zPrior, FILE *in){ + char *zPrompt; + char *zResult; + if( in!=0 ){ + return local_getline(0, in); + } + if( zPrior && zPrior[0] ){ + zPrompt = continuePrompt; + }else{ + zPrompt = mainPrompt; + } + zResult = readline(zPrompt); + if( zResult ) add_history(zResult); + return zResult; +} + +struct previous_mode_data { + int valid; /* Is there legit data in here? */ + int mode; + int showHeader; + int colWidth[100]; +}; +/* +** An pointer to an instance of this structure is passed from +** the main program to the callback. This is used to communicate +** state and mode information. +*/ +struct callback_data { + sqlite3 *db; /* The database */ + int echoOn; /* True to echo input commands */ + int cnt; /* Number of records displayed so far */ + FILE *out; /* Write results here */ + int mode; /* An output mode setting */ + int showHeader; /* True to show column names in List or Column mode */ + char *zDestTable; /* Name of destination table when MODE_Insert */ + char separator[20]; /* Separator character for MODE_List */ + int colWidth[100]; /* Requested width of each column when in column mode*/ + int actualWidth[100]; /* Actual width of each column */ + char nullvalue[20]; /* The text to print when a NULL comes back from + ** the database */ + struct previous_mode_data explainPrev; + /* Holds the mode information just before + ** .explain ON */ + char outfile[FILENAME_MAX]; /* Filename for *out */ + const char *zDbFilename; /* name of the database file */ + char *zKey; /* Encryption key */ +}; + +/* +** These are the allowed modes. +*/ +#define MODE_Line 0 /* One column per line. Blank line between records */ +#define MODE_Column 1 /* One record per line in neat columns */ +#define MODE_List 2 /* One record per line with a separator */ +#define MODE_Semi 3 /* Same as MODE_List but append ";" to each line */ +#define MODE_Html 4 /* Generate an XHTML table */ +#define MODE_Insert 5 /* Generate SQL "insert" statements */ +#define MODE_Tcl 6 /* Generate ANSI-C or TCL quoted elements */ +#define MODE_Csv 7 /* Quote strings, numbers are plain */ +#define MODE_NUM_OF 8 /* The number of modes (not a mode itself) */ + +char *modeDescr[MODE_NUM_OF] = { + "line", + "column", + "list", + "semi", + "html", + "insert", + "tcl", + "csv", +}; + +/* +** Number of elements in an array +*/ +#define ArraySize(X) (sizeof(X)/sizeof(X[0])) + +/* +** Output the given string as a quoted string using SQL quoting conventions. +*/ +static void output_quoted_string(FILE *out, const char *z){ + int i; + int nSingle = 0; + for(i=0; z[i]; i++){ + if( z[i]=='\'' ) nSingle++; + } + if( nSingle==0 ){ + fprintf(out,"'%s'",z); + }else{ + fprintf(out,"'"); + while( *z ){ + for(i=0; z[i] && z[i]!='\''; i++){} + if( i==0 ){ + fprintf(out,"''"); + z++; + }else if( z[i]=='\'' ){ + fprintf(out,"%.*s''",i,z); + z += i+1; + }else{ + fprintf(out,"%s",z); + break; + } + } + fprintf(out,"'"); + } +} + +/* +** Output the given string as a quoted according to C or TCL quoting rules. +*/ +static void output_c_string(FILE *out, const char *z){ + unsigned int c; + fputc('"', out); + while( (c = *(z++))!=0 ){ + if( c=='\\' ){ + fputc(c, out); + fputc(c, out); + }else if( c=='\t' ){ + fputc('\\', out); + fputc('t', out); + }else if( c=='\n' ){ + fputc('\\', out); + fputc('n', out); + }else if( c=='\r' ){ + fputc('\\', out); + fputc('r', out); + }else if( !isprint(c) ){ + fprintf(out, "\\%03o", c); + }else{ + fputc(c, out); + } + } + fputc('"', out); +} + +/* +** Output the given string with characters that are special to +** HTML escaped. +*/ +static void output_html_string(FILE *out, const char *z){ + int i; + while( *z ){ + for(i=0; z[i] && z[i]!='<' && z[i]!='&'; i++){} + if( i>0 ){ + fprintf(out,"%.*s",i,z); + } + if( z[i]=='<' ){ + fprintf(out,"<"); + }else if( z[i]=='&' ){ + fprintf(out,"&"); + }else{ + break; + } + z += i + 1; + } +} + +/* +** Output a single term of CSV. Actually, p->separator is used for +** the separator, which may or may not be a comma. p->nullvalue is +** the null value. Strings are quoted using ANSI-C rules. Numbers +** appear outside of quotes. +*/ +static void output_csv(struct callback_data *p, const char *z, int bSep){ + if( z==0 ){ + fprintf(p->out,"%s",p->nullvalue); + }else if( isNumber(z, 0) ){ + fprintf(p->out,"%s",z); + }else{ + output_c_string(p->out, z); + } + if( bSep ){ + fprintf(p->out, p->separator); + } +} + +/* +** This routine runs when the user presses Ctrl-C +*/ +static void interrupt_handler(int NotUsed){ + seenInterrupt = 1; + if( db ) sqlite3_interrupt(db); +} + +/* +** This is the callback routine that the SQLite library +** invokes for each row of a query result. +*/ +static int callback(void *pArg, int nArg, char **azArg, char **azCol){ + int i; + struct callback_data *p = (struct callback_data*)pArg; + switch( p->mode ){ + case MODE_Line: { + int w = 5; + if( azArg==0 ) break; + for(i=0; i<nArg; i++){ + int len = strlen(azCol[i]); + if( len>w ) w = len; + } + if( p->cnt++>0 ) fprintf(p->out,"\n"); + for(i=0; i<nArg; i++){ + fprintf(p->out,"%*s = %s\n", w, azCol[i], + azArg[i] ? azArg[i] : p->nullvalue); + } + break; + } + case MODE_Column: { + if( p->cnt++==0 ){ + for(i=0; i<nArg; i++){ + int w, n; + if( i<ArraySize(p->colWidth) ){ + w = p->colWidth[i]; + }else{ + w = 0; + } + if( w<=0 ){ + w = strlen(azCol[i] ? azCol[i] : ""); + if( w<10 ) w = 10; + n = strlen(azArg && azArg[i] ? azArg[i] : p->nullvalue); + if( w<n ) w = n; + } + if( i<ArraySize(p->actualWidth) ){ + p->actualWidth[i] = w; + } + if( p->showHeader ){ + fprintf(p->out,"%-*.*s%s",w,w,azCol[i], i==nArg-1 ? "\n": " "); + } + } + if( p->showHeader ){ + for(i=0; i<nArg; i++){ + int w; + if( i<ArraySize(p->actualWidth) ){ + w = p->actualWidth[i]; + }else{ + w = 10; + } + fprintf(p->out,"%-*.*s%s",w,w,"-----------------------------------" + "----------------------------------------------------------", + i==nArg-1 ? "\n": " "); + } + } + } + if( azArg==0 ) break; + for(i=0; i<nArg; i++){ + int w; + if( i<ArraySize(p->actualWidth) ){ + w = p->actualWidth[i]; + }else{ + w = 10; + } + fprintf(p->out,"%-*.*s%s",w,w, + azArg[i] ? azArg[i] : p->nullvalue, i==nArg-1 ? "\n": " "); + } + break; + } + case MODE_Semi: + case MODE_List: { + if( p->cnt++==0 && p->showHeader ){ + for(i=0; i<nArg; i++){ + fprintf(p->out,"%s%s",azCol[i], i==nArg-1 ? "\n" : p->separator); + } + } + if( azArg==0 ) break; + for(i=0; i<nArg; i++){ + char *z = azArg[i]; + if( z==0 ) z = p->nullvalue; + fprintf(p->out, "%s", z); + if( i<nArg-1 ){ + fprintf(p->out, "%s", p->separator); + }else if( p->mode==MODE_Semi ){ + fprintf(p->out, ";\n"); + }else{ + fprintf(p->out, "\n"); + } + } + break; + } + case MODE_Html: { + if( p->cnt++==0 && p->showHeader ){ + fprintf(p->out,"<TR>"); + for(i=0; i<nArg; i++){ + fprintf(p->out,"<TH>%s</TH>",azCol[i]); + } + fprintf(p->out,"</TR>\n"); + } + if( azArg==0 ) break; + fprintf(p->out,"<TR>"); + for(i=0; i<nArg; i++){ + fprintf(p->out,"<TD>"); + output_html_string(p->out, azArg[i] ? azArg[i] : p->nullvalue); + fprintf(p->out,"</TD>\n"); + } + fprintf(p->out,"</TR>\n"); + break; + } + case MODE_Tcl: { + if( p->cnt++==0 && p->showHeader ){ + for(i=0; i<nArg; i++){ + output_c_string(p->out,azCol[i]); + fprintf(p->out, "%s", p->separator); + } + fprintf(p->out,"\n"); + } + if( azArg==0 ) break; + for(i=0; i<nArg; i++){ + output_c_string(p->out, azArg[i] ? azArg[i] : p->nullvalue); + fprintf(p->out, "%s", p->separator); + } + fprintf(p->out,"\n"); + break; + } + case MODE_Csv: { + if( p->cnt++==0 && p->showHeader ){ + for(i=0; i<nArg; i++){ + output_csv(p, azCol[i], i<nArg-1); + } + fprintf(p->out,"\n"); + } + if( azArg==0 ) break; + for(i=0; i<nArg; i++){ + output_csv(p, azArg[i], i<nArg-1); + } + fprintf(p->out,"\n"); + break; + } + case MODE_Insert: { + if( azArg==0 ) break; + fprintf(p->out,"INSERT INTO %s VALUES(",p->zDestTable); + for(i=0; i<nArg; i++){ + char *zSep = i>0 ? ",": ""; + if( azArg[i]==0 ){ + fprintf(p->out,"%sNULL",zSep); + }else if( isNumber(azArg[i], 0) ){ + fprintf(p->out,"%s%s",zSep, azArg[i]); + }else{ + if( zSep[0] ) fprintf(p->out,"%s",zSep); + output_quoted_string(p->out, azArg[i]); + } + } + fprintf(p->out,");\n"); + break; + } + } + return 0; +} + +/* +** Set the destination table field of the callback_data structure to +** the name of the table given. Escape any quote characters in the +** table name. +*/ +static void set_table_name(struct callback_data *p, const char *zName){ + int i, n; + int needQuote; + char *z; + + if( p->zDestTable ){ + free(p->zDestTable); + p->zDestTable = 0; + } + if( zName==0 ) return; + needQuote = !isalpha((unsigned char)*zName) && *zName!='_'; + for(i=n=0; zName[i]; i++, n++){ + if( !isalnum((unsigned char)zName[i]) && zName[i]!='_' ){ + needQuote = 1; + if( zName[i]=='\'' ) n++; + } + } + if( needQuote ) n += 2; + z = p->zDestTable = malloc( n+1 ); + if( z==0 ){ + fprintf(stderr,"Out of memory!\n"); + exit(1); + } + n = 0; + if( needQuote ) z[n++] = '\''; + for(i=0; zName[i]; i++){ + z[n++] = zName[i]; + if( zName[i]=='\'' ) z[n++] = '\''; + } + if( needQuote ) z[n++] = '\''; + z[n] = 0; +} + +/* zIn is either a pointer to a NULL-terminated string in memory obtained +** from malloc(), or a NULL pointer. The string pointed to by zAppend is +** added to zIn, and the result returned in memory obtained from malloc(). +** zIn, if it was not NULL, is freed. +** +** If the third argument, quote, is not '\0', then it is used as a +** quote character for zAppend. +*/ +static char * appendText(char *zIn, char const *zAppend, char quote){ + int len; + int i; + int nAppend = strlen(zAppend); + int nIn = (zIn?strlen(zIn):0); + + len = nAppend+nIn+1; + if( quote ){ + len += 2; + for(i=0; i<nAppend; i++){ + if( zAppend[i]==quote ) len++; + } + } + + zIn = (char *)realloc(zIn, len); + if( !zIn ){ + return 0; + } + + if( quote ){ + char *zCsr = &zIn[nIn]; + *zCsr++ = quote; + for(i=0; i<nAppend; i++){ + *zCsr++ = zAppend[i]; + if( zAppend[i]==quote ) *zCsr++ = quote; + } + *zCsr++ = quote; + *zCsr++ = '\0'; + assert( (zCsr-zIn)==len ); + }else{ + memcpy(&zIn[nIn], zAppend, nAppend); + zIn[len-1] = '\0'; + } + + return zIn; +} + + +/* +** Execute a query statement that has a single result column. Print +** that result column on a line by itself with a semicolon terminator. +*/ +static int run_table_dump_query(FILE *out, sqlite3 *db, const char *zSelect){ + sqlite3_stmt *pSelect; + int rc; + rc = sqlite3_prepare(db, zSelect, -1, &pSelect, 0); + if( rc!=SQLITE_OK || !pSelect ){ + return rc; + } + rc = sqlite3_step(pSelect); + while( rc==SQLITE_ROW ){ + fprintf(out, "%s;\n", sqlite3_column_text(pSelect, 0)); + rc = sqlite3_step(pSelect); + } + return sqlite3_finalize(pSelect); +} + + +/* +** This is a different callback routine used for dumping the database. +** Each row received by this callback consists of a table name, +** the table type ("index" or "table") and SQL to create the table. +** This routine should print text sufficient to recreate the table. +*/ +static int dump_callback(void *pArg, int nArg, char **azArg, char **azCol){ + int rc; + const char *zTable; + const char *zType; + const char *zSql; + struct callback_data *p = (struct callback_data *)pArg; + + if( nArg!=3 ) return 1; + zTable = azArg[0]; + zType = azArg[1]; + zSql = azArg[2]; + + fprintf(p->out, "%s;\n", zSql); + + if( strcmp(zType, "table")==0 ){ + sqlite3_stmt *pTableInfo = 0; + char *zSelect = 0; + char *zTableInfo = 0; + char *zTmp = 0; + + zTableInfo = appendText(zTableInfo, "PRAGMA table_info(", 0); + zTableInfo = appendText(zTableInfo, zTable, '"'); + zTableInfo = appendText(zTableInfo, ");", 0); + + rc = sqlite3_prepare(p->db, zTableInfo, -1, &pTableInfo, 0); + if( zTableInfo ) free(zTableInfo); + if( rc!=SQLITE_OK || !pTableInfo ){ + return 1; + } + + zSelect = appendText(zSelect, "SELECT 'INSERT INTO ' || ", 0); + zTmp = appendText(zTmp, zTable, '"'); + if( zTmp ){ + zSelect = appendText(zSelect, zTmp, '\''); + } + zSelect = appendText(zSelect, " || ' VALUES(' || ", 0); + rc = sqlite3_step(pTableInfo); + while( rc==SQLITE_ROW ){ + zSelect = appendText(zSelect, "quote(", 0); + zSelect = appendText(zSelect, sqlite3_column_text(pTableInfo, 1), '"'); + rc = sqlite3_step(pTableInfo); + if( rc==SQLITE_ROW ){ + zSelect = appendText(zSelect, ") || ', ' || ", 0); + }else{ + zSelect = appendText(zSelect, ") ", 0); + } + } + rc = sqlite3_finalize(pTableInfo); + if( rc!=SQLITE_OK ){ + if( zSelect ) free(zSelect); + return 1; + } + zSelect = appendText(zSelect, "|| ')' FROM ", 0); + zSelect = appendText(zSelect, zTable, '"'); + + rc = run_table_dump_query(p->out, p->db, zSelect); + if( rc==SQLITE_CORRUPT ){ + zSelect = appendText(zSelect, " ORDER BY rowid DESC", 0); + rc = run_table_dump_query(p->out, p->db, zSelect); + } + if( zSelect ) free(zSelect); + if( rc!=SQLITE_OK ){ + return 1; + } + } + return 0; +} + +/* +** Run zQuery. Update dump_callback() as the callback routine. +** If we get a SQLITE_CORRUPT error, rerun the query after appending +** "ORDER BY rowid DESC" to the end. +*/ +static int run_schema_dump_query( + struct callback_data *p, + const char *zQuery, + char **pzErrMsg +){ + int rc; + rc = sqlite3_exec(p->db, zQuery, dump_callback, p, pzErrMsg); + if( rc==SQLITE_CORRUPT ){ + char *zQ2; + int len = strlen(zQuery); + if( pzErrMsg ) sqlite3_free(*pzErrMsg); + zQ2 = malloc( len+100 ); + if( zQ2==0 ) return rc; + sprintf(zQ2, "%s ORDER BY rowid DESC", zQuery); + rc = sqlite3_exec(p->db, zQ2, dump_callback, p, pzErrMsg); + free(zQ2); + } + return rc; +} + +/* +** Text of a help message +*/ +static char zHelp[] = + ".databases List names and files of attached databases\n" + ".dump ?TABLE? ... Dump the database in an SQL text format\n" + ".echo ON|OFF Turn command echo on or off\n" + ".exit Exit this program\n" + ".explain ON|OFF Turn output mode suitable for EXPLAIN on or off.\n" + ".header(s) ON|OFF Turn display of headers on or off\n" + ".help Show this message\n" + ".import FILE TABLE Import data from FILE into TABLE\n" + ".indices TABLE Show names of all indices on TABLE\n" + ".mode MODE ?TABLE? Set output mode where MODE is on of:\n" + " csv Comma-separated values\n" + " column Left-aligned columns. (See .width)\n" + " html HTML <table> code\n" + " insert SQL insert statements for TABLE\n" + " line One value per line\n" + " list Values delimited by .separator string\n" + " tabs Tab-separated values\n" + " tcl TCL list elements\n" + ".nullvalue STRING Print STRING in place of NULL values\n" + ".output FILENAME Send output to FILENAME\n" + ".output stdout Send output to the screen\n" + ".prompt MAIN CONTINUE Replace the standard prompts\n" + ".quit Exit this program\n" + ".read FILENAME Execute SQL in FILENAME\n" +#ifdef SQLITE_HAS_CODEC + ".rekey OLD NEW NEW Change the encryption key\n" +#endif + ".schema ?TABLE? Show the CREATE statements\n" + ".separator STRING Change separator used by output mode and .import\n" + ".show Show the current values for various settings\n" + ".tables ?PATTERN? List names of tables matching a LIKE pattern\n" + ".timeout MS Try opening locked tables for MS milliseconds\n" + ".width NUM NUM ... Set column widths for \"column\" mode\n" +; + +/* Forward reference */ +static void process_input(struct callback_data *p, FILE *in); + +/* +** Make sure the database is open. If it is not, then open it. If +** the database fails to open, print an error message and exit. +*/ +static void open_db(struct callback_data *p){ + if( p->db==0 ){ + sqlite3_open(p->zDbFilename, &p->db); + db = p->db; +#ifdef SQLITE_HAS_CODEC + sqlite3_key(p->db, p->zKey, p->zKey ? strlen(p->zKey) : 0); +#endif + sqlite3_create_function(db, "shellstatic", 0, SQLITE_UTF8, 0, + shellstaticFunc, 0, 0); + if( SQLITE_OK!=sqlite3_errcode(db) ){ + fprintf(stderr,"Unable to open database \"%s\": %s\n", + p->zDbFilename, sqlite3_errmsg(db)); + exit(1); + } + } +} + +/* +** Do C-language style dequoting. +** +** \t -> tab +** \n -> newline +** \r -> carriage return +** \NNN -> ascii character NNN in octal +** \\ -> backslash +*/ +static void resolve_backslashes(char *z){ + int i, j, c; + for(i=j=0; (c = z[i])!=0; i++, j++){ + if( c=='\\' ){ + c = z[++i]; + if( c=='n' ){ + c = '\n'; + }else if( c=='t' ){ + c = '\t'; + }else if( c=='r' ){ + c = '\r'; + }else if( c>='0' && c<='7' ){ + c =- '0'; + if( z[i+1]>='0' && z[i+1]<='7' ){ + i++; + c = (c<<3) + z[i] - '0'; + if( z[i+1]>='0' && z[i+1]<='7' ){ + i++; + c = (c<<3) + z[i] - '0'; + } + } + } + } + z[j] = c; + } + z[j] = 0; +} + +/* +** If an input line begins with "." then invoke this routine to +** process that line. +** +** Return 1 to exit and 0 to continue. +*/ +static int do_meta_command(char *zLine, struct callback_data *p){ + int i = 1; + int nArg = 0; + int n, c; + int rc = 0; + char *azArg[50]; + + /* Parse the input line into tokens. + */ + while( zLine[i] && nArg<ArraySize(azArg) ){ + while( isspace((unsigned char)zLine[i]) ){ i++; } + if( zLine[i]==0 ) break; + if( zLine[i]=='\'' || zLine[i]=='"' ){ + int delim = zLine[i++]; + azArg[nArg++] = &zLine[i]; + while( zLine[i] && zLine[i]!=delim ){ i++; } + if( zLine[i]==delim ){ + zLine[i++] = 0; + } + if( delim=='"' ) resolve_backslashes(azArg[nArg-1]); + }else{ + azArg[nArg++] = &zLine[i]; + while( zLine[i] && !isspace((unsigned char)zLine[i]) ){ i++; } + if( zLine[i] ) zLine[i++] = 0; + resolve_backslashes(azArg[nArg-1]); + } + } + + /* Process the input line. + */ + if( nArg==0 ) return rc; + n = strlen(azArg[0]); + c = azArg[0][0]; + if( c=='d' && n>1 && strncmp(azArg[0], "databases", n)==0 ){ + struct callback_data data; + char *zErrMsg = 0; + open_db(p); + memcpy(&data, p, sizeof(data)); + data.showHeader = 1; + data.mode = MODE_Column; + data.colWidth[0] = 3; + data.colWidth[1] = 15; + data.colWidth[2] = 58; + sqlite3_exec(p->db, "PRAGMA database_list; ", callback, &data, &zErrMsg); + if( zErrMsg ){ + fprintf(stderr,"Error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + } + }else + + if( c=='d' && strncmp(azArg[0], "dump", n)==0 ){ + char *zErrMsg = 0; + open_db(p); + fprintf(p->out, "BEGIN TRANSACTION;\n"); + if( nArg==1 ){ + run_schema_dump_query(p, + "SELECT name, type, sql FROM sqlite_master " + "WHERE sql NOT NULL AND type=='table'", 0 + ); + run_schema_dump_query(p, + "SELECT name, type, sql FROM sqlite_master " + "WHERE sql NOT NULL AND type!='table' AND type!='meta'", 0 + ); + }else{ + int i; + for(i=1; i<nArg; i++){ + zShellStatic = azArg[i]; + run_schema_dump_query(p, + "SELECT name, type, sql FROM sqlite_master " + "WHERE tbl_name LIKE shellstatic() AND type=='table'" + " AND sql NOT NULL", 0); + run_schema_dump_query(p, + "SELECT name, type, sql FROM sqlite_master " + "WHERE tbl_name LIKE shellstatic() AND type!='table'" + " AND type!='meta' AND sql NOT NULL", 0); + zShellStatic = 0; + } + } + if( zErrMsg ){ + fprintf(stderr,"Error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + }else{ + fprintf(p->out, "COMMIT;\n"); + } + }else + + if( c=='e' && strncmp(azArg[0], "echo", n)==0 && nArg>1 ){ + int j; + char *z = azArg[1]; + int val = atoi(azArg[1]); + for(j=0; z[j]; j++){ + z[j] = tolower((unsigned char)z[j]); + } + if( strcmp(z,"on")==0 ){ + val = 1; + }else if( strcmp(z,"yes")==0 ){ + val = 1; + } + p->echoOn = val; + }else + + if( c=='e' && strncmp(azArg[0], "exit", n)==0 ){ + rc = 1; + }else + + if( c=='e' && strncmp(azArg[0], "explain", n)==0 ){ + int j; + static char zOne[] = "1"; + char *z = nArg>=2 ? azArg[1] : zOne; + int val = atoi(z); + for(j=0; z[j]; j++){ + z[j] = tolower((unsigned char)z[j]); + } + if( strcmp(z,"on")==0 ){ + val = 1; + }else if( strcmp(z,"yes")==0 ){ + val = 1; + } + if(val == 1) { + if(!p->explainPrev.valid) { + p->explainPrev.valid = 1; + p->explainPrev.mode = p->mode; + p->explainPrev.showHeader = p->showHeader; + memcpy(p->explainPrev.colWidth,p->colWidth,sizeof(p->colWidth)); + } + /* We could put this code under the !p->explainValid + ** condition so that it does not execute if we are already in + ** explain mode. However, always executing it allows us an easy + ** was to reset to explain mode in case the user previously + ** did an .explain followed by a .width, .mode or .header + ** command. + */ + p->mode = MODE_Column; + p->showHeader = 1; + memset(p->colWidth,0,ArraySize(p->colWidth)); + p->colWidth[0] = 4; + p->colWidth[1] = 12; + p->colWidth[2] = 10; + p->colWidth[3] = 10; + p->colWidth[4] = 35; + }else if (p->explainPrev.valid) { + p->explainPrev.valid = 0; + p->mode = p->explainPrev.mode; + p->showHeader = p->explainPrev.showHeader; + memcpy(p->colWidth,p->explainPrev.colWidth,sizeof(p->colWidth)); + } + }else + + if( c=='h' && (strncmp(azArg[0], "header", n)==0 + || + strncmp(azArg[0], "headers", n)==0 )&& nArg>1 ){ + int j; + char *z = azArg[1]; + int val = atoi(azArg[1]); + for(j=0; z[j]; j++){ + z[j] = tolower((unsigned char)z[j]); + } + if( strcmp(z,"on")==0 ){ + val = 1; + }else if( strcmp(z,"yes")==0 ){ + val = 1; + } + p->showHeader = val; + }else + + if( c=='h' && strncmp(azArg[0], "help", n)==0 ){ + fprintf(stderr,zHelp); + }else + + if( c=='i' && strncmp(azArg[0], "import", n)==0 && nArg>=3 ){ + char *zTable = azArg[2]; /* Insert data into this table */ + char *zFile = azArg[1]; /* The file from which to extract data */ + sqlite3_stmt *pStmt; /* A statement */ + int rc; /* Result code */ + int nCol; /* Number of columns in the table */ + int nByte; /* Number of bytes in an SQL string */ + int i, j; /* Loop counters */ + int nSep; /* Number of bytes in p->separator[] */ + char *zSql; /* An SQL statement */ + char *zLine; /* A single line of input from the file */ + char **azCol; /* zLine[] broken up into columns */ + char *zCommit; /* How to commit changes */ + FILE *in; /* The input file */ + int lineno = 0; /* Line number of input file */ + + nSep = strlen(p->separator); + if( nSep==0 ){ + fprintf(stderr, "non-null separator required for import\n"); + return 0; + } + zSql = sqlite3_mprintf("SELECT * FROM '%q'", zTable); + if( zSql==0 ) return 0; + nByte = strlen(zSql); + rc = sqlite3_prepare(p->db, zSql, 0, &pStmt, 0); + sqlite3_free(zSql); + if( rc ){ + fprintf(stderr,"Error: %s\n", sqlite3_errmsg(db)); + nCol = 0; + }else{ + nCol = sqlite3_column_count(pStmt); + } + sqlite3_finalize(pStmt); + if( nCol==0 ) return 0; + zSql = malloc( nByte + 20 + nCol*2 ); + if( zSql==0 ) return 0; + sqlite3_snprintf(nByte+20, zSql, "INSERT INTO '%q' VALUES(?", zTable); + j = strlen(zSql); + for(i=1; i<nCol; i++){ + zSql[j++] = ','; + zSql[j++] = '?'; + } + zSql[j++] = ')'; + zSql[j] = 0; + rc = sqlite3_prepare(p->db, zSql, 0, &pStmt, 0); + free(zSql); + if( rc ){ + fprintf(stderr, "Error: %s\n", sqlite3_errmsg(db)); + sqlite3_finalize(pStmt); + return 0; + } + in = fopen(zFile, "rb"); + if( in==0 ){ + fprintf(stderr, "cannot open file: %s\n", zFile); + sqlite3_finalize(pStmt); + return 0; + } + azCol = malloc( sizeof(azCol[0])*(nCol+1) ); + if( azCol==0 ) return 0; + sqlite3_exec(p->db, "BEGIN", 0, 0, 0); + zCommit = "COMMIT"; + while( (zLine = local_getline(0, in))!=0 ){ + char *z; + i = 0; + lineno++; + azCol[0] = zLine; + for(i=0, z=zLine; *z && *z!='\n' && *z!='\r'; z++){ + if( *z==p->separator[0] && strncmp(z, p->separator, nSep)==0 ){ + *z = 0; + i++; + if( i<nCol ){ + azCol[i] = &z[nSep]; + z += nSep-1; + } + } + } + if( i+1!=nCol ){ + fprintf(stderr,"%s line %d: expected %d columns of data but found %d\n", + zFile, lineno, nCol, i+1); + zCommit = "ROLLBACK"; + break; + } + for(i=0; i<nCol; i++){ + sqlite3_bind_text(pStmt, i+1, azCol[i], -1, SQLITE_STATIC); + } + sqlite3_step(pStmt); + rc = sqlite3_reset(pStmt); + free(zLine); + if( rc!=SQLITE_OK ){ + fprintf(stderr,"Error: %s\n", sqlite3_errmsg(db)); + zCommit = "ROLLBACK"; + break; + } + } + free(azCol); + fclose(in); + sqlite3_finalize(pStmt); + sqlite3_exec(p->db, zCommit, 0, 0, 0); + }else + + if( c=='i' && strncmp(azArg[0], "indices", n)==0 && nArg>1 ){ + struct callback_data data; + char *zErrMsg = 0; + open_db(p); + memcpy(&data, p, sizeof(data)); + data.showHeader = 0; + data.mode = MODE_List; + zShellStatic = azArg[1]; + sqlite3_exec(p->db, + "SELECT name FROM sqlite_master " + "WHERE type='index' AND tbl_name LIKE shellstatic() " + "UNION ALL " + "SELECT name FROM sqlite_temp_master " + "WHERE type='index' AND tbl_name LIKE shellstatic() " + "ORDER BY 1", + callback, &data, &zErrMsg + ); + zShellStatic = 0; + if( zErrMsg ){ + fprintf(stderr,"Error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + } + }else + + if( c=='m' && strncmp(azArg[0], "mode", n)==0 && nArg>=2 ){ + int n2 = strlen(azArg[1]); + if( strncmp(azArg[1],"line",n2)==0 + || + strncmp(azArg[1],"lines",n2)==0 ){ + p->mode = MODE_Line; + }else if( strncmp(azArg[1],"column",n2)==0 + || + strncmp(azArg[1],"columns",n2)==0 ){ + p->mode = MODE_Column; + }else if( strncmp(azArg[1],"list",n2)==0 ){ + p->mode = MODE_List; + }else if( strncmp(azArg[1],"html",n2)==0 ){ + p->mode = MODE_Html; + }else if( strncmp(azArg[1],"tcl",n2)==0 ){ + p->mode = MODE_Tcl; + }else if( strncmp(azArg[1],"csv",n2)==0 ){ + p->mode = MODE_Csv; + strcpy(p->separator, ","); + }else if( strncmp(azArg[1],"tabs",n2)==0 ){ + p->mode = MODE_List; + strcpy(p->separator, "\t"); + }else if( strncmp(azArg[1],"insert",n2)==0 ){ + p->mode = MODE_Insert; + if( nArg>=3 ){ + set_table_name(p, azArg[2]); + }else{ + set_table_name(p, "table"); + } + }else { + fprintf(stderr,"mode should be on of: " + "column csv html insert line list tabs tcl\n"); + } + }else + + if( c=='n' && strncmp(azArg[0], "nullvalue", n)==0 && nArg==2 ) { + sprintf(p->nullvalue, "%.*s", (int)ArraySize(p->nullvalue)-1, azArg[1]); + }else + + if( c=='o' && strncmp(azArg[0], "output", n)==0 && nArg==2 ){ + if( p->out!=stdout ){ + fclose(p->out); + } + if( strcmp(azArg[1],"stdout")==0 ){ + p->out = stdout; + strcpy(p->outfile,"stdout"); + }else{ + p->out = fopen(azArg[1], "wb"); + if( p->out==0 ){ + fprintf(stderr,"can't write to \"%s\"\n", azArg[1]); + p->out = stdout; + } else { + strcpy(p->outfile,azArg[1]); + } + } + }else + + if( c=='p' && strncmp(azArg[0], "prompt", n)==0 && (nArg==2 || nArg==3)){ + if( nArg >= 2) { + strncpy(mainPrompt,azArg[1],(int)ArraySize(mainPrompt)-1); + } + if( nArg >= 3) { + strncpy(continuePrompt,azArg[2],(int)ArraySize(continuePrompt)-1); + } + }else + + if( c=='q' && strncmp(azArg[0], "quit", n)==0 ){ + rc = 1; + }else + + if( c=='r' && strncmp(azArg[0], "read", n)==0 && nArg==2 ){ + FILE *alt = fopen(azArg[1], "rb"); + if( alt==0 ){ + fprintf(stderr,"can't open \"%s\"\n", azArg[1]); + }else{ + process_input(p, alt); + fclose(alt); + } + }else + +#ifdef SQLITE_HAS_CODEC + if( c=='r' && strncmp(azArg[0],"rekey", n)==0 && nArg==4 ){ + char *zOld = p->zKey; + if( zOld==0 ) zOld = ""; + if( strcmp(azArg[1],zOld) ){ + fprintf(stderr,"old key is incorrect\n"); + }else if( strcmp(azArg[2], azArg[3]) ){ + fprintf(stderr,"2nd copy of new key does not match the 1st\n"); + }else{ + sqlite3_free(p->zKey); + p->zKey = sqlite3_mprintf("%s", azArg[2]); + sqlite3_rekey(p->db, p->zKey, strlen(p->zKey)); + } + }else +#endif + + if( c=='s' && strncmp(azArg[0], "schema", n)==0 ){ + struct callback_data data; + char *zErrMsg = 0; + open_db(p); + memcpy(&data, p, sizeof(data)); + data.showHeader = 0; + data.mode = MODE_Semi; + if( nArg>1 ){ + int i; + for(i=0; azArg[1][i]; i++) azArg[1][i] = tolower(azArg[1][i]); + if( strcmp(azArg[1],"sqlite_master")==0 ){ + char *new_argv[2], *new_colv[2]; + new_argv[0] = "CREATE TABLE sqlite_master (\n" + " type text,\n" + " name text,\n" + " tbl_name text,\n" + " rootpage integer,\n" + " sql text\n" + ")"; + new_argv[1] = 0; + new_colv[0] = "sql"; + new_colv[1] = 0; + callback(&data, 1, new_argv, new_colv); + }else if( strcmp(azArg[1],"sqlite_temp_master")==0 ){ + char *new_argv[2], *new_colv[2]; + new_argv[0] = "CREATE TEMP TABLE sqlite_temp_master (\n" + " type text,\n" + " name text,\n" + " tbl_name text,\n" + " rootpage integer,\n" + " sql text\n" + ")"; + new_argv[1] = 0; + new_colv[0] = "sql"; + new_colv[1] = 0; + callback(&data, 1, new_argv, new_colv); + }else{ + zShellStatic = azArg[1]; + sqlite3_exec(p->db, + "SELECT sql FROM " + " (SELECT * FROM sqlite_master UNION ALL" + " SELECT * FROM sqlite_temp_master) " + "WHERE tbl_name LIKE shellstatic() AND type!='meta' AND sql NOTNULL " + "ORDER BY substr(type,2,1), name", + callback, &data, &zErrMsg); + zShellStatic = 0; + } + }else{ + sqlite3_exec(p->db, + "SELECT sql FROM " + " (SELECT * FROM sqlite_master UNION ALL" + " SELECT * FROM sqlite_temp_master) " + "WHERE type!='meta' AND sql NOTNULL " + "ORDER BY substr(type,2,1), name", + callback, &data, &zErrMsg + ); + } + if( zErrMsg ){ + fprintf(stderr,"Error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + } + }else + + if( c=='s' && strncmp(azArg[0], "separator", n)==0 && nArg==2 ){ + sprintf(p->separator, "%.*s", (int)ArraySize(p->separator)-1, azArg[1]); + }else + + if( c=='s' && strncmp(azArg[0], "show", n)==0){ + int i; + fprintf(p->out,"%9.9s: %s\n","echo", p->echoOn ? "on" : "off"); + fprintf(p->out,"%9.9s: %s\n","explain", p->explainPrev.valid ? "on" :"off"); + fprintf(p->out,"%9.9s: %s\n","headers", p->showHeader ? "on" : "off"); + fprintf(p->out,"%9.9s: %s\n","mode", modeDescr[p->mode]); + fprintf(p->out,"%9.9s: ", "nullvalue"); + output_c_string(p->out, p->nullvalue); + fprintf(p->out, "\n"); + fprintf(p->out,"%9.9s: %s\n","output", + strlen(p->outfile) ? p->outfile : "stdout"); + fprintf(p->out,"%9.9s: ", "separator"); + output_c_string(p->out, p->separator); + fprintf(p->out, "\n"); + fprintf(p->out,"%9.9s: ","width"); + for (i=0;i<(int)ArraySize(p->colWidth) && p->colWidth[i] != 0;i++) { + fprintf(p->out,"%d ",p->colWidth[i]); + } + fprintf(p->out,"\n"); + }else + + if( c=='t' && n>1 && strncmp(azArg[0], "tables", n)==0 ){ + char **azResult; + int nRow, rc; + char *zErrMsg; + open_db(p); + if( nArg==1 ){ + rc = sqlite3_get_table(p->db, + "SELECT name FROM sqlite_master " + "WHERE type IN ('table','view') " + "UNION ALL " + "SELECT name FROM sqlite_temp_master " + "WHERE type IN ('table','view') " + "ORDER BY 1", + &azResult, &nRow, 0, &zErrMsg + ); + }else{ + zShellStatic = azArg[1]; + rc = sqlite3_get_table(p->db, + "SELECT name FROM sqlite_master " + "WHERE type IN ('table','view') AND name LIKE '%'||shellstatic()||'%' " + "UNION ALL " + "SELECT name FROM sqlite_temp_master " + "WHERE type IN ('table','view') AND name LIKE '%'||shellstatic()||'%' " + "ORDER BY 1", + &azResult, &nRow, 0, &zErrMsg + ); + zShellStatic = 0; + } + if( zErrMsg ){ + fprintf(stderr,"Error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + } + if( rc==SQLITE_OK ){ + int len, maxlen = 0; + int i, j; + int nPrintCol, nPrintRow; + for(i=1; i<=nRow; i++){ + if( azResult[i]==0 ) continue; + len = strlen(azResult[i]); + if( len>maxlen ) maxlen = len; + } + nPrintCol = 80/(maxlen+2); + if( nPrintCol<1 ) nPrintCol = 1; + nPrintRow = (nRow + nPrintCol - 1)/nPrintCol; + for(i=0; i<nPrintRow; i++){ + for(j=i+1; j<=nRow; j+=nPrintRow){ + char *zSp = j<=nPrintRow ? "" : " "; + printf("%s%-*s", zSp, maxlen, azResult[j] ? azResult[j] : ""); + } + printf("\n"); + } + } + sqlite3_free_table(azResult); + }else + + if( c=='t' && n>1 && strncmp(azArg[0], "timeout", n)==0 && nArg>=2 ){ + open_db(p); + sqlite3_busy_timeout(p->db, atoi(azArg[1])); + }else + + if( c=='w' && strncmp(azArg[0], "width", n)==0 ){ + int j; + for(j=1; j<nArg && j<ArraySize(p->colWidth); j++){ + p->colWidth[j-1] = atoi(azArg[j]); + } + }else + + { + fprintf(stderr, "unknown command or invalid arguments: " + " \"%s\". Enter \".help\" for help\n", azArg[0]); + } + + return rc; +} + +/* +** Return TRUE if the last non-whitespace character in z[] is a semicolon. +** z[] is N characters long. +*/ +static int _ends_with_semicolon(const char *z, int N){ + while( N>0 && isspace((unsigned char)z[N-1]) ){ N--; } + return N>0 && z[N-1]==';'; +} + +/* +** Test to see if a line consists entirely of whitespace. +*/ +static int _all_whitespace(const char *z){ + for(; *z; z++){ + if( isspace(*(unsigned char*)z) ) continue; + if( *z=='/' && z[1]=='*' ){ + z += 2; + while( *z && (*z!='*' || z[1]!='/') ){ z++; } + if( *z==0 ) return 0; + z++; + continue; + } + if( *z=='-' && z[1]=='-' ){ + z += 2; + while( *z && *z!='\n' ){ z++; } + if( *z==0 ) return 1; + continue; + } + return 0; + } + return 1; +} + +/* +** Return TRUE if the line typed in is an SQL command terminator other +** than a semi-colon. The SQL Server style "go" command is understood +** as is the Oracle "/". +*/ +static int _is_command_terminator(const char *zLine){ + while( isspace(*(unsigned char*)zLine) ){ zLine++; }; + if( zLine[0]=='/' && _all_whitespace(&zLine[1]) ) return 1; /* Oracle */ + if( tolower(zLine[0])=='g' && tolower(zLine[1])=='o' + && _all_whitespace(&zLine[2]) ){ + return 1; /* SQL Server */ + } + return 0; +} + +/* +** Read input from *in and process it. If *in==0 then input +** is interactive - the user is typing it it. Otherwise, input +** is coming from a file or device. A prompt is issued and history +** is saved only if input is interactive. An interrupt signal will +** cause this routine to exit immediately, unless input is interactive. +*/ +static void process_input(struct callback_data *p, FILE *in){ + char *zLine; + char *zSql = 0; + int nSql = 0; + char *zErrMsg; + int rc; + while( fflush(p->out), (zLine = one_input_line(zSql, in))!=0 ){ + if( seenInterrupt ){ + if( in!=0 ) break; + seenInterrupt = 0; + } + if( p->echoOn ) printf("%s\n", zLine); + if( (zSql==0 || zSql[0]==0) && _all_whitespace(zLine) ) continue; + if( zLine && zLine[0]=='.' && nSql==0 ){ + int rc = do_meta_command(zLine, p); + free(zLine); + if( rc ) break; + continue; + } + if( _is_command_terminator(zLine) ){ + strcpy(zLine,";"); + } + if( zSql==0 ){ + int i; + for(i=0; zLine[i] && isspace((unsigned char)zLine[i]); i++){} + if( zLine[i]!=0 ){ + nSql = strlen(zLine); + zSql = malloc( nSql+1 ); + strcpy(zSql, zLine); + } + }else{ + int len = strlen(zLine); + zSql = realloc( zSql, nSql + len + 2 ); + if( zSql==0 ){ + fprintf(stderr,"%s: out of memory!\n", Argv0); + exit(1); + } + strcpy(&zSql[nSql++], "\n"); + strcpy(&zSql[nSql], zLine); + nSql += len; + } + free(zLine); + if( zSql && _ends_with_semicolon(zSql, nSql) && sqlite3_complete(zSql) ){ + p->cnt = 0; + open_db(p); + rc = sqlite3_exec(p->db, zSql, callback, p, &zErrMsg); + if( rc || zErrMsg ){ + if( in!=0 && !p->echoOn ) printf("%s\n",zSql); + if( zErrMsg!=0 ){ + printf("SQL error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + zErrMsg = 0; + }else{ + printf("SQL error: %s\n", sqlite3_errmsg(p->db)); + } + } + free(zSql); + zSql = 0; + nSql = 0; + } + } + if( zSql ){ + if( !_all_whitespace(zSql) ) printf("Incomplete SQL: %s\n", zSql); + free(zSql); + } +} + +/* +** Return a pathname which is the user's home directory. A +** 0 return indicates an error of some kind. Space to hold the +** resulting string is obtained from malloc(). The calling +** function should free the result. +*/ +static char *find_home_dir(void){ + char *home_dir = NULL; + +#if !defined(_WIN32) && !defined(WIN32) && !defined(__MACOS__) + struct passwd *pwent; + uid_t uid = getuid(); + if( (pwent=getpwuid(uid)) != NULL) { + home_dir = pwent->pw_dir; + } +#endif + +#ifdef __MACOS__ + char home_path[_MAX_PATH+1]; + home_dir = getcwd(home_path, _MAX_PATH); +#endif + + if (!home_dir) { + home_dir = getenv("HOME"); + if (!home_dir) { + home_dir = getenv("HOMEPATH"); /* Windows? */ + } + } + +#if defined(_WIN32) || defined(WIN32) + if (!home_dir) { + home_dir = "c:"; + } +#endif + + if( home_dir ){ + char *z = malloc( strlen(home_dir)+1 ); + if( z ) strcpy(z, home_dir); + home_dir = z; + } + + return home_dir; +} + +/* +** Read input from the file given by sqliterc_override. Or if that +** parameter is NULL, take input from ~/.sqliterc +*/ +static void process_sqliterc( + struct callback_data *p, /* Configuration data */ + const char *sqliterc_override /* Name of config file. NULL to use default */ +){ + char *home_dir = NULL; + const char *sqliterc = sqliterc_override; + char *zBuf; + FILE *in = NULL; + + if (sqliterc == NULL) { + home_dir = find_home_dir(); + if( home_dir==0 ){ + fprintf(stderr,"%s: cannot locate your home directory!\n", Argv0); + return; + } + zBuf = malloc(strlen(home_dir) + 15); + if( zBuf==0 ){ + fprintf(stderr,"%s: out of memory!\n", Argv0); + exit(1); + } + sprintf(zBuf,"%s/.sqliterc",home_dir); + free(home_dir); + sqliterc = (const char*)zBuf; + } + in = fopen(sqliterc,"rb"); + if( in ){ + if( isatty(fileno(stdout)) ){ + printf("Loading resources from %s\n",sqliterc); + } + process_input(p,in); + fclose(in); + } + return; +} + +/* +** Show available command line options +*/ +static const char zOptions[] = + " -init filename read/process named file\n" + " -echo print commands before execution\n" + " -[no]header turn headers on or off\n" + " -column set output mode to 'column'\n" + " -html set output mode to HTML\n" +#ifdef SQLITE_HAS_CODEC + " -key KEY encryption key\n" +#endif + " -line set output mode to 'line'\n" + " -list set output mode to 'list'\n" + " -separator 'x' set output field separator (|)\n" + " -nullvalue 'text' set text string for NULL values\n" + " -version show SQLite version\n" + " -help show this text, also show dot-commands\n" +; +static void usage(int showDetail){ + fprintf(stderr, "Usage: %s [OPTIONS] FILENAME [SQL]\n", Argv0); + if( showDetail ){ + fprintf(stderr, "Options are:\n%s", zOptions); + }else{ + fprintf(stderr, "Use the -help option for additional information\n"); + } + exit(1); +} + +/* +** Initialize the state information in data +*/ +void main_init(struct callback_data *data) { + memset(data, 0, sizeof(*data)); + data->mode = MODE_List; + strcpy(data->separator,"|"); + data->showHeader = 0; + strcpy(mainPrompt,"sqlite> "); + strcpy(continuePrompt," ...> "); +} + +int main(int argc, char **argv){ + char *zErrMsg = 0; + struct callback_data data; + const char *zInitFile = 0; + char *zFirstCmd = 0; + int i; + +#ifdef __MACOS__ + argc = ccommand(&argv); +#endif + + Argv0 = argv[0]; + main_init(&data); + + /* Make sure we have a valid signal handler early, before anything + ** else is done. + */ +#ifdef SIGINT + signal(SIGINT, interrupt_handler); +#endif + + /* Do an initial pass through the command-line argument to locate + ** the name of the database file, the name of the initialization file, + ** and the first command to execute. + */ + for(i=1; i<argc-1; i++){ + if( argv[i][0]!='-' ) break; + if( strcmp(argv[i],"-separator")==0 || strcmp(argv[i],"-nullvalue")==0 ){ + i++; + }else if( strcmp(argv[i],"-init")==0 ){ + i++; + zInitFile = argv[i]; + }else if( strcmp(argv[i],"-key")==0 ){ + i++; + data.zKey = sqlite3_mprintf("%s",argv[i]); + } + } + if( i<argc ){ + data.zDbFilename = argv[i++]; + }else{ + data.zDbFilename = ":memory:"; + } + if( i<argc ){ + zFirstCmd = argv[i++]; + } + data.out = stdout; + + /* Go ahead and open the database file if it already exists. If the + ** file does not exist, delay opening it. This prevents empty database + ** files from being created if a user mistypes the database name argument + ** to the sqlite command-line tool. + */ + if( access(data.zDbFilename, 0)==0 ){ + open_db(&data); + } + + /* Process the initialization file if there is one. If no -init option + ** is given on the command line, look for a file named ~/.sqliterc and + ** try to process it. + */ + process_sqliterc(&data,zInitFile); + + /* Make a second pass through the command-line argument and set + ** options. This second pass is delayed until after the initialization + ** file is processed so that the command-line arguments will override + ** settings in the initialization file. + */ + for(i=1; i<argc && argv[i][0]=='-'; i++){ + char *z = argv[i]; + if( strcmp(z,"-init")==0 || strcmp(z,"-key")==0 ){ + i++; + }else if( strcmp(z,"-html")==0 ){ + data.mode = MODE_Html; + }else if( strcmp(z,"-list")==0 ){ + data.mode = MODE_List; + }else if( strcmp(z,"-line")==0 ){ + data.mode = MODE_Line; + }else if( strcmp(z,"-column")==0 ){ + data.mode = MODE_Column; + }else if( strcmp(z,"-separator")==0 ){ + i++; + sprintf(data.separator,"%.*s",(int)sizeof(data.separator)-1,argv[i]); + }else if( strcmp(z,"-nullvalue")==0 ){ + i++; + sprintf(data.nullvalue,"%.*s",(int)sizeof(data.nullvalue)-1,argv[i]); + }else if( strcmp(z,"-header")==0 ){ + data.showHeader = 1; + }else if( strcmp(z,"-noheader")==0 ){ + data.showHeader = 0; + }else if( strcmp(z,"-echo")==0 ){ + data.echoOn = 1; + }else if( strcmp(z,"-version")==0 ){ + printf("%s\n", sqlite3_libversion()); + return 1; + }else if( strcmp(z,"-help")==0 ){ + usage(1); + }else{ + fprintf(stderr,"%s: unknown option: %s\n", Argv0, z); + fprintf(stderr,"Use -help for a list of options.\n"); + return 1; + } + } + + if( zFirstCmd ){ + /* Run just the command that follows the database name + */ + if( zFirstCmd[0]=='.' ){ + do_meta_command(zFirstCmd, &data); + exit(0); + }else{ + int rc; + open_db(&data); + rc = sqlite3_exec(data.db, zFirstCmd, callback, &data, &zErrMsg); + if( rc!=0 && zErrMsg!=0 ){ + fprintf(stderr,"SQL error: %s\n", zErrMsg); + exit(1); + } + } + }else{ + /* Run commands received from standard input + */ + if( isatty(fileno(stdout)) && isatty(fileno(stdin)) ){ + char *zHome; + char *zHistory = 0; + printf( + "SQLite version %s\n" + "Enter \".help\" for instructions\n", + sqlite3_libversion() + ); + zHome = find_home_dir(); + if( zHome && (zHistory = malloc(strlen(zHome)+20))!=0 ){ + sprintf(zHistory,"%s/.sqlite_history", zHome); + } + if( zHistory ) read_history(zHistory); + process_input(&data, 0); + if( zHistory ){ + stifle_history(100); + write_history(zHistory); + } + }else{ + process_input(&data, stdin); + } + } + set_table_name(&data, 0); + if( db ) sqlite3_close(db); + return 0; +} diff --git a/kopete/plugins/statistics/sqlite/sqlite3.h b/kopete/plugins/statistics/sqlite/sqlite3.h new file mode 100644 index 00000000..d6b99049 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/sqlite3.h @@ -0,0 +1,1166 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the SQLite library +** presents to client programs. +** +** @(#) $Id$ +*/ +#ifndef _SQLITE3_H_ +#define _SQLITE3_H_ +#include <stdarg.h> /* Needed for the definition of va_list */ + +/* +** Make sure we can call this stuff from C++. +*/ +#ifdef __cplusplus +extern "C" { +#endif + +/* +** The version of the SQLite library. +*/ +#ifdef SQLITE_VERSION +# undef SQLITE_VERSION +#else +# define SQLITE_VERSION "3.0.8" +#endif + +/* +** The version string is also compiled into the library so that a program +** can check to make sure that the lib*.a file and the *.h file are from +** the same version. The sqlite3_libversion() function returns a pointer +** to the sqlite3_version variable - useful in DLLs which cannot access +** global variables. +*/ +extern const char sqlite3_version[]; +const char *sqlite3_libversion(void); + +/* +** Each open sqlite database is represented by an instance of the +** following opaque structure. +*/ +typedef struct sqlite3 sqlite3; + + +/* +** Some compilers do not support the "long long" datatype. So we have +** to do a typedef that for 64-bit integers that depends on what compiler +** is being used. +*/ +#if defined(_MSC_VER) || defined(__BORLANDC__) + typedef __int64 sqlite_int64; + typedef unsigned __int64 sqlite_uint64; +#else + typedef long long int sqlite_int64; + typedef unsigned long long int sqlite_uint64; +#endif + + +/* +** A function to close the database. +** +** Call this function with a pointer to a structure that was previously +** returned from sqlite3_open() and the corresponding database will by closed. +** +** All SQL statements prepared using sqlite3_prepare() or +** sqlite3_prepare16() must be deallocated using sqlite3_finalize() before +** this routine is called. Otherwise, SQLITE_BUSY is returned and the +** database connection remains open. +*/ +int sqlite3_close(sqlite3 *); + +/* +** The type for a callback function. +*/ +typedef int (*sqlite3_callback)(void*,int,char**, char**); + +/* +** A function to executes one or more statements of SQL. +** +** If one or more of the SQL statements are queries, then +** the callback function specified by the 3rd parameter is +** invoked once for each row of the query result. This callback +** should normally return 0. If the callback returns a non-zero +** value then the query is aborted, all subsequent SQL statements +** are skipped and the sqlite3_exec() function returns the SQLITE_ABORT. +** +** The 4th parameter is an arbitrary pointer that is passed +** to the callback function as its first parameter. +** +** The 2nd parameter to the callback function is the number of +** columns in the query result. The 3rd parameter to the callback +** is an array of strings holding the values for each column. +** The 4th parameter to the callback is an array of strings holding +** the names of each column. +** +** The callback function may be NULL, even for queries. A NULL +** callback is not an error. It just means that no callback +** will be invoked. +** +** If an error occurs while parsing or evaluating the SQL (but +** not while executing the callback) then an appropriate error +** message is written into memory obtained from malloc() and +** *errmsg is made to point to that message. The calling function +** is responsible for freeing the memory that holds the error +** message. Use sqlite3_free() for this. If errmsg==NULL, +** then no error message is ever written. +** +** The return value is is SQLITE_OK if there are no errors and +** some other return code if there is an error. The particular +** return value depends on the type of error. +** +** If the query could not be executed because a database file is +** locked or busy, then this function returns SQLITE_BUSY. (This +** behavior can be modified somewhat using the sqlite3_busy_handler() +** and sqlite3_busy_timeout() functions below.) +*/ +int sqlite3_exec( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be executed */ + sqlite3_callback, /* Callback function */ + void *, /* 1st argument to callback function */ + char **errmsg /* Error msg written here */ +); + +/* +** Return values for sqlite3_exec() and sqlite3_step() +*/ +#define SQLITE_OK 0 /* Successful result */ +#define SQLITE_ERROR 1 /* SQL error or missing database */ +#define SQLITE_INTERNAL 2 /* An internal logic error in SQLite */ +#define SQLITE_PERM 3 /* Access permission denied */ +#define SQLITE_ABORT 4 /* Callback routine requested an abort */ +#define SQLITE_BUSY 5 /* The database file is locked */ +#define SQLITE_LOCKED 6 /* A table in the database is locked */ +#define SQLITE_NOMEM 7 /* A malloc() failed */ +#define SQLITE_READONLY 8 /* Attempt to write a readonly database */ +#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ +#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ +#define SQLITE_CORRUPT 11 /* The database disk image is malformed */ +#define SQLITE_NOTFOUND 12 /* (Internal Only) Table or record not found */ +#define SQLITE_FULL 13 /* Insertion failed because database is full */ +#define SQLITE_CANTOPEN 14 /* Unable to open the database file */ +#define SQLITE_PROTOCOL 15 /* Database lock protocol error */ +#define SQLITE_EMPTY 16 /* Database is empty */ +#define SQLITE_SCHEMA 17 /* The database schema changed */ +#define SQLITE_TOOBIG 18 /* Too much data for one row of a table */ +#define SQLITE_CONSTRAINT 19 /* Abort due to contraint violation */ +#define SQLITE_MISMATCH 20 /* Data type mismatch */ +#define SQLITE_MISUSE 21 /* Library used incorrectly */ +#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */ +#define SQLITE_AUTH 23 /* Authorization denied */ +#define SQLITE_FORMAT 24 /* Auxiliary database format error */ +#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ +#define SQLITE_NOTADB 26 /* File opened that is not a database file */ +#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ +#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ + +/* +** Each entry in an SQLite table has a unique integer key. (The key is +** the value of the INTEGER PRIMARY KEY column if there is such a column, +** otherwise the key is generated at random. The unique key is always +** available as the ROWID, OID, or _ROWID_ column.) The following routine +** returns the integer key of the most recent insert in the database. +** +** This function is similar to the mysql_insert_id() function from MySQL. +*/ +sqlite_int64 sqlite3_last_insert_rowid(sqlite3*); + +/* +** This function returns the number of database rows that were changed +** (or inserted or deleted) by the most recent called sqlite3_exec(). +** +** All changes are counted, even if they were later undone by a +** ROLLBACK or ABORT. Except, changes associated with creating and +** dropping tables are not counted. +** +** If a callback invokes sqlite3_exec() recursively, then the changes +** in the inner, recursive call are counted together with the changes +** in the outer call. +** +** SQLite implements the command "DELETE FROM table" without a WHERE clause +** by dropping and recreating the table. (This is much faster than going +** through and deleting individual elements form the table.) Because of +** this optimization, the change count for "DELETE FROM table" will be +** zero regardless of the number of elements that were originally in the +** table. To get an accurate count of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +*/ +int sqlite3_changes(sqlite3*); + +/* +** This function returns the number of database rows that have been +** modified by INSERT, UPDATE or DELETE statements since the database handle +** was opened. This includes UPDATE, INSERT and DELETE statements executed +** as part of trigger programs. All changes are counted as soon as the +** statement that makes them is completed (when the statement handle is +** passed to sqlite3_reset() or sqlite_finalise()). +** +** SQLite implements the command "DELETE FROM table" without a WHERE clause +** by dropping and recreating the table. (This is much faster than going +** through and deleting individual elements form the table.) Because of +** this optimization, the change count for "DELETE FROM table" will be +** zero regardless of the number of elements that were originally in the +** table. To get an accurate count of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +*/ +int sqlite3_total_changes(sqlite3*); + +/* This function causes any pending database operation to abort and +** return at its earliest opportunity. This routine is typically +** called in response to a user action such as pressing "Cancel" +** or Ctrl-C where the user wants a long query operation to halt +** immediately. +*/ +void sqlite3_interrupt(sqlite3*); + + +/* These functions return true if the given input string comprises +** one or more complete SQL statements. For the sqlite3_complete() call, +** the parameter must be a nul-terminated UTF-8 string. For +** sqlite3_complete16(), a nul-terminated machine byte order UTF-16 string +** is required. +** +** The algorithm is simple. If the last token other than spaces +** and comments is a semicolon, then return true. otherwise return +** false. +*/ +int sqlite3_complete(const char *sql); +int sqlite3_complete16(const void *sql); + +/* +** This routine identifies a callback function that is invoked +** whenever an attempt is made to open a database table that is +** currently locked by another process or thread. If the busy callback +** is NULL, then sqlite3_exec() returns SQLITE_BUSY immediately if +** it finds a locked table. If the busy callback is not NULL, then +** sqlite3_exec() invokes the callback with three arguments. The +** second argument is the name of the locked table and the third +** argument is the number of times the table has been busy. If the +** busy callback returns 0, then sqlite3_exec() immediately returns +** SQLITE_BUSY. If the callback returns non-zero, then sqlite3_exec() +** tries to open the table again and the cycle repeats. +** +** The default busy callback is NULL. +** +** Sqlite is re-entrant, so the busy handler may start a new query. +** (It is not clear why anyone would every want to do this, but it +** is allowed, in theory.) But the busy handler may not close the +** database. Closing the database from a busy handler will delete +** data structures out from under the executing query and will +** probably result in a coredump. +*/ +int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); + +/* +** This routine sets a busy handler that sleeps for a while when a +** table is locked. The handler will sleep multiple times until +** at least "ms" milleseconds of sleeping have been done. After +** "ms" milleseconds of sleeping, the handler returns 0 which +** causes sqlite3_exec() to return SQLITE_BUSY. +** +** Calling this routine with an argument less than or equal to zero +** turns off all busy handlers. +*/ +int sqlite3_busy_timeout(sqlite3*, int ms); + +/* +** This next routine is really just a wrapper around sqlite3_exec(). +** Instead of invoking a user-supplied callback for each row of the +** result, this routine remembers each row of the result in memory +** obtained from malloc(), then returns all of the result after the +** query has finished. +** +** As an example, suppose the query result where this table: +** +** Name | Age +** ----------------------- +** Alice | 43 +** Bob | 28 +** Cindy | 21 +** +** If the 3rd argument were &azResult then after the function returns +** azResult will contain the following data: +** +** azResult[0] = "Name"; +** azResult[1] = "Age"; +** azResult[2] = "Alice"; +** azResult[3] = "43"; +** azResult[4] = "Bob"; +** azResult[5] = "28"; +** azResult[6] = "Cindy"; +** azResult[7] = "21"; +** +** Notice that there is an extra row of data containing the column +** headers. But the *nrow return value is still 3. *ncolumn is +** set to 2. In general, the number of values inserted into azResult +** will be ((*nrow) + 1)*(*ncolumn). +** +** After the calling function has finished using the result, it should +** pass the result data pointer to sqlite3_free_table() in order to +** release the memory that was malloc-ed. Because of the way the +** malloc() happens, the calling function must not try to call +** malloc() directly. Only sqlite3_free_table() is able to release +** the memory properly and safely. +** +** The return value of this routine is the same as from sqlite3_exec(). +*/ +int sqlite3_get_table( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be executed */ + char ***resultp, /* Result written to a char *[] that this points to */ + int *nrow, /* Number of result rows written here */ + int *ncolumn, /* Number of result columns written here */ + char **errmsg /* Error msg written here */ +); + +/* +** Call this routine to free the memory that sqlite3_get_table() allocated. +*/ +void sqlite3_free_table(char **result); + +/* +** The following routines are variants of the "sprintf()" from the +** standard C library. The resulting string is written into memory +** obtained from malloc() so that there is never a possiblity of buffer +** overflow. These routines also implement some additional formatting +** options that are useful for constructing SQL statements. +** +** The strings returned by these routines should be freed by calling +** sqlite3_free(). +** +** All of the usual printf formatting options apply. In addition, there +** is a "%q" option. %q works like %s in that it substitutes a null-terminated +** string from the argument list. But %q also doubles every '\'' character. +** %q is designed for use inside a string literal. By doubling each '\'' +** character it escapes that character and allows it to be inserted into +** the string. +** +** For example, so some string variable contains text as follows: +** +** char *zText = "It's a happy day!"; +** +** We can use this text in an SQL statement as follows: +** +** sqlite3_exec_printf(db, "INSERT INTO table VALUES('%q')", +** callback1, 0, 0, zText); +** +** Because the %q format string is used, the '\'' character in zText +** is escaped and the SQL generated is as follows: +** +** INSERT INTO table1 VALUES('It''s a happy day!') +** +** This is correct. Had we used %s instead of %q, the generated SQL +** would have looked like this: +** +** INSERT INTO table1 VALUES('It's a happy day!'); +** +** This second example is an SQL syntax error. As a general rule you +** should always use %q instead of %s when inserting text into a string +** literal. +*/ +char *sqlite3_mprintf(const char*,...); +char *sqlite3_vmprintf(const char*, va_list); +void sqlite3_free(char *z); +char *sqlite3_snprintf(int,char*,const char*, ...); + +#ifndef SQLITE_OMIT_AUTHORIZATION +/* +** This routine registers a callback with the SQLite library. The +** callback is invoked (at compile-time, not at run-time) for each +** attempt to access a column of a table in the database. The callback +** returns SQLITE_OK if access is allowed, SQLITE_DENY if the entire +** SQL statement should be aborted with an error and SQLITE_IGNORE +** if the column should be treated as a NULL value. +*/ +int sqlite3_set_authorizer( + sqlite3*, + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), + void *pUserData +); +#endif + +/* +** The second parameter to the access authorization function above will +** be one of the values below. These values signify what kind of operation +** is to be authorized. The 3rd and 4th parameters to the authorization +** function will be parameters or NULL depending on which of the following +** codes is used as the second parameter. The 5th parameter is the name +** of the database ("main", "temp", etc.) if applicable. The 6th parameter +** is the name of the inner-most trigger or view that is responsible for +** the access attempt or NULL if this access attempt is directly from +** input SQL code. +** +** Arg-3 Arg-4 +*/ +#define SQLITE_COPY 0 /* Table Name File Name */ +#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ +#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */ +#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */ +#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */ +#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */ +#define SQLITE_CREATE_VIEW 8 /* View Name NULL */ +#define SQLITE_DELETE 9 /* Table Name NULL */ +#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */ +#define SQLITE_DROP_TABLE 11 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */ +#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */ +#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */ +#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */ +#define SQLITE_DROP_VIEW 17 /* View Name NULL */ +#define SQLITE_INSERT 18 /* Table Name NULL */ +#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */ +#define SQLITE_READ 20 /* Table Name Column Name */ +#define SQLITE_SELECT 21 /* NULL NULL */ +#define SQLITE_TRANSACTION 22 /* NULL NULL */ +#define SQLITE_UPDATE 23 /* Table Name Column Name */ +#define SQLITE_ATTACH 24 /* Filename NULL */ +#define SQLITE_DETACH 25 /* Database Name NULL */ + + +/* +** The return value of the authorization function should be one of the +** following constants: +*/ +/* #define SQLITE_OK 0 // Allow access (This is actually defined above) */ +#define SQLITE_DENY 1 /* Abort the SQL statement with an error */ +#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ + +/* +** Register a function that is called at every invocation of sqlite3_exec() +** or sqlite3_prepare(). This function can be used (for example) to generate +** a log file of all SQL executed against a database. +*/ +void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); + +/* +** This routine configures a callback function - the progress callback - that +** is invoked periodically during long running calls to sqlite3_exec(), +** sqlite3_step() and sqlite3_get_table(). An example use for this API is to keep +** a GUI updated during a large query. +** +** The progress callback is invoked once for every N virtual machine opcodes, +** where N is the second argument to this function. The progress callback +** itself is identified by the third argument to this function. The fourth +** argument to this function is a void pointer passed to the progress callback +** function each time it is invoked. +** +** If a call to sqlite3_exec(), sqlite3_step() or sqlite3_get_table() results +** in less than N opcodes being executed, then the progress callback is not +** invoked. +** +** To remove the progress callback altogether, pass NULL as the third +** argument to this function. +** +** If the progress callback returns a result other than 0, then the current +** query is immediately terminated and any database changes rolled back. If the +** query was part of a larger transaction, then the transaction is not rolled +** back and remains active. The sqlite3_exec() call returns SQLITE_ABORT. +** +******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ****** +*/ +void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); + +/* +** Register a callback function to be invoked whenever a new transaction +** is committed. The pArg argument is passed through to the callback. +** callback. If the callback function returns non-zero, then the commit +** is converted into a rollback. +** +** If another function was previously registered, its pArg value is returned. +** Otherwise NULL is returned. +** +** Registering a NULL function disables the callback. +** +******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ****** +*/ +void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); + +/* +** Open the sqlite database file "filename". The "filename" is UTF-8 +** encoded for sqlite3_open() and UTF-16 encoded in the native byte order +** for sqlite3_open16(). An sqlite3* handle is returned in *ppDb, even +** if an error occurs. If the database is opened (or created) successfully, +** then SQLITE_OK is returned. Otherwise an error code is returned. The +** sqlite3_errmsg() or sqlite3_errmsg16() routines can be used to obtain +** an English language description of the error. +** +** If the database file does not exist, then a new database is created. +** The encoding for the database is UTF-8 if sqlite3_open() is called and +** UTF-16 if sqlite3_open16 is used. +** +** Whether or not an error occurs when it is opened, resources associated +** with the sqlite3* handle should be released by passing it to +** sqlite3_close() when it is no longer required. +*/ +int sqlite3_open( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open16( + const void *filename, /* Database filename (UTF-16) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); + +/* +** Return the error code for the most recent sqlite3_* API call associated +** with sqlite3 handle 'db'. SQLITE_OK is returned if the most recent +** API call was successful. +** +** Calls to many sqlite3_* functions set the error code and string returned +** by sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16() +** (overwriting the previous values). Note that calls to sqlite3_errcode(), +** sqlite3_errmsg() and sqlite3_errmsg16() themselves do not affect the +** results of future invocations. +** +** Assuming no other intervening sqlite3_* API calls are made, the error +** code returned by this function is associated with the same error as +** the strings returned by sqlite3_errmsg() and sqlite3_errmsg16(). +*/ +int sqlite3_errcode(sqlite3 *db); + +/* +** Return a pointer to a UTF-8 encoded string describing in english the +** error condition for the most recent sqlite3_* API call. The returned +** string is always terminated by an 0x00 byte. +** +** The string "not an error" is returned when the most recent API call was +** successful. +*/ +const char *sqlite3_errmsg(sqlite3*); + +/* +** Return a pointer to a UTF-16 native byte order encoded string describing +** in english the error condition for the most recent sqlite3_* API call. +** The returned string is always terminated by a pair of 0x00 bytes. +** +** The string "not an error" is returned when the most recent API call was +** successful. +*/ +const void *sqlite3_errmsg16(sqlite3*); + +/* +** An instance of the following opaque structure is used to represent +** a compiled SQL statment. +*/ +typedef struct sqlite3_stmt sqlite3_stmt; + +/* +** To execute an SQL query, it must first be compiled into a byte-code +** program using one of the following routines. The only difference between +** them is that the second argument, specifying the SQL statement to +** compile, is assumed to be encoded in UTF-8 for the sqlite3_prepare() +** function and UTF-16 for sqlite3_prepare16(). +** +** The first parameter "db" is an SQLite database handle. The second +** parameter "zSql" is the statement to be compiled, encoded as either +** UTF-8 or UTF-16 (see above). If the next parameter, "nBytes", is less +** than zero, then zSql is read up to the first nul terminator. If +** "nBytes" is not less than zero, then it is the length of the string zSql +** in bytes (not characters). +** +** *pzTail is made to point to the first byte past the end of the first +** SQL statement in zSql. This routine only compiles the first statement +** in zSql, so *pzTail is left pointing to what remains uncompiled. +** +** *ppStmt is left pointing to a compiled SQL statement that can be +** executed using sqlite3_step(). Or if there is an error, *ppStmt may be +** set to NULL. If the input text contained no SQL (if the input is and +** empty string or a comment) then *ppStmt is set to NULL. +** +** On success, SQLITE_OK is returned. Otherwise an error code is returned. +*/ +int sqlite3_prepare( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nBytes, /* Length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nBytes, /* Length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); + +/* +** Pointers to the following two opaque structures are used to communicate +** with the implementations of user-defined functions. +*/ +typedef struct sqlite3_context sqlite3_context; +typedef struct Mem sqlite3_value; + +/* +** In the SQL strings input to sqlite3_prepare() and sqlite3_prepare16(), +** one or more literals can be replace by a wildcard "?" or ":N:" where +** N is an integer. These value of these wildcard literals can be set +** using the routines listed below. +** +** In every case, the first parameter is a pointer to the sqlite3_stmt +** structure returned from sqlite3_prepare(). The second parameter is the +** index of the wildcard. The first "?" has an index of 1. ":N:" wildcards +** use the index N. +** +** The fifth parameter to sqlite3_bind_blob(), sqlite3_bind_text(), and +** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or +** text after SQLite has finished with it. If the fifth argument is the +** special value SQLITE_STATIC, then the library assumes that the information +** is in static, unmanaged space and does not need to be freed. If the +** fifth argument has the value SQLITE_TRANSIENT, then SQLite makes its +** own private copy of the data. +** +** The sqlite3_bind_* routine must be called before sqlite3_step() after +** an sqlite3_prepare() or sqlite3_reset(). Unbound wildcards are interpreted +** as NULL. +*/ +int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); +int sqlite3_bind_double(sqlite3_stmt*, int, double); +int sqlite3_bind_int(sqlite3_stmt*, int, int); +int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite_int64); +int sqlite3_bind_null(sqlite3_stmt*, int); +int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*)); +int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); +int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); + +/* +** Return the number of wildcards in a compiled SQL statement. This +** routine was added to support DBD::SQLite. +*/ +int sqlite3_bind_parameter_count(sqlite3_stmt*); + +/* +** Return the name of the i-th parameter. Ordinary wildcards "?" are +** nameless and a NULL is returned. For wildcards of the form :N or +** $vvvv the complete text of the wildcard is returned. +** NULL is returned if the index is out of range. +*/ +const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); + +/* +** Return the index of a parameter with the given name. The name +** must match exactly. If no parameter with the given name is found, +** return 0. +*/ +int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); + +/* +** Return the number of columns in the result set returned by the compiled +** SQL statement. This routine returns 0 if pStmt is an SQL statement +** that does not return data (for example an UPDATE). +*/ +int sqlite3_column_count(sqlite3_stmt *pStmt); + +/* +** The first parameter is a compiled SQL statement. This function returns +** the column heading for the Nth column of that statement, where N is the +** second function parameter. The string returned is UTF-8 for +** sqlite3_column_name() and UTF-16 for sqlite3_column_name16(). +*/ +const char *sqlite3_column_name(sqlite3_stmt*,int); +const void *sqlite3_column_name16(sqlite3_stmt*,int); + +/* +** The first parameter is a compiled SQL statement. If this statement +** is a SELECT statement, the Nth column of the returned result set +** of the SELECT is a table column then the declared type of the table +** column is returned. If the Nth column of the result set is not at table +** column, then a NULL pointer is returned. The returned string is always +** UTF-8 encoded. For example, in the database schema: +** +** CREATE TABLE t1(c1 VARIANT); +** +** And the following statement compiled: +** +** SELECT c1 + 1, 0 FROM t1; +** +** Then this routine would return the string "VARIANT" for the second +** result column (i==1), and a NULL pointer for the first result column +** (i==0). +*/ +const char *sqlite3_column_decltype(sqlite3_stmt *, int i); + +/* +** The first parameter is a compiled SQL statement. If this statement +** is a SELECT statement, the Nth column of the returned result set +** of the SELECT is a table column then the declared type of the table +** column is returned. If the Nth column of the result set is not at table +** column, then a NULL pointer is returned. The returned string is always +** UTF-16 encoded. For example, in the database schema: +** +** CREATE TABLE t1(c1 INTEGER); +** +** And the following statement compiled: +** +** SELECT c1 + 1, 0 FROM t1; +** +** Then this routine would return the string "INTEGER" for the second +** result column (i==1), and a NULL pointer for the first result column +** (i==0). +*/ +const void *sqlite3_column_decltype16(sqlite3_stmt*,int); + +/* +** After an SQL query has been compiled with a call to either +** sqlite3_prepare() or sqlite3_prepare16(), then this function must be +** called one or more times to execute the statement. +** +** The return value will be either SQLITE_BUSY, SQLITE_DONE, +** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE. +** +** SQLITE_BUSY means that the database engine attempted to open +** a locked database and there is no busy callback registered. +** Call sqlite3_step() again to retry the open. +** +** SQLITE_DONE means that the statement has finished executing +** successfully. sqlite3_step() should not be called again on this virtual +** machine. +** +** If the SQL statement being executed returns any data, then +** SQLITE_ROW is returned each time a new row of data is ready +** for processing by the caller. The values may be accessed using +** the sqlite3_column_*() functions described below. sqlite3_step() +** is called again to retrieve the next row of data. +** +** SQLITE_ERROR means that a run-time error (such as a constraint +** violation) has occurred. sqlite3_step() should not be called again on +** the VM. More information may be found by calling sqlite3_errmsg(). +** +** SQLITE_MISUSE means that the this routine was called inappropriately. +** Perhaps it was called on a virtual machine that had already been +** finalized or on one that had previously returned SQLITE_ERROR or +** SQLITE_DONE. Or it could be the case the the same database connection +** is being used simulataneously by two or more threads. +*/ +int sqlite3_step(sqlite3_stmt*); + +/* +** Return the number of values in the current row of the result set. +** +** After a call to sqlite3_step() that returns SQLITE_ROW, this routine +** will return the same value as the sqlite3_column_count() function. +** After sqlite3_step() has returned an SQLITE_DONE, SQLITE_BUSY or +** error code, or before sqlite3_step() has been called on a +** compiled SQL statement, this routine returns zero. +*/ +int sqlite3_data_count(sqlite3_stmt *pStmt); + +/* +** Values are stored in the database in one of the following fundamental +** types. +*/ +#define SQLITE_INTEGER 1 +#define SQLITE_FLOAT 2 +/* #define SQLITE_TEXT 3 // See below */ +#define SQLITE_BLOB 4 +#define SQLITE_NULL 5 + +/* +** SQLite version 2 defines SQLITE_TEXT differently. To allow both +** version 2 and version 3 to be included, undefine them both if a +** conflict is seen. Define SQLITE3_TEXT to be the version 3 value. +*/ +#ifdef SQLITE_TEXT +# undef SQLITE_TEXT +#else +# define SQLITE_TEXT 3 +#endif +#define SQLITE3_TEXT 3 + +/* +** The next group of routines returns information about the information +** in a single column of the current result row of a query. In every +** case the first parameter is a pointer to the SQL statement that is being +** executed (the sqlite_stmt* that was returned from sqlite3_prepare()) and +** the second argument is the index of the column for which information +** should be returned. iCol is zero-indexed. The left-most column as an +** index of 0. +** +** If the SQL statement is not currently point to a valid row, or if the +** the colulmn index is out of range, the result is undefined. +** +** These routines attempt to convert the value where appropriate. For +** example, if the internal representation is FLOAT and a text result +** is requested, sprintf() is used internally to do the conversion +** automatically. The following table details the conversions that +** are applied: +** +** Internal Type Requested Type Conversion +** ------------- -------------- -------------------------- +** NULL INTEGER Result is 0 +** NULL FLOAT Result is 0.0 +** NULL TEXT Result is an empty string +** NULL BLOB Result is a zero-length BLOB +** INTEGER FLOAT Convert from integer to float +** INTEGER TEXT ASCII rendering of the integer +** INTEGER BLOB Same as for INTEGER->TEXT +** FLOAT INTEGER Convert from float to integer +** FLOAT TEXT ASCII rendering of the float +** FLOAT BLOB Same as FLOAT->TEXT +** TEXT INTEGER Use atoi() +** TEXT FLOAT Use atof() +** TEXT BLOB No change +** BLOB INTEGER Convert to TEXT then use atoi() +** BLOB FLOAT Convert to TEXT then use atof() +** BLOB TEXT Add a \000 terminator if needed +** +** The following access routines are provided: +** +** _type() Return the datatype of the result. This is one of +** SQLITE_INTEGER, SQLITE_FLOAT, SQLITE_TEXT, SQLITE_BLOB, +** or SQLITE_NULL. +** _blob() Return the value of a BLOB. +** _bytes() Return the number of bytes in a BLOB value or the number +** of bytes in a TEXT value represented as UTF-8. The \000 +** terminator is included in the byte count for TEXT values. +** _bytes16() Return the number of bytes in a BLOB value or the number +** of bytes in a TEXT value represented as UTF-16. The \u0000 +** terminator is included in the byte count for TEXT values. +** _double() Return a FLOAT value. +** _int() Return an INTEGER value in the host computer's native +** integer representation. This might be either a 32- or 64-bit +** integer depending on the host. +** _int64() Return an INTEGER value as a 64-bit signed integer. +** _text() Return the value as UTF-8 text. +** _text16() Return the value as UTF-16 text. +*/ +const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes16(sqlite3_stmt*, int iCol); +double sqlite3_column_double(sqlite3_stmt*, int iCol); +int sqlite3_column_int(sqlite3_stmt*, int iCol); +sqlite_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol); +const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); +const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); +int sqlite3_column_type(sqlite3_stmt*, int iCol); + +/* +** The sqlite3_finalize() function is called to delete a compiled +** SQL statement obtained by a previous call to sqlite3_prepare() +** or sqlite3_prepare16(). If the statement was executed successfully, or +** not executed at all, then SQLITE_OK is returned. If execution of the +** statement failed then an error code is returned. +** +** This routine can be called at any point during the execution of the +** virtual machine. If the virtual machine has not completed execution +** when this routine is called, that is like encountering an error or +** an interrupt. (See sqlite3_interrupt().) Incomplete updates may be +** rolled back and transactions cancelled, depending on the circumstances, +** and the result code returned will be SQLITE_ABORT. +*/ +int sqlite3_finalize(sqlite3_stmt *pStmt); + +/* +** The sqlite3_reset() function is called to reset a compiled SQL +** statement obtained by a previous call to sqlite3_prepare() or +** sqlite3_prepare16() back to it's initial state, ready to be re-executed. +** Any SQL statement variables that had values bound to them using +** the sqlite3_bind_*() API retain their values. +*/ +int sqlite3_reset(sqlite3_stmt *pStmt); + +/* +** The following two functions are used to add user functions or aggregates +** implemented in C to the SQL langauge interpreted by SQLite. The +** difference only between the two is that the second parameter, the +** name of the (scalar) function or aggregate, is encoded in UTF-8 for +** sqlite3_create_function() and UTF-16 for sqlite3_create_function16(). +** +** The first argument is the database handle that the new function or +** aggregate is to be added to. If a single program uses more than one +** database handle internally, then user functions or aggregates must +** be added individually to each database handle with which they will be +** used. +** +** The third parameter is the number of arguments that the function or +** aggregate takes. If this parameter is negative, then the function or +** aggregate may take any number of arguments. +** +** The fourth parameter is one of SQLITE_UTF* values defined below, +** indicating the encoding that the function is most likely to handle +** values in. This does not change the behaviour of the programming +** interface. However, if two versions of the same function are registered +** with different encoding values, SQLite invokes the version likely to +** minimize conversions between text encodings. +** +** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are +** pointers to user implemented C functions that implement the user +** function or aggregate. A scalar function requires an implementation of +** the xFunc callback only, NULL pointers should be passed as the xStep +** and xFinal parameters. An aggregate function requires an implementation +** of xStep and xFinal, but NULL should be passed for xFunc. To delete an +** existing user function or aggregate, pass NULL for all three function +** callback. Specifying an inconstent set of callback values, such as an +** xFunc and an xFinal, or an xStep but no xFinal, SQLITE_ERROR is +** returned. +*/ +int sqlite3_create_function( + sqlite3 *, + const char *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); +int sqlite3_create_function16( + sqlite3*, + const void *zFunctionName, + int nArg, + int eTextRep, + void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); + +/* +** The next routine returns the number of calls to xStep for a particular +** aggregate function instance. The current call to xStep counts so this +** routine always returns at least 1. +*/ +int sqlite3_aggregate_count(sqlite3_context*); + +/* +** The next group of routines returns information about parameters to +** a user-defined function. Function implementations use these routines +** to access their parameters. These routines are the same as the +** sqlite3_column_* routines except that these routines take a single +** sqlite3_value* pointer instead of an sqlite3_stmt* and an integer +** column number. +*/ +const void *sqlite3_value_blob(sqlite3_value*); +int sqlite3_value_bytes(sqlite3_value*); +int sqlite3_value_bytes16(sqlite3_value*); +double sqlite3_value_double(sqlite3_value*); +int sqlite3_value_int(sqlite3_value*); +sqlite_int64 sqlite3_value_int64(sqlite3_value*); +const unsigned char *sqlite3_value_text(sqlite3_value*); +const void *sqlite3_value_text16(sqlite3_value*); +const void *sqlite3_value_text16le(sqlite3_value*); +const void *sqlite3_value_text16be(sqlite3_value*); +int sqlite3_value_type(sqlite3_value*); + +/* +** Aggregate functions use the following routine to allocate +** a structure for storing their state. The first time this routine +** is called for a particular aggregate, a new structure of size nBytes +** is allocated, zeroed, and returned. On subsequent calls (for the +** same aggregate instance) the same buffer is returned. The implementation +** of the aggregate can use the returned buffer to accumulate data. +** +** The buffer allocated is freed automatically by SQLite. +*/ +void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); + +/* +** The pUserData parameter to the sqlite3_create_function() and +** sqlite3_create_aggregate() routines used to register user functions +** is available to the implementation of the function using this +** call. +*/ +void *sqlite3_user_data(sqlite3_context*); + +/* +** The following two functions may be used by scalar user functions to +** associate meta-data with argument values. If the same value is passed to +** multiple invocations of the user-function during query execution, under +** some circumstances the associated meta-data may be preserved. This may +** be used, for example, to add a regular-expression matching scalar +** function. The compiled version of the regular expression is stored as +** meta-data associated with the SQL value passed as the regular expression +** pattern. +** +** Calling sqlite3_get_auxdata() returns a pointer to the meta data +** associated with the Nth argument value to the current user function +** call, where N is the second parameter. If no meta-data has been set for +** that value, then a NULL pointer is returned. +** +** The sqlite3_set_auxdata() is used to associate meta data with a user +** function argument. The third parameter is a pointer to the meta data +** to be associated with the Nth user function argument value. The fourth +** parameter specifies a 'delete function' that will be called on the meta +** data pointer to release it when it is no longer required. If the delete +** function pointer is NULL, it is not invoked. +** +** In practice, meta-data is preserved between function calls for +** expressions that are constant at compile time. This includes literal +** values and SQL variables. +*/ +void *sqlite3_get_auxdata(sqlite3_context*, int); +void sqlite3_set_auxdata(sqlite3_context*, int, void*, void (*)(void*)); + + +/* +** These are special value for the destructor that is passed in as the +** final argument to routines like sqlite3_result_blob(). If the destructor +** argument is SQLITE_STATIC, it means that the content pointer is constant +** and will never change. It does not need to be destroyed. The +** SQLITE_TRANSIENT value means that the content will likely change in +** the near future and that SQLite should make its own private copy of +** the content before returning. +*/ +#define SQLITE_STATIC ((void(*)(void *))0) +#define SQLITE_TRANSIENT ((void(*)(void *))-1) + +/* +** User-defined functions invoke the following routines in order to +** set their return value. +*/ +void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_double(sqlite3_context*, double); +void sqlite3_result_error(sqlite3_context*, const char*, int); +void sqlite3_result_error16(sqlite3_context*, const void*, int); +void sqlite3_result_int(sqlite3_context*, int); +void sqlite3_result_int64(sqlite3_context*, sqlite_int64); +void sqlite3_result_null(sqlite3_context*); +void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); +void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_value(sqlite3_context*, sqlite3_value*); + +/* +** These are the allowed values for the eTextRep argument to +** sqlite3_create_collation and sqlite3_create_function. +*/ +#define SQLITE_UTF8 1 +#define SQLITE_UTF16LE 2 +#define SQLITE_UTF16BE 3 +#define SQLITE_UTF16 4 /* Use native byte order */ +#define SQLITE_ANY 5 /* sqlite3_create_function only */ + +/* +** These two functions are used to add new collation sequences to the +** sqlite3 handle specified as the first argument. +** +** The name of the new collation sequence is specified as a UTF-8 string +** for sqlite3_create_collation() and a UTF-16 string for +** sqlite3_create_collation16(). In both cases the name is passed as the +** second function argument. +** +** The third argument must be one of the constants SQLITE_UTF8, +** SQLITE_UTF16LE or SQLITE_UTF16BE, indicating that the user-supplied +** routine expects to be passed pointers to strings encoded using UTF-8, +** UTF-16 little-endian or UTF-16 big-endian respectively. +** +** A pointer to the user supplied routine must be passed as the fifth +** argument. If it is NULL, this is the same as deleting the collation +** sequence (so that SQLite cannot call it anymore). Each time the user +** supplied function is invoked, it is passed a copy of the void* passed as +** the fourth argument to sqlite3_create_collation() or +** sqlite3_create_collation16() as its first parameter. +** +** The remaining arguments to the user-supplied routine are two strings, +** each represented by a [length, data] pair and encoded in the encoding +** that was passed as the third argument when the collation sequence was +** registered. The user routine should return negative, zero or positive if +** the first string is less than, equal to, or greater than the second +** string. i.e. (STRING1 - STRING2). +*/ +int sqlite3_create_collation( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); +int sqlite3_create_collation16( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); + +/* +** To avoid having to register all collation sequences before a database +** can be used, a single callback function may be registered with the +** database handle to be called whenever an undefined collation sequence is +** required. +** +** If the function is registered using the sqlite3_collation_needed() API, +** then it is passed the names of undefined collation sequences as strings +** encoded in UTF-8. If sqlite3_collation_needed16() is used, the names +** are passed as UTF-16 in machine native byte order. A call to either +** function replaces any existing callback. +** +** When the user-function is invoked, the first argument passed is a copy +** of the second argument to sqlite3_collation_needed() or +** sqlite3_collation_needed16(). The second argument is the database +** handle. The third argument is one of SQLITE_UTF8, SQLITE_UTF16BE or +** SQLITE_UTF16LE, indicating the most desirable form of the collation +** sequence function required. The fourth parameter is the name of the +** required collation sequence. +** +** The collation sequence is returned to SQLite by a collation-needed +** callback using the sqlite3_create_collation() or +** sqlite3_create_collation16() APIs, described above. +*/ +int sqlite3_collation_needed( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const char*) +); +int sqlite3_collation_needed16( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const void*) +); + +/* +** Specify the key for an encrypted database. This routine should be +** called right after sqlite3_open(). +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_key( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The key */ +); + +/* +** Change the key on an open database. If the current database is not +** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the +** database is decrypted. +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_rekey( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The new key */ +); + +/* +** If the following global variable is made to point to a constant +** string which is the name of a directory, then all temporary files +** created by SQLite will be placed in that directory. If this variable +** is NULL pointer, then SQLite does a search for an appropriate temporary +** file directory. +** +** This variable should only be changed when there are no open databases. +** Once sqlite3_open() has been called, this variable should not be changed +** until all database connections are closed. +*/ +extern const char *sqlite3_temp_directory; + +#ifdef __cplusplus +} /* End of the 'extern "C"' block */ +#endif +#endif diff --git a/kopete/plugins/statistics/sqlite/sqliteInt.h b/kopete/plugins/statistics/sqlite/sqliteInt.h new file mode 100644 index 00000000..b4fa474b --- /dev/null +++ b/kopete/plugins/statistics/sqlite/sqliteInt.h @@ -0,0 +1,1419 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Internal interface definitions for SQLite. +** +** @(#) $Id$ +*/ +#ifndef _SQLITEINT_H_ +#define _SQLITEINT_H_ + +/* +** These #defines should enable >2GB file support on Posix if the +** underlying operating system supports it. If the OS lacks +** large file support, or if the OS is windows, these should be no-ops. +** +** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch +** on the compiler command line. This is necessary if you are compiling +** on a recent machine (ex: RedHat 7.2) but you want your code to work +** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 +** without this option, LFS is enable. But LFS does not exist in the kernel +** in RedHat 6.0, so the code won't work. Hence, for maximum binary +** portability you should omit LFS. +** +** Similar is true for MacOS. LFS is only supported on MacOS 9 and later. +*/ +#ifndef SQLITE_DISABLE_LFS +# define _LARGE_FILE 1 +# ifndef _FILE_OFFSET_BITS +# define _FILE_OFFSET_BITS 64 +# endif +# define _LARGEFILE_SOURCE 1 +#endif + +#include "config.h" +#include "sqlite3.h" +#include "hash.h" +#include "parse.h" +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <assert.h> + +/* +** The maximum number of in-memory pages to use for the main database +** table and for temporary tables. +*/ +#define MAX_PAGES 2000 +#define TEMP_PAGES 500 + +/* +** If the following macro is set to 1, then NULL values are considered +** distinct for the SELECT DISTINCT statement and for UNION or EXCEPT +** compound queries. No other SQL database engine (among those tested) +** works this way except for OCELOT. But the SQL92 spec implies that +** this is how things should work. +** +** If the following macro is set to 0, then NULLs are indistinct for +** SELECT DISTINCT and for UNION. +*/ +#define NULL_ALWAYS_DISTINCT 0 + +/* +** If the following macro is set to 1, then NULL values are considered +** distinct when determining whether or not two entries are the same +** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, +** OCELOT, and Firebird all work. The SQL92 spec explicitly says this +** is the way things are suppose to work. +** +** If the following macro is set to 0, the NULLs are indistinct for +** a UNIQUE index. In this mode, you can only have a single NULL entry +** for a column declared UNIQUE. This is the way Informix and SQL Server +** work. +*/ +#define NULL_DISTINCT_FOR_UNIQUE 1 + +/* +** The maximum number of attached databases. This must be at least 2 +** in order to support the main database file (0) and the file used to +** hold temporary tables (1). And it must be less than 32 because +** we use a bitmask of databases with a u32 in places (for example +** the Parse.cookieMask field). +*/ +#define MAX_ATTACHED 10 + +/* +** The maximum value of a ?nnn wildcard that the parser will accept. +*/ +#define SQLITE_MAX_VARIABLE_NUMBER 999 + +/* +** When building SQLite for embedded systems where memory is scarce, +** you can define one or more of the following macros to omit extra +** features of the library and thus keep the size of the library to +** a minimum. +*/ +/* #define SQLITE_OMIT_AUTHORIZATION 1 */ +/* #define SQLITE_OMIT_INMEMORYDB 1 */ +/* #define SQLITE_OMIT_VACUUM 1 */ +/* #define SQLITE_OMIT_DATETIME_FUNCS 1 */ +/* #define SQLITE_OMIT_PROGRESS_CALLBACK 1 */ + +/* +** Integers of known sizes. These typedefs might change for architectures +** where the sizes very. Preprocessor macros are available so that the +** types can be conveniently redefined at compile-type. Like this: +** +** cc '-DUINTPTR_TYPE=long long int' ... +*/ +#ifndef UINT64_TYPE +# if defined(_MSC_VER) || defined(__BORLANDC__) +# define UINT64_TYPE unsigned __int64 +# else +# define UINT64_TYPE unsigned long long int +# endif +#endif +#ifndef UINT32_TYPE +# define UINT32_TYPE unsigned int +#endif +#ifndef UINT16_TYPE +# define UINT16_TYPE unsigned short int +#endif +#ifndef INT16_TYPE +# define INT16_TYPE short int +#endif +#ifndef UINT8_TYPE +# define UINT8_TYPE unsigned char +#endif +#ifndef INT8_TYPE +# define INT8_TYPE signed char +#endif +#ifndef LONGDOUBLE_TYPE +# define LONGDOUBLE_TYPE long double +#endif +#ifndef INTPTR_TYPE +# if SQLITE_PTR_SZ==4 +# define INTPTR_TYPE int +# else +# define INTPTR_TYPE sqlite_int64 +# endif +#endif +#ifndef UINTPTR_TYPE +# if SQLITE_PTR_SZ==4 +# define UINTPTR_TYPE unsigned int +# else +# define UINTPTR_TYPE sqlite_uint64 +# endif +#endif +typedef sqlite_int64 i64; /* 8-byte signed integer */ +typedef UINT64_TYPE u64; /* 8-byte unsigned integer */ +typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ +typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ +typedef INT16_TYPE i16; /* 2-byte signed integer */ +typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ +typedef UINT8_TYPE i8; /* 1-byte signed integer */ +typedef INTPTR_TYPE ptr; /* Big enough to hold a pointer */ +typedef UINTPTR_TYPE uptr; /* Big enough to hold a pointer */ + +/* +** Macros to determine whether the machine is big or little endian, +** evaluated at runtime. +*/ +extern const int sqlite3one; +#define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) +#define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) + +/* +** An instance of the following structure is used to store the busy-handler +** callback for a given sqlite handle. +** +** The sqlite.busyHandler member of the sqlite struct contains the busy +** callback for the database handle. Each pager opened via the sqlite +** handle is passed a pointer to sqlite.busyHandler. The busy-handler +** callback is currently invoked only from within pager.c. +*/ +typedef struct BusyHandler BusyHandler; +struct BusyHandler { + int (*xFunc)(void *,int); /* The busy callback */ + void *pArg; /* First arg to busy callback */ +}; + +/* +** Defer sourcing vdbe.h and btree.h until after the "u8" and +** "BusyHandler typedefs. +*/ +#include "vdbe.h" +#include "btree.h" + +/* +** This macro casts a pointer to an integer. Useful for doing +** pointer arithmetic. +*/ +#define Addr(X) ((uptr)X) + +/* +** If memory allocation problems are found, recompile with +** +** -DSQLITE_DEBUG=1 +** +** to enable some sanity checking on malloc() and free(). To +** check for memory leaks, recompile with +** +** -DSQLITE_DEBUG=2 +** +** and a line of text will be written to standard error for +** each malloc() and free(). This output can be analyzed +** by an AWK script to determine if there are any leaks. +*/ +#ifdef SQLITE_DEBUG +# define sqliteMalloc(X) sqlite3Malloc_(X,1,__FILE__,__LINE__) +# define sqliteMallocRaw(X) sqlite3Malloc_(X,0,__FILE__,__LINE__) +# define sqliteFree(X) sqlite3Free_(X,__FILE__,__LINE__) +# define sqliteRealloc(X,Y) sqlite3Realloc_(X,Y,__FILE__,__LINE__) +# define sqliteStrDup(X) sqlite3StrDup_(X,__FILE__,__LINE__) +# define sqliteStrNDup(X,Y) sqlite3StrNDup_(X,Y,__FILE__,__LINE__) +#else +# define sqliteFree sqlite3FreeX +# define sqliteMalloc sqlite3Malloc +# define sqliteMallocRaw sqlite3MallocRaw +# define sqliteRealloc sqlite3Realloc +# define sqliteStrDup sqlite3StrDup +# define sqliteStrNDup sqlite3StrNDup +#endif + +/* +** This variable gets set if malloc() ever fails. After it gets set, +** the SQLite library shuts down permanently. +*/ +extern int sqlite3_malloc_failed; + +/* +** The following global variables are used for testing and debugging +** only. They only work if SQLITE_DEBUG is defined. +*/ +#ifdef SQLITE_DEBUG +extern int sqlite3_nMalloc; /* Number of sqliteMalloc() calls */ +extern int sqlite3_nFree; /* Number of sqliteFree() calls */ +extern int sqlite3_iMallocFail; /* Fail sqliteMalloc() after this many calls */ +#endif + +/* +** Name of the master database table. The master database table +** is a special table that holds the names and attributes of all +** user tables and indices. +*/ +#define MASTER_NAME "sqlite_master" +#define TEMP_MASTER_NAME "sqlite_temp_master" + +/* +** The root-page of the master database table. +*/ +#define MASTER_ROOT 1 + +/* +** The name of the schema table. +*/ +#define SCHEMA_TABLE(x) (x==1?TEMP_MASTER_NAME:MASTER_NAME) + +/* +** A convenience macro that returns the number of elements in +** an array. +*/ +#define ArraySize(X) (sizeof(X)/sizeof(X[0])) + +/* +** Forward references to structures +*/ +typedef struct Column Column; +typedef struct Table Table; +typedef struct Index Index; +typedef struct Instruction Instruction; +typedef struct Expr Expr; +typedef struct ExprList ExprList; +typedef struct Parse Parse; +typedef struct Token Token; +typedef struct IdList IdList; +typedef struct SrcList SrcList; +typedef struct WhereInfo WhereInfo; +typedef struct WhereLevel WhereLevel; +typedef struct Select Select; +typedef struct AggExpr AggExpr; +typedef struct FuncDef FuncDef; +typedef struct Trigger Trigger; +typedef struct TriggerStep TriggerStep; +typedef struct TriggerStack TriggerStack; +typedef struct FKey FKey; +typedef struct Db Db; +typedef struct AuthContext AuthContext; +typedef struct KeyClass KeyClass; +typedef struct CollSeq CollSeq; +typedef struct KeyInfo KeyInfo; + +/* +** Each database file to be accessed by the system is an instance +** of the following structure. There are normally two of these structures +** in the sqlite.aDb[] array. aDb[0] is the main database file and +** aDb[1] is the database file used to hold temporary tables. Additional +** databases may be attached. +*/ +struct Db { + char *zName; /* Name of this database */ + Btree *pBt; /* The B*Tree structure for this database file */ + int schema_cookie; /* Database schema version number for this file */ + Hash tblHash; /* All tables indexed by name */ + Hash idxHash; /* All (named) indices indexed by name */ + Hash trigHash; /* All triggers indexed by name */ + Hash aFKey; /* Foreign keys indexed by to-table */ + u16 flags; /* Flags associated with this database */ + u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ + u8 safety_level; /* How aggressive at synching data to disk */ + int cache_size; /* Number of pages to use in the cache */ + void *pAux; /* Auxiliary data. Usually NULL */ + void (*xFreeAux)(void*); /* Routine to free pAux */ +}; + +/* +** These macros can be used to test, set, or clear bits in the +** Db.flags field. +*/ +#define DbHasProperty(D,I,P) (((D)->aDb[I].flags&(P))==(P)) +#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].flags&(P))!=0) +#define DbSetProperty(D,I,P) (D)->aDb[I].flags|=(P) +#define DbClearProperty(D,I,P) (D)->aDb[I].flags&=~(P) + +/* +** Allowed values for the DB.flags field. +** +** The DB_SchemaLoaded flag is set after the database schema has been +** read into internal hash tables. +** +** DB_UnresetViews means that one or more views have column names that +** have been filled out. If the schema changes, these column names might +** changes and so the view will need to be reset. +*/ +#define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ +#define DB_UnresetViews 0x0002 /* Some views have defined column names */ + +#define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) + +/* +** Each database is an instance of the following structure. +** +** The sqlite.lastRowid records the last insert rowid generated by an +** insert statement. Inserts on views do not affect its value. Each +** trigger has its own context, so that lastRowid can be updated inside +** triggers as usual. The previous value will be restored once the trigger +** exits. Upon entering a before or instead of trigger, lastRowid is no +** longer (since after version 2.8.12) reset to -1. +** +** The sqlite.nChange does not count changes within triggers and keeps no +** context. It is reset at start of sqlite3_exec. +** The sqlite.lsChange represents the number of changes made by the last +** insert, update, or delete statement. It remains constant throughout the +** length of a statement and is then updated by OP_SetCounts. It keeps a +** context stack just like lastRowid so that the count of changes +** within a trigger is not seen outside the trigger. Changes to views do not +** affect the value of lsChange. +** The sqlite.csChange keeps track of the number of current changes (since +** the last statement) and is used to update sqlite_lsChange. +** +** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 +** store the most recent error code and, if applicable, string. The +** internal function sqlite3Error() is used to set these variables +** consistently. +*/ +struct sqlite3 { + int nDb; /* Number of backends currently in use */ + Db *aDb; /* All backends */ + Db aDbStatic[2]; /* Static space for the 2 default backends */ + int flags; /* Miscellanous flags. See below */ + u8 file_format; /* What file format version is this database? */ + u8 temp_store; /* 1: file 2: memory 0: default */ + int nTable; /* Number of tables in the database */ + BusyHandler busyHandler; /* Busy callback */ + void *pCommitArg; /* Argument to xCommitCallback() */ + int (*xCommitCallback)(void*);/* Invoked at every commit. */ + Hash aFunc; /* All functions that can be in SQL exprs */ + Hash aCollSeq; /* All collating sequences */ + CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ + i64 lastRowid; /* ROWID of most recent insert (see above) */ + i64 priorNewRowid; /* Last randomly generated ROWID */ + int magic; /* Magic number for detect library misuse */ + int nChange; /* Value returned by sqlite3_changes() */ + int nTotalChange; /* Value returned by sqlite3_total_changes() */ + struct sqlite3InitInfo { /* Information used during initialization */ + int iDb; /* When back is being initialized */ + int newTnum; /* Rootpage of table being initialized */ + u8 busy; /* TRUE if currently initializing */ + } init; + struct Vdbe *pVdbe; /* List of active virtual machines */ + int activeVdbeCnt; /* Number of vdbes currently executing */ + void (*xTrace)(void*,const char*); /* Trace function */ + void *pTraceArg; /* Argument to the trace function */ +#ifndef SQLITE_OMIT_AUTHORIZATION + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); + /* Access authorization function */ + void *pAuthArg; /* 1st argument to the access auth function */ +#endif +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK + int (*xProgress)(void *); /* The progress callback */ + void *pProgressArg; /* Argument to the progress callback */ + int nProgressOps; /* Number of opcodes for progress callback */ +#endif + + int errCode; /* Most recent error code (SQLITE_*) */ + u8 enc; /* Text encoding for this database. */ + u8 autoCommit; /* The auto-commit flag. */ + void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); + void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); + void *pCollNeededArg; + sqlite3_value *pValue; /* Value used for transient conversions */ + sqlite3_value *pErr; /* Most recent error message */ + + char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ + char *zErrMsg16; /* Most recent error message (UTF-8 encoded) */ +}; + +/* +** Possible values for the sqlite.flags and or Db.flags fields. +** +** On sqlite.flags, the SQLITE_InTrans value means that we have +** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement +** transaction is active on that particular database file. +*/ +#define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ +#define SQLITE_Initialized 0x00000002 /* True after initialization */ +#define SQLITE_Interrupt 0x00000004 /* Cancel current operation */ +#define SQLITE_InTrans 0x00000008 /* True if in a transaction */ +#define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ +#define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ +#define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ +#define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ + /* DELETE, or UPDATE and return */ + /* the count using a callback. */ +#define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ + /* result set is empty */ +#define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ +#define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ + +/* +** Possible values for the sqlite.magic field. +** The numbers are obtained at random and have no special meaning, other +** than being distinct from one another. +*/ +#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ +#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ +#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ +#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ + +/* +** Each SQL function is defined by an instance of the following +** structure. A pointer to this structure is stored in the sqlite.aFunc +** hash table. When multiple functions have the same name, the hash table +** points to a linked list of these structures. +*/ +struct FuncDef { + char *zName; /* SQL name of the function */ + int nArg; /* Number of arguments. -1 means unlimited */ + u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ + void *pUserData; /* User data parameter */ + FuncDef *pNext; /* Next function with same name */ + void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ + void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ + void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */ + u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */ +}; + +/* +** information about each column of an SQL table is held in an instance +** of this structure. +*/ +struct Column { + char *zName; /* Name of this column */ + char *zDflt; /* Default value of this column */ + char *zType; /* Data type for this column */ + CollSeq *pColl; /* Collating sequence. If NULL, use the default */ + u8 notNull; /* True if there is a NOT NULL constraint */ + u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ + char affinity; /* One of the SQLITE_AFF_... values */ +}; + +/* +** A "Collating Sequence" is defined by an instance of the following +** structure. Conceptually, a collating sequence consists of a name and +** a comparison routine that defines the order of that sequence. +** +** There may two seperate implementations of the collation function, one +** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that +** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine +** native byte order. When a collation sequence is invoked, SQLite selects +** the version that will require the least expensive encoding +** transalations, if any. +** +** The CollSeq.pUser member variable is an extra parameter that passed in +** as the first argument to the UTF-8 comparison function, xCmp. +** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, +** xCmp16. +** +** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the +** collating sequence is undefined. Indices built on an undefined +** collating sequence may not be read or written. +*/ +struct CollSeq { + char *zName; /* Name of the collating sequence, UTF-8 encoded */ + u8 enc; /* Text encoding handled by xCmp() */ + void *pUser; /* First argument to xCmp() */ + int (*xCmp)(void*,int, const void*, int, const void*); +}; + +/* +** A sort order can be either ASC or DESC. +*/ +#define SQLITE_SO_ASC 0 /* Sort in ascending order */ +#define SQLITE_SO_DESC 1 /* Sort in ascending order */ + +/* +** Column affinity types. +*/ +#define SQLITE_AFF_INTEGER 'i' +#define SQLITE_AFF_NUMERIC 'n' +#define SQLITE_AFF_TEXT 't' +#define SQLITE_AFF_NONE 'o' + + +/* +** Each SQL table is represented in memory by an instance of the +** following structure. +** +** Table.zName is the name of the table. The case of the original +** CREATE TABLE statement is stored, but case is not significant for +** comparisons. +** +** Table.nCol is the number of columns in this table. Table.aCol is a +** pointer to an array of Column structures, one for each column. +** +** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of +** the column that is that key. Otherwise Table.iPKey is negative. Note +** that the datatype of the PRIMARY KEY must be INTEGER for this field to +** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of +** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid +** is generated for each row of the table. Table.hasPrimKey is true if +** the table has any PRIMARY KEY, INTEGER or otherwise. +** +** Table.tnum is the page number for the root BTree page of the table in the +** database file. If Table.iDb is the index of the database table backend +** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that +** holds temporary tables and indices. If Table.isTransient +** is true, then the table is stored in a file that is automatically deleted +** when the VDBE cursor to the table is closed. In this case Table.tnum +** refers VDBE cursor number that holds the table open, not to the root +** page number. Transient tables are used to hold the results of a +** sub-query that appears instead of a real table name in the FROM clause +** of a SELECT statement. +*/ +struct Table { + char *zName; /* Name of the table */ + int nCol; /* Number of columns in this table */ + Column *aCol; /* Information about each column */ + int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ + Index *pIndex; /* List of SQL indexes on this table. */ + int tnum; /* Root BTree node for this table (see note above) */ + Select *pSelect; /* NULL for tables. Points to definition if a view. */ + u8 readOnly; /* True if this table should not be written by the user */ + u8 iDb; /* Index into sqlite.aDb[] of the backend for this table */ + u8 isTransient; /* True if automatically deleted when VDBE finishes */ + u8 hasPrimKey; /* True if there exists a primary key */ + u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ + Trigger *pTrigger; /* List of SQL triggers on this table */ + FKey *pFKey; /* Linked list of all foreign keys in this table */ + char *zColAff; /* String defining the affinity of each column */ +}; + +/* +** Each foreign key constraint is an instance of the following structure. +** +** A foreign key is associated with two tables. The "from" table is +** the table that contains the REFERENCES clause that creates the foreign +** key. The "to" table is the table that is named in the REFERENCES clause. +** Consider this example: +** +** CREATE TABLE ex1( +** a INTEGER PRIMARY KEY, +** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) +** ); +** +** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". +** +** Each REFERENCES clause generates an instance of the following structure +** which is attached to the from-table. The to-table need not exist when +** the from-table is created. The existance of the to-table is not checked +** until an attempt is made to insert data into the from-table. +** +** The sqlite.aFKey hash table stores pointers to this structure +** given the name of a to-table. For each to-table, all foreign keys +** associated with that table are on a linked list using the FKey.pNextTo +** field. +*/ +struct FKey { + Table *pFrom; /* The table that constains the REFERENCES clause */ + FKey *pNextFrom; /* Next foreign key in pFrom */ + char *zTo; /* Name of table that the key points to */ + FKey *pNextTo; /* Next foreign key that points to zTo */ + int nCol; /* Number of columns in this key */ + struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ + int iFrom; /* Index of column in pFrom */ + char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ + } *aCol; /* One entry for each of nCol column s */ + u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ + u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ + u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ + u8 insertConf; /* How to resolve conflicts that occur on INSERT */ +}; + +/* +** SQLite supports many different ways to resolve a contraint +** error. ROLLBACK processing means that a constraint violation +** causes the operation in process to fail and for the current transaction +** to be rolled back. ABORT processing means the operation in process +** fails and any prior changes from that one operation are backed out, +** but the transaction is not rolled back. FAIL processing means that +** the operation in progress stops and returns an error code. But prior +** changes due to the same operation are not backed out and no rollback +** occurs. IGNORE means that the particular row that caused the constraint +** error is not inserted or updated. Processing continues and no error +** is returned. REPLACE means that preexisting database rows that caused +** a UNIQUE constraint violation are removed so that the new insert or +** update can proceed. Processing continues and no error is reported. +** +** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. +** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the +** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign +** key is set to NULL. CASCADE means that a DELETE or UPDATE of the +** referenced table row is propagated into the row that holds the +** foreign key. +** +** The following symbolic values are used to record which type +** of action to take. +*/ +#define OE_None 0 /* There is no constraint to check */ +#define OE_Rollback 1 /* Fail the operation and rollback the transaction */ +#define OE_Abort 2 /* Back out changes but do no rollback transaction */ +#define OE_Fail 3 /* Stop the operation but leave all prior changes */ +#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ +#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ + +#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ +#define OE_SetNull 7 /* Set the foreign key value to NULL */ +#define OE_SetDflt 8 /* Set the foreign key value to its default */ +#define OE_Cascade 9 /* Cascade the changes */ + +#define OE_Default 99 /* Do whatever the default action is */ + + +/* +** An instance of the following structure is passed as the first +** argument to sqlite3VdbeKeyCompare and is used to control the +** comparison of the two index keys. +** +** If the KeyInfo.incrKey value is true and the comparison would +** otherwise be equal, then return a result as if the second key larger. +*/ +struct KeyInfo { + u8 enc; /* Text encoding - one of the TEXT_Utf* values */ + u8 incrKey; /* Increase 2nd key by epsilon before comparison */ + int nField; /* Number of entries in aColl[] */ + u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ + CollSeq *aColl[1]; /* Collating sequence for each term of the key */ +}; + +/* +** Each SQL index is represented in memory by an +** instance of the following structure. +** +** The columns of the table that are to be indexed are described +** by the aiColumn[] field of this structure. For example, suppose +** we have the following table and index: +** +** CREATE TABLE Ex1(c1 int, c2 int, c3 text); +** CREATE INDEX Ex2 ON Ex1(c3,c1); +** +** In the Table structure describing Ex1, nCol==3 because there are +** three columns in the table. In the Index structure describing +** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. +** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the +** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. +** The second column to be indexed (c1) has an index of 0 in +** Ex1.aCol[], hence Ex2.aiColumn[1]==0. +** +** The Index.onError field determines whether or not the indexed columns +** must be unique and what to do if they are not. When Index.onError=OE_None, +** it means this is not a unique index. Otherwise it is a unique index +** and the value of Index.onError indicate the which conflict resolution +** algorithm to employ whenever an attempt is made to insert a non-unique +** element. +*/ +struct Index { + char *zName; /* Name of this index */ + int nColumn; /* Number of columns in the table used by this index */ + int *aiColumn; /* Which columns are used by this index. 1st is 0 */ + Table *pTable; /* The SQL table being indexed */ + int tnum; /* Page containing root of this index in database file */ + u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ + u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ + u8 iDb; /* Index in sqlite.aDb[] of where this index is stored */ + char *zColAff; /* String defining the affinity of each column */ + Index *pNext; /* The next index associated with the same table */ + KeyInfo keyInfo; /* Info on how to order keys. MUST BE LAST */ +}; + +/* +** Each token coming out of the lexer is an instance of +** this structure. Tokens are also used as part of an expression. +** +** Note if Token.z==0 then Token.dyn and Token.n are undefined and +** may contain random values. Do not make any assuptions about Token.dyn +** and Token.n when Token.z==0. +*/ +struct Token { + const unsigned char *z; /* Text of the token. Not NULL-terminated! */ + unsigned dyn : 1; /* True for malloced memory, false for static */ + unsigned n : 31; /* Number of characters in this token */ +}; + +/* +** Each node of an expression in the parse tree is an instance +** of this structure. +** +** Expr.op is the opcode. The integer parser token codes are reused +** as opcodes here. For example, the parser defines TK_GE to be an integer +** code representing the ">=" operator. This same integer code is reused +** to represent the greater-than-or-equal-to operator in the expression +** tree. +** +** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list +** of argument if the expression is a function. +** +** Expr.token is the operator token for this node. For some expressions +** that have subexpressions, Expr.token can be the complete text that gave +** rise to the Expr. In the latter case, the token is marked as being +** a compound token. +** +** An expression of the form ID or ID.ID refers to a column in a table. +** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is +** the integer cursor number of a VDBE cursor pointing to that table and +** Expr.iColumn is the column number for the specific column. If the +** expression is used as a result in an aggregate SELECT, then the +** value is also stored in the Expr.iAgg column in the aggregate so that +** it can be accessed after all aggregates are computed. +** +** If the expression is a function, the Expr.iTable is an integer code +** representing which function. If the expression is an unbound variable +** marker (a question mark character '?' in the original SQL) then the +** Expr.iTable holds the index number for that variable. +** +** The Expr.pSelect field points to a SELECT statement. The SELECT might +** be the right operand of an IN operator. Or, if a scalar SELECT appears +** in an expression the opcode is TK_SELECT and Expr.pSelect is the only +** operand. +*/ +struct Expr { + u8 op; /* Operation performed by this node */ + char affinity; /* The affinity of the column or 0 if not a column */ + u8 iDb; /* Database referenced by this expression */ + u8 flags; /* Various flags. See below */ + CollSeq *pColl; /* The collation type of the column or 0 */ + Expr *pLeft, *pRight; /* Left and right subnodes */ + ExprList *pList; /* A list of expressions used as function arguments + ** or in "<expr> IN (<expr-list)" */ + Token token; /* An operand token */ + Token span; /* Complete text of the expression */ + int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the + ** iColumn-th field of the iTable-th table. */ + int iAgg; /* When op==TK_COLUMN and pParse->useAgg==TRUE, pull + ** result from the iAgg-th element of the aggregator */ + Select *pSelect; /* When the expression is a sub-select. Also the + ** right side of "<expr> IN (<select>)" */ +}; + +/* +** The following are the meanings of bits in the Expr.flags field. +*/ +#define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ + +/* +** These macros can be used to test, set, or clear bits in the +** Expr.flags field. +*/ +#define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) +#define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) +#define ExprSetProperty(E,P) (E)->flags|=(P) +#define ExprClearProperty(E,P) (E)->flags&=~(P) + +/* +** A list of expressions. Each expression may optionally have a +** name. An expr/name combination can be used in several ways, such +** as the list of "expr AS ID" fields following a "SELECT" or in the +** list of "ID = expr" items in an UPDATE. A list of expressions can +** also be used as the argument to a function, in which case the a.zName +** field is not used. +*/ +struct ExprList { + int nExpr; /* Number of expressions on the list */ + int nAlloc; /* Number of entries allocated below */ + struct ExprList_item { + Expr *pExpr; /* The list of expressions */ + char *zName; /* Token associated with this expression */ + u8 sortOrder; /* 1 for DESC or 0 for ASC */ + u8 isAgg; /* True if this is an aggregate like count(*) */ + u8 done; /* A flag to indicate when processing is finished */ + } *a; /* One entry for each expression */ +}; + +/* +** An instance of this structure can hold a simple list of identifiers, +** such as the list "a,b,c" in the following statements: +** +** INSERT INTO t(a,b,c) VALUES ...; +** CREATE INDEX idx ON t(a,b,c); +** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; +** +** The IdList.a.idx field is used when the IdList represents the list of +** column names after a table name in an INSERT statement. In the statement +** +** INSERT INTO t(a,b,c) ... +** +** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. +*/ +struct IdList { + int nId; /* Number of identifiers on the list */ + int nAlloc; /* Number of entries allocated for a[] below */ + struct IdList_item { + char *zName; /* Name of the identifier */ + int idx; /* Index in some Table.aCol[] of a column named zName */ + } *a; +}; + +/* +** The following structure describes the FROM clause of a SELECT statement. +** Each table or subquery in the FROM clause is a separate element of +** the SrcList.a[] array. +** +** With the addition of multiple database support, the following structure +** can also be used to describe a particular table such as the table that +** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, +** such a table must be a simple name: ID. But in SQLite, the table can +** now be identified by a database name, a dot, then the table name: ID.ID. +*/ +struct SrcList { + i16 nSrc; /* Number of tables or subqueries in the FROM clause */ + i16 nAlloc; /* Number of entries allocated in a[] below */ + struct SrcList_item { + char *zDatabase; /* Name of database holding this table */ + char *zName; /* Name of the table */ + char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ + Table *pTab; /* An SQL table corresponding to zName */ + Select *pSelect; /* A SELECT statement used in place of a table name */ + int jointype; /* Type of join between this table and the next */ + int iCursor; /* The VDBE cursor number used to access this table */ + Expr *pOn; /* The ON clause of a join */ + IdList *pUsing; /* The USING clause of a join */ + } a[1]; /* One entry for each identifier on the list */ +}; + +/* +** Permitted values of the SrcList.a.jointype field +*/ +#define JT_INNER 0x0001 /* Any kind of inner or cross join */ +#define JT_NATURAL 0x0002 /* True for a "natural" join */ +#define JT_LEFT 0x0004 /* Left outer join */ +#define JT_RIGHT 0x0008 /* Right outer join */ +#define JT_OUTER 0x0010 /* The "OUTER" keyword is present */ +#define JT_ERROR 0x0020 /* unknown or unsupported join type */ + +/* +** For each nested loop in a WHERE clause implementation, the WhereInfo +** structure contains a single instance of this structure. This structure +** is intended to be private the the where.c module and should not be +** access or modified by other modules. +*/ +struct WhereLevel { + int iMem; /* Memory cell used by this level */ + Index *pIdx; /* Index used */ + int iCur; /* Cursor number used for this index */ + int score; /* How well this indexed scored */ + int brk; /* Jump here to break out of the loop */ + int cont; /* Jump here to continue with the next loop cycle */ + int op, p1, p2; /* Opcode used to terminate the loop */ + int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ + int top; /* First instruction of interior of the loop */ + int inOp, inP1, inP2;/* Opcode used to implement an IN operator */ + int bRev; /* Do the scan in the reverse direction */ +}; + +/* +** The WHERE clause processing routine has two halves. The +** first part does the start of the WHERE loop and the second +** half does the tail of the WHERE loop. An instance of +** this structure is returned by the first half and passed +** into the second half to give some continuity. +*/ +struct WhereInfo { + Parse *pParse; + SrcList *pTabList; /* List of tables in the join */ + int iContinue; /* Jump here to continue with next record */ + int iBreak; /* Jump here to break out of the loop */ + int nLevel; /* Number of nested loop */ + WhereLevel a[1]; /* Information about each nest loop in the WHERE */ +}; + +/* +** An instance of the following structure contains all information +** needed to generate code for a single SELECT statement. +** +** The zSelect field is used when the Select structure must be persistent. +** Normally, the expression tree points to tokens in the original input +** string that encodes the select. But if the Select structure must live +** longer than its input string (for example when it is used to describe +** a VIEW) we have to make a copy of the input string so that the nodes +** of the expression tree will have something to point to. zSelect is used +** to hold that copy. +** +** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. +** If there is a LIMIT clause, the parser sets nLimit to the value of the +** limit and nOffset to the value of the offset (or 0 if there is not +** offset). But later on, nLimit and nOffset become the memory locations +** in the VDBE that record the limit and offset counters. +*/ +struct Select { + ExprList *pEList; /* The fields of the result */ + u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ + u8 isDistinct; /* True if the DISTINCT keyword is present */ + SrcList *pSrc; /* The FROM clause */ + Expr *pWhere; /* The WHERE clause */ + ExprList *pGroupBy; /* The GROUP BY clause */ + Expr *pHaving; /* The HAVING clause */ + ExprList *pOrderBy; /* The ORDER BY clause */ + Select *pPrior; /* Prior select in a compound select statement */ + int nLimit, nOffset; /* LIMIT and OFFSET values. -1 means not used */ + int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ + char *zSelect; /* Complete text of the SELECT command */ + IdList **ppOpenTemp; /* OP_OpenTemp addresses used by multi-selects */ +}; + +/* +** The results of a select can be distributed in several ways. +*/ +#define SRT_Callback 1 /* Invoke a callback with each row of result */ +#define SRT_Mem 2 /* Store result in a memory cell */ +#define SRT_Set 3 /* Store result as unique keys in a table */ +#define SRT_Union 5 /* Store result as keys in a table */ +#define SRT_Except 6 /* Remove result from a UNION table */ +#define SRT_Table 7 /* Store result as data with a unique key */ +#define SRT_TempTable 8 /* Store result in a trasient table */ +#define SRT_Discard 9 /* Do not save the results anywhere */ +#define SRT_Sorter 10 /* Store results in the sorter */ +#define SRT_Subroutine 11 /* Call a subroutine to handle results */ + +/* +** When a SELECT uses aggregate functions (like "count(*)" or "avg(f1)") +** we have to do some additional analysis of expressions. An instance +** of the following structure holds information about a single subexpression +** somewhere in the SELECT statement. An array of these structures holds +** all the information we need to generate code for aggregate +** expressions. +** +** Note that when analyzing a SELECT containing aggregates, both +** non-aggregate field variables and aggregate functions are stored +** in the AggExpr array of the Parser structure. +** +** The pExpr field points to an expression that is part of either the +** field list, the GROUP BY clause, the HAVING clause or the ORDER BY +** clause. The expression will be freed when those clauses are cleaned +** up. Do not try to delete the expression attached to AggExpr.pExpr. +** +** If AggExpr.pExpr==0, that means the expression is "count(*)". +*/ +struct AggExpr { + int isAgg; /* if TRUE contains an aggregate function */ + Expr *pExpr; /* The expression */ + FuncDef *pFunc; /* Information about the aggregate function */ +}; + +/* +** An SQL parser context. A copy of this structure is passed through +** the parser and down into all the parser action routine in order to +** carry around information that is global to the entire parse. +*/ +struct Parse { + sqlite3 *db; /* The main database structure */ + int rc; /* Return code from execution */ + char *zErrMsg; /* An error message */ + Token sErrToken; /* The token at which the error occurred */ + Token sNameToken; /* Token with unqualified schema object name */ + Token sLastToken; /* The last token parsed */ + const char *zSql; /* All SQL text */ + const char *zTail; /* All SQL text past the last semicolon parsed */ + Table *pNewTable; /* A table being constructed by CREATE TABLE */ + Vdbe *pVdbe; /* An engine for executing database bytecode */ + u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ + u8 explain; /* True if the EXPLAIN flag is found on the query */ + u8 nameClash; /* A permanent table name clashes with temp table name */ + u8 useAgg; /* If true, extract field values from the aggregator + ** while generating expressions. Normally false */ + u8 checkSchema; /* Causes schema cookie check after an error */ + int nErr; /* Number of errors seen */ + int nTab; /* Number of previously allocated VDBE cursors */ + int nMem; /* Number of memory cells used so far */ + int nSet; /* Number of sets used so far */ + int nAgg; /* Number of aggregate expressions */ + int nVar; /* Number of '?' variables seen in the SQL so far */ + int nVarExpr; /* Number of used slots in apVarExpr[] */ + int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ + Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ + AggExpr *aAgg; /* An array of aggregate expressions */ + const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ + Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ + TriggerStack *trigStack; /* Trigger actions being coded */ + u32 cookieMask; /* Bitmask of schema verified databases */ + int cookieValue[MAX_ATTACHED+2]; /* Values of cookies to verify */ + int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ + u32 writeMask; /* Start a write transaction on these databases */ +}; + +/* +** An instance of the following structure can be declared on a stack and used +** to save the Parse.zAuthContext value so that it can be restored later. +*/ +struct AuthContext { + const char *zAuthContext; /* Put saved Parse.zAuthContext here */ + Parse *pParse; /* The Parse structure */ +}; + +/* +** Bitfield flags for P2 value in OP_PutIntKey and OP_Delete +*/ +#define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ +#define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ + +/* + * Each trigger present in the database schema is stored as an instance of + * struct Trigger. + * + * Pointers to instances of struct Trigger are stored in two ways. + * 1. In the "trigHash" hash table (part of the sqlite3* that represents the + * database). This allows Trigger structures to be retrieved by name. + * 2. All triggers associated with a single table form a linked list, using the + * pNext member of struct Trigger. A pointer to the first element of the + * linked list is stored as the "pTrigger" member of the associated + * struct Table. + * + * The "step_list" member points to the first element of a linked list + * containing the SQL statements specified as the trigger program. + */ +struct Trigger { + char *name; /* The name of the trigger */ + char *table; /* The table or view to which the trigger applies */ + u8 iDb; /* Database containing this trigger */ + u8 iTabDb; /* Database containing Trigger.table */ + u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ + u8 tr_tm; /* One of TK_BEFORE, TK_AFTER */ + Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ + IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, + the <column-list> is stored here */ + int foreach; /* One of TK_ROW or TK_STATEMENT */ + Token nameToken; /* Token containing zName. Use during parsing only */ + + TriggerStep *step_list; /* Link list of trigger program steps */ + Trigger *pNext; /* Next trigger associated with the table */ +}; + +/* + * An instance of struct TriggerStep is used to store a single SQL statement + * that is a part of a trigger-program. + * + * Instances of struct TriggerStep are stored in a singly linked list (linked + * using the "pNext" member) referenced by the "step_list" member of the + * associated struct Trigger instance. The first element of the linked list is + * the first step of the trigger-program. + * + * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or + * "SELECT" statement. The meanings of the other members is determined by the + * value of "op" as follows: + * + * (op == TK_INSERT) + * orconf -> stores the ON CONFLICT algorithm + * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then + * this stores a pointer to the SELECT statement. Otherwise NULL. + * target -> A token holding the name of the table to insert into. + * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then + * this stores values to be inserted. Otherwise NULL. + * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... + * statement, then this stores the column-names to be + * inserted into. + * + * (op == TK_DELETE) + * target -> A token holding the name of the table to delete from. + * pWhere -> The WHERE clause of the DELETE statement if one is specified. + * Otherwise NULL. + * + * (op == TK_UPDATE) + * target -> A token holding the name of the table to update rows of. + * pWhere -> The WHERE clause of the UPDATE statement if one is specified. + * Otherwise NULL. + * pExprList -> A list of the columns to update and the expressions to update + * them to. See sqlite3Update() documentation of "pChanges" + * argument. + * + */ +struct TriggerStep { + int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ + int orconf; /* OE_Rollback etc. */ + Trigger *pTrig; /* The trigger that this step is a part of */ + + Select *pSelect; /* Valid for SELECT and sometimes + INSERT steps (when pExprList == 0) */ + Token target; /* Valid for DELETE, UPDATE, INSERT steps */ + Expr *pWhere; /* Valid for DELETE, UPDATE steps */ + ExprList *pExprList; /* Valid for UPDATE statements and sometimes + INSERT steps (when pSelect == 0) */ + IdList *pIdList; /* Valid for INSERT statements only */ + + TriggerStep * pNext; /* Next in the link-list */ +}; + +/* + * An instance of struct TriggerStack stores information required during code + * generation of a single trigger program. While the trigger program is being + * coded, its associated TriggerStack instance is pointed to by the + * "pTriggerStack" member of the Parse structure. + * + * The pTab member points to the table that triggers are being coded on. The + * newIdx member contains the index of the vdbe cursor that points at the temp + * table that stores the new.* references. If new.* references are not valid + * for the trigger being coded (for example an ON DELETE trigger), then newIdx + * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. + * + * The ON CONFLICT policy to be used for the trigger program steps is stored + * as the orconf member. If this is OE_Default, then the ON CONFLICT clause + * specified for individual triggers steps is used. + * + * struct TriggerStack has a "pNext" member, to allow linked lists to be + * constructed. When coding nested triggers (triggers fired by other triggers) + * each nested trigger stores its parent trigger's TriggerStack as the "pNext" + * pointer. Once the nested trigger has been coded, the pNext value is restored + * to the pTriggerStack member of the Parse stucture and coding of the parent + * trigger continues. + * + * Before a nested trigger is coded, the linked list pointed to by the + * pTriggerStack is scanned to ensure that the trigger is not about to be coded + * recursively. If this condition is detected, the nested trigger is not coded. + */ +struct TriggerStack { + Table *pTab; /* Table that triggers are currently being coded on */ + int newIdx; /* Index of vdbe cursor to "new" temp table */ + int oldIdx; /* Index of vdbe cursor to "old" temp table */ + int orconf; /* Current orconf policy */ + int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ + Trigger *pTrigger; /* The trigger currently being coded */ + TriggerStack *pNext; /* Next trigger down on the trigger stack */ +}; + +/* +** The following structure contains information used by the sqliteFix... +** routines as they walk the parse tree to make database references +** explicit. +*/ +typedef struct DbFixer DbFixer; +struct DbFixer { + Parse *pParse; /* The parsing context. Error messages written here */ + const char *zDb; /* Make sure all objects are contained in this database */ + const char *zType; /* Type of the container - used for error messages */ + const Token *pName; /* Name of the container - used for error messages */ +}; + +/* +** A pointer to this structure is used to communicate information +** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. +*/ +typedef struct { + sqlite3 *db; /* The database being initialized */ + char **pzErrMsg; /* Error message stored here */ +} InitData; + + +/* + * This global flag is set for performance testing of triggers. When it is set + * SQLite will perform the overhead of building new and old trigger references + * even when no triggers exist + */ +extern int sqlite3_always_code_trigger_setup; + +/* +** Internal function prototypes +*/ +int sqlite3StrICmp(const char *, const char *); +int sqlite3StrNICmp(const char *, const char *, int); +int sqlite3HashNoCase(const char *, int); +int sqlite3IsNumber(const char*, int*, u8); +int sqlite3Compare(const char *, const char *); +int sqlite3SortCompare(const char *, const char *); +void sqlite3RealToSortable(double r, char *); +#ifdef SQLITE_DEBUG + void *sqlite3Malloc_(int,int,char*,int); + void sqlite3Free_(void*,char*,int); + void *sqlite3Realloc_(void*,int,char*,int); + char *sqlite3StrDup_(const char*,char*,int); + char *sqlite3StrNDup_(const char*, int,char*,int); + void sqlite3CheckMemory(void*,int); +#else + void *sqlite3Malloc(int); + void *sqlite3MallocRaw(int); + void sqlite3Free(void*); + void *sqlite3Realloc(void*,int); + char *sqlite3StrDup(const char*); + char *sqlite3StrNDup(const char*, int); +# define sqlite3CheckMemory(a,b) +#endif +void sqlite3FreeX(void*); +char *sqlite3MPrintf(const char*, ...); +char *sqlite3VMPrintf(const char*, va_list); +void sqlite3DebugPrintf(const char*, ...); +void *sqlite3TextToPtr(const char*); +void sqlite3SetString(char **, const char *, ...); +void sqlite3ErrorMsg(Parse*, const char*, ...); +void sqlite3Dequote(char*); +int sqlite3KeywordCode(const char*, int); +int sqlite3RunParser(Parse*, const char*, char **); +void sqlite3FinishCoding(Parse*); +Expr *sqlite3Expr(int, Expr*, Expr*, Token*); +Expr *sqlite3ExprAnd(Expr*, Expr*); +void sqlite3ExprSpan(Expr*,Token*,Token*); +Expr *sqlite3ExprFunction(ExprList*, Token*); +void sqlite3ExprAssignVarNumber(Parse*, Expr*); +void sqlite3ExprDelete(Expr*); +ExprList *sqlite3ExprListAppend(ExprList*,Expr*,Token*); +void sqlite3ExprListDelete(ExprList*); +int sqlite3Init(sqlite3*, char**); +int sqlite3InitCallback(void*, int, char**, char**); +void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); +void sqlite3ResetInternalSchema(sqlite3*, int); +void sqlite3BeginParse(Parse*,int); +void sqlite3RollbackInternalChanges(sqlite3*); +void sqlite3CommitInternalChanges(sqlite3*); +Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*); +void sqlite3OpenMasterTable(Vdbe *v, int); +void sqlite3StartTable(Parse*,Token*,Token*,Token*,int,int); +void sqlite3AddColumn(Parse*,Token*); +void sqlite3AddNotNull(Parse*, int); +void sqlite3AddPrimaryKey(Parse*, ExprList*, int); +void sqlite3AddColumnType(Parse*,Token*,Token*); +void sqlite3AddDefaultValue(Parse*,Token*,int); +void sqlite3AddCollateType(Parse*, const char*, int); +void sqlite3EndTable(Parse*,Token*,Select*); +void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int); +int sqlite3ViewGetColumnNames(Parse*,Table*); +void sqlite3DropTable(Parse*, SrcList*, int); +void sqlite3DeleteTable(sqlite3*, Table*); +void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); +IdList *sqlite3IdListAppend(IdList*, Token*); +int sqlite3IdListIndex(IdList*,const char*); +SrcList *sqlite3SrcListAppend(SrcList*, Token*, Token*); +void sqlite3SrcListAddAlias(SrcList*, Token*); +void sqlite3SrcListAssignCursors(Parse*, SrcList*); +void sqlite3IdListDelete(IdList*); +void sqlite3SrcListDelete(SrcList*); +void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, + Token*); +void sqlite3DropIndex(Parse*, SrcList*); +void sqlite3AddKeyType(Vdbe*, ExprList*); +void sqlite3AddIdxKeyType(Vdbe*, Index*); +int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff); +Select *sqlite3SelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*, + int,int,int); +void sqlite3SelectDelete(Select*); +void sqlite3SelectUnbind(Select*); +Table *sqlite3SrcListLookup(Parse*, SrcList*); +int sqlite3IsReadOnly(Parse*, Table*, int); +void sqlite3OpenTableForReading(Vdbe*, int iCur, Table*); +void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); +void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); +WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, int, ExprList**); +void sqlite3WhereEnd(WhereInfo*); +void sqlite3ExprCode(Parse*, Expr*); +int sqlite3ExprCodeExprList(Parse*, ExprList*); +void sqlite3ExprIfTrue(Parse*, Expr*, int, int); +void sqlite3ExprIfFalse(Parse*, Expr*, int, int); +Table *sqlite3FindTable(sqlite3*,const char*, const char*); +Table *sqlite3LocateTable(Parse*,const char*, const char*); +Index *sqlite3FindIndex(sqlite3*,const char*, const char*); +void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); +void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); +void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); +void sqlite3Vacuum(Parse*, Token*); +int sqlite3RunVacuum(char**, sqlite3*); +char *sqlite3NameFromToken(Token*); +int sqlite3ExprCheck(Parse*, Expr*, int, int*); +int sqlite3ExprCompare(Expr*, Expr*); +int sqliteFuncId(Token*); +int sqlite3ExprResolveIds(Parse*, SrcList*, ExprList*, Expr*); +int sqlite3ExprResolveAndCheck(Parse*,SrcList*,ExprList*,Expr*,int,int*); +int sqlite3ExprAnalyzeAggregates(Parse*, Expr*); +Vdbe *sqlite3GetVdbe(Parse*); +void sqlite3Randomness(int, void*); +void sqlite3RollbackAll(sqlite3*); +void sqlite3CodeVerifySchema(Parse*, int); +void sqlite3BeginTransaction(Parse*, int); +void sqlite3CommitTransaction(Parse*); +void sqlite3RollbackTransaction(Parse*); +int sqlite3ExprIsConstant(Expr*); +int sqlite3ExprIsInteger(Expr*, int*); +int sqlite3IsRowid(const char*); +void sqlite3GenerateRowDelete(sqlite3*, Vdbe*, Table*, int, int); +void sqlite3GenerateRowIndexDelete(sqlite3*, Vdbe*, Table*, int, char*); +void sqlite3GenerateIndexKey(Vdbe*, Index*, int); +void sqlite3GenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int); +void sqlite3CompleteInsertion(Parse*, Table*, int, char*, int, int, int); +void sqlite3OpenTableAndIndices(Parse*, Table*, int, int); +void sqlite3BeginWriteOperation(Parse*, int, int); +Expr *sqlite3ExprDup(Expr*); +void sqlite3TokenCopy(Token*, Token*); +ExprList *sqlite3ExprListDup(ExprList*); +SrcList *sqlite3SrcListDup(SrcList*); +IdList *sqlite3IdListDup(IdList*); +Select *sqlite3SelectDup(Select*); +FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); +void sqlite3RegisterBuiltinFunctions(sqlite3*); +void sqlite3RegisterDateTimeFunctions(sqlite3*); +int sqlite3SafetyOn(sqlite3*); +int sqlite3SafetyOff(sqlite3*); +int sqlite3SafetyCheck(sqlite3*); +void sqlite3ChangeCookie(sqlite3*, Vdbe*, int); +void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, + int,Expr*,int); +void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); +void sqlite3DropTrigger(Parse*, SrcList*); +void sqlite3DropTriggerPtr(Parse*, Trigger*, int); +int sqlite3TriggersExist(Parse* , Trigger* , int , int , int, ExprList*); +int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, + int, int); +void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); +void sqlite3DeleteTriggerStep(TriggerStep*); +TriggerStep *sqlite3TriggerSelectStep(Select*); +TriggerStep *sqlite3TriggerInsertStep(Token*, IdList*, ExprList*, Select*, int); +TriggerStep *sqlite3TriggerUpdateStep(Token*, ExprList*, Expr*, int); +TriggerStep *sqlite3TriggerDeleteStep(Token*, Expr*); +void sqlite3DeleteTrigger(Trigger*); +int sqlite3JoinType(Parse*, Token*, Token*, Token*); +void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); +void sqlite3DeferForeignKey(Parse*, int); +#ifndef SQLITE_OMIT_AUTHORIZATION + void sqlite3AuthRead(Parse*,Expr*,SrcList*); + int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); + void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); + void sqlite3AuthContextPop(AuthContext*); +#else +# define sqlite3AuthRead(a,b,c) +# define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK +# define sqlite3AuthContextPush(a,b,c) +# define sqlite3AuthContextPop(a) ((void)(a)) +#endif +void sqlite3Attach(Parse*, Token*, Token*, int, Token*); +void sqlite3Detach(Parse*, Token*); +int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename, + int omitJournal, int nCache, Btree **ppBtree); +int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); +int sqlite3FixSrcList(DbFixer*, SrcList*); +int sqlite3FixSelect(DbFixer*, Select*); +int sqlite3FixExpr(DbFixer*, Expr*); +int sqlite3FixExprList(DbFixer*, ExprList*); +int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); +double sqlite3AtoF(const char *z, const char **); +char *sqlite3_snprintf(int,char*,const char*,...); +int sqlite3GetInt32(const char *, int*); +int sqlite3FitsIn64Bits(const char *); +int sqlite3utf16ByteLen(const void *pData, int nChar); +int sqlite3utf8CharLen(const char *pData, int nByte); +int sqlite3ReadUtf8(const unsigned char *); +int sqlite3PutVarint(unsigned char *, u64); +int sqlite3GetVarint(const unsigned char *, u64 *); +int sqlite3GetVarint32(const unsigned char *, u32 *); +int sqlite3VarintLen(u64 v); +char sqlite3AffinityType(const char *, int); +void sqlite3IndexAffinityStr(Vdbe *, Index *); +void sqlite3TableAffinityStr(Vdbe *, Table *); +char sqlite3CompareAffinity(Expr *pExpr, char aff2); +int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); +char sqlite3ExprAffinity(Expr *pExpr); +int sqlite3atoi64(const char*, i64*); +void sqlite3Error(sqlite3*, int, const char*,...); +void *sqlite3HexToBlob(const char *z); +int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); +const char *sqlite3ErrStr(int); +int sqlite3ReadUniChar(const char *zStr, int *pOffset, u8 *pEnc, int fold); +int sqlite3ReadSchema(Parse *pParse); +CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int); +CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); +CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); +int sqlite3CheckCollSeq(Parse *, CollSeq *); +int sqlite3CheckIndexCollSeq(Parse *, Index *); +int sqlite3CheckObjectName(Parse *, const char *); +void sqlite3VdbeSetChanges(sqlite3 *, int); +void sqlite3utf16Substr(sqlite3_context *,int,sqlite3_value **); + +const void *sqlite3ValueText(sqlite3_value*, u8); +int sqlite3ValueBytes(sqlite3_value*, u8); +void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); +void sqlite3ValueFree(sqlite3_value*); +sqlite3_value *sqlite3ValueNew(); +sqlite3_value *sqlite3GetTransientValue(sqlite3*db); +extern const unsigned char sqlite3UpperToLower[]; + +#endif diff --git a/kopete/plugins/statistics/sqlite/table.c b/kopete/plugins/statistics/sqlite/table.c new file mode 100644 index 00000000..d4ef2c8a --- /dev/null +++ b/kopete/plugins/statistics/sqlite/table.c @@ -0,0 +1,195 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the sqlite3_get_table() and sqlite3_free_table() +** interface routines. These are just wrappers around the main +** interface routine of sqlite3_exec(). +** +** These routines are in a separate files so that they will not be linked +** if they are not used. +*/ +#include <stdlib.h> +#include <string.h> +#include "sqliteInt.h" + +/* +** This structure is used to pass data from sqlite3_get_table() through +** to the callback function is uses to build the result. +*/ +typedef struct TabResult { + char **azResult; + char *zErrMsg; + int nResult; + int nAlloc; + int nRow; + int nColumn; + int nData; + int rc; +} TabResult; + +/* +** This routine is called once for each row in the result table. Its job +** is to fill in the TabResult structure appropriately, allocating new +** memory as necessary. +*/ +static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){ + TabResult *p = (TabResult*)pArg; + int need; + int i; + char *z; + + /* Make sure there is enough space in p->azResult to hold everything + ** we need to remember from this invocation of the callback. + */ + if( p->nRow==0 && argv!=0 ){ + need = nCol*2; + }else{ + need = nCol; + } + if( p->nData + need >= p->nAlloc ){ + char **azNew; + p->nAlloc = p->nAlloc*2 + need + 1; + azNew = realloc( p->azResult, sizeof(char*)*p->nAlloc ); + if( azNew==0 ) goto malloc_failed; + p->azResult = azNew; + } + + /* If this is the first row, then generate an extra row containing + ** the names of all columns. + */ + if( p->nRow==0 ){ + p->nColumn = nCol; + for(i=0; i<nCol; i++){ + if( colv[i]==0 ){ + z = 0; + }else{ + z = malloc( strlen(colv[i])+1 ); + if( z==0 ) goto malloc_failed; + strcpy(z, colv[i]); + } + p->azResult[p->nData++] = z; + } + }else if( p->nColumn!=nCol ){ + sqlite3SetString(&p->zErrMsg, + "sqlite3_get_table() called with two or more incompatible queries", + (char*)0); + p->rc = SQLITE_ERROR; + return 1; + } + + /* Copy over the row data + */ + if( argv!=0 ){ + for(i=0; i<nCol; i++){ + if( argv[i]==0 ){ + z = 0; + }else{ + z = malloc( strlen(argv[i])+1 ); + if( z==0 ) goto malloc_failed; + strcpy(z, argv[i]); + } + p->azResult[p->nData++] = z; + } + p->nRow++; + } + return 0; + +malloc_failed: + p->rc = SQLITE_NOMEM; + return 1; +} + +/* +** Query the database. But instead of invoking a callback for each row, +** malloc() for space to hold the result and return the entire results +** at the conclusion of the call. +** +** The result that is written to ***pazResult is held in memory obtained +** from malloc(). But the caller cannot free this memory directly. +** Instead, the entire table should be passed to sqlite3_free_table() when +** the calling procedure is finished using it. +*/ +int sqlite3_get_table( + sqlite3 *db, /* The database on which the SQL executes */ + const char *zSql, /* The SQL to be executed */ + char ***pazResult, /* Write the result table here */ + int *pnRow, /* Write the number of rows in the result here */ + int *pnColumn, /* Write the number of columns of result here */ + char **pzErrMsg /* Write error messages here */ +){ + int rc; + TabResult res; + if( pazResult==0 ){ return SQLITE_ERROR; } + *pazResult = 0; + if( pnColumn ) *pnColumn = 0; + if( pnRow ) *pnRow = 0; + res.zErrMsg = 0; + res.nResult = 0; + res.nRow = 0; + res.nColumn = 0; + res.nData = 1; + res.nAlloc = 20; + res.rc = SQLITE_OK; + res.azResult = malloc( sizeof(char*)*res.nAlloc ); + if( res.azResult==0 ) return SQLITE_NOMEM; + res.azResult[0] = 0; + rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg); + if( res.azResult ){ + res.azResult[0] = (char*)res.nData; + } + if( rc==SQLITE_ABORT ){ + sqlite3_free_table(&res.azResult[1]); + if( res.zErrMsg ){ + if( pzErrMsg ){ + free(*pzErrMsg); + *pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg); + } + sqliteFree(res.zErrMsg); + } + db->errCode = res.rc; + return res.rc; + } + sqliteFree(res.zErrMsg); + if( rc!=SQLITE_OK ){ + sqlite3_free_table(&res.azResult[1]); + return rc; + } + if( res.nAlloc>res.nData ){ + char **azNew; + azNew = realloc( res.azResult, sizeof(char*)*(res.nData+1) ); + if( azNew==0 ){ + sqlite3_free_table(&res.azResult[1]); + return SQLITE_NOMEM; + } + res.nAlloc = res.nData+1; + res.azResult = azNew; + } + *pazResult = &res.azResult[1]; + if( pnColumn ) *pnColumn = res.nColumn; + if( pnRow ) *pnRow = res.nRow; + return rc; +} + +/* +** This routine frees the space the sqlite3_get_table() malloced. +*/ +void sqlite3_free_table( + char **azResult /* Result returned from from sqlite3_get_table() */ +){ + if( azResult ){ + int i, n; + azResult--; + if( azResult==0 ) return; + n = (int)azResult[0]; + for(i=1; i<n; i++){ if( azResult[i] ) free(azResult[i]); } + free(azResult); + } +} diff --git a/kopete/plugins/statistics/sqlite/tokenize.c b/kopete/plugins/statistics/sqlite/tokenize.c new file mode 100644 index 00000000..061e5b9a --- /dev/null +++ b/kopete/plugins/statistics/sqlite/tokenize.c @@ -0,0 +1,707 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** An tokenizer for SQL +** +** This file contains C code that splits an SQL input string up into +** individual tokens and sends those tokens one-by-one over to the +** parser for analysis. +** +** $Id$ +*/ +#include "sqliteInt.h" +#include "os.h" +#include <ctype.h> +#include <stdlib.h> + +/* +** This function looks up an identifier to determine if it is a +** keyword. If it is a keyword, the token code of that keyword is +** returned. If the input is not a keyword, TK_ID is returned. +** +** The implementation of this routine was generated by a program, +** mkkeywordhash.c, located in the tool subdirectory of the distribution. +** The output of the mkkeywordhash.c program was manually cut and pasted +** into this file. When the set of keywords for SQLite changes, you +** must modify the mkkeywordhash.c program (to add or remove keywords from +** the data tables) then rerun that program to regenerate this function. +*/ +int sqlite3KeywordCode(const char *z, int n){ + static const char zText[519] = + "ABORTAFTERALLANDASCATTACHBEFOREBEGINBETWEENBYCASCADECASECHECK" + "COLLATECOMMITCONFLICTCONSTRAINTCREATECROSSDATABASEDEFAULTDEFERRABLE" + "DEFERREDDELETEDESCDETACHDISTINCTDROPEACHELSEENDEXCEPTEXCLUSIVE" + "EXPLAINFAILFOREIGNFROMFULLGLOBGROUPHAVINGIGNOREIMMEDIATEINDEX" + "INITIALLYINNERINSERTINSTEADINTERSECTINTOISNULLJOINKEYLEFTLIKE" + "LIMITMATCHNATURALNOTNULLNULLOFFSETONORDEROUTERPRAGMAPRIMARYRAISE" + "REFERENCESREPLACERESTRICTRIGHTROLLBACKROWSELECTSETSTATEMENTTABLE" + "TEMPORARYTHENTRANSACTIONTRIGGERUNIONUNIQUEUPDATEUSINGVACUUMVALUES" + "VIEWWHENWHERE"; + static const unsigned char aHash[154] = { + 0, 75, 82, 0, 0, 97, 80, 0, 83, 0, 0, 0, 0, + 0, 0, 6, 0, 95, 4, 0, 0, 0, 0, 0, 0, 0, + 0, 96, 86, 8, 0, 26, 13, 7, 19, 15, 0, 0, 32, + 25, 0, 21, 31, 41, 0, 0, 0, 34, 27, 0, 0, 30, + 0, 0, 0, 9, 0, 10, 0, 0, 0, 0, 51, 0, 44, + 43, 0, 45, 40, 0, 29, 39, 35, 0, 0, 20, 0, 59, + 0, 16, 0, 17, 0, 18, 0, 55, 42, 72, 0, 33, 0, + 0, 61, 66, 56, 0, 0, 0, 0, 0, 0, 0, 54, 0, + 0, 0, 0, 0, 74, 50, 76, 64, 52, 0, 0, 0, 0, + 68, 84, 0, 47, 0, 58, 60, 92, 0, 0, 48, 0, 93, + 0, 63, 71, 98, 0, 0, 0, 0, 0, 67, 0, 0, 0, + 0, 87, 0, 0, 0, 0, 0, 90, 88, 0, 94, + }; + static const unsigned char aNext[98] = { + 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 12, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, + 0, 0, 0, 14, 3, 24, 0, 0, 0, 1, 22, 0, 0, + 36, 23, 28, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, + 0, 49, 37, 0, 0, 0, 38, 0, 53, 0, 57, 62, 0, + 0, 0, 0, 0, 0, 70, 46, 0, 65, 0, 0, 0, 0, + 69, 73, 0, 77, 0, 0, 0, 0, 0, 0, 81, 85, 0, + 91, 79, 78, 0, 0, 89, 0, + }; + static const unsigned char aLen[98] = { + 5, 5, 3, 3, 2, 3, 6, 6, 5, 7, 2, 7, 4, + 5, 7, 6, 8, 10, 6, 5, 8, 7, 10, 8, 6, 4, + 6, 8, 4, 4, 4, 3, 6, 9, 7, 4, 3, 7, 4, + 4, 4, 5, 6, 6, 9, 2, 5, 9, 5, 6, 7, 9, + 4, 2, 6, 4, 3, 4, 4, 5, 5, 7, 3, 7, 4, + 2, 6, 2, 2, 5, 5, 6, 7, 5, 10, 7, 8, 5, + 8, 3, 6, 3, 9, 5, 4, 9, 4, 11, 7, 5, 6, + 6, 5, 6, 6, 4, 4, 5, + }; + static const unsigned short int aOffset[98] = { + 0, 5, 10, 13, 16, 16, 19, 25, 31, 36, 43, 45, 52, + 56, 61, 68, 74, 82, 92, 98, 103, 111, 118, 128, 136, 142, + 146, 152, 160, 164, 168, 172, 175, 181, 190, 197, 201, 201, 208, + 212, 216, 220, 225, 231, 237, 246, 246, 251, 260, 265, 271, 278, + 287, 291, 291, 297, 301, 304, 308, 312, 317, 322, 329, 329, 336, + 340, 340, 346, 348, 348, 353, 358, 364, 371, 376, 386, 393, 401, + 406, 414, 417, 423, 426, 435, 440, 440, 449, 453, 464, 471, 476, + 482, 488, 493, 499, 505, 509, 513, + }; + static const unsigned char aCode[98] = { + TK_ABORT, TK_AFTER, TK_ALL, TK_AND, TK_AS, + TK_ASC, TK_ATTACH, TK_BEFORE, TK_BEGIN, TK_BETWEEN, + TK_BY, TK_CASCADE, TK_CASE, TK_CHECK, TK_COLLATE, + TK_COMMIT, TK_CONFLICT, TK_CONSTRAINT, TK_CREATE, TK_JOIN_KW, + TK_DATABASE, TK_DEFAULT, TK_DEFERRABLE, TK_DEFERRED, TK_DELETE, + TK_DESC, TK_DETACH, TK_DISTINCT, TK_DROP, TK_EACH, + TK_ELSE, TK_END, TK_EXCEPT, TK_EXCLUSIVE, TK_EXPLAIN, + TK_FAIL, TK_FOR, TK_FOREIGN, TK_FROM, TK_JOIN_KW, + TK_GLOB, TK_GROUP, TK_HAVING, TK_IGNORE, TK_IMMEDIATE, + TK_IN, TK_INDEX, TK_INITIALLY, TK_JOIN_KW, TK_INSERT, + TK_INSTEAD, TK_INTERSECT, TK_INTO, TK_IS, TK_ISNULL, + TK_JOIN, TK_KEY, TK_JOIN_KW, TK_LIKE, TK_LIMIT, + TK_MATCH, TK_JOIN_KW, TK_NOT, TK_NOTNULL, TK_NULL, + TK_OF, TK_OFFSET, TK_ON, TK_OR, TK_ORDER, + TK_JOIN_KW, TK_PRAGMA, TK_PRIMARY, TK_RAISE, TK_REFERENCES, + TK_REPLACE, TK_RESTRICT, TK_JOIN_KW, TK_ROLLBACK, TK_ROW, + TK_SELECT, TK_SET, TK_STATEMENT, TK_TABLE, TK_TEMP, + TK_TEMP, TK_THEN, TK_TRANSACTION,TK_TRIGGER, TK_UNION, + TK_UNIQUE, TK_UPDATE, TK_USING, TK_VACUUM, TK_VALUES, + TK_VIEW, TK_WHEN, TK_WHERE, + }; + int h, i; + if( n<2 ) return TK_ID; + h = (sqlite3UpperToLower[((unsigned char*)z)[0]]*5 + + sqlite3UpperToLower[((unsigned char*)z)[n-1]]*3 + + n) % 154; + for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){ + if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){ + return aCode[i]; + } + } + return TK_ID; +} + +/* +** If X is a character that can be used in an identifier and +** X&0x80==0 then isIdChar[X] will be 1. If X&0x80==0x80 then +** X is always an identifier character. (Hence all UTF-8 +** characters can be part of an identifier). isIdChar[X] will +** be 0 for every character in the lower 128 ASCII characters +** that cannot be used as part of an identifier. +** +** In this implementation, an identifier can be a string of +** alphabetic characters, digits, and "_" plus any character +** with the high-order bit set. The latter rule means that +** any sequence of UTF-8 characters or characters taken from +** an extended ISO8859 character set can form an identifier. +*/ +static const char isIdChar[] = { +/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ +}; + +#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x2f && isIdChar[c-0x30])) + +/* +** Return the length of the token that begins at z[0]. +** Store the token type in *tokenType before returning. +*/ +static int sqliteGetToken(const unsigned char *z, int *tokenType){ + int i, c; + switch( *z ){ + case ' ': case '\t': case '\n': case '\f': case '\r': { + for(i=1; isspace(z[i]); i++){} + *tokenType = TK_SPACE; + return i; + } + case '-': { + if( z[1]=='-' ){ + for(i=2; (c=z[i])!=0 && c!='\n'; i++){} + *tokenType = TK_COMMENT; + return i; + } + *tokenType = TK_MINUS; + return 1; + } + case '(': { + *tokenType = TK_LP; + return 1; + } + case ')': { + *tokenType = TK_RP; + return 1; + } + case ';': { + *tokenType = TK_SEMI; + return 1; + } + case '+': { + *tokenType = TK_PLUS; + return 1; + } + case '*': { + *tokenType = TK_STAR; + return 1; + } + case '/': { + if( z[1]!='*' || z[2]==0 ){ + *tokenType = TK_SLASH; + return 1; + } + for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){} + if( c ) i++; + *tokenType = TK_COMMENT; + return i; + } + case '%': { + *tokenType = TK_REM; + return 1; + } + case '=': { + *tokenType = TK_EQ; + return 1 + (z[1]=='='); + } + case '<': { + if( (c=z[1])=='=' ){ + *tokenType = TK_LE; + return 2; + }else if( c=='>' ){ + *tokenType = TK_NE; + return 2; + }else if( c=='<' ){ + *tokenType = TK_LSHIFT; + return 2; + }else{ + *tokenType = TK_LT; + return 1; + } + } + case '>': { + if( (c=z[1])=='=' ){ + *tokenType = TK_GE; + return 2; + }else if( c=='>' ){ + *tokenType = TK_RSHIFT; + return 2; + }else{ + *tokenType = TK_GT; + return 1; + } + } + case '!': { + if( z[1]!='=' ){ + *tokenType = TK_ILLEGAL; + return 2; + }else{ + *tokenType = TK_NE; + return 2; + } + } + case '|': { + if( z[1]!='|' ){ + *tokenType = TK_BITOR; + return 1; + }else{ + *tokenType = TK_CONCAT; + return 2; + } + } + case ',': { + *tokenType = TK_COMMA; + return 1; + } + case '&': { + *tokenType = TK_BITAND; + return 1; + } + case '~': { + *tokenType = TK_BITNOT; + return 1; + } + case '\'': case '"': { + int delim = z[0]; + for(i=1; (c=z[i])!=0; i++){ + if( c==delim ){ + if( z[i+1]==delim ){ + i++; + }else{ + break; + } + } + } + if( c ) i++; + *tokenType = TK_STRING; + return i; + } + case '.': { + *tokenType = TK_DOT; + return 1; + } + case '0': case '1': case '2': case '3': case '4': + case '5': case '6': case '7': case '8': case '9': { + *tokenType = TK_INTEGER; + for(i=1; isdigit(z[i]); i++){} + if( z[i]=='.' && isdigit(z[i+1]) ){ + i += 2; + while( isdigit(z[i]) ){ i++; } + *tokenType = TK_FLOAT; + } + if( (z[i]=='e' || z[i]=='E') && + ( isdigit(z[i+1]) + || ((z[i+1]=='+' || z[i+1]=='-') && isdigit(z[i+2])) + ) + ){ + i += 2; + while( isdigit(z[i]) ){ i++; } + *tokenType = TK_FLOAT; + } + return i; + } + case '[': { + for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} + *tokenType = TK_ID; + return i; + } + case '?': { + *tokenType = TK_VARIABLE; + for(i=1; isdigit(z[i]); i++){} + return i; + } + case ':': { + for(i=1; IdChar(z[i]); i++){} + *tokenType = i>1 ? TK_VARIABLE : TK_ILLEGAL; + return i; + } + case '$': { + *tokenType = TK_VARIABLE; + if( z[1]=='{' ){ + int nBrace = 1; + for(i=2; (c=z[i])!=0 && nBrace; i++){ + if( c=='{' ){ + nBrace++; + }else if( c=='}' ){ + nBrace--; + } + } + if( c==0 ) *tokenType = TK_ILLEGAL; + }else{ + int n = 0; + for(i=1; (c=z[i])!=0; i++){ + if( isalnum(c) || c=='_' ){ + n++; + }else if( c=='(' && n>0 ){ + do{ + i++; + }while( (c=z[i])!=0 && !isspace(c) && c!=')' ); + if( c==')' ){ + i++; + }else{ + *tokenType = TK_ILLEGAL; + } + break; + }else if( c==':' && z[i+1]==':' ){ + i++; + }else{ + break; + } + } + if( n==0 ) *tokenType = TK_ILLEGAL; + } + return i; + } + case 'x': case 'X': { + if( (c=z[1])=='\'' || c=='"' ){ + int delim = c; + *tokenType = TK_BLOB; + for(i=2; (c=z[i])!=0; i++){ + if( c==delim ){ + if( i%2 ) *tokenType = TK_ILLEGAL; + break; + } + if( !isxdigit(c) ){ + *tokenType = TK_ILLEGAL; + return i; + } + } + if( c ) i++; + return i; + } + /* Otherwise fall through to the next case */ + } + default: { + if( !IdChar(*z) ){ + break; + } + for(i=1; IdChar(z[i]); i++){} + *tokenType = sqlite3KeywordCode((char*)z, i); + return i; + } + } + *tokenType = TK_ILLEGAL; + return 1; +} + +/* +** Run the parser on the given SQL string. The parser structure is +** passed in. An SQLITE_ status code is returned. If an error occurs +** and pzErrMsg!=NULL then an error message might be written into +** memory obtained from malloc() and *pzErrMsg made to point to that +** error message. Or maybe not. +*/ +int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){ + int nErr = 0; + int i; + void *pEngine; + int tokenType; + int lastTokenParsed = -1; + sqlite3 *db = pParse->db; + extern void *sqlite3ParserAlloc(void*(*)(int)); + extern void sqlite3ParserFree(void*, void(*)(void*)); + extern int sqlite3Parser(void*, int, Token, Parse*); + + db->flags &= ~SQLITE_Interrupt; + pParse->rc = SQLITE_OK; + i = 0; + pEngine = sqlite3ParserAlloc((void*(*)(int))malloc); + if( pEngine==0 ){ + sqlite3SetString(pzErrMsg, "out of memory", (char*)0); + return 1; + } + assert( pParse->sLastToken.dyn==0 ); + assert( pParse->pNewTable==0 ); + assert( pParse->pNewTrigger==0 ); + assert( pParse->nVar==0 ); + assert( pParse->nVarExpr==0 ); + assert( pParse->nVarExprAlloc==0 ); + assert( pParse->apVarExpr==0 ); + pParse->zTail = pParse->zSql = zSql; + while( sqlite3_malloc_failed==0 && zSql[i]!=0 ){ + assert( i>=0 ); + pParse->sLastToken.z = &zSql[i]; + assert( pParse->sLastToken.dyn==0 ); + pParse->sLastToken.n = sqliteGetToken((unsigned char*)&zSql[i], &tokenType); + i += pParse->sLastToken.n; + switch( tokenType ){ + case TK_SPACE: + case TK_COMMENT: { + if( (db->flags & SQLITE_Interrupt)!=0 ){ + pParse->rc = SQLITE_INTERRUPT; + sqlite3SetString(pzErrMsg, "interrupt", (char*)0); + goto abort_parse; + } + break; + } + case TK_ILLEGAL: { + if( pzErrMsg ){ + sqliteFree(*pzErrMsg); + *pzErrMsg = sqlite3MPrintf("unrecognized token: \"%T\"", + &pParse->sLastToken); + } + nErr++; + goto abort_parse; + } + case TK_SEMI: { + pParse->zTail = &zSql[i]; + /* Fall thru into the default case */ + } + default: { + sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse); + lastTokenParsed = tokenType; + if( pParse->rc!=SQLITE_OK ){ + goto abort_parse; + } + break; + } + } + } +abort_parse: + if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){ + if( lastTokenParsed!=TK_SEMI ){ + sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse); + pParse->zTail = &zSql[i]; + } + sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse); + } + sqlite3ParserFree(pEngine, free); + if( sqlite3_malloc_failed ){ + pParse->rc = SQLITE_NOMEM; + } + if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){ + sqlite3SetString(&pParse->zErrMsg, sqlite3ErrStr(pParse->rc), + (char*)0); + } + if( pParse->zErrMsg ){ + if( pzErrMsg && *pzErrMsg==0 ){ + *pzErrMsg = pParse->zErrMsg; + }else{ + sqliteFree(pParse->zErrMsg); + } + pParse->zErrMsg = 0; + if( !nErr ) nErr++; + } + if( pParse->pVdbe && pParse->nErr>0 ){ + sqlite3VdbeDelete(pParse->pVdbe); + pParse->pVdbe = 0; + } + sqlite3DeleteTable(pParse->db, pParse->pNewTable); + sqlite3DeleteTrigger(pParse->pNewTrigger); + sqliteFree(pParse->apVarExpr); + if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){ + pParse->rc = SQLITE_ERROR; + } + return nErr; +} + +/* +** Token types used by the sqlite3_complete() routine. See the header +** comments on that procedure for additional information. +*/ +#define tkEXPLAIN 0 +#define tkCREATE 1 +#define tkTEMP 2 +#define tkTRIGGER 3 +#define tkEND 4 +#define tkSEMI 5 +#define tkWS 6 +#define tkOTHER 7 + +/* +** Return TRUE if the given SQL string ends in a semicolon. +** +** Special handling is require for CREATE TRIGGER statements. +** Whenever the CREATE TRIGGER keywords are seen, the statement +** must end with ";END;". +** +** This implementation uses a state machine with 7 states: +** +** (0) START At the beginning or end of an SQL statement. This routine +** returns 1 if it ends in the START state and 0 if it ends +** in any other state. +** +** (1) EXPLAIN The keyword EXPLAIN has been seen at the beginning of +** a statement. +** +** (2) CREATE The keyword CREATE has been seen at the beginning of a +** statement, possibly preceeded by EXPLAIN and/or followed by +** TEMP or TEMPORARY +** +** (3) NORMAL We are in the middle of statement which ends with a single +** semicolon. +** +** (4) TRIGGER We are in the middle of a trigger definition that must be +** ended by a semicolon, the keyword END, and another semicolon. +** +** (5) SEMI We've seen the first semicolon in the ";END;" that occurs at +** the end of a trigger definition. +** +** (6) END We've seen the ";END" of the ";END;" that occurs at the end +** of a trigger difinition. +** +** Transitions between states above are determined by tokens extracted +** from the input. The following tokens are significant: +** +** (0) tkEXPLAIN The "explain" keyword. +** (1) tkCREATE The "create" keyword. +** (2) tkTEMP The "temp" or "temporary" keyword. +** (3) tkTRIGGER The "trigger" keyword. +** (4) tkEND The "end" keyword. +** (5) tkSEMI A semicolon. +** (6) tkWS Whitespace +** (7) tkOTHER Any other SQL token. +** +** Whitespace never causes a state transition and is always ignored. +*/ +int sqlite3_complete(const char *zSql){ + u8 state = 0; /* Current state, using numbers defined in header comment */ + u8 token; /* Value of the next token */ + + /* The following matrix defines the transition from one state to another + ** according to what token is seen. trans[state][token] returns the + ** next state. + */ + static const u8 trans[7][8] = { + /* Token: */ + /* State: ** EXPLAIN CREATE TEMP TRIGGER END SEMI WS OTHER */ + /* 0 START: */ { 1, 2, 3, 3, 3, 0, 0, 3, }, + /* 1 EXPLAIN: */ { 3, 2, 3, 3, 3, 0, 1, 3, }, + /* 2 CREATE: */ { 3, 3, 2, 4, 3, 0, 2, 3, }, + /* 3 NORMAL: */ { 3, 3, 3, 3, 3, 0, 3, 3, }, + /* 4 TRIGGER: */ { 4, 4, 4, 4, 4, 5, 4, 4, }, + /* 5 SEMI: */ { 4, 4, 4, 4, 6, 5, 5, 4, }, + /* 6 END: */ { 4, 4, 4, 4, 4, 0, 6, 4, }, + }; + + while( *zSql ){ + switch( *zSql ){ + case ';': { /* A semicolon */ + token = tkSEMI; + break; + } + case ' ': + case '\r': + case '\t': + case '\n': + case '\f': { /* White space is ignored */ + token = tkWS; + break; + } + case '/': { /* C-style comments */ + if( zSql[1]!='*' ){ + token = tkOTHER; + break; + } + zSql += 2; + while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; } + if( zSql[0]==0 ) return 0; + zSql++; + token = tkWS; + break; + } + case '-': { /* SQL-style comments from "--" to end of line */ + if( zSql[1]!='-' ){ + token = tkOTHER; + break; + } + while( *zSql && *zSql!='\n' ){ zSql++; } + if( *zSql==0 ) return state==0; + token = tkWS; + break; + } + case '[': { /* Microsoft-style identifiers in [...] */ + zSql++; + while( *zSql && *zSql!=']' ){ zSql++; } + if( *zSql==0 ) return 0; + token = tkOTHER; + break; + } + case '"': /* single- and double-quoted strings */ + case '\'': { + int c = *zSql; + zSql++; + while( *zSql && *zSql!=c ){ zSql++; } + if( *zSql==0 ) return 0; + token = tkOTHER; + break; + } + default: { + int c; + if( IdChar((u8)*zSql) ){ + /* Keywords and unquoted identifiers */ + int nId; + for(nId=1; IdChar(zSql[nId]); nId++){} + switch( *zSql ){ + case 'c': case 'C': { + if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){ + token = tkCREATE; + }else{ + token = tkOTHER; + } + break; + } + case 't': case 'T': { + if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){ + token = tkTRIGGER; + }else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){ + token = tkTEMP; + }else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){ + token = tkTEMP; + }else{ + token = tkOTHER; + } + break; + } + case 'e': case 'E': { + if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){ + token = tkEND; + }else if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){ + token = tkEXPLAIN; + }else{ + token = tkOTHER; + } + break; + } + default: { + token = tkOTHER; + break; + } + } + zSql += nId-1; + }else{ + /* Operators and special symbols */ + token = tkOTHER; + } + break; + } + } + state = trans[state][token]; + zSql++; + } + return state==0; +} + +/* +** This routine is the same as the sqlite3_complete() routine described +** above, except that the parameter is required to be UTF-16 encoded, not +** UTF-8. +*/ +int sqlite3_complete16(const void *zSql){ + sqlite3_value *pVal; + char const *zSql8; + int rc = 0; + + pVal = sqlite3ValueNew(); + sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC); + zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8); + if( zSql8 ){ + rc = sqlite3_complete(zSql8); + } + sqlite3ValueFree(pVal); + return rc; +} diff --git a/kopete/plugins/statistics/sqlite/trigger.c b/kopete/plugins/statistics/sqlite/trigger.c new file mode 100644 index 00000000..bbb526f8 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/trigger.c @@ -0,0 +1,804 @@ +/* +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +* +*/ +#include "sqliteInt.h" + +/* +** Delete a linked list of TriggerStep structures. +*/ +void sqlite3DeleteTriggerStep(TriggerStep *pTriggerStep){ + while( pTriggerStep ){ + TriggerStep * pTmp = pTriggerStep; + pTriggerStep = pTriggerStep->pNext; + + if( pTmp->target.dyn ) sqliteFree((char*)pTmp->target.z); + sqlite3ExprDelete(pTmp->pWhere); + sqlite3ExprListDelete(pTmp->pExprList); + sqlite3SelectDelete(pTmp->pSelect); + sqlite3IdListDelete(pTmp->pIdList); + + sqliteFree(pTmp); + } +} + +/* +** This is called by the parser when it sees a CREATE TRIGGER statement +** up to the point of the BEGIN before the trigger actions. A Trigger +** structure is generated based on the information available and stored +** in pParse->pNewTrigger. After the trigger actions have been parsed, the +** sqlite3FinishTrigger() function is called to complete the trigger +** construction process. +*/ +void sqlite3BeginTrigger( + Parse *pParse, /* The parse context of the CREATE TRIGGER statement */ + Token *pName1, /* The name of the trigger */ + Token *pName2, /* The name of the trigger */ + int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */ + int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */ + IdList *pColumns, /* column list if this is an UPDATE OF trigger */ + SrcList *pTableName,/* The name of the table/view the trigger applies to */ + int foreach, /* One of TK_ROW or TK_STATEMENT */ + Expr *pWhen, /* WHEN clause */ + int isTemp /* True if the TEMPORARY keyword is present */ +){ + Trigger *pTrigger; + Table *pTab; + char *zName = 0; /* Name of the trigger */ + sqlite3 *db = pParse->db; + int iDb; /* The database to store the trigger in */ + Token *pName; /* The unqualified db name */ + DbFixer sFix; + + if( isTemp ){ + /* If TEMP was specified, then the trigger name may not be qualified. */ + if( pName2 && pName2->n>0 ){ + sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name"); + goto trigger_cleanup; + } + iDb = 1; + pName = pName1; + }else{ + /* Figure out the db that the the trigger will be created in */ + iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); + if( iDb<0 ){ + goto trigger_cleanup; + } + } + + /* If the trigger name was unqualified, and the table is a temp table, + ** then set iDb to 1 to create the trigger in the temporary database. + ** If sqlite3SrcListLookup() returns 0, indicating the table does not + ** exist, the error is caught by the block below. + */ + if( !pTableName || sqlite3_malloc_failed ) goto trigger_cleanup; + pTab = sqlite3SrcListLookup(pParse, pTableName); + if( pName2->n==0 && pTab && pTab->iDb==1 ){ + iDb = 1; + } + + /* Ensure the table name matches database name and that the table exists */ + if( sqlite3_malloc_failed ) goto trigger_cleanup; + assert( pTableName->nSrc==1 ); + if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName) && + sqlite3FixSrcList(&sFix, pTableName) ){ + goto trigger_cleanup; + } + pTab = sqlite3SrcListLookup(pParse, pTableName); + if( !pTab ){ + /* The table does not exist. */ + goto trigger_cleanup; + } + + /* Check that the trigger name is not reserved and that no trigger of the + ** specified name exists */ + zName = sqlite3NameFromToken(pName); + if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ + goto trigger_cleanup; + } + if( sqlite3HashFind(&(db->aDb[iDb].trigHash), zName,pName->n+1) ){ + sqlite3ErrorMsg(pParse, "trigger %T already exists", pName); + goto trigger_cleanup; + } + + /* Do not create a trigger on a system table */ + if( (iDb!=1 && sqlite3StrICmp(pTab->zName, MASTER_NAME)==0) || + (iDb==1 && sqlite3StrICmp(pTab->zName, TEMP_MASTER_NAME)==0) + ){ + sqlite3ErrorMsg(pParse, "cannot create trigger on system table"); + pParse->nErr++; + goto trigger_cleanup; + } + + /* INSTEAD of triggers are only for views and views only support INSTEAD + ** of triggers. + */ + if( pTab->pSelect && tr_tm!=TK_INSTEAD ){ + sqlite3ErrorMsg(pParse, "cannot create %s trigger on view: %S", + (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName, 0); + goto trigger_cleanup; + } + if( !pTab->pSelect && tr_tm==TK_INSTEAD ){ + sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF" + " trigger on table: %S", pTableName, 0); + goto trigger_cleanup; + } + +#ifndef SQLITE_OMIT_AUTHORIZATION + { + int code = SQLITE_CREATE_TRIGGER; + const char *zDb = db->aDb[pTab->iDb].zName; + const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb; + if( pTab->iDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER; + if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){ + goto trigger_cleanup; + } + if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(pTab->iDb),0,zDb)){ + goto trigger_cleanup; + } + } +#endif + + /* INSTEAD OF triggers can only appear on views and BEFORE triggers + ** cannot appear on views. So we might as well translate every + ** INSTEAD OF trigger into a BEFORE trigger. It simplifies code + ** elsewhere. + */ + if (tr_tm == TK_INSTEAD){ + tr_tm = TK_BEFORE; + } + + /* Build the Trigger object */ + pTrigger = (Trigger*)sqliteMalloc(sizeof(Trigger)); + if( pTrigger==0 ) goto trigger_cleanup; + pTrigger->name = zName; + zName = 0; + pTrigger->table = sqliteStrDup(pTableName->a[0].zName); + if( sqlite3_malloc_failed ) goto trigger_cleanup; + pTrigger->iDb = iDb; + pTrigger->iTabDb = pTab->iDb; + pTrigger->op = op; + pTrigger->tr_tm = tr_tm; + pTrigger->pWhen = sqlite3ExprDup(pWhen); + pTrigger->pColumns = sqlite3IdListDup(pColumns); + pTrigger->foreach = foreach; + sqlite3TokenCopy(&pTrigger->nameToken,pName); + assert( pParse->pNewTrigger==0 ); + pParse->pNewTrigger = pTrigger; + +trigger_cleanup: + sqliteFree(zName); + sqlite3SrcListDelete(pTableName); + sqlite3IdListDelete(pColumns); + sqlite3ExprDelete(pWhen); +} + +/* +** This routine is called after all of the trigger actions have been parsed +** in order to complete the process of building the trigger. +*/ +void sqlite3FinishTrigger( + Parse *pParse, /* Parser context */ + TriggerStep *pStepList, /* The triggered program */ + Token *pAll /* Token that describes the complete CREATE TRIGGER */ +){ + Trigger *nt = 0; /* The trigger whose construction is finishing up */ + sqlite3 *db = pParse->db; /* The database */ + DbFixer sFix; + + if( pParse->nErr || pParse->pNewTrigger==0 ) goto triggerfinish_cleanup; + nt = pParse->pNewTrigger; + pParse->pNewTrigger = 0; + nt->step_list = pStepList; + while( pStepList ){ + pStepList->pTrig = nt; + pStepList = pStepList->pNext; + } + if( sqlite3FixInit(&sFix, pParse, nt->iDb, "trigger", &nt->nameToken) + && sqlite3FixTriggerStep(&sFix, nt->step_list) ){ + goto triggerfinish_cleanup; + } + + /* if we are not initializing, and this trigger is not on a TEMP table, + ** build the sqlite_master entry + */ + if( !db->init.busy ){ + static const VdbeOpList insertTrig[] = { + { OP_NewRecno, 0, 0, 0 }, + { OP_String8, 0, 0, "trigger" }, + { OP_String8, 0, 0, 0 }, /* 2: trigger name */ + { OP_String8, 0, 0, 0 }, /* 3: table name */ + { OP_Integer, 0, 0, 0 }, + { OP_String8, 0, 0, "CREATE TRIGGER "}, + { OP_String8, 0, 0, 0 }, /* 6: SQL */ + { OP_Concat, 0, 0, 0 }, + { OP_MakeRecord, 5, 0, "tttit" }, + { OP_PutIntKey, 0, 0, 0 }, + }; + int addr; + Vdbe *v; + + /* Make an entry in the sqlite_master table */ + v = sqlite3GetVdbe(pParse); + if( v==0 ) goto triggerfinish_cleanup; + sqlite3BeginWriteOperation(pParse, 0, nt->iDb); + sqlite3OpenMasterTable(v, nt->iDb); + addr = sqlite3VdbeAddOpList(v, ArraySize(insertTrig), insertTrig); + sqlite3VdbeChangeP3(v, addr+2, nt->name, 0); + sqlite3VdbeChangeP3(v, addr+3, nt->table, 0); + sqlite3VdbeChangeP3(v, addr+6, pAll->z, pAll->n); + if( nt->iDb!=0 ){ + sqlite3ChangeCookie(db, v, nt->iDb); + } + sqlite3VdbeAddOp(v, OP_Close, 0, 0); + sqlite3VdbeOp3(v, OP_ParseSchema, nt->iDb, 0, + sqlite3MPrintf("type='trigger' AND name='%q'", nt->name), P3_DYNAMIC); + } + + if( db->init.busy ){ + Table *pTab; + sqlite3HashInsert(&db->aDb[nt->iDb].trigHash, + nt->name, strlen(nt->name)+1, nt); + pTab = sqlite3LocateTable(pParse, nt->table, db->aDb[nt->iTabDb].zName); + assert( pTab!=0 ); + nt->pNext = pTab->pTrigger; + pTab->pTrigger = nt; + nt = 0; + } + +triggerfinish_cleanup: + sqlite3DeleteTrigger(nt); + sqlite3DeleteTrigger(pParse->pNewTrigger); + pParse->pNewTrigger = 0; + sqlite3DeleteTriggerStep(pStepList); +} + +/* +** Make a copy of all components of the given trigger step. This has +** the effect of copying all Expr.token.z values into memory obtained +** from sqliteMalloc(). As initially created, the Expr.token.z values +** all point to the input string that was fed to the parser. But that +** string is ephemeral - it will go away as soon as the sqlite3_exec() +** call that started the parser exits. This routine makes a persistent +** copy of all the Expr.token.z strings so that the TriggerStep structure +** will be valid even after the sqlite3_exec() call returns. +*/ +static void sqlitePersistTriggerStep(TriggerStep *p){ + if( p->target.z ){ + p->target.z = sqliteStrNDup(p->target.z, p->target.n); + p->target.dyn = 1; + } + if( p->pSelect ){ + Select *pNew = sqlite3SelectDup(p->pSelect); + sqlite3SelectDelete(p->pSelect); + p->pSelect = pNew; + } + if( p->pWhere ){ + Expr *pNew = sqlite3ExprDup(p->pWhere); + sqlite3ExprDelete(p->pWhere); + p->pWhere = pNew; + } + if( p->pExprList ){ + ExprList *pNew = sqlite3ExprListDup(p->pExprList); + sqlite3ExprListDelete(p->pExprList); + p->pExprList = pNew; + } + if( p->pIdList ){ + IdList *pNew = sqlite3IdListDup(p->pIdList); + sqlite3IdListDelete(p->pIdList); + p->pIdList = pNew; + } +} + +/* +** Turn a SELECT statement (that the pSelect parameter points to) into +** a trigger step. Return a pointer to a TriggerStep structure. +** +** The parser calls this routine when it finds a SELECT statement in +** body of a TRIGGER. +*/ +TriggerStep *sqlite3TriggerSelectStep(Select *pSelect){ + TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep)); + if( pTriggerStep==0 ) return 0; + + pTriggerStep->op = TK_SELECT; + pTriggerStep->pSelect = pSelect; + pTriggerStep->orconf = OE_Default; + sqlitePersistTriggerStep(pTriggerStep); + + return pTriggerStep; +} + +/* +** Build a trigger step out of an INSERT statement. Return a pointer +** to the new trigger step. +** +** The parser calls this routine when it sees an INSERT inside the +** body of a trigger. +*/ +TriggerStep *sqlite3TriggerInsertStep( + Token *pTableName, /* Name of the table into which we insert */ + IdList *pColumn, /* List of columns in pTableName to insert into */ + ExprList *pEList, /* The VALUE clause: a list of values to be inserted */ + Select *pSelect, /* A SELECT statement that supplies values */ + int orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */ +){ + TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep)); + if( pTriggerStep==0 ) return 0; + + assert(pEList == 0 || pSelect == 0); + assert(pEList != 0 || pSelect != 0); + + pTriggerStep->op = TK_INSERT; + pTriggerStep->pSelect = pSelect; + pTriggerStep->target = *pTableName; + pTriggerStep->pIdList = pColumn; + pTriggerStep->pExprList = pEList; + pTriggerStep->orconf = orconf; + sqlitePersistTriggerStep(pTriggerStep); + + return pTriggerStep; +} + +/* +** Construct a trigger step that implements an UPDATE statement and return +** a pointer to that trigger step. The parser calls this routine when it +** sees an UPDATE statement inside the body of a CREATE TRIGGER. +*/ +TriggerStep *sqlite3TriggerUpdateStep( + Token *pTableName, /* Name of the table to be updated */ + ExprList *pEList, /* The SET clause: list of column and new values */ + Expr *pWhere, /* The WHERE clause */ + int orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */ +){ + TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep)); + if( pTriggerStep==0 ) return 0; + + pTriggerStep->op = TK_UPDATE; + pTriggerStep->target = *pTableName; + pTriggerStep->pExprList = pEList; + pTriggerStep->pWhere = pWhere; + pTriggerStep->orconf = orconf; + sqlitePersistTriggerStep(pTriggerStep); + + return pTriggerStep; +} + +/* +** Construct a trigger step that implements a DELETE statement and return +** a pointer to that trigger step. The parser calls this routine when it +** sees a DELETE statement inside the body of a CREATE TRIGGER. +*/ +TriggerStep *sqlite3TriggerDeleteStep(Token *pTableName, Expr *pWhere){ + TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep)); + if( pTriggerStep==0 ) return 0; + + pTriggerStep->op = TK_DELETE; + pTriggerStep->target = *pTableName; + pTriggerStep->pWhere = pWhere; + pTriggerStep->orconf = OE_Default; + sqlitePersistTriggerStep(pTriggerStep); + + return pTriggerStep; +} + +/* +** Recursively delete a Trigger structure +*/ +void sqlite3DeleteTrigger(Trigger *pTrigger){ + if( pTrigger==0 ) return; + sqlite3DeleteTriggerStep(pTrigger->step_list); + sqliteFree(pTrigger->name); + sqliteFree(pTrigger->table); + sqlite3ExprDelete(pTrigger->pWhen); + sqlite3IdListDelete(pTrigger->pColumns); + if( pTrigger->nameToken.dyn ) sqliteFree((char*)pTrigger->nameToken.z); + sqliteFree(pTrigger); +} + +/* +** This function is called to drop a trigger from the database schema. +** +** This may be called directly from the parser and therefore identifies +** the trigger by name. The sqlite3DropTriggerPtr() routine does the +** same job as this routine except it takes a pointer to the trigger +** instead of the trigger name. +**/ +void sqlite3DropTrigger(Parse *pParse, SrcList *pName){ + Trigger *pTrigger = 0; + int i; + const char *zDb; + const char *zName; + int nName; + sqlite3 *db = pParse->db; + + if( sqlite3_malloc_failed ) goto drop_trigger_cleanup; + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ + goto drop_trigger_cleanup; + } + + assert( pName->nSrc==1 ); + zDb = pName->a[0].zDatabase; + zName = pName->a[0].zName; + nName = strlen(zName); + for(i=0; i<db->nDb; i++){ + int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ + if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue; + pTrigger = sqlite3HashFind(&(db->aDb[j].trigHash), zName, nName+1); + if( pTrigger ) break; + } + if( !pTrigger ){ + sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0); + goto drop_trigger_cleanup; + } + sqlite3DropTriggerPtr(pParse, pTrigger, 0); + +drop_trigger_cleanup: + sqlite3SrcListDelete(pName); +} + +/* +** Return a pointer to the Table structure for the table that a trigger +** is set on. +*/ +static Table *tableOfTrigger(sqlite3 *db, Trigger *pTrigger){ + return sqlite3FindTable(db,pTrigger->table,db->aDb[pTrigger->iTabDb].zName); +} + + +/* +** Drop a trigger given a pointer to that trigger. If nested is false, +** then also generate code to remove the trigger from the SQLITE_MASTER +** table. +*/ +void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger, int nested){ + Table *pTable; + Vdbe *v; + sqlite3 *db = pParse->db; + int iDb; + + iDb = pTrigger->iDb; + assert( iDb>=0 && iDb<db->nDb ); + pTable = tableOfTrigger(db, pTrigger); + assert(pTable); + assert( pTable->iDb==iDb || iDb==1 ); +#ifndef SQLITE_OMIT_AUTHORIZATION + { + int code = SQLITE_DROP_TRIGGER; + const char *zDb = db->aDb[iDb].zName; + const char *zTab = SCHEMA_TABLE(iDb); + if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER; + if( sqlite3AuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) || + sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ + return; + } + } +#endif + + /* Generate code to destroy the database record of the trigger. + */ + if( pTable!=0 && (v = sqlite3GetVdbe(pParse))!=0 ){ + int base; + static const VdbeOpList dropTrigger[] = { + { OP_Rewind, 0, ADDR(9), 0}, + { OP_String8, 0, 0, 0}, /* 1 */ + { OP_Column, 0, 1, 0}, + { OP_Ne, 0, ADDR(8), 0}, + { OP_String8, 0, 0, "trigger"}, + { OP_Column, 0, 0, 0}, + { OP_Ne, 0, ADDR(8), 0}, + { OP_Delete, 0, 0, 0}, + { OP_Next, 0, ADDR(1), 0}, /* 8 */ + }; + + sqlite3BeginWriteOperation(pParse, 0, iDb); + sqlite3OpenMasterTable(v, iDb); + base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger); + sqlite3VdbeChangeP3(v, base+1, pTrigger->name, 0); + sqlite3ChangeCookie(db, v, iDb); + sqlite3VdbeAddOp(v, OP_Close, 0, 0); + sqlite3VdbeOp3(v, OP_DropTrigger, iDb, 0, pTrigger->name, 0); + } +} + +/* +** Remove a trigger from the hash tables of the sqlite* pointer. +*/ +void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){ + Trigger *pTrigger; + int nName = strlen(zName); + pTrigger = sqlite3HashInsert(&(db->aDb[iDb].trigHash), zName, nName+1, 0); + if( pTrigger ){ + Table *pTable = tableOfTrigger(db, pTrigger); + assert( pTable!=0 ); + if( pTable->pTrigger == pTrigger ){ + pTable->pTrigger = pTrigger->pNext; + }else{ + Trigger *cc = pTable->pTrigger; + while( cc ){ + if( cc->pNext == pTrigger ){ + cc->pNext = cc->pNext->pNext; + break; + } + cc = cc->pNext; + } + assert(cc); + } + sqlite3DeleteTrigger(pTrigger); + db->flags |= SQLITE_InternChanges; + } +} + +/* +** pEList is the SET clause of an UPDATE statement. Each entry +** in pEList is of the format <id>=<expr>. If any of the entries +** in pEList have an <id> which matches an identifier in pIdList, +** then return TRUE. If pIdList==NULL, then it is considered a +** wildcard that matches anything. Likewise if pEList==NULL then +** it matches anything so always return true. Return false only +** if there is no match. +*/ +static int checkColumnOverLap(IdList *pIdList, ExprList *pEList){ + int e; + if( !pIdList || !pEList ) return 1; + for(e=0; e<pEList->nExpr; e++){ + if( sqlite3IdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1; + } + return 0; +} + +/* A global variable that is TRUE if we should always set up temp tables for + * for triggers, even if there are no triggers to code. This is used to test + * how much overhead the triggers algorithm is causing. + * + * This flag can be set or cleared using the "trigger_overhead_test" pragma. + * The pragma is not documented since it is not really part of the interface + * to SQLite, just the test procedure. +*/ +int sqlite3_always_code_trigger_setup = 0; + +/* + * Returns true if a trigger matching op, tr_tm and foreach that is NOT already + * on the Parse objects trigger-stack (to prevent recursive trigger firing) is + * found in the list specified as pTrigger. + */ +int sqlite3TriggersExist( + Parse *pParse, /* Used to check for recursive triggers */ + Trigger *pTrigger, /* A list of triggers associated with a table */ + int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */ + int tr_tm, /* one of TK_BEFORE, TK_AFTER */ + int foreach, /* one of TK_ROW or TK_STATEMENT */ + ExprList *pChanges /* Columns that change in an UPDATE statement */ +){ + Trigger * pTriggerCursor; + + if( sqlite3_always_code_trigger_setup ){ + return 1; + } + + pTriggerCursor = pTrigger; + while( pTriggerCursor ){ + if( pTriggerCursor->op == op && + pTriggerCursor->tr_tm == tr_tm && + pTriggerCursor->foreach == foreach && + checkColumnOverLap(pTriggerCursor->pColumns, pChanges) ){ + TriggerStack * ss; + ss = pParse->trigStack; + while( ss && ss->pTrigger != pTrigger ){ + ss = ss->pNext; + } + if( !ss )return 1; + } + pTriggerCursor = pTriggerCursor->pNext; + } + + return 0; +} + +/* +** Convert the pStep->target token into a SrcList and return a pointer +** to that SrcList. +** +** This routine adds a specific database name, if needed, to the target when +** forming the SrcList. This prevents a trigger in one database from +** referring to a target in another database. An exception is when the +** trigger is in TEMP in which case it can refer to any other database it +** wants. +*/ +static SrcList *targetSrcList( + Parse *pParse, /* The parsing context */ + TriggerStep *pStep /* The trigger containing the target token */ +){ + Token sDb; /* Dummy database name token */ + int iDb; /* Index of the database to use */ + SrcList *pSrc; /* SrcList to be returned */ + + iDb = pStep->pTrig->iDb; + if( iDb==0 || iDb>=2 ){ + assert( iDb<pParse->db->nDb ); + sDb.z = pParse->db->aDb[iDb].zName; + sDb.n = strlen(sDb.z); + pSrc = sqlite3SrcListAppend(0, &sDb, &pStep->target); + } else { + pSrc = sqlite3SrcListAppend(0, &pStep->target, 0); + } + return pSrc; +} + +/* +** Generate VDBE code for zero or more statements inside the body of a +** trigger. +*/ +static int codeTriggerProgram( + Parse *pParse, /* The parser context */ + TriggerStep *pStepList, /* List of statements inside the trigger body */ + int orconfin /* Conflict algorithm. (OE_Abort, etc) */ +){ + TriggerStep * pTriggerStep = pStepList; + int orconf; + Vdbe *v = pParse->pVdbe; + + assert( pTriggerStep!=0 ); + assert( v!=0 ); + sqlite3VdbeAddOp(v, OP_ContextPush, 0, 0); + VdbeComment((v, "# begin trigger %s", pStepList->pTrig->name)); + while( pTriggerStep ){ + orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin; + pParse->trigStack->orconf = orconf; + switch( pTriggerStep->op ){ + case TK_SELECT: { + Select * ss = sqlite3SelectDup(pTriggerStep->pSelect); + assert(ss); + assert(ss->pSrc); + sqlite3Select(pParse, ss, SRT_Discard, 0, 0, 0, 0, 0); + sqlite3SelectDelete(ss); + break; + } + case TK_UPDATE: { + SrcList *pSrc; + pSrc = targetSrcList(pParse, pTriggerStep); + sqlite3VdbeAddOp(v, OP_ResetCount, 0, 0); + sqlite3Update(pParse, pSrc, + sqlite3ExprListDup(pTriggerStep->pExprList), + sqlite3ExprDup(pTriggerStep->pWhere), orconf); + sqlite3VdbeAddOp(v, OP_ResetCount, 1, 0); + break; + } + case TK_INSERT: { + SrcList *pSrc; + pSrc = targetSrcList(pParse, pTriggerStep); + sqlite3VdbeAddOp(v, OP_ResetCount, 0, 0); + sqlite3Insert(pParse, pSrc, + sqlite3ExprListDup(pTriggerStep->pExprList), + sqlite3SelectDup(pTriggerStep->pSelect), + sqlite3IdListDup(pTriggerStep->pIdList), orconf); + sqlite3VdbeAddOp(v, OP_ResetCount, 1, 0); + break; + } + case TK_DELETE: { + SrcList *pSrc; + sqlite3VdbeAddOp(v, OP_ResetCount, 0, 0); + pSrc = targetSrcList(pParse, pTriggerStep); + sqlite3DeleteFrom(pParse, pSrc, sqlite3ExprDup(pTriggerStep->pWhere)); + sqlite3VdbeAddOp(v, OP_ResetCount, 1, 0); + break; + } + default: + assert(0); + } + pTriggerStep = pTriggerStep->pNext; + } + sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); + VdbeComment((v, "# end trigger %s", pStepList->pTrig->name)); + + return 0; +} + +/* +** This is called to code FOR EACH ROW triggers. +** +** When the code that this function generates is executed, the following +** must be true: +** +** 1. No cursors may be open in the main database. (But newIdx and oldIdx +** can be indices of cursors in temporary tables. See below.) +** +** 2. If the triggers being coded are ON INSERT or ON UPDATE triggers, then +** a temporary vdbe cursor (index newIdx) must be open and pointing at +** a row containing values to be substituted for new.* expressions in the +** trigger program(s). +** +** 3. If the triggers being coded are ON DELETE or ON UPDATE triggers, then +** a temporary vdbe cursor (index oldIdx) must be open and pointing at +** a row containing values to be substituted for old.* expressions in the +** trigger program(s). +** +*/ +int sqlite3CodeRowTrigger( + Parse *pParse, /* Parse context */ + int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */ + ExprList *pChanges, /* Changes list for any UPDATE OF triggers */ + int tr_tm, /* One of TK_BEFORE, TK_AFTER */ + Table *pTab, /* The table to code triggers from */ + int newIdx, /* The indice of the "new" row to access */ + int oldIdx, /* The indice of the "old" row to access */ + int orconf, /* ON CONFLICT policy */ + int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */ +){ + Trigger *pTrigger; + TriggerStack *pStack; + TriggerStack trigStackEntry; + + assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE); + assert(tr_tm == TK_BEFORE || tr_tm == TK_AFTER ); + + assert(newIdx != -1 || oldIdx != -1); + + pTrigger = pTab->pTrigger; + while( pTrigger ){ + int fire_this = 0; + + /* determine whether we should code this trigger */ + if( pTrigger->op == op && pTrigger->tr_tm == tr_tm && + pTrigger->foreach == TK_ROW ){ + fire_this = 1; + for(pStack=pParse->trigStack; pStack; pStack=pStack->pNext){ + if( pStack->pTrigger==pTrigger ){ + fire_this = 0; + } + } + if( op == TK_UPDATE && pTrigger->pColumns && + !checkColumnOverLap(pTrigger->pColumns, pChanges) ){ + fire_this = 0; + } + } + + if( fire_this ){ + int endTrigger; + SrcList dummyTablist; + Expr * whenExpr; + AuthContext sContext; + + dummyTablist.nSrc = 0; + + /* Push an entry on to the trigger stack */ + trigStackEntry.pTrigger = pTrigger; + trigStackEntry.newIdx = newIdx; + trigStackEntry.oldIdx = oldIdx; + trigStackEntry.pTab = pTab; + trigStackEntry.pNext = pParse->trigStack; + trigStackEntry.ignoreJump = ignoreJump; + pParse->trigStack = &trigStackEntry; + sqlite3AuthContextPush(pParse, &sContext, pTrigger->name); + + /* code the WHEN clause */ + endTrigger = sqlite3VdbeMakeLabel(pParse->pVdbe); + whenExpr = sqlite3ExprDup(pTrigger->pWhen); + if( sqlite3ExprResolveIds(pParse, &dummyTablist, 0, whenExpr) ){ + pParse->trigStack = trigStackEntry.pNext; + sqlite3ExprDelete(whenExpr); + return 1; + } + sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, 1); + sqlite3ExprDelete(whenExpr); + + codeTriggerProgram(pParse, pTrigger->step_list, orconf); + + /* Pop the entry off the trigger stack */ + pParse->trigStack = trigStackEntry.pNext; + sqlite3AuthContextPop(&sContext); + + sqlite3VdbeResolveLabel(pParse->pVdbe, endTrigger); + } + pTrigger = pTrigger->pNext; + } + return 0; +} diff --git a/kopete/plugins/statistics/sqlite/update.c b/kopete/plugins/statistics/sqlite/update.c new file mode 100644 index 00000000..08c7987c --- /dev/null +++ b/kopete/plugins/statistics/sqlite/update.c @@ -0,0 +1,450 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that are called by the parser +** to handle UPDATE statements. +** +** $Id$ +*/ +#include "sqliteInt.h" + +/* +** Process an UPDATE statement. +** +** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL; +** \_______/ \________/ \______/ \________________/ +* onError pTabList pChanges pWhere +*/ +void sqlite3Update( + Parse *pParse, /* The parser context */ + SrcList *pTabList, /* The table in which we should change things */ + ExprList *pChanges, /* Things to be changed */ + Expr *pWhere, /* The WHERE clause. May be null */ + int onError /* How to handle constraint errors */ +){ + int i, j; /* Loop counters */ + Table *pTab; /* The table to be updated */ + int addr = 0; /* VDBE instruction address of the start of the loop */ + WhereInfo *pWInfo; /* Information about the WHERE clause */ + Vdbe *v; /* The virtual database engine */ + Index *pIdx; /* For looping over indices */ + int nIdx; /* Number of indices that need updating */ + int nIdxTotal; /* Total number of indices */ + int iCur; /* VDBE Cursor number of pTab */ + sqlite3 *db; /* The database structure */ + Index **apIdx = 0; /* An array of indices that need updating too */ + char *aIdxUsed = 0; /* aIdxUsed[i]==1 if the i-th index is used */ + int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the + ** an expression for the i-th column of the table. + ** aXRef[i]==-1 if the i-th column is not changed. */ + int chngRecno; /* True if the record number is being changed */ + Expr *pRecnoExpr = 0; /* Expression defining the new record number */ + int openAll = 0; /* True if all indices need to be opened */ + int isView; /* Trying to update a view */ + AuthContext sContext; /* The authorization context */ + + int before_triggers; /* True if there are any BEFORE triggers */ + int after_triggers; /* True if there are any AFTER triggers */ + int row_triggers_exist = 0; /* True if any row triggers exist */ + + int newIdx = -1; /* index of trigger "new" temp table */ + int oldIdx = -1; /* index of trigger "old" temp table */ + + sContext.pParse = 0; + if( pParse->nErr || sqlite3_malloc_failed ) goto update_cleanup; + db = pParse->db; + assert( pTabList->nSrc==1 ); + + /* Locate the table which we want to update. + */ + pTab = sqlite3SrcListLookup(pParse, pTabList); + if( pTab==0 ) goto update_cleanup; + before_triggers = sqlite3TriggersExist(pParse, pTab->pTrigger, + TK_UPDATE, TK_BEFORE, TK_ROW, pChanges); + after_triggers = sqlite3TriggersExist(pParse, pTab->pTrigger, + TK_UPDATE, TK_AFTER, TK_ROW, pChanges); + row_triggers_exist = before_triggers || after_triggers; + isView = pTab->pSelect!=0; + if( sqlite3IsReadOnly(pParse, pTab, before_triggers) ){ + goto update_cleanup; + } + if( isView ){ + if( sqlite3ViewGetColumnNames(pParse, pTab) ){ + goto update_cleanup; + } + } + aXRef = sqliteMallocRaw( sizeof(int) * pTab->nCol ); + if( aXRef==0 ) goto update_cleanup; + for(i=0; i<pTab->nCol; i++) aXRef[i] = -1; + + /* If there are FOR EACH ROW triggers, allocate cursors for the + ** special OLD and NEW tables + */ + if( row_triggers_exist ){ + newIdx = pParse->nTab++; + oldIdx = pParse->nTab++; + } + + /* Allocate a cursors for the main database table and for all indices. + ** The index cursors might not be used, but if they are used they + ** need to occur right after the database cursor. So go ahead and + ** allocate enough space, just in case. + */ + pTabList->a[0].iCursor = iCur = pParse->nTab++; + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + pParse->nTab++; + } + + /* Resolve the column names in all the expressions of the + ** of the UPDATE statement. Also find the column index + ** for each column to be updated in the pChanges array. For each + ** column to be updated, make sure we have authorization to change + ** that column. + */ + chngRecno = 0; + for(i=0; i<pChanges->nExpr; i++){ + if( sqlite3ExprResolveAndCheck(pParse, pTabList, 0, + pChanges->a[i].pExpr, 0, 0) ){ + goto update_cleanup; + } + for(j=0; j<pTab->nCol; j++){ + if( sqlite3StrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){ + if( j==pTab->iPKey ){ + chngRecno = 1; + pRecnoExpr = pChanges->a[i].pExpr; + } + aXRef[j] = i; + break; + } + } + if( j>=pTab->nCol ){ + if( sqlite3IsRowid(pChanges->a[i].zName) ){ + chngRecno = 1; + pRecnoExpr = pChanges->a[i].pExpr; + }else{ + sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName); + goto update_cleanup; + } + } +#ifndef SQLITE_OMIT_AUTHORIZATION + { + int rc; + rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName, + pTab->aCol[j].zName, db->aDb[pTab->iDb].zName); + if( rc==SQLITE_DENY ){ + goto update_cleanup; + }else if( rc==SQLITE_IGNORE ){ + aXRef[j] = -1; + } + } +#endif + } + + /* Allocate memory for the array apIdx[] and fill it with pointers to every + ** index that needs to be updated. Indices only need updating if their + ** key includes one of the columns named in pChanges or if the record + ** number of the original table entry is changing. + */ + for(nIdx=nIdxTotal=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdxTotal++){ + if( chngRecno ){ + i = 0; + }else { + for(i=0; i<pIdx->nColumn; i++){ + if( aXRef[pIdx->aiColumn[i]]>=0 ) break; + } + } + if( i<pIdx->nColumn ) nIdx++; + } + if( nIdxTotal>0 ){ + apIdx = sqliteMallocRaw( sizeof(Index*) * nIdx + nIdxTotal ); + if( apIdx==0 ) goto update_cleanup; + aIdxUsed = (char*)&apIdx[nIdx]; + } + for(nIdx=j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ + if( chngRecno ){ + i = 0; + }else{ + for(i=0; i<pIdx->nColumn; i++){ + if( aXRef[pIdx->aiColumn[i]]>=0 ) break; + } + } + if( i<pIdx->nColumn ){ + if( sqlite3CheckIndexCollSeq(pParse, pIdx) ) goto update_cleanup; + apIdx[nIdx++] = pIdx; + aIdxUsed[j] = 1; + }else{ + aIdxUsed[j] = 0; + } + } + + /* Resolve the column names in all the expressions in the + ** WHERE clause. + */ + if( sqlite3ExprResolveAndCheck(pParse, pTabList, 0, pWhere, 0, 0) ){ + goto update_cleanup; + } + + /* Start the view context + */ + if( isView ){ + sqlite3AuthContextPush(pParse, &sContext, pTab->zName); + } + + /* Begin generating code. + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ) goto update_cleanup; + sqlite3VdbeCountChanges(v); + sqlite3BeginWriteOperation(pParse, 1, pTab->iDb); + + /* If we are trying to update a view, construct that view into + ** a temporary table. + */ + if( isView ){ + Select *pView; + pView = sqlite3SelectDup(pTab->pSelect); + sqlite3Select(pParse, pView, SRT_TempTable, iCur, 0, 0, 0, 0); + sqlite3SelectDelete(pView); + } + + /* Begin the database scan + */ + pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 1, 0); + if( pWInfo==0 ) goto update_cleanup; + + /* Remember the index of every item to be updated. + */ + sqlite3VdbeAddOp(v, OP_ListWrite, 0, 0); + + /* End the database scan loop. + */ + sqlite3WhereEnd(pWInfo); + + /* Initialize the count of updated rows + */ + if( db->flags & SQLITE_CountRows && !pParse->trigStack ){ + sqlite3VdbeAddOp(v, OP_Integer, 0, 0); + } + + if( row_triggers_exist ){ + /* Create pseudo-tables for NEW and OLD + */ + sqlite3VdbeAddOp(v, OP_OpenPseudo, oldIdx, 0); + sqlite3VdbeAddOp(v, OP_SetNumColumns, oldIdx, pTab->nCol); + sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0); + sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol); + + /* The top of the update loop for when there are triggers. + */ + sqlite3VdbeAddOp(v, OP_ListRewind, 0, 0); + addr = sqlite3VdbeAddOp(v, OP_ListRead, 0, 0); + sqlite3VdbeAddOp(v, OP_Dup, 0, 0); + + /* Open a cursor and make it point to the record that is + ** being updated. + */ + sqlite3VdbeAddOp(v, OP_Dup, 0, 0); + if( !isView ){ + sqlite3OpenTableForReading(v, iCur, pTab); + } + sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); + + /* Generate the OLD table + */ + sqlite3VdbeAddOp(v, OP_Recno, iCur, 0); + sqlite3VdbeAddOp(v, OP_RowData, iCur, 0); + sqlite3VdbeAddOp(v, OP_PutIntKey, oldIdx, 0); + + /* Generate the NEW table + */ + if( chngRecno ){ + sqlite3ExprCode(pParse, pRecnoExpr); + }else{ + sqlite3VdbeAddOp(v, OP_Recno, iCur, 0); + } + for(i=0; i<pTab->nCol; i++){ /* TODO: Factor out this loop as common code */ + if( i==pTab->iPKey ){ + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + continue; + } + j = aXRef[i]; + if( j<0 ){ + sqlite3VdbeAddOp(v, OP_Column, iCur, i); + }else{ + sqlite3ExprCode(pParse, pChanges->a[j].pExpr); + } + } + sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); + if( !isView ){ + sqlite3TableAffinityStr(v, pTab); + } + if( pParse->nErr ) goto update_cleanup; + sqlite3VdbeAddOp(v, OP_PutIntKey, newIdx, 0); + if( !isView ){ + sqlite3VdbeAddOp(v, OP_Close, iCur, 0); + } + + /* Fire the BEFORE and INSTEAD OF triggers + */ + if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TK_BEFORE, pTab, + newIdx, oldIdx, onError, addr) ){ + goto update_cleanup; + } + } + + if( !isView ){ + /* + ** Open every index that needs updating. Note that if any + ** index could potentially invoke a REPLACE conflict resolution + ** action, then we need to open all indices because we might need + ** to be deleting some records. + */ + sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0); + sqlite3VdbeAddOp(v, OP_OpenWrite, iCur, pTab->tnum); + sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, pTab->nCol); + if( onError==OE_Replace ){ + openAll = 1; + }else{ + openAll = 0; + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + if( pIdx->onError==OE_Replace ){ + openAll = 1; + break; + } + } + } + for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ + if( openAll || aIdxUsed[i] ){ + sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0); + sqlite3VdbeOp3(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, + (char*)&pIdx->keyInfo, P3_KEYINFO); + assert( pParse->nTab>iCur+i+1 ); + } + } + + /* Loop over every record that needs updating. We have to load + ** the old data for each record to be updated because some columns + ** might not change and we will need to copy the old value. + ** Also, the old data is needed to delete the old index entires. + ** So make the cursor point at the old record. + */ + if( !row_triggers_exist ){ + sqlite3VdbeAddOp(v, OP_ListRewind, 0, 0); + addr = sqlite3VdbeAddOp(v, OP_ListRead, 0, 0); + sqlite3VdbeAddOp(v, OP_Dup, 0, 0); + } + sqlite3VdbeAddOp(v, OP_NotExists, iCur, addr); + + /* If the record number will change, push the record number as it + ** will be after the update. (The old record number is currently + ** on top of the stack.) + */ + if( chngRecno ){ + sqlite3ExprCode(pParse, pRecnoExpr); + sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); + } + + /* Compute new data for this record. + */ + for(i=0; i<pTab->nCol; i++){ + if( i==pTab->iPKey ){ + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + continue; + } + j = aXRef[i]; + if( j<0 ){ + sqlite3VdbeAddOp(v, OP_Column, iCur, i); + }else{ + sqlite3ExprCode(pParse, pChanges->a[j].pExpr); + } + } + + /* Do constraint checks + */ + sqlite3GenerateConstraintChecks(pParse, pTab, iCur, aIdxUsed, chngRecno, 1, + onError, addr); + + /* Delete the old indices for the current record. + */ + sqlite3GenerateRowIndexDelete(db, v, pTab, iCur, aIdxUsed); + + /* If changing the record number, delete the old record. + */ + if( chngRecno ){ + sqlite3VdbeAddOp(v, OP_Delete, iCur, 0); + } + + /* Create the new index entries and the new record. + */ + sqlite3CompleteInsertion(pParse, pTab, iCur, aIdxUsed, chngRecno, 1, -1); + } + + /* Increment the row counter + */ + if( db->flags & SQLITE_CountRows && !pParse->trigStack){ + sqlite3VdbeAddOp(v, OP_AddImm, 1, 0); + } + + /* If there are triggers, close all the cursors after each iteration + ** through the loop. The fire the after triggers. + */ + if( row_triggers_exist ){ + if( !isView ){ + for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ + if( openAll || aIdxUsed[i] ) + sqlite3VdbeAddOp(v, OP_Close, iCur+i+1, 0); + } + sqlite3VdbeAddOp(v, OP_Close, iCur, 0); + } + if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TK_AFTER, pTab, + newIdx, oldIdx, onError, addr) ){ + goto update_cleanup; + } + } + + /* Repeat the above with the next record to be updated, until + ** all record selected by the WHERE clause have been updated. + */ + sqlite3VdbeAddOp(v, OP_Goto, 0, addr); + sqlite3VdbeChangeP2(v, addr, sqlite3VdbeCurrentAddr(v)); + sqlite3VdbeAddOp(v, OP_ListReset, 0, 0); + + /* Close all tables if there were no FOR EACH ROW triggers */ + if( !row_triggers_exist ){ + for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ + if( openAll || aIdxUsed[i] ){ + sqlite3VdbeAddOp(v, OP_Close, iCur+i+1, 0); + } + } + sqlite3VdbeAddOp(v, OP_Close, iCur, 0); + }else{ + sqlite3VdbeAddOp(v, OP_Close, newIdx, 0); + sqlite3VdbeAddOp(v, OP_Close, oldIdx, 0); + } + + /* + ** Return the number of rows that were changed. + */ + if( db->flags & SQLITE_CountRows && !pParse->trigStack ){ + sqlite3VdbeAddOp(v, OP_Callback, 1, 0); + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, "rows updated", P3_STATIC); + } + +update_cleanup: + sqlite3AuthContextPop(&sContext); + sqliteFree(apIdx); + sqliteFree(aXRef); + sqlite3SrcListDelete(pTabList); + sqlite3ExprListDelete(pChanges); + sqlite3ExprDelete(pWhere); + return; +} diff --git a/kopete/plugins/statistics/sqlite/utf.c b/kopete/plugins/statistics/sqlite/utf.c new file mode 100644 index 00000000..58b1a972 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/utf.c @@ -0,0 +1,566 @@ +/* +** 2004 April 13 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains routines used to translate between UTF-8, +** UTF-16, UTF-16BE, and UTF-16LE. +** +** $Id$ +** +** Notes on UTF-8: +** +** Byte-0 Byte-1 Byte-2 Byte-3 Value +** 0xxxxxxx 00000000 00000000 0xxxxxxx +** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx +** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx +** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx +** +** +** Notes on UTF-16: (with wwww+1==uuuuu) +** +** Word-0 Word-1 Value +** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx +** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx +** +** +** BOM or Byte Order Mark: +** 0xff 0xfe little-endian utf-16 follows +** 0xfe 0xff big-endian utf-16 follows +** +** +** Handling of malformed strings: +** +** SQLite accepts and processes malformed strings without an error wherever +** possible. However this is not possible when converting between UTF-8 and +** UTF-16. +** +** When converting malformed UTF-8 strings to UTF-16, one instance of the +** replacement character U+FFFD for each byte that cannot be interpeted as +** part of a valid unicode character. +** +** When converting malformed UTF-16 strings to UTF-8, one instance of the +** replacement character U+FFFD for each pair of bytes that cannot be +** interpeted as part of a valid unicode character. +** +** This file contains the following public routines: +** +** sqlite3VdbeMemTranslate() - Translate the encoding used by a Mem* string. +** sqlite3VdbeMemHandleBom() - Handle byte-order-marks in UTF16 Mem* strings. +** sqlite3utf16ByteLen() - Calculate byte-length of a void* UTF16 string. +** sqlite3utf8CharLen() - Calculate char-length of a char* UTF8 string. +** sqlite3utf8LikeCompare() - Do a LIKE match given two UTF8 char* strings. +** +*/ +#include <assert.h> +#include "sqliteInt.h" +#include "vdbeInt.h" + +/* +** This table maps from the first byte of a UTF-8 character to the number +** of trailing bytes expected. A value '255' indicates that the table key +** is not a legal first byte for a UTF-8 character. +*/ +static const u8 xtra_utf8_bytes[256] = { +/* 0xxxxxxx */ +0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + +/* 10wwwwww */ +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + +/* 110yyyyy */ +1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, +1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + +/* 1110zzzz */ +2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + +/* 11110yyy */ +3, 3, 3, 3, 3, 3, 3, 3, 255, 255, 255, 255, 255, 255, 255, 255, +}; + +/* +** This table maps from the number of trailing bytes in a UTF-8 character +** to an integer constant that is effectively calculated for each character +** read by a naive implementation of a UTF-8 character reader. The code +** in the READ_UTF8 macro explains things best. +*/ +static const int xtra_utf8_bits[4] = { +0, +12416, /* (0xC0 << 6) + (0x80) */ +925824, /* (0xE0 << 12) + (0x80 << 6) + (0x80) */ +63447168 /* (0xF0 << 18) + (0x80 << 12) + (0x80 << 6) + 0x80 */ +}; + +#define READ_UTF8(zIn, c) { \ + int xtra; \ + c = *(zIn)++; \ + xtra = xtra_utf8_bytes[c]; \ + switch( xtra ){ \ + case 255: c = (int)0xFFFD; break; \ + case 3: c = (c<<6) + *(zIn)++; \ + case 2: c = (c<<6) + *(zIn)++; \ + case 1: c = (c<<6) + *(zIn)++; \ + c -= xtra_utf8_bits[xtra]; \ + } \ +} +int sqlite3ReadUtf8(const unsigned char *z){ + int c; + READ_UTF8(z, c); + return c; +} + +#define SKIP_UTF8(zIn) { \ + zIn += (xtra_utf8_bytes[*(u8 *)zIn] + 1); \ +} + +#define WRITE_UTF8(zOut, c) { \ + if( c<0x00080 ){ \ + *zOut++ = (c&0xFF); \ + } \ + else if( c<0x00800 ){ \ + *zOut++ = 0xC0 + ((c>>6)&0x1F); \ + *zOut++ = 0x80 + (c & 0x3F); \ + } \ + else if( c<0x10000 ){ \ + *zOut++ = 0xE0 + ((c>>12)&0x0F); \ + *zOut++ = 0x80 + ((c>>6) & 0x3F); \ + *zOut++ = 0x80 + (c & 0x3F); \ + }else{ \ + *zOut++ = 0xF0 + ((c>>18) & 0x07); \ + *zOut++ = 0x80 + ((c>>12) & 0x3F); \ + *zOut++ = 0x80 + ((c>>6) & 0x3F); \ + *zOut++ = 0x80 + (c & 0x3F); \ + } \ +} + +#define WRITE_UTF16LE(zOut, c) { \ + if( c<=0xFFFF ){ \ + *zOut++ = (c&0x00FF); \ + *zOut++ = ((c>>8)&0x00FF); \ + }else{ \ + *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ + *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \ + *zOut++ = (c&0x00FF); \ + *zOut++ = (0x00DC + ((c>>8)&0x03)); \ + } \ +} + +#define WRITE_UTF16BE(zOut, c) { \ + if( c<=0xFFFF ){ \ + *zOut++ = ((c>>8)&0x00FF); \ + *zOut++ = (c&0x00FF); \ + }else{ \ + *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \ + *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ + *zOut++ = (0x00DC + ((c>>8)&0x03)); \ + *zOut++ = (c&0x00FF); \ + } \ +} + +#define READ_UTF16LE(zIn, c){ \ + c = (*zIn++); \ + c += ((*zIn++)<<8); \ + if( c>=0xD800 && c<=0xE000 ){ \ + int c2 = (*zIn++); \ + c2 += ((*zIn++)<<8); \ + c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ + } \ +} + +#define READ_UTF16BE(zIn, c){ \ + c = ((*zIn++)<<8); \ + c += (*zIn++); \ + if( c>=0xD800 && c<=0xE000 ){ \ + int c2 = ((*zIn++)<<8); \ + c2 += (*zIn++); \ + c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ + } \ +} + +#define SKIP_UTF16BE(zIn){ \ + if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){ \ + zIn += 4; \ + }else{ \ + zIn += 2; \ + } \ +} +#define SKIP_UTF16LE(zIn){ \ + zIn++; \ + if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){ \ + zIn += 3; \ + }else{ \ + zIn += 1; \ + } \ +} + +#define RSKIP_UTF16LE(zIn){ \ + if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){ \ + zIn -= 4; \ + }else{ \ + zIn -= 2; \ + } \ +} +#define RSKIP_UTF16BE(zIn){ \ + zIn--; \ + if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){ \ + zIn -= 3; \ + }else{ \ + zIn -= 1; \ + } \ +} + +/* +** If the TRANSLATE_TRACE macro is defined, the value of each Mem is +** printed on stderr on the way into and out of sqlite3VdbeMemTranslate(). +*/ +/* #define TRANSLATE_TRACE 1 */ + +/* +** This routine transforms the internal text encoding used by pMem to +** desiredEnc. It is an error if the string is already of the desired +** encoding, or if *pMem does not contain a string value. +*/ +int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ + unsigned char zShort[NBFS]; /* Temporary short output buffer */ + int len; /* Maximum length of output string in bytes */ + unsigned char *zOut; /* Output buffer */ + unsigned char *zIn; /* Input iterator */ + unsigned char *zTerm; /* End of input */ + unsigned char *z; /* Output iterator */ + int c; + + assert( pMem->flags&MEM_Str ); + assert( pMem->enc!=desiredEnc ); + assert( pMem->enc!=0 ); + assert( pMem->n>=0 ); + +#ifdef TRANSLATE_TRACE + { + char zBuf[100]; + sqlite3VdbeMemPrettyPrint(pMem, zBuf, 100); + fprintf(stderr, "INPUT: %s\n", zBuf); + } +#endif + + /* If the translation is between UTF-16 little and big endian, then + ** all that is required is to swap the byte order. This case is handled + ** differently from the others. + */ + if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ + u8 temp; + int rc; + rc = sqlite3VdbeMemMakeWriteable(pMem); + if( rc!=SQLITE_OK ){ + assert( rc==SQLITE_NOMEM ); + return SQLITE_NOMEM; + } + zIn = pMem->z; + zTerm = &zIn[pMem->n]; + while( zIn<zTerm ){ + temp = *zIn; + *zIn = *(zIn+1); + zIn++; + *zIn++ = temp; + } + pMem->enc = desiredEnc; + goto translate_out; + } + + /* Set len to the maximum number of bytes required in the output buffer. */ + if( desiredEnc==SQLITE_UTF8 ){ + /* When converting from UTF-16, the maximum growth results from + ** translating a 2-byte character to a 3-byte UTF-8 character (i.e. + ** code-point 0xFFFC). A single byte is required for the output string + ** nul-terminator. + */ + len = (pMem->n/2) * 3 + 1; + }else{ + /* When converting from UTF-8 to UTF-16 the maximum growth is caused + ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 + ** character. Two bytes are required in the output buffer for the + ** nul-terminator. + */ + len = pMem->n * 2 + 2; + } + + /* Set zIn to point at the start of the input buffer and zTerm to point 1 + ** byte past the end. + ** + ** Variable zOut is set to point at the output buffer. This may be space + ** obtained from malloc(), or Mem.zShort, if it large enough and not in + ** use, or the zShort array on the stack (see above). + */ + zIn = pMem->z; + zTerm = &zIn[pMem->n]; + if( len>NBFS ){ + zOut = sqliteMallocRaw(len); + if( !zOut ) return SQLITE_NOMEM; + }else{ + zOut = zShort; + } + z = zOut; + + if( pMem->enc==SQLITE_UTF8 ){ + if( desiredEnc==SQLITE_UTF16LE ){ + /* UTF-8 -> UTF-16 Little-endian */ + while( zIn<zTerm ){ + READ_UTF8(zIn, c); + WRITE_UTF16LE(z, c); + } + }else{ + assert( desiredEnc==SQLITE_UTF16BE ); + /* UTF-8 -> UTF-16 Big-endian */ + while( zIn<zTerm ){ + READ_UTF8(zIn, c); + WRITE_UTF16BE(z, c); + } + } + pMem->n = z - zOut; + *z++ = 0; + }else{ + assert( desiredEnc==SQLITE_UTF8 ); + if( pMem->enc==SQLITE_UTF16LE ){ + /* UTF-16 Little-endian -> UTF-8 */ + while( zIn<zTerm ){ + READ_UTF16LE(zIn, c); + WRITE_UTF8(z, c); + } + }else{ + /* UTF-16 Little-endian -> UTF-8 */ + while( zIn<zTerm ){ + READ_UTF16BE(zIn, c); + WRITE_UTF8(z, c); + } + } + pMem->n = z - zOut; + } + *z = 0; + assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); + + sqlite3VdbeMemRelease(pMem); + pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); + pMem->enc = desiredEnc; + if( zOut==zShort ){ + memcpy(pMem->zShort, zOut, len); + zOut = pMem->zShort; + pMem->flags |= (MEM_Term|MEM_Short); + }else{ + pMem->flags |= (MEM_Term|MEM_Dyn); + } + pMem->z = zOut; + +translate_out: +#ifdef TRANSLATE_TRACE + { + char zBuf[100]; + sqlite3VdbeMemPrettyPrint(pMem, zBuf, 100); + fprintf(stderr, "OUTPUT: %s\n", zBuf); + } +#endif + return SQLITE_OK; +} + +/* +** This routine checks for a byte-order mark at the beginning of the +** UTF-16 string stored in *pMem. If one is present, it is removed and +** the encoding of the Mem adjusted. This routine does not do any +** byte-swapping, it just sets Mem.enc appropriately. +** +** The allocation (static, dynamic etc.) and encoding of the Mem may be +** changed by this function. +*/ +int sqlite3VdbeMemHandleBom(Mem *pMem){ + int rc = SQLITE_OK; + u8 bom = 0; + + if( pMem->n<0 || pMem->n>1 ){ + u8 b1 = *(u8 *)pMem->z; + u8 b2 = *(((u8 *)pMem->z) + 1); + if( b1==0xFE && b2==0xFF ){ + bom = SQLITE_UTF16BE; + } + if( b1==0xFF && b2==0xFE ){ + bom = SQLITE_UTF16LE; + } + } + + if( bom ){ + /* This function is called as soon as a string is stored in a Mem*, + ** from within sqlite3VdbeMemSetStr(). At that point it is not possible + ** for the string to be stored in Mem.zShort, or for it to be stored + ** in dynamic memory with no destructor. + */ + assert( !(pMem->flags&MEM_Short) ); + assert( !(pMem->flags&MEM_Dyn) || pMem->xDel ); + if( pMem->flags & MEM_Dyn ){ + void (*xDel)(void*) = pMem->xDel; + char *z = pMem->z; + pMem->z = 0; + pMem->xDel = 0; + rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom, SQLITE_TRANSIENT); + xDel(z); + }else{ + rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom, + SQLITE_TRANSIENT); + } + } + return rc; +} + +/* +** pZ is a UTF-8 encoded unicode string. If nByte is less than zero, +** return the number of unicode characters in pZ up to (but not including) +** the first 0x00 byte. If nByte is not less than zero, return the +** number of unicode characters in the first nByte of pZ (or up to +** the first 0x00, whichever comes first). +*/ +int sqlite3utf8CharLen(const char *z, int nByte){ + int r = 0; + const char *zTerm; + if( nByte>=0 ){ + zTerm = &z[nByte]; + }else{ + zTerm = (const char *)(-1); + } + assert( z<=zTerm ); + while( *z!=0 && z<zTerm ){ + SKIP_UTF8(z); + r++; + } + return r; +} + +/* +** pZ is a UTF-16 encoded unicode string. If nChar is less than zero, +** return the number of bytes up to (but not including), the first pair +** of consecutive 0x00 bytes in pZ. If nChar is not less than zero, +** then return the number of bytes in the first nChar unicode characters +** in pZ (or up until the first pair of 0x00 bytes, whichever comes first). +*/ +int sqlite3utf16ByteLen(const void *zIn, int nChar){ + int c = 1; + char const *z = zIn; + int n = 0; + if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){ + while( c && ((nChar<0) || n<nChar) ){ + READ_UTF16BE(z, c); + n++; + } + }else{ + while( c && ((nChar<0) || n<nChar) ){ + READ_UTF16LE(z, c); + n++; + } + } + return (z-(char const *)zIn)-((c==0)?2:0); +} + +/* +** UTF-16 implementation of the substr() +*/ +void sqlite3utf16Substr( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int y, z; + unsigned char const *zStr; + unsigned char const *zStrEnd; + unsigned char const *zStart; + unsigned char const *zEnd; + int i; + + zStr = (unsigned char const *)sqlite3_value_text16(argv[0]); + zStrEnd = &zStr[sqlite3_value_bytes16(argv[0])]; + y = sqlite3_value_int(argv[1]); + z = sqlite3_value_int(argv[2]); + + if( y>0 ){ + y = y-1; + zStart = zStr; + if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){ + for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16BE(zStart); + }else{ + for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16LE(zStart); + } + }else{ + zStart = zStrEnd; + if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){ + for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16BE(zStart); + }else{ + for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16LE(zStart); + } + for(; i<0; i++) z -= 1; + } + + zEnd = zStart; + if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){ + for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16BE(zEnd); + }else{ + for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16LE(zEnd); + } + + sqlite3_result_text16(context, zStart, zEnd-zStart, SQLITE_TRANSIENT); +} + +#if defined(SQLITE_TEST) +/* +** This routine is called from the TCL test function "translate_selftest". +** It checks that the primitives for serializing and deserializing +** characters in each encoding are inverses of each other. +*/ +void sqlite3utfSelfTest(){ + int i; + unsigned char zBuf[20]; + unsigned char *z; + int n; + int c; + + for(i=0; i<0x00110000; i++){ + z = zBuf; + WRITE_UTF8(z, i); + n = z-zBuf; + z = zBuf; + READ_UTF8(z, c); + assert( c==i ); + assert( (z-zBuf)==n ); + } + for(i=0; i<0x00110000; i++){ + if( i>=0xD800 && i<=0xE000 ) continue; + z = zBuf; + WRITE_UTF16LE(z, i); + n = z-zBuf; + z = zBuf; + READ_UTF16LE(z, c); + assert( c==i ); + assert( (z-zBuf)==n ); + } + for(i=0; i<0x00110000; i++){ + if( i>=0xD800 && i<=0xE000 ) continue; + z = zBuf; + WRITE_UTF16BE(z, i); + n = z-zBuf; + z = zBuf; + READ_UTF16BE(z, c); + assert( c==i ); + assert( (z-zBuf)==n ); + } +} +#endif diff --git a/kopete/plugins/statistics/sqlite/util.c b/kopete/plugins/statistics/sqlite/util.c new file mode 100644 index 00000000..74ec8979 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/util.c @@ -0,0 +1,962 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Utility functions used throughout sqlite. +** +** This file contains functions for allocating memory, comparing +** strings, and stuff like that. +** +** $Id$ +*/ +#include "sqliteInt.h" +#include <stdarg.h> +#include <ctype.h> + +#if SQLITE_DEBUG>2 && defined(__GLIBC__) +#include <execinfo.h> +void print_stack_trace(){ + void *bt[30]; + int i; + int n = backtrace(bt, 30); + + sqlite3DebugPrintf("STACK: "); + for(i=0; i<n;i++){ + sqlite3DebugPrintf("%p ", bt[i]); + } + sqlite3DebugPrintf("\n"); +} +#else +#define print_stack_trace() +#endif + +/* +** If malloc() ever fails, this global variable gets set to 1. +** This causes the library to abort and never again function. +*/ +int sqlite3_malloc_failed = 0; + +/* +** If SQLITE_DEBUG is defined, then use versions of malloc() and +** free() that track memory usage and check for buffer overruns. +*/ +#ifdef SQLITE_DEBUG + +/* +** For keeping track of the number of mallocs and frees. This +** is used to check for memory leaks. +*/ +int sqlite3_nMalloc; /* Number of sqliteMalloc() calls */ +int sqlite3_nFree; /* Number of sqliteFree() calls */ +int sqlite3_iMallocFail; /* Fail sqliteMalloc() after this many calls */ +#if SQLITE_DEBUG>1 +static int memcnt = 0; +#endif + +/* +** Number of 32-bit guard words +*/ +#define N_GUARD 1 + +/* +** Allocate new memory and set it to zero. Return NULL if +** no memory is available. +*/ +void *sqlite3Malloc_(int n, int bZero, char *zFile, int line){ + void *p; + int *pi; + int i, k; + if( sqlite3_iMallocFail>=0 ){ + sqlite3_iMallocFail--; + if( sqlite3_iMallocFail==0 ){ + sqlite3_malloc_failed++; +#if SQLITE_DEBUG>1 + fprintf(stderr,"**** failed to allocate %d bytes at %s:%d\n", + n, zFile,line); +#endif + sqlite3_iMallocFail--; + return 0; + } + } + if( n==0 ) return 0; + k = (n+sizeof(int)-1)/sizeof(int); + pi = malloc( (N_GUARD*2+1+k)*sizeof(int)); + if( pi==0 ){ + sqlite3_malloc_failed++; + return 0; + } + sqlite3_nMalloc++; + for(i=0; i<N_GUARD; i++) pi[i] = 0xdead1122; + pi[N_GUARD] = n; + for(i=0; i<N_GUARD; i++) pi[k+1+N_GUARD+i] = 0xdead3344; + p = &pi[N_GUARD+1]; + memset(p, bZero==0, n); +#if SQLITE_DEBUG>1 + print_stack_trace(); + fprintf(stderr,"%06d malloc %d bytes at 0x%x from %s:%d\n", + ++memcnt, n, (int)p, zFile,line); +#endif + return p; +} + +/* +** Check to see if the given pointer was obtained from sqliteMalloc() +** and is able to hold at least N bytes. Raise an exception if this +** is not the case. +** +** This routine is used for testing purposes only. +*/ +void sqlite3CheckMemory(void *p, int N){ + int *pi = p; + int n, i, k; + pi -= N_GUARD+1; + for(i=0; i<N_GUARD; i++){ + assert( pi[i]==0xdead1122 ); + } + n = pi[N_GUARD]; + assert( N>=0 && N<n ); + k = (n+sizeof(int)-1)/sizeof(int); + for(i=0; i<N_GUARD; i++){ + assert( pi[k+N_GUARD+1+i]==0xdead3344 ); + } +} + +/* +** Free memory previously obtained from sqliteMalloc() +*/ +void sqlite3Free_(void *p, char *zFile, int line){ + if( p ){ + int *pi, i, k, n; + pi = p; + pi -= N_GUARD+1; + sqlite3_nFree++; + for(i=0; i<N_GUARD; i++){ + if( pi[i]!=0xdead1122 ){ + fprintf(stderr,"Low-end memory corruption at 0x%x\n", (int)p); + return; + } + } + n = pi[N_GUARD]; + k = (n+sizeof(int)-1)/sizeof(int); + for(i=0; i<N_GUARD; i++){ + if( pi[k+N_GUARD+1+i]!=0xdead3344 ){ + fprintf(stderr,"High-end memory corruption at 0x%x\n", (int)p); + return; + } + } + memset(pi, 0xff, (k+N_GUARD*2+1)*sizeof(int)); +#if SQLITE_DEBUG>1 + fprintf(stderr,"%06d free %d bytes at 0x%x from %s:%d\n", + ++memcnt, n, (int)p, zFile,line); +#endif + free(pi); + } +} + +/* +** Resize a prior allocation. If p==0, then this routine +** works just like sqliteMalloc(). If n==0, then this routine +** works just like sqliteFree(). +*/ +void *sqlite3Realloc_(void *oldP, int n, char *zFile, int line){ + int *oldPi, *pi, i, k, oldN, oldK; + void *p; + if( oldP==0 ){ + return sqlite3Malloc_(n,1,zFile,line); + } + if( n==0 ){ + sqlite3Free_(oldP,zFile,line); + return 0; + } + oldPi = oldP; + oldPi -= N_GUARD+1; + if( oldPi[0]!=0xdead1122 ){ + fprintf(stderr,"Low-end memory corruption in realloc at 0x%x\n", (int)oldP); + return 0; + } + oldN = oldPi[N_GUARD]; + oldK = (oldN+sizeof(int)-1)/sizeof(int); + for(i=0; i<N_GUARD; i++){ + if( oldPi[oldK+N_GUARD+1+i]!=0xdead3344 ){ + fprintf(stderr,"High-end memory corruption in realloc at 0x%x\n", + (int)oldP); + return 0; + } + } + k = (n + sizeof(int) - 1)/sizeof(int); + pi = malloc( (k+N_GUARD*2+1)*sizeof(int) ); + if( pi==0 ){ + sqlite3_malloc_failed++; + return 0; + } + for(i=0; i<N_GUARD; i++) pi[i] = 0xdead1122; + pi[N_GUARD] = n; + for(i=0; i<N_GUARD; i++) pi[k+N_GUARD+1+i] = 0xdead3344; + p = &pi[N_GUARD+1]; + memcpy(p, oldP, n>oldN ? oldN : n); + if( n>oldN ){ + memset(&((char*)p)[oldN], 0x55, n-oldN); + } + memset(oldPi, 0xab, (oldK+N_GUARD+2)*sizeof(int)); + free(oldPi); +#if SQLITE_DEBUG>1 + print_stack_trace(); + fprintf(stderr,"%06d realloc %d to %d bytes at 0x%x to 0x%x at %s:%d\n", + ++memcnt, oldN, n, (int)oldP, (int)p, zFile, line); +#endif + return p; +} + +/* +** Make a copy of a string in memory obtained from sqliteMalloc() +*/ +char *sqlite3StrDup_(const char *z, char *zFile, int line){ + char *zNew; + if( z==0 ) return 0; + zNew = sqlite3Malloc_(strlen(z)+1, 0, zFile, line); + if( zNew ) strcpy(zNew, z); + return zNew; +} +char *sqlite3StrNDup_(const char *z, int n, char *zFile, int line){ + char *zNew; + if( z==0 ) return 0; + zNew = sqlite3Malloc_(n+1, 0, zFile, line); + if( zNew ){ + memcpy(zNew, z, n); + zNew[n] = 0; + } + return zNew; +} + +/* +** A version of sqliteFree that is always a function, not a macro. +*/ +void sqlite3FreeX(void *p){ + sqliteFree(p); +} +#endif /* SQLITE_DEBUG */ + +/* +** The following versions of malloc() and free() are for use in a +** normal build. +*/ +#if !defined(SQLITE_DEBUG) + +/* +** Allocate new memory and set it to zero. Return NULL if +** no memory is available. See also sqliteMallocRaw(). +*/ +void *sqlite3Malloc(int n){ + void *p; + if( (p = malloc(n))==0 ){ + if( n>0 ) sqlite3_malloc_failed++; + }else{ + memset(p, 0, n); + } + return p; +} + +/* +** Allocate new memory but do not set it to zero. Return NULL if +** no memory is available. See also sqliteMalloc(). +*/ +void *sqlite3MallocRaw(int n){ + void *p; + if( (p = malloc(n))==0 ){ + if( n>0 ) sqlite3_malloc_failed++; + } + return p; +} + +/* +** Free memory previously obtained from sqliteMalloc() +*/ +void sqlite3FreeX(void *p){ + if( p ){ + free(p); + } +} + +/* +** Resize a prior allocation. If p==0, then this routine +** works just like sqliteMalloc(). If n==0, then this routine +** works just like sqliteFree(). +*/ +void *sqlite3Realloc(void *p, int n){ + void *p2; + if( p==0 ){ + return sqliteMalloc(n); + } + if( n==0 ){ + sqliteFree(p); + return 0; + } + p2 = realloc(p, n); + if( p2==0 ){ + sqlite3_malloc_failed++; + } + return p2; +} + +/* +** Make a copy of a string in memory obtained from sqliteMalloc() +*/ +char *sqlite3StrDup(const char *z){ + char *zNew; + if( z==0 ) return 0; + zNew = sqliteMallocRaw(strlen(z)+1); + if( zNew ) strcpy(zNew, z); + return zNew; +} +char *sqlite3StrNDup(const char *z, int n){ + char *zNew; + if( z==0 ) return 0; + zNew = sqliteMallocRaw(n+1); + if( zNew ){ + memcpy(zNew, z, n); + zNew[n] = 0; + } + return zNew; +} +#endif /* !defined(SQLITE_DEBUG) */ + +/* +** Create a string from the 2nd and subsequent arguments (up to the +** first NULL argument), store the string in memory obtained from +** sqliteMalloc() and make the pointer indicated by the 1st argument +** point to that string. The 1st argument must either be NULL or +** point to memory obtained from sqliteMalloc(). +*/ +void sqlite3SetString(char **pz, const char *zFirst, ...){ + va_list ap; + int nByte; + const char *z; + char *zResult; + + if( pz==0 ) return; + nByte = strlen(zFirst) + 1; + va_start(ap, zFirst); + while( (z = va_arg(ap, const char*))!=0 ){ + nByte += strlen(z); + } + va_end(ap); + sqliteFree(*pz); + *pz = zResult = sqliteMallocRaw( nByte ); + if( zResult==0 ){ + return; + } + strcpy(zResult, zFirst); + zResult += strlen(zResult); + va_start(ap, zFirst); + while( (z = va_arg(ap, const char*))!=0 ){ + strcpy(zResult, z); + zResult += strlen(zResult); + } + va_end(ap); +#ifdef SQLITE_DEBUG +#if SQLITE_DEBUG>1 + fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz); +#endif +#endif +} + +/* +** Set the most recent error code and error string for the sqlite +** handle "db". The error code is set to "err_code". +** +** If it is not NULL, string zFormat specifies the format of the +** error string in the style of the printf functions: The following +** format characters are allowed: +** +** %s Insert a string +** %z A string that should be freed after use +** %d Insert an integer +** %T Insert a token +** %S Insert the first element of a SrcList +** +** zFormat and any string tokens that follow it are assumed to be +** encoded in UTF-8. +** +** To clear the most recent error for slqite handle "db", sqlite3Error +** should be called with err_code set to SQLITE_OK and zFormat set +** to NULL. +*/ +void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ + if( db && (db->pErr || (db->pErr = sqlite3ValueNew())) ){ + db->errCode = err_code; + if( zFormat ){ + char *z; + va_list ap; + va_start(ap, zFormat); + z = sqlite3VMPrintf(zFormat, ap); + va_end(ap); + sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3FreeX); + }else{ + sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); + } + } +} + +/* +** Add an error message to pParse->zErrMsg and increment pParse->nErr. +** The following formatting characters are allowed: +** +** %s Insert a string +** %z A string that should be freed after use +** %d Insert an integer +** %T Insert a token +** %S Insert the first element of a SrcList +** +** This function should be used to report any error that occurs whilst +** compiling an SQL statement (i.e. within sqlite3_prepare()). The +** last thing the sqlite3_prepare() function does is copy the error +** stored by this function into the database handle using sqlite3Error(). +** Function sqlite3Error() should be used during statement execution +** (sqlite3_step() etc.). +*/ +void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ + va_list ap; + pParse->nErr++; + sqliteFree(pParse->zErrMsg); + va_start(ap, zFormat); + pParse->zErrMsg = sqlite3VMPrintf(zFormat, ap); + va_end(ap); +} + +/* +** Convert an SQL-style quoted string into a normal string by removing +** the quote characters. The conversion is done in-place. If the +** input does not begin with a quote character, then this routine +** is a no-op. +** +** 2002-Feb-14: This routine is extended to remove MS-Access style +** brackets from around identifers. For example: "[a-b-c]" becomes +** "a-b-c". +*/ +void sqlite3Dequote(char *z){ + int quote; + int i, j; + if( z==0 ) return; + quote = z[0]; + switch( quote ){ + case '\'': break; + case '"': break; + case '[': quote = ']'; break; + default: return; + } + for(i=1, j=0; z[i]; i++){ + if( z[i]==quote ){ + if( z[i+1]==quote ){ + z[j++] = quote; + i++; + }else{ + z[j++] = 0; + break; + } + }else{ + z[j++] = z[i]; + } + } +} + +/* An array to map all upper-case characters into their corresponding +** lower-case character. +*/ +const unsigned char sqlite3UpperToLower[] = { + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, + 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, + 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, + 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103, + 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121, + 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107, + 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125, + 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, + 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161, + 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179, + 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197, + 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215, + 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233, + 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251, + 252,253,254,255 +}; +#define UpperToLower sqlite3UpperToLower + +/* +** This function computes a hash on the name of a keyword. +** Case is not significant. +*/ +int sqlite3HashNoCase(const char *z, int n){ + int h = 0; + if( n<=0 ) n = strlen(z); + while( n > 0 ){ + h = (h<<3) ^ h ^ UpperToLower[(unsigned char)*z++]; + n--; + } + return h & 0x7fffffff; +} + +/* +** Some systems have stricmp(). Others have strcasecmp(). Because +** there is no consistency, we will define our own. +*/ +int sqlite3StrICmp(const char *zLeft, const char *zRight){ + register unsigned char *a, *b; + a = (unsigned char *)zLeft; + b = (unsigned char *)zRight; + while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } + return UpperToLower[*a] - UpperToLower[*b]; +} +int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){ + register unsigned char *a, *b; + a = (unsigned char *)zLeft; + b = (unsigned char *)zRight; + while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } + return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; +} + +/* +** Return TRUE if z is a pure numeric string. Return FALSE if the +** string contains any character which is not part of a number. If +** the string is numeric and contains the '.' character, set *realnum +** to TRUE (otherwise FALSE). +** +** An empty string is considered non-numeric. +*/ +int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ + int incr = (enc==SQLITE_UTF8?1:2); + if( enc==SQLITE_UTF16BE ) z++; + if( *z=='-' || *z=='+' ) z += incr; + if( !isdigit(*(u8*)z) ){ + return 0; + } + z += incr; + if( realnum ) *realnum = 0; + while( isdigit(*(u8*)z) ){ z += incr; } + if( *z=='.' ){ + z += incr; + if( !isdigit(*(u8*)z) ) return 0; + while( isdigit(*(u8*)z) ){ z += incr; } + if( realnum ) *realnum = 1; + } + if( *z=='e' || *z=='E' ){ + z += incr; + if( *z=='+' || *z=='-' ) z += incr; + if( !isdigit(*(u8*)z) ) return 0; + while( isdigit(*(u8*)z) ){ z += incr; } + if( realnum ) *realnum = 1; + } + return *z==0; +} + +/* +** The string z[] is an ascii representation of a real number. +** Convert this string to a double. +** +** This routine assumes that z[] really is a valid number. If it +** is not, the result is undefined. +** +** This routine is used instead of the library atof() function because +** the library atof() might want to use "," as the decimal point instead +** of "." depending on how locale is set. But that would cause problems +** for SQL. So this routine always uses "." regardless of locale. +*/ +double sqlite3AtoF(const char *z, const char **pzEnd){ + int sign = 1; + LONGDOUBLE_TYPE v1 = 0.0; + if( *z=='-' ){ + sign = -1; + z++; + }else if( *z=='+' ){ + z++; + } + while( isdigit(*(u8*)z) ){ + v1 = v1*10.0 + (*z - '0'); + z++; + } + if( *z=='.' ){ + LONGDOUBLE_TYPE divisor = 1.0; + z++; + while( isdigit(*(u8*)z) ){ + v1 = v1*10.0 + (*z - '0'); + divisor *= 10.0; + z++; + } + v1 /= divisor; + } + if( *z=='e' || *z=='E' ){ + int esign = 1; + int eval = 0; + LONGDOUBLE_TYPE scale = 1.0; + z++; + if( *z=='-' ){ + esign = -1; + z++; + }else if( *z=='+' ){ + z++; + } + while( isdigit(*(u8*)z) ){ + eval = eval*10 + *z - '0'; + z++; + } + while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; } + while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; } + while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; } + while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; } + if( esign<0 ){ + v1 /= scale; + }else{ + v1 *= scale; + } + } + if( pzEnd ) *pzEnd = z; + return sign<0 ? -v1 : v1; +} + +/* +** Return TRUE if zNum is a 64-bit signed integer and write +** the value of the integer into *pNum. If zNum is not an integer +** or is an integer that is too large to be expressed with 64 bits, +** then return false. If n>0 and the integer is string is not +** exactly n bytes long, return false. +** +** When this routine was originally written it dealt with only +** 32-bit numbers. At that time, it was much faster than the +** atoi() library routine in RedHat 7.2. +*/ +int sqlite3atoi64(const char *zNum, i64 *pNum){ + i64 v = 0; + int neg; + int i, c; + if( *zNum=='-' ){ + neg = 1; + zNum++; + }else if( *zNum=='+' ){ + neg = 0; + zNum++; + }else{ + neg = 0; + } + for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ + v = v*10 + c - '0'; + } + *pNum = neg ? -v : v; + return c==0 && i>0 && + (i<19 || (i==19 && memcmp(zNum,"9223372036854775807",19)<=0)); +} + +/* +** The string zNum represents an integer. There might be some other +** information following the integer too, but that part is ignored. +** If the integer that the prefix of zNum represents will fit in a +** 32-bit signed integer, return TRUE. Otherwise return FALSE. +** +** This routine returns FALSE for the string -2147483648 even that +** that number will in fact fit in a 32-bit integer. But positive +** 2147483648 will not fit in 32 bits. So it seems safer to return +** false. +*/ +static int sqlite3FitsIn32Bits(const char *zNum){ + int i, c; + if( *zNum=='-' || *zNum=='+' ) zNum++; + for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} + return i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0); +} + +/* +** If zNum represents an integer that will fit in 32-bits, then set +** *pValue to that integer and return true. Otherwise return false. +*/ +int sqlite3GetInt32(const char *zNum, int *pValue){ + if( sqlite3FitsIn32Bits(zNum) ){ + *pValue = atoi(zNum); + return 1; + } + return 0; +} + +/* +** The string zNum represents an integer. There might be some other +** information following the integer too, but that part is ignored. +** If the integer that the prefix of zNum represents will fit in a +** 64-bit signed integer, return TRUE. Otherwise return FALSE. +** +** This routine returns FALSE for the string -9223372036854775808 even that +** that number will, in theory fit in a 64-bit integer. Positive +** 9223373036854775808 will not fit in 64 bits. So it seems safer to return +** false. +*/ +int sqlite3FitsIn64Bits(const char *zNum){ + int i, c; + if( *zNum=='-' || *zNum=='+' ) zNum++; + for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} + return i<19 || (i==19 && memcmp(zNum,"9223372036854775807",19)<=0); +} + + +/* +** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY. +** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN +** when this routine is called. +** +** This routine is a attempt to detect if two threads use the +** same sqlite* pointer at the same time. There is a race +** condition so it is possible that the error is not detected. +** But usually the problem will be seen. The result will be an +** error which can be used to debug the application that is +** using SQLite incorrectly. +** +** Ticket #202: If db->magic is not a valid open value, take care not +** to modify the db structure at all. It could be that db is a stale +** pointer. In other words, it could be that there has been a prior +** call to sqlite3_close(db) and db has been deallocated. And we do +** not want to write into deallocated memory. +*/ +int sqlite3SafetyOn(sqlite3 *db){ + if( db->magic==SQLITE_MAGIC_OPEN ){ + db->magic = SQLITE_MAGIC_BUSY; + return 0; + }else if( db->magic==SQLITE_MAGIC_BUSY || db->magic==SQLITE_MAGIC_ERROR ){ + db->magic = SQLITE_MAGIC_ERROR; + db->flags |= SQLITE_Interrupt; + } + return 1; +} + +/* +** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. +** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY +** when this routine is called. +*/ +int sqlite3SafetyOff(sqlite3 *db){ + if( db->magic==SQLITE_MAGIC_BUSY ){ + db->magic = SQLITE_MAGIC_OPEN; + return 0; + }else if( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ERROR ){ + db->magic = SQLITE_MAGIC_ERROR; + db->flags |= SQLITE_Interrupt; + } + return 1; +} + +/* +** Check to make sure we have a valid db pointer. This test is not +** foolproof but it does provide some measure of protection against +** misuse of the interface such as passing in db pointers that are +** NULL or which have been previously closed. If this routine returns +** TRUE it means that the db pointer is invalid and should not be +** dereferenced for any reason. The calling function should invoke +** SQLITE_MISUSE immediately. +*/ +int sqlite3SafetyCheck(sqlite3 *db){ + int magic; + if( db==0 ) return 1; + magic = db->magic; + if( magic!=SQLITE_MAGIC_CLOSED && + magic!=SQLITE_MAGIC_OPEN && + magic!=SQLITE_MAGIC_BUSY ) return 1; + return 0; +} + +/* +** The variable-length integer encoding is as follows: +** +** KEY: +** A = 0xxxxxxx 7 bits of data and one flag bit +** B = 1xxxxxxx 7 bits of data and one flag bit +** C = xxxxxxxx 8 bits of data +** +** 7 bits - A +** 14 bits - BA +** 21 bits - BBA +** 28 bits - BBBA +** 35 bits - BBBBA +** 42 bits - BBBBBA +** 49 bits - BBBBBBA +** 56 bits - BBBBBBBA +** 64 bits - BBBBBBBBC +*/ + +/* +** Write a 64-bit variable-length integer to memory starting at p[0]. +** The length of data write will be between 1 and 9 bytes. The number +** of bytes written is returned. +** +** A variable-length integer consists of the lower 7 bits of each byte +** for all bytes that have the 8th bit set and one byte with the 8th +** bit clear. Except, if we get to the 9th byte, it stores the full +** 8 bits and is the last byte. +*/ +int sqlite3PutVarint(unsigned char *p, u64 v){ + int i, j, n; + u8 buf[10]; + if( v & 0xff00000000000000 ){ + p[8] = v; + v >>= 8; + for(i=7; i>=0; i--){ + p[i] = (v & 0x7f) | 0x80; + v >>= 7; + } + return 9; + } + n = 0; + do{ + buf[n++] = (v & 0x7f) | 0x80; + v >>= 7; + }while( v!=0 ); + buf[0] &= 0x7f; + assert( n<=9 ); + for(i=0, j=n-1; j>=0; j--, i++){ + p[i] = buf[j]; + } + return n; +} + +/* +** Read a 64-bit variable-length integer from memory starting at p[0]. +** Return the number of bytes read. The value is stored in *v. +*/ +int sqlite3GetVarint(const unsigned char *p, u64 *v){ + u32 x; + u64 x64; + int n; + unsigned char c; + if( ((c = p[0]) & 0x80)==0 ){ + *v = c; + return 1; + } + x = c & 0x7f; + if( ((c = p[1]) & 0x80)==0 ){ + *v = (x<<7) | c; + return 2; + } + x = (x<<7) | (c&0x7f); + if( ((c = p[2]) & 0x80)==0 ){ + *v = (x<<7) | c; + return 3; + } + x = (x<<7) | (c&0x7f); + if( ((c = p[3]) & 0x80)==0 ){ + *v = (x<<7) | c; + return 4; + } + x64 = (x<<7) | (c&0x7f); + n = 4; + do{ + c = p[n++]; + if( n==9 ){ + x64 = (x64<<8) | c; + break; + } + x64 = (x64<<7) | (c&0x7f); + }while( (c & 0x80)!=0 ); + *v = x64; + return n; +} + +/* +** Read a 32-bit variable-length integer from memory starting at p[0]. +** Return the number of bytes read. The value is stored in *v. +*/ +int sqlite3GetVarint32(const unsigned char *p, u32 *v){ + u32 x; + int n; + unsigned char c; + if( ((c = p[0]) & 0x80)==0 ){ + *v = c; + return 1; + } + x = c & 0x7f; + if( ((c = p[1]) & 0x80)==0 ){ + *v = (x<<7) | c; + return 2; + } + x = (x<<7) | (c & 0x7f); + n = 2; + do{ + x = (x<<7) | ((c = p[n++])&0x7f); + }while( (c & 0x80)!=0 && n<9 ); + *v = x; + return n; +} + +/* +** Return the number of bytes that will be needed to store the given +** 64-bit integer. +*/ +int sqlite3VarintLen(u64 v){ + int i = 0; + do{ + i++; + v >>= 7; + }while( v!=0 && i<9 ); + return i; +} + +/* +** Translate a single byte of Hex into an integer. +*/ +static int hexToInt(int h){ + if( h>='0' && h<='9' ){ + return h - '0'; + }else if( h>='a' && h<='f' ){ + return h - 'a' + 10; + }else if( h>='A' && h<='F' ){ + return h - 'A' + 10; + }else{ + return 0; + } +} + +/* +** Convert a BLOB literal of the form "x'hhhhhh'" into its binary +** value. Return a pointer to its binary value. Space to hold the +** binary value has been obtained from malloc and must be freed by +** the calling routine. +*/ +void *sqlite3HexToBlob(const char *z){ + char *zBlob; + int i; + int n = strlen(z); + if( n%2 ) return 0; + + zBlob = (char *)sqliteMalloc(n/2); + for(i=0; i<n; i+=2){ + zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); + } + return zBlob; +} + +#if defined(SQLITE_TEST) +/* +** Convert text generated by the "%p" conversion format back into +** a pointer. +*/ +void *sqlite3TextToPtr(const char *z){ + void *p; + u64 v; + u32 v2; + if( z[0]=='0' && z[1]=='x' ){ + z += 2; + } + v = 0; + while( *z ){ + v = (v<<4) + hexToInt(*z); + z++; + } + if( sizeof(p)==sizeof(v) ){ + p = *(void**)&v; + }else{ + assert( sizeof(p)==sizeof(v2) ); + v2 = (u32)v; + p = *(void**)&v2; + } + return p; +} +#endif diff --git a/kopete/plugins/statistics/sqlite/vacuum.c b/kopete/plugins/statistics/sqlite/vacuum.c new file mode 100644 index 00000000..371a8557 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/vacuum.c @@ -0,0 +1,262 @@ +/* +** 2003 April 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used to implement the VACUUM command. +** +** Most of the code in this file may be omitted by defining the +** SQLITE_OMIT_VACUUM macro. +** +** $Id$ +*/ +#include "sqliteInt.h" +#include "os.h" + +#if !defined(SQLITE_OMIT_VACUUM) || SQLITE_OMIT_VACUUM +/* +** Generate a random name of 20 character in length. +*/ +static void randomName(unsigned char *zBuf){ + static const unsigned char zChars[] = + "abcdefghijklmnopqrstuvwxyz" + "0123456789"; + int i; + sqlite3Randomness(20, zBuf); + for(i=0; i<20; i++){ + zBuf[i] = zChars[ zBuf[i]%(sizeof(zChars)-1) ]; + } +} + +/* +** Execute zSql on database db. Return an error code. +*/ +static int execSql(sqlite3 *db, const char *zSql){ + sqlite3_stmt *pStmt; + if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){ + return sqlite3_errcode(db); + } + while( SQLITE_ROW==sqlite3_step(pStmt) ); + return sqlite3_finalize(pStmt); +} + +/* +** Execute zSql on database db. The statement returns exactly +** one column. Execute this as SQL on the same database. +*/ +static int execExecSql(sqlite3 *db, const char *zSql){ + sqlite3_stmt *pStmt; + int rc; + + rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); + if( rc!=SQLITE_OK ) return rc; + + while( SQLITE_ROW==sqlite3_step(pStmt) ){ + rc = execSql(db, sqlite3_column_text(pStmt, 0)); + if( rc!=SQLITE_OK ){ + sqlite3_finalize(pStmt); + return rc; + } + } + + return sqlite3_finalize(pStmt); +} + +#endif + +/* +** The non-standard VACUUM command is used to clean up the database, +** collapse free space, etc. It is modelled after the VACUUM command +** in PostgreSQL. +** +** In version 1.0.x of SQLite, the VACUUM command would call +** gdbm_reorganize() on all the database tables. But beginning +** with 2.0.0, SQLite no longer uses GDBM so this command has +** become a no-op. +*/ +void sqlite3Vacuum(Parse *pParse, Token *pTableName){ + Vdbe *v = sqlite3GetVdbe(pParse); + if( v ){ + sqlite3VdbeAddOp(v, OP_Vacuum, 0, 0); + } + return; +} + +/* +** This routine implements the OP_Vacuum opcode of the VDBE. +*/ +int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){ + int rc = SQLITE_OK; /* Return code from service routines */ +#if !defined(SQLITE_OMIT_VACUUM) || SQLITE_OMIT_VACUUM + const char *zFilename; /* full pathname of the database file */ + int nFilename; /* number of characters in zFilename[] */ + char *zTemp = 0; /* a temporary file in same directory as zFilename */ + int i; /* Loop counter */ + Btree *pMain; /* The database being vacuumed */ + Btree *pTemp; + char *zSql = 0; + + if( !db->autoCommit ){ + sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction", + (char*)0); + rc = SQLITE_ERROR; + goto end_of_vacuum; + } + + /* Get the full pathname of the database file and create a + ** temporary filename in the same directory as the original file. + */ + pMain = db->aDb[0].pBt; + zFilename = sqlite3BtreeGetFilename(pMain); + assert( zFilename ); + if( zFilename[0]=='\0' ){ + /* The in-memory database. Do nothing. Return directly to avoid causing + ** an error trying to DETACH the vacuum_db (which never got attached) + ** in the exit-handler. + */ + return SQLITE_OK; + } + nFilename = strlen(zFilename); + zTemp = sqliteMalloc( nFilename+100 ); + if( zTemp==0 ){ + rc = SQLITE_NOMEM; + goto end_of_vacuum; + } + strcpy(zTemp, zFilename); + i = 0; + do { + zTemp[nFilename] = '-'; + randomName((unsigned char*)&zTemp[nFilename+1]); + } while( i<10 && sqlite3OsFileExists(zTemp) ); + + /* Attach the temporary database as 'vacuum_db'. The synchronous pragma + ** can be set to 'off' for this file, as it is not recovered if a crash + ** occurs anyway. The integrity of the database is maintained by a + ** (possibly synchronous) transaction opened on the main database before + ** sqlite3BtreeCopyFile() is called. + ** + ** An optimisation would be to use a non-journaled pager. + */ + zSql = sqlite3MPrintf("ATTACH '%q' AS vacuum_db;", zTemp); + if( !zSql ){ + rc = SQLITE_NOMEM; + goto end_of_vacuum; + } + rc = execSql(db, zSql); + sqliteFree(zSql); + zSql = 0; + if( rc!=SQLITE_OK ) goto end_of_vacuum; + assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 ); + pTemp = db->aDb[db->nDb-1].pBt; + sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), + sqlite3BtreeGetReserve(pMain)); + assert( sqlite3BtreeGetPageSize(pTemp)==sqlite3BtreeGetPageSize(pMain) ); + execSql(db, "PRAGMA vacuum_db.synchronous=OFF"); + + /* Begin a transaction */ + rc = execSql(db, "BEGIN;"); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + + /* Query the schema of the main database. Create a mirror schema + ** in the temporary database. + */ + rc = execExecSql(db, + "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14,100000000) " + " FROM sqlite_master WHERE type='table' " + "UNION ALL " + "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14,100000000) " + " FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' " + "UNION ALL " + "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21,100000000) " + " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'" + "UNION ALL " + "SELECT 'CREATE VIEW vacuum_db.' || substr(sql,13,100000000) " + " FROM sqlite_master WHERE type='view'" + ); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + + /* Loop through the tables in the main database. For each, do + ** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy + ** the contents to the temporary database. + */ + rc = execExecSql(db, + "SELECT 'INSERT INTO vacuum_db.' || quote(name) " + "|| ' SELECT * FROM ' || quote(name) || ';'" + "FROM sqlite_master " + "WHERE type = 'table';" + ); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + + /* Copy the triggers from the main database to the temporary database. + ** This was deferred before in case the triggers interfered with copying + ** the data. It's possible the indices should be deferred until this + ** point also. + */ + rc = execExecSql(db, + "SELECT 'CREATE TRIGGER vacuum_db.' || substr(sql, 16, 1000000) " + "FROM sqlite_master WHERE type='trigger'" + ); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + + + /* At this point, unless the main db was completely empty, there is now a + ** transaction open on the vacuum database, but not on the main database. + ** Open a btree level transaction on the main database. This allows a + ** call to sqlite3BtreeCopyFile(). The main database btree level + ** transaction is then committed, so the SQL level never knows it was + ** opened for writing. This way, the SQL transaction used to create the + ** temporary database never needs to be committed. + */ + if( sqlite3BtreeIsInTrans(pTemp) ){ + u32 meta; + + assert( 0==sqlite3BtreeIsInTrans(pMain) ); + rc = sqlite3BtreeBeginTrans(pMain, 1); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + + /* Copy Btree meta values 3 and 4. These correspond to SQL layer meta + ** values 2 and 3, the default values of a couple of pragmas. + */ + rc = sqlite3BtreeGetMeta(pMain, 3, &meta); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + rc = sqlite3BtreeUpdateMeta(pTemp, 3, meta); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + rc = sqlite3BtreeGetMeta(pMain, 4, &meta); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + rc = sqlite3BtreeUpdateMeta(pTemp, 4, meta); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + + rc = sqlite3BtreeCopyFile(pMain, pTemp); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + rc = sqlite3BtreeCommit(pMain); + } + +end_of_vacuum: + /* Currently there is an SQL level transaction open on the vacuum + ** database. No locks are held on any other files (since the main file + ** was committed at the btree level). So it safe to end the transaction + ** by manually setting the autoCommit flag to true and detaching the + ** vacuum database. The vacuum_db journal file is deleted when the pager + ** is closed by the DETACH. + */ + db->autoCommit = 1; + if( rc==SQLITE_OK ){ + rc = execSql(db, "DETACH vacuum_db;"); + }else{ + execSql(db, "DETACH vacuum_db;"); + } + if( zTemp ){ + sqlite3OsDelete(zTemp); + sqliteFree(zTemp); + } + if( zSql ) sqliteFree( zSql ); + sqlite3ResetInternalSchema(db, 0); +#endif + return rc; +} diff --git a/kopete/plugins/statistics/sqlite/vdbe.c b/kopete/plugins/statistics/sqlite/vdbe.c new file mode 100644 index 00000000..58f8c731 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/vdbe.c @@ -0,0 +1,4450 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** The code in this file implements execution method of the +** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") +** handles housekeeping details such as creating and deleting +** VDBE instances. This file is solely interested in executing +** the VDBE program. +** +** In the external interface, an "sqlite3_stmt*" is an opaque pointer +** to a VDBE. +** +** The SQL parser generates a program which is then executed by +** the VDBE to do the work of the SQL statement. VDBE programs are +** similar in form to assembly language. The program consists of +** a linear sequence of operations. Each operation has an opcode +** and 3 operands. Operands P1 and P2 are integers. Operand P3 +** is a null-terminated string. The P2 operand must be non-negative. +** Opcodes will typically ignore one or more operands. Many opcodes +** ignore all three operands. +** +** Computation results are stored on a stack. Each entry on the +** stack is either an integer, a null-terminated string, a floating point +** number, or the SQL "NULL" value. An inplicit conversion from one +** type to the other occurs as necessary. +** +** Most of the code in this file is taken up by the sqlite3VdbeExec() +** function which does the work of interpreting a VDBE program. +** But other routines are also provided to help in building up +** a program instruction by instruction. +** +** Various scripts scan this source file in order to generate HTML +** documentation, headers files, or other derived files. The formatting +** of the code in this file is, therefore, important. See other comments +** in this file for details. If in doubt, do not deviate from existing +** commenting and indentation practices when changing or adding code. +** +** $Id$ +*/ +#include "sqliteInt.h" +#include "os.h" +#include <ctype.h> +#include "vdbeInt.h" + +/* +** The following global variable is incremented every time a cursor +** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test +** procedures use this information to make sure that indices are +** working correctly. This variable has no function other than to +** help verify the correct operation of the library. +*/ +int sqlite3_search_count = 0; + +/* +** When this global variable is positive, it gets decremented once before +** each instruction in the VDBE. When reaches zero, the SQLITE_Interrupt +** of the db.flags field is set in order to simulate and interrupt. +** +** This facility is used for testing purposes only. It does not function +** in an ordinary build. +*/ +int sqlite3_interrupt_count = 0; + +/* +** Release the memory associated with the given stack level. This +** leaves the Mem.flags field in an inconsistent state. +*/ +#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); } + +/* +** Convert the given stack entity into a string if it isn't one +** already. Return non-zero if a malloc() fails. +*/ +#define Stringify(P, enc) \ + if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ + { goto no_mem; } + +/* +** Convert the given stack entity into a string that has been obtained +** from sqliteMalloc(). This is different from Stringify() above in that +** Stringify() will use the NBFS bytes of static string space if the string +** will fit but this routine always mallocs for space. +** Return non-zero if we run out of memory. +*/ +#define Dynamicify(P,enc) sqlite3VdbeMemDynamicify(P) + + +/* +** An ephemeral string value (signified by the MEM_Ephem flag) contains +** a pointer to a dynamically allocated string where some other entity +** is responsible for deallocating that string. Because the stack entry +** does not control the string, it might be deleted without the stack +** entry knowing it. +** +** This routine converts an ephemeral string into a dynamically allocated +** string that the stack entry itself controls. In other words, it +** converts an MEM_Ephem string into an MEM_Dyn string. +*/ +#define Deephemeralize(P) \ + if( ((P)->flags&MEM_Ephem)!=0 \ + && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} + +/* +** Convert the given stack entity into a integer if it isn't one +** already. +** +** Any prior string or real representation is invalidated. +** NULLs are converted into 0. +*/ +#define Integerify(P) sqlite3VdbeMemIntegerify(P) + +/* +** Convert P so that it has type MEM_Real. +** +** Any prior string or integer representation is invalidated. +** NULLs are converted into 0.0. +*/ +#define Realify(P) sqlite3VdbeMemRealify(P) + +/* +** Argument pMem points at a memory cell that will be passed to a +** user-defined function or returned to the user as the result of a query. +** The second argument, 'db_enc' is the text encoding used by the vdbe for +** stack variables. This routine sets the pMem->enc and pMem->type +** variables used by the sqlite3_value_*() routines. +*/ +#define storeTypeInfo(A,B) _storeTypeInfo(A) +static void _storeTypeInfo(Mem *pMem){ + int flags = pMem->flags; + if( flags & MEM_Null ){ + pMem->type = SQLITE_NULL; + } + else if( flags & MEM_Int ){ + pMem->type = SQLITE_INTEGER; + } + else if( flags & MEM_Real ){ + pMem->type = SQLITE_FLOAT; + } + else if( flags & MEM_Str ){ + pMem->type = SQLITE_TEXT; + }else{ + pMem->type = SQLITE_BLOB; + } +} + +/* +** Insert a new aggregate element and make it the element that +** has focus. +** +** Return 0 on success and 1 if memory is exhausted. +*/ +static int AggInsert(Agg *p, char *zKey, int nKey){ + AggElem *pElem; + int i; + int rc; + pElem = sqliteMalloc( sizeof(AggElem) + nKey + + (p->nMem-1)*sizeof(pElem->aMem[0]) ); + if( pElem==0 ) return SQLITE_NOMEM; + pElem->zKey = (char*)&pElem->aMem[p->nMem]; + memcpy(pElem->zKey, zKey, nKey); + pElem->nKey = nKey; + + if( p->pCsr ){ + rc = sqlite3BtreeInsert(p->pCsr, zKey, nKey, &pElem, sizeof(AggElem*)); + if( rc!=SQLITE_OK ){ + sqliteFree(pElem); + return rc; + } + } + + for(i=0; i<p->nMem; i++){ + pElem->aMem[i].flags = MEM_Null; + } + p->pCurrent = pElem; + return 0; +} + +/* +** Pop the stack N times. +*/ +static void popStack(Mem **ppTos, int N){ + Mem *pTos = *ppTos; + while( N>0 ){ + N--; + Release(pTos); + pTos--; + } + *ppTos = pTos; +} + +/* +** The parameters are pointers to the head of two sorted lists +** of Sorter structures. Merge these two lists together and return +** a single sorted list. This routine forms the core of the merge-sort +** algorithm. +** +** In the case of a tie, left sorts in front of right. +*/ +static Sorter *Merge(Sorter *pLeft, Sorter *pRight, KeyInfo *pKeyInfo){ + Sorter sHead; + Sorter *pTail; + pTail = &sHead; + pTail->pNext = 0; + while( pLeft && pRight ){ + int c = sqlite3VdbeRecordCompare(pKeyInfo, pLeft->nKey, pLeft->zKey, + pRight->nKey, pRight->zKey); + if( c<=0 ){ + pTail->pNext = pLeft; + pLeft = pLeft->pNext; + }else{ + pTail->pNext = pRight; + pRight = pRight->pNext; + } + pTail = pTail->pNext; + } + if( pLeft ){ + pTail->pNext = pLeft; + }else if( pRight ){ + pTail->pNext = pRight; + } + return sHead.pNext; +} + +/* +** Allocate cursor number iCur. Return a pointer to it. Return NULL +** if we run out of memory. +*/ +static Cursor *allocateCursor(Vdbe *p, int iCur){ + Cursor *pCx; + assert( iCur<p->nCursor ); + if( p->apCsr[iCur] ){ + sqlite3VdbeFreeCursor(p->apCsr[iCur]); + } + p->apCsr[iCur] = pCx = sqliteMalloc( sizeof(Cursor) ); + return pCx; +} + +/* +** Apply any conversion required by the supplied column affinity to +** memory cell pRec. affinity may be one of: +** +** SQLITE_AFF_NUMERIC +** SQLITE_AFF_TEXT +** SQLITE_AFF_NONE +** SQLITE_AFF_INTEGER +** +*/ +static void applyAffinity(Mem *pRec, char affinity, u8 enc){ + if( affinity==SQLITE_AFF_NONE ){ + /* do nothing */ + }else if( affinity==SQLITE_AFF_TEXT ){ + /* Only attempt the conversion to TEXT if there is an integer or real + ** representation (blob and NULL do not get converted) but no string + ** representation. + */ + if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ + sqlite3VdbeMemStringify(pRec, enc); + } + pRec->flags &= ~(MEM_Real|MEM_Int); + }else{ + if( 0==(pRec->flags&(MEM_Real|MEM_Int)) ){ + /* pRec does not have a valid integer or real representation. + ** Attempt a conversion if pRec has a string representation and + ** it looks like a number. + */ + int realnum; + sqlite3VdbeMemNulTerminate(pRec); + if( pRec->flags&MEM_Str && sqlite3IsNumber(pRec->z, &realnum, enc) ){ + if( realnum ){ + Realify(pRec); + }else{ + Integerify(pRec); + } + } + } + + if( affinity==SQLITE_AFF_INTEGER ){ + /* For INTEGER affinity, try to convert a real value to an int */ + if( (pRec->flags&MEM_Real) && !(pRec->flags&MEM_Int) ){ + pRec->i = pRec->r; + if( ((double)pRec->i)==pRec->r ){ + pRec->flags |= MEM_Int; + } + } + } + } +} + +#ifndef NDEBUG +/* +** Write a nice string representation of the contents of cell pMem +** into buffer zBuf, length nBuf. +*/ +void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf, int nBuf){ + char *zCsr = zBuf; + int f = pMem->flags; + + static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; + + if( f&MEM_Blob ){ + int i; + char c; + if( f & MEM_Dyn ){ + c = 'z'; + assert( (f & (MEM_Static|MEM_Ephem))==0 ); + }else if( f & MEM_Static ){ + c = 't'; + assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); + }else if( f & MEM_Ephem ){ + c = 'e'; + assert( (f & (MEM_Static|MEM_Dyn))==0 ); + }else{ + c = 's'; + } + + zCsr += sprintf(zCsr, "%c", c); + zCsr += sprintf(zCsr, "%d[", pMem->n); + for(i=0; i<16 && i<pMem->n; i++){ + zCsr += sprintf(zCsr, "%02X ", ((int)pMem->z[i] & 0xFF)); + } + for(i=0; i<16 && i<pMem->n; i++){ + char z = pMem->z[i]; + if( z<32 || z>126 ) *zCsr++ = '.'; + else *zCsr++ = z; + } + + zCsr += sprintf(zCsr, "]"); + *zCsr = '\0'; + }else if( f & MEM_Str ){ + int j, k; + zBuf[0] = ' '; + if( f & MEM_Dyn ){ + zBuf[1] = 'z'; + assert( (f & (MEM_Static|MEM_Ephem))==0 ); + }else if( f & MEM_Static ){ + zBuf[1] = 't'; + assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); + }else if( f & MEM_Ephem ){ + zBuf[1] = 'e'; + assert( (f & (MEM_Static|MEM_Dyn))==0 ); + }else{ + zBuf[1] = 's'; + } + k = 2; + k += sprintf(&zBuf[k], "%d", pMem->n); + zBuf[k++] = '['; + for(j=0; j<15 && j<pMem->n; j++){ + u8 c = pMem->z[j]; + if( c>=0x20 && c<0x7f ){ + zBuf[k++] = c; + }else{ + zBuf[k++] = '.'; + } + } + zBuf[k++] = ']'; + k += sprintf(&zBuf[k], encnames[pMem->enc]); + zBuf[k++] = 0; + } +} +#endif + + +#ifdef VDBE_PROFILE +/* +** The following routine only works on pentium-class processors. +** It uses the RDTSC opcode to read cycle count value out of the +** processor and returns that value. This can be used for high-res +** profiling. +*/ +__inline__ unsigned long long int hwtime(void){ + unsigned long long int x; + __asm__("rdtsc\n\t" + "mov %%edx, %%ecx\n\t" + :"=A" (x)); + return x; +} +#endif + +/* +** The CHECK_FOR_INTERRUPT macro defined here looks to see if the +** sqlite3_interrupt() routine has been called. If it has been, then +** processing of the VDBE program is interrupted. +** +** This macro added to every instruction that does a jump in order to +** implement a loop. This test used to be on every single instruction, +** but that meant we more testing that we needed. By only testing the +** flag on jump instructions, we get a (small) speed improvement. +*/ +#define CHECK_FOR_INTERRUPT \ + if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt; + + +/* +** Execute as much of a VDBE program as we can then return. +** +** sqlite3VdbeMakeReady() must be called before this routine in order to +** close the program with a final OP_Halt and to set up the callbacks +** and the error message pointer. +** +** Whenever a row or result data is available, this routine will either +** invoke the result callback (if there is one) or return with +** SQLITE_ROW. +** +** If an attempt is made to open a locked database, then this routine +** will either invoke the busy callback (if there is one) or it will +** return SQLITE_BUSY. +** +** If an error occurs, an error message is written to memory obtained +** from sqliteMalloc() and p->zErrMsg is made to point to that memory. +** The error code is stored in p->rc and this routine returns SQLITE_ERROR. +** +** If the callback ever returns non-zero, then the program exits +** immediately. There will be no error message but the p->rc field is +** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. +** +** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this +** routine to return SQLITE_ERROR. +** +** Other fatal errors return SQLITE_ERROR. +** +** After this routine has finished, sqlite3VdbeFinalize() should be +** used to clean up the mess that was left behind. +*/ +int sqlite3VdbeExec( + Vdbe *p /* The VDBE */ +){ + int pc; /* The program counter */ + Op *pOp; /* Current operation */ + int rc = SQLITE_OK; /* Value to return */ + sqlite3 *db = p->db; /* The database */ + Mem *pTos; /* Top entry in the operand stack */ + char zBuf[100]; /* Space to sprintf() an integer */ +#ifdef VDBE_PROFILE + unsigned long long start; /* CPU clock count at start of opcode */ + int origPc; /* Program counter at start of opcode */ +#endif +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK + int nProgressOps = 0; /* Opcodes executed since progress callback. */ +#endif + + if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE; + assert( db->magic==SQLITE_MAGIC_BUSY ); + assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); + p->rc = SQLITE_OK; + assert( p->explain==0 ); + pTos = p->pTos; + if( sqlite3_malloc_failed ) goto no_mem; + if( p->popStack ){ + popStack(&pTos, p->popStack); + p->popStack = 0; + } + p->resOnStack = 0; + CHECK_FOR_INTERRUPT; + for(pc=p->pc; rc==SQLITE_OK; pc++){ + assert( pc>=0 && pc<p->nOp ); + assert( pTos<=&p->aStack[pc] ); +#ifdef VDBE_PROFILE + origPc = pc; + start = hwtime(); +#endif + pOp = &p->aOp[pc]; + + /* Only allow tracing if NDEBUG is not defined. + */ +#ifndef NDEBUG + if( p->trace ){ + if( pc==0 ){ + printf("VDBE Execution Trace:\n"); + sqlite3VdbePrintSql(p); + } + sqlite3VdbePrintOp(p->trace, pc, pOp); + } +#endif +#ifdef SQLITE_TEST + if( p->trace==0 && pc==0 && sqlite3OsFileExists("vdbe_sqltrace") ){ + sqlite3VdbePrintSql(p); + } +#endif + + + /* Check to see if we need to simulate an interrupt. This only happens + ** if we have a special test build. + */ +#ifdef SQLITE_TEST + if( sqlite3_interrupt_count>0 ){ + sqlite3_interrupt_count--; + if( sqlite3_interrupt_count==0 ){ + sqlite3_interrupt(db); + } + } +#endif + +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK + /* Call the progress callback if it is configured and the required number + ** of VDBE ops have been executed (either since this invocation of + ** sqlite3VdbeExec() or since last time the progress callback was called). + ** If the progress callback returns non-zero, exit the virtual machine with + ** a return code SQLITE_ABORT. + */ + if( db->xProgress ){ + if( db->nProgressOps==nProgressOps ){ + if( db->xProgress(db->pProgressArg)!=0 ){ + rc = SQLITE_ABORT; + continue; /* skip to the next iteration of the for loop */ + } + nProgressOps = 0; + } + nProgressOps++; + } +#endif + + switch( pOp->opcode ){ + +/***************************************************************************** +** What follows is a massive switch statement where each case implements a +** separate instruction in the virtual machine. If we follow the usual +** indentation conventions, each case should be indented by 6 spaces. But +** that is a lot of wasted space on the left margin. So the code within +** the switch statement will break with convention and be flush-left. Another +** big comment (similar to this one) will mark the point in the code where +** we transition back to normal indentation. +** +** The formatting of each case is important. The makefile for SQLite +** generates two C files "opcodes.h" and "opcodes.c" by scanning this +** file looking for lines that begin with "case OP_". The opcodes.h files +** will be filled with #defines that give unique integer values to each +** opcode and the opcodes.c file is filled with an array of strings where +** each string is the symbolic name for the corresponding opcode. If the +** case statement is followed by a comment of the form "/# same as ... #/" +** that comment is used to determine the particular value of the opcode. +** +** Documentation about VDBE opcodes is generated by scanning this file +** for lines of that contain "Opcode:". That line and all subsequent +** comment lines are used in the generation of the opcode.html documentation +** file. +** +** SUMMARY: +** +** Formatting is important to scripts that scan this file. +** Do not deviate from the formatting style currently in use. +** +*****************************************************************************/ + +/* Opcode: Goto * P2 * +** +** An unconditional jump to address P2. +** The next instruction executed will be +** the one at index P2 from the beginning of +** the program. +*/ +case OP_Goto: { + CHECK_FOR_INTERRUPT; + pc = pOp->p2 - 1; + break; +} + +/* Opcode: Gosub * P2 * +** +** Push the current address plus 1 onto the return address stack +** and then jump to address P2. +** +** The return address stack is of limited depth. If too many +** OP_Gosub operations occur without intervening OP_Returns, then +** the return address stack will fill up and processing will abort +** with a fatal error. +*/ +case OP_Gosub: { + assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) ); + p->returnStack[p->returnDepth++] = pc+1; + pc = pOp->p2 - 1; + break; +} + +/* Opcode: Return * * * +** +** Jump immediately to the next instruction after the last unreturned +** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then +** processing aborts with a fatal error. +*/ +case OP_Return: { + assert( p->returnDepth>0 ); + p->returnDepth--; + pc = p->returnStack[p->returnDepth] - 1; + break; +} + +/* Opcode: Halt P1 P2 * +** +** Exit immediately. All open cursors, Lists, Sorts, etc are closed +** automatically. +** +** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), +** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). +** For errors, it can be some other value. If P1!=0 then P2 will determine +** whether or not to rollback the current transaction. Do not rollback +** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, +** then back out all changes that have occurred during this execution of the +** VDBE, but do not rollback the transaction. +** +** There is an implied "Halt 0 0 0" instruction inserted at the very end of +** every program. So a jump past the last instruction of the program +** is the same as executing Halt. +*/ +case OP_Halt: { + p->pTos = pTos; + p->rc = pOp->p1; + p->pc = pc; + p->errorAction = pOp->p2; + if( pOp->p3 ){ + sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0); + } + rc = sqlite3VdbeHalt(p); + if( rc==SQLITE_BUSY ){ + p->rc = SQLITE_BUSY; + return SQLITE_BUSY; + }else if( rc!=SQLITE_OK ){ + p->rc = rc; + } + return p->rc ? SQLITE_ERROR : SQLITE_DONE; +} + +/* Opcode: Integer P1 * P3 +** +** The integer value P1 is pushed onto the stack. If P3 is not zero +** then it is assumed to be a string representation of the same integer. +** If P1 is zero and P3 is not zero, then the value is derived from P3. +*/ +case OP_Integer: { + pTos++; + if( pOp->p3==0 ){ + pTos->flags = MEM_Int; + pTos->i = pOp->p1; + }else{ + pTos->flags = MEM_Str|MEM_Static|MEM_Term; + pTos->z = pOp->p3; + pTos->n = strlen(pTos->z); + pTos->enc = SQLITE_UTF8; + pTos->i = sqlite3VdbeIntValue(pTos); + pTos->flags |= MEM_Int; + } + break; +} + +/* Opcode: Real * * P3 +** +** The string value P3 is converted to a real and pushed on to the stack. +*/ +case OP_Real: { /* same as TK_FLOAT */ + pTos++; + pTos->flags = MEM_Str|MEM_Static|MEM_Term; + pTos->z = pOp->p3; + pTos->n = strlen(pTos->z); + pTos->enc = SQLITE_UTF8; + pTos->r = sqlite3VdbeRealValue(pTos); + pTos->flags |= MEM_Real; + sqlite3VdbeChangeEncoding(pTos, db->enc); + break; +} + +/* Opcode: String8 * * P3 +** +** P3 points to a nul terminated UTF-8 string. This opcode is transformed +** into an OP_String before it is executed for the first time. +*/ +case OP_String8: { /* same as TK_STRING */ + pOp->opcode = OP_String; + + if( db->enc!=SQLITE_UTF8 && pOp->p3 ){ + pTos++; + sqlite3VdbeMemSetStr(pTos, pOp->p3, -1, SQLITE_UTF8, SQLITE_STATIC); + if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, db->enc) ) goto no_mem; + if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem; + pTos->flags &= ~(MEM_Dyn); + pTos->flags |= MEM_Static; + if( pOp->p3type==P3_DYNAMIC ){ + sqliteFree(pOp->p3); + } + pOp->p3type = P3_DYNAMIC; + pOp->p3 = pTos->z; + break; + } + /* Otherwise fall through to the next case, OP_String */ +} + +/* Opcode: String * * P3 +** +** The string value P3 is pushed onto the stack. If P3==0 then a +** NULL is pushed onto the stack. P3 is assumed to be a nul terminated +** string encoded with the database native encoding. +*/ +case OP_String: { + pTos++; + if( pOp->p3 ){ + pTos->flags = MEM_Str|MEM_Static|MEM_Term; + pTos->z = pOp->p3; + if( db->enc==SQLITE_UTF8 ){ + pTos->n = strlen(pTos->z); + }else{ + pTos->n = sqlite3utf16ByteLen(pTos->z, -1); + } + pTos->enc = db->enc; + }else{ + pTos->flags = MEM_Null; + } + break; +} + +/* Opcode: HexBlob * * P3 +** +** P3 is an UTF-8 SQL hex encoding of a blob. The blob is pushed onto the +** vdbe stack. +** +** The first time this instruction executes, in transforms itself into a +** 'Blob' opcode with a binary blob as P3. +*/ +case OP_HexBlob: { /* same as TK_BLOB */ + pOp->opcode = OP_Blob; + pOp->p1 = strlen(pOp->p3)/2; + if( pOp->p1 ){ + char *zBlob = sqlite3HexToBlob(pOp->p3); + if( !zBlob ) goto no_mem; + if( pOp->p3type==P3_DYNAMIC ){ + sqliteFree(pOp->p3); + } + pOp->p3 = zBlob; + pOp->p3type = P3_DYNAMIC; + }else{ + if( pOp->p3type==P3_DYNAMIC ){ + sqliteFree(pOp->p3); + } + pOp->p3type = P3_STATIC; + pOp->p3 = ""; + } + + /* Fall through to the next case, OP_Blob. */ +} + +/* Opcode: Blob P1 * P3 +** +** P3 points to a blob of data P1 bytes long. Push this +** value onto the stack. This instruction is not coded directly +** by the compiler. Instead, the compiler layer specifies +** an OP_HexBlob opcode, with the hex string representation of +** the blob as P3. This opcode is transformed to an OP_Blob +** before execution (within the sqlite3_prepare() function). +*/ +case OP_Blob: { + pTos++; + sqlite3VdbeMemSetStr(pTos, pOp->p3, pOp->p1, 0, 0); + break; +} + +/* Opcode: Variable P1 * * +** +** Push the value of variable P1 onto the stack. A variable is +** an unknown in the original SQL string as handed to sqlite3_compile(). +** Any occurance of the '?' character in the original SQL is considered +** a variable. Variables in the SQL string are number from left to +** right beginning with 1. The values of variables are set using the +** sqlite3_bind() API. +*/ +case OP_Variable: { + int j = pOp->p1 - 1; + assert( j>=0 && j<p->nVar ); + + pTos++; + sqlite3VdbeMemShallowCopy(pTos, &p->aVar[j], MEM_Static); + break; +} + +/* Opcode: Pop P1 * * +** +** P1 elements are popped off of the top of stack and discarded. +*/ +case OP_Pop: { + assert( pOp->p1>=0 ); + popStack(&pTos, pOp->p1); + assert( pTos>=&p->aStack[-1] ); + break; +} + +/* Opcode: Dup P1 P2 * +** +** A copy of the P1-th element of the stack +** is made and pushed onto the top of the stack. +** The top of the stack is element 0. So the +** instruction "Dup 0 0 0" will make a copy of the +** top of the stack. +** +** If the content of the P1-th element is a dynamically +** allocated string, then a new copy of that string +** is made if P2==0. If P2!=0, then just a pointer +** to the string is copied. +** +** Also see the Pull instruction. +*/ +case OP_Dup: { + Mem *pFrom = &pTos[-pOp->p1]; + assert( pFrom<=pTos && pFrom>=p->aStack ); + pTos++; + sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem); + if( pOp->p2 ){ + Deephemeralize(pTos); + } + break; +} + +/* Opcode: Pull P1 * * +** +** The P1-th element is removed from its current location on +** the stack and pushed back on top of the stack. The +** top of the stack is element 0, so "Pull 0 0 0" is +** a no-op. "Pull 1 0 0" swaps the top two elements of +** the stack. +** +** See also the Dup instruction. +*/ +case OP_Pull: { + Mem *pFrom = &pTos[-pOp->p1]; + int i; + Mem ts; + + ts = *pFrom; + Deephemeralize(pTos); + for(i=0; i<pOp->p1; i++, pFrom++){ + Deephemeralize(&pFrom[1]); + assert( (pFrom->flags & MEM_Ephem)==0 ); + *pFrom = pFrom[1]; + if( pFrom->flags & MEM_Short ){ + assert( pFrom->flags & (MEM_Str|MEM_Blob) ); + assert( pFrom->z==pFrom[1].zShort ); + pFrom->z = pFrom->zShort; + } + } + *pTos = ts; + if( pTos->flags & MEM_Short ){ + assert( pTos->flags & (MEM_Str|MEM_Blob) ); + assert( pTos->z==pTos[-pOp->p1].zShort ); + pTos->z = pTos->zShort; + } + break; +} + +/* Opcode: Push P1 * * +** +** Overwrite the value of the P1-th element down on the +** stack (P1==0 is the top of the stack) with the value +** of the top of the stack. Then pop the top of the stack. +*/ +case OP_Push: { + Mem *pTo = &pTos[-pOp->p1]; + + assert( pTo>=p->aStack ); + sqlite3VdbeMemMove(pTo, pTos); + pTos--; + break; +} + +/* Opcode: Callback P1 * * +** +** Pop P1 values off the stack and form them into an array. Then +** invoke the callback function using the newly formed array as the +** 3rd parameter. +*/ +case OP_Callback: { + int i; + assert( p->nResColumn==pOp->p1 ); + + for(i=0; i<pOp->p1; i++){ + Mem *pVal = &pTos[0-i]; + sqlite3VdbeMemNulTerminate(pVal); + storeTypeInfo(pVal, db->enc); + } + + p->resOnStack = 1; + p->nCallback++; + p->popStack = pOp->p1; + p->pc = pc + 1; + p->pTos = pTos; + return SQLITE_ROW; +} + +/* Opcode: Concat P1 P2 * +** +** Look at the first P1+2 elements of the stack. Append them all +** together with the lowest element first. The original P1+2 elements +** are popped from the stack if P2==0 and retained if P2==1. If +** any element of the stack is NULL, then the result is NULL. +** +** When P1==1, this routine makes a copy of the top stack element +** into memory obtained from sqliteMalloc(). +*/ +case OP_Concat: { /* same as TK_CONCAT */ + char *zNew; + int nByte; + int nField; + int i, j; + Mem *pTerm; + + /* Loop through the stack elements to see how long the result will be. */ + nField = pOp->p1 + 2; + pTerm = &pTos[1-nField]; + nByte = 0; + for(i=0; i<nField; i++, pTerm++){ + assert( pOp->p2==0 || (pTerm->flags&MEM_Str) ); + if( pTerm->flags&MEM_Null ){ + nByte = -1; + break; + } + Stringify(pTerm, db->enc); + nByte += pTerm->n; + } + + if( nByte<0 ){ + /* If nByte is less than zero, then there is a NULL value on the stack. + ** In this case just pop the values off the stack (if required) and + ** push on a NULL. + */ + if( pOp->p2==0 ){ + popStack(&pTos, nField); + } + pTos++; + pTos->flags = MEM_Null; + }else{ + /* Otherwise malloc() space for the result and concatenate all the + ** stack values. + */ + zNew = sqliteMallocRaw( nByte+2 ); + if( zNew==0 ) goto no_mem; + j = 0; + pTerm = &pTos[1-nField]; + for(i=j=0; i<nField; i++, pTerm++){ + int n = pTerm->n; + assert( pTerm->flags & MEM_Str ); + memcpy(&zNew[j], pTerm->z, n); + j += n; + } + zNew[j] = 0; + zNew[j+1] = 0; + assert( j==nByte ); + + if( pOp->p2==0 ){ + popStack(&pTos, nField); + } + pTos++; + pTos->n = j; + pTos->flags = MEM_Str|MEM_Dyn|MEM_Term; + pTos->xDel = 0; + pTos->enc = db->enc; + pTos->z = zNew; + } + break; +} + +/* Opcode: Add * * * +** +** Pop the top two elements from the stack, add them together, +** and push the result back onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the addition. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: Multiply * * * +** +** Pop the top two elements from the stack, multiply them together, +** and push the result back onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the multiplication. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: Subtract * * * +** +** Pop the top two elements from the stack, subtract the +** first (what was on top of the stack) from the second (the +** next on stack) +** and push the result back onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the subtraction. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: Divide * * * +** +** Pop the top two elements from the stack, divide the +** first (what was on top of the stack) from the second (the +** next on stack) +** and push the result back onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the division. Division by zero returns NULL. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: Remainder * * * +** +** Pop the top two elements from the stack, divide the +** first (what was on top of the stack) from the second (the +** next on stack) +** and push the remainder after division onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the division. Division by zero returns NULL. +** If either operand is NULL, the result is NULL. +*/ +case OP_Add: /* same as TK_PLUS */ +case OP_Subtract: /* same as TK_MINUS */ +case OP_Multiply: /* same as TK_STAR */ +case OP_Divide: /* same as TK_SLASH */ +case OP_Remainder: { /* same as TK_REM */ + Mem *pNos = &pTos[-1]; + assert( pNos>=p->aStack ); + if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){ + Release(pTos); + pTos--; + Release(pTos); + pTos->flags = MEM_Null; + }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){ + i64 a, b; + a = pTos->i; + b = pNos->i; + switch( pOp->opcode ){ + case OP_Add: b += a; break; + case OP_Subtract: b -= a; break; + case OP_Multiply: b *= a; break; + case OP_Divide: { + if( a==0 ) goto divide_by_zero; + b /= a; + break; + } + default: { + if( a==0 ) goto divide_by_zero; + b %= a; + break; + } + } + Release(pTos); + pTos--; + Release(pTos); + pTos->i = b; + pTos->flags = MEM_Int; + }else{ + double a, b; + a = sqlite3VdbeRealValue(pTos); + b = sqlite3VdbeRealValue(pNos); + switch( pOp->opcode ){ + case OP_Add: b += a; break; + case OP_Subtract: b -= a; break; + case OP_Multiply: b *= a; break; + case OP_Divide: { + if( a==0.0 ) goto divide_by_zero; + b /= a; + break; + } + default: { + int ia = (int)a; + int ib = (int)b; + if( ia==0.0 ) goto divide_by_zero; + b = ib % ia; + break; + } + } + Release(pTos); + pTos--; + Release(pTos); + pTos->r = b; + pTos->flags = MEM_Real; + } + break; + +divide_by_zero: + Release(pTos); + pTos--; + Release(pTos); + pTos->flags = MEM_Null; + break; +} + +/* Opcode: CollSeq * * P3 +** +** P3 is a pointer to a CollSeq struct. If the next call to a user function +** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will +** be returned. This is used by the built-in min(), max() and nullif() +** built-in functions. +** +** The interface used by the implementation of the aforementioned functions +** to retrieve the collation sequence set by this opcode is not available +** publicly, only to user functions defined in func.c. +*/ +case OP_CollSeq: { + assert( pOp->p3type==P3_COLLSEQ ); + break; +} + +/* Opcode: Function P1 P2 P3 +** +** Invoke a user function (P3 is a pointer to a Function structure that +** defines the function) with P1 arguments taken from the stack. Pop all +** arguments from the stack and push back the result. +** +** P2 is a 32-bit bitmask indicating whether or not each argument to the +** function was determined to be constant at compile time. If the first +** argument was constant then bit 0 of P2 is set. This is used to determine +** whether meta data associated with a user function argument using the +** sqlite3_set_auxdata() API may be safely retained until the next +** invocation of this opcode. +** +** See also: AggFunc +*/ +case OP_Function: { + int i; + Mem *pArg; + sqlite3_context ctx; + sqlite3_value **apVal; + int n = pOp->p1; + + n = pOp->p1; + apVal = p->apArg; + assert( apVal || n==0 ); + + pArg = &pTos[1-n]; + for(i=0; i<n; i++, pArg++){ + apVal[i] = pArg; + storeTypeInfo(pArg, db->enc); + } + + assert( pOp->p3type==P3_FUNCDEF || pOp->p3type==P3_VDBEFUNC ); + if( pOp->p3type==P3_FUNCDEF ){ + ctx.pFunc = (FuncDef*)pOp->p3; + ctx.pVdbeFunc = 0; + }else{ + ctx.pVdbeFunc = (VdbeFunc*)pOp->p3; + ctx.pFunc = ctx.pVdbeFunc->pFunc; + } + + ctx.s.flags = MEM_Null; + ctx.s.z = 0; + ctx.s.xDel = 0; + ctx.isError = 0; + ctx.isStep = 0; + if( ctx.pFunc->needCollSeq ){ + assert( pOp>p->aOp ); + assert( pOp[-1].p3type==P3_COLLSEQ ); + assert( pOp[-1].opcode==OP_CollSeq ); + ctx.pColl = (CollSeq *)pOp[-1].p3; + } + if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; + (*ctx.pFunc->xFunc)(&ctx, n, apVal); + if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; + if( sqlite3_malloc_failed ) goto no_mem; + popStack(&pTos, n); + + /* If any auxilary data functions have been called by this user function, + ** immediately call the destructor for any non-static values. + */ + if( ctx.pVdbeFunc ){ + sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p2); + pOp->p3 = (char *)ctx.pVdbeFunc; + pOp->p3type = P3_VDBEFUNC; + } + + /* Copy the result of the function to the top of the stack */ + sqlite3VdbeChangeEncoding(&ctx.s, db->enc); + pTos++; + pTos->flags = 0; + sqlite3VdbeMemMove(pTos, &ctx.s); + + /* If the function returned an error, throw an exception */ + if( ctx.isError ){ + if( !(pTos->flags&MEM_Str) ){ + sqlite3SetString(&p->zErrMsg, "user function error", (char*)0); + }else{ + sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pTos), (char*)0); + sqlite3VdbeChangeEncoding(pTos, db->enc); + } + rc = SQLITE_ERROR; + } + break; +} + +/* Opcode: BitAnd * * * +** +** Pop the top two elements from the stack. Convert both elements +** to integers. Push back onto the stack the bit-wise AND of the +** two elements. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: BitOr * * * +** +** Pop the top two elements from the stack. Convert both elements +** to integers. Push back onto the stack the bit-wise OR of the +** two elements. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: ShiftLeft * * * +** +** Pop the top two elements from the stack. Convert both elements +** to integers. Push back onto the stack the second element shifted +** left by N bits where N is the top element on the stack. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: ShiftRight * * * +** +** Pop the top two elements from the stack. Convert both elements +** to integers. Push back onto the stack the second element shifted +** right by N bits where N is the top element on the stack. +** If either operand is NULL, the result is NULL. +*/ +case OP_BitAnd: /* same as TK_BITAND */ +case OP_BitOr: /* same as TK_BITOR */ +case OP_ShiftLeft: /* same as TK_LSHIFT */ +case OP_ShiftRight: { /* same as TK_RSHIFT */ + Mem *pNos = &pTos[-1]; + int a, b; + + assert( pNos>=p->aStack ); + if( (pTos->flags | pNos->flags) & MEM_Null ){ + popStack(&pTos, 2); + pTos++; + pTos->flags = MEM_Null; + break; + } + a = sqlite3VdbeIntValue(pNos); + b = sqlite3VdbeIntValue(pTos); + switch( pOp->opcode ){ + case OP_BitAnd: a &= b; break; + case OP_BitOr: a |= b; break; + case OP_ShiftLeft: a <<= b; break; + case OP_ShiftRight: a >>= b; break; + default: /* CANT HAPPEN */ break; + } + Release(pTos); + pTos--; + Release(pTos); + pTos->i = a; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: AddImm P1 * * +** +** Add the value P1 to whatever is on top of the stack. The result +** is always an integer. +** +** To force the top of the stack to be an integer, just add 0. +*/ +case OP_AddImm: { + assert( pTos>=p->aStack ); + Integerify(pTos); + pTos->i += pOp->p1; + break; +} + +/* Opcode: ForceInt P1 P2 * +** +** Convert the top of the stack into an integer. If the current top of +** the stack is not numeric (meaning that is is a NULL or a string that +** does not look like an integer or floating point number) then pop the +** stack and jump to P2. If the top of the stack is numeric then +** convert it into the least integer that is greater than or equal to its +** current value if P1==0, or to the least integer that is strictly +** greater than its current value if P1==1. +*/ +case OP_ForceInt: { + int v; + assert( pTos>=p->aStack ); + applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc); + if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){ + Release(pTos); + pTos--; + pc = pOp->p2 - 1; + break; + } + if( pTos->flags & MEM_Int ){ + v = pTos->i + (pOp->p1!=0); + }else{ + Realify(pTos); + v = (int)pTos->r; + if( pTos->r>(double)v ) v++; + if( pOp->p1 && pTos->r==(double)v ) v++; + } + Release(pTos); + pTos->i = v; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: MustBeInt P1 P2 * +** +** Force the top of the stack to be an integer. If the top of the +** stack is not an integer and cannot be converted into an integer +** with out data loss, then jump immediately to P2, or if P2==0 +** raise an SQLITE_MISMATCH exception. +** +** If the top of the stack is not an integer and P2 is not zero and +** P1 is 1, then the stack is popped. In all other cases, the depth +** of the stack is unchanged. +*/ +case OP_MustBeInt: { + assert( pTos>=p->aStack ); + applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc); + if( (pTos->flags & MEM_Int)==0 ){ + if( pOp->p2==0 ){ + rc = SQLITE_MISMATCH; + goto abort_due_to_error; + }else{ + if( pOp->p1 ) popStack(&pTos, 1); + pc = pOp->p2 - 1; + } + }else{ + Release(pTos); + pTos->flags = MEM_Int; + } + break; +} + +/* Opcode: Eq P1 P2 P3 +** +** Pop the top two elements from the stack. If they are equal, then +** jump to instruction P2. Otherwise, continue to the next instruction. +** +** The least significant byte of P1 may be either 0x00 or 0x01. If either +** operand is NULL (and thus if the result is unknown) then take the jump +** only if the least significant byte of P1 is 0x01. +** +** The second least significant byte of P1 must be an affinity character - +** 'n', 't', 'i' or 'o' - or 0x00. An attempt is made to coerce both values +** according to the affinity before the comparison is made. If the byte is +** 0x00, then numeric affinity is used. +** +** Once any conversions have taken place, and neither value is NULL, +** the values are compared. If both values are blobs, or both are text, +** then memcmp() is used to determine the results of the comparison. If +** both values are numeric, then a numeric comparison is used. If the +** two values are of different types, then they are inequal. +** +** If P2 is zero, do not jump. Instead, push an integer 1 onto the +** stack if the jump would have been taken, or a 0 if not. Push a +** NULL if either operand was NULL. +** +** If P3 is not NULL it is a pointer to a collating sequence (a CollSeq +** structure) that defines how to compare text. +*/ +/* Opcode: Ne P1 P2 P3 +** +** This works just like the Eq opcode except that the jump is taken if +** the operands from the stack are not equal. See the Eq opcode for +** additional information. +*/ +/* Opcode: Lt P1 P2 P3 +** +** This works just like the Eq opcode except that the jump is taken if +** the 2nd element down on the stack is less than the top of the stack. +** See the Eq opcode for additional information. +*/ +/* Opcode: Le P1 P2 P3 +** +** This works just like the Eq opcode except that the jump is taken if +** the 2nd element down on the stack is less than or equal to the +** top of the stack. See the Eq opcode for additional information. +*/ +/* Opcode: Gt P1 P2 P3 +** +** This works just like the Eq opcode except that the jump is taken if +** the 2nd element down on the stack is greater than the top of the stack. +** See the Eq opcode for additional information. +*/ +/* Opcode: Ge P1 P2 P3 +** +** This works just like the Eq opcode except that the jump is taken if +** the 2nd element down on the stack is greater than or equal to the +** top of the stack. See the Eq opcode for additional information. +*/ +case OP_Eq: /* same as TK_EQ */ +case OP_Ne: /* same as TK_NE */ +case OP_Lt: /* same as TK_LT */ +case OP_Le: /* same as TK_LE */ +case OP_Gt: /* same as TK_GT */ +case OP_Ge: { /* same as TK_GE */ + Mem *pNos; + int flags; + int res; + char affinity; + + pNos = &pTos[-1]; + flags = pTos->flags|pNos->flags; + + /* If either value is a NULL P2 is not zero, take the jump if the least + ** significant byte of P1 is true. If P2 is zero, then push a NULL onto + ** the stack. + */ + if( flags&MEM_Null ){ + popStack(&pTos, 2); + if( pOp->p2 ){ + if( (pOp->p1&0xFF) ) pc = pOp->p2-1; + }else{ + pTos++; + pTos->flags = MEM_Null; + } + break; + } + + affinity = (pOp->p1>>8)&0xFF; + if( affinity ){ + applyAffinity(pNos, affinity, db->enc); + applyAffinity(pTos, affinity, db->enc); + } + + assert( pOp->p3type==P3_COLLSEQ || pOp->p3==0 ); + res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3); + switch( pOp->opcode ){ + case OP_Eq: res = res==0; break; + case OP_Ne: res = res!=0; break; + case OP_Lt: res = res<0; break; + case OP_Le: res = res<=0; break; + case OP_Gt: res = res>0; break; + default: res = res>=0; break; + } + + popStack(&pTos, 2); + if( pOp->p2 ){ + if( res ){ + pc = pOp->p2-1; + } + }else{ + pTos++; + pTos->flags = MEM_Int; + pTos->i = res; + } + break; +} + +/* Opcode: And * * * +** +** Pop two values off the stack. Take the logical AND of the +** two values and push the resulting boolean value back onto the +** stack. +*/ +/* Opcode: Or * * * +** +** Pop two values off the stack. Take the logical OR of the +** two values and push the resulting boolean value back onto the +** stack. +*/ +case OP_And: /* same as TK_AND */ +case OP_Or: { /* same as TK_OR */ + Mem *pNos = &pTos[-1]; + int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */ + + assert( pNos>=p->aStack ); + if( pTos->flags & MEM_Null ){ + v1 = 2; + }else{ + Integerify(pTos); + v1 = pTos->i==0; + } + if( pNos->flags & MEM_Null ){ + v2 = 2; + }else{ + Integerify(pNos); + v2 = pNos->i==0; + } + if( pOp->opcode==OP_And ){ + static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; + v1 = and_logic[v1*3+v2]; + }else{ + static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; + v1 = or_logic[v1*3+v2]; + } + popStack(&pTos, 2); + pTos++; + if( v1==2 ){ + pTos->flags = MEM_Null; + }else{ + pTos->i = v1==0; + pTos->flags = MEM_Int; + } + break; +} + +/* Opcode: Negative * * * +** +** Treat the top of the stack as a numeric quantity. Replace it +** with its additive inverse. If the top of the stack is NULL +** its value is unchanged. +*/ +/* Opcode: AbsValue * * * +** +** Treat the top of the stack as a numeric quantity. Replace it +** with its absolute value. If the top of the stack is NULL +** its value is unchanged. +*/ +case OP_Negative: /* same as TK_UMINUS */ +case OP_AbsValue: { + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Real ){ + Release(pTos); + if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ + pTos->r = -pTos->r; + } + pTos->flags = MEM_Real; + }else if( pTos->flags & MEM_Int ){ + Release(pTos); + if( pOp->opcode==OP_Negative || pTos->i<0 ){ + pTos->i = -pTos->i; + } + pTos->flags = MEM_Int; + }else if( pTos->flags & MEM_Null ){ + /* Do nothing */ + }else{ + Realify(pTos); + if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ + pTos->r = -pTos->r; + } + pTos->flags = MEM_Real; + } + break; +} + +/* Opcode: Not * * * +** +** Interpret the top of the stack as a boolean value. Replace it +** with its complement. If the top of the stack is NULL its value +** is unchanged. +*/ +case OP_Not: { /* same as TK_NOT */ + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ + Integerify(pTos); + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos->i = !pTos->i; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: BitNot * * * +** +** Interpret the top of the stack as an value. Replace it +** with its ones-complement. If the top of the stack is NULL its +** value is unchanged. +*/ +case OP_BitNot: { /* same as TK_BITNOT */ + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ + Integerify(pTos); + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos->i = ~pTos->i; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: Noop * * * +** +** Do nothing. This instruction is often useful as a jump +** destination. +*/ +case OP_Noop: { + break; +} + +/* Opcode: If P1 P2 * +** +** Pop a single boolean from the stack. If the boolean popped is +** true, then jump to p2. Otherwise continue to the next instruction. +** An integer is false if zero and true otherwise. A string is +** false if it has zero length and true otherwise. +** +** If the value popped of the stack is NULL, then take the jump if P1 +** is true and fall through if P1 is false. +*/ +/* Opcode: IfNot P1 P2 * +** +** Pop a single boolean from the stack. If the boolean popped is +** false, then jump to p2. Otherwise continue to the next instruction. +** An integer is false if zero and true otherwise. A string is +** false if it has zero length and true otherwise. +** +** If the value popped of the stack is NULL, then take the jump if P1 +** is true and fall through if P1 is false. +*/ +case OP_If: +case OP_IfNot: { + int c; + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Null ){ + c = pOp->p1; + }else{ + c = sqlite3VdbeIntValue(pTos); + if( pOp->opcode==OP_IfNot ) c = !c; + } + Release(pTos); + pTos--; + if( c ) pc = pOp->p2-1; + break; +} + +/* Opcode: IsNull P1 P2 * +** +** If any of the top abs(P1) values on the stack are NULL, then jump +** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack +** unchanged. +*/ +case OP_IsNull: { /* same as TK_ISNULL */ + int i, cnt; + Mem *pTerm; + cnt = pOp->p1; + if( cnt<0 ) cnt = -cnt; + pTerm = &pTos[1-cnt]; + assert( pTerm>=p->aStack ); + for(i=0; i<cnt; i++, pTerm++){ + if( pTerm->flags & MEM_Null ){ + pc = pOp->p2-1; + break; + } + } + if( pOp->p1>0 ) popStack(&pTos, cnt); + break; +} + +/* Opcode: NotNull P1 P2 * +** +** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the +** stack if P1 times if P1 is greater than zero. If P1 is less than +** zero then leave the stack unchanged. +*/ +case OP_NotNull: { /* same as TK_NOTNULL */ + int i, cnt; + cnt = pOp->p1; + if( cnt<0 ) cnt = -cnt; + assert( &pTos[1-cnt] >= p->aStack ); + for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){} + if( i>=cnt ) pc = pOp->p2-1; + if( pOp->p1>0 ) popStack(&pTos, cnt); + break; +} + +/* Opcode: SetNumColumns P1 P2 * +** +** Before the OP_Column opcode can be executed on a cursor, this +** opcode must be called to set the number of fields in the table. +** +** This opcode sets the number of columns for cursor P1 to P2. +*/ +case OP_SetNumColumns: { + assert( (pOp->p1)<p->nCursor ); + assert( p->apCsr[pOp->p1]!=0 ); + p->apCsr[pOp->p1]->nField = pOp->p2; + break; +} + +/* Opcode: IdxColumn P1 * * +** +** P1 is a cursor opened on an index. Push the first field from the +** current index key onto the stack. +*/ +/* Opcode: Column P1 P2 * +** +** Interpret the data that cursor P1 points to as a structure built using +** the MakeRecord instruction. (See the MakeRecord opcode for additional +** information about the format of the data.) Push onto the stack the value +** of the P2-th column contained in the data. +** +** If the KeyAsData opcode has previously executed on this cursor, then the +** field might be extracted from the key rather than the data. +** +** If P1 is negative, then the record is stored on the stack rather than in +** a table. For P1==-1, the top of the stack is used. For P1==-2, the +** next on the stack is used. And so forth. The value pushed is always +** just a pointer into the record which is stored further down on the +** stack. The column value is not copied. The number of columns in the +** record is stored on the stack just above the record itself. +*/ +case OP_IdxColumn: +case OP_Column: { + u32 payloadSize; /* Number of bytes in the record */ + int p1 = pOp->p1; /* P1 value of the opcode */ + int p2 = pOp->p2; /* column number to retrieve */ + Cursor *pC = 0; /* The VDBE cursor */ + char *zRec; /* Pointer to complete record-data */ + BtCursor *pCrsr; /* The BTree cursor */ + u32 *aType; /* aType[i] holds the numeric type of the i-th column */ + u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ + u32 nField; /* number of fields in the record */ + u32 szHdr; /* Number of bytes in the record header */ + int len; /* The length of the serialized data for the column */ + int offset = 0; /* Offset into the data */ + int idx; /* Index into the header */ + int i; /* Loop counter */ + char *zData; /* Part of the record being decoded */ + Mem sMem; /* For storing the record being decoded */ + + sMem.flags = 0; + assert( p1<p->nCursor ); + pTos++; + pTos->flags = MEM_Null; + + /* This block sets the variable payloadSize to be the total number of + ** bytes in the record. + ** + ** zRec is set to be the complete text of the record if it is available. + ** The complete record text is always available for pseudo-tables and + ** when we are decoded a record from the stack. If the record is stored + ** in a cursor, the complete record text might be available in the + ** pC->aRow cache. Or it might not be. If the data is unavailable, + ** zRec is set to NULL. + ** + ** We also compute the number of columns in the record. For cursors, + ** the number of columns is stored in the Cursor.nField element. For + ** records on the stack, the next entry down on the stack is an integer + ** which is the number of records. + */ + assert( p1<0 || p->apCsr[p1]!=0 ); + if( p1<0 ){ + /* Take the record off of the stack */ + Mem *pRec = &pTos[p1]; + Mem *pCnt = &pRec[-1]; + assert( pRec>=p->aStack ); + assert( pRec->flags & MEM_Blob ); + payloadSize = pRec->n; + zRec = pRec->z; + assert( pCnt>=p->aStack ); + assert( pCnt->flags & MEM_Int ); + nField = pCnt->i; + pCrsr = 0; + }else if( (pC = p->apCsr[p1])->pCursor!=0 ){ + /* The record is stored in a B-Tree */ + sqlite3VdbeCursorMoveto(pC); + zRec = 0; + pCrsr = pC->pCursor; + if( pC->nullRow ){ + payloadSize = 0; + }else if( pC->cacheValid ){ + payloadSize = pC->payloadSize; + zRec = pC->aRow; + }else if( pC->keyAsData ){ + i64 payloadSize64; + sqlite3BtreeKeySize(pCrsr, &payloadSize64); + payloadSize = payloadSize64; + }else{ + sqlite3BtreeDataSize(pCrsr, &payloadSize); + } + nField = pC->nField; + }else if( pC->pseudoTable ){ + /* The record is the sole entry of a pseudo-table */ + payloadSize = pC->nData; + zRec = pC->pData; + pC->cacheValid = 0; + assert( payloadSize==0 || zRec!=0 ); + nField = pC->nField; + pCrsr = 0; + }else{ + zRec = 0; + payloadSize = 0; + pCrsr = 0; + nField = 0; + } + + /* If payloadSize is 0, then just push a NULL onto the stack. */ + if( payloadSize==0 ){ + pTos->flags = MEM_Null; + break; + } + + assert( p2<nField ); + + /* Read and parse the table header. Store the results of the parse + ** into the record header cache fields of the cursor. + */ + if( pC && pC->cacheValid ){ + aType = pC->aType; + aOffset = pC->aOffset; + }else{ + int avail; /* Number of bytes of available data */ + if( pC && pC->aType ){ + aType = pC->aType; + }else{ + aType = sqliteMallocRaw( 2*nField*sizeof(aType) ); + } + aOffset = &aType[nField]; + if( aType==0 ){ + goto no_mem; + } + + /* Figure out how many bytes are in the header */ + if( zRec ){ + zData = zRec; + }else{ + if( pC->keyAsData ){ + zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail); + }else{ + zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail); + } + /* If KeyFetch()/DataFetch() managed to get the entire payload, + ** save the payload in the pC->aRow cache. That will save us from + ** having to make additional calls to fetch the content portion of + ** the record. + */ + if( avail>=payloadSize ){ + zRec = pC->aRow = zData; + }else{ + pC->aRow = 0; + } + } + idx = sqlite3GetVarint32(zData, &szHdr); + + + /* The KeyFetch() or DataFetch() above are fast and will get the entire + ** record header in most cases. But they will fail to get the complete + ** record header if the record header does not fit on a single page + ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to + ** acquire the complete header text. + */ + if( !zRec && avail<szHdr ){ + rc = sqlite3VdbeMemFromBtree(pCrsr, 0, szHdr, pC->keyAsData, &sMem); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + zData = sMem.z; + } + + /* Scan the header and use it to fill in the aType[] and aOffset[] + ** arrays. aType[i] will contain the type integer for the i-th + ** column and aOffset[i] will contain the offset from the beginning + ** of the record to the start of the data for the i-th column + */ + offset = szHdr; + i = 0; + while( idx<szHdr && i<nField && offset<=payloadSize ){ + aOffset[i] = offset; + idx += sqlite3GetVarint32(&zData[idx], &aType[i]); + offset += sqlite3VdbeSerialTypeLen(aType[i]); + i++; + } + Release(&sMem); + sMem.flags = MEM_Null; + + /* The header should end at the start of data and the data should + ** end at last byte of the record. If this is not the case then + ** we are dealing with a malformed record. + */ + if( idx!=szHdr || offset!=payloadSize ){ + sqliteFree(aType); + if( pC ) pC->aType = 0; + rc = SQLITE_CORRUPT; + break; + } + + /* Remember all aType and aColumn information if we have a cursor + ** to remember it in. */ + if( pC ){ + pC->payloadSize = payloadSize; + pC->aType = aType; + pC->aOffset = aOffset; + pC->cacheValid = 1; + } + } + + /* Get the column information. + */ + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + if( zRec ){ + zData = &zRec[aOffset[p2]]; + }else{ + len = sqlite3VdbeSerialTypeLen(aType[p2]); + sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->keyAsData, &sMem); + zData = sMem.z; + } + sqlite3VdbeSerialGet(zData, aType[p2], pTos); + pTos->enc = db->enc; + + /* If we dynamically allocated space to hold the data (in the + ** sqlite3VdbeMemFromBtree() call above) then transfer control of that + ** dynamically allocated space over to the pTos structure rather. + ** This prevents a memory copy. + */ + if( (sMem.flags & MEM_Dyn)!=0 ){ + assert( pTos->flags & MEM_Ephem ); + assert( pTos->flags & (MEM_Str|MEM_Blob) ); + assert( pTos->z==sMem.z ); + assert( sMem.flags & MEM_Term ); + pTos->flags &= ~MEM_Ephem; + pTos->flags |= MEM_Dyn|MEM_Term; + } + + /* pTos->z might be pointing to sMem.zShort[]. Fix that so that we + ** can abandon sMem */ + rc = sqlite3VdbeMemMakeWriteable(pTos); + + /* Release the aType[] memory if we are not dealing with cursor */ + if( !pC ){ + sqliteFree(aType); + } + break; +} + +/* Opcode MakeRecord P1 P2 P3 +** +** Convert the top abs(P1) entries of the stack into a single entry +** suitable for use as a data record in a database table or as a key +** in an index. The details of the format are irrelavant as long as +** the OP_Column opcode can decode the record later and as long as the +** sqlite3VdbeRecordCompare function will correctly compare two encoded +** records. Refer to source code comments for the details of the record +** format. +** +** The original stack entries are popped from the stack if P1>0 but +** remain on the stack if P1<0. +** +** The P2 argument is divided into two 16-bit words before it is processed. +** If the hi-word is non-zero, then an extra integer is read from the stack +** and appended to the record as a varint. If the low-word of P2 is not +** zero and one or more of the entries are NULL, then jump to the value of +** the low-word of P2. This feature can be used to skip a uniqueness test +** on indices. +** +** P3 may be a string that is P1 characters long. The nth character of the +** string indicates the column affinity that should be used for the nth +** field of the index key (i.e. the first character of P3 corresponds to the +** lowest element on the stack). +** +** Character Column affinity +** ------------------------------ +** 'n' NUMERIC +** 'i' INTEGER +** 't' TEXT +** 'o' NONE +** +** If P3 is NULL then all index fields have the affinity NONE. +*/ +case OP_MakeRecord: { + /* Assuming the record contains N fields, the record format looks + ** like this: + ** + ** ------------------------------------------------------------------------ + ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | + ** ------------------------------------------------------------------------ + ** + ** Data(0) is taken from the lowest element of the stack and data(N-1) is + ** the top of the stack. + ** + ** Each type field is a varint representing the serial type of the + ** corresponding data element (see sqlite3VdbeSerialType()). The + ** hdr-size field is also a varint which is the offset from the beginning + ** of the record to data0. + */ + unsigned char *zNewRecord; + unsigned char *zCsr; + Mem *pRec; + Mem *pRowid = 0; + int nData = 0; /* Number of bytes of data space */ + int nHdr = 0; /* Number of bytes of header space */ + int nByte = 0; /* Space required for this record */ + u32 serial_type; /* Type field */ + int containsNull = 0; /* True if any of the data fields are NULL */ + char zTemp[NBFS]; /* Space to hold small records */ + Mem *pData0; + + int leaveOnStack; /* If true, leave the entries on the stack */ + int nField; /* Number of fields in the record */ + int jumpIfNull; /* Jump here if non-zero and any entries are NULL. */ + int addRowid; /* True to append a rowid column at the end */ + char *zAffinity; /* The affinity string for the record */ + + leaveOnStack = ((pOp->p1<0)?1:0); + nField = pOp->p1 * (leaveOnStack?-1:1); + jumpIfNull = (pOp->p2 & 0x00FFFFFF); + addRowid = ((pOp->p2>>24) & 0x0000FFFF)?1:0; + zAffinity = pOp->p3; + + pData0 = &pTos[1-nField]; + assert( pData0>=p->aStack ); + containsNull = 0; + + /* Loop through the elements that will make up the record to figure + ** out how much space is required for the new record. + */ + for(pRec=pData0; pRec<=pTos; pRec++){ + if( zAffinity ){ + applyAffinity(pRec, zAffinity[pRec-pData0], db->enc); + } + if( pRec->flags&MEM_Null ){ + containsNull = 1; + } + serial_type = sqlite3VdbeSerialType(pRec); + nData += sqlite3VdbeSerialTypeLen(serial_type); + nHdr += sqlite3VarintLen(serial_type); + } + + /* If we have to append a varint rowid to this record, set 'rowid' + ** to the value of the rowid and increase nByte by the amount of space + ** required to store it and the 0x00 seperator byte. + */ + if( addRowid ){ + pRowid = &pTos[0-nField]; + assert( pRowid>=p->aStack ); + Integerify(pRowid); + serial_type = sqlite3VdbeSerialType(pRowid); + nData += sqlite3VdbeSerialTypeLen(serial_type); + nHdr += sqlite3VarintLen(serial_type); + } + + /* Add the initial header varint and total the size */ + nHdr += sqlite3VarintLen(nHdr); + nByte = nHdr+nData; + + /* Allocate space for the new record. */ + if( nByte>sizeof(zTemp) ){ + zNewRecord = sqliteMallocRaw(nByte); + if( !zNewRecord ){ + goto no_mem; + } + }else{ + zNewRecord = zTemp; + } + + /* Write the record */ + zCsr = zNewRecord; + zCsr += sqlite3PutVarint(zCsr, nHdr); + for(pRec=pData0; pRec<=pTos; pRec++){ + serial_type = sqlite3VdbeSerialType(pRec); + zCsr += sqlite3PutVarint(zCsr, serial_type); /* serial type */ + } + if( addRowid ){ + zCsr += sqlite3PutVarint(zCsr, sqlite3VdbeSerialType(pRowid)); + } + for(pRec=pData0; pRec<=pTos; pRec++){ + zCsr += sqlite3VdbeSerialPut(zCsr, pRec); /* serial data */ + } + if( addRowid ){ + zCsr += sqlite3VdbeSerialPut(zCsr, pRowid); + } + + /* If zCsr has not been advanced exactly nByte bytes, then one + ** of the sqlite3PutVarint() or sqlite3VdbeSerialPut() calls above + ** failed. This indicates a corrupted memory cell or code bug. + */ + if( zCsr!=(zNewRecord+nByte) ){ + rc = SQLITE_INTERNAL; + goto abort_due_to_error; + } + + /* Pop entries off the stack if required. Push the new record on. */ + if( !leaveOnStack ){ + popStack(&pTos, nField+addRowid); + } + pTos++; + pTos->n = nByte; + if( nByte<=sizeof(zTemp) ){ + assert( zNewRecord==(unsigned char *)zTemp ); + pTos->z = pTos->zShort; + memcpy(pTos->zShort, zTemp, nByte); + pTos->flags = MEM_Blob | MEM_Short; + }else{ + assert( zNewRecord!=(unsigned char *)zTemp ); + pTos->z = zNewRecord; + pTos->flags = MEM_Blob | MEM_Dyn; + pTos->xDel = 0; + } + + /* If a NULL was encountered and jumpIfNull is non-zero, take the jump. */ + if( jumpIfNull && containsNull ){ + pc = jumpIfNull - 1; + } + break; +} + +/* Opcode: Statement P1 * * +** +** Begin an individual statement transaction which is part of a larger +** BEGIN..COMMIT transaction. This is needed so that the statement +** can be rolled back after an error without having to roll back the +** entire transaction. The statement transaction will automatically +** commit when the VDBE halts. +** +** The statement is begun on the database file with index P1. The main +** database file has an index of 0 and the file used for temporary tables +** has an index of 1. +*/ +case OP_Statement: { + int i = pOp->p1; + Btree *pBt; + if( i>=0 && i<db->nDb && (pBt = db->aDb[i].pBt) && !(db->autoCommit) ){ + assert( sqlite3BtreeIsInTrans(pBt) ); + if( !sqlite3BtreeIsInStmt(pBt) ){ + rc = sqlite3BtreeBeginStmt(pBt); + } + } + break; +} + +/* Opcode: AutoCommit P1 P2 * +** +** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll +** back any currently active btree transactions. If there are any active +** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails. +** +** This instruction causes the VM to halt. +*/ +case OP_AutoCommit: { + u8 i = pOp->p1; + u8 rollback = pOp->p2; + + assert( i==1 || i==0 ); + assert( i==1 || rollback==0 ); + + assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */ + + if( db->activeVdbeCnt>1 && i && !db->autoCommit ){ + /* If this instruction implements a COMMIT or ROLLBACK, other VMs are + ** still running, and a transaction is active, return an error indicating + ** that the other VMs must complete first. + */ + sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit", + " transaction - SQL statements in progress", 0); + rc = SQLITE_ERROR; + }else if( i!=db->autoCommit ){ + db->autoCommit = i; + if( pOp->p2 ){ + assert( i==1 ); + sqlite3RollbackAll(db); + }else if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ + p->pTos = pTos; + p->pc = pc; + db->autoCommit = 1-i; + p->rc = SQLITE_BUSY; + return SQLITE_BUSY; + } + return SQLITE_DONE; + }else{ + sqlite3SetString(&p->zErrMsg, + (!i)?"cannot start a transaction within a transaction":( + (rollback)?"cannot rollback - no transaction is active": + "cannot commit - no transaction is active"), 0); + + rc = SQLITE_ERROR; + } + break; +} + +/* Opcode: Transaction P1 P2 * +** +** Begin a transaction. The transaction ends when a Commit or Rollback +** opcode is encountered. Depending on the ON CONFLICT setting, the +** transaction might also be rolled back if an error is encountered. +** +** P1 is the index of the database file on which the transaction is +** started. Index 0 is the main database file and index 1 is the +** file used for temporary tables. +** +** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is +** obtained on the database file when a write-transaction is started. No +** other process can start another write transaction while this transaction is +** underway. Starting a write transaction also creates a rollback journal. A +** write transaction must be started before any changes can be made to the +** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained +** on the file. +** +** If P2 is zero, then a read-lock is obtained on the database file. +*/ +case OP_Transaction: { + int i = pOp->p1; + Btree *pBt; + + assert( i>=0 && i<db->nDb ); + pBt = db->aDb[i].pBt; + + if( pBt ){ + rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); + if( rc==SQLITE_BUSY ){ + p->pc = pc; + p->rc = SQLITE_BUSY; + p->pTos = pTos; + return SQLITE_BUSY; + } + if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){ + goto abort_due_to_error; + } + } + break; +} + +/* Opcode: ReadCookie P1 P2 * +** +** Read cookie number P2 from database P1 and push it onto the stack. +** P2==0 is the schema version. P2==1 is the database format. +** P2==2 is the recommended pager cache size, and so forth. P1==0 is +** the main database file and P1==1 is the database file used to store +** temporary tables. +** +** There must be a read-lock on the database (either a transaction +** must be started or there must be an open cursor) before +** executing this instruction. +*/ +case OP_ReadCookie: { + int iMeta; + assert( pOp->p2<SQLITE_N_BTREE_META ); + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + assert( db->aDb[pOp->p1].pBt!=0 ); + /* The indexing of meta values at the schema layer is off by one from + ** the indexing in the btree layer. The btree considers meta[0] to + ** be the number of free pages in the database (a read-only value) + ** and meta[1] to be the schema cookie. The schema layer considers + ** meta[1] to be the schema cookie. So we have to shift the index + ** by one in the following statement. + */ + rc = sqlite3BtreeGetMeta(db->aDb[pOp->p1].pBt, 1 + pOp->p2, (u32 *)&iMeta); + pTos++; + pTos->i = iMeta; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: SetCookie P1 P2 * +** +** Write the top of the stack into cookie number P2 of database P1. +** P2==0 is the schema version. P2==1 is the database format. +** P2==2 is the recommended pager cache size, and so forth. P1==0 is +** the main database file and P1==1 is the database file used to store +** temporary tables. +** +** A transaction must be started before executing this opcode. +*/ +case OP_SetCookie: { + Db *pDb; + assert( pOp->p2<SQLITE_N_BTREE_META ); + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + pDb = &db->aDb[pOp->p1]; + assert( pDb->pBt!=0 ); + assert( pTos>=p->aStack ); + Integerify(pTos); + /* See note about index shifting on OP_ReadCookie */ + rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->i); + if( pOp->p2==0 ){ + /* When the schema cookie changes, record the new cookie internally */ + pDb->schema_cookie = pTos->i; + db->flags |= SQLITE_InternChanges; + } + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + break; +} + +/* Opcode: VerifyCookie P1 P2 * +** +** Check the value of global database parameter number 0 (the +** schema version) and make sure it is equal to P2. +** P1 is the database number which is 0 for the main database file +** and 1 for the file holding temporary tables and some higher number +** for auxiliary databases. +** +** The cookie changes its value whenever the database schema changes. +** This operation is used to detect when that the cookie has changed +** and that the current process needs to reread the schema. +** +** Either a transaction needs to have been started or an OP_Open needs +** to be executed (to establish a read lock) before this opcode is +** invoked. +*/ +case OP_VerifyCookie: { + int iMeta; + Btree *pBt; + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + pBt = db->aDb[pOp->p1].pBt; + if( pBt ){ + rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta); + }else{ + rc = SQLITE_OK; + iMeta = 0; + } + if( rc==SQLITE_OK && iMeta!=pOp->p2 ){ + sqlite3SetString(&p->zErrMsg, "database schema has changed", (char*)0); + rc = SQLITE_SCHEMA; + } + break; +} + +/* Opcode: OpenRead P1 P2 P3 +** +** Open a read-only cursor for the database table whose root page is +** P2 in a database file. The database file is determined by an +** integer from the top of the stack. 0 means the main database and +** 1 means the database used for temporary tables. Give the new +** cursor an identifier of P1. The P1 values need not be contiguous +** but all P1 values should be small integers. It is an error for +** P1 to be negative. +** +** If P2==0 then take the root page number from the next of the stack. +** +** There will be a read lock on the database whenever there is an +** open cursor. If the database was unlocked prior to this instruction +** then a read lock is acquired as part of this instruction. A read +** lock allows other processes to read the database but prohibits +** any other process from modifying the database. The read lock is +** released when all cursors are closed. If this instruction attempts +** to get a read lock but fails, the script terminates with an +** SQLITE_BUSY error code. +** +** The P3 value is a pointer to a KeyInfo structure that defines the +** content and collating sequence of indices. P3 is NULL for cursors +** that are not pointing to indices. +** +** See also OpenWrite. +*/ +/* Opcode: OpenWrite P1 P2 P3 +** +** Open a read/write cursor named P1 on the table or index whose root +** page is P2. If P2==0 then take the root page number from the stack. +** +** The P3 value is a pointer to a KeyInfo structure that defines the +** content and collating sequence of indices. P3 is NULL for cursors +** that are not pointing to indices. +** +** This instruction works just like OpenRead except that it opens the cursor +** in read/write mode. For a given table, there can be one or more read-only +** cursors or a single read/write cursor but not both. +** +** See also OpenRead. +*/ +case OP_OpenRead: +case OP_OpenWrite: { + int i = pOp->p1; + int p2 = pOp->p2; + int wrFlag; + Btree *pX; + int iDb; + Cursor *pCur; + + assert( pTos>=p->aStack ); + Integerify(pTos); + iDb = pTos->i; + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + assert( iDb>=0 && iDb<db->nDb ); + pX = db->aDb[iDb].pBt; + assert( pX!=0 ); + wrFlag = pOp->opcode==OP_OpenWrite; + if( p2<=0 ){ + assert( pTos>=p->aStack ); + Integerify(pTos); + p2 = pTos->i; + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + if( p2<2 ){ + sqlite3SetString(&p->zErrMsg, "root page number less than 2", (char*)0); + rc = SQLITE_INTERNAL; + break; + } + } + assert( i>=0 ); + pCur = allocateCursor(p, i); + if( pCur==0 ) goto no_mem; + pCur->nullRow = 1; + if( pX==0 ) break; + /* We always provide a key comparison function. If the table being + ** opened is of type INTKEY, the comparision function will be ignored. */ + rc = sqlite3BtreeCursor(pX, p2, wrFlag, + sqlite3VdbeRecordCompare, pOp->p3, + &pCur->pCursor); + pCur->pKeyInfo = (KeyInfo*)pOp->p3; + if( pCur->pKeyInfo ){ + pCur->pIncrKey = &pCur->pKeyInfo->incrKey; + pCur->pKeyInfo->enc = p->db->enc; + }else{ + pCur->pIncrKey = &pCur->bogusIncrKey; + } + switch( rc ){ + case SQLITE_BUSY: { + p->pc = pc; + p->rc = SQLITE_BUSY; + p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */ + return SQLITE_BUSY; + } + case SQLITE_OK: { + int flags = sqlite3BtreeFlags(pCur->pCursor); + pCur->intKey = (flags & BTREE_INTKEY)!=0; + pCur->zeroData = (flags & BTREE_ZERODATA)!=0; + break; + } + case SQLITE_EMPTY: { + rc = SQLITE_OK; + break; + } + default: { + goto abort_due_to_error; + } + } + break; +} + +/* Opcode: OpenTemp P1 * P3 +** +** Open a new cursor to a transient table. +** The transient cursor is always opened read/write even if +** the main database is read-only. The transient table is deleted +** automatically when the cursor is closed. +** +** The cursor points to a BTree table if P3==0 and to a BTree index +** if P3 is not 0. If P3 is not NULL, it points to a KeyInfo structure +** that defines the format of keys in the index. +** +** This opcode is used for tables that exist for the duration of a single +** SQL statement only. Tables created using CREATE TEMPORARY TABLE +** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the +** context of this opcode means for the duration of a single SQL statement +** whereas "Temporary" in the context of CREATE TABLE means for the duration +** of the connection to the database. Same word; different meanings. +*/ +case OP_OpenTemp: { + int i = pOp->p1; + Cursor *pCx; + assert( i>=0 ); + pCx = allocateCursor(p, i); + if( pCx==0 ) goto no_mem; + pCx->nullRow = 1; + rc = sqlite3BtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt); + if( rc==SQLITE_OK ){ + rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); + } + if( rc==SQLITE_OK ){ + /* If a transient index is required, create it by calling + ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before + ** opening it. If a transient table is required, just use the + ** automatically created table with root-page 1 (an INTKEY table). + */ + if( pOp->p3 ){ + int pgno; + assert( pOp->p3type==P3_KEYINFO ); + rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); + if( rc==SQLITE_OK ){ + assert( pgno==MASTER_ROOT+1 ); + rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare, + pOp->p3, &pCx->pCursor); + pCx->pKeyInfo = (KeyInfo*)pOp->p3; + pCx->pKeyInfo->enc = p->db->enc; + pCx->pIncrKey = &pCx->pKeyInfo->incrKey; + } + }else{ + rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor); + pCx->intKey = 1; + pCx->pIncrKey = &pCx->bogusIncrKey; + } + } + break; +} + +/* Opcode: OpenPseudo P1 * * +** +** Open a new cursor that points to a fake table that contains a single +** row of data. Any attempt to write a second row of data causes the +** first row to be deleted. All data is deleted when the cursor is +** closed. +** +** A pseudo-table created by this opcode is useful for holding the +** NEW or OLD tables in a trigger. +*/ +case OP_OpenPseudo: { + int i = pOp->p1; + Cursor *pCx; + assert( i>=0 ); + pCx = allocateCursor(p, i); + if( pCx==0 ) goto no_mem; + pCx->nullRow = 1; + pCx->pseudoTable = 1; + pCx->pIncrKey = &pCx->bogusIncrKey; + break; +} + +/* Opcode: Close P1 * * +** +** Close a cursor previously opened as P1. If P1 is not +** currently open, this instruction is a no-op. +*/ +case OP_Close: { + int i = pOp->p1; + if( i>=0 && i<p->nCursor ){ + sqlite3VdbeFreeCursor(p->apCsr[i]); + p->apCsr[i] = 0; + } + break; +} + +/* Opcode: MoveGe P1 P2 * +** +** Pop the top of the stack and use its value as a key. Reposition +** cursor P1 so that it points to the smallest entry that is greater +** than or equal to the key that was popped ffrom the stack. +** If there are no records greater than or equal to the key and P2 +** is not zero, then jump to P2. +** +** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe +*/ +/* Opcode: MoveGt P1 P2 * +** +** Pop the top of the stack and use its value as a key. Reposition +** cursor P1 so that it points to the smallest entry that is greater +** than the key from the stack. +** If there are no records greater than the key and P2 is not zero, +** then jump to P2. +** +** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe +*/ +/* Opcode: MoveLt P1 P2 * +** +** Pop the top of the stack and use its value as a key. Reposition +** cursor P1 so that it points to the largest entry that is less +** than the key from the stack. +** If there are no records less than the key and P2 is not zero, +** then jump to P2. +** +** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe +*/ +/* Opcode: MoveLe P1 P2 * +** +** Pop the top of the stack and use its value as a key. Reposition +** cursor P1 so that it points to the largest entry that is less than +** or equal to the key that was popped from the stack. +** If there are no records less than or eqal to the key and P2 is not zero, +** then jump to P2. +** +** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt +*/ +case OP_MoveLt: +case OP_MoveLe: +case OP_MoveGe: +case OP_MoveGt: { + int i = pOp->p1; + Cursor *pC; + + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + if( pC->pCursor!=0 ){ + int res, oc; + oc = pOp->opcode; + pC->nullRow = 0; + *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe; + if( pC->intKey ){ + i64 iKey; + assert( !pOp->p3 ); + Integerify(pTos); + iKey = intToKey(pTos->i); + if( pOp->p2==0 && pOp->opcode==OP_MoveGe ){ + pC->movetoTarget = iKey; + pC->deferredMoveto = 1; + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + break; + } + sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, &res); + pC->lastRecno = pTos->i; + pC->recnoIsValid = res==0; + }else{ + Stringify(pTos, db->enc); + sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); + pC->recnoIsValid = 0; + } + pC->deferredMoveto = 0; + pC->cacheValid = 0; + *pC->pIncrKey = 0; + sqlite3_search_count++; + if( oc==OP_MoveGe || oc==OP_MoveGt ){ + if( res<0 ){ + sqlite3BtreeNext(pC->pCursor, &res); + pC->recnoIsValid = 0; + }else{ + res = 0; + } + }else{ + assert( oc==OP_MoveLt || oc==OP_MoveLe ); + if( res>=0 ){ + sqlite3BtreePrevious(pC->pCursor, &res); + pC->recnoIsValid = 0; + }else{ + /* res might be negative because the table is empty. Check to + ** see if this is the case. + */ + res = sqlite3BtreeEof(pC->pCursor); + } + } + if( res ){ + if( pOp->p2>0 ){ + pc = pOp->p2 - 1; + }else{ + pC->nullRow = 1; + } + } + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: Distinct P1 P2 * +** +** Use the top of the stack as a string key. If a record with that key does +** not exist in the table of cursor P1, then jump to P2. If the record +** does already exist, then fall thru. The cursor is left pointing +** at the record if it exists. The key is not popped from the stack. +** +** This operation is similar to NotFound except that this operation +** does not pop the key from the stack. +** +** See also: Found, NotFound, MoveTo, IsUnique, NotExists +*/ +/* Opcode: Found P1 P2 * +** +** Use the top of the stack as a string key. If a record with that key +** does exist in table of P1, then jump to P2. If the record +** does not exist, then fall thru. The cursor is left pointing +** to the record if it exists. The key is popped from the stack. +** +** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists +*/ +/* Opcode: NotFound P1 P2 * +** +** Use the top of the stack as a string key. If a record with that key +** does not exist in table of P1, then jump to P2. If the record +** does exist, then fall thru. The cursor is left pointing to the +** record if it exists. The key is popped from the stack. +** +** The difference between this operation and Distinct is that +** Distinct does not pop the key from the stack. +** +** See also: Distinct, Found, MoveTo, NotExists, IsUnique +*/ +case OP_Distinct: +case OP_NotFound: +case OP_Found: { + int i = pOp->p1; + int alreadyExists = 0; + Cursor *pC; + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pC = p->apCsr[i])->pCursor!=0 ){ + int res, rx; + assert( pC->intKey==0 ); + Stringify(pTos, db->enc); + rx = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); + alreadyExists = rx==SQLITE_OK && res==0; + pC->deferredMoveto = 0; + pC->cacheValid = 0; + } + if( pOp->opcode==OP_Found ){ + if( alreadyExists ) pc = pOp->p2 - 1; + }else{ + if( !alreadyExists ) pc = pOp->p2 - 1; + } + if( pOp->opcode!=OP_Distinct ){ + Release(pTos); + pTos--; + } + break; +} + +/* Opcode: IsUnique P1 P2 * +** +** The top of the stack is an integer record number. Call this +** record number R. The next on the stack is an index key created +** using MakeIdxKey. Call it K. This instruction pops R from the +** stack but it leaves K unchanged. +** +** P1 is an index. So it has no data and its key consists of a +** record generated by OP_MakeIdxKey. This key contains one or more +** fields followed by a ROWID field. +** +** This instruction asks if there is an entry in P1 where the +** fields matches K but the rowid is different from R. +** If there is no such entry, then there is an immediate +** jump to P2. If any entry does exist where the index string +** matches K but the record number is not R, then the record +** number for that entry is pushed onto the stack and control +** falls through to the next instruction. +** +** See also: Distinct, NotFound, NotExists, Found +*/ +case OP_IsUnique: { + int i = pOp->p1; + Mem *pNos = &pTos[-1]; + Cursor *pCx; + BtCursor *pCrsr; + i64 R; + + /* Pop the value R off the top of the stack + */ + assert( pNos>=p->aStack ); + Integerify(pTos); + R = pTos->i; + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + assert( i>=0 && i<=p->nCursor ); + pCx = p->apCsr[i]; + assert( pCx!=0 ); + pCrsr = pCx->pCursor; + if( pCrsr!=0 ){ + int res, rc; + i64 v; /* The record number on the P1 entry that matches K */ + char *zKey; /* The value of K */ + int nKey; /* Number of bytes in K */ + int len; /* Number of bytes in K without the rowid at the end */ + int szRowid; /* Size of the rowid column at the end of zKey */ + + /* Make sure K is a string and make zKey point to K + */ + Stringify(pNos, db->enc); + zKey = pNos->z; + nKey = pNos->n; + + szRowid = sqlite3VdbeIdxRowidLen(nKey, zKey); + len = nKey-szRowid; + + /* Search for an entry in P1 where all but the last four bytes match K. + ** If there is no such entry, jump immediately to P2. + */ + assert( pCx->deferredMoveto==0 ); + pCx->cacheValid = 0; + rc = sqlite3BtreeMoveto(pCrsr, zKey, len, &res); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + if( res<0 ){ + rc = sqlite3BtreeNext(pCrsr, &res); + if( res ){ + pc = pOp->p2 - 1; + break; + } + } + rc = sqlite3VdbeIdxKeyCompare(pCx, len, zKey, &res); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + if( res>0 ){ + pc = pOp->p2 - 1; + break; + } + + /* At this point, pCrsr is pointing to an entry in P1 where all but + ** the final entry (the rowid) matches K. Check to see if the + ** final rowid column is different from R. If it equals R then jump + ** immediately to P2. + */ + rc = sqlite3VdbeIdxRowid(pCrsr, &v); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + if( v==R ){ + pc = pOp->p2 - 1; + break; + } + + /* The final varint of the key is different from R. Push it onto + ** the stack. (The record number of an entry that violates a UNIQUE + ** constraint.) + */ + pTos++; + pTos->i = v; + pTos->flags = MEM_Int; + } + break; +} + +/* Opcode: NotExists P1 P2 * +** +** Use the top of the stack as a integer key. If a record with that key +** does not exist in table of P1, then jump to P2. If the record +** does exist, then fall thru. The cursor is left pointing to the +** record if it exists. The integer key is popped from the stack. +** +** The difference between this operation and NotFound is that this +** operation assumes the key is an integer and NotFound assumes it +** is a string. +** +** See also: Distinct, Found, MoveTo, NotFound, IsUnique +*/ +case OP_NotExists: { + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + int res, rx; + u64 iKey; + assert( pTos->flags & MEM_Int ); + assert( p->apCsr[i]->intKey ); + iKey = intToKey(pTos->i); + rx = sqlite3BtreeMoveto(pCrsr, 0, iKey, &res); + pC->lastRecno = pTos->i; + pC->recnoIsValid = res==0; + pC->nullRow = 0; + pC->cacheValid = 0; + if( rx!=SQLITE_OK || res!=0 ){ + pc = pOp->p2 - 1; + pC->recnoIsValid = 0; + } + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: NewRecno P1 * * +** +** Get a new integer record number used as the key to a table. +** The record number is not previously used as a key in the database +** table that cursor P1 points to. The new record number is pushed +** onto the stack. +*/ +case OP_NewRecno: { + int i = pOp->p1; + i64 v = 0; + Cursor *pC; + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pC = p->apCsr[i])->pCursor==0 ){ + /* The zero initialization above is all that is needed */ + }else{ + /* The next rowid or record number (different terms for the same + ** thing) is obtained in a two-step algorithm. + ** + ** First we attempt to find the largest existing rowid and add one + ** to that. But if the largest existing rowid is already the maximum + ** positive integer, we have to fall through to the second + ** probabilistic algorithm + ** + ** The second algorithm is to select a rowid at random and see if + ** it already exists in the table. If it does not exist, we have + ** succeeded. If the random rowid does exist, we select a new one + ** and try again, up to 1000 times. + ** + ** For a table with less than 2 billion entries, the probability + ** of not finding a unused rowid is about 1.0e-300. This is a + ** non-zero probability, but it is still vanishingly small and should + ** never cause a problem. You are much, much more likely to have a + ** hardware failure than for this algorithm to fail. + ** + ** The analysis in the previous paragraph assumes that you have a good + ** source of random numbers. Is a library function like lrand48() + ** good enough? Maybe. Maybe not. It's hard to know whether there + ** might be subtle bugs is some implementations of lrand48() that + ** could cause problems. To avoid uncertainty, SQLite uses its own + ** random number generator based on the RC4 algorithm. + ** + ** To promote locality of reference for repetitive inserts, the + ** first few attempts at chosing a random rowid pick values just a little + ** larger than the previous rowid. This has been shown experimentally + ** to double the speed of the COPY operation. + */ + int res, rx=SQLITE_OK, cnt; + i64 x; + cnt = 0; + assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 ); + assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 ); + if( !pC->useRandomRowid ){ + if( pC->nextRowidValid ){ + v = pC->nextRowid; + }else{ + rx = sqlite3BtreeLast(pC->pCursor, &res); + if( res ){ + v = 1; + }else{ + sqlite3BtreeKeySize(pC->pCursor, &v); + v = keyToInt(v); + if( v==0x7fffffffffffffff ){ + pC->useRandomRowid = 1; + }else{ + v++; + } + } + } + if( v<0x7fffffffffffffff ){ + pC->nextRowidValid = 1; + pC->nextRowid = v+1; + }else{ + pC->nextRowidValid = 0; + } + } + if( pC->useRandomRowid ){ + v = db->priorNewRowid; + cnt = 0; + do{ + if( v==0 || cnt>2 ){ + sqlite3Randomness(sizeof(v), &v); + if( cnt<5 ) v &= 0xffffff; + }else{ + unsigned char r; + sqlite3Randomness(1, &r); + v += r + 1; + } + if( v==0 ) continue; + x = intToKey(v); + rx = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)x, &res); + cnt++; + }while( cnt<1000 && rx==SQLITE_OK && res==0 ); + db->priorNewRowid = v; + if( rx==SQLITE_OK && res==0 ){ + rc = SQLITE_FULL; + goto abort_due_to_error; + } + } + pC->recnoIsValid = 0; + pC->deferredMoveto = 0; + pC->cacheValid = 0; + } + pTos++; + pTos->i = v; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: PutIntKey P1 P2 * +** +** Write an entry into the table of cursor P1. A new entry is +** created if it doesn't already exist or the data for an existing +** entry is overwritten. The data is the value on the top of the +** stack. The key is the next value down on the stack. The key must +** be an integer. The stack is popped twice by this instruction. +** +** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is +** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P2 is set, +** then rowid is stored for subsequent return by the +** sqlite3_last_insert_rowid() function (otherwise it's unmodified). +*/ +/* Opcode: PutStrKey P1 * * +** +** Write an entry into the table of cursor P1. A new entry is +** created if it doesn't already exist or the data for an existing +** entry is overwritten. The data is the value on the top of the +** stack. The key is the next value down on the stack. The key must +** be a string. The stack is popped twice by this instruction. +** +** P1 may not be a pseudo-table opened using the OpenPseudo opcode. +*/ +case OP_PutIntKey: +case OP_PutStrKey: { + Mem *pNos = &pTos[-1]; + int i = pOp->p1; + Cursor *pC; + assert( pNos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( ((pC = p->apCsr[i])->pCursor!=0 || pC->pseudoTable) ){ + char *zKey; + i64 nKey; + i64 iKey; + if( pOp->opcode==OP_PutStrKey ){ + Stringify(pNos, db->enc); + nKey = pNos->n; + zKey = pNos->z; + }else{ + assert( pNos->flags & MEM_Int ); + + /* If the table is an INTKEY table, set nKey to the value of + ** the integer key, and zKey to NULL. Otherwise, set nKey to + ** sizeof(i64) and point zKey at iKey. iKey contains the integer + ** key in the on-disk byte order. + */ + iKey = intToKey(pNos->i); + if( pC->intKey ){ + nKey = intToKey(pNos->i); + zKey = 0; + }else{ + nKey = sizeof(i64); + zKey = (char*)&iKey; + } + + if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; + if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i; + if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){ + pC->nextRowidValid = 0; + } + } + if( pTos->flags & MEM_Null ){ + pTos->z = 0; + pTos->n = 0; + }else{ + assert( pTos->flags & (MEM_Blob|MEM_Str) ); + } + if( pC->pseudoTable ){ + /* PutStrKey does not work for pseudo-tables. + ** The following assert makes sure we are not trying to use + ** PutStrKey on a pseudo-table + */ + assert( pOp->opcode==OP_PutIntKey ); + sqliteFree(pC->pData); + pC->iKey = iKey; + pC->nData = pTos->n; + if( pTos->flags & MEM_Dyn ){ + pC->pData = pTos->z; + pTos->flags = MEM_Null; + }else{ + pC->pData = sqliteMallocRaw( pC->nData+2 ); + if( !pC->pData ) goto no_mem; + memcpy(pC->pData, pTos->z, pC->nData); + pC->pData[pC->nData] = 0; + pC->pData[pC->nData+1] = 0; + } + pC->nullRow = 0; + }else{ + rc = sqlite3BtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n); + } + pC->recnoIsValid = 0; + pC->deferredMoveto = 0; + pC->cacheValid = 0; + } + popStack(&pTos, 2); + break; +} + +/* Opcode: Delete P1 P2 * +** +** Delete the record at which the P1 cursor is currently pointing. +** +** The cursor will be left pointing at either the next or the previous +** record in the table. If it is left pointing at the next record, then +** the next Next instruction will be a no-op. Hence it is OK to delete +** a record from within an Next loop. +** +** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is +** incremented (otherwise not). +** +** If P1 is a pseudo-table, then this instruction is a no-op. +*/ +case OP_Delete: { + int i = pOp->p1; + Cursor *pC; + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + if( pC->pCursor!=0 ){ + sqlite3VdbeCursorMoveto(pC); + rc = sqlite3BtreeDelete(pC->pCursor); + pC->nextRowidValid = 0; + pC->cacheValid = 0; + } + if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; + break; +} + +/* Opcode: ResetCount P1 * * +** +** This opcode resets the VMs internal change counter to 0. If P1 is true, +** then the value of the change counter is copied to the database handle +** change counter (returned by subsequent calls to sqlite3_changes()) +** before it is reset. This is used by trigger programs. +*/ +case OP_ResetCount: { + if( pOp->p1 ){ + sqlite3VdbeSetChanges(db, p->nChange); + } + p->nChange = 0; + break; +} + +/* Opcode: KeyAsData P1 P2 * +** +** Turn the key-as-data mode for cursor P1 either on (if P2==1) or +** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls +** data off of the key rather than the data. This is used for +** processing compound selects. +*/ +case OP_KeyAsData: { + int i = pOp->p1; + Cursor *pC; + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + pC->keyAsData = pOp->p2; + break; +} + +/* Opcode: RowData P1 * * +** +** Push onto the stack the complete row data for cursor P1. +** There is no interpretation of the data. It is just copied +** onto the stack exactly as it is found in the database file. +** +** If the cursor is not pointing to a valid row, a NULL is pushed +** onto the stack. +*/ +/* Opcode: RowKey P1 * * +** +** Push onto the stack the complete row key for cursor P1. +** There is no interpretation of the key. It is just copied +** onto the stack exactly as it is found in the database file. +** +** If the cursor is not pointing to a valid row, a NULL is pushed +** onto the stack. +*/ +case OP_RowKey: +case OP_RowData: { + int i = pOp->p1; + Cursor *pC; + u32 n; + + pTos++; + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + if( pC->nullRow ){ + pTos->flags = MEM_Null; + }else if( pC->pCursor!=0 ){ + BtCursor *pCrsr = pC->pCursor; + sqlite3VdbeCursorMoveto(pC); + if( pC->nullRow ){ + pTos->flags = MEM_Null; + break; + }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){ + i64 n64; + assert( !pC->intKey ); + sqlite3BtreeKeySize(pCrsr, &n64); + n = n64; + }else{ + sqlite3BtreeDataSize(pCrsr, &n); + } + pTos->n = n; + if( n<=NBFS ){ + pTos->flags = MEM_Blob | MEM_Short; + pTos->z = pTos->zShort; + }else{ + char *z = sqliteMallocRaw( n ); + if( z==0 ) goto no_mem; + pTos->flags = MEM_Blob | MEM_Dyn; + pTos->xDel = 0; + pTos->z = z; + } + if( pC->keyAsData || pOp->opcode==OP_RowKey ){ + sqlite3BtreeKey(pCrsr, 0, n, pTos->z); + }else{ + sqlite3BtreeData(pCrsr, 0, n, pTos->z); + } + }else if( pC->pseudoTable ){ + pTos->n = pC->nData; + pTos->z = pC->pData; + pTos->flags = MEM_Blob|MEM_Ephem; + }else{ + pTos->flags = MEM_Null; + } + break; +} + +/* Opcode: Recno P1 * * +** +** Push onto the stack an integer which is the first 4 bytes of the +** the key to the current entry in a sequential scan of the database +** file P1. The sequential scan should have been started using the +** Next opcode. +*/ +case OP_Recno: { + int i = pOp->p1; + Cursor *pC; + i64 v; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + sqlite3VdbeCursorMoveto(pC); + pTos++; + if( pC->recnoIsValid ){ + v = pC->lastRecno; + }else if( pC->pseudoTable ){ + v = keyToInt(pC->iKey); + }else if( pC->nullRow || pC->pCursor==0 ){ + pTos->flags = MEM_Null; + break; + }else{ + assert( pC->pCursor!=0 ); + sqlite3BtreeKeySize(pC->pCursor, &v); + v = keyToInt(v); + } + pTos->i = v; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: FullKey P1 * * +** +** Extract the complete key from the record that cursor P1 is currently +** pointing to and push the key onto the stack as a string. +** +** Compare this opcode to Recno. The Recno opcode extracts the first +** 4 bytes of the key and pushes those bytes onto the stack as an +** integer. This instruction pushes the entire key as a string. +** +** This opcode may not be used on a pseudo-table. +*/ +case OP_FullKey: { + int i = pOp->p1; + BtCursor *pCrsr; + Cursor *pC; + + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + assert( p->apCsr[i]->keyAsData ); + assert( !p->apCsr[i]->pseudoTable ); + pTos++; + pTos->flags = MEM_Null; + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + i64 amt; + char *z; + + sqlite3VdbeCursorMoveto(pC); + assert( pC->intKey==0 ); + sqlite3BtreeKeySize(pCrsr, &amt); + if( amt<=0 ){ + rc = SQLITE_CORRUPT; + goto abort_due_to_error; + } + if( amt>NBFS ){ + z = sqliteMallocRaw( amt ); + if( z==0 ) goto no_mem; + pTos->flags = MEM_Blob | MEM_Dyn; + pTos->xDel = 0; + }else{ + z = pTos->zShort; + pTos->flags = MEM_Blob | MEM_Short; + } + sqlite3BtreeKey(pCrsr, 0, amt, z); + pTos->z = z; + pTos->n = amt; + } + break; +} + +/* Opcode: NullRow P1 * * +** +** Move the cursor P1 to a null row. Any OP_Column operations +** that occur while the cursor is on the null row will always push +** a NULL onto the stack. +*/ +case OP_NullRow: { + int i = pOp->p1; + Cursor *pC; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + pC->nullRow = 1; + pC->recnoIsValid = 0; + break; +} + +/* Opcode: Last P1 P2 * +** +** The next use of the Recno or Column or Next instruction for P1 +** will refer to the last entry in the database table or index. +** If the table or index is empty and P2>0, then jump immediately to P2. +** If P2 is 0 or if the table or index is not empty, fall through +** to the following instruction. +*/ +case OP_Last: { + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + if( (pCrsr = pC->pCursor)!=0 ){ + int res; + rc = sqlite3BtreeLast(pCrsr, &res); + pC->nullRow = res; + pC->deferredMoveto = 0; + pC->cacheValid = 0; + if( res && pOp->p2>0 ){ + pc = pOp->p2 - 1; + } + }else{ + pC->nullRow = 0; + } + break; +} + +/* Opcode: Rewind P1 P2 * +** +** The next use of the Recno or Column or Next instruction for P1 +** will refer to the first entry in the database table or index. +** If the table or index is empty and P2>0, then jump immediately to P2. +** If P2 is 0 or if the table or index is not empty, fall through +** to the following instruction. +*/ +case OP_Rewind: { + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + int res; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + if( (pCrsr = pC->pCursor)!=0 ){ + rc = sqlite3BtreeFirst(pCrsr, &res); + pC->atFirst = res==0; + pC->deferredMoveto = 0; + pC->cacheValid = 0; + }else{ + res = 1; + } + pC->nullRow = res; + if( res && pOp->p2>0 ){ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: Next P1 P2 * +** +** Advance cursor P1 so that it points to the next key/data pair in its +** table or index. If there are no more key/value pairs then fall through +** to the following instruction. But if the cursor advance was successful, +** jump immediately to P2. +** +** See also: Prev +*/ +/* Opcode: Prev P1 P2 * +** +** Back up cursor P1 so that it points to the previous key/data pair in its +** table or index. If there is no previous key/value pairs then fall through +** to the following instruction. But if the cursor backup was successful, +** jump immediately to P2. +*/ +case OP_Prev: +case OP_Next: { + Cursor *pC; + BtCursor *pCrsr; + + CHECK_FOR_INTERRUPT; + assert( pOp->p1>=0 && pOp->p1<p->nCursor ); + pC = p->apCsr[pOp->p1]; + assert( pC!=0 ); + if( (pCrsr = pC->pCursor)!=0 ){ + int res; + if( pC->nullRow ){ + res = 1; + }else{ + assert( pC->deferredMoveto==0 ); + rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) : + sqlite3BtreePrevious(pCrsr, &res); + pC->nullRow = res; + pC->cacheValid = 0; + } + if( res==0 ){ + pc = pOp->p2 - 1; + sqlite3_search_count++; + } + }else{ + pC->nullRow = 1; + } + pC->recnoIsValid = 0; + break; +} + +/* Opcode: IdxPut P1 P2 P3 +** +** The top of the stack holds a SQL index key made using the +** MakeIdxKey instruction. This opcode writes that key into the +** index P1. Data for the entry is nil. +** +** If P2==1, then the key must be unique. If the key is not unique, +** the program aborts with a SQLITE_CONSTRAINT error and the database +** is rolled back. If P3 is not null, then it becomes part of the +** error message returned with the SQLITE_CONSTRAINT. +*/ +case OP_IdxPut: { + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + assert( pTos->flags & MEM_Blob ); + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + int nKey = pTos->n; + const char *zKey = pTos->z; + if( pOp->p2 ){ + int res; + int len; + + /* 'len' is the length of the key minus the rowid at the end */ + len = nKey - sqlite3VdbeIdxRowidLen(nKey, zKey); + + rc = sqlite3BtreeMoveto(pCrsr, zKey, len, &res); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + while( res!=0 && !sqlite3BtreeEof(pCrsr) ){ + int c; + if( sqlite3VdbeIdxKeyCompare(pC, len, zKey, &c)==SQLITE_OK && c==0 ){ + rc = SQLITE_CONSTRAINT; + if( pOp->p3 && pOp->p3[0] ){ + sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0); + } + goto abort_due_to_error; + } + if( res<0 ){ + sqlite3BtreeNext(pCrsr, &res); + res = +1; + }else{ + break; + } + } + } + assert( pC->intKey==0 ); + rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0); + assert( pC->deferredMoveto==0 ); + pC->cacheValid = 0; + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: IdxDelete P1 * * +** +** The top of the stack is an index key built using the MakeIdxKey opcode. +** This opcode removes that entry from the index. +*/ +case OP_IdxDelete: { + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + assert( pTos>=p->aStack ); + assert( pTos->flags & MEM_Blob ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + int rx, res; + rx = sqlite3BtreeMoveto(pCrsr, pTos->z, pTos->n, &res); + if( rx==SQLITE_OK && res==0 ){ + rc = sqlite3BtreeDelete(pCrsr); + } + assert( pC->deferredMoveto==0 ); + pC->cacheValid = 0; + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: IdxRecno P1 * * +** +** Push onto the stack an integer which is the varint located at the +** end of the index key pointed to by cursor P1. These integer should be +** the record number of the table entry to which this index entry points. +** +** See also: Recno, MakeIdxKey. +*/ +case OP_IdxRecno: { + int i = pOp->p1; + BtCursor *pCrsr; + Cursor *pC; + + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + pTos++; + pTos->flags = MEM_Null; + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + i64 rowid; + + assert( pC->deferredMoveto==0 ); + assert( pC->intKey==0 ); + if( pC->nullRow ){ + pTos->flags = MEM_Null; + }else{ + rc = sqlite3VdbeIdxRowid(pCrsr, &rowid); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + pTos->flags = MEM_Int; + pTos->i = rowid; + } + } + break; +} + +/* Opcode: IdxGT P1 P2 * +** +** The top of the stack is an index entry that omits the ROWID. Compare +** the top of stack against the index that P1 is currently pointing to. +** Ignore the ROWID on the P1 index. +** +** The top of the stack might have fewer columns that P1. +** +** If the P1 index entry is greater than the top of the stack +** then jump to P2. Otherwise fall through to the next instruction. +** In either case, the stack is popped once. +*/ +/* Opcode: IdxGE P1 P2 P3 +** +** The top of the stack is an index entry that omits the ROWID. Compare +** the top of stack against the index that P1 is currently pointing to. +** Ignore the ROWID on the P1 index. +** +** If the P1 index entry is greater than or equal to the top of the stack +** then jump to P2. Otherwise fall through to the next instruction. +** In either case, the stack is popped once. +** +** If P3 is the "+" string (or any other non-NULL string) then the +** index taken from the top of the stack is temporarily increased by +** an epsilon prior to the comparison. This make the opcode work +** like IdxGT except that if the key from the stack is a prefix of +** the key in the cursor, the result is false whereas it would be +** true with IdxGT. +*/ +/* Opcode: IdxLT P1 P2 P3 +** +** The top of the stack is an index entry that omits the ROWID. Compare +** the top of stack against the index that P1 is currently pointing to. +** Ignore the ROWID on the P1 index. +** +** If the P1 index entry is less than the top of the stack +** then jump to P2. Otherwise fall through to the next instruction. +** In either case, the stack is popped once. +** +** If P3 is the "+" string (or any other non-NULL string) then the +** index taken from the top of the stack is temporarily increased by +** an epsilon prior to the comparison. This makes the opcode work +** like IdxLE. +*/ +case OP_IdxLT: +case OP_IdxGT: +case OP_IdxGE: { + int i= pOp->p1; + BtCursor *pCrsr; + Cursor *pC; + + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + assert( pTos>=p->aStack ); + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + int res, rc; + + assert( pTos->flags & MEM_Blob ); /* Created using OP_Make*Key */ + Stringify(pTos, db->enc); + assert( pC->deferredMoveto==0 ); + *pC->pIncrKey = pOp->p3!=0; + assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT ); + rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, pTos->z, &res); + *pC->pIncrKey = 0; + if( rc!=SQLITE_OK ){ + break; + } + if( pOp->opcode==OP_IdxLT ){ + res = -res; + }else if( pOp->opcode==OP_IdxGE ){ + res++; + } + if( res>0 ){ + pc = pOp->p2 - 1 ; + } + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: IdxIsNull P1 P2 * +** +** The top of the stack contains an index entry such as might be generated +** by the MakeIdxKey opcode. This routine looks at the first P1 fields of +** that key. If any of the first P1 fields are NULL, then a jump is made +** to address P2. Otherwise we fall straight through. +** +** The index entry is always popped from the stack. +*/ +case OP_IdxIsNull: { + int i = pOp->p1; + int k, n; + const char *z; + u32 serial_type; + + assert( pTos>=p->aStack ); + assert( pTos->flags & MEM_Blob ); + z = pTos->z; + n = pTos->n; + k = sqlite3GetVarint32(z, &serial_type); + for(; k<n && i>0; i--){ + k += sqlite3GetVarint32(&z[k], &serial_type); + if( serial_type==0 ){ /* Serial type 0 is a NULL */ + pc = pOp->p2-1; + break; + } + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: Destroy P1 P2 * +** +** Delete an entire database table or index whose root page in the database +** file is given by P1. +** +** The table being destroyed is in the main database file if P2==0. If +** P2==1 then the table to be clear is in the auxiliary database file +** that is used to store tables create using CREATE TEMPORARY TABLE. +** +** See also: Clear +*/ +case OP_Destroy: { + rc = sqlite3BtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1); + break; +} + +/* Opcode: Clear P1 P2 * +** +** Delete all contents of the database table or index whose root page +** in the database file is given by P1. But, unlike Destroy, do not +** remove the table or index from the database file. +** +** The table being clear is in the main database file if P2==0. If +** P2==1 then the table to be clear is in the auxiliary database file +** that is used to store tables create using CREATE TEMPORARY TABLE. +** +** See also: Destroy +*/ +case OP_Clear: { + rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1); + break; +} + +/* Opcode: CreateTable P1 * * +** +** Allocate a new table in the main database file if P2==0 or in the +** auxiliary database file if P2==1. Push the page number +** for the root page of the new table onto the stack. +** +** The difference between a table and an index is this: A table must +** have a 4-byte integer key and can have arbitrary data. An index +** has an arbitrary key but no data. +** +** See also: CreateIndex +*/ +/* Opcode: CreateIndex P1 * * +** +** Allocate a new index in the main database file if P2==0 or in the +** auxiliary database file if P2==1. Push the page number of the +** root page of the new index onto the stack. +** +** See documentation on OP_CreateTable for additional information. +*/ +case OP_CreateIndex: +case OP_CreateTable: { + int pgno; + int flags; + Db *pDb; + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + pDb = &db->aDb[pOp->p1]; + assert( pDb->pBt!=0 ); + if( pOp->opcode==OP_CreateTable ){ + /* flags = BTREE_INTKEY; */ + flags = BTREE_LEAFDATA|BTREE_INTKEY; + }else{ + flags = BTREE_ZERODATA; + } + rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); + pTos++; + if( rc==SQLITE_OK ){ + pTos->i = pgno; + pTos->flags = MEM_Int; + }else{ + pTos->flags = MEM_Null; + } + break; +} + +/* Opcode: ParseSchema P1 * P3 +** +** Read and parse all entries from the SQLITE_MASTER table of database P1 +** that match the WHERE clause P3. +** +** This opcode invokes the parser to create a new virtual machine, +** then runs the new virtual machine. It is thus a reentrant opcode. +*/ +case OP_ParseSchema: { + char *zSql; + int iDb = pOp->p1; + const char *zMaster; + InitData initData; + + assert( iDb>=0 && iDb<db->nDb ); + if( !DbHasProperty(db, iDb, DB_SchemaLoaded) ) break; + zMaster = iDb==1 ? TEMP_MASTER_NAME : MASTER_NAME; + initData.db = db; + initData.pzErrMsg = &p->zErrMsg; + zSql = sqlite3MPrintf( + "SELECT name, rootpage, sql, %d FROM '%q'.%s WHERE %s", + pOp->p1, db->aDb[iDb].zName, zMaster, pOp->p3); + if( zSql==0 ) goto no_mem; + sqlite3SafetyOff(db); + assert( db->init.busy==0 ); + db->init.busy = 1; + rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); + db->init.busy = 0; + sqlite3SafetyOn(db); + sqliteFree(zSql); + break; +} + +/* Opcode: DropTable P1 * P3 +** +** Remove the internal (in-memory) data structures that describe +** the table named P3 in database P1. This is called after a table +** is dropped in order to keep the internal representation of the +** schema consistent with what is on disk. +*/ +case OP_DropTable: { + sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3); + break; +} + +/* Opcode: DropIndex P1 * P3 +** +** Remove the internal (in-memory) data structures that describe +** the index named P3 in database P1. This is called after an index +** is dropped in order to keep the internal representation of the +** schema consistent with what is on disk. +*/ +case OP_DropIndex: { + sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3); + break; +} + +/* Opcode: DropTrigger P1 * P3 +** +** Remove the internal (in-memory) data structures that describe +** the trigger named P3 in database P1. This is called after a trigger +** is dropped in order to keep the internal representation of the +** schema consistent with what is on disk. +*/ +case OP_DropTrigger: { + sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3); + break; +} + + +/* Opcode: IntegrityCk * P2 * +** +** Do an analysis of the currently open database. Push onto the +** stack the text of an error message describing any problems. +** If there are no errors, push a "ok" onto the stack. +** +** The root page numbers of all tables in the database are integer +** values on the stack. This opcode pulls as many integers as it +** can off of the stack and uses those numbers as the root pages. +** +** If P2 is not zero, the check is done on the auxiliary database +** file, not the main database file. +** +** This opcode is used for testing purposes only. +*/ +case OP_IntegrityCk: { + int nRoot; + int *aRoot; + int j; + char *z; + + for(nRoot=0; &pTos[-nRoot]>=p->aStack; nRoot++){ + if( (pTos[-nRoot].flags & MEM_Int)==0 ) break; + } + assert( nRoot>0 ); + aRoot = sqliteMallocRaw( sizeof(int*)*(nRoot+1) ); + if( aRoot==0 ) goto no_mem; + for(j=0; j<nRoot; j++){ + Mem *pMem = &pTos[-j]; + aRoot[j] = pMem->i; + } + aRoot[j] = 0; + popStack(&pTos, nRoot); + pTos++; + z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot); + if( z==0 || z[0]==0 ){ + if( z ) sqliteFree(z); + pTos->z = "ok"; + pTos->n = 2; + pTos->flags = MEM_Str | MEM_Static | MEM_Term; + }else{ + pTos->z = z; + pTos->n = strlen(z); + pTos->flags = MEM_Str | MEM_Dyn | MEM_Term; + pTos->xDel = 0; + } + pTos->enc = SQLITE_UTF8; + sqlite3VdbeChangeEncoding(pTos, db->enc); + sqliteFree(aRoot); + break; +} + +/* Opcode: ListWrite * * * +** +** Write the integer on the top of the stack +** into the temporary storage list. +*/ +case OP_ListWrite: { + Keylist *pKeylist; + assert( pTos>=p->aStack ); + pKeylist = p->pList; + if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){ + pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) ); + if( pKeylist==0 ) goto no_mem; + pKeylist->nKey = 1000; + pKeylist->nRead = 0; + pKeylist->nUsed = 0; + pKeylist->pNext = p->pList; + p->pList = pKeylist; + } + Integerify(pTos); + pKeylist->aKey[pKeylist->nUsed++] = pTos->i; + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + break; +} + +/* Opcode: ListRewind * * * +** +** Rewind the temporary buffer back to the beginning. +*/ +case OP_ListRewind: { + /* What this opcode codes, really, is reverse the order of the + ** linked list of Keylist structures so that they are read out + ** in the same order that they were read in. */ + Keylist *pRev, *pTop; + pRev = 0; + while( p->pList ){ + pTop = p->pList; + p->pList = pTop->pNext; + pTop->pNext = pRev; + pRev = pTop; + } + p->pList = pRev; + break; +} + +/* Opcode: ListRead * P2 * +** +** Attempt to read an integer from the temporary storage buffer +** and push it onto the stack. If the storage buffer is empty, +** push nothing but instead jump to P2. +*/ +case OP_ListRead: { + Keylist *pKeylist; + CHECK_FOR_INTERRUPT; + pKeylist = p->pList; + if( pKeylist!=0 ){ + assert( pKeylist->nRead>=0 ); + assert( pKeylist->nRead<pKeylist->nUsed ); + assert( pKeylist->nRead<pKeylist->nKey ); + pTos++; + pTos->i = pKeylist->aKey[pKeylist->nRead++]; + pTos->flags = MEM_Int; + if( pKeylist->nRead>=pKeylist->nUsed ){ + p->pList = pKeylist->pNext; + sqliteFree(pKeylist); + } + }else{ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: ListReset * * * +** +** Reset the temporary storage buffer so that it holds nothing. +*/ +case OP_ListReset: { + if( p->pList ){ + sqlite3VdbeKeylistFree(p->pList); + p->pList = 0; + } + break; +} + +/* Opcode: ContextPush * * * +** +** Save the current Vdbe context such that it can be restored by a ContextPop +** opcode. The context stores the last insert row id, the last statement change +** count, and the current statement change count. +*/ +case OP_ContextPush: { + int i = p->contextStackTop++; + Context *pContext; + + assert( i>=0 ); + /* FIX ME: This should be allocated as part of the vdbe at compile-time */ + if( i>=p->contextStackDepth ){ + p->contextStackDepth = i+1; + p->contextStack = sqliteRealloc(p->contextStack, sizeof(Context)*(i+1)); + if( p->contextStack==0 ) goto no_mem; + } + pContext = &p->contextStack[i]; + pContext->lastRowid = db->lastRowid; + pContext->nChange = p->nChange; + pContext->pList = p->pList; + p->pList = 0; + break; +} + +/* Opcode: ContextPop * * * +** +** Restore the Vdbe context to the state it was in when contextPush was last +** executed. The context stores the last insert row id, the last statement +** change count, and the current statement change count. +*/ +case OP_ContextPop: { + Context *pContext = &p->contextStack[--p->contextStackTop]; + assert( p->contextStackTop>=0 ); + db->lastRowid = pContext->lastRowid; + p->nChange = pContext->nChange; + sqlite3VdbeKeylistFree(p->pList); + p->pList = pContext->pList; + break; +} + +/* Opcode: SortPut * * * +** +** The TOS is the key and the NOS is the data. Pop both from the stack +** and put them on the sorter. The key and data should have been +** made using SortMakeKey and SortMakeRec, respectively. +*/ +case OP_SortPut: { + Mem *pNos = &pTos[-1]; + Sorter *pSorter; + assert( pNos>=p->aStack ); + if( Dynamicify(pTos, db->enc) ) goto no_mem; + pSorter = sqliteMallocRaw( sizeof(Sorter) ); + if( pSorter==0 ) goto no_mem; + pSorter->pNext = p->pSort; + p->pSort = pSorter; + assert( pTos->flags & MEM_Dyn ); + pSorter->nKey = pTos->n; + pSorter->zKey = pTos->z; + pSorter->data.flags = MEM_Null; + rc = sqlite3VdbeMemMove(&pSorter->data, pNos); + pTos -= 2; + break; +} + +/* Opcode: Sort * * P3 +** +** Sort all elements on the sorter. The algorithm is a +** mergesort. The P3 argument is a pointer to a KeyInfo structure +** that describes the keys to be sorted. +*/ +case OP_Sort: { + int i; + KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3; + Sorter *pElem; + Sorter *apSorter[NSORT]; + pKeyInfo->enc = p->db->enc; + for(i=0; i<NSORT; i++){ + apSorter[i] = 0; + } + while( p->pSort ){ + pElem = p->pSort; + p->pSort = pElem->pNext; + pElem->pNext = 0; + for(i=0; i<NSORT-1; i++){ + if( apSorter[i]==0 ){ + apSorter[i] = pElem; + break; + }else{ + pElem = Merge(apSorter[i], pElem, pKeyInfo); + apSorter[i] = 0; + } + } + if( i>=NSORT-1 ){ + apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem, pKeyInfo); + } + } + pElem = 0; + for(i=0; i<NSORT; i++){ + pElem = Merge(apSorter[i], pElem, pKeyInfo); + } + p->pSort = pElem; + break; +} + +/* Opcode: SortNext * P2 * +** +** Push the data for the topmost element in the sorter onto the +** stack, then remove the element from the sorter. If the sorter +** is empty, push nothing on the stack and instead jump immediately +** to instruction P2. +*/ +case OP_SortNext: { + Sorter *pSorter = p->pSort; + CHECK_FOR_INTERRUPT; + if( pSorter!=0 ){ + p->pSort = pSorter->pNext; + pTos++; + pTos->flags = MEM_Null; + rc = sqlite3VdbeMemMove(pTos, &pSorter->data); + sqliteFree(pSorter->zKey); + sqliteFree(pSorter); + }else{ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: SortReset * * * +** +** Remove any elements that remain on the sorter. +*/ +case OP_SortReset: { + sqlite3VdbeSorterReset(p); + break; +} + +/* Opcode: MemStore P1 P2 * +** +** Write the top of the stack into memory location P1. +** P1 should be a small integer since space is allocated +** for all memory locations between 0 and P1 inclusive. +** +** After the data is stored in the memory location, the +** stack is popped once if P2 is 1. If P2 is zero, then +** the original data remains on the stack. +*/ +case OP_MemStore: { + assert( pTos>=p->aStack ); + assert( pOp->p1>=0 && pOp->p1<p->nMem ); + rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos); + pTos--; + + /* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will + ** restore the top of the stack to its original value. + */ + if( pOp->p2 ){ + break; + } +} +/* Opcode: MemLoad P1 * * +** +** Push a copy of the value in memory location P1 onto the stack. +** +** If the value is a string, then the value pushed is a pointer to +** the string that is stored in the memory location. If the memory +** location is subsequently changed (using OP_MemStore) then the +** value pushed onto the stack will change too. +*/ +case OP_MemLoad: { + int i = pOp->p1; + assert( i>=0 && i<p->nMem ); + pTos++; + sqlite3VdbeMemShallowCopy(pTos, &p->aMem[i], MEM_Ephem); + break; +} + +/* Opcode: MemIncr P1 P2 * +** +** Increment the integer valued memory cell P1 by 1. If P2 is not zero +** and the result after the increment is greater than zero, then jump +** to P2. +** +** This instruction throws an error if the memory cell is not initially +** an integer. +*/ +case OP_MemIncr: { + int i = pOp->p1; + Mem *pMem; + assert( i>=0 && i<p->nMem ); + pMem = &p->aMem[i]; + assert( pMem->flags==MEM_Int ); + pMem->i++; + if( pOp->p2>0 && pMem->i>0 ){ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: AggReset P1 P2 P3 +** +** Reset the aggregator so that it no longer contains any data. +** Future aggregator elements will contain P2 values each and be sorted +** using the KeyInfo structure pointed to by P3. +** +** If P1 is non-zero, then only a single aggregator row is available (i.e. +** there is no GROUP BY expression). In this case it is illegal to invoke +** OP_AggFocus. +*/ +case OP_AggReset: { + assert( !pOp->p3 || pOp->p3type==P3_KEYINFO ); + if( pOp->p1 ){ + rc = sqlite3VdbeAggReset(0, &p->agg, (KeyInfo *)pOp->p3); + p->agg.nMem = pOp->p2; /* Agg.nMem is used by AggInsert() */ + rc = AggInsert(&p->agg, 0, 0); + }else{ + rc = sqlite3VdbeAggReset(db, &p->agg, (KeyInfo *)pOp->p3); + p->agg.nMem = pOp->p2; + } + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) ); + if( p->agg.apFunc==0 ) goto no_mem; + break; +} + +/* Opcode: AggInit * P2 P3 +** +** Initialize the function parameters for an aggregate function. +** The aggregate will operate out of aggregate column P2. +** P3 is a pointer to the FuncDef structure for the function. +*/ +case OP_AggInit: { + int i = pOp->p2; + assert( i>=0 && i<p->agg.nMem ); + p->agg.apFunc[i] = (FuncDef*)pOp->p3; + break; +} + +/* Opcode: AggFunc * P2 P3 +** +** Execute the step function for an aggregate. The +** function has P2 arguments. P3 is a pointer to the FuncDef +** structure that specifies the function. +** +** The top of the stack must be an integer which is the index of +** the aggregate column that corresponds to this aggregate function. +** Ideally, this index would be another parameter, but there are +** no free parameters left. The integer is popped from the stack. +*/ +case OP_AggFunc: { + int n = pOp->p2; + int i; + Mem *pMem, *pRec; + sqlite3_context ctx; + sqlite3_value **apVal; + + assert( n>=0 ); + assert( pTos->flags==MEM_Int ); + pRec = &pTos[-n]; + assert( pRec>=p->aStack ); + + apVal = p->apArg; + assert( apVal || n==0 ); + + for(i=0; i<n; i++, pRec++){ + apVal[i] = pRec; + storeTypeInfo(pRec, db->enc); + } + i = pTos->i; + assert( i>=0 && i<p->agg.nMem ); + ctx.pFunc = (FuncDef*)pOp->p3; + pMem = &p->agg.pCurrent->aMem[i]; + ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */ + ctx.pAgg = pMem->z; + ctx.cnt = ++pMem->i; + ctx.isError = 0; + ctx.isStep = 1; + ctx.pColl = 0; + if( ctx.pFunc->needCollSeq ){ + assert( pOp>p->aOp ); + assert( pOp[-1].p3type==P3_COLLSEQ ); + assert( pOp[-1].opcode==OP_CollSeq ); + ctx.pColl = (CollSeq *)pOp[-1].p3; + } + (ctx.pFunc->xStep)(&ctx, n, apVal); + pMem->z = ctx.pAgg; + pMem->flags = MEM_AggCtx; + popStack(&pTos, n+1); + if( ctx.isError ){ + rc = SQLITE_ERROR; + } + break; +} + +/* Opcode: AggFocus * P2 * +** +** Pop the top of the stack and use that as an aggregator key. If +** an aggregator with that same key already exists, then make the +** aggregator the current aggregator and jump to P2. If no aggregator +** with the given key exists, create one and make it current but +** do not jump. +** +** The order of aggregator opcodes is important. The order is: +** AggReset AggFocus AggNext. In other words, you must execute +** AggReset first, then zero or more AggFocus operations, then +** zero or more AggNext operations. You must not execute an AggFocus +** in between an AggNext and an AggReset. +*/ +case OP_AggFocus: { + char *zKey; + int nKey; + int res; + assert( pTos>=p->aStack ); + Stringify(pTos, db->enc); + zKey = pTos->z; + nKey = pTos->n; + assert( p->agg.pBtree ); + assert( p->agg.pCsr ); + rc = sqlite3BtreeMoveto(p->agg.pCsr, zKey, nKey, &res); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + if( res==0 ){ + rc = sqlite3BtreeData(p->agg.pCsr, 0, sizeof(AggElem*), + (char *)&p->agg.pCurrent); + pc = pOp->p2 - 1; + }else{ + rc = AggInsert(&p->agg, zKey, nKey); + } + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: AggSet * P2 * +** +** Move the top of the stack into the P2-th field of the current +** aggregate. String values are duplicated into new memory. +*/ +case OP_AggSet: { + AggElem *pFocus; + int i = pOp->p2; + pFocus = p->agg.pCurrent; + assert( pTos>=p->aStack ); + if( pFocus==0 ) goto no_mem; + assert( i>=0 && i<p->agg.nMem ); + rc = sqlite3VdbeMemMove(&pFocus->aMem[i], pTos); + pTos--; + break; +} + +/* Opcode: AggGet * P2 * +** +** Push a new entry onto the stack which is a copy of the P2-th field +** of the current aggregate. Strings are not duplicated so +** string values will be ephemeral. +*/ +case OP_AggGet: { + AggElem *pFocus; + int i = pOp->p2; + pFocus = p->agg.pCurrent; + if( pFocus==0 ) goto no_mem; + assert( i>=0 && i<p->agg.nMem ); + pTos++; + sqlite3VdbeMemShallowCopy(pTos, &pFocus->aMem[i], MEM_Ephem); + if( pTos->flags&MEM_Str ){ + sqlite3VdbeChangeEncoding(pTos, db->enc); + } + break; +} + +/* Opcode: AggNext * P2 * +** +** Make the next aggregate value the current aggregate. The prior +** aggregate is deleted. If all aggregate values have been consumed, +** jump to P2. +** +** The order of aggregator opcodes is important. The order is: +** AggReset AggFocus AggNext. In other words, you must execute +** AggReset first, then zero or more AggFocus operations, then +** zero or more AggNext operations. You must not execute an AggFocus +** in between an AggNext and an AggReset. +*/ +case OP_AggNext: { + int res; + assert( rc==SQLITE_OK ); + CHECK_FOR_INTERRUPT; + if( p->agg.searching==0 ){ + p->agg.searching = 1; + if( p->agg.pCsr ){ + rc = sqlite3BtreeFirst(p->agg.pCsr, &res); + }else{ + res = 0; + } + }else{ + if( p->agg.pCsr ){ + rc = sqlite3BtreeNext(p->agg.pCsr, &res); + }else{ + res = 1; + } + } + if( rc!=SQLITE_OK ) goto abort_due_to_error; + if( res!=0 ){ + pc = pOp->p2 - 1; + }else{ + int i; + sqlite3_context ctx; + Mem *aMem; + + if( p->agg.pCsr ){ + rc = sqlite3BtreeData(p->agg.pCsr, 0, sizeof(AggElem*), + (char *)&p->agg.pCurrent); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + } + aMem = p->agg.pCurrent->aMem; + for(i=0; i<p->agg.nMem; i++){ + FuncDef *pFunc = p->agg.apFunc[i]; + Mem *pMem = &aMem[i]; + if( pFunc==0 || pFunc->xFinalize==0 ) continue; + ctx.s.flags = MEM_Null; + ctx.s.z = pMem->zShort; + ctx.pAgg = (void*)pMem->z; + ctx.cnt = pMem->i; + ctx.isStep = 0; + ctx.pFunc = pFunc; + pFunc->xFinalize(&ctx); + pMem->z = ctx.pAgg; + if( pMem->z && pMem->z!=pMem->zShort ){ + sqliteFree( pMem->z ); + } + *pMem = ctx.s; + if( pMem->flags & MEM_Short ){ + pMem->z = pMem->zShort; + } + } + } + break; +} + +/* Opcode: Vacuum * * * +** +** Vacuum the entire database. This opcode will cause other virtual +** machines to be created and run. It may not be called from within +** a transaction. +*/ +case OP_Vacuum: { + if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; + rc = sqlite3RunVacuum(&p->zErrMsg, db); + if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; + break; +} + +/* An other opcode is illegal... +*/ +default: { + sqlite3_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode); + sqlite3SetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0); + rc = SQLITE_INTERNAL; + break; +} + +/***************************************************************************** +** The cases of the switch statement above this line should all be indented +** by 6 spaces. But the left-most 6 spaces have been removed to improve the +** readability. From this point on down, the normal indentation rules are +** restored. +*****************************************************************************/ + } + +#ifdef VDBE_PROFILE + { + long long elapse = hwtime() - start; + pOp->cycles += elapse; + pOp->cnt++; +#if 0 + fprintf(stdout, "%10lld ", elapse); + sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]); +#endif + } +#endif + + /* The following code adds nothing to the actual functionality + ** of the program. It is only here for testing and debugging. + ** On the other hand, it does burn CPU cycles every time through + ** the evaluator loop. So we can leave it out when NDEBUG is defined. + */ +#ifndef NDEBUG + /* Sanity checking on the top element of the stack */ + if( pTos>=p->aStack ){ + sqlite3VdbeMemSanity(pTos, db->enc); + } + if( pc<-1 || pc>=p->nOp ){ + sqlite3SetString(&p->zErrMsg, "jump destination out of range", (char*)0); + rc = SQLITE_INTERNAL; + } + if( p->trace && pTos>=p->aStack ){ + int i; + fprintf(p->trace, "Stack:"); + for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){ + if( pTos[i].flags & MEM_Null ){ + fprintf(p->trace, " NULL"); + }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ + fprintf(p->trace, " si:%lld", pTos[i].i); + }else if( pTos[i].flags & MEM_Int ){ + fprintf(p->trace, " i:%lld", pTos[i].i); + }else if( pTos[i].flags & MEM_Real ){ + fprintf(p->trace, " r:%g", pTos[i].r); + }else{ + char zBuf[100]; + sqlite3VdbeMemPrettyPrint(&pTos[i], zBuf, 100); + fprintf(p->trace, " "); + fprintf(p->trace, "%s", zBuf); + } + } + if( rc!=0 ) fprintf(p->trace," rc=%d",rc); + fprintf(p->trace,"\n"); + } +#endif + } /* The end of the for(;;) loop the loops through opcodes */ + + /* If we reach this point, it means that execution is finished. + */ +vdbe_halt: + if( rc ){ + p->rc = rc; + rc = SQLITE_ERROR; + }else{ + rc = SQLITE_DONE; + } + sqlite3VdbeHalt(p); + p->pTos = pTos; + return rc; + + /* Jump to here if a malloc() fails. It's hard to get a malloc() + ** to fail on a modern VM computer, so this code is untested. + */ +no_mem: + sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0); + rc = SQLITE_NOMEM; + goto vdbe_halt; + + /* Jump to here for an SQLITE_MISUSE error. + */ +abort_due_to_misuse: + rc = SQLITE_MISUSE; + /* Fall thru into abort_due_to_error */ + + /* Jump to here for any other kind of fatal error. The "rc" variable + ** should hold the error number. + */ +abort_due_to_error: + if( p->zErrMsg==0 ){ + if( sqlite3_malloc_failed ) rc = SQLITE_NOMEM; + sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0); + } + goto vdbe_halt; + + /* Jump to here if the sqlite3_interrupt() API sets the interrupt + ** flag. + */ +abort_due_to_interrupt: + assert( db->flags & SQLITE_Interrupt ); + db->flags &= ~SQLITE_Interrupt; + if( db->magic!=SQLITE_MAGIC_BUSY ){ + rc = SQLITE_MISUSE; + }else{ + rc = SQLITE_INTERRUPT; + } + p->rc = rc; + sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0); + goto vdbe_halt; +} diff --git a/kopete/plugins/statistics/sqlite/vdbe.h b/kopete/plugins/statistics/sqlite/vdbe.h new file mode 100644 index 00000000..490417a4 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/vdbe.h @@ -0,0 +1,131 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Header file for the Virtual DataBase Engine (VDBE) +** +** This header defines the interface to the virtual database engine +** or VDBE. The VDBE implements an abstract machine that runs a +** simple program to access and modify the underlying database. +** +** $Id$ +*/ +#ifndef _SQLITE_VDBE_H_ +#define _SQLITE_VDBE_H_ +#include <stdio.h> + +/* +** A single VDBE is an opaque structure named "Vdbe". Only routines +** in the source file sqliteVdbe.c are allowed to see the insides +** of this structure. +*/ +typedef struct Vdbe Vdbe; + +/* +** A single instruction of the virtual machine has an opcode +** and as many as three operands. The instruction is recorded +** as an instance of the following structure: +*/ +struct VdbeOp { + u8 opcode; /* What operation to perform */ + int p1; /* First operand */ + int p2; /* Second parameter (often the jump destination) */ + char *p3; /* Third parameter */ + int p3type; /* P3_STATIC, P3_DYNAMIC or P3_POINTER */ +#ifdef VDBE_PROFILE + int cnt; /* Number of times this instruction was executed */ + long long cycles; /* Total time spend executing this instruction */ +#endif +}; +typedef struct VdbeOp VdbeOp; + +/* +** A smaller version of VdbeOp used for the VdbeAddOpList() function because +** it takes up less space. +*/ +struct VdbeOpList { + u8 opcode; /* What operation to perform */ + signed char p1; /* First operand */ + short int p2; /* Second parameter (often the jump destination) */ + char *p3; /* Third parameter */ +}; +typedef struct VdbeOpList VdbeOpList; + +/* +** Allowed values of VdbeOp.p3type +*/ +#define P3_NOTUSED 0 /* The P3 parameter is not used */ +#define P3_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */ +#define P3_STATIC (-2) /* Pointer to a static string */ +#define P3_POINTER (-3) /* P3 is a pointer to some structure or object */ +#define P3_COLLSEQ (-4) /* P3 is a pointer to a CollSeq structure */ +#define P3_FUNCDEF (-5) /* P3 is a pointer to a FuncDef structure */ +#define P3_KEYINFO (-6) /* P3 is a pointer to a KeyInfo structure */ +#define P3_VDBEFUNC (-7) /* P3 is a pointer to a VdbeFunc structure */ + +/* When adding a P3 argument using P3_KEYINFO, a copy of the KeyInfo structure +** is made. That copy is freed when the Vdbe is finalized. But if the +** argument is P3_KEYINFO_HANDOFF, the passed in pointer is used. It still +** gets freed when the Vdbe is finalized so it still should be obtained +** from a single sqliteMalloc(). But no copy is made and the calling +** function should *not* try to free the KeyInfo. +*/ +#define P3_KEYINFO_HANDOFF (-7) + +/* +** The following macro converts a relative address in the p2 field +** of a VdbeOp structure into a negative number so that +** sqlite3VdbeAddOpList() knows that the address is relative. Calling +** the macro again restores the address. +*/ +#define ADDR(X) (-1-(X)) + +/* +** The makefile scans the vdbe.c source file and creates the "opcodes.h" +** header file that defines a number for each opcode used by the VDBE. +*/ +#include "opcodes.h" + +/* +** Prototypes for the VDBE interface. See comments on the implementation +** for a description of what each of these routines does. +*/ +Vdbe *sqlite3VdbeCreate(sqlite3*); +void sqlite3VdbeCreateCallback(Vdbe*, int*); +int sqlite3VdbeAddOp(Vdbe*,int,int,int); +int sqlite3VdbeOp3(Vdbe*,int,int,int,const char *zP3,int); +int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp); +void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1); +void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2); +void sqlite3VdbeChangeP3(Vdbe*, int addr, const char *zP1, int N); +void sqlite3VdbeDequoteP3(Vdbe*, int addr); +int sqlite3VdbeFindOp(Vdbe*, int, int, int); +VdbeOp *sqlite3VdbeGetOp(Vdbe*, int); +int sqlite3VdbeMakeLabel(Vdbe*); +void sqlite3VdbeDelete(Vdbe*); +void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int); +int sqlite3VdbeFinalize(Vdbe*); +void sqlite3VdbeResolveLabel(Vdbe*, int); +int sqlite3VdbeCurrentAddr(Vdbe*); +void sqlite3VdbeTrace(Vdbe*,FILE*); +int sqlite3VdbeReset(Vdbe*); +int sqliteVdbeSetVariables(Vdbe*,int,const char**); +void sqlite3VdbeSetNumCols(Vdbe*,int); +int sqlite3VdbeSetColName(Vdbe*, int, const char *, int); +void sqlite3VdbeCountChanges(Vdbe*); + +#ifndef NDEBUG + void sqlite3VdbeComment(Vdbe*, const char*, ...); +# define VdbeComment(X) sqlite3VdbeComment X +#else +# define VdbeComment(X) +#endif + +#endif diff --git a/kopete/plugins/statistics/sqlite/vdbeInt.h b/kopete/plugins/statistics/sqlite/vdbeInt.h new file mode 100644 index 00000000..a929cb95 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/vdbeInt.h @@ -0,0 +1,408 @@ +/* +** 2003 September 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the header file for information that is private to the +** VDBE. This information used to all be at the top of the single +** source code file "vdbe.c". When that file became too big (over +** 6000 lines long) it was split up into several smaller files and +** this header information was factored out. +*/ + +/* +** intToKey() and keyToInt() used to transform the rowid. But with +** the latest versions of the design they are no-ops. +*/ +#define keyToInt(X) (X) +#define intToKey(X) (X) + +/* +** The makefile scans the vdbe.c source file and creates the following +** array of string constants which are the names of all VDBE opcodes. This +** array is defined in a separate source code file named opcode.c which is +** automatically generated by the makefile. +*/ +extern char *sqlite3OpcodeNames[]; + +/* +** SQL is translated into a sequence of instructions to be +** executed by a virtual machine. Each instruction is an instance +** of the following structure. +*/ +typedef struct VdbeOp Op; + +/* +** Boolean values +*/ +typedef unsigned char Bool; + +/* +** A cursor is a pointer into a single BTree within a database file. +** The cursor can seek to a BTree entry with a particular key, or +** loop over all entries of the Btree. You can also insert new BTree +** entries or retrieve the key or data from the entry that the cursor +** is currently pointing to. +** +** Every cursor that the virtual machine has open is represented by an +** instance of the following structure. +** +** If the Cursor.isTriggerRow flag is set it means that this cursor is +** really a single row that represents the NEW or OLD pseudo-table of +** a row trigger. The data for the row is stored in Cursor.pData and +** the rowid is in Cursor.iKey. +*/ +struct Cursor { + BtCursor *pCursor; /* The cursor structure of the backend */ + i64 lastRecno; /* Last recno from a Next or NextIdx operation */ + i64 nextRowid; /* Next rowid returned by OP_NewRowid */ + Bool zeroed; /* True if zeroed out and ready for reuse */ + Bool recnoIsValid; /* True if lastRecno is valid */ + Bool keyAsData; /* The OP_Column command works on key instead of data */ + Bool atFirst; /* True if pointing to first entry */ + Bool useRandomRowid; /* Generate new record numbers semi-randomly */ + Bool nullRow; /* True if pointing to a row with no data */ + Bool nextRowidValid; /* True if the nextRowid field is valid */ + Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */ + Bool deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */ + Bool intKey; /* True if the table requires integer keys */ + Bool zeroData; /* True if table contains keys only - no data */ + u8 bogusIncrKey; /* Something for pIncrKey to point to if pKeyInfo==0 */ + i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */ + Btree *pBt; /* Separate file holding temporary table */ + int nData; /* Number of bytes in pData */ + char *pData; /* Data for a NEW or OLD pseudo-table */ + i64 iKey; /* Key for the NEW or OLD pseudo-table row */ + u8 *pIncrKey; /* Pointer to pKeyInfo->incrKey */ + KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */ + int nField; /* Number of fields in the header */ + + /* Cached information about the header for the data record that the + ** cursor is currently pointing to. Only valid if cacheValid is true. + ** zRow might point to (ephemeral) data for the current row, or it might + ** be NULL. */ + Bool cacheValid; /* True if the cache is valid */ + int payloadSize; /* Total number of bytes in the record */ + u32 *aType; /* Type values for all entries in the record */ + u32 *aOffset; /* Cached offsets to the start of each columns data */ + u8 *aRow; /* Data for the current row, if all on one page */ +}; +typedef struct Cursor Cursor; + +/* +** Number of bytes of string storage space available to each stack +** layer without having to malloc. NBFS is short for Number of Bytes +** For Strings. +*/ +#define NBFS 32 + +/* +** Internally, the vdbe manipulates nearly all SQL values as Mem +** structures. Each Mem struct may cache multiple representations (string, +** integer etc.) of the same value. A value (and therefore Mem structure) +** has the following properties: +** +** Each value has a manifest type. The manifest type of the value stored +** in a Mem struct is returned by the MemType(Mem*) macro. The type is +** one of SQLITE_NULL, SQLITE_INTEGER, SQLITE_REAL, SQLITE_TEXT or +** SQLITE_BLOB. +*/ +struct Mem { + i64 i; /* Integer value */ + int n; /* Number of characters in string value, including '\0' */ + u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ + u8 type; /* One of MEM_Null, MEM_Str, etc. */ + u8 enc; /* TEXT_Utf8, TEXT_Utf16le, or TEXT_Utf16be */ + double r; /* Real value */ + char *z; /* String or BLOB value */ + void (*xDel)(void *); /* If not null, call this function to delete Mem.z */ + char zShort[NBFS]; /* Space for short strings */ +}; +typedef struct Mem Mem; + +/* +** A sorter builds a list of elements to be sorted. Each element of +** the list is an instance of the following structure. +*/ +typedef struct Sorter Sorter; +struct Sorter { + int nKey; /* Number of bytes in the key */ + char *zKey; /* The key by which we will sort */ + Mem data; + Sorter *pNext; /* Next in the list */ +}; + +/* +** Number of buckets used for merge-sort. +*/ +#define NSORT 30 + +/* One or more of the following flags are set to indicate the validOK +** representations of the value stored in the Mem struct. +** +** If the MEM_Null flag is set, then the value is an SQL NULL value. +** No other flags may be set in this case. +** +** If the MEM_Str flag is set then Mem.z points at a string representation. +** Usually this is encoded in the same unicode encoding as the main +** database (see below for exceptions). If the MEM_Term flag is also +** set, then the string is nul terminated. The MEM_Int and MEM_Real +** flags may coexist with the MEM_Str flag. +** +** Multiple of these values can appear in Mem.flags. But only one +** at a time can appear in Mem.type. +*/ +#define MEM_Null 0x0001 /* Value is NULL */ +#define MEM_Str 0x0002 /* Value is a string */ +#define MEM_Int 0x0004 /* Value is an integer */ +#define MEM_Real 0x0008 /* Value is a real number */ +#define MEM_Blob 0x0010 /* Value is a BLOB */ + +/* Whenever Mem contains a valid string or blob representation, one of +** the following flags must be set to determine the memory management +** policy for Mem.z. The MEM_Term flag tells us whether or not the +** string is \000 or \u0000 terminated +*/ +#define MEM_Term 0x0020 /* String rep is nul terminated */ +#define MEM_Dyn 0x0040 /* Need to call sqliteFree() on Mem.z */ +#define MEM_Static 0x0080 /* Mem.z points to a static string */ +#define MEM_Ephem 0x0100 /* Mem.z points to an ephemeral string */ +#define MEM_Short 0x0200 /* Mem.z points to Mem.zShort */ + +/* The following MEM_ value appears only in AggElem.aMem.s.flag fields. +** It indicates that the corresponding AggElem.aMem.z points to a +** aggregate function context that needs to be finalized. +*/ +#define MEM_AggCtx 0x0400 /* Mem.z points to an agg function context */ + + +/* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains +** additional information about auxiliary information bound to arguments +** of the function. This is used to implement the sqlite3_get_auxdata() +** and sqlite3_set_auxdata() APIs. The "auxdata" is some auxiliary data +** that can be associated with a constant argument to a function. This +** allows functions such as "regexp" to compile their constant regular +** expression argument once and reused the compiled code for multiple +** invocations. +*/ +struct VdbeFunc { + FuncDef *pFunc; /* The definition of the function */ + int nAux; /* Number of entries allocated for apAux[] */ + struct AuxData { + void *pAux; /* Aux data for the i-th argument */ + void (*xDelete)(void *); /* Destructor for the aux data */ + } apAux[1]; /* One slot for each function argument */ +}; +typedef struct VdbeFunc VdbeFunc; + +/* +** The "context" argument for a installable function. A pointer to an +** instance of this structure is the first argument to the routines used +** implement the SQL functions. +** +** There is a typedef for this structure in sqlite.h. So all routines, +** even the public interface to SQLite, can use a pointer to this structure. +** But this file is the only place where the internal details of this +** structure are known. +** +** This structure is defined inside of vdbe.c because it uses substructures +** (Mem) which are only defined there. +*/ +struct sqlite3_context { + FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */ + VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */ + Mem s; /* The return value is stored here */ + void *pAgg; /* Aggregate context */ + u8 isError; /* Set to true for an error */ + u8 isStep; /* Current in the step function */ + int cnt; /* Number of times that the step function has been called */ + CollSeq *pColl; +}; + +/* +** An Agg structure describes an Aggregator. Each Agg consists of +** zero or more Aggregator elements (AggElem). Each AggElem contains +** a key and one or more values. The values are used in processing +** aggregate functions in a SELECT. The key is used to implement +** the GROUP BY clause of a select. +*/ +typedef struct Agg Agg; +typedef struct AggElem AggElem; +struct Agg { + int nMem; /* Number of values stored in each AggElem */ + AggElem *pCurrent; /* The AggElem currently in focus */ + FuncDef **apFunc; /* Information about aggregate functions */ + Btree *pBtree; /* The tmp. btree used to group elements, if required. */ + BtCursor *pCsr; /* Read/write cursor to the table in pBtree */ + int nTab; /* Root page of the table in pBtree */ + u8 searching; /* True between the first AggNext and AggReset */ +}; +struct AggElem { + char *zKey; /* The key to this AggElem */ + int nKey; /* Number of bytes in the key, including '\0' at end */ + Mem aMem[1]; /* The values for this AggElem */ +}; + +/* +** A Set structure is used for quick testing to see if a value +** is part of a small set. Sets are used to implement code like +** this: +** x.y IN ('hi','hoo','hum') +*/ +typedef struct Set Set; +struct Set { + Hash hash; /* A set is just a hash table */ + HashElem *prev; /* Previously accessed hash elemen */ +}; + +/* +** A Keylist is a bunch of keys into a table. The keylist can +** grow without bound. The keylist stores the ROWIDs of database +** records that need to be deleted or updated. +*/ +typedef struct Keylist Keylist; +struct Keylist { + int nKey; /* Number of slots in aKey[] */ + int nUsed; /* Next unwritten slot in aKey[] */ + int nRead; /* Next unread slot in aKey[] */ + Keylist *pNext; /* Next block of keys */ + i64 aKey[1]; /* One or more keys. Extra space allocated as needed */ +}; + +/* +** A Context stores the last insert rowid, the last statement change count, +** and the current statement change count (i.e. changes since last statement). +** The current keylist is also stored in the context. +** Elements of Context structure type make up the ContextStack, which is +** updated by the ContextPush and ContextPop opcodes (used by triggers). +** The context is pushed before executing a trigger a popped when the +** trigger finishes. +*/ +typedef struct Context Context; +struct Context { + int lastRowid; /* Last insert rowid (sqlite3.lastRowid) */ + int nChange; /* Statement changes (Vdbe.nChanges) */ + Keylist *pList; /* Records that will participate in a DELETE or UPDATE */ +}; + +/* +** An instance of the virtual machine. This structure contains the complete +** state of the virtual machine. +** +** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile() +** is really a pointer to an instance of this structure. +*/ +struct Vdbe { + sqlite3 *db; /* The whole database */ + Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */ + FILE *trace; /* Write an execution trace here, if not NULL */ + int nOp; /* Number of instructions in the program */ + int nOpAlloc; /* Number of slots allocated for aOp[] */ + Op *aOp; /* Space to hold the virtual machine's program */ + int nLabel; /* Number of labels used */ + int nLabelAlloc; /* Number of slots allocated in aLabel[] */ + int *aLabel; /* Space to hold the labels */ + Mem *aStack; /* The operand stack, except string values */ + Mem *pTos; /* Top entry in the operand stack */ + Mem **apArg; /* Arguments to currently executing user function */ + Mem *aColName; /* Column names to return */ + int nCursor; /* Number of slots in apCsr[] */ + Cursor **apCsr; /* One element of this array for each open cursor */ + Sorter *pSort; /* A linked list of objects to be sorted */ + int nVar; /* Number of entries in aVar[] */ + Mem *aVar; /* Values for the OP_Variable opcode. */ + char **azVar; /* Name of variables */ + int okVar; /* True if azVar[] has been initialized */ + int magic; /* Magic number for sanity checking */ + int nMem; /* Number of memory locations currently allocated */ + Mem *aMem; /* The memory locations */ + Agg agg; /* Aggregate information */ + int nCallback; /* Number of callbacks invoked so far */ + Keylist *pList; /* A list of ROWIDs */ + int contextStackTop; /* Index of top element in the context stack */ + int contextStackDepth; /* The size of the "context" stack */ + Context *contextStack; /* Stack used by opcodes ContextPush & ContextPop*/ + int pc; /* The program counter */ + int rc; /* Value to return */ + unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */ + int errorAction; /* Recovery action to do in case of an error */ + int inTempTrans; /* True if temp database is transactioned */ + int returnStack[100]; /* Return address stack for OP_Gosub & OP_Return */ + int returnDepth; /* Next unused element in returnStack[] */ + int nResColumn; /* Number of columns in one row of the result set */ + char **azResColumn; /* Values for one row of result */ + int popStack; /* Pop the stack this much on entry to VdbeExec() */ + char *zErrMsg; /* Error message written here */ + u8 resOnStack; /* True if there are result values on the stack */ + u8 explain; /* True if EXPLAIN present on SQL command */ + u8 changeCntOn; /* True to update the change-counter */ + u8 aborted; /* True if ROLLBACK in another VM causes an abort */ + int nChange; /* Number of db changes made since last reset */ +}; + +/* +** The following are allowed values for Vdbe.magic +*/ +#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ +#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ +#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */ +#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */ + +/* +** Function prototypes +*/ +void sqlite3VdbeFreeCursor(Cursor*); +void sqlite3VdbeSorterReset(Vdbe*); +int sqlite3VdbeAggReset(sqlite3*, Agg *, KeyInfo *); +void sqlite3VdbeKeylistFree(Keylist*); +void sqliteVdbePopStack(Vdbe*,int); +int sqlite3VdbeCursorMoveto(Cursor*); +#if !defined(NDEBUG) || defined(VDBE_PROFILE) +void sqlite3VdbePrintOp(FILE*, int, Op*); +#endif +void sqlite3VdbePrintSql(Vdbe*); +int sqlite3VdbeSerialTypeLen(u32); +u32 sqlite3VdbeSerialType(Mem*); +int sqlite3VdbeSerialPut(unsigned char*, Mem*); +int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); +void sqlite3VdbeDeleteAuxData(VdbeFunc*, int); + +int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *); +int sqlite3VdbeIdxKeyCompare(Cursor*, int , const unsigned char*, int*); +int sqlite3VdbeIdxRowid(BtCursor *, i64 *); +int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*); +int sqlite3VdbeRecordCompare(void*,int,const void*,int, const void*); +int sqlite3VdbeIdxRowidLen(int,const u8*); +int sqlite3VdbeExec(Vdbe*); +int sqlite3VdbeList(Vdbe*); +int sqlite3VdbeHalt(Vdbe*); +int sqlite3VdbeChangeEncoding(Mem *, int); +int sqlite3VdbeMemCopy(Mem*, const Mem*); +void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int); +int sqlite3VdbeMemMove(Mem*, Mem*); +int sqlite3VdbeMemNulTerminate(Mem*); +int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*)); +void sqlite3VdbeMemSetInt64(Mem*, i64); +void sqlite3VdbeMemSetDouble(Mem*, double); +void sqlite3VdbeMemSetNull(Mem*); +int sqlite3VdbeMemMakeWriteable(Mem*); +int sqlite3VdbeMemDynamicify(Mem*); +int sqlite3VdbeMemStringify(Mem*, int); +i64 sqlite3VdbeIntValue(Mem*); +int sqlite3VdbeMemIntegerify(Mem*); +double sqlite3VdbeRealValue(Mem*); +int sqlite3VdbeMemRealify(Mem*); +int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*); +void sqlite3VdbeMemRelease(Mem *p); +#ifndef NDEBUG +void sqlite3VdbeMemSanity(Mem*, u8); +#endif +int sqlite3VdbeMemTranslate(Mem*, u8); +void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf, int nBuf); +int sqlite3VdbeMemHandleBom(Mem *pMem); diff --git a/kopete/plugins/statistics/sqlite/vdbeapi.c b/kopete/plugins/statistics/sqlite/vdbeapi.c new file mode 100644 index 00000000..f6047f6f --- /dev/null +++ b/kopete/plugins/statistics/sqlite/vdbeapi.c @@ -0,0 +1,588 @@ +/* +** 2004 May 26 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains code use to implement APIs that are part of the +** VDBE. +*/ +#include "sqliteInt.h" +#include "vdbeInt.h" + +/**************************** sqlite3_value_ ******************************* +** The following routines extract information from a Mem or sqlite3_value +** structure. +*/ +const void *sqlite3_value_blob(sqlite3_value *pVal){ + Mem *p = (Mem*)pVal; + if( p->flags & (MEM_Blob|MEM_Str) ){ + return p->z; + }else{ + return sqlite3_value_text(pVal); + } +} +int sqlite3_value_bytes(sqlite3_value *pVal){ + return sqlite3ValueBytes(pVal, SQLITE_UTF8); +} +int sqlite3_value_bytes16(sqlite3_value *pVal){ + return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); +} +double sqlite3_value_double(sqlite3_value *pVal){ + return sqlite3VdbeRealValue((Mem*)pVal); +} +int sqlite3_value_int(sqlite3_value *pVal){ + return sqlite3VdbeIntValue((Mem*)pVal); +} +sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ + return sqlite3VdbeIntValue((Mem*)pVal); +} +const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ + return (const char *)sqlite3ValueText(pVal, SQLITE_UTF8); +} +const void *sqlite3_value_text16(sqlite3_value* pVal){ + return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); +} +const void *sqlite3_value_text16be(sqlite3_value *pVal){ + return sqlite3ValueText(pVal, SQLITE_UTF16BE); +} +const void *sqlite3_value_text16le(sqlite3_value *pVal){ + return sqlite3ValueText(pVal, SQLITE_UTF16LE); +} +int sqlite3_value_type(sqlite3_value* pVal){ + return pVal->type; +} + +/**************************** sqlite3_result_ ******************************* +** The following routines are used by user-defined functions to specify +** the function result. +*/ +void sqlite3_result_blob( + sqlite3_context *pCtx, + const void *z, + int n, + void (*xDel)(void *) +){ + assert( n>0 ); + sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel); +} +void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ + sqlite3VdbeMemSetDouble(&pCtx->s, rVal); +} +void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ + pCtx->isError = 1; + sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); +} +void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ + pCtx->isError = 1; + sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); +} +void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ + sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); +} +void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ + sqlite3VdbeMemSetInt64(&pCtx->s, iVal); +} +void sqlite3_result_null(sqlite3_context *pCtx){ + sqlite3VdbeMemSetNull(&pCtx->s); +} +void sqlite3_result_text( + sqlite3_context *pCtx, + const char *z, + int n, + void (*xDel)(void *) +){ + sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel); +} +void sqlite3_result_text16( + sqlite3_context *pCtx, + const void *z, + int n, + void (*xDel)(void *) +){ + sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel); +} +void sqlite3_result_text16be( + sqlite3_context *pCtx, + const void *z, + int n, + void (*xDel)(void *) +){ + sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel); +} +void sqlite3_result_text16le( + sqlite3_context *pCtx, + const void *z, + int n, + void (*xDel)(void *) +){ + sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel); +} +void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ + sqlite3VdbeMemCopy(&pCtx->s, pValue); +} + + +/* +** Execute the statement pStmt, either until a row of data is ready, the +** statement is completely executed or an error occurs. +*/ +int sqlite3_step(sqlite3_stmt *pStmt){ + Vdbe *p = (Vdbe*)pStmt; + sqlite3 *db; + int rc; + + if( p==0 || p->magic!=VDBE_MAGIC_RUN ){ + return SQLITE_MISUSE; + } + if( p->aborted ){ + return SQLITE_ABORT; + } + db = p->db; + if( sqlite3SafetyOn(db) ){ + p->rc = SQLITE_MISUSE; + return SQLITE_MISUSE; + } + if( p->pc<0 ){ + /* Invoke the trace callback if there is one + */ + if( (db = p->db)->xTrace && !db->init.busy ){ + assert( p->nOp>0 ); + assert( p->aOp[p->nOp-1].opcode==OP_Noop ); + assert( p->aOp[p->nOp-1].p3!=0 ); + assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC ); + sqlite3SafetyOff(db); + db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p3); + if( sqlite3SafetyOn(db) ){ + p->rc = SQLITE_MISUSE; + return SQLITE_MISUSE; + } + } + + /* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned + ** on in debugging mode. + */ +#ifdef SQLITE_DEBUG + if( (db->flags & SQLITE_SqlTrace)!=0 ){ + sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p3); + } +#endif /* SQLITE_DEBUG */ + + db->activeVdbeCnt++; + p->pc = 0; + } + if( p->explain ){ + rc = sqlite3VdbeList(p); + }else{ + rc = sqlite3VdbeExec(p); + } + + if( sqlite3SafetyOff(db) ){ + rc = SQLITE_MISUSE; + } + + sqlite3Error(p->db, rc, p->zErrMsg); + return rc; +} + +/* +** Extract the user data from a sqlite3_context structure and return a +** pointer to it. +*/ +void *sqlite3_user_data(sqlite3_context *p){ + assert( p && p->pFunc ); + return p->pFunc->pUserData; +} + +/* +** Allocate or return the aggregate context for a user function. A new +** context is allocated on the first call. Subsequent calls return the +** same context that was returned on prior calls. +** +** This routine is defined here in vdbe.c because it depends on knowing +** the internals of the sqlite3_context structure which is only defined in +** this source file. +*/ +void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ + assert( p && p->pFunc && p->pFunc->xStep ); + if( p->pAgg==0 ){ + if( nByte<=NBFS ){ + p->pAgg = (void*)p->s.z; + memset(p->pAgg, 0, nByte); + }else{ + p->pAgg = sqliteMalloc( nByte ); + } + } + return p->pAgg; +} + +/* +** Return the auxilary data pointer, if any, for the iArg'th argument to +** the user-function defined by pCtx. +*/ +void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ + VdbeFunc *pVdbeFunc = pCtx->pVdbeFunc; + if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ + return 0; + } + return pVdbeFunc->apAux[iArg].pAux; +} + +/* +** Set the auxilary data pointer and delete function, for the iArg'th +** argument to the user-function defined by pCtx. Any previous value is +** deleted by calling the delete function specified when it was set. +*/ +void sqlite3_set_auxdata( + sqlite3_context *pCtx, + int iArg, + void *pAux, + void (*xDelete)(void*) +){ + struct AuxData *pAuxData; + VdbeFunc *pVdbeFunc; + if( iArg<0 ) return; + + pVdbeFunc = pCtx->pVdbeFunc; + if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ + int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; + pCtx->pVdbeFunc = pVdbeFunc = sqliteRealloc(pVdbeFunc, nMalloc); + if( !pVdbeFunc ) return; + memset(&pVdbeFunc->apAux[pVdbeFunc->nAux], 0, + sizeof(struct AuxData)*(iArg+1-pVdbeFunc->nAux)); + pVdbeFunc->nAux = iArg+1; + pVdbeFunc->pFunc = pCtx->pFunc; + } + + pAuxData = &pVdbeFunc->apAux[iArg]; + if( pAuxData->pAux && pAuxData->xDelete ){ + pAuxData->xDelete(pAuxData->pAux); + } + pAuxData->pAux = pAux; + pAuxData->xDelete = xDelete; +} + +/* +** Return the number of times the Step function of a aggregate has been +** called. +** +** This routine is defined here in vdbe.c because it depends on knowing +** the internals of the sqlite3_context structure which is only defined in +** this source file. +*/ +int sqlite3_aggregate_count(sqlite3_context *p){ + assert( p && p->pFunc && p->pFunc->xStep ); + return p->cnt; +} + +/* +** Return the number of columns in the result set for the statement pStmt. +*/ +int sqlite3_column_count(sqlite3_stmt *pStmt){ + Vdbe *pVm = (Vdbe *)pStmt; + return pVm ? pVm->nResColumn : 0; +} + +/* +** Return the number of values available from the current row of the +** currently executing statement pStmt. +*/ +int sqlite3_data_count(sqlite3_stmt *pStmt){ + Vdbe *pVm = (Vdbe *)pStmt; + if( pVm==0 || !pVm->resOnStack ) return 0; + return pVm->nResColumn; +} + + +/* +** Check to see if column iCol of the given statement is valid. If +** it is, return a pointer to the Mem for the value of that column. +** If iCol is not valid, return a pointer to a Mem which has a value +** of NULL. +*/ +static Mem *columnMem(sqlite3_stmt *pStmt, int i){ + Vdbe *pVm = (Vdbe *)pStmt; + int vals = sqlite3_data_count(pStmt); + if( i>=vals || i<0 ){ + static Mem nullMem; + if( nullMem.flags==0 ){ nullMem.flags = MEM_Null; } + sqlite3Error(pVm->db, SQLITE_RANGE, 0); + return &nullMem; + } + return &pVm->pTos[(1-vals)+i]; +} + +/**************************** sqlite3_column_ ******************************* +** The following routines are used to access elements of the current row +** in the result set. +*/ +const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ + return sqlite3_value_blob( columnMem(pStmt,i) ); +} +int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ + return sqlite3_value_bytes( columnMem(pStmt,i) ); +} +int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ + return sqlite3_value_bytes16( columnMem(pStmt,i) ); +} +double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ + return sqlite3_value_double( columnMem(pStmt,i) ); +} +int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ + return sqlite3_value_int( columnMem(pStmt,i) ); +} +sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ + return sqlite3_value_int64( columnMem(pStmt,i) ); +} +const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ + return sqlite3_value_text( columnMem(pStmt,i) ); +} +const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ + return sqlite3_value_text16( columnMem(pStmt,i) ); +} +int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ + return sqlite3_value_type( columnMem(pStmt,i) ); +} + +/* +** Convert the N-th element of pStmt->pColName[] into a string using +** xFunc() then return that string. If N is out of range, return 0. +** If useType is 1, then use the second set of N elements (the datatype +** names) instead of the first set. +*/ +static const void *columnName( + sqlite3_stmt *pStmt, + int N, + const void *(*xFunc)(Mem*), + int useType +){ + Vdbe *p = (Vdbe *)pStmt; + int n = sqlite3_column_count(pStmt); + + if( p==0 || N>=n || N<0 ){ + return 0; + } + if( useType ){ + N += n; + } + return xFunc(&p->aColName[N]); +} + + +/* +** Return the name of the Nth column of the result set returned by SQL +** statement pStmt. +*/ +const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ + return columnName(pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, 0); +} + +/* +** Return the name of the 'i'th column of the result set of SQL statement +** pStmt, encoded as UTF-16. +*/ +const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ + return columnName(pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, 0); +} + +/* +** Return the column declaration type (if applicable) of the 'i'th column +** of the result set of SQL statement pStmt, encoded as UTF-8. +*/ +const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ + return columnName(pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, 1); +} + +/* +** Return the column declaration type (if applicable) of the 'i'th column +** of the result set of SQL statement pStmt, encoded as UTF-16. +*/ +const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ + return columnName(pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, 1); +} + +/******************************* sqlite3_bind_ *************************** +** +** Routines used to attach values to wildcards in a compiled SQL statement. +*/ +/* +** Unbind the value bound to variable i in virtual machine p. This is the +** the same as binding a NULL value to the column. If the "i" parameter is +** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. +** +** The error code stored in database p->db is overwritten with the return +** value in any case. +*/ +static int vdbeUnbind(Vdbe *p, int i){ + Mem *pVar; + if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ + sqlite3Error(p->db, SQLITE_MISUSE, 0); + return SQLITE_MISUSE; + } + if( i<1 || i>p->nVar ){ + sqlite3Error(p->db, SQLITE_RANGE, 0); + return SQLITE_RANGE; + } + i--; + pVar = &p->aVar[i]; + sqlite3VdbeMemRelease(pVar); + pVar->flags = MEM_Null; + sqlite3Error(p->db, SQLITE_OK, 0); + return SQLITE_OK; +} + +/* +** Bind a text or BLOB value. +*/ +static int bindText( + sqlite3_stmt *pStmt, + int i, + const void *zData, + int nData, + void (*xDel)(void*), + int encoding +){ + Vdbe *p = (Vdbe *)pStmt; + Mem *pVar; + int rc; + + rc = vdbeUnbind(p, i); + if( rc || zData==0 ){ + return rc; + } + pVar = &p->aVar[i-1]; + rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); + if( rc ){ + return rc; + } + if( rc==SQLITE_OK && encoding!=0 ){ + rc = sqlite3VdbeChangeEncoding(pVar, p->db->enc); + } + return rc; +} + + +/* +** Bind a blob value to an SQL statement variable. +*/ +int sqlite3_bind_blob( + sqlite3_stmt *pStmt, + int i, + const void *zData, + int nData, + void (*xDel)(void*) +){ + return bindText(pStmt, i, zData, nData, xDel, 0); +} +int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ + int rc; + Vdbe *p = (Vdbe *)pStmt; + rc = vdbeUnbind(p, i); + if( rc==SQLITE_OK ){ + sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); + } + return rc; +} +int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ + return sqlite3_bind_int64(p, i, (i64)iValue); +} +int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ + int rc; + Vdbe *p = (Vdbe *)pStmt; + rc = vdbeUnbind(p, i); + if( rc==SQLITE_OK ){ + sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); + } + return rc; +} +int sqlite3_bind_null(sqlite3_stmt* p, int i){ + return vdbeUnbind((Vdbe *)p, i); +} +int sqlite3_bind_text( + sqlite3_stmt *pStmt, + int i, + const char *zData, + int nData, + void (*xDel)(void*) +){ + return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); +} +int sqlite3_bind_text16( + sqlite3_stmt *pStmt, + int i, + const void *zData, + int nData, + void (*xDel)(void*) +){ + return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); +} + +/* +** Return the number of wildcards that can be potentially bound to. +** This routine is added to support DBD::SQLite. +*/ +int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ + Vdbe *p = (Vdbe*)pStmt; + return p ? p->nVar : 0; +} + +/* +** Create a mapping from variable numbers to variable names +** in the Vdbe.azVar[] array, if such a mapping does not already +** exist. +*/ +static void createVarMap(Vdbe *p){ + if( !p->okVar ){ + int j; + Op *pOp; + for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ + if( pOp->opcode==OP_Variable ){ + assert( pOp->p1>0 && pOp->p1<=p->nVar ); + p->azVar[pOp->p1-1] = pOp->p3; + } + } + p->okVar = 1; + } +} + +/* +** Return the name of a wildcard parameter. Return NULL if the index +** is out of range or if the wildcard is unnamed. +** +** The result is always UTF-8. +*/ +const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ + Vdbe *p = (Vdbe*)pStmt; + if( p==0 || i<1 || i>p->nVar ){ + return 0; + } + createVarMap(p); + return p->azVar[i-1]; +} + +/* +** Given a wildcard parameter name, return the index of the variable +** with that name. If there is no variable with the given name, +** return 0. +*/ +int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ + Vdbe *p = (Vdbe*)pStmt; + int i; + if( p==0 ){ + return 0; + } + createVarMap(p); + for(i=0; i<p->nVar; i++){ + const char *z = p->azVar[i]; + if( z && strcmp(z,zName)==0 ){ + return i+1; + } + } + return 0; +} diff --git a/kopete/plugins/statistics/sqlite/vdbeaux.c b/kopete/plugins/statistics/sqlite/vdbeaux.c new file mode 100644 index 00000000..fa9751da --- /dev/null +++ b/kopete/plugins/statistics/sqlite/vdbeaux.c @@ -0,0 +1,1806 @@ +/* +** 2003 September 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used for creating, destroying, and populating +** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior +** to version 2.8.7, all this code was combined into the vdbe.c source file. +** But that file was getting too big so this subroutines were split out. +*/ +#include "sqliteInt.h" +#include "os.h" +#include <ctype.h> +#include "vdbeInt.h" + + +/* +** When debugging the code generator in a symbolic debugger, one can +** set the sqlite3_vdbe_addop_trace to 1 and all opcodes will be printed +** as they are added to the instruction stream. +*/ +#ifndef NDEBUG +int sqlite3_vdbe_addop_trace = 0; +#endif + + +/* +** Create a new virtual database engine. +*/ +Vdbe *sqlite3VdbeCreate(sqlite3 *db){ + Vdbe *p; + p = sqliteMalloc( sizeof(Vdbe) ); + if( p==0 ) return 0; + p->db = db; + if( db->pVdbe ){ + db->pVdbe->pPrev = p; + } + p->pNext = db->pVdbe; + p->pPrev = 0; + db->pVdbe = p; + p->magic = VDBE_MAGIC_INIT; + return p; +} + +/* +** Turn tracing on or off +*/ +void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ + p->trace = trace; +} + +/* +** Resize the Vdbe.aOp array so that it contains at least N +** elements. +*/ +static void resizeOpArray(Vdbe *p, int N){ + if( p->nOpAlloc<N ){ + int oldSize = p->nOpAlloc; + p->nOpAlloc = N+100; + p->aOp = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op)); + if( p->aOp ){ + memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op)); + } + } +} + +/* +** Add a new instruction to the list of instructions current in the +** VDBE. Return the address of the new instruction. +** +** Parameters: +** +** p Pointer to the VDBE +** +** op The opcode for this instruction +** +** p1, p2 First two of the three possible operands. +** +** Use the sqlite3VdbeResolveLabel() function to fix an address and +** the sqlite3VdbeChangeP3() function to change the value of the P3 +** operand. +*/ +int sqlite3VdbeAddOp(Vdbe *p, int op, int p1, int p2){ + int i; + VdbeOp *pOp; + + i = p->nOp; + p->nOp++; + assert( p->magic==VDBE_MAGIC_INIT ); + resizeOpArray(p, i+1); + if( p->aOp==0 ){ + return 0; + } + pOp = &p->aOp[i]; + pOp->opcode = op; + pOp->p1 = p1; + pOp->p2 = p2; + pOp->p3 = 0; + pOp->p3type = P3_NOTUSED; +#ifndef NDEBUG + if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]); +#endif + return i; +} + +/* +** Add an opcode that includes the p3 value. +*/ +int sqlite3VdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3,int p3type){ + int addr = sqlite3VdbeAddOp(p, op, p1, p2); + sqlite3VdbeChangeP3(p, addr, zP3, p3type); + return addr; +} + +/* +** Create a new symbolic label for an instruction that has yet to be +** coded. The symbolic label is really just a negative number. The +** label can be used as the P2 value of an operation. Later, when +** the label is resolved to a specific address, the VDBE will scan +** through its operation list and change all values of P2 which match +** the label into the resolved address. +** +** The VDBE knows that a P2 value is a label because labels are +** always negative and P2 values are suppose to be non-negative. +** Hence, a negative P2 value is a label that has yet to be resolved. +** +** Zero is returned if a malloc() fails. +*/ +int sqlite3VdbeMakeLabel(Vdbe *p){ + int i; + i = p->nLabel++; + assert( p->magic==VDBE_MAGIC_INIT ); + if( i>=p->nLabelAlloc ){ + p->nLabelAlloc = p->nLabelAlloc*2 + 10; + p->aLabel = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0])); + } + if( p->aLabel ){ + p->aLabel[i] = -1; + } + return -1-i; +} + +/* +** Resolve label "x" to be the address of the next instruction to +** be inserted. The parameter "x" must have been obtained from +** a prior call to sqlite3VdbeMakeLabel(). +*/ +void sqlite3VdbeResolveLabel(Vdbe *p, int x){ + int j = -1-x; + assert( p->magic==VDBE_MAGIC_INIT ); + assert( j>=0 && j<p->nLabel ); + if( p->aLabel ){ + p->aLabel[j] = p->nOp; + } +} + +/* +** Loop through the program looking for P2 values that are negative. +** Each such value is a label. Resolve the label by setting the P2 +** value to its correct non-zero value. +** +** This routine is called once after all opcodes have been inserted. +*/ +static void resolveP2Values(Vdbe *p){ + int i; + Op *pOp; + int *aLabel = p->aLabel; + if( aLabel==0 ) return; + for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ + if( pOp->p2>=0 ) continue; + assert( -1-pOp->p2<p->nLabel ); + pOp->p2 = aLabel[-1-pOp->p2]; + } + sqliteFree(p->aLabel); + p->aLabel = 0; +} + +/* +** Return the address of the next instruction to be inserted. +*/ +int sqlite3VdbeCurrentAddr(Vdbe *p){ + assert( p->magic==VDBE_MAGIC_INIT ); + return p->nOp; +} + +/* +** Add a whole list of operations to the operation stack. Return the +** address of the first operation added. +*/ +int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ + int addr; + assert( p->magic==VDBE_MAGIC_INIT ); + resizeOpArray(p, p->nOp + nOp); + if( p->aOp==0 ){ + return 0; + } + addr = p->nOp; + if( nOp>0 ){ + int i; + VdbeOpList const *pIn = aOp; + for(i=0; i<nOp; i++, pIn++){ + int p2 = pIn->p2; + VdbeOp *pOut = &p->aOp[i+addr]; + pOut->opcode = pIn->opcode; + pOut->p1 = pIn->p1; + pOut->p2 = p2<0 ? addr + ADDR(p2) : p2; + pOut->p3 = pIn->p3; + pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED; +#ifndef NDEBUG + if( sqlite3_vdbe_addop_trace ){ + sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); + } +#endif + } + p->nOp += nOp; + } + return addr; +} + +/* +** Change the value of the P1 operand for a specific instruction. +** This routine is useful when a large program is loaded from a +** static array using sqlite3VdbeAddOpList but we want to make a +** few minor changes to the program. +*/ +void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ + assert( p->magic==VDBE_MAGIC_INIT ); + if( p && addr>=0 && p->nOp>addr && p->aOp ){ + p->aOp[addr].p1 = val; + } +} + +/* +** Change the value of the P2 operand for a specific instruction. +** This routine is useful for setting a jump destination. +*/ +void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ + assert( val>=0 ); + assert( p->magic==VDBE_MAGIC_INIT ); + if( p && addr>=0 && p->nOp>addr && p->aOp ){ + p->aOp[addr].p2 = val; + } +} + +/* +** Change the value of the P3 operand for a specific instruction. +** This routine is useful when a large program is loaded from a +** static array using sqlite3VdbeAddOpList but we want to make a +** few minor changes to the program. +** +** If n>=0 then the P3 operand is dynamic, meaning that a copy of +** the string is made into memory obtained from sqliteMalloc(). +** A value of n==0 means copy bytes of zP3 up to and including the +** first null byte. If n>0 then copy n+1 bytes of zP3. +** +** If n==P3_STATIC it means that zP3 is a pointer to a constant static +** string and we can just copy the pointer. n==P3_POINTER means zP3 is +** a pointer to some object other than a string. n==P3_COLLSEQ and +** n==P3_KEYINFO mean that zP3 is a pointer to a CollSeq or KeyInfo +** structure. A copy is made of KeyInfo structures into memory obtained +** from sqliteMalloc. +** +** If addr<0 then change P3 on the most recently inserted instruction. +*/ +void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){ + Op *pOp; + assert( p->magic==VDBE_MAGIC_INIT ); + if( p==0 || p->aOp==0 ) return; + if( addr<0 || addr>=p->nOp ){ + addr = p->nOp - 1; + if( addr<0 ) return; + } + pOp = &p->aOp[addr]; + if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){ + sqliteFree(pOp->p3); + pOp->p3 = 0; + } + if( zP3==0 ){ + pOp->p3 = 0; + pOp->p3type = P3_NOTUSED; + }else if( n==P3_KEYINFO ){ + KeyInfo *pKeyInfo; + int nField, nByte; + nField = ((KeyInfo*)zP3)->nField; + nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]); + pKeyInfo = sqliteMallocRaw( nByte ); + pOp->p3 = (char*)pKeyInfo; + if( pKeyInfo ){ + memcpy(pKeyInfo, zP3, nByte); + pOp->p3type = P3_KEYINFO; + }else{ + pOp->p3type = P3_NOTUSED; + } + }else if( n==P3_KEYINFO_HANDOFF ){ + pOp->p3 = (char*)zP3; + pOp->p3type = P3_KEYINFO; + }else if( n<0 ){ + pOp->p3 = (char*)zP3; + pOp->p3type = n; + }else{ + if( n==0 ) n = strlen(zP3); + pOp->p3 = sqliteStrNDup(zP3, n); + pOp->p3type = P3_DYNAMIC; + } +} + +#ifndef NDEBUG +/* +** Replace the P3 field of the most recently coded instruction with +** comment text. +*/ +void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ + va_list ap; + assert( p->nOp>0 ); + assert( p->aOp==0 || p->aOp[p->nOp-1].p3==0 ); + va_start(ap, zFormat); + sqlite3VdbeChangeP3(p, -1, sqlite3VMPrintf(zFormat, ap), P3_DYNAMIC); + va_end(ap); +} +#endif + +/* +** If the P3 operand to the specified instruction appears +** to be a quoted string token, then this procedure removes +** the quotes. +** +** The quoting operator can be either a grave ascent (ASCII 0x27) +** or a double quote character (ASCII 0x22). Two quotes in a row +** resolve to be a single actual quote character within the string. +*/ +void sqlite3VdbeDequoteP3(Vdbe *p, int addr){ + Op *pOp; + assert( p->magic==VDBE_MAGIC_INIT ); + if( p->aOp==0 ) return; + if( addr<0 || addr>=p->nOp ){ + addr = p->nOp - 1; + if( addr<0 ) return; + } + pOp = &p->aOp[addr]; + if( pOp->p3==0 || pOp->p3[0]==0 ) return; + if( pOp->p3type==P3_STATIC ){ + pOp->p3 = sqliteStrDup(pOp->p3); + pOp->p3type = P3_DYNAMIC; + } + assert( pOp->p3type==P3_DYNAMIC ); + sqlite3Dequote(pOp->p3); +} + +/* +** Search the current program starting at instruction addr for the given +** opcode and P2 value. Return the address plus 1 if found and 0 if not +** found. +*/ +int sqlite3VdbeFindOp(Vdbe *p, int addr, int op, int p2){ + int i; + assert( p->magic==VDBE_MAGIC_INIT ); + for(i=addr; i<p->nOp; i++){ + if( p->aOp[i].opcode==op && p->aOp[i].p2==p2 ) return i+1; + } + return 0; +} + +/* +** Return the opcode for a given address. +*/ +VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ + assert( p->magic==VDBE_MAGIC_INIT ); + assert( addr>=0 && addr<p->nOp ); + return &p->aOp[addr]; +} + +/* +** Compute a string that describes the P3 parameter for an opcode. +** Use zTemp for any required temporary buffer space. +*/ +static char *displayP3(Op *pOp, char *zTemp, int nTemp){ + char *zP3; + assert( nTemp>=20 ); + switch( pOp->p3type ){ + case P3_POINTER: { + sprintf(zTemp, "ptr(%#x)", (int)pOp->p3); + zP3 = zTemp; + break; + } + case P3_KEYINFO: { + int i, j; + KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3; + sprintf(zTemp, "keyinfo(%d", pKeyInfo->nField); + i = strlen(zTemp); + for(j=0; j<pKeyInfo->nField; j++){ + CollSeq *pColl = pKeyInfo->aColl[j]; + if( pColl ){ + int n = strlen(pColl->zName); + if( i+n>nTemp-6 ){ + strcpy(&zTemp[i],",..."); + break; + } + zTemp[i++] = ','; + if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){ + zTemp[i++] = '-'; + } + strcpy(&zTemp[i], pColl->zName); + i += n; + }else if( i+4<nTemp-6 ){ + strcpy(&zTemp[i],",nil"); + i += 4; + } + } + zTemp[i++] = ')'; + zTemp[i] = 0; + assert( i<nTemp ); + zP3 = zTemp; + break; + } + case P3_COLLSEQ: { + CollSeq *pColl = (CollSeq*)pOp->p3; + sprintf(zTemp, "collseq(%.20s)", pColl->zName); + zP3 = zTemp; + break; + } + case P3_FUNCDEF: { + FuncDef *pDef = (FuncDef*)pOp->p3; + char zNum[30]; + sprintf(zTemp, "%.*s", nTemp, pDef->zName); + sprintf(zNum,"(%d)", pDef->nArg); + if( strlen(zTemp)+strlen(zNum)+1<=nTemp ){ + strcat(zTemp, zNum); + } + zP3 = zTemp; + break; + } + default: { + zP3 = pOp->p3; + if( zP3==0 || pOp->opcode==OP_Noop ){ + zP3 = ""; + } + } + } + return zP3; +} + + +#if !defined(NDEBUG) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) +/* +** Print a single opcode. This routine is used for debugging only. +*/ +void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ + char *zP3; + char zPtr[50]; + static const char *zFormat1 = "%4d %-13s %4d %4d %s\n"; + if( pOut==0 ) pOut = stdout; + zP3 = displayP3(pOp, zPtr, sizeof(zPtr)); + fprintf(pOut, zFormat1, + pc, sqlite3OpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3); + fflush(pOut); +} +#endif + +/* +** Release an array of N Mem elements +*/ +static void releaseMemArray(Mem *p, int N){ + if( p ){ + while( N-->0 ){ + sqlite3VdbeMemRelease(p++); + } + } +} + +/* +** Give a listing of the program in the virtual machine. +** +** The interface is the same as sqlite3VdbeExec(). But instead of +** running the code, it invokes the callback once for each instruction. +** This feature is used to implement "EXPLAIN". +*/ +int sqlite3VdbeList( + Vdbe *p /* The VDBE */ +){ + sqlite3 *db = p->db; + int i; + int rc = SQLITE_OK; + + assert( p->explain ); + + /* Even though this opcode does not put dynamic strings onto the + ** the stack, they may become dynamic if the user calls + ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. + */ + if( p->pTos==&p->aStack[4] ){ + releaseMemArray(p->aStack, 5); + } + p->resOnStack = 0; + + i = p->pc++; + if( i>=p->nOp ){ + p->rc = SQLITE_OK; + rc = SQLITE_DONE; + }else if( db->flags & SQLITE_Interrupt ){ + db->flags &= ~SQLITE_Interrupt; + if( db->magic!=SQLITE_MAGIC_BUSY ){ + p->rc = SQLITE_MISUSE; + }else{ + p->rc = SQLITE_INTERRUPT; + } + rc = SQLITE_ERROR; + sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0); + }else{ + Op *pOp = &p->aOp[i]; + Mem *pMem = p->aStack; + pMem->flags = MEM_Int; + pMem->type = SQLITE_INTEGER; + pMem->i = i; /* Program counter */ + pMem++; + + pMem->flags = MEM_Static|MEM_Str|MEM_Term; + pMem->z = sqlite3OpcodeNames[pOp->opcode]; /* Opcode */ + pMem->n = strlen(pMem->z); + pMem->type = SQLITE_TEXT; + pMem->enc = SQLITE_UTF8; + pMem++; + + pMem->flags = MEM_Int; + pMem->i = pOp->p1; /* P1 */ + pMem->type = SQLITE_INTEGER; + pMem++; + + pMem->flags = MEM_Int; + pMem->i = pOp->p2; /* P2 */ + pMem->type = SQLITE_INTEGER; + pMem++; + + pMem->flags = MEM_Short|MEM_Str|MEM_Term; /* P3 */ + pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort)); + pMem->type = SQLITE_TEXT; + pMem->enc = SQLITE_UTF8; + + p->nResColumn = 5; + p->pTos = pMem; + p->rc = SQLITE_OK; + p->resOnStack = 1; + rc = SQLITE_ROW; + } + return rc; +} + +/* +** Print the SQL that was used to generate a VDBE program. +*/ +void sqlite3VdbePrintSql(Vdbe *p){ +#ifdef SQLITE_DEBUG + int nOp = p->nOp; + VdbeOp *pOp; + if( nOp<1 ) return; + pOp = &p->aOp[nOp-1]; + if( pOp->opcode==OP_Noop && pOp->p3!=0 ){ + const char *z = pOp->p3; + while( isspace(*(u8*)z) ) z++; + printf("SQL: [%s]\n", z); + } +#endif +} + +/* +** Prepare a virtual machine for execution. This involves things such +** as allocating stack space and initializing the program counter. +** After the VDBE has be prepped, it can be executed by one or more +** calls to sqlite3VdbeExec(). +** +** This is the only way to move a VDBE from VDBE_MAGIC_INIT to +** VDBE_MAGIC_RUN. +*/ +void sqlite3VdbeMakeReady( + Vdbe *p, /* The VDBE */ + int nVar, /* Number of '?' see in the SQL statement */ + int nMem, /* Number of memory cells to allocate */ + int nCursor, /* Number of cursors to allocate */ + int isExplain /* True if the EXPLAIN keywords is present */ +){ + int n; + + assert( p!=0 ); + assert( p->magic==VDBE_MAGIC_INIT ); + + /* There should be at least one opcode. + */ + assert( p->nOp>0 ); + + /* No instruction ever pushes more than a single element onto the + ** stack. And the stack never grows on successive executions of the + ** same loop. So the total number of instructions is an upper bound + ** on the maximum stack depth required. + ** + ** Allocation all the stack space we will ever need. + */ + if( p->aStack==0 ){ + resolveP2Values(p); + assert( nVar>=0 ); + n = isExplain ? 10 : p->nOp; + p->aStack = sqliteMalloc( + n*sizeof(p->aStack[0]) /* aStack */ + + n*sizeof(Mem*) /* apArg */ + + nVar*sizeof(Mem) /* aVar */ + + nVar*sizeof(char*) /* azVar */ + + nMem*sizeof(Mem) /* aMem */ + + nCursor*sizeof(Cursor*) /* apCsr */ + ); + if( !sqlite3_malloc_failed ){ + p->aMem = &p->aStack[n]; + p->nMem = nMem; + p->aVar = &p->aMem[nMem]; + p->nVar = nVar; + p->okVar = 0; + p->apArg = (Mem**)&p->aVar[nVar]; + p->azVar = (char**)&p->apArg[n]; + p->apCsr = (Cursor**)&p->azVar[nVar]; + p->nCursor = nCursor; + for(n=0; n<nVar; n++){ + p->aVar[n].flags = MEM_Null; + } + for(n=0; n<nMem; n++){ + p->aMem[n].flags = MEM_Null; + } + } + } + +#ifdef SQLITE_DEBUG + if( (p->db->flags & SQLITE_VdbeListing)!=0 + || sqlite3OsFileExists("vdbe_explain") + ){ + int i; + printf("VDBE Program Listing:\n"); + sqlite3VdbePrintSql(p); + for(i=0; i<p->nOp; i++){ + sqlite3VdbePrintOp(stdout, i, &p->aOp[i]); + } + } + if( sqlite3OsFileExists("vdbe_trace") ){ + p->trace = stdout; + } +#endif + p->pTos = &p->aStack[-1]; + p->pc = -1; + p->rc = SQLITE_OK; + p->uniqueCnt = 0; + p->returnDepth = 0; + p->errorAction = OE_Abort; + p->popStack = 0; + p->explain |= isExplain; + p->magic = VDBE_MAGIC_RUN; + p->nChange = 0; +#ifdef VDBE_PROFILE + { + int i; + for(i=0; i<p->nOp; i++){ + p->aOp[i].cnt = 0; + p->aOp[i].cycles = 0; + } + } +#endif +} + + +/* +** Remove any elements that remain on the sorter for the VDBE given. +*/ +void sqlite3VdbeSorterReset(Vdbe *p){ + while( p->pSort ){ + Sorter *pSorter = p->pSort; + p->pSort = pSorter->pNext; + sqliteFree(pSorter->zKey); + sqlite3VdbeMemRelease(&pSorter->data); + sqliteFree(pSorter); + } +} + +/* +** Free all resources allociated with AggElem pElem, an element of +** aggregate pAgg. +*/ +void freeAggElem(AggElem *pElem, Agg *pAgg){ + int i; + for(i=0; i<pAgg->nMem; i++){ + Mem *pMem = &pElem->aMem[i]; + if( pAgg->apFunc && pAgg->apFunc[i] && (pMem->flags & MEM_AggCtx)!=0 ){ + sqlite3_context ctx; + ctx.pFunc = pAgg->apFunc[i]; + ctx.s.flags = MEM_Null; + ctx.pAgg = pMem->z; + ctx.cnt = pMem->i; + ctx.isStep = 0; + ctx.isError = 0; + (*pAgg->apFunc[i]->xFinalize)(&ctx); + pMem->z = ctx.pAgg; + if( pMem->z!=0 && pMem->z!=pMem->zShort ){ + sqliteFree(pMem->z); + } + sqlite3VdbeMemRelease(&ctx.s); + }else{ + sqlite3VdbeMemRelease(pMem); + } + } + sqliteFree(pElem); +} + +/* +** Reset an Agg structure. Delete all its contents. +** +** For installable aggregate functions, if the step function has been +** called, make sure the finalizer function has also been called. The +** finalizer might need to free memory that was allocated as part of its +** private context. If the finalizer has not been called yet, call it +** now. +** +** If db is NULL, then this is being called from sqliteVdbeReset(). In +** this case clean up all references to the temp-table used for +** aggregates (if it was ever opened). +** +** If db is not NULL, then this is being called from with an OP_AggReset +** opcode. Open the temp-table, if it has not already been opened and +** delete the contents of the table used for aggregate information, ready +** for the next round of aggregate processing. +*/ +int sqlite3VdbeAggReset(sqlite3 *db, Agg *pAgg, KeyInfo *pKeyInfo){ + int rc = 0; + BtCursor *pCsr = pAgg->pCsr; + + assert( (pCsr && pAgg->nTab>0) || (!pCsr && pAgg->nTab==0) + || sqlite3_malloc_failed ); + + /* If pCsr is not NULL, then the table used for aggregate information + ** is open. Loop through it and free the AggElem* structure pointed at + ** by each entry. If the finalizer has not been called for an AggElem, + ** do that too. Finally, clear the btree table itself. + */ + if( pCsr ){ + int res; + assert( pAgg->pBtree ); + assert( pAgg->nTab>0 ); + + rc=sqlite3BtreeFirst(pCsr, &res); + while( res==0 && rc==SQLITE_OK ){ + AggElem *pElem; + rc = sqlite3BtreeData(pCsr, 0, sizeof(AggElem*), (char *)&pElem); + if( res!=SQLITE_OK ){ + return rc; + } + assert( pAgg->apFunc!=0 ); + freeAggElem(pElem, pAgg); + rc=sqlite3BtreeNext(pCsr, &res); + } + if( rc!=SQLITE_OK ){ + return rc; + } + + sqlite3BtreeCloseCursor(pCsr); + sqlite3BtreeClearTable(pAgg->pBtree, pAgg->nTab); + }else{ + /* The cursor may not be open because the aggregator was never used, + ** or it could be that it was used but there was no GROUP BY clause. + */ + if( pAgg->pCurrent ){ + freeAggElem(pAgg->pCurrent, pAgg); + } + } + + /* If db is not NULL and we have not yet and we have not yet opened + ** the temporary btree then do so and create the table to store aggregate + ** information. + ** + ** If db is NULL, then close the temporary btree if it is open. + */ + if( db ){ + if( !pAgg->pBtree ){ + assert( pAgg->nTab==0 ); + rc = sqlite3BtreeFactory(db, ":memory:", 0, TEMP_PAGES, &pAgg->pBtree); + if( rc!=SQLITE_OK ) return rc; + sqlite3BtreeBeginTrans(pAgg->pBtree, 1); + rc = sqlite3BtreeCreateTable(pAgg->pBtree, &pAgg->nTab, 0); + if( rc!=SQLITE_OK ) return rc; + } + assert( pAgg->nTab!=0 ); + + rc = sqlite3BtreeCursor(pAgg->pBtree, pAgg->nTab, 1, + sqlite3VdbeRecordCompare, pKeyInfo, &pAgg->pCsr); + if( rc!=SQLITE_OK ) return rc; + }else{ + if( pAgg->pBtree ){ + sqlite3BtreeClose(pAgg->pBtree); + pAgg->pBtree = 0; + pAgg->nTab = 0; + } + pAgg->pCsr = 0; + } + + if( pAgg->apFunc ){ + sqliteFree(pAgg->apFunc); + pAgg->apFunc = 0; + } + pAgg->pCurrent = 0; + pAgg->nMem = 0; + pAgg->searching = 0; + return SQLITE_OK; +} + + +/* +** Delete a keylist +*/ +void sqlite3VdbeKeylistFree(Keylist *p){ + while( p ){ + Keylist *pNext = p->pNext; + sqliteFree(p); + p = pNext; + } +} + +/* +** Close a cursor and release all the resources that cursor happens +** to hold. +*/ +void sqlite3VdbeFreeCursor(Cursor *pCx){ + if( pCx==0 ){ + return; + } + if( pCx->pCursor ){ + sqlite3BtreeCloseCursor(pCx->pCursor); + } + if( pCx->pBt ){ + sqlite3BtreeClose(pCx->pBt); + } + sqliteFree(pCx->pData); + sqliteFree(pCx->aType); + sqliteFree(pCx); +} + +/* +** Close all cursors +*/ +static void closeAllCursors(Vdbe *p){ + int i; + if( p->apCsr==0 ) return; + for(i=0; i<p->nCursor; i++){ + sqlite3VdbeFreeCursor(p->apCsr[i]); + p->apCsr[i] = 0; + } +} + +/* +** Clean up the VM after execution. +** +** This routine will automatically close any cursors, lists, and/or +** sorters that were left open. It also deletes the values of +** variables in the aVar[] array. +*/ +static void Cleanup(Vdbe *p){ + int i; + if( p->aStack ){ + releaseMemArray(p->aStack, 1 + (p->pTos - p->aStack)); + p->pTos = &p->aStack[-1]; + } + closeAllCursors(p); + releaseMemArray(p->aMem, p->nMem); + if( p->pList ){ + sqlite3VdbeKeylistFree(p->pList); + p->pList = 0; + } + if( p->contextStack ){ + for(i=0; i<p->contextStackTop; i++){ + sqlite3VdbeKeylistFree(p->contextStack[i].pList); + } + sqliteFree(p->contextStack); + } + sqlite3VdbeSorterReset(p); + sqlite3VdbeAggReset(0, &p->agg, 0); + p->contextStack = 0; + p->contextStackDepth = 0; + p->contextStackTop = 0; + sqliteFree(p->zErrMsg); + p->zErrMsg = 0; +} + +/* +** Set the number of result columns that will be returned by this SQL +** statement. This is now set at compile time, rather than during +** execution of the vdbe program so that sqlite3_column_count() can +** be called on an SQL statement before sqlite3_step(). +*/ +void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ + Mem *pColName; + int n; + assert( 0==p->nResColumn ); + p->nResColumn = nResColumn; + n = nResColumn*2; + p->aColName = pColName = (Mem*)sqliteMalloc( sizeof(Mem)*n ); + if( p->aColName==0 ) return; + while( n-- > 0 ){ + (pColName++)->flags = MEM_Null; + } +} + +/* +** Set the name of the idx'th column to be returned by the SQL statement. +** zName must be a pointer to a nul terminated string. +** +** This call must be made after a call to sqlite3VdbeSetNumCols(). +** +** If N==P3_STATIC it means that zName is a pointer to a constant static +** string and we can just copy the pointer. If it is P3_DYNAMIC, then +** the string is freed using sqliteFree() when the vdbe is finished with +** it. Otherwise, N bytes of zName are copied. +*/ +int sqlite3VdbeSetColName(Vdbe *p, int idx, const char *zName, int N){ + int rc; + Mem *pColName; + assert( idx<(2*p->nResColumn) ); + if( sqlite3_malloc_failed ) return SQLITE_NOMEM; + assert( p->aColName!=0 ); + pColName = &(p->aColName[idx]); + if( N==P3_DYNAMIC || N==P3_STATIC ){ + rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC); + }else{ + rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT); + } + if( rc==SQLITE_OK && N==P3_DYNAMIC ){ + pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn; + pColName->xDel = 0; + } + return rc; +} + +/* +** A read or write transaction may or may not be active on database handle +** db. If a transaction is active, commit it. If there is a +** write-transaction spanning more than one database file, this routine +** takes care of the master journal trickery. +*/ +static int vdbeCommit(sqlite3 *db){ + int i; + int nTrans = 0; /* Number of databases with an active write-transaction */ + int rc = SQLITE_OK; + int needXcommit = 0; + + for(i=0; i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( pBt && sqlite3BtreeIsInTrans(pBt) ){ + needXcommit = 1; + if( i!=1 ) nTrans++; + } + } + + /* If there are any write-transactions at all, invoke the commit hook */ + if( needXcommit && db->xCommitCallback ){ + int rc; + sqlite3SafetyOff(db); + rc = db->xCommitCallback(db->pCommitArg); + sqlite3SafetyOn(db); + if( rc ){ + return SQLITE_CONSTRAINT; + } + } + + /* The simple case - no more than one database file (not counting the + ** TEMP database) has a transaction active. There is no need for the + ** master-journal. + ** + ** If the return value of sqlite3BtreeGetFilename() is a zero length + ** string, it means the main database is :memory:. In that case we do + ** not support atomic multi-file commits, so use the simple case then + ** too. + */ + if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){ + for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( pBt ){ + rc = sqlite3BtreeSync(pBt, 0); + } + } + + /* Do the commit only if all databases successfully synced */ + if( rc==SQLITE_OK ){ + for(i=0; i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( pBt ){ + sqlite3BtreeCommit(pBt); + } + } + } + } + + /* The complex case - There is a multi-file write-transaction active. + ** This requires a master journal file to ensure the transaction is + ** committed atomicly. + */ + else{ + char *zMaster = 0; /* File-name for the master journal */ + char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); + OsFile master; + + /* Select a master journal file name */ + do { + u32 random; + sqliteFree(zMaster); + sqlite3Randomness(sizeof(random), &random); + zMaster = sqlite3MPrintf("%s-mj%08X", zMainFile, random&0x7fffffff); + if( !zMaster ){ + return SQLITE_NOMEM; + } + }while( sqlite3OsFileExists(zMaster) ); + + /* Open the master journal. */ + memset(&master, 0, sizeof(master)); + rc = sqlite3OsOpenExclusive(zMaster, &master, 0); + if( rc!=SQLITE_OK ){ + sqliteFree(zMaster); + return rc; + } + + /* Write the name of each database file in the transaction into the new + ** master journal file. If an error occurs at this point close + ** and delete the master journal file. All the individual journal files + ** still have 'null' as the master journal pointer, so they will roll + ** back independantly if a failure occurs. + */ + for(i=0; i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( i==1 ) continue; /* Ignore the TEMP database */ + if( pBt && sqlite3BtreeIsInTrans(pBt) ){ + char const *zFile = sqlite3BtreeGetJournalname(pBt); + if( zFile[0]==0 ) continue; /* Ignore :memory: databases */ + rc = sqlite3OsWrite(&master, zFile, strlen(zFile)+1); + if( rc!=SQLITE_OK ){ + sqlite3OsClose(&master); + sqlite3OsDelete(zMaster); + sqliteFree(zMaster); + return rc; + } + } + } + + + /* Sync the master journal file. Before doing this, open the directory + ** the master journal file is store in so that it gets synced too. + */ + zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt); + rc = sqlite3OsOpenDirectory(zMainFile, &master); + if( rc!=SQLITE_OK ){ + sqlite3OsClose(&master); + sqlite3OsDelete(zMaster); + sqliteFree(zMaster); + return rc; + } + rc = sqlite3OsSync(&master); + if( rc!=SQLITE_OK ){ + sqlite3OsClose(&master); + sqliteFree(zMaster); + return rc; + } + + /* Sync all the db files involved in the transaction. The same call + ** sets the master journal pointer in each individual journal. If + ** an error occurs here, do not delete the master journal file. + ** + ** If the error occurs during the first call to sqlite3BtreeSync(), + ** then there is a chance that the master journal file will be + ** orphaned. But we cannot delete it, in case the master journal + ** file name was written into the journal file before the failure + ** occured. + */ + for(i=0; i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( pBt && sqlite3BtreeIsInTrans(pBt) ){ + rc = sqlite3BtreeSync(pBt, zMaster); + if( rc!=SQLITE_OK ){ + sqlite3OsClose(&master); + sqliteFree(zMaster); + return rc; + } + } + } + sqlite3OsClose(&master); + + /* Delete the master journal file. This commits the transaction. After + ** doing this the directory is synced again before any individual + ** transaction files are deleted. + */ + rc = sqlite3OsDelete(zMaster); + assert( rc==SQLITE_OK ); + sqliteFree(zMaster); + zMaster = 0; + rc = sqlite3OsSyncDirectory(zMainFile); + if( rc!=SQLITE_OK ){ + /* This is not good. The master journal file has been deleted, but + ** the directory sync failed. There is no completely safe course of + ** action from here. The individual journals contain the name of the + ** master journal file, but there is no way of knowing if that + ** master journal exists now or if it will exist after the operating + ** system crash that may follow the fsync() failure. + */ + assert(0); + sqliteFree(zMaster); + return rc; + } + + /* All files and directories have already been synced, so the following + ** calls to sqlite3BtreeCommit() are only closing files and deleting + ** journals. If something goes wrong while this is happening we don't + ** really care. The integrity of the transaction is already guaranteed, + ** but some stray 'cold' journals may be lying around. Returning an + ** error code won't help matters. + */ + for(i=0; i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( pBt ){ + sqlite3BtreeCommit(pBt); + } + } + } + + return rc; +} + +/* +** Find every active VM other than pVdbe and change its status to +** aborted. This happens when one VM causes a rollback due to an +** ON CONFLICT ROLLBACK clause (for example). The other VMs must be +** aborted so that they do not have data rolled out from underneath +** them leading to a segfault. +*/ +static void abortOtherActiveVdbes(Vdbe *pVdbe){ + Vdbe *pOther; + for(pOther=pVdbe->db->pVdbe; pOther; pOther=pOther->pNext){ + if( pOther==pVdbe ) continue; + if( pOther->magic!=VDBE_MAGIC_RUN || pOther->pc<0 ) continue; + closeAllCursors(pOther); + pOther->aborted = 1; + } +} + +/* +** This routine checks that the sqlite3.activeVdbeCnt count variable +** matches the number of vdbe's in the list sqlite3.pVdbe that are +** currently active. An assertion fails if the two counts do not match. +** This is an internal self-check only - it is not an essential processing +** step. +** +** This is a no-op if NDEBUG is defined. +*/ +#ifndef NDEBUG +static void checkActiveVdbeCnt(sqlite3 *db){ + Vdbe *p; + int cnt = 0; + p = db->pVdbe; + while( p ){ + if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ + cnt++; + } + p = p->pNext; + } + assert( cnt==db->activeVdbeCnt ); +} +#else +#define checkActiveVdbeCnt(x) +#endif + +/* +** This routine is called the when a VDBE tries to halt. If the VDBE +** has made changes and is in autocommit mode, then commit those +** changes. If a rollback is needed, then do the rollback. +** +** This routine is the only way to move the state of a VM from +** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. +** +** Return an error code. If the commit could not complete because of +** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it +** means the close did not happen and needs to be repeated. +*/ +int sqlite3VdbeHalt(Vdbe *p){ + sqlite3 *db = p->db; + int i; + int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */ + + if( p->magic!=VDBE_MAGIC_RUN ){ + /* Already halted. Nothing to do. */ + assert( p->magic==VDBE_MAGIC_HALT ); + return SQLITE_OK; + } + closeAllCursors(p); + checkActiveVdbeCnt(db); + if( db->autoCommit && db->activeVdbeCnt==1 ){ + if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ + /* The auto-commit flag is true, there are no other active queries + ** using this handle and the vdbe program was successful or hit an + ** 'OR FAIL' constraint. This means a commit is required. + */ + int rc = vdbeCommit(db); + if( rc==SQLITE_BUSY ){ + return SQLITE_BUSY; + }else if( rc!=SQLITE_OK ){ + p->rc = rc; + xFunc = sqlite3BtreeRollback; + } + }else{ + xFunc = sqlite3BtreeRollback; + } + }else{ + if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ + xFunc = sqlite3BtreeCommitStmt; + }else if( p->errorAction==OE_Abort ){ + xFunc = sqlite3BtreeRollbackStmt; + }else{ + xFunc = sqlite3BtreeRollback; + db->autoCommit = 1; + abortOtherActiveVdbes(p); + } + } + + /* If xFunc is not NULL, then it is one of sqlite3BtreeRollback, + ** sqlite3BtreeRollbackStmt or sqlite3BtreeCommitStmt. Call it once on + ** each backend. If an error occurs and the return code is still + ** SQLITE_OK, set the return code to the new error value. + */ + for(i=0; xFunc && i<db->nDb; i++){ + int rc; + Btree *pBt = db->aDb[i].pBt; + if( pBt ){ + rc = xFunc(pBt); + if( p->rc==SQLITE_OK ) p->rc = rc; + } + } + + /* If this was an INSERT, UPDATE or DELETE, set the change counter. */ + if( p->changeCntOn ){ + if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){ + sqlite3VdbeSetChanges(db, p->nChange); + }else{ + sqlite3VdbeSetChanges(db, 0); + } + p->nChange = 0; + } + + /* Rollback or commit any schema changes that occurred. */ + if( p->rc!=SQLITE_OK ){ + sqlite3RollbackInternalChanges(db); + }else if( db->flags & SQLITE_InternChanges ){ + sqlite3CommitInternalChanges(db); + } + + /* We have successfully halted and closed the VM. Record this fact. */ + if( p->pc>=0 ){ + db->activeVdbeCnt--; + } + p->magic = VDBE_MAGIC_HALT; + checkActiveVdbeCnt(db); + + return SQLITE_OK; +} + +/* +** Clean up a VDBE after execution but do not delete the VDBE just yet. +** Write any error messages into *pzErrMsg. Return the result code. +** +** After this routine is run, the VDBE should be ready to be executed +** again. +** +** To look at it another way, this routine resets the state of the +** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to +** VDBE_MAGIC_INIT. +*/ +int sqlite3VdbeReset(Vdbe *p){ + if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){ + sqlite3Error(p->db, SQLITE_MISUSE, 0); + return SQLITE_MISUSE; + } + + /* If the VM did not run to completion or if it encountered an + ** error, then it might not have been halted properly. So halt + ** it now. + */ + sqlite3VdbeHalt(p); + + /* Transfer the error code and error message from the VDBE into the + ** main database structure. + */ + if( p->zErrMsg ){ + sqlite3Error(p->db, p->rc, "%s", p->zErrMsg); + sqliteFree(p->zErrMsg); + p->zErrMsg = 0; + }else if( p->rc ){ + sqlite3Error(p->db, p->rc, 0); + }else{ + sqlite3Error(p->db, SQLITE_OK, 0); + } + + /* Reclaim all memory used by the VDBE + */ + Cleanup(p); + + /* Save profiling information from this VDBE run. + */ + assert( p->pTos<&p->aStack[p->pc<0?0:p->pc] || sqlite3_malloc_failed==1 ); +#ifdef VDBE_PROFILE + { + FILE *out = fopen("vdbe_profile.out", "a"); + if( out ){ + int i; + fprintf(out, "---- "); + for(i=0; i<p->nOp; i++){ + fprintf(out, "%02x", p->aOp[i].opcode); + } + fprintf(out, "\n"); + for(i=0; i<p->nOp; i++){ + fprintf(out, "%6d %10lld %8lld ", + p->aOp[i].cnt, + p->aOp[i].cycles, + p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 + ); + sqlite3VdbePrintOp(out, i, &p->aOp[i]); + } + fclose(out); + } + } +#endif + p->magic = VDBE_MAGIC_INIT; + p->aborted = 0; + return p->rc; +} + +/* +** Clean up and delete a VDBE after execution. Return an integer which is +** the result code. Write any error message text into *pzErrMsg. +*/ +int sqlite3VdbeFinalize(Vdbe *p){ + int rc = SQLITE_OK; + sqlite3 *db = p->db; + + if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ + rc = sqlite3VdbeReset(p); + }else if( p->magic!=VDBE_MAGIC_INIT ){ + /* sqlite3Error(p->db, SQLITE_MISUSE, 0); */ + return SQLITE_MISUSE; + } + sqlite3VdbeDelete(p); + if( rc==SQLITE_SCHEMA ){ + sqlite3ResetInternalSchema(db, 0); + } + return rc; +} + +/* +** Call the destructor for each auxdata entry in pVdbeFunc for which +** the corresponding bit in mask is clear. Auxdata entries beyond 31 +** are always destroyed. To destroy all auxdata entries, call this +** routine with mask==0. +*/ +void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){ + int i; + for(i=0; i<pVdbeFunc->nAux; i++){ + struct AuxData *pAux = &pVdbeFunc->apAux[i]; + if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){ + if( pAux->xDelete ){ + pAux->xDelete(pAux->pAux); + } + pAux->pAux = 0; + } + } +} + +/* +** Delete an entire VDBE. +*/ +void sqlite3VdbeDelete(Vdbe *p){ + int i; + if( p==0 ) return; + Cleanup(p); + if( p->pPrev ){ + p->pPrev->pNext = p->pNext; + }else{ + assert( p->db->pVdbe==p ); + p->db->pVdbe = p->pNext; + } + if( p->pNext ){ + p->pNext->pPrev = p->pPrev; + } + if( p->aOp ){ + for(i=0; i<p->nOp; i++){ + Op *pOp = &p->aOp[i]; + if( pOp->p3type==P3_DYNAMIC || pOp->p3type==P3_KEYINFO ){ + sqliteFree(pOp->p3); + } + if( pOp->p3type==P3_VDBEFUNC ){ + VdbeFunc *pVdbeFunc = (VdbeFunc *)pOp->p3; + sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); + sqliteFree(pVdbeFunc); + } + } + sqliteFree(p->aOp); + } + releaseMemArray(p->aVar, p->nVar); + sqliteFree(p->aLabel); + sqliteFree(p->aStack); + releaseMemArray(p->aColName, p->nResColumn*2); + sqliteFree(p->aColName); + p->magic = VDBE_MAGIC_DEAD; + sqliteFree(p); +} + +/* +** If a MoveTo operation is pending on the given cursor, then do that +** MoveTo now. Return an error code. If no MoveTo is pending, this +** routine does nothing and returns SQLITE_OK. +*/ +int sqlite3VdbeCursorMoveto(Cursor *p){ + if( p->deferredMoveto ){ + int res; + extern int sqlite3_search_count; + assert( p->intKey ); + if( p->intKey ){ + sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, &res); + }else{ + sqlite3BtreeMoveto(p->pCursor,(char*)&p->movetoTarget,sizeof(i64),&res); + } + *p->pIncrKey = 0; + p->lastRecno = keyToInt(p->movetoTarget); + p->recnoIsValid = res==0; + if( res<0 ){ + sqlite3BtreeNext(p->pCursor, &res); + } + sqlite3_search_count++; + p->deferredMoveto = 0; + p->cacheValid = 0; + } + return SQLITE_OK; +} + +/* +** The following functions: +** +** sqlite3VdbeSerialType() +** sqlite3VdbeSerialTypeLen() +** sqlite3VdbeSerialRead() +** sqlite3VdbeSerialLen() +** sqlite3VdbeSerialWrite() +** +** encapsulate the code that serializes values for storage in SQLite +** data and index records. Each serialized value consists of a +** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned +** integer, stored as a varint. +** +** In an SQLite index record, the serial type is stored directly before +** the blob of data that it corresponds to. In a table record, all serial +** types are stored at the start of the record, and the blobs of data at +** the end. Hence these functions allow the caller to handle the +** serial-type and data blob seperately. +** +** The following table describes the various storage classes for data: +** +** serial type bytes of data type +** -------------- --------------- --------------- +** 0 0 NULL +** 1 1 signed integer +** 2 2 signed integer +** 3 3 signed integer +** 4 4 signed integer +** 5 6 signed integer +** 6 8 signed integer +** 7 8 IEEE float +** 8-11 reserved for expansion +** N>=12 and even (N-12)/2 BLOB +** N>=13 and odd (N-13)/2 text +** +*/ + +/* +** Return the serial-type for the value stored in pMem. +*/ +u32 sqlite3VdbeSerialType(Mem *pMem){ + int flags = pMem->flags; + + if( flags&MEM_Null ){ + return 0; + } + if( flags&MEM_Int ){ + /* Figure out whether to use 1, 2, 4 or 8 bytes. */ + i64 i = pMem->i; + if( i>=-127 && i<=127 ) return 1; + if( i>=-32767 && i<=32767 ) return 2; + if( i>=-8388607 && i<=8388607 ) return 3; + if( i>=-2147483647 && i<=2147483647 ) return 4; + if( i>=-140737488355328L && i<=140737488355328L ) return 5; + return 6; + } + if( flags&MEM_Real ){ + return 7; + } + if( flags&MEM_Str ){ + int n = pMem->n; + assert( n>=0 ); + return ((n*2) + 13); + } + if( flags&MEM_Blob ){ + return (pMem->n*2 + 12); + } + return 0; +} + +/* +** Return the length of the data corresponding to the supplied serial-type. +*/ +int sqlite3VdbeSerialTypeLen(u32 serial_type){ + if( serial_type>=12 ){ + return (serial_type-12)/2; + }else{ + static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; + return aSize[serial_type]; + } +} + +/* +** Write the serialized data blob for the value stored in pMem into +** buf. It is assumed that the caller has allocated sufficient space. +** Return the number of bytes written. +*/ +int sqlite3VdbeSerialPut(unsigned char *buf, Mem *pMem){ + u32 serial_type = sqlite3VdbeSerialType(pMem); + int len; + + /* NULL */ + if( serial_type==0 ){ + return 0; + } + + /* Integer and Real */ + if( serial_type<=7 ){ + u64 v; + int i; + if( serial_type==7 ){ + v = *(u64*)&pMem->r; + }else{ + v = *(u64*)&pMem->i; + } + len = i = sqlite3VdbeSerialTypeLen(serial_type); + while( i-- ){ + buf[i] = (v&0xFF); + v >>= 8; + } + return len; + } + + /* String or blob */ + assert( serial_type>=12 ); + len = sqlite3VdbeSerialTypeLen(serial_type); + memcpy(buf, pMem->z, len); + return len; +} + +/* +** Deserialize the data blob pointed to by buf as serial type serial_type +** and store the result in pMem. Return the number of bytes read. +*/ +int sqlite3VdbeSerialGet( + const unsigned char *buf, /* Buffer to deserialize from */ + u32 serial_type, /* Serial type to deserialize */ + Mem *pMem /* Memory cell to write value into */ +){ + int len; + + if( serial_type==0 ){ + /* NULL */ + pMem->flags = MEM_Null; + return 0; + } + len = sqlite3VdbeSerialTypeLen(serial_type); + if( serial_type<=7 ){ + /* Integer and Real */ + if( serial_type<=4 ){ + /* 32-bit integer type. This is handled by a special case for + ** performance reasons. */ + int v = buf[0]; + int n; + if( v&0x80 ){ + v |= -256; + } + for(n=1; n<len; n++){ + v = (v<<8) | buf[n]; + } + pMem->flags = MEM_Int; + pMem->i = v; + return n; + }else{ + u64 v = 0; + int n; + + if( buf[0]&0x80 ){ + v = -1; + } + for(n=0; n<len; n++){ + v = (v<<8) | buf[n]; + } + if( serial_type==7 ){ + pMem->flags = MEM_Real; + pMem->r = *(double*)&v; + }else{ + pMem->flags = MEM_Int; + pMem->i = *(i64*)&v; + } + } + }else{ + /* String or blob */ + assert( serial_type>=12 ); + pMem->z = (char *)buf; + pMem->n = len; + pMem->xDel = 0; + if( serial_type&0x01 ){ + pMem->flags = MEM_Str | MEM_Ephem; + }else{ + pMem->flags = MEM_Blob | MEM_Ephem; + } + } + return len; +} + +/* +** This function compares the two table rows or index records specified by +** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero +** or positive integer if {nKey1, pKey1} is less than, equal to or +** greater than {nKey2, pKey2}. Both Key1 and Key2 must be byte strings +** composed by the OP_MakeRecord opcode of the VDBE. +*/ +int sqlite3VdbeRecordCompare( + void *userData, + int nKey1, const void *pKey1, + int nKey2, const void *pKey2 +){ + KeyInfo *pKeyInfo = (KeyInfo*)userData; + u32 d1, d2; /* Offset into aKey[] of next data element */ + u32 idx1, idx2; /* Offset into aKey[] of next header element */ + u32 szHdr1, szHdr2; /* Number of bytes in header */ + int i = 0; + int nField; + int rc = 0; + const unsigned char *aKey1 = (const unsigned char *)pKey1; + const unsigned char *aKey2 = (const unsigned char *)pKey2; + + Mem mem1; + Mem mem2; + mem1.enc = pKeyInfo->enc; + mem2.enc = pKeyInfo->enc; + + idx1 = sqlite3GetVarint32(pKey1, &szHdr1); + d1 = szHdr1; + idx2 = sqlite3GetVarint32(pKey2, &szHdr2); + d2 = szHdr2; + nField = pKeyInfo->nField; + while( idx1<szHdr1 && idx2<szHdr2 ){ + u32 serial_type1; + u32 serial_type2; + + /* Read the serial types for the next element in each key. */ + idx1 += sqlite3GetVarint32(&aKey1[idx1], &serial_type1); + if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; + idx2 += sqlite3GetVarint32(&aKey2[idx2], &serial_type2); + if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break; + + /* Assert that there is enough space left in each key for the blob of + ** data to go with the serial type just read. This assert may fail if + ** the file is corrupted. Then read the value from each key into mem1 + ** and mem2 respectively. + */ + d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); + d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2); + + rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0); + sqlite3VdbeMemRelease(&mem1); + sqlite3VdbeMemRelease(&mem2); + if( rc!=0 ){ + break; + } + i++; + } + + /* One of the keys ran out of fields, but all the fields up to that point + ** were equal. If the incrKey flag is true, then the second key is + ** treated as larger. + */ + if( rc==0 ){ + if( pKeyInfo->incrKey ){ + rc = -1; + }else if( d1<nKey1 ){ + rc = 1; + }else if( d2<nKey2 ){ + rc = -1; + } + } + + if( pKeyInfo->aSortOrder && i<pKeyInfo->nField && pKeyInfo->aSortOrder[i] ){ + rc = -rc; + } + + return rc; +} + +/* +** The argument is an index entry composed using the OP_MakeRecord opcode. +** The last entry in this record should be an integer (specifically +** an integer rowid). This routine returns the number of bytes in +** that integer. +*/ +int sqlite3VdbeIdxRowidLen(int nKey, const u8 *aKey){ + u32 szHdr; /* Size of the header */ + u32 typeRowid; /* Serial type of the rowid */ + + sqlite3GetVarint32(aKey, &szHdr); + sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid); + return sqlite3VdbeSerialTypeLen(typeRowid); +} + + +/* +** pCur points at an index entry created using the OP_MakeRecord opcode. +** Read the rowid (the last field in the record) and store it in *rowid. +** Return SQLITE_OK if everything works, or an error code otherwise. +*/ +int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){ + i64 nCellKey; + int rc; + u32 szHdr; /* Size of the header */ + u32 typeRowid; /* Serial type of the rowid */ + u32 lenRowid; /* Size of the rowid */ + Mem m, v; + + sqlite3BtreeKeySize(pCur, &nCellKey); + if( nCellKey<=0 ){ + return SQLITE_CORRUPT; + } + rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m); + if( rc ){ + return rc; + } + sqlite3GetVarint32(m.z, &szHdr); + sqlite3GetVarint32(&m.z[szHdr-1], &typeRowid); + lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); + sqlite3VdbeSerialGet(&m.z[m.n-lenRowid], typeRowid, &v); + *rowid = v.i; + sqlite3VdbeMemRelease(&m); + return SQLITE_OK; +} + +/* +** Compare the key of the index entry that cursor pC is point to against +** the key string in pKey (of length nKey). Write into *pRes a number +** that is negative, zero, or positive if pC is less than, equal to, +** or greater than pKey. Return SQLITE_OK on success. +** +** pKey is either created without a rowid or is truncated so that it +** omits the rowid at the end. The rowid at the end of the index entry +** is ignored as well. +*/ +int sqlite3VdbeIdxKeyCompare( + Cursor *pC, /* The cursor to compare against */ + int nKey, const u8 *pKey, /* The key to compare */ + int *res /* Write the comparison result here */ +){ + i64 nCellKey; + int rc; + BtCursor *pCur = pC->pCursor; + int lenRowid; + Mem m; + + sqlite3BtreeKeySize(pCur, &nCellKey); + if( nCellKey<=0 ){ + *res = 0; + return SQLITE_OK; + } + rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m); + if( rc ){ + return rc; + } + lenRowid = sqlite3VdbeIdxRowidLen(m.n, m.z); + *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey); + sqlite3VdbeMemRelease(&m); + return SQLITE_OK; +} + +/* +** This routine sets the value to be returned by subsequent calls to +** sqlite3_changes() on the database handle 'db'. +*/ +void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ + db->nChange = nChange; + db->nTotalChange += nChange; +} + +/* +** Set a flag in the vdbe to update the change counter when it is finalised +** or reset. +*/ +void sqlite3VdbeCountChanges(Vdbe *p){ + p->changeCntOn = 1; +} diff --git a/kopete/plugins/statistics/sqlite/vdbemem.c b/kopete/plugins/statistics/sqlite/vdbemem.c new file mode 100644 index 00000000..c6cd94e6 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/vdbemem.c @@ -0,0 +1,724 @@ +/* +** 2004 May 26 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains code use to manipulate "Mem" structure. A "Mem" +** stores a single value in the VDBE. Mem is an opaque structure visible +** only within the VDBE. Interface routines refer to a Mem using the +** name sqlite_value +*/ +#include "sqliteInt.h" +#include "os.h" +#include <ctype.h> +#include "vdbeInt.h" + +/* +** If pMem is an object with a valid string representation, this routine +** ensures the internal encoding for the string representation is +** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. +** +** If pMem is not a string object, or the encoding of the string +** representation is already stored using the requested encoding, then this +** routine is a no-op. +** +** SQLITE_OK is returned if the conversion is successful (or not required). +** SQLITE_NOMEM may be returned if a malloc() fails during conversion +** between formats. +*/ +int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ + if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ + return SQLITE_OK; + } + return sqlite3VdbeMemTranslate(pMem, desiredEnc); +} + +/* +** Make the given Mem object MEM_Dyn. +** +** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. +*/ +int sqlite3VdbeMemDynamicify(Mem *pMem){ + int n = pMem->n; + u8 *z; + if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){ + return SQLITE_OK; + } + assert( (pMem->flags & MEM_Dyn)==0 ); + assert( pMem->flags & (MEM_Str|MEM_Blob) ); + z = sqliteMallocRaw( n+2 ); + if( z==0 ){ + return SQLITE_NOMEM; + } + pMem->flags |= MEM_Dyn|MEM_Term; + pMem->xDel = 0; + memcpy(z, pMem->z, n ); + z[n] = 0; + z[n+1] = 0; + pMem->z = z; + pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short); + return SQLITE_OK; +} + +/* +** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes +** of the Mem.z[] array can be modified. +** +** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. +*/ +int sqlite3VdbeMemMakeWriteable(Mem *pMem){ + int n; + u8 *z; + if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){ + return SQLITE_OK; + } + assert( (pMem->flags & MEM_Dyn)==0 ); + assert( pMem->flags & (MEM_Str|MEM_Blob) ); + if( (n = pMem->n)+2<sizeof(pMem->zShort) ){ + z = pMem->zShort; + pMem->flags |= MEM_Short|MEM_Term; + }else{ + z = sqliteMallocRaw( n+2 ); + if( z==0 ){ + return SQLITE_NOMEM; + } + pMem->flags |= MEM_Dyn|MEM_Term; + pMem->xDel = 0; + } + memcpy(z, pMem->z, n ); + z[n] = 0; + z[n+1] = 0; + pMem->z = z; + pMem->flags &= ~(MEM_Ephem|MEM_Static); + return SQLITE_OK; +} + +/* +** Make sure the given Mem is \u0000 terminated. +*/ +int sqlite3VdbeMemNulTerminate(Mem *pMem){ + /* In SQLite, a string without a nul terminator occurs when a string + ** is loaded from disk (in this case the memory management is ephemeral), + ** or when it is supplied by the user as a bound variable or function + ** return value. Therefore, the memory management of the string must be + ** either ephemeral, static or controlled by a user-supplied destructor. + */ + assert( + !(pMem->flags&MEM_Str) || /* it's not a string, or */ + (pMem->flags&MEM_Term) || /* it's nul term. already, or */ + (pMem->flags&(MEM_Ephem|MEM_Static)) || /* it's static or ephem, or */ + (pMem->flags&MEM_Dyn && pMem->xDel) /* external management */ + ); + if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ + return SQLITE_OK; /* Nothing to do */ + } + + if( pMem->flags & (MEM_Static|MEM_Ephem) ){ + return sqlite3VdbeMemMakeWriteable(pMem); + }else{ + char *z = sqliteMalloc(pMem->n+2); + if( !z ) return SQLITE_NOMEM; + memcpy(z, pMem->z, pMem->n); + z[pMem->n] = 0; + z[pMem->n+1] = 0; + pMem->xDel(pMem->z); + pMem->xDel = 0; + pMem->z = z; + } + return SQLITE_OK; +} + +/* +** Add MEM_Str to the set of representations for the given Mem. Numbers +** are converted using sqlite3_snprintf(). Converting a BLOB to a string +** is a no-op. +** +** Existing representations MEM_Int and MEM_Real are *not* invalidated. +** +** A MEM_Null value will never be passed to this function. This function is +** used for converting values to text for returning to the user (i.e. via +** sqlite3_value_text()), or for ensuring that values to be used as btree +** keys are strings. In the former case a NULL pointer is returned the +** user and the later is an internal programming error. +*/ +int sqlite3VdbeMemStringify(Mem *pMem, int enc){ + int rc = SQLITE_OK; + int fg = pMem->flags; + u8 *z = pMem->zShort; + + assert( !(fg&(MEM_Str|MEM_Blob)) ); + assert( fg&(MEM_Int|MEM_Real) ); + + /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 + ** string representation of the value. Then, if the required encoding + ** is UTF-16le or UTF-16be do a translation. + ** + ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. + */ + if( fg & MEM_Real ){ + sqlite3_snprintf(NBFS, z, "%.15g", pMem->r); + }else{ + assert( fg & MEM_Int ); + sqlite3_snprintf(NBFS, z, "%lld", pMem->i); + } + pMem->n = strlen(z); + pMem->z = z; + pMem->enc = SQLITE_UTF8; + pMem->flags |= MEM_Str | MEM_Short | MEM_Term; + sqlite3VdbeChangeEncoding(pMem, enc); + return rc; +} + +/* +** Release any memory held by the Mem. This may leave the Mem in an +** inconsistent state, for example with (Mem.z==0) and +** (Mem.type==SQLITE_TEXT). +*/ +void sqlite3VdbeMemRelease(Mem *p){ + if( p->flags & MEM_Dyn ){ + if( p->xDel ){ + p->xDel((void *)p->z); + }else{ + sqliteFree(p->z); + } + p->z = 0; + p->xDel = 0; + } +} + +/* +** Return some kind of integer value which is the best we can do +** at representing the value that *pMem describes as an integer. +** If pMem is an integer, then the value is exact. If pMem is +** a floating-point then the value returned is the integer part. +** If pMem is a string or blob, then we make an attempt to convert +** it into a integer and return that. If pMem is NULL, return 0. +** +** If pMem is a string, its encoding might be changed. +*/ +i64 sqlite3VdbeIntValue(Mem *pMem){ + int flags = pMem->flags; + if( flags & MEM_Int ){ + return pMem->i; + }else if( flags & MEM_Real ){ + return (i64)pMem->r; + }else if( flags & (MEM_Str|MEM_Blob) ){ + i64 value; + if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) + || sqlite3VdbeMemNulTerminate(pMem) ){ + return SQLITE_NOMEM; + } + assert( pMem->z ); + sqlite3atoi64(pMem->z, &value); + return value; + }else{ + return 0; + } +} + +/* +** Convert pMem to type integer. Invalidate any prior representations. +*/ +int sqlite3VdbeMemIntegerify(Mem *pMem){ + pMem->i = sqlite3VdbeIntValue(pMem); + sqlite3VdbeMemRelease(pMem); + pMem->flags = MEM_Int; + return SQLITE_OK; +} + +/* +** Return the best representation of pMem that we can get into a +** double. If pMem is already a double or an integer, return its +** value. If it is a string or blob, try to convert it to a double. +** If it is a NULL, return 0.0. +*/ +double sqlite3VdbeRealValue(Mem *pMem){ + if( pMem->flags & MEM_Real ){ + return pMem->r; + }else if( pMem->flags & MEM_Int ){ + return (double)pMem->i; + }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ + if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) + || sqlite3VdbeMemNulTerminate(pMem) ){ + return SQLITE_NOMEM; + } + assert( pMem->z ); + return sqlite3AtoF(pMem->z, 0); + }else{ + return 0.0; + } +} + +/* +** Convert pMem so that it is of type MEM_Real. Invalidate any +** prior representations. +*/ +int sqlite3VdbeMemRealify(Mem *pMem){ + pMem->r = sqlite3VdbeRealValue(pMem); + sqlite3VdbeMemRelease(pMem); + pMem->flags = MEM_Real; + return SQLITE_OK; +} + +/* +** Delete any previous value and set the value stored in *pMem to NULL. +*/ +void sqlite3VdbeMemSetNull(Mem *pMem){ + sqlite3VdbeMemRelease(pMem); + pMem->flags = MEM_Null; + pMem->type = SQLITE_NULL; +} + +/* +** Delete any previous value and set the value stored in *pMem to val, +** manifest type INTEGER. +*/ +void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ + sqlite3VdbeMemRelease(pMem); + pMem->i = val; + pMem->flags = MEM_Int; + pMem->type = SQLITE_INTEGER; +} + +/* +** Delete any previous value and set the value stored in *pMem to val, +** manifest type REAL. +*/ +void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ + sqlite3VdbeMemRelease(pMem); + pMem->r = val; + pMem->flags = MEM_Real; + pMem->type = SQLITE_FLOAT; +} + +/* +** Make an shallow copy of pFrom into pTo. Prior contents of +** pTo are overwritten. The pFrom->z field is not duplicated. If +** pFrom->z is used, then pTo->z points to the same thing as pFrom->z +** and flags gets srcType (either MEM_Ephem or MEM_Static). +*/ +void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ + memcpy(pTo, pFrom, sizeof(*pFrom)-sizeof(pFrom->zShort)); + pTo->xDel = 0; + if( pTo->flags & (MEM_Str|MEM_Blob) ){ + pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short|MEM_Ephem); + assert( srcType==MEM_Ephem || srcType==MEM_Static ); + pTo->flags |= srcType; + } +} + +/* +** Make a full copy of pFrom into pTo. Prior contents of pTo are +** freed before the copy is made. +*/ +int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ + int rc; + if( pTo->flags & MEM_Dyn ){ + sqlite3VdbeMemRelease(pTo); + } + sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem); + if( pTo->flags & MEM_Ephem ){ + rc = sqlite3VdbeMemMakeWriteable(pTo); + }else{ + rc = SQLITE_OK; + } + return rc; +} + +/* +** Transfer the contents of pFrom to pTo. Any existing value in pTo is +** freed. If pFrom contains ephemeral data, a copy is made. +** +** pFrom contains an SQL NULL when this routine returns. SQLITE_NOMEM +** might be returned if pFrom held ephemeral data and we were unable +** to allocate enough space to make a copy. +*/ +int sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ + int rc; + if( pTo->flags & MEM_Dyn ){ + sqlite3VdbeMemRelease(pTo); + } + memcpy(pTo, pFrom, sizeof(Mem)); + if( pFrom->flags & MEM_Short ){ + pTo->z = pTo->zShort; + } + pFrom->flags = MEM_Null; + pFrom->xDel = 0; + if( pTo->flags & MEM_Ephem ){ + rc = sqlite3VdbeMemMakeWriteable(pTo); + }else{ + rc = SQLITE_OK; + } + return rc; +} + +/* +** Change the value of a Mem to be a string or a BLOB. +*/ +int sqlite3VdbeMemSetStr( + Mem *pMem, /* Memory cell to set to string value */ + const char *z, /* String pointer */ + int n, /* Bytes in string, or negative */ + u8 enc, /* Encoding of z. 0 for BLOBs */ + void (*xDel)(void*) /* Destructor function */ +){ + sqlite3VdbeMemRelease(pMem); + if( !z ){ + pMem->flags = MEM_Null; + pMem->type = SQLITE_NULL; + return SQLITE_OK; + } + + pMem->z = (char *)z; + if( xDel==SQLITE_STATIC ){ + pMem->flags = MEM_Static; + }else if( xDel==SQLITE_TRANSIENT ){ + pMem->flags = MEM_Ephem; + }else{ + pMem->flags = MEM_Dyn; + pMem->xDel = xDel; + } + + pMem->enc = enc; + pMem->type = enc==0 ? SQLITE_BLOB : SQLITE_TEXT; + pMem->n = n; + + switch( enc ){ + case 0: + pMem->flags |= MEM_Blob; + break; + + case SQLITE_UTF8: + pMem->flags |= MEM_Str; + if( n<0 ){ + pMem->n = strlen(z); + pMem->flags |= MEM_Term; + } + break; + + case SQLITE_UTF16LE: + case SQLITE_UTF16BE: + pMem->flags |= MEM_Str; + if( pMem->n<0 ){ + pMem->n = sqlite3utf16ByteLen(pMem->z,-1); + pMem->flags |= MEM_Term; + } + if( sqlite3VdbeMemHandleBom(pMem) ){ + return SQLITE_NOMEM; + } + break; + + default: + assert(0); + } + if( pMem->flags&MEM_Ephem ){ + return sqlite3VdbeMemMakeWriteable(pMem); + } + return SQLITE_OK; +} + +/* +** Compare the values contained by the two memory cells, returning +** negative, zero or positive if pMem1 is less than, equal to, or greater +** than pMem2. Sorting order is NULL's first, followed by numbers (integers +** and reals) sorted numerically, followed by text ordered by the collating +** sequence pColl and finally blob's ordered by memcmp(). +** +** Two NULL values are considered equal by this function. +*/ +int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ + int rc; + int f1, f2; + int combined_flags; + + /* Interchange pMem1 and pMem2 if the collating sequence specifies + ** DESC order. + */ + f1 = pMem1->flags; + f2 = pMem2->flags; + combined_flags = f1|f2; + + /* If one value is NULL, it is less than the other. If both values + ** are NULL, return 0. + */ + if( combined_flags&MEM_Null ){ + return (f2&MEM_Null) - (f1&MEM_Null); + } + + /* If one value is a number and the other is not, the number is less. + ** If both are numbers, compare as reals if one is a real, or as integers + ** if both values are integers. + */ + if( combined_flags&(MEM_Int|MEM_Real) ){ + if( !(f1&(MEM_Int|MEM_Real)) ){ + return 1; + } + if( !(f2&(MEM_Int|MEM_Real)) ){ + return -1; + } + if( (f1 & f2 & MEM_Int)==0 ){ + double r1, r2; + if( (f1&MEM_Real)==0 ){ + r1 = pMem1->i; + }else{ + r1 = pMem1->r; + } + if( (f2&MEM_Real)==0 ){ + r2 = pMem2->i; + }else{ + r2 = pMem2->r; + } + if( r1<r2 ) return -1; + if( r1>r2 ) return 1; + return 0; + }else{ + assert( f1&MEM_Int ); + assert( f2&MEM_Int ); + if( pMem1->i < pMem2->i ) return -1; + if( pMem1->i > pMem2->i ) return 1; + return 0; + } + } + + /* If one value is a string and the other is a blob, the string is less. + ** If both are strings, compare using the collating functions. + */ + if( combined_flags&MEM_Str ){ + if( (f1 & MEM_Str)==0 ){ + return 1; + } + if( (f2 & MEM_Str)==0 ){ + return -1; + } + + assert( pMem1->enc==pMem2->enc ); + assert( pMem1->enc==SQLITE_UTF8 || + pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); + + /* This assert may fail if the collation sequence is deleted after this + ** vdbe program is compiled. The documentation defines this as an + ** undefined condition. A crash is usual result. + */ + assert( !pColl || pColl->xCmp ); + + if( pColl ){ + if( pMem1->enc==pColl->enc ){ + return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); + }else{ + u8 origEnc = pMem1->enc; + rc = pColl->xCmp( + pColl->pUser, + sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc), + sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc), + sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc), + sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc) + ); + sqlite3ValueBytes((sqlite3_value*)pMem1, origEnc); + sqlite3ValueText((sqlite3_value*)pMem1, origEnc); + sqlite3ValueBytes((sqlite3_value*)pMem2, origEnc); + sqlite3ValueText((sqlite3_value*)pMem2, origEnc); + return rc; + } + } + /* If a NULL pointer was passed as the collate function, fall through + ** to the blob case and use memcmp(). */ + } + + /* Both values must be blobs. Compare using memcmp(). */ + rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); + if( rc==0 ){ + rc = pMem1->n - pMem2->n; + } + return rc; +} + +/* +** Move data out of a btree key or data field and into a Mem structure. +** The data or key is taken from the entry that pCur is currently pointing +** to. offset and amt determine what portion of the data or key to retrieve. +** key is true to get the key or false to get data. The result is written +** into the pMem element. +** +** The pMem structure is assumed to be uninitialized. Any prior content +** is overwritten without being freed. +** +** If this routine fails for any reason (malloc returns NULL or unable +** to read from the disk) then the pMem is left in an inconsistent state. +*/ +int sqlite3VdbeMemFromBtree( + BtCursor *pCur, /* Cursor pointing at record to retrieve. */ + int offset, /* Offset from the start of data to return bytes from. */ + int amt, /* Number of bytes to return. */ + int key, /* If true, retrieve from the btree key, not data. */ + Mem *pMem /* OUT: Return data in this Mem structure. */ +){ + char *zData; /* Data from the btree layer */ + int available; /* Number of bytes available on the local btree page */ + + if( key ){ + zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); + }else{ + zData = (char *)sqlite3BtreeDataFetch(pCur, &available); + } + + pMem->n = amt; + if( offset+amt<=available ){ + pMem->z = &zData[offset]; + pMem->flags = MEM_Blob|MEM_Ephem; + }else{ + int rc; + if( amt>NBFS-2 ){ + zData = (char *)sqliteMallocRaw(amt+2); + if( !zData ){ + return SQLITE_NOMEM; + } + pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; + pMem->xDel = 0; + }else{ + zData = &(pMem->zShort[0]); + pMem->flags = MEM_Blob|MEM_Short|MEM_Term; + } + pMem->z = zData; + pMem->enc = 0; + pMem->type = SQLITE_BLOB; + + if( key ){ + rc = sqlite3BtreeKey(pCur, offset, amt, zData); + }else{ + rc = sqlite3BtreeData(pCur, offset, amt, zData); + } + zData[amt] = 0; + zData[amt+1] = 0; + if( rc!=SQLITE_OK ){ + if( amt>NBFS ){ + sqliteFree(zData); + } + return rc; + } + } + + return SQLITE_OK; +} + +#ifndef NDEBUG +/* +** Perform various checks on the memory cell pMem. An assert() will +** fail if pMem is internally inconsistent. +*/ +void sqlite3VdbeMemSanity(Mem *pMem, u8 db_enc){ + int flags = pMem->flags; + assert( flags!=0 ); /* Must define some type */ + if( pMem->flags & (MEM_Str|MEM_Blob) ){ + int x = pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); + assert( x!=0 ); /* Strings must define a string subtype */ + assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */ + assert( pMem->z!=0 ); /* Strings must have a value */ + /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */ + assert( (pMem->flags & MEM_Short)==0 || pMem->z==pMem->zShort ); + assert( (pMem->flags & MEM_Short)!=0 || pMem->z!=pMem->zShort ); + /* No destructor unless there is MEM_Dyn */ + assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 ); + + if( (flags & MEM_Str) ){ + assert( pMem->enc==SQLITE_UTF8 || + pMem->enc==SQLITE_UTF16BE || + pMem->enc==SQLITE_UTF16LE + ); + /* If the string is UTF-8 encoded and nul terminated, then pMem->n + ** must be the length of the string. (Later:) If the database file + ** has been corrupted, '\000' characters might have been inserted + ** into the middle of the string. In that case, the strlen() might + ** be less. + */ + if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){ + assert( strlen(pMem->z)<=pMem->n ); + assert( pMem->z[pMem->n]==0 ); + } + } + }else{ + /* Cannot define a string subtype for non-string objects */ + assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 ); + assert( pMem->xDel==0 ); + } + /* MEM_Null excludes all other types */ + assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0 + || (pMem->flags&MEM_Null)==0 ); + if( (pMem->flags & (MEM_Int|MEM_Real))==(MEM_Int|MEM_Real) ){ + assert( pMem->r==pMem->i ); + } +} +#endif + +/* This function is only available internally, it is not part of the +** external API. It works in a similar way to sqlite3_value_text(), +** except the data returned is in the encoding specified by the second +** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or +** SQLITE_UTF8. +*/ +const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ + if( !pVal ) return 0; + assert( enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE || enc==SQLITE_UTF8); + + if( pVal->flags&MEM_Null ){ + return 0; + } + if( pVal->flags&MEM_Str ){ + sqlite3VdbeChangeEncoding(pVal, enc); + }else if( !(pVal->flags&MEM_Blob) ){ + sqlite3VdbeMemStringify(pVal, enc); + } + return (const void *)(pVal->z); +} + +/* +** Create a new sqlite3_value object. +*/ +sqlite3_value* sqlite3ValueNew(){ + Mem *p = sqliteMalloc(sizeof(*p)); + if( p ){ + p->flags = MEM_Null; + p->type = SQLITE_NULL; + } + return p; +} + +/* +** Change the string value of an sqlite3_value object +*/ +void sqlite3ValueSetStr( + sqlite3_value *v, + int n, + const void *z, + u8 enc, + void (*xDel)(void*) +){ + if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); +} + +/* +** Free an sqlite3_value object +*/ +void sqlite3ValueFree(sqlite3_value *v){ + if( !v ) return; + sqlite3ValueSetStr(v, 0, 0, SQLITE_UTF8, SQLITE_STATIC); + sqliteFree(v); +} + +/* +** Return the number of bytes in the sqlite3_value object assuming +** that it uses the encoding "enc" +*/ +int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ + Mem *p = (Mem*)pVal; + if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ + return p->n; + } + return 0; +} diff --git a/kopete/plugins/statistics/sqlite/where.c b/kopete/plugins/statistics/sqlite/where.c new file mode 100644 index 00000000..08c174e9 --- /dev/null +++ b/kopete/plugins/statistics/sqlite/where.c @@ -0,0 +1,1210 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This module contains C code that generates VDBE code used to process +** the WHERE clause of SQL statements. +** +** $Id$ +*/ +#include "sqliteInt.h" + +/* +** The query generator uses an array of instances of this structure to +** help it analyze the subexpressions of the WHERE clause. Each WHERE +** clause subexpression is separated from the others by an AND operator. +*/ +typedef struct ExprInfo ExprInfo; +struct ExprInfo { + Expr *p; /* Pointer to the subexpression */ + u8 indexable; /* True if this subexprssion is usable by an index */ + short int idxLeft; /* p->pLeft is a column in this table number. -1 if + ** p->pLeft is not the column of any table */ + short int idxRight; /* p->pRight is a column in this table number. -1 if + ** p->pRight is not the column of any table */ + unsigned prereqLeft; /* Bitmask of tables referenced by p->pLeft */ + unsigned prereqRight; /* Bitmask of tables referenced by p->pRight */ + unsigned prereqAll; /* Bitmask of tables referenced by p */ +}; + +/* +** An instance of the following structure keeps track of a mapping +** between VDBE cursor numbers and bitmasks. The VDBE cursor numbers +** are small integers contained in SrcList_item.iCursor and Expr.iTable +** fields. For any given WHERE clause, we want to track which cursors +** are being used, so we assign a single bit in a 32-bit word to track +** that cursor. Then a 32-bit integer is able to show the set of all +** cursors being used. +*/ +typedef struct ExprMaskSet ExprMaskSet; +struct ExprMaskSet { + int n; /* Number of assigned cursor values */ + int ix[31]; /* Cursor assigned to each bit */ +}; + +/* +** Determine the number of elements in an array. +*/ +#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0])) + +/* +** This routine is used to divide the WHERE expression into subexpressions +** separated by the AND operator. +** +** aSlot[] is an array of subexpressions structures. +** There are nSlot spaces left in this array. This routine attempts to +** split pExpr into subexpressions and fills aSlot[] with those subexpressions. +** The return value is the number of slots filled. +*/ +static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){ + int cnt = 0; + if( pExpr==0 || nSlot<1 ) return 0; + if( nSlot==1 || pExpr->op!=TK_AND ){ + aSlot[0].p = pExpr; + return 1; + } + if( pExpr->pLeft->op!=TK_AND ){ + aSlot[0].p = pExpr->pLeft; + cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight); + }else{ + cnt = exprSplit(nSlot, aSlot, pExpr->pLeft); + cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight); + } + return cnt; +} + +/* +** Initialize an expression mask set +*/ +#define initMaskSet(P) memset(P, 0, sizeof(*P)) + +/* +** Return the bitmask for the given cursor. Assign a new bitmask +** if this is the first time the cursor has been seen. +*/ +static int getMask(ExprMaskSet *pMaskSet, int iCursor){ + int i; + for(i=0; i<pMaskSet->n; i++){ + if( pMaskSet->ix[i]==iCursor ) return 1<<i; + } + if( i==pMaskSet->n && i<ARRAYSIZE(pMaskSet->ix) ){ + pMaskSet->n++; + pMaskSet->ix[i] = iCursor; + return 1<<i; + } + return 0; +} + +/* +** Destroy an expression mask set +*/ +#define freeMaskSet(P) /* NO-OP */ + +/* +** This routine walks (recursively) an expression tree and generates +** a bitmask indicating which tables are used in that expression +** tree. +** +** In order for this routine to work, the calling function must have +** previously invoked sqlite3ExprResolveIds() on the expression. See +** the header comment on that routine for additional information. +** The sqlite3ExprResolveIds() routines looks for column names and +** sets their opcodes to TK_COLUMN and their Expr.iTable fields to +** the VDBE cursor number of the table. +*/ +static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ + unsigned int mask = 0; + if( p==0 ) return 0; + if( p->op==TK_COLUMN ){ + mask = getMask(pMaskSet, p->iTable); + if( mask==0 ) mask = -1; + return mask; + } + if( p->pRight ){ + mask = exprTableUsage(pMaskSet, p->pRight); + } + if( p->pLeft ){ + mask |= exprTableUsage(pMaskSet, p->pLeft); + } + if( p->pList ){ + int i; + for(i=0; i<p->pList->nExpr; i++){ + mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr); + } + } + return mask; +} + +/* +** Return TRUE if the given operator is one of the operators that is +** allowed for an indexable WHERE clause. The allowed operators are +** "=", "<", ">", "<=", ">=", and "IN". +*/ +static int allowedOp(int op){ + assert( TK_GT==TK_LE-1 && TK_LE==TK_LT-1 && TK_LT==TK_GE-1 && TK_EQ==TK_GT-1); + return op==TK_IN || (op>=TK_EQ && op<=TK_GE); +} + +/* +** Swap two integers. +*/ +#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} + +/* +** Return the index in the SrcList that uses cursor iCur. If iCur is +** used by the first entry in SrcList return 0. If iCur is used by +** the second entry return 1. And so forth. +** +** SrcList is the set of tables in the FROM clause in the order that +** they will be processed. The value returned here gives us an index +** of which tables will be processed first. +*/ +static int tableOrder(SrcList *pList, int iCur){ + int i; + for(i=0; i<pList->nSrc; i++){ + if( pList->a[i].iCursor==iCur ) return i; + } + return -1; +} + +/* +** The input to this routine is an ExprInfo structure with only the +** "p" field filled in. The job of this routine is to analyze the +** subexpression and populate all the other fields of the ExprInfo +** structure. +*/ +static void exprAnalyze(SrcList *pSrc, ExprMaskSet *pMaskSet, ExprInfo *pInfo){ + Expr *pExpr = pInfo->p; + pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); + pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); + pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr); + pInfo->indexable = 0; + pInfo->idxLeft = -1; + pInfo->idxRight = -1; + if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){ + if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){ + pInfo->idxRight = pExpr->pRight->iTable; + pInfo->indexable = 1; + } + if( pExpr->pLeft->op==TK_COLUMN ){ + pInfo->idxLeft = pExpr->pLeft->iTable; + pInfo->indexable = 1; + } + } + if( pInfo->indexable ){ + assert( pInfo->idxLeft!=pInfo->idxRight ); + + /* We want the expression to be of the form "X = expr", not "expr = X". + ** So flip it over if necessary. If the expression is "X = Y", then + ** we want Y to come from an earlier table than X. + ** + ** The collating sequence rule is to always choose the left expression. + ** So if we do a flip, we also have to move the collating sequence. + */ + if( tableOrder(pSrc,pInfo->idxLeft)<tableOrder(pSrc,pInfo->idxRight) ){ + assert( pExpr->op!=TK_IN ); + SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); + SWAP(Expr*,pExpr->pRight,pExpr->pLeft); + if( pExpr->op>=TK_GT ){ + assert( TK_LT==TK_GT+2 ); + assert( TK_GE==TK_LE+2 ); + assert( TK_GT>TK_EQ ); + assert( TK_GT<TK_LE ); + assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); + pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; + } + SWAP(unsigned, pInfo->prereqLeft, pInfo->prereqRight); + SWAP(short int, pInfo->idxLeft, pInfo->idxRight); + } + } + +} + +/* +** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the +** left-most table in the FROM clause of that same SELECT statement and +** the table has a cursor number of "base". +** +** This routine attempts to find an index for pTab that generates the +** correct record sequence for the given ORDER BY clause. The return value +** is a pointer to an index that does the job. NULL is returned if the +** table has no index that will generate the correct sort order. +** +** If there are two or more indices that generate the correct sort order +** and pPreferredIdx is one of those indices, then return pPreferredIdx. +** +** nEqCol is the number of columns of pPreferredIdx that are used as +** equality constraints. Any index returned must have exactly this same +** set of columns. The ORDER BY clause only matches index columns beyond the +** the first nEqCol columns. +** +** All terms of the ORDER BY clause must be either ASC or DESC. The +** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is +** set to 0 if the ORDER BY clause is all ASC. +*/ +static Index *findSortingIndex( + Parse *pParse, + Table *pTab, /* The table to be sorted */ + int base, /* Cursor number for pTab */ + ExprList *pOrderBy, /* The ORDER BY clause */ + Index *pPreferredIdx, /* Use this index, if possible and not NULL */ + int nEqCol, /* Number of index columns used with == constraints */ + int *pbRev /* Set to 1 if ORDER BY is DESC */ +){ + int i, j; + Index *pMatch; + Index *pIdx; + int sortOrder; + sqlite3 *db = pParse->db; + + assert( pOrderBy!=0 ); + assert( pOrderBy->nExpr>0 ); + sortOrder = pOrderBy->a[0].sortOrder; + for(i=0; i<pOrderBy->nExpr; i++){ + Expr *p; + if( pOrderBy->a[i].sortOrder!=sortOrder ){ + /* Indices can only be used if all ORDER BY terms are either + ** DESC or ASC. Indices cannot be used on a mixture. */ + return 0; + } + p = pOrderBy->a[i].pExpr; + if( p->op!=TK_COLUMN || p->iTable!=base ){ + /* Can not use an index sort on anything that is not a column in the + ** left-most table of the FROM clause */ + return 0; + } + } + + /* If we get this far, it means the ORDER BY clause consists only of + ** ascending columns in the left-most table of the FROM clause. Now + ** check for a matching index. + */ + pMatch = 0; + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + int nExpr = pOrderBy->nExpr; + if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue; + for(i=j=0; i<nEqCol; i++){ + CollSeq *pColl = sqlite3ExprCollSeq(pParse, pOrderBy->a[j].pExpr); + if( !pColl ) pColl = db->pDfltColl; + if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break; + if( pPreferredIdx->keyInfo.aColl[i]!=pIdx->keyInfo.aColl[i] ) break; + if( j<nExpr && + pOrderBy->a[j].pExpr->iColumn==pIdx->aiColumn[i] && + pColl==pIdx->keyInfo.aColl[i] + ){ + j++; + } + } + if( i<nEqCol ) continue; + for(i=0; i+j<nExpr; i++){ + CollSeq *pColl = sqlite3ExprCollSeq(pParse, pOrderBy->a[i+j].pExpr); + if( !pColl ) pColl = db->pDfltColl; + if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] || + pColl!=pIdx->keyInfo.aColl[i+nEqCol] ) break; + } + if( i+j>=nExpr ){ + pMatch = pIdx; + if( pIdx==pPreferredIdx ) break; + } + } + if( pMatch && pbRev ){ + *pbRev = sortOrder==SQLITE_SO_DESC; + } + return pMatch; +} + +/* +** Disable a term in the WHERE clause. Except, do not disable the term +** if it controls a LEFT OUTER JOIN and it did not originate in the ON +** or USING clause of that join. +** +** Consider the term t2.z='ok' in the following queries: +** +** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' +** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' +** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' +** +** The t2.z='ok' is disabled in the in (2) because it did not originate +** in the ON clause. The term is disabled in (3) because it is not part +** of a LEFT OUTER JOIN. In (1), the term is not disabled. +** +** Disabling a term causes that term to not be tested in the inner loop +** of the join. Disabling is an optimization. We would get the correct +** results if nothing were ever disabled, but joins might run a little +** slower. The trick is to disable as much as we can without disabling +** too much. If we disabled in (1), we'd get the wrong answer. +** See ticket #813. +*/ +static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){ + Expr *pExpr = *ppExpr; + if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){ + *ppExpr = 0; + } +} + +/* +** Generate code that builds a probe for an index. Details: +** +** * Check the top nColumn entries on the stack. If any +** of those entries are NULL, jump immediately to brk, +** which is the loop exit, since no index entry will match +** if any part of the key is NULL. +** +** * Construct a probe entry from the top nColumn entries in +** the stack with affinities appropriate for index pIdx. +*/ +static void buildIndexProbe(Vdbe *v, int nColumn, int brk, Index *pIdx){ + sqlite3VdbeAddOp(v, OP_NotNull, -nColumn, sqlite3VdbeCurrentAddr(v)+3); + sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); + sqlite3VdbeAddOp(v, OP_Goto, 0, brk); + sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); + sqlite3IndexAffinityStr(v, pIdx); +} + +/* +** Generate code for an equality term of the WHERE clause. An equality +** term can be either X=expr or X IN (...). pTerm is the X. +*/ +static void codeEqualityTerm( + Parse *pParse, /* The parsing context */ + ExprInfo *pTerm, /* The term of the WHERE clause to be coded */ + int brk, /* Jump here to abandon the loop */ + WhereLevel *pLevel /* When level of the FROM clause we are working on */ +){ + Expr *pX = pTerm->p; + if( pX->op!=TK_IN ){ + assert( pX->op==TK_EQ ); + sqlite3ExprCode(pParse, pX->pRight); + }else{ + int iTab = pX->iTable; + Vdbe *v = pParse->pVdbe; + sqlite3VdbeAddOp(v, OP_Rewind, iTab, brk); + sqlite3VdbeAddOp(v, OP_KeyAsData, iTab, 1); + pLevel->inP2 = sqlite3VdbeAddOp(v, OP_IdxColumn, iTab, 0); + pLevel->inOp = OP_Next; + pLevel->inP1 = iTab; + } + disableTerm(pLevel, &pTerm->p); +} + + +/* +** Generate the beginning of the loop used for WHERE clause processing. +** The return value is a pointer to an (opaque) structure that contains +** information needed to terminate the loop. Later, the calling routine +** should invoke sqlite3WhereEnd() with the return value of this function +** in order to complete the WHERE clause processing. +** +** If an error occurs, this routine returns NULL. +** +** The basic idea is to do a nested loop, one loop for each table in +** the FROM clause of a select. (INSERT and UPDATE statements are the +** same as a SELECT with only a single table in the FROM clause.) For +** example, if the SQL is this: +** +** SELECT * FROM t1, t2, t3 WHERE ...; +** +** Then the code generated is conceptually like the following: +** +** foreach row1 in t1 do \ Code generated +** foreach row2 in t2 do |-- by sqlite3WhereBegin() +** foreach row3 in t3 do / +** ... +** end \ Code generated +** end |-- by sqlite3WhereEnd() +** end / +** +** There are Btree cursors associated with each table. t1 uses cursor +** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. +** And so forth. This routine generates code to open those VDBE cursors +** and sqlite3WhereEnd() generates the code to close them. +** +** If the WHERE clause is empty, the foreach loops must each scan their +** entire tables. Thus a three-way join is an O(N^3) operation. But if +** the tables have indices and there are terms in the WHERE clause that +** refer to those indices, a complete table scan can be avoided and the +** code will run much faster. Most of the work of this routine is checking +** to see if there are indices that can be used to speed up the loop. +** +** Terms of the WHERE clause are also used to limit which rows actually +** make it to the "..." in the middle of the loop. After each "foreach", +** terms of the WHERE clause that use only terms in that loop and outer +** loops are evaluated and if false a jump is made around all subsequent +** inner loops (or around the "..." if the test occurs within the inner- +** most loop) +** +** OUTER JOINS +** +** An outer join of tables t1 and t2 is conceptally coded as follows: +** +** foreach row1 in t1 do +** flag = 0 +** foreach row2 in t2 do +** start: +** ... +** flag = 1 +** end +** if flag==0 then +** move the row2 cursor to a null row +** goto start +** fi +** end +** +** ORDER BY CLAUSE PROCESSING +** +** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, +** if there is one. If there is no ORDER BY clause or if this routine +** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. +** +** If an index can be used so that the natural output order of the table +** scan is correct for the ORDER BY clause, then that index is used and +** *ppOrderBy is set to NULL. This is an optimization that prevents an +** unnecessary sort of the result set if an index appropriate for the +** ORDER BY clause already exists. +** +** If the where clause loops cannot be arranged to provide the correct +** output order, then the *ppOrderBy is unchanged. +*/ +WhereInfo *sqlite3WhereBegin( + Parse *pParse, /* The parser context */ + SrcList *pTabList, /* A list of all tables to be scanned */ + Expr *pWhere, /* The WHERE clause */ + int pushKey, /* If TRUE, leave the table key on the stack */ + ExprList **ppOrderBy /* An ORDER BY clause, or NULL */ +){ + int i; /* Loop counter */ + WhereInfo *pWInfo; /* Will become the return value of this function */ + Vdbe *v = pParse->pVdbe; /* The virtual database engine */ + int brk, cont = 0; /* Addresses used during code generation */ + int nExpr; /* Number of subexpressions in the WHERE clause */ + int loopMask; /* One bit set for each outer loop */ + int haveKey = 0; /* True if KEY is on the stack */ + ExprInfo *pTerm; /* A single term in the WHERE clause; ptr to aExpr[] */ + ExprMaskSet maskSet; /* The expression mask set */ + int iDirectEq[32]; /* Term of the form ROWID==X for the N-th table */ + int iDirectLt[32]; /* Term of the form ROWID<X or ROWID<=X */ + int iDirectGt[32]; /* Term of the form ROWID>X or ROWID>=X */ + ExprInfo aExpr[101]; /* The WHERE clause is divided into these terms */ + + /* pushKey is only allowed if there is a single table (as in an INSERT or + ** UPDATE statement) + */ + assert( pushKey==0 || pTabList->nSrc==1 ); + + /* Split the WHERE clause into separate subexpressions where each + ** subexpression is separated by an AND operator. If the aExpr[] + ** array fills up, the last entry might point to an expression which + ** contains additional unfactored AND operators. + */ + initMaskSet(&maskSet); + memset(aExpr, 0, sizeof(aExpr)); + nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere); + if( nExpr==ARRAYSIZE(aExpr) ){ + sqlite3ErrorMsg(pParse, "WHERE clause too complex - no more " + "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1); + return 0; + } + + /* Allocate and initialize the WhereInfo structure that will become the + ** return value. + */ + pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); + if( sqlite3_malloc_failed ){ + /* sqliteFree(pWInfo); // Leak memory when malloc fails */ + return 0; + } + pWInfo->pParse = pParse; + pWInfo->pTabList = pTabList; + pWInfo->iBreak = sqlite3VdbeMakeLabel(v); + + /* Special case: a WHERE clause that is constant. Evaluate the + ** expression and either jump over all of the code or fall thru. + */ + if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){ + sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); + pWhere = 0; + } + + /* Analyze all of the subexpressions. + */ + for(pTerm=aExpr, i=0; i<nExpr; i++, pTerm++){ + TriggerStack *pStack; + exprAnalyze(pTabList, &maskSet, pTerm); + + /* If we are executing a trigger body, remove all references to + ** new.* and old.* tables from the prerequisite masks. + */ + if( (pStack = pParse->trigStack)!=0 ){ + int x; + if( (x=pStack->newIdx) >= 0 ){ + int mask = ~getMask(&maskSet, x); + pTerm->prereqRight &= mask; + pTerm->prereqLeft &= mask; + pTerm->prereqAll &= mask; + } + if( (x=pStack->oldIdx) >= 0 ){ + int mask = ~getMask(&maskSet, x); + pTerm->prereqRight &= mask; + pTerm->prereqLeft &= mask; + pTerm->prereqAll &= mask; + } + } + } + + /* Figure out what index to use (if any) for each nested loop. + ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested + ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner + ** loop. + ** + ** If terms exist that use the ROWID of any table, then set the + ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table + ** to the index of the term containing the ROWID. We always prefer + ** to use a ROWID which can directly access a table rather than an + ** index which requires reading an index first to get the rowid then + ** doing a second read of the actual database table. + ** + ** Actually, if there are more than 32 tables in the join, only the + ** first 32 tables are candidates for indices. This is (again) due + ** to the limit of 32 bits in an integer bitmask. + */ + loopMask = 0; + for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){ + int j; + WhereLevel *pLevel = &pWInfo->a[i]; + int iCur = pTabList->a[i].iCursor; /* The cursor for this table */ + int mask = getMask(&maskSet, iCur); /* Cursor mask for this table */ + Table *pTab = pTabList->a[i].pTab; + Index *pIdx; + Index *pBestIdx = 0; + int bestScore = 0; + + /* Check to see if there is an expression that uses only the + ** ROWID field of this table. For terms of the form ROWID==expr + ** set iDirectEq[i] to the index of the term. For terms of the + ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index. + ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i]. + ** + ** (Added:) Treat ROWID IN expr like ROWID=expr. + */ + pLevel->iCur = -1; + iDirectEq[i] = -1; + iDirectLt[i] = -1; + iDirectGt[i] = -1; + for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){ + Expr *pX = pTerm->p; + if( pTerm->idxLeft==iCur && pX->pLeft->iColumn<0 + && (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){ + switch( pX->op ){ + case TK_IN: + case TK_EQ: iDirectEq[i] = j; break; + case TK_LE: + case TK_LT: iDirectLt[i] = j; break; + case TK_GE: + case TK_GT: iDirectGt[i] = j; break; + } + } + } + if( iDirectEq[i]>=0 ){ + loopMask |= mask; + pLevel->pIdx = 0; + continue; + } + + /* Do a search for usable indices. Leave pBestIdx pointing to + ** the "best" index. pBestIdx is left set to NULL if no indices + ** are usable. + ** + ** The best index is determined as follows. For each of the + ** left-most terms that is fixed by an equality operator, add + ** 8 to the score. The right-most term of the index may be + ** constrained by an inequality. Add 1 if for an "x<..." constraint + ** and add 2 for an "x>..." constraint. Chose the index that + ** gives the best score. + ** + ** This scoring system is designed so that the score can later be + ** used to determine how the index is used. If the score&7 is 0 + ** then all constraints are equalities. If score&1 is not 0 then + ** there is an inequality used as a termination key. (ex: "x<...") + ** If score&2 is not 0 then there is an inequality used as the + ** start key. (ex: "x>..."). A score or 4 is the special case + ** of an IN operator constraint. (ex: "x IN ..."). + ** + ** The IN operator (as in "<expr> IN (...)") is treated the same as + ** an equality comparison except that it can only be used on the + ** left-most column of an index and other terms of the WHERE clause + ** cannot be used in conjunction with the IN operator to help satisfy + ** other columns of the index. + */ + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + int eqMask = 0; /* Index columns covered by an x=... term */ + int ltMask = 0; /* Index columns covered by an x<... term */ + int gtMask = 0; /* Index columns covered by an x>... term */ + int inMask = 0; /* Index columns covered by an x IN .. term */ + int nEq, m, score; + + if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */ + for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){ + Expr *pX = pTerm->p; + CollSeq *pColl = sqlite3ExprCollSeq(pParse, pX->pLeft); + if( !pColl && pX->pRight ){ + pColl = sqlite3ExprCollSeq(pParse, pX->pRight); + } + if( !pColl ){ + pColl = pParse->db->pDfltColl; + } + if( pTerm->idxLeft==iCur + && (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){ + int iColumn = pX->pLeft->iColumn; + int k; + char idxaff = pIdx->pTable->aCol[iColumn].affinity; + for(k=0; k<pIdx->nColumn; k++){ + /* If the collating sequences or affinities don't match, + ** ignore this index. */ + if( pColl!=pIdx->keyInfo.aColl[k] ) continue; + if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; + if( pIdx->aiColumn[k]==iColumn ){ + switch( pX->op ){ + case TK_IN: { + if( k==0 ) inMask |= 1; + break; + } + case TK_EQ: { + eqMask |= 1<<k; + break; + } + case TK_LE: + case TK_LT: { + ltMask |= 1<<k; + break; + } + case TK_GE: + case TK_GT: { + gtMask |= 1<<k; + break; + } + default: { + /* CANT_HAPPEN */ + assert( 0 ); + break; + } + } + break; + } + } + } + } + + /* The following loop ends with nEq set to the number of columns + ** on the left of the index with == constraints. + */ + for(nEq=0; nEq<pIdx->nColumn; nEq++){ + m = (1<<(nEq+1))-1; + if( (m & eqMask)!=m ) break; + } + score = nEq*8; /* Base score is 8 times number of == constraints */ + m = 1<<nEq; + if( m & ltMask ) score++; /* Increase score for a < constraint */ + if( m & gtMask ) score+=2; /* Increase score for a > constraint */ + if( score==0 && inMask ) score = 4; /* Default score for IN constraint */ + if( score>bestScore ){ + pBestIdx = pIdx; + bestScore = score; + } + } + pLevel->pIdx = pBestIdx; + pLevel->score = bestScore; + pLevel->bRev = 0; + loopMask |= mask; + if( pBestIdx ){ + pLevel->iCur = pParse->nTab++; + } + } + + /* Check to see if the ORDER BY clause is or can be satisfied by the + ** use of an index on the first table. + */ + if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){ + Index *pSortIdx; + Index *pIdx; + Table *pTab; + int bRev = 0; + + pTab = pTabList->a[0].pTab; + pIdx = pWInfo->a[0].pIdx; + if( pIdx && pWInfo->a[0].score==4 ){ + /* If there is already an IN index on the left-most table, + ** it will not give the correct sort order. + ** So, pretend that no suitable index is found. + */ + pSortIdx = 0; + }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){ + /* If the left-most column is accessed using its ROWID, then do + ** not try to sort by index. + */ + pSortIdx = 0; + }else{ + int nEqCol = (pWInfo->a[0].score+4)/8; + pSortIdx = findSortingIndex(pParse, pTab, pTabList->a[0].iCursor, + *ppOrderBy, pIdx, nEqCol, &bRev); + } + if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){ + if( pIdx==0 ){ + pWInfo->a[0].pIdx = pSortIdx; + pWInfo->a[0].iCur = pParse->nTab++; + } + pWInfo->a[0].bRev = bRev; + *ppOrderBy = 0; + } + } + + /* Open all tables in the pTabList and all indices used by those tables. + */ + sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ + for(i=0; i<pTabList->nSrc; i++){ + Table *pTab; + Index *pIx; + + pTab = pTabList->a[i].pTab; + if( pTab->isTransient || pTab->pSelect ) continue; + sqlite3OpenTableForReading(v, pTabList->a[i].iCursor, pTab); + sqlite3CodeVerifySchema(pParse, pTab->iDb); + if( (pIx = pWInfo->a[i].pIdx)!=0 ){ + sqlite3VdbeAddOp(v, OP_Integer, pIx->iDb, 0); + sqlite3VdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum, + (char*)&pIx->keyInfo, P3_KEYINFO); + } + } + + /* Generate the code to do the search + */ + loopMask = 0; + for(i=0; i<pTabList->nSrc; i++){ + int j, k; + int iCur = pTabList->a[i].iCursor; + Index *pIdx; + WhereLevel *pLevel = &pWInfo->a[i]; + + /* If this is the right table of a LEFT OUTER JOIN, allocate and + ** initialize a memory cell that records if this table matches any + ** row of the left table of the join. + */ + if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){ + if( !pParse->nMem ) pParse->nMem++; + pLevel->iLeftJoin = pParse->nMem++; + sqlite3VdbeAddOp(v, OP_String8, 0, 0); + sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); + VdbeComment((v, "# init LEFT JOIN no-match flag")); + } + + pIdx = pLevel->pIdx; + pLevel->inOp = OP_Noop; + if( i<ARRAYSIZE(iDirectEq) && (k = iDirectEq[i])>=0 ){ + /* Case 1: We can directly reference a single row using an + ** equality comparison against the ROWID field. Or + ** we reference multiple rows using a "rowid IN (...)" + ** construct. + */ + assert( k<nExpr ); + pTerm = &aExpr[k]; + assert( pTerm->p!=0 ); + assert( pTerm->idxLeft==iCur ); + brk = pLevel->brk = sqlite3VdbeMakeLabel(v); + codeEqualityTerm(pParse, pTerm, brk, pLevel); + cont = pLevel->cont = sqlite3VdbeMakeLabel(v); + sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk); + haveKey = 0; + sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk); + pLevel->op = OP_Noop; + }else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){ + /* Case 2: There is an index and all terms of the WHERE clause that + ** refer to the index use the "==" or "IN" operators. + */ + int start; + int nColumn = (pLevel->score+4)/8; + brk = pLevel->brk = sqlite3VdbeMakeLabel(v); + + /* For each column of the index, find the term of the WHERE clause that + ** constraints that column. If the WHERE clause term is X=expr, then + ** evaluation expr and leave the result on the stack */ + for(j=0; j<nColumn; j++){ + for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){ + Expr *pX = pTerm->p; + if( pX==0 ) continue; + if( pTerm->idxLeft==iCur + && (pTerm->prereqRight & loopMask)==pTerm->prereqRight + && pX->pLeft->iColumn==pIdx->aiColumn[j] + ){ + char idxaff = pIdx->pTable->aCol[pX->pLeft->iColumn].affinity; + if( sqlite3IndexAffinityOk(pX, idxaff) ){ + codeEqualityTerm(pParse, pTerm, brk, pLevel); + break; + } + } + } + } + pLevel->iMem = pParse->nMem++; + cont = pLevel->cont = sqlite3VdbeMakeLabel(v); + buildIndexProbe(v, nColumn, brk, pIdx); + sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); + + /* Generate code (1) to move to the first matching element of the table. + ** Then generate code (2) that jumps to "brk" after the cursor is past + ** the last matching element of the table. The code (1) is executed + ** once to initialize the search, the code (2) is executed before each + ** iteration of the scan to see if the scan has finished. */ + if( pLevel->bRev ){ + /* Scan in reverse order */ + sqlite3VdbeAddOp(v, OP_MoveLe, pLevel->iCur, brk); + start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); + sqlite3VdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk); + pLevel->op = OP_Prev; + }else{ + /* Scan in the forward order */ + sqlite3VdbeAddOp(v, OP_MoveGe, pLevel->iCur, brk); + start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); + sqlite3VdbeOp3(v, OP_IdxGE, pLevel->iCur, brk, "+", P3_STATIC); + pLevel->op = OP_Next; + } + sqlite3VdbeAddOp(v, OP_RowKey, pLevel->iCur, 0); + sqlite3VdbeAddOp(v, OP_IdxIsNull, nColumn, cont); + sqlite3VdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0); + if( i==pTabList->nSrc-1 && pushKey ){ + haveKey = 1; + }else{ + sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); + haveKey = 0; + } + pLevel->p1 = pLevel->iCur; + pLevel->p2 = start; + }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){ + /* Case 3: We have an inequality comparison against the ROWID field. + */ + int testOp = OP_Noop; + int start; + + brk = pLevel->brk = sqlite3VdbeMakeLabel(v); + cont = pLevel->cont = sqlite3VdbeMakeLabel(v); + if( iDirectGt[i]>=0 ){ + Expr *pX; + k = iDirectGt[i]; + assert( k<nExpr ); + pTerm = &aExpr[k]; + pX = pTerm->p; + assert( pX!=0 ); + assert( pTerm->idxLeft==iCur ); + sqlite3ExprCode(pParse, pX->pRight); + sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LT || pX->op==TK_GT, brk); + sqlite3VdbeAddOp(v, OP_MoveGe, iCur, brk); + disableTerm(pLevel, &pTerm->p); + }else{ + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk); + } + if( iDirectLt[i]>=0 ){ + Expr *pX; + k = iDirectLt[i]; + assert( k<nExpr ); + pTerm = &aExpr[k]; + pX = pTerm->p; + assert( pX!=0 ); + assert( pTerm->idxLeft==iCur ); + sqlite3ExprCode(pParse, pX->pRight); + pLevel->iMem = pParse->nMem++; + sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); + if( pX->op==TK_LT || pX->op==TK_GT ){ + testOp = OP_Ge; + }else{ + testOp = OP_Gt; + } + disableTerm(pLevel, &pTerm->p); + } + start = sqlite3VdbeCurrentAddr(v); + pLevel->op = OP_Next; + pLevel->p1 = iCur; + pLevel->p2 = start; + if( testOp!=OP_Noop ){ + sqlite3VdbeAddOp(v, OP_Recno, iCur, 0); + sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); + sqlite3VdbeAddOp(v, testOp, 0, brk); + } + haveKey = 0; + }else if( pIdx==0 ){ + /* Case 4: There is no usable index. We must do a complete + ** scan of the entire database table. + */ + int start; + + brk = pLevel->brk = sqlite3VdbeMakeLabel(v); + cont = pLevel->cont = sqlite3VdbeMakeLabel(v); + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk); + start = sqlite3VdbeCurrentAddr(v); + pLevel->op = OP_Next; + pLevel->p1 = iCur; + pLevel->p2 = start; + haveKey = 0; + }else{ + /* Case 5: The WHERE clause term that refers to the right-most + ** column of the index is an inequality. For example, if + ** the index is on (x,y,z) and the WHERE clause is of the + ** form "x=5 AND y<10" then this case is used. Only the + ** right-most column can be an inequality - the rest must + ** use the "==" operator. + ** + ** This case is also used when there are no WHERE clause + ** constraints but an index is selected anyway, in order + ** to force the output order to conform to an ORDER BY. + */ + int score = pLevel->score; + int nEqColumn = score/8; + int start; + int leFlag=0, geFlag=0; + int testOp; + + /* Evaluate the equality constraints + */ + for(j=0; j<nEqColumn; j++){ + int iIdxCol = pIdx->aiColumn[j]; + for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){ + Expr *pX = pTerm->p; + if( pX==0 ) continue; + if( pTerm->idxLeft==iCur + && pX->op==TK_EQ + && (pTerm->prereqRight & loopMask)==pTerm->prereqRight + && pX->pLeft->iColumn==iIdxCol + ){ + sqlite3ExprCode(pParse, pX->pRight); + disableTerm(pLevel, &pTerm->p); + break; + } + } + } + + /* Duplicate the equality term values because they will all be + ** used twice: once to make the termination key and once to make the + ** start key. + */ + for(j=0; j<nEqColumn; j++){ + sqlite3VdbeAddOp(v, OP_Dup, nEqColumn-1, 0); + } + + /* Labels for the beginning and end of the loop + */ + cont = pLevel->cont = sqlite3VdbeMakeLabel(v); + brk = pLevel->brk = sqlite3VdbeMakeLabel(v); + + /* Generate the termination key. This is the key value that + ** will end the search. There is no termination key if there + ** are no equality terms and no "X<..." term. + ** + ** 2002-Dec-04: On a reverse-order scan, the so-called "termination" + ** key computed here really ends up being the start key. + */ + if( (score & 1)!=0 ){ + for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){ + Expr *pX = pTerm->p; + if( pX==0 ) continue; + if( pTerm->idxLeft==iCur + && (pX->op==TK_LT || pX->op==TK_LE) + && (pTerm->prereqRight & loopMask)==pTerm->prereqRight + && pX->pLeft->iColumn==pIdx->aiColumn[j] + ){ + sqlite3ExprCode(pParse, pX->pRight); + leFlag = pX->op==TK_LE; + disableTerm(pLevel, &pTerm->p); + break; + } + } + testOp = OP_IdxGE; + }else{ + testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop; + leFlag = 1; + } + if( testOp!=OP_Noop ){ + int nCol = nEqColumn + (score & 1); + pLevel->iMem = pParse->nMem++; + buildIndexProbe(v, nCol, brk, pIdx); + if( pLevel->bRev ){ + int op = leFlag ? OP_MoveLe : OP_MoveLt; + sqlite3VdbeAddOp(v, op, pLevel->iCur, brk); + }else{ + sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); + } + }else if( pLevel->bRev ){ + sqlite3VdbeAddOp(v, OP_Last, pLevel->iCur, brk); + } + + /* Generate the start key. This is the key that defines the lower + ** bound on the search. There is no start key if there are no + ** equality terms and if there is no "X>..." term. In + ** that case, generate a "Rewind" instruction in place of the + ** start key search. + ** + ** 2002-Dec-04: In the case of a reverse-order search, the so-called + ** "start" key really ends up being used as the termination key. + */ + if( (score & 2)!=0 ){ + for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){ + Expr *pX = pTerm->p; + if( pX==0 ) continue; + if( pTerm->idxLeft==iCur + && (pX->op==TK_GT || pX->op==TK_GE) + && (pTerm->prereqRight & loopMask)==pTerm->prereqRight + && pX->pLeft->iColumn==pIdx->aiColumn[j] + ){ + sqlite3ExprCode(pParse, pX->pRight); + geFlag = pX->op==TK_GE; + disableTerm(pLevel, &pTerm->p); + break; + } + } + }else{ + geFlag = 1; + } + if( nEqColumn>0 || (score&2)!=0 ){ + int nCol = nEqColumn + ((score&2)!=0); + buildIndexProbe(v, nCol, brk, pIdx); + if( pLevel->bRev ){ + pLevel->iMem = pParse->nMem++; + sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); + testOp = OP_IdxLT; + }else{ + int op = geFlag ? OP_MoveGe : OP_MoveGt; + sqlite3VdbeAddOp(v, op, pLevel->iCur, brk); + } + }else if( pLevel->bRev ){ + testOp = OP_Noop; + }else{ + sqlite3VdbeAddOp(v, OP_Rewind, pLevel->iCur, brk); + } + + /* Generate the the top of the loop. If there is a termination + ** key we have to test for that key and abort at the top of the + ** loop. + */ + start = sqlite3VdbeCurrentAddr(v); + if( testOp!=OP_Noop ){ + sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); + sqlite3VdbeAddOp(v, testOp, pLevel->iCur, brk); + if( (leFlag && !pLevel->bRev) || (!geFlag && pLevel->bRev) ){ + sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC); + } + } + sqlite3VdbeAddOp(v, OP_RowKey, pLevel->iCur, 0); + sqlite3VdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont); + sqlite3VdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0); + if( i==pTabList->nSrc-1 && pushKey ){ + haveKey = 1; + }else{ + sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); + haveKey = 0; + } + + /* Record the instruction used to terminate the loop. + */ + pLevel->op = pLevel->bRev ? OP_Prev : OP_Next; + pLevel->p1 = pLevel->iCur; + pLevel->p2 = start; + } + loopMask |= getMask(&maskSet, iCur); + + /* Insert code to test every subexpression that can be completely + ** computed using the current set of tables. + */ + for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){ + if( pTerm->p==0 ) continue; + if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue; + if( pLevel->iLeftJoin && !ExprHasProperty(pTerm->p,EP_FromJoin) ){ + continue; + } + if( haveKey ){ + haveKey = 0; + sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); + } + sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1); + pTerm->p = 0; + } + brk = cont; + + /* For a LEFT OUTER JOIN, generate code that will record the fact that + ** at least one row of the right table has matched the left table. + */ + if( pLevel->iLeftJoin ){ + pLevel->top = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp(v, OP_Integer, 1, 0); + sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); + VdbeComment((v, "# record LEFT JOIN hit")); + for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){ + if( pTerm->p==0 ) continue; + if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue; + if( haveKey ){ + /* Cannot happen. "haveKey" can only be true if pushKey is true + ** an pushKey can only be true for DELETE and UPDATE and there are + ** no outer joins with DELETE and UPDATE. + */ + haveKey = 0; + sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); + } + sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1); + pTerm->p = 0; + } + } + } + pWInfo->iContinue = cont; + if( pushKey && !haveKey ){ + sqlite3VdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0); + } + freeMaskSet(&maskSet); + return pWInfo; +} + +/* +** Generate the end of the WHERE loop. See comments on +** sqlite3WhereBegin() for additional information. +*/ +void sqlite3WhereEnd(WhereInfo *pWInfo){ + Vdbe *v = pWInfo->pParse->pVdbe; + int i; + WhereLevel *pLevel; + SrcList *pTabList = pWInfo->pTabList; + + for(i=pTabList->nSrc-1; i>=0; i--){ + pLevel = &pWInfo->a[i]; + sqlite3VdbeResolveLabel(v, pLevel->cont); + if( pLevel->op!=OP_Noop ){ + sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); + } + sqlite3VdbeResolveLabel(v, pLevel->brk); + if( pLevel->inOp!=OP_Noop ){ + sqlite3VdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2); + } + if( pLevel->iLeftJoin ){ + int addr; + addr = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0); + sqlite3VdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0)); + sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); + if( pLevel->iCur>=0 ){ + sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iCur, 0); + } + sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top); + } + } + sqlite3VdbeResolveLabel(v, pWInfo->iBreak); + for(i=0; i<pTabList->nSrc; i++){ + Table *pTab = pTabList->a[i].pTab; + assert( pTab!=0 ); + if( pTab->isTransient || pTab->pSelect ) continue; + pLevel = &pWInfo->a[i]; + sqlite3VdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0); + if( pLevel->pIdx!=0 ){ + sqlite3VdbeAddOp(v, OP_Close, pLevel->iCur, 0); + } + } + sqliteFree(pWInfo); + return; +} |