summaryrefslogtreecommitdiffstats
path: root/krdc/vnc/colour.c
blob: a51d6e612303a255545c63f7174757496fc04a3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/*
 *  Copyright (C) 1999 AT&T Laboratories Cambridge.  All Rights Reserved.
 *
 *  This is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This software is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this software; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307,
 *  USA.
 */

/*
 * colour.c - functions to deal with colour - i.e. RFB pixel formats, X visuals
 * and colormaps.  Thanks to Grant McDorman for some of the ideas used here.
 */

#include "vncviewer.h"
#include <limits.h>


#define INVALID_PIXEL 0xffffffff
#define MAX_CMAP_SIZE 256
#define BGR233_SIZE 256
unsigned long BGR233ToPixel[BGR233_SIZE];

Colormap cmap;
Visual *vis;
unsigned int visdepth, visbpp;
Bool allocColorFailed = False;

static int nBGR233ColoursAllocated;

static int GetBPPForDepth(int depth);
static void SetupBGR233Map(void);
static void AllocateExactBGR233Colours(void);
static Bool AllocateBGR233Colour(int r, int g, int b);


/*
 * SetVisualAndCmap() deals with the wonderful world of X "visuals" (which are
 * equivalent to the RFB protocol's "pixel format").  Having decided on the
 * best visual, it also creates a colormap if necessary, sets the appropriate
 * resources on the toplevel widget, and sets up the myFormat structure to
 * describe the pixel format in terms that the RFB server will be able to
 * understand.
 *
 * The algorithm for deciding which visual to use is as follows:
 *
 * If forceOwnCmap is true then we try to use a PseudoColor visual - we first
 * see if there's one of the same depth as the RFB server, followed by an 8-bit
 * deep one.
 *
 * If forceTrueColour is true then we try to use a TrueColor visual - if
 * requestedDepth is set then it must be of that depth, otherwise any depth
 * will be used.
 *
 * Otherwise, we use the X server's default visual and colormap.  If this is
 * TrueColor then we just ask the RFB server for this format.  If the default
 * isn't TrueColor, or if useBGR233 is true, then we ask the RFB server for
 * BGR233 pixel format and use a lookup table to translate to the nearest
 * colours provided by the X server.
 */

void
SetVisualAndCmap()
{
  /* just use default visual and colormap */

  vis = DefaultVisual(dpy,DefaultScreen(dpy));
  visdepth = DefaultDepth(dpy,DefaultScreen(dpy));
  visbpp = GetBPPForDepth(visdepth);
  cmap = DefaultColormap(dpy,DefaultScreen(dpy));

  if (!appData.useBGR233 && (vis->class == TrueColor)) {

    myFormat.bitsPerPixel = visbpp;
    myFormat.depth = visdepth;
    myFormat.trueColour = 1;
    myFormat.bigEndian = (ImageByteOrder(dpy) == MSBFirst);
    myFormat.redShift = ffs(vis->red_mask) - 1;
    myFormat.greenShift = ffs(vis->green_mask) - 1;
    myFormat.blueShift = ffs(vis->blue_mask) - 1;
    myFormat.redMax = vis->red_mask >> myFormat.redShift;
    myFormat.greenMax = vis->green_mask >> myFormat.greenShift;
    myFormat.blueMax = vis->blue_mask >> myFormat.blueShift;

    fprintf(stderr,
	    "Using default colormap which is TrueColor.  Pixel format:\n");
    PrintPixelFormat(&myFormat);
    return;
  }

  appData.useBGR233 = True;

  myFormat.bitsPerPixel = 8;
  myFormat.depth = 8;
  myFormat.trueColour = 1;
  myFormat.bigEndian = 0;
  myFormat.redMax = 7;
  myFormat.greenMax = 7;
  myFormat.blueMax = 3;
  myFormat.redShift = 0;
  myFormat.greenShift = 3;
  myFormat.blueShift = 6;

  fprintf(stderr,
       "Using default colormap and translating from BGR233.  Pixel format:\n");
  PrintPixelFormat(&myFormat);

  SetupBGR233Map();
}


/*
 * GetBPPForDepth looks through the "pixmap formats" to find the bits-per-pixel
 * for the given depth.
 */

static int
GetBPPForDepth(int depth)
{
  XPixmapFormatValues *format;
  int nformats;
  int i;
  int bpp;

  format = XListPixmapFormats(dpy, &nformats);

  for (i = 0; i < nformats; i++) {
    if (format[i].depth == depth)
      break;
  }

  if (i == nformats) {
    fprintf(stderr,"no pixmap format for depth %d???\n", depth);
    exit(1);
  }

  bpp = format[i].bits_per_pixel;

  XFree(format);

  if (bpp != 1 && bpp != 8 && bpp != 16 && bpp != 32) {
    fprintf(stderr,"Can't cope with %d bits-per-pixel.  Sorry.\n", bpp);
    exit(1);
  }

  return bpp;
}



/*
 * SetupBGR233Map() sets up the BGR233ToPixel array.
 *
 * It calls AllocateExactBGR233Colours to allocate some exact BGR233 colours
 * (limited by space in the colormap and/or by the value of the nColours
 * resource).  If the number allocated is less than BGR233_SIZE then it fills
 * the rest in using the "nearest" colours available.  How this is done depends
 * on the value of the useSharedColours resource.  If it's false, we use only
 * colours from the exact BGR233 colours we've just allocated.  If it's true,
 * then we also use other clients' "shared" colours available in the colormap.
 */

static void
SetupBGR233Map(void)
{
  int r, g, b;
  long i;
  unsigned long nearestPixel = 0;
  int cmapSize;
  XColor cmapEntry[MAX_CMAP_SIZE];
  Bool exactBGR233[MAX_CMAP_SIZE];
  Bool shared[MAX_CMAP_SIZE];
  Bool usedAsNearest[MAX_CMAP_SIZE];
  int nSharedUsed = 0;

  if (visdepth > 8) {
    appData.nColours = 256; /* ignore nColours setting for > 8-bit deep */
  }

  for (i = 0; i < BGR233_SIZE; i++) {
    BGR233ToPixel[i] = INVALID_PIXEL;
  }

  AllocateExactBGR233Colours();

  fprintf(stderr,"Got %d exact BGR233 colours out of %d\n",
	  nBGR233ColoursAllocated, appData.nColours);

  if (nBGR233ColoursAllocated < BGR233_SIZE) {

    if (visdepth > 8) { /* shouldn't get here */
      fprintf(stderr,"Error: couldn't allocate BGR233 colours even though "
	      "depth is %d\n", visdepth);
      exit(1);
    }

    cmapSize = (1 << visdepth);

    for (i = 0; i < cmapSize; i++) {
      cmapEntry[i].pixel = i;
      exactBGR233[i] = False;
      shared[i] = False;
      usedAsNearest[i] = False;
    }

    XQueryColors(dpy, cmap, cmapEntry, cmapSize);

    /* mark all our exact BGR233 pixels */

    for (i = 0; i < BGR233_SIZE; i++) {
      if (BGR233ToPixel[i] != INVALID_PIXEL)
	exactBGR233[BGR233ToPixel[i]] = True;
    }

    if (appData.useSharedColours) {

      /* Try to find existing shared colours.  This is harder than it sounds
	 because XQueryColors doesn't tell us whether colours are shared,
	 private or unallocated.  What we do is go through the colormap and for
	 each pixel try to allocate exactly its RGB values.  If this returns a
	 different pixel then it's definitely either a private or unallocated
	 pixel, so no use to us.  If it returns us the same pixel again, then
	 it's likely that it's a shared colour - however, it is possible that
	 it was actually an unallocated pixel, which we've now allocated.  We
	 minimise this possibility by going through the pixels in reverse order
	 - this helps becuse the X server allocates new pixels from the lowest
	 number up, so it should only be a problem for the lowest unallocated
	 pixel.  Got that? */

      for (i = cmapSize-1; i >= 0; i--) {
	if (!exactBGR233[i] &&
	    XAllocColor(dpy, cmap, &cmapEntry[i])) {

	  if (cmapEntry[i].pixel == (unsigned long) i) {

	    shared[i] = True; /* probably shared */

	  } else {

	    /* "i" is either unallocated or private.  We have now unnecessarily
	       allocated cmapEntry[i].pixel.  Free it. */

	    XFreeColors(dpy, cmap, &cmapEntry[i].pixel, 1, 0);
	  }
	}
      }
    }

    /* Now fill in the nearest colours */

    for (r = 0; r < 8; r++) {
      for (g = 0; g < 8; g++) {
	for (b = 0; b < 4; b++) {
	  if (BGR233ToPixel[(b<<6) | (g<<3) | r] == INVALID_PIXEL) {

	    unsigned long minDistance = ULONG_MAX;

	    for (i = 0; i < cmapSize; i++) {
	      if (exactBGR233[i] || shared[i]) {
		unsigned long distance
		  = (abs(cmapEntry[i].red - r * 65535 / 7)
		     + abs(cmapEntry[i].green - g * 65535 / 7)
		     + abs(cmapEntry[i].blue - b * 65535 / 3));

		if (distance < minDistance) {
		  minDistance = distance;
		  nearestPixel = i;
		}
	      }
	    }

	    BGR233ToPixel[(b<<6) | (g<<3) | r] = nearestPixel;
	    if (shared[nearestPixel] && !usedAsNearest[nearestPixel])
	      nSharedUsed++;
	    usedAsNearest[nearestPixel] = True;
	  }
	}
      }
    }

    /* Tidy up shared colours which we allocated but aren't going to use */

    for (i = 0; i < cmapSize; i++) {
      if (shared[i] && !usedAsNearest[i]) {
	  XFreeColors(dpy, cmap, (unsigned long *)&i, 1, 0);
      }
    }

    fprintf(stderr,"Using %d existing shared colours\n", nSharedUsed);
  }
}


/*
 * AllocateExactBGR233Colours() attempts to allocate each of the colours in the
 * BGR233 colour cube, stopping when an allocation fails.  The order it does
 * this in is such that we should get a fairly well spread subset of the cube,
 * however many allocations are made.  There's probably a neater algorithm for
 * doing this, but it's not obvious to me anyway.  The way this algorithm works
 * is:
 *
 * At each stage, we introduce a new value for one of the primaries, and
 * allocate all the colours with the new value of that primary and all previous
 * values of the other two primaries.  We start with r=0 as the "new" value
 * for r, and g=0, b=0 as the "previous" values of g and b.  So we get:
 *
 * New primary value   Previous values of other primaries   Colours allocated
 * -----------------   ----------------------------------   -----------------
 * r=0                 g=0       b=0                        r0 g0 b0
 * g=7                 r=0       b=0                        r0 g7 b0
 * b=3                 r=0       g=0,7                      r0 g0 b3
 *                                                          r0 g7 b3
 * r=7                 g=0,7     b=0,3                      r7 g0 b0
 * 		       		 			    r7 g0 b3
 * 							    r7 g7 b0
 *							    r7 g7 b3
 * g=3                 r=0,7     b=0,3                      r0 g3 b0
 *                                                          r0 g3 b3
 *                                                          r7 g3 b0
 *                                                          r7 g3 b3
 * ....etc.
 * */

static void
AllocateExactBGR233Colours(void)
{
  int rv[] = {0,7,3,5,1,6,2,4};
  int gv[] = {0,7,3,5,1,6,2,4};
  int bv[] = {0,3,1,2};
  int rn = 0;
  int gn = 1;
  int bn = 1;
  int ri, gi, bi;

  nBGR233ColoursAllocated = 0;

  while (1) {
    if (rn == 8)
      break;

    ri = rn;
    for (gi = 0; gi < gn; gi++) {
      for (bi = 0; bi < bn; bi++) {
	if (!AllocateBGR233Colour(rv[ri], gv[gi], bv[bi]))
	  return;
      }
    }
    rn++;

    if (gn == 8)
      break;

    gi = gn;
    for (ri = 0; ri < rn; ri++) {
      for (bi = 0; bi < bn; bi++) {
	if (!AllocateBGR233Colour(rv[ri], gv[gi], bv[bi]))
	  return;
      }
    }
    gn++;

    if (bn < 4) {

      bi = bn;
      for (ri = 0; ri < rn; ri++) {
	for (gi = 0; gi < gn; gi++) {
	  if (!AllocateBGR233Colour(rv[ri], gv[gi], bv[bi]))
	    return;
	}
      }
      bn++;
    }
  }
}


/*
 * AllocateBGR233Colour() attempts to allocate the given BGR233 colour as a
 * shared colormap entry, storing its pixel value in the BGR233ToPixel array.
 * r is from 0 to 7, g from 0 to 7 and b from 0 to 3.  It fails either when the
 * allocation fails or when we would exceed the number of colours specified in
 * the nColours resource.
 */

static Bool
AllocateBGR233Colour(int r, int g, int b)
{
  XColor c;

  if (nBGR233ColoursAllocated >= appData.nColours)
    return False;

  c.red = r * 65535 / 7;
  c.green = g * 65535 / 7;
  c.blue = b * 65535 / 3;

  if (!XAllocColor(dpy, cmap, &c))
    return False;

  BGR233ToPixel[(b<<6) | (g<<3) | r] = c.pixel;

  nBGR233ColoursAllocated++;

  return True;
}