1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
|
/***************************************************************************
sun.cpp - Sun Rise and Set Calculations
-------------------
begin : Friday July 11 2003
copyright : (C) 2003 by John Ratke
email : [email protected]
history:
Written as DAYLEN.C, 1989-08-16
Modified to SUNRISET.C, 1992-12-01
(c) Paul Schlyter, 1989, 1992
Released to the public domain by Paul Schlyter, December 1992
Portions Modified to SUNDOWN.NLM by Cliff Haas 98-05-22
Converted to C++ and modified by John Ratke
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
#include <kdebug.h>
#include <math.h>
#include "sun.h"
/* A function to compute the number of days elapsed since 2000 Jan 0.0 */
/* (which is equal to 1999 Dec 31, 0h UT) */
static inline double days_since_2000_Jan_0(int y, int m, int d)
{
return (367L*(y)-((7*((y)+(((m)+9)/12)))/4)+((275*(m))/9)+(d)-730530L);
}
/* Some conversion factors between radians and degrees */
static const double PI = 3.14159265358979323846;
static const double RADEG = ( 180.0 / PI );
static const double DEGRAD = ( PI / 180.0 );
/* The trigonometric functions in degrees */
static inline double sind(double x) { return sin( x * DEGRAD ); }
static inline double cosd(double x) { return cos( x * DEGRAD ); }
static inline double tand(double x) { return tan( x * DEGRAD ); }
static inline double atand(double x) { return RADEG * atan(x); }
static inline double asind(double x) { return RADEG * asin(x); }
static inline double acosd(double x) { return RADEG * acos(x); }
static inline double atan2d(double y, double x) { return RADEG * atan2(y, x); }
/* Other local functions */
static double latitudeToDouble( const TQString &latitude );
static double longitudeToDouble( const TQString &longitude );
static int __sunriset__( int year, int month, int day, double lon, double lat,
double altit, int upper_limb, double &trise, double &tset );
static void sunpos( double d, double &lon, double &r );
static void sun_RA_dec( double d, double &RA, double &dec, double &r );
static inline double revolution( const double x );
static inline double rev180( const double x );
static inline double GMST0( const double d );
/*
* This function computes times for sunrise/sunset.
* Sunrise/set is considered to occur when the Sun's upper limb is
* 35 arc minutes below the horizon (this accounts for the refraction
* of the Earth's atmosphere).
*/
static inline int sun_rise_set(int year, int month, int day, double lon, double lat, double &rise, double &set)
{
return __sunriset__( year, month, day, lon, lat, -35.0/60.0, 1, rise, set );
}
/*
* This function computes the start and end times of civil twilight.
* Civil twilight starts/ends when the Sun's center is 6 degrees below
* the horizon.
*/
static inline int civil_twilight(int year, int month, int day, double lon, double lat, double &start, double &end)
{
return __sunriset__( year, month, day, lon, lat, -6.0, 0, start, end );
}
Sun::Sun(const TQString &latitude, const TQString &longitude, TQDate date, const int localUTCOffset) :
m_date(date),
m_lat(latitudeToDouble(latitude)), m_lon(longitudeToDouble(longitude)),
m_localUTCOffset(localUTCOffset)
{
}
TQTime Sun::computeRiseTime()
{
double riseTime;
double setTime;
sun_rise_set( m_date.year(), m_date.month(), m_date.day(), m_lon, m_lat, riseTime, setTime );
TQTime result = convertDoubleToLocalTime( riseTime );
if ( ! result.isValid() )
result.setHMS( 6, 0, 0 );
return result;
}
TQTime Sun::computeSetTime()
{
double riseTime;
double setTime;
sun_rise_set( m_date.year(), m_date.month(), m_date.day(), m_lon, m_lat, riseTime, setTime );
TQTime result = convertDoubleToLocalTime( setTime );
if ( ! result.isValid() )
result.setHMS( 19, 0, 0 );
return result;
}
TQTime Sun::computeCivilTwilightStart()
{
double start;
double end;
civil_twilight( m_date.year(), m_date.month(), m_date.day(), m_lon, m_lat, start, end );
TQTime result = convertDoubleToLocalTime( start );
if ( ! result.isValid() )
result.setHMS( 6, 0, 0 );
return result;
}
TQTime Sun::computeCivilTwilightEnd()
{
double start;
double end;
civil_twilight( m_date.year(), m_date.month(), m_date.day(), m_lon, m_lat, start, end );
TQTime result = convertDoubleToLocalTime( end );
if ( ! result.isValid() )
result.setHMS( 19, 0, 0 );
return result;
}
/*
* Converts latitude in format DD-MMH, where DD is degrees, MM is minutes,
* and H is Hemisphere (N for North, or S for South) to a floating point number.
*
* For example: 27-00S to -27.0
*
* Does not currently handle seconds.
*/
static double latitudeToDouble( const TQString &latitude )
{
double result;
double dd = latitude.left(2).toDouble();
double mm = latitude.mid(3, 2).toDouble();
result = dd + (mm / 60);
if (latitude.contains("S"))
result *= -1;
return result;
}
static double longitudeToDouble( const TQString &longitude )
{
double result;
double ddd = longitude.left(3).toDouble();
double mm = longitude.mid(4, 2).toDouble();
result = ddd + (mm / 60);
if (longitude.contains("W"))
result *= -1;
return result;
}
TQTime Sun::convertDoubleToLocalTime( const double time )
{
TQTime result;
// Example: say time is 17.7543 Then hours = 17 and minutes = 0.7543 * 60 = 45.258
// We need to convert the time to CORRECT local hours
int hours = (int)floor(time);
int localhours = hours + (m_localUTCOffset / 60);
// We need to convert the time to CORRECT local minutes
int minutes = (int)floor((time - hours) * 60);
int localminutes = minutes + (m_localUTCOffset % 60);
// We now have to adjust the time to be within the 60m boundary
if (localminutes < 0)
{
//As minutes is less than 0, we need to
//reduce a hour and add 60m to minutes.
localminutes += 60;
localhours--;
}
if (localminutes >= 60)
{
//As minutes are more than 60, we need to
//add one more hour and reduce the minutes to
//a value between 0 and 59.
localminutes -= 60;
localhours++;
}
// Round up or down to nearest second.
// Use rint instead of nearbyint because rint is in FreeBSD
int seconds = (int)rint( fabs( minutes - ((time - hours) * 60) ) * 60 );
// We now have to adjust the time to be within the 24h boundary
if (localhours < 0) { localhours += 24; }
if (localhours >= 24) { localhours -= 24; }
// Try to set the hours, minutes and seconds for the local time.
// If this doesn't work, then we will return the invalid time.
result.setHMS( localhours, localminutes, seconds );
return result;
}
/*
* Note: year,month,date = calendar date, 1801-2099 only.
* Eastern longitude positive, Western longitude negative
* Northern latitude positive, Southern latitude negative
* The longitude value IS critical in this function!
* altit = the altitude which the Sun should cross
* Set to -35/60 degrees for rise/set, -6 degrees
* for civil, -12 degrees for nautical and -18
* degrees for astronomical twilight.
* upper_limb: non-zero -> upper limb, zero -> center
* Set to non-zero (e.g. 1) when computing rise/set
* times, and to zero when computing start/end of
* twilight.
* trise = the rise time gets stored here
* tset = the set time gets stored here
* Both times are relative to the specified altitude,
* and thus this function can be used to comupte
* various twilight times, as well as rise/set times
*
* Return value: 0 = sun rises/sets this day, times stored in
* trise and tset.
* +1 = sun above the specified "horizon" 24 hours.
* trise set to time when the sun is at south,
* minus 12 hours while tset is set to the south
* time plus 12 hours. "Day" length = 24 hours
* -1 = sun is below the specified "horizon" 24 hours
* "Day" length = 0 hours, trise and tset are
* both set to the time when the sun is at south.
*
*/
static int __sunriset__( int year, int month, int day, double lon, double lat,
double altit, int upper_limb, double &trise, double &tset )
{
double d; /* Days since 2000 Jan 0.0 (negative before) */
double sr; /* Solar distance, astronomical units */
double sRA; /* Sun's Right Ascension */
double sdec; /* Sun's declination */
double sradius; /* Sun's aptqparent radius */
double t; /* Diurnal arc */
double tsouth; /* Time when Sun is at south */
double sidtime; /* Local sidereal time */
int rc = 0; /* Return code from function - usually 0 */
/* Compute d of 12h local mean solar time */
d = days_since_2000_Jan_0(year, month, day);
d = days_since_2000_Jan_0(year, month, day) + 0.5 - lon / 360.0;
/* Compute local sideral time of this moment */
sidtime = revolution( GMST0(d) + 180.0 + lon );
/* Compute Sun's RA + Decl at this moment */
sun_RA_dec( d, sRA, sdec, sr );
/* Compute time when Sun is at south - in hours UT */
tsouth = 12.0 - rev180(sidtime - sRA) / 15.0;
/* Compute the Sun's aptqparent radius, degrees */
sradius = 0.2666 / sr;
/* Do correction to upper limb, if necessary */
if ( upper_limb )
altit -= sradius;
/* Compute the diurnal arc that the Sun traverses to reach */
/* the specified altitide altit: */
double cost;
cost = ( sind(altit) - sind(lat) * sind(sdec) ) /
( cosd(lat) * cosd(sdec) );
if ( cost >= 1.0 )
{
rc = -1;
t = 0.0; /* Sun always below altit */
}
else if ( cost <= -1.0 )
{
rc = +1;
t = 12.0; /* Sun always above altit */
}
else
t = acosd(cost) / 15.0; /* The diurnal arc, hours */
/* Store rise and set times - in hours UT */
trise = tsouth - t;
tset = tsouth + t;
return rc;
}
/* This function computes the Sun's position at any instant
*
* Computes the Sun's ecliptic longitude and distance
* at an instant given in d, number of days since
* 2000 Jan 0.0. The Sun's ecliptic latitude is not
* computed, since it's always very near 0.
*/
static void sunpos( double d, double &lon, double &r )
{
double M; /* Mean anomaly of the Sun */
double w; /* Mean longitude of perihelion */
/* Note: Sun's mean longitude = M + w */
double e; /* Eccentricity of Earth's orbit */
double E; /* Eccentric anomaly */
double x;
double y; /* x, y coordinates in orbit */
double v; /* True anomaly */
/* Compute mean elements */
M = revolution( 356.0470 + 0.9856002585 * d );
w = 282.9404 + 4.70935E-5 * d;
e = 0.016709 - 1.151E-9 * d;
/* Compute true longitude and radius vector */
E = M + e * RADEG * sind(M) * ( 1.0 + e * cosd(M) );
x = cosd(E) - e;
y = sqrt( 1.0 - e*e ) * sind(E);
r = sqrt( x*x + y*y ); /* Solar distance */
v = atan2d( y, x ); /* True anomaly */
lon = v + w; /* True solar longitude */
if ( lon >= 360.0 )
lon -= 360.0; /* Make it 0..360 degrees */
}
static void sun_RA_dec( double d, double &RA, double &dec, double &r )
{
double lon;
double obl_ecl;
double x;
double y;
double z;
/* Compute Sun's ecliptical coordinates */
sunpos( d, lon, r );
/* Compute ecliptic rectangular coordinates (z=0) */
x = r * cosd(lon);
y = r * sind(lon);
/* Compute obliquity of ecliptic (inclination of Earth's axis) */
obl_ecl = 23.4393 - 3.563E-7 * d;
/* Convert to equatorial rectangular coordinates - x is unchanged */
z = y * sind(obl_ecl);
y = y * cosd(obl_ecl);
/* Convert to spherical coordinates */
RA = atan2d( y, x );
dec = atan2d( z, sqrt(x*x + y*y) );
}
static const double INV360 = 1.0 / 360.0;
/*
* This function reduces any angle to within the first revolution
* by subtracting or adding even multiples of 360.0 until the
* result is >= 0.0 and < 360.0
*/
static inline double revolution( const double x )
{
return ( x - 360.0 * floor( x * INV360 ) );
}
/*
* Reduce angle to within +180..+180 degrees
*/
static inline double rev180( const double x )
{
return ( x - 360.0 * floor( x * INV360 + 0.5 ) );
}
/*
* This function computes GMST0, the Greenwhich Mean Sidereal Time
* at 0h UT (i.e. the sidereal time at the Greenwhich meridian at
* 0h UT). GMST is then the sidereal time at Greenwich at any
* time of the day. I've generelized GMST0 as well, and define it
* as: GMST0 = GMST - UT -- this allows GMST0 to be computed at
* other times than 0h UT as well. While this sounds somewhat
* contradictory, it is very practical: instead of computing
* GMST like:
*
* GMST = (GMST0) + UT * (366.2422/365.2422)
*
* where (GMST0) is the GMST last time UT was 0 hours, one simply
* computes:
*
* GMST = GMST0 + UT
*
* where GMST0 is the GMST "at 0h UT" but at the current moment!
* Defined in this way, GMST0 will increase with about 4 min a
* day. It also happens that GMST0 (in degrees, 1 hr = 15 degr)
* is equal to the Sun's mean longitude plus/minus 180 degrees!
* (if we neglect aberration, which amounts to 20 seconds of arc
* or 1.33 seconds of time)
*
*/
static inline double GMST0( const double d )
{
double sidtim0;
/* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr */
/* L = M + w, as defined in sunpos(). Since I'm too lazy to */
/* add these numbers, I'll let the C compiler do it for me. */
/* Any decent C compiler will add the constants at compile */
/* time, imposing no runtime or code overhead. */
sidtim0 = revolution( ( 180.0 + 356.0470 + 282.9404 ) +
( 0.9856002585 + 4.70935E-5 ) * d );
return sidtim0;
}
|