diff options
author | Timothy Pearson <[email protected]> | 2012-04-30 02:15:44 -0500 |
---|---|---|
committer | Timothy Pearson <[email protected]> | 2012-04-30 02:15:44 -0500 |
commit | 63981126155b4f959f42446fc91742441446a040 (patch) | |
tree | b86ef61a7aecbfbf027a51c01ae60ae76f7e1894 /src/3rdparty/libjpeg/jfdctint.c | |
parent | f3c5f3ba06eb7394303c6500094f6d1f58d4092a (diff) | |
download | tqt3-63981126155b4f959f42446fc91742441446a040.tar.gz tqt3-63981126155b4f959f42446fc91742441446a040.zip |
Update from Qt3
Diffstat (limited to 'src/3rdparty/libjpeg/jfdctint.c')
-rw-r--r-- | src/3rdparty/libjpeg/jfdctint.c | 283 |
1 files changed, 0 insertions, 283 deletions
diff --git a/src/3rdparty/libjpeg/jfdctint.c b/src/3rdparty/libjpeg/jfdctint.c deleted file mode 100644 index 0a78b64ae..000000000 --- a/src/3rdparty/libjpeg/jfdctint.c +++ /dev/null @@ -1,283 +0,0 @@ -/* - * jfdctint.c - * - * Copyright (C) 1991-1996, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains a slow-but-accurate integer implementation of the - * forward DCT (Discrete Cosine Transform). - * - * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT - * on each column. Direct algorithms are also available, but they are - * much more complex and seem not to be any faster when reduced to code. - * - * This implementation is based on an algorithm described in - * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT - * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, - * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. - * The primary algorithm described there uses 11 multiplies and 29 adds. - * We use their alternate method with 12 multiplies and 32 adds. - * The advantage of this method is that no data path contains more than one - * multiplication; this allows a very simple and accurate implementation in - * scaled fixed-point arithmetic, with a minimal number of shifts. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" -#include "jdct.h" /* Private declarations for DCT subsystem */ - -#ifdef DCT_ISLOW_SUPPORTED - - -/* - * This module is specialized to the case DCTSIZE = 8. - */ - -#if DCTSIZE != 8 - Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ -#endif - - -/* - * The poop on this scaling stuff is as follows: - * - * Each 1-D DCT step produces outputs which are a factor of sqrt(N) - * larger than the true DCT outputs. The final outputs are therefore - * a factor of N larger than desired; since N=8 this can be cured by - * a simple right shift at the end of the algorithm. The advantage of - * this arrangement is that we save two multiplications per 1-D DCT, - * because the y0 and y4 outputs need not be divided by sqrt(N). - * In the IJG code, this factor of 8 is removed by the quantization step - * (in jcdctmgr.c), NOT in this module. - * - * We have to do addition and subtraction of the integer inputs, which - * is no problem, and multiplication by fractional constants, which is - * a problem to do in integer arithmetic. We multiply all the constants - * by CONST_SCALE and convert them to integer constants (thus retaining - * CONST_BITS bits of precision in the constants). After doing a - * multiplication we have to divide the product by CONST_SCALE, with proper - * rounding, to produce the correct output. This division can be done - * cheaply as a right shift of CONST_BITS bits. We postpone shifting - * as long as possible so that partial sums can be added together with - * full fractional precision. - * - * The outputs of the first pass are scaled up by PASS1_BITS bits so that - * they are represented to better-than-integral precision. These outputs - * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word - * with the recommended scaling. (For 12-bit sample data, the intermediate - * array is INT32 anyway.) - * - * To avoid overflow of the 32-bit intermediate results in pass 2, we must - * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis - * shows that the values given below are the most effective. - */ - -#if BITS_IN_JSAMPLE == 8 -#define CONST_BITS 13 -#define PASS1_BITS 2 -#else -#define CONST_BITS 13 -#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ -#endif - -/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus - * causing a lot of useless floating-point operations at run time. - * To get around this we use the following pre-calculated constants. - * If you change CONST_BITS you may want to add appropriate values. - * (With a reasonable C compiler, you can just rely on the FIX() macro...) - */ - -#if CONST_BITS == 13 -#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ -#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ -#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ -#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ -#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ -#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ -#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ -#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ -#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ -#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ -#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ -#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ -#else -#define FIX_0_298631336 FIX(0.298631336) -#define FIX_0_390180644 FIX(0.390180644) -#define FIX_0_541196100 FIX(0.541196100) -#define FIX_0_765366865 FIX(0.765366865) -#define FIX_0_899976223 FIX(0.899976223) -#define FIX_1_175875602 FIX(1.175875602) -#define FIX_1_501321110 FIX(1.501321110) -#define FIX_1_847759065 FIX(1.847759065) -#define FIX_1_961570560 FIX(1.961570560) -#define FIX_2_053119869 FIX(2.053119869) -#define FIX_2_562915447 FIX(2.562915447) -#define FIX_3_072711026 FIX(3.072711026) -#endif - - -/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. - * For 8-bit samples with the recommended scaling, all the variable - * and constant values involved are no more than 16 bits wide, so a - * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. - * For 12-bit samples, a full 32-bit multiplication will be needed. - */ - -#if BITS_IN_JSAMPLE == 8 -#define MULTIPLY(var,const) MULTIPLY16C16(var,const) -#else -#define MULTIPLY(var,const) ((var) * (const)) -#endif - - -/* - * Perform the forward DCT on one block of samples. - */ - -GLOBAL(void) -jpeg_fdct_islow (DCTELEM * data) -{ - INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; - INT32 tmp10, tmp11, tmp12, tmp13; - INT32 z1, z2, z3, z4, z5; - DCTELEM *dataptr; - int ctr; - SHIFT_TEMPS - - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true DCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - - dataptr = data; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - tmp0 = dataptr[0] + dataptr[7]; - tmp7 = dataptr[0] - dataptr[7]; - tmp1 = dataptr[1] + dataptr[6]; - tmp6 = dataptr[1] - dataptr[6]; - tmp2 = dataptr[2] + dataptr[5]; - tmp5 = dataptr[2] - dataptr[5]; - tmp3 = dataptr[3] + dataptr[4]; - tmp4 = dataptr[3] - dataptr[4]; - - /* Even part per LL&M figure 1 --- note that published figure is faulty; - * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". - */ - - tmp10 = tmp0 + tmp3; - tmp13 = tmp0 - tmp3; - tmp11 = tmp1 + tmp2; - tmp12 = tmp1 - tmp2; - - dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS); - dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); - - z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); - dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), - CONST_BITS-PASS1_BITS); - dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), - CONST_BITS-PASS1_BITS); - - /* Odd part per figure 8 --- note paper omits factor of sqrt(2). - * cK represents cos(K*pi/16). - * i0..i3 in the paper are tmp4..tmp7 here. - */ - - z1 = tmp4 + tmp7; - z2 = tmp5 + tmp6; - z3 = tmp4 + tmp6; - z4 = tmp5 + tmp7; - z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ - - tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ - tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ - tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ - tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ - z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ - z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ - z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ - z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ - - z3 += z5; - z4 += z5; - - dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); - dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); - dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); - dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. - * We remove the PASS1_BITS scaling, but leave the results scaled up - * by an overall factor of 8. - */ - - dataptr = data; - for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { - tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; - tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; - tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; - tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; - tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; - tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; - tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; - tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; - - /* Even part per LL&M figure 1 --- note that published figure is faulty; - * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". - */ - - tmp10 = tmp0 + tmp3; - tmp13 = tmp0 - tmp3; - tmp11 = tmp1 + tmp2; - tmp12 = tmp1 - tmp2; - - dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); - dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); - - z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); - dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), - CONST_BITS+PASS1_BITS); - - /* Odd part per figure 8 --- note paper omits factor of sqrt(2). - * cK represents cos(K*pi/16). - * i0..i3 in the paper are tmp4..tmp7 here. - */ - - z1 = tmp4 + tmp7; - z2 = tmp5 + tmp6; - z3 = tmp4 + tmp6; - z4 = tmp5 + tmp7; - z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ - - tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ - tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ - tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ - tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ - z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ - z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ - z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ - z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ - - z3 += z5; - z4 += z5; - - dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, - CONST_BITS+PASS1_BITS); - dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, - CONST_BITS+PASS1_BITS); - - dataptr++; /* advance pointer to next column */ - } -} - -#endif /* DCT_ISLOW_SUPPORTED */ |