summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/sqlite/btree.c
diff options
context:
space:
mode:
authorTimothy Pearson <[email protected]>2011-11-08 12:31:36 -0600
committerTimothy Pearson <[email protected]>2011-11-08 12:31:36 -0600
commitd796c9dd933ab96ec83b9a634feedd5d32e1ba3f (patch)
tree6e3dcca4f77e20ec8966c666aac7c35bd4704053 /src/3rdparty/sqlite/btree.c
downloadtqt3-d796c9dd933ab96ec83b9a634feedd5d32e1ba3f.tar.gz
tqt3-d796c9dd933ab96ec83b9a634feedd5d32e1ba3f.zip
Test conversion to TQt3 from Qt3 8c6fc1f8e35fd264dd01c582ca5e7549b32ab731
Diffstat (limited to 'src/3rdparty/sqlite/btree.c')
-rw-r--r--src/3rdparty/sqlite/btree.c3579
1 files changed, 3579 insertions, 0 deletions
diff --git a/src/3rdparty/sqlite/btree.c b/src/3rdparty/sqlite/btree.c
new file mode 100644
index 000000000..84a398f17
--- /dev/null
+++ b/src/3rdparty/sqlite/btree.c
@@ -0,0 +1,3579 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** $Id: btree.c,v 1.102 2004/02/14 17:35:07 drh Exp $
+**
+** This file implements a external (disk-based) database using BTrees.
+** For a detailed discussion of BTrees, refer to
+**
+** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
+** "Sorting And Searching", pages 473-480. Addison-Wesley
+** Publishing Company, Reading, Massachusetts.
+**
+** The basic idea is that each page of the file contains N database
+** entries and N+1 pointers to subpages.
+**
+** ----------------------------------------------------------------
+** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
+** ----------------------------------------------------------------
+**
+** All of the keys on the page that Ptr(0) points to have values less
+** than Key(0). All of the keys on page Ptr(1) and its subpages have
+** values greater than Key(0) and less than Key(1). All of the keys
+** on Ptr(N+1) and its subpages have values greater than Key(N). And
+** so forth.
+**
+** Finding a particular key retquires reading O(log(M)) pages from the
+** disk where M is the number of entries in the tree.
+**
+** In this implementation, a single file can hold one or more separate
+** BTrees. Each BTree is identified by the index of its root page. The
+** key and data for any entry are combined to form the "payload". Up to
+** MX_LOCAL_PAYLOAD bytes of payload can be carried directly on the
+** database page. If the payload is larger than MX_LOCAL_PAYLOAD bytes
+** then surplus bytes are stored on overflow pages. The payload for an
+** entry and the preceding pointer are combined to form a "Cell". Each
+** page has a small header which contains the Ptr(N+1) pointer.
+**
+** The first page of the file contains a magic string used to verify that
+** the file really is a valid BTree database, a pointer to a list of unused
+** pages in the file, and some meta information. The root of the first
+** BTree begins on page 2 of the file. (Pages are numbered beginning with
+** 1, not 0.) Thus a minimum database contains 2 pages.
+*/
+#include "sqliteInt.h"
+#include "pager.h"
+#include "btree.h"
+#include <assert.h>
+
+/* Forward declarations */
+static BtOps sqliteBtreeOps;
+static BtCursorOps sqliteBtreeCursorOps;
+
+/*
+** Macros used for byteswapping. B is a pointer to the Btree
+** structure. This is needed to access the Btree.needSwab boolean
+** in order to tell if byte swapping is needed or not.
+** X is an unsigned integer. SWAB16 byte swaps a 16-bit integer.
+** SWAB32 byteswaps a 32-bit integer.
+*/
+#define SWAB16(B,X) ((B)->needSwab? swab16((u16)X) : ((u16)X))
+#define SWAB32(B,X) ((B)->needSwab? swab32(X) : (X))
+#define SWAB_ADD(B,X,A) \
+ if((B)->needSwab){ X=swab32(swab32(X)+A); }else{ X += (A); }
+
+/*
+** The following global variable - available only if SQLITE_TEST is
+** defined - is used to determine whether new databases are created in
+** native byte order or in non-native byte order. Non-native byte order
+** databases are created for testing purposes only. Under normal operation,
+** only native byte-order databases should be created, but we should be
+** able to read or write existing databases regardless of the byteorder.
+*/
+#ifdef SQLITE_TEST
+int btree_native_byte_order = 1;
+#else
+# define btree_native_byte_order 1
+#endif
+
+/*
+** Forward declarations of structures used only in this file.
+*/
+typedef struct PageOne PageOne;
+typedef struct MemPage MemPage;
+typedef struct PageHdr PageHdr;
+typedef struct Cell Cell;
+typedef struct CellHdr CellHdr;
+typedef struct FreeBlk FreeBlk;
+typedef struct OverflowPage OverflowPage;
+typedef struct FreelistInfo FreelistInfo;
+
+/*
+** All structures on a database page are aligned to 4-byte boundries.
+** This routine rounds up a number of bytes to the next multiple of 4.
+**
+** This might need to change for computer architectures that retquire
+** and 8-byte alignment boundry for structures.
+*/
+#define ROUNDUP(X) ((X+3) & ~3)
+
+/*
+** This is a magic string that appears at the beginning of every
+** SQLite database in order to identify the file as a real database.
+*/
+static const char zMagicHeader[] =
+ "** This file contains an SQLite 2.1 database **";
+#define MAGIC_SIZE (sizeof(zMagicHeader))
+
+/*
+** This is a magic integer also used to test the integrity of the database
+** file. This integer is used in addition to the string above so that
+** if the file is written on a little-endian architecture and read
+** on a big-endian architectures (or vice versa) we can detect the
+** problem.
+**
+** The number used was obtained at random and has no special
+** significance other than the fact that it represents a different
+** integer on little-endian and big-endian machines.
+*/
+#define MAGIC 0xdae37528
+
+/*
+** The first page of the database file contains a magic header string
+** to identify the file as an SQLite database file. It also contains
+** a pointer to the first free page of the file. Page 2 contains the
+** root of the principle BTree. The file might contain other BTrees
+** rooted on pages above 2.
+**
+** The first page also contains SQLITE_N_BTREE_META integers that
+** can be used by higher-level routines.
+**
+** Remember that pages are numbered beginning with 1. (See pager.c
+** for additional information.) Page 0 does not exist and a page
+** number of 0 is used to mean "no such page".
+*/
+struct PageOne {
+ char zMagic[MAGIC_SIZE]; /* String that identifies the file as a database */
+ int iMagic; /* Integer to verify correct byte order */
+ Pgno freeList; /* First free page in a list of all free pages */
+ int nFree; /* Number of pages on the free list */
+ int aMeta[SQLITE_N_BTREE_META-1]; /* User defined integers */
+};
+
+/*
+** Each database page has a header that is an instance of this
+** structure.
+**
+** PageHdr.firstFree is 0 if there is no free space on this page.
+** Otherwise, PageHdr.firstFree is the index in MemPage.u.aDisk[] of a
+** FreeBlk structure that describes the first block of free space.
+** All free space is defined by a linked list of FreeBlk structures.
+**
+** Data is stored in a linked list of Cell structures. PageHdr.firstCell
+** is the index into MemPage.u.aDisk[] of the first cell on the page. The
+** Cells are kept in sorted order.
+**
+** A Cell contains all information about a database entry and a pointer
+** to a child page that contains other entries less than itself. In
+** other words, the i-th Cell contains both Ptr(i) and Key(i). The
+** right-most pointer of the page is contained in PageHdr.rightChild.
+*/
+struct PageHdr {
+ Pgno rightChild; /* Child page that comes after all cells on this page */
+ u16 firstCell; /* Index in MemPage.u.aDisk[] of the first cell */
+ u16 firstFree; /* Index in MemPage.u.aDisk[] of the first free block */
+};
+
+/*
+** Entries on a page of the database are called "Cells". Each Cell
+** has a header and data. This structure defines the header. The
+** key and data (collectively the "payload") follow this header on
+** the database page.
+**
+** A definition of the complete Cell structure is given below. The
+** header for the cell must be defined first in order to do some
+** of the sizing #defines that follow.
+*/
+struct CellHdr {
+ Pgno leftChild; /* Child page that comes before this cell */
+ u16 nKey; /* Number of bytes in the key */
+ u16 iNext; /* Index in MemPage.u.aDisk[] of next cell in sorted order */
+ u8 nKeyHi; /* Upper 8 bits of key size for keys larger than 64K bytes */
+ u8 nDataHi; /* Upper 8 bits of data size when the size is more than 64K */
+ u16 nData; /* Number of bytes of data */
+};
+
+/*
+** The key and data size are split into a lower 16-bit segment and an
+** upper 8-bit segment in order to pack them together into a smaller
+** space. The following macros reassembly a key or data size back
+** into an integer.
+*/
+#define NKEY(b,h) (SWAB16(b,h.nKey) + h.nKeyHi*65536)
+#define NDATA(b,h) (SWAB16(b,h.nData) + h.nDataHi*65536)
+
+/*
+** The minimum size of a complete Cell. The Cell must contain a header
+** and at least 4 bytes of payload.
+*/
+#define MIN_CELL_SIZE (sizeof(CellHdr)+4)
+
+/*
+** The maximum number of database entries that can be held in a single
+** page of the database.
+*/
+#define MX_CELL ((SQLITE_USABLE_SIZE-sizeof(PageHdr))/MIN_CELL_SIZE)
+
+/*
+** The amount of usable space on a single page of the BTree. This is the
+** page size minus the overhead of the page header.
+*/
+#define USABLE_SPACE (SQLITE_USABLE_SIZE - sizeof(PageHdr))
+
+/*
+** The maximum amount of payload (in bytes) that can be stored locally for
+** a database entry. If the entry contains more data than this, the
+** extra goes onto overflow pages.
+**
+** This number is chosen so that at least 4 cells will fit on every page.
+*/
+#define MX_LOCAL_PAYLOAD ((USABLE_SPACE/4-(sizeof(CellHdr)+sizeof(Pgno)))&~3)
+
+/*
+** Data on a database page is stored as a linked list of Cell structures.
+** Both the key and the data are stored in aPayload[]. The key always comes
+** first. The aPayload[] field grows as necessary to hold the key and data,
+** up to a maximum of MX_LOCAL_PAYLOAD bytes. If the size of the key and
+** data combined exceeds MX_LOCAL_PAYLOAD bytes, then Cell.ovfl is the
+** page number of the first overflow page.
+**
+** Though this structure is fixed in size, the Cell on the database
+** page varies in size. Every cell has a CellHdr and at least 4 bytes
+** of payload space. Additional payload bytes (up to the maximum of
+** MX_LOCAL_PAYLOAD) and the Cell.ovfl value are allocated only as
+** needed.
+*/
+struct Cell {
+ CellHdr h; /* The cell header */
+ char aPayload[MX_LOCAL_PAYLOAD]; /* Key and data */
+ Pgno ovfl; /* The first overflow page */
+};
+
+/*
+** Free space on a page is remembered using a linked list of the FreeBlk
+** structures. Space on a database page is allocated in increments of
+** at least 4 bytes and is always aligned to a 4-byte boundry. The
+** linked list of FreeBlks is always kept in order by address.
+*/
+struct FreeBlk {
+ u16 iSize; /* Number of bytes in this block of free space */
+ u16 iNext; /* Index in MemPage.u.aDisk[] of the next free block */
+};
+
+/*
+** The number of bytes of payload that will fit on a single overflow page.
+*/
+#define OVERFLOW_SIZE (SQLITE_USABLE_SIZE-sizeof(Pgno))
+
+/*
+** When the key and data for a single entry in the BTree will not fit in
+** the MX_LOCAL_PAYLOAD bytes of space available on the database page,
+** then all extra bytes are written to a linked list of overflow pages.
+** Each overflow page is an instance of the following structure.
+**
+** Unused pages in the database are also represented by instances of
+** the OverflowPage structure. The PageOne.freeList field is the
+** page number of the first page in a linked list of unused database
+** pages.
+*/
+struct OverflowPage {
+ Pgno iNext;
+ char aPayload[OVERFLOW_SIZE];
+};
+
+/*
+** The PageOne.freeList field points to a linked list of overflow pages
+** hold information about free pages. The aPayload section of each
+** overflow page contains an instance of the following structure. The
+** aFree[] array holds the page number of nFree unused pages in the disk
+** file.
+*/
+struct FreelistInfo {
+ int nFree;
+ Pgno aFree[(OVERFLOW_SIZE-sizeof(int))/sizeof(Pgno)];
+};
+
+/*
+** For every page in the database file, an instance of the following structure
+** is stored in memory. The u.aDisk[] array contains the raw bits read from
+** the disk. The rest is auxiliary information held in memory only. The
+** auxiliary info is only valid for regular database pages - it is not
+** used for overflow pages and pages on the freelist.
+**
+** Of particular interest in the auxiliary info is the apCell[] entry. Each
+** apCell[] entry is a pointer to a Cell structure in u.aDisk[]. The cells are
+** put in this array so that they can be accessed in constant time, rather
+** than in linear time which would be needed if we had to walk the linked
+** list on every access.
+**
+** Note that apCell[] contains enough space to hold up to two more Cells
+** than can possibly fit on one page. In the steady state, every apCell[]
+** points to memory inside u.aDisk[]. But in the middle of an insert
+** operation, some apCell[] entries may temporarily point to data space
+** outside of u.aDisk[]. This is a transient situation that is tquickly
+** resolved. But while it is happening, it is possible for a database
+** page to hold as many as two more cells than it might otherwise hold.
+** The extra two entries in apCell[] are an allowance for this situation.
+**
+** The pParent field points back to the parent page. This allows us to
+** walk up the BTree from any leaf to the root. Care must be taken to
+** unref() the parent page pointer when this page is no longer referenced.
+** The pageDestructor() routine handles that chore.
+*/
+struct MemPage {
+ union u_page_data {
+ char aDisk[SQLITE_PAGE_SIZE]; /* Page data stored on disk */
+ PageHdr hdr; /* Overlay page header */
+ } u;
+ u8 isInit; /* True if auxiliary data is initialized */
+ u8 idxShift; /* True if apCell[] indices have changed */
+ u8 isOverfull; /* Some apCell[] points outside u.aDisk[] */
+ MemPage *pParent; /* The parent of this page. NULL for root */
+ int idxParent; /* Index in pParent->apCell[] of this node */
+ int nFree; /* Number of free bytes in u.aDisk[] */
+ int nCell; /* Number of entries on this page */
+ Cell *apCell[MX_CELL+2]; /* All data entires in sorted order */
+};
+
+/*
+** The in-memory image of a disk page has the auxiliary information appended
+** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
+** that extra information.
+*/
+#define EXTRA_SIZE (sizeof(MemPage)-sizeof(union u_page_data))
+
+/*
+** Everything we need to know about an open database
+*/
+struct Btree {
+ BtOps *pOps; /* Function table */
+ Pager *pPager; /* The page cache */
+ BtCursor *pCursor; /* A list of all open cursors */
+ PageOne *page1; /* First page of the database */
+ u8 inTrans; /* True if a transaction is in progress */
+ u8 inCkpt; /* True if there is a checkpoint on the transaction */
+ u8 readOnly; /* True if the underlying file is readonly */
+ u8 needSwab; /* Need to byte-swapping */
+};
+typedef Btree Bt;
+
+/*
+** A cursor is a pointer to a particular entry in the BTree.
+** The entry is identified by its MemPage and the index in
+** MemPage.apCell[] of the entry.
+*/
+struct BtCursor {
+ BtCursorOps *pOps; /* Function table */
+ Btree *pBt; /* The Btree to which this cursor belongs */
+ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
+ BtCursor *pShared; /* Loop of cursors with the same root page */
+ Pgno pgnoRoot; /* The root page of this tree */
+ MemPage *pPage; /* Page that contains the entry */
+ int idx; /* Index of the entry in pPage->apCell[] */
+ u8 wrFlag; /* True if writable */
+ u8 eSkip; /* Determines if next step operation is a no-op */
+ u8 iMatch; /* compare result from last sqliteBtreeMoveto() */
+};
+
+/*
+** Legal values for BtCursor.eSkip.
+*/
+#define SKIP_NONE 0 /* Always step the cursor */
+#define SKIP_NEXT 1 /* The next sqliteBtreeNext() is a no-op */
+#define SKIP_PREV 2 /* The next sqliteBtreePrevious() is a no-op */
+#define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */
+
+/* Forward declarations */
+static int fileBtreeCloseCursor(BtCursor *pCur);
+
+/*
+** Routines for byte swapping.
+*/
+u16 swab16(u16 x){
+ return ((x & 0xff)<<8) | ((x>>8)&0xff);
+}
+u32 swab32(u32 x){
+ return ((x & 0xff)<<24) | ((x & 0xff00)<<8) |
+ ((x>>8) & 0xff00) | ((x>>24)&0xff);
+}
+
+/*
+** Compute the total number of bytes that a Cell needs on the main
+** database page. The number returned includes the Cell header,
+** local payload storage, and the pointer to overflow pages (if
+** applicable). Additional space allocated on overflow pages
+** is NOT included in the value returned from this routine.
+*/
+static int cellSize(Btree *pBt, Cell *pCell){
+ int n = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
+ if( n>MX_LOCAL_PAYLOAD ){
+ n = MX_LOCAL_PAYLOAD + sizeof(Pgno);
+ }else{
+ n = ROUNDUP(n);
+ }
+ n += sizeof(CellHdr);
+ return n;
+}
+
+/*
+** Defragment the page given. All Cells are moved to the
+** beginning of the page and all free space is collected
+** into one big FreeBlk at the end of the page.
+*/
+static void defragmentPage(Btree *pBt, MemPage *pPage){
+ int pc, i, n;
+ FreeBlk *pFBlk;
+ char newPage[SQLITE_USABLE_SIZE];
+
+ assert( sqlitepager_iswriteable(pPage) );
+ assert( pPage->isInit );
+ pc = sizeof(PageHdr);
+ pPage->u.hdr.firstCell = SWAB16(pBt, pc);
+ memcpy(newPage, pPage->u.aDisk, pc);
+ for(i=0; i<pPage->nCell; i++){
+ Cell *pCell = pPage->apCell[i];
+
+ /* This routine should never be called on an overfull page. The
+ ** following asserts verify that constraint. */
+ assert( Addr(pCell) > Addr(pPage) );
+ assert( Addr(pCell) < Addr(pPage) + SQLITE_USABLE_SIZE );
+
+ n = cellSize(pBt, pCell);
+ pCell->h.iNext = SWAB16(pBt, pc + n);
+ memcpy(&newPage[pc], pCell, n);
+ pPage->apCell[i] = (Cell*)&pPage->u.aDisk[pc];
+ pc += n;
+ }
+ assert( pPage->nFree==SQLITE_USABLE_SIZE-pc );
+ memcpy(pPage->u.aDisk, newPage, pc);
+ if( pPage->nCell>0 ){
+ pPage->apCell[pPage->nCell-1]->h.iNext = 0;
+ }
+ pFBlk = (FreeBlk*)&pPage->u.aDisk[pc];
+ pFBlk->iSize = SWAB16(pBt, SQLITE_USABLE_SIZE - pc);
+ pFBlk->iNext = 0;
+ pPage->u.hdr.firstFree = SWAB16(pBt, pc);
+ memset(&pFBlk[1], 0, SQLITE_USABLE_SIZE - pc - sizeof(FreeBlk));
+}
+
+/*
+** Allocate nByte bytes of space on a page. nByte must be a
+** multiple of 4.
+**
+** Return the index into pPage->u.aDisk[] of the first byte of
+** the new allocation. Or return 0 if there is not enough free
+** space on the page to satisfy the allocation request.
+**
+** If the page contains nBytes of free space but does not contain
+** nBytes of contiguous free space, then this routine automatically
+** calls defragementPage() to consolidate all free space before
+** allocating the new chunk.
+*/
+static int allocateSpace(Btree *pBt, MemPage *pPage, int nByte){
+ FreeBlk *p;
+ u16 *pIdx;
+ int start;
+ int iSize;
+#ifndef NDEBUG
+ int cnt = 0;
+#endif
+
+ assert( sqlitepager_iswriteable(pPage) );
+ assert( nByte==ROUNDUP(nByte) );
+ assert( pPage->isInit );
+ if( pPage->nFree<nByte || pPage->isOverfull ) return 0;
+ pIdx = &pPage->u.hdr.firstFree;
+ p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
+ while( (iSize = SWAB16(pBt, p->iSize))<nByte ){
+ assert( cnt++ < SQLITE_USABLE_SIZE/4 );
+ if( p->iNext==0 ){
+ defragmentPage(pBt, pPage);
+ pIdx = &pPage->u.hdr.firstFree;
+ }else{
+ pIdx = &p->iNext;
+ }
+ p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
+ }
+ if( iSize==nByte ){
+ start = SWAB16(pBt, *pIdx);
+ *pIdx = p->iNext;
+ }else{
+ FreeBlk *pNew;
+ start = SWAB16(pBt, *pIdx);
+ pNew = (FreeBlk*)&pPage->u.aDisk[start + nByte];
+ pNew->iNext = p->iNext;
+ pNew->iSize = SWAB16(pBt, iSize - nByte);
+ *pIdx = SWAB16(pBt, start + nByte);
+ }
+ pPage->nFree -= nByte;
+ return start;
+}
+
+/*
+** Return a section of the MemPage.u.aDisk[] to the freelist.
+** The first byte of the new free block is pPage->u.aDisk[start]
+** and the size of the block is "size" bytes. Size must be
+** a multiple of 4.
+**
+** Most of the effort here is involved in coalesing adjacent
+** free blocks into a single big free block.
+*/
+static void freeSpace(Btree *pBt, MemPage *pPage, int start, int size){
+ int end = start + size;
+ u16 *pIdx, idx;
+ FreeBlk *pFBlk;
+ FreeBlk *pNew;
+ FreeBlk *pNext;
+ int iSize;
+
+ assert( sqlitepager_iswriteable(pPage) );
+ assert( size == ROUNDUP(size) );
+ assert( start == ROUNDUP(start) );
+ assert( pPage->isInit );
+ pIdx = &pPage->u.hdr.firstFree;
+ idx = SWAB16(pBt, *pIdx);
+ while( idx!=0 && idx<start ){
+ pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
+ iSize = SWAB16(pBt, pFBlk->iSize);
+ if( idx + iSize == start ){
+ pFBlk->iSize = SWAB16(pBt, iSize + size);
+ if( idx + iSize + size == SWAB16(pBt, pFBlk->iNext) ){
+ pNext = (FreeBlk*)&pPage->u.aDisk[idx + iSize + size];
+ if( pBt->needSwab ){
+ pFBlk->iSize = swab16((u16)swab16(pNext->iSize)+iSize+size);
+ }else{
+ pFBlk->iSize += pNext->iSize;
+ }
+ pFBlk->iNext = pNext->iNext;
+ }
+ pPage->nFree += size;
+ return;
+ }
+ pIdx = &pFBlk->iNext;
+ idx = SWAB16(pBt, *pIdx);
+ }
+ pNew = (FreeBlk*)&pPage->u.aDisk[start];
+ if( idx != end ){
+ pNew->iSize = SWAB16(pBt, size);
+ pNew->iNext = SWAB16(pBt, idx);
+ }else{
+ pNext = (FreeBlk*)&pPage->u.aDisk[idx];
+ pNew->iSize = SWAB16(pBt, size + SWAB16(pBt, pNext->iSize));
+ pNew->iNext = pNext->iNext;
+ }
+ *pIdx = SWAB16(pBt, start);
+ pPage->nFree += size;
+}
+
+/*
+** Initialize the auxiliary information for a disk block.
+**
+** The pParent parameter must be a pointer to the MemPage which
+** is the parent of the page being initialized. The root of the
+** BTree (usually page 2) has no parent and so for that page,
+** pParent==NULL.
+**
+** Return SQLITE_OK on success. If we see that the page does
+** not contain a well-formed database page, then return
+** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
+** guarantee that the page is well-formed. It only shows that
+** we failed to detect any corruption.
+*/
+static int initPage(Bt *pBt, MemPage *pPage, Pgno pgnoThis, MemPage *pParent){
+ int idx; /* An index into pPage->u.aDisk[] */
+ Cell *pCell; /* A pointer to a Cell in pPage->u.aDisk[] */
+ FreeBlk *pFBlk; /* A pointer to a free block in pPage->u.aDisk[] */
+ int sz; /* The size of a Cell in bytes */
+ int freeSpace; /* Amount of free space on the page */
+
+ if( pPage->pParent ){
+ assert( pPage->pParent==pParent );
+ return SQLITE_OK;
+ }
+ if( pParent ){
+ pPage->pParent = pParent;
+ sqlitepager_ref(pParent);
+ }
+ if( pPage->isInit ) return SQLITE_OK;
+ pPage->isInit = 1;
+ pPage->nCell = 0;
+ freeSpace = USABLE_SPACE;
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
+ while( idx!=0 ){
+ if( idx>SQLITE_USABLE_SIZE-MIN_CELL_SIZE ) goto page_format_error;
+ if( idx<sizeof(PageHdr) ) goto page_format_error;
+ if( idx!=ROUNDUP(idx) ) goto page_format_error;
+ pCell = (Cell*)&pPage->u.aDisk[idx];
+ sz = cellSize(pBt, pCell);
+ if( idx+sz > SQLITE_USABLE_SIZE ) goto page_format_error;
+ freeSpace -= sz;
+ pPage->apCell[pPage->nCell++] = pCell;
+ idx = SWAB16(pBt, pCell->h.iNext);
+ }
+ pPage->nFree = 0;
+ idx = SWAB16(pBt, pPage->u.hdr.firstFree);
+ while( idx!=0 ){
+ int iNext;
+ if( idx>SQLITE_USABLE_SIZE-sizeof(FreeBlk) ) goto page_format_error;
+ if( idx<sizeof(PageHdr) ) goto page_format_error;
+ pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
+ pPage->nFree += SWAB16(pBt, pFBlk->iSize);
+ iNext = SWAB16(pBt, pFBlk->iNext);
+ if( iNext>0 && iNext <= idx ) goto page_format_error;
+ idx = iNext;
+ }
+ if( pPage->nCell==0 && pPage->nFree==0 ){
+ /* As a special case, an uninitialized root page appears to be
+ ** an empty database */
+ return SQLITE_OK;
+ }
+ if( pPage->nFree!=freeSpace ) goto page_format_error;
+ return SQLITE_OK;
+
+page_format_error:
+ return SQLITE_CORRUPT;
+}
+
+/*
+** Set up a raw page so that it looks like a database page holding
+** no entries.
+*/
+static void zeroPage(Btree *pBt, MemPage *pPage){
+ PageHdr *pHdr;
+ FreeBlk *pFBlk;
+ assert( sqlitepager_iswriteable(pPage) );
+ memset(pPage, 0, SQLITE_USABLE_SIZE);
+ pHdr = &pPage->u.hdr;
+ pHdr->firstCell = 0;
+ pHdr->firstFree = SWAB16(pBt, sizeof(*pHdr));
+ pFBlk = (FreeBlk*)&pHdr[1];
+ pFBlk->iNext = 0;
+ pPage->nFree = SQLITE_USABLE_SIZE - sizeof(*pHdr);
+ pFBlk->iSize = SWAB16(pBt, pPage->nFree);
+ pPage->nCell = 0;
+ pPage->isOverfull = 0;
+}
+
+/*
+** This routine is called when the reference count for a page
+** reaches zero. We need to unref the pParent pointer when that
+** happens.
+*/
+static void pageDestructor(void *pData){
+ MemPage *pPage = (MemPage*)pData;
+ if( pPage->pParent ){
+ MemPage *pParent = pPage->pParent;
+ pPage->pParent = 0;
+ sqlitepager_unref(pParent);
+ }
+}
+
+/*
+** Open a new database.
+**
+** Actually, this routine just sets up the internal data structures
+** for accessing the database. We do not open the database file
+** until the first page is loaded.
+**
+** zFilename is the name of the database file. If zFilename is NULL
+** a new database with a random name is created. This randomly named
+** database file will be deleted when sqliteBtreeClose() is called.
+*/
+int sqliteBtreeOpen(
+ const char *zFilename, /* Name of the file containing the BTree database */
+ int omitJournal, /* if TRUE then do not journal this file */
+ int nCache, /* How many pages in the page cache */
+ Btree **ppBtree /* Pointer to new Btree object written here */
+){
+ Btree *pBt;
+ int rc;
+
+ /*
+ ** The following asserts make sure that structures used by the btree are
+ ** the right size. This is to guard against size changes that result
+ ** when compiling on a different architecture.
+ */
+ assert( sizeof(u32)==4 );
+ assert( sizeof(u16)==2 );
+ assert( sizeof(Pgno)==4 );
+ assert( sizeof(PageHdr)==8 );
+ assert( sizeof(CellHdr)==12 );
+ assert( sizeof(FreeBlk)==4 );
+ assert( sizeof(OverflowPage)==SQLITE_USABLE_SIZE );
+ assert( sizeof(FreelistInfo)==OVERFLOW_SIZE );
+ assert( sizeof(ptr)==sizeof(char*) );
+ assert( sizeof(uptr)==sizeof(ptr) );
+
+ pBt = sqliteMalloc( sizeof(*pBt) );
+ if( pBt==0 ){
+ *ppBtree = 0;
+ return SQLITE_NOMEM;
+ }
+ if( nCache<10 ) nCache = 10;
+ rc = sqlitepager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE,
+ !omitJournal);
+ if( rc!=SQLITE_OK ){
+ if( pBt->pPager ) sqlitepager_close(pBt->pPager);
+ sqliteFree(pBt);
+ *ppBtree = 0;
+ return rc;
+ }
+ sqlitepager_set_destructor(pBt->pPager, pageDestructor);
+ pBt->pCursor = 0;
+ pBt->page1 = 0;
+ pBt->readOnly = sqlitepager_isreadonly(pBt->pPager);
+ pBt->pOps = &sqliteBtreeOps;
+ *ppBtree = pBt;
+ return SQLITE_OK;
+}
+
+/*
+** Close an open database and invalidate all cursors.
+*/
+static int fileBtreeClose(Btree *pBt){
+ while( pBt->pCursor ){
+ fileBtreeCloseCursor(pBt->pCursor);
+ }
+ sqlitepager_close(pBt->pPager);
+ sqliteFree(pBt);
+ return SQLITE_OK;
+}
+
+/*
+** Change the limit on the number of pages allowed in the cache.
+**
+** The maximum number of cache pages is set to the absolute
+** value of mxPage. If mxPage is negative, the pager will
+** operate asynchronously - it will not stop to do fsync()s
+** to insure data is written to the disk surface before
+** continuing. Transactions still work if synchronous is off,
+** and the database cannot be corrupted if this program
+** crashes. But if the operating system crashes or there is
+** an abrupt power failure when synchronous is off, the database
+** could be left in an inconsistent and unrecoverable state.
+** Synchronous is on by default so database corruption is not
+** normally a worry.
+*/
+static int fileBtreeSetCacheSize(Btree *pBt, int mxPage){
+ sqlitepager_set_cachesize(pBt->pPager, mxPage);
+ return SQLITE_OK;
+}
+
+/*
+** Change the way data is synced to disk in order to increase or decrease
+** how well the database resists damage due to OS crashes and power
+** failures. Level 1 is the same as asynchronous (no syncs() occur and
+** there is a high probability of damage) Level 2 is the default. There
+** is a very low but non-zero probability of damage. Level 3 reduces the
+** probability of damage to near zero but with a write performance reduction.
+*/
+static int fileBtreeSetSafetyLevel(Btree *pBt, int level){
+ sqlitepager_set_safety_level(pBt->pPager, level);
+ return SQLITE_OK;
+}
+
+/*
+** Get a reference to page1 of the database file. This will
+** also actquire a readlock on that file.
+**
+** SQLITE_OK is returned on success. If the file is not a
+** well-formed database file, then SQLITE_CORRUPT is returned.
+** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
+** is returned if we run out of memory. SQLITE_PROTOCOL is returned
+** if there is a locking protocol violation.
+*/
+static int lockBtree(Btree *pBt){
+ int rc;
+ if( pBt->page1 ) return SQLITE_OK;
+ rc = sqlitepager_get(pBt->pPager, 1, (void**)&pBt->page1);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Do some checking to help insure the file we opened really is
+ ** a valid database file.
+ */
+ if( sqlitepager_pagecount(pBt->pPager)>0 ){
+ PageOne *pP1 = pBt->page1;
+ if( strcmp(pP1->zMagic,zMagicHeader)!=0 ||
+ (pP1->iMagic!=MAGIC && swab32(pP1->iMagic)!=MAGIC) ){
+ rc = SQLITE_NOTADB;
+ goto page1_init_failed;
+ }
+ pBt->needSwab = pP1->iMagic!=MAGIC;
+ }
+ return rc;
+
+page1_init_failed:
+ sqlitepager_unref(pBt->page1);
+ pBt->page1 = 0;
+ return rc;
+}
+
+/*
+** If there are no outstanding cursors and we are not in the middle
+** of a transaction but there is a read lock on the database, then
+** this routine unrefs the first page of the database file which
+** has the effect of releasing the read lock.
+**
+** If there are any outstanding cursors, this routine is a no-op.
+**
+** If there is a transaction in progress, this routine is a no-op.
+*/
+static void unlockBtreeIfUnused(Btree *pBt){
+ if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->page1!=0 ){
+ sqlitepager_unref(pBt->page1);
+ pBt->page1 = 0;
+ pBt->inTrans = 0;
+ pBt->inCkpt = 0;
+ }
+}
+
+/*
+** Create a new database by initializing the first two pages of the
+** file.
+*/
+static int newDatabase(Btree *pBt){
+ MemPage *pRoot;
+ PageOne *pP1;
+ int rc;
+ if( sqlitepager_pagecount(pBt->pPager)>1 ) return SQLITE_OK;
+ pP1 = pBt->page1;
+ rc = sqlitepager_write(pBt->page1);
+ if( rc ) return rc;
+ rc = sqlitepager_get(pBt->pPager, 2, (void**)&pRoot);
+ if( rc ) return rc;
+ rc = sqlitepager_write(pRoot);
+ if( rc ){
+ sqlitepager_unref(pRoot);
+ return rc;
+ }
+ strcpy(pP1->zMagic, zMagicHeader);
+ if( btree_native_byte_order ){
+ pP1->iMagic = MAGIC;
+ pBt->needSwab = 0;
+ }else{
+ pP1->iMagic = swab32(MAGIC);
+ pBt->needSwab = 1;
+ }
+ zeroPage(pBt, pRoot);
+ sqlitepager_unref(pRoot);
+ return SQLITE_OK;
+}
+
+/*
+** Attempt to start a new transaction.
+**
+** A transaction must be started before attempting any changes
+** to the database. None of the following routines will work
+** unless a transaction is started first:
+**
+** sqliteBtreeCreateTable()
+** sqliteBtreeCreateIndex()
+** sqliteBtreeClearTable()
+** sqliteBtreeDropTable()
+** sqliteBtreeInsert()
+** sqliteBtreeDelete()
+** sqliteBtreeUpdateMeta()
+*/
+static int fileBtreeBeginTrans(Btree *pBt){
+ int rc;
+ if( pBt->inTrans ) return SQLITE_ERROR;
+ if( pBt->readOnly ) return SQLITE_READONLY;
+ if( pBt->page1==0 ){
+ rc = lockBtree(pBt);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+ rc = sqlitepager_begin(pBt->page1);
+ if( rc==SQLITE_OK ){
+ rc = newDatabase(pBt);
+ }
+ if( rc==SQLITE_OK ){
+ pBt->inTrans = 1;
+ pBt->inCkpt = 0;
+ }else{
+ unlockBtreeIfUnused(pBt);
+ }
+ return rc;
+}
+
+/*
+** Commit the transaction currently in progress.
+**
+** This will release the write lock on the database file. If there
+** are no active cursors, it also releases the read lock.
+*/
+static int fileBtreeCommit(Btree *pBt){
+ int rc;
+ rc = pBt->readOnly ? SQLITE_OK : sqlitepager_commit(pBt->pPager);
+ pBt->inTrans = 0;
+ pBt->inCkpt = 0;
+ unlockBtreeIfUnused(pBt);
+ return rc;
+}
+
+/*
+** Rollback the transaction in progress. All cursors will be
+** invalided by this operation. Any attempt to use a cursor
+** that was open at the beginning of this operation will result
+** in an error.
+**
+** This will release the write lock on the database file. If there
+** are no active cursors, it also releases the read lock.
+*/
+static int fileBtreeRollback(Btree *pBt){
+ int rc;
+ BtCursor *pCur;
+ if( pBt->inTrans==0 ) return SQLITE_OK;
+ pBt->inTrans = 0;
+ pBt->inCkpt = 0;
+ rc = pBt->readOnly ? SQLITE_OK : sqlitepager_rollback(pBt->pPager);
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
+ if( pCur->pPage && pCur->pPage->isInit==0 ){
+ sqlitepager_unref(pCur->pPage);
+ pCur->pPage = 0;
+ }
+ }
+ unlockBtreeIfUnused(pBt);
+ return rc;
+}
+
+/*
+** Set the checkpoint for the current transaction. The checkpoint serves
+** as a sub-transaction that can be rolled back independently of the
+** main transaction. You must start a transaction before starting a
+** checkpoint. The checkpoint is ended automatically if the transaction
+** commits or rolls back.
+**
+** Only one checkpoint may be active at a time. It is an error to try
+** to start a new checkpoint if another checkpoint is already active.
+*/
+static int fileBtreeBeginCkpt(Btree *pBt){
+ int rc;
+ if( !pBt->inTrans || pBt->inCkpt ){
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ rc = pBt->readOnly ? SQLITE_OK : sqlitepager_ckpt_begin(pBt->pPager);
+ pBt->inCkpt = 1;
+ return rc;
+}
+
+
+/*
+** Commit a checkpoint to transaction currently in progress. If no
+** checkpoint is active, this is a no-op.
+*/
+static int fileBtreeCommitCkpt(Btree *pBt){
+ int rc;
+ if( pBt->inCkpt && !pBt->readOnly ){
+ rc = sqlitepager_ckpt_commit(pBt->pPager);
+ }else{
+ rc = SQLITE_OK;
+ }
+ pBt->inCkpt = 0;
+ return rc;
+}
+
+/*
+** Rollback the checkpoint to the current transaction. If there
+** is no active checkpoint or transaction, this routine is a no-op.
+**
+** All cursors will be invalided by this operation. Any attempt
+** to use a cursor that was open at the beginning of this operation
+** will result in an error.
+*/
+static int fileBtreeRollbackCkpt(Btree *pBt){
+ int rc;
+ BtCursor *pCur;
+ if( pBt->inCkpt==0 || pBt->readOnly ) return SQLITE_OK;
+ rc = sqlitepager_ckpt_rollback(pBt->pPager);
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
+ if( pCur->pPage && pCur->pPage->isInit==0 ){
+ sqlitepager_unref(pCur->pPage);
+ pCur->pPage = 0;
+ }
+ }
+ pBt->inCkpt = 0;
+ return rc;
+}
+
+/*
+** Create a new cursor for the BTree whose root is on the page
+** iTable. The act of actquiring a cursor gets a read lock on
+** the database file.
+**
+** If wrFlag==0, then the cursor can only be used for reading.
+** If wrFlag==1, then the cursor can be used for reading or for
+** writing if other conditions for writing are also met. These
+** are the conditions that must be met in order for writing to
+** be allowed:
+**
+** 1: The cursor must have been opened with wrFlag==1
+**
+** 2: No other cursors may be open with wrFlag==0 on the same table
+**
+** 3: The database must be writable (not on read-only media)
+**
+** 4: There must be an active transaction.
+**
+** Condition 2 warrants further discussion. If any cursor is opened
+** on a table with wrFlag==0, that prevents all other cursors from
+** writing to that table. This is a kind of "read-lock". When a cursor
+** is opened with wrFlag==0 it is guaranteed that the table will not
+** change as long as the cursor is open. This allows the cursor to
+** do a sequential scan of the table without having to worry about
+** entries being inserted or deleted during the scan. Cursors should
+** be opened with wrFlag==0 only if this read-lock property is needed.
+** That is to say, cursors should be opened with wrFlag==0 only if they
+** intend to use the sqliteBtreeNext() system call. All other cursors
+** should be opened with wrFlag==1 even if they never really intend
+** to write.
+**
+** No checking is done to make sure that page iTable really is the
+** root page of a b-tree. If it is not, then the cursor actquired
+** will not work correctly.
+*/
+static int fileBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur){
+ int rc;
+ BtCursor *pCur, *pRing;
+
+ if( pBt->page1==0 ){
+ rc = lockBtree(pBt);
+ if( rc!=SQLITE_OK ){
+ *ppCur = 0;
+ return rc;
+ }
+ }
+ pCur = sqliteMalloc( sizeof(*pCur) );
+ if( pCur==0 ){
+ rc = SQLITE_NOMEM;
+ goto create_cursor_exception;
+ }
+ pCur->pgnoRoot = (Pgno)iTable;
+ rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pCur->pPage);
+ if( rc!=SQLITE_OK ){
+ goto create_cursor_exception;
+ }
+ rc = initPage(pBt, pCur->pPage, pCur->pgnoRoot, 0);
+ if( rc!=SQLITE_OK ){
+ goto create_cursor_exception;
+ }
+ pCur->pOps = &sqliteBtreeCursorOps;
+ pCur->pBt = pBt;
+ pCur->wrFlag = wrFlag;
+ pCur->idx = 0;
+ pCur->eSkip = SKIP_INVALID;
+ pCur->pNext = pBt->pCursor;
+ if( pCur->pNext ){
+ pCur->pNext->pPrev = pCur;
+ }
+ pCur->pPrev = 0;
+ pRing = pBt->pCursor;
+ while( pRing && pRing->pgnoRoot!=pCur->pgnoRoot ){ pRing = pRing->pNext; }
+ if( pRing ){
+ pCur->pShared = pRing->pShared;
+ pRing->pShared = pCur;
+ }else{
+ pCur->pShared = pCur;
+ }
+ pBt->pCursor = pCur;
+ *ppCur = pCur;
+ return SQLITE_OK;
+
+create_cursor_exception:
+ *ppCur = 0;
+ if( pCur ){
+ if( pCur->pPage ) sqlitepager_unref(pCur->pPage);
+ sqliteFree(pCur);
+ }
+ unlockBtreeIfUnused(pBt);
+ return rc;
+}
+
+/*
+** Close a cursor. The read lock on the database file is released
+** when the last cursor is closed.
+*/
+static int fileBtreeCloseCursor(BtCursor *pCur){
+ Btree *pBt = pCur->pBt;
+ if( pCur->pPrev ){
+ pCur->pPrev->pNext = pCur->pNext;
+ }else{
+ pBt->pCursor = pCur->pNext;
+ }
+ if( pCur->pNext ){
+ pCur->pNext->pPrev = pCur->pPrev;
+ }
+ if( pCur->pPage ){
+ sqlitepager_unref(pCur->pPage);
+ }
+ if( pCur->pShared!=pCur ){
+ BtCursor *pRing = pCur->pShared;
+ while( pRing->pShared!=pCur ){ pRing = pRing->pShared; }
+ pRing->pShared = pCur->pShared;
+ }
+ unlockBtreeIfUnused(pBt);
+ sqliteFree(pCur);
+ return SQLITE_OK;
+}
+
+/*
+** Make a temporary cursor by filling in the fields of pTempCur.
+** The temporary cursor is not on the cursor list for the Btree.
+*/
+static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
+ memcpy(pTempCur, pCur, sizeof(*pCur));
+ pTempCur->pNext = 0;
+ pTempCur->pPrev = 0;
+ if( pTempCur->pPage ){
+ sqlitepager_ref(pTempCur->pPage);
+ }
+}
+
+/*
+** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
+** function above.
+*/
+static void releaseTempCursor(BtCursor *pCur){
+ if( pCur->pPage ){
+ sqlitepager_unref(pCur->pPage);
+ }
+}
+
+/*
+** Set *pSize to the number of bytes of key in the entry the
+** cursor currently points to. Always return SQLITE_OK.
+** Failure is not possible. If the cursor is not currently
+** pointing to an entry (which can happen, for example, if
+** the database is empty) then *pSize is set to 0.
+*/
+static int fileBtreeKeySize(BtCursor *pCur, int *pSize){
+ Cell *pCell;
+ MemPage *pPage;
+
+ pPage = pCur->pPage;
+ assert( pPage!=0 );
+ if( pCur->idx >= pPage->nCell ){
+ *pSize = 0;
+ }else{
+ pCell = pPage->apCell[pCur->idx];
+ *pSize = NKEY(pCur->pBt, pCell->h);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Read payload information from the entry that the pCur cursor is
+** pointing to. Begin reading the payload at "offset" and read
+** a total of "amt" bytes. Put the result in zBuf.
+**
+** This routine does not make a distinction between key and data.
+** It just reads bytes from the payload area.
+*/
+static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
+ char *aPayload;
+ Pgno nextPage;
+ int rc;
+ Btree *pBt = pCur->pBt;
+ assert( pCur!=0 && pCur->pPage!=0 );
+ assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
+ aPayload = pCur->pPage->apCell[pCur->idx]->aPayload;
+ if( offset<MX_LOCAL_PAYLOAD ){
+ int a = amt;
+ if( a+offset>MX_LOCAL_PAYLOAD ){
+ a = MX_LOCAL_PAYLOAD - offset;
+ }
+ memcpy(zBuf, &aPayload[offset], a);
+ if( a==amt ){
+ return SQLITE_OK;
+ }
+ offset = 0;
+ zBuf += a;
+ amt -= a;
+ }else{
+ offset -= MX_LOCAL_PAYLOAD;
+ }
+ if( amt>0 ){
+ nextPage = SWAB32(pBt, pCur->pPage->apCell[pCur->idx]->ovfl);
+ }
+ while( amt>0 && nextPage ){
+ OverflowPage *pOvfl;
+ rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
+ if( rc!=0 ){
+ return rc;
+ }
+ nextPage = SWAB32(pBt, pOvfl->iNext);
+ if( offset<OVERFLOW_SIZE ){
+ int a = amt;
+ if( a + offset > OVERFLOW_SIZE ){
+ a = OVERFLOW_SIZE - offset;
+ }
+ memcpy(zBuf, &pOvfl->aPayload[offset], a);
+ offset = 0;
+ amt -= a;
+ zBuf += a;
+ }else{
+ offset -= OVERFLOW_SIZE;
+ }
+ sqlitepager_unref(pOvfl);
+ }
+ if( amt>0 ){
+ return SQLITE_CORRUPT;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Read part of the key associated with cursor pCur. A maximum
+** of "amt" bytes will be transfered into zBuf[]. The transfer
+** begins at "offset". The number of bytes actually read is
+** returned.
+**
+** Change: It used to be that the amount returned will be smaller
+** than the amount requested if there are not enough bytes in the key
+** to satisfy the request. But now, it must be the case that there
+** is enough data available to satisfy the request. If not, an exception
+** is raised. The change was made in an effort to boost performance
+** by eliminating unneeded tests.
+*/
+static int fileBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
+ MemPage *pPage;
+
+ assert( amt>=0 );
+ assert( offset>=0 );
+ assert( pCur->pPage!=0 );
+ pPage = pCur->pPage;
+ if( pCur->idx >= pPage->nCell ){
+ return 0;
+ }
+ assert( amt+offset <= NKEY(pCur->pBt, pPage->apCell[pCur->idx]->h) );
+ getPayload(pCur, offset, amt, zBuf);
+ return amt;
+}
+
+/*
+** Set *pSize to the number of bytes of data in the entry the
+** cursor currently points to. Always return SQLITE_OK.
+** Failure is not possible. If the cursor is not currently
+** pointing to an entry (which can happen, for example, if
+** the database is empty) then *pSize is set to 0.
+*/
+static int fileBtreeDataSize(BtCursor *pCur, int *pSize){
+ Cell *pCell;
+ MemPage *pPage;
+
+ pPage = pCur->pPage;
+ assert( pPage!=0 );
+ if( pCur->idx >= pPage->nCell ){
+ *pSize = 0;
+ }else{
+ pCell = pPage->apCell[pCur->idx];
+ *pSize = NDATA(pCur->pBt, pCell->h);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Read part of the data associated with cursor pCur. A maximum
+** of "amt" bytes will be transfered into zBuf[]. The transfer
+** begins at "offset". The number of bytes actually read is
+** returned. The amount returned will be smaller than the
+** amount requested if there are not enough bytes in the data
+** to satisfy the request.
+*/
+static int fileBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
+ Cell *pCell;
+ MemPage *pPage;
+
+ assert( amt>=0 );
+ assert( offset>=0 );
+ assert( pCur->pPage!=0 );
+ pPage = pCur->pPage;
+ if( pCur->idx >= pPage->nCell ){
+ return 0;
+ }
+ pCell = pPage->apCell[pCur->idx];
+ assert( amt+offset <= NDATA(pCur->pBt, pCell->h) );
+ getPayload(pCur, offset + NKEY(pCur->pBt, pCell->h), amt, zBuf);
+ return amt;
+}
+
+/*
+** Compare an external key against the key on the entry that pCur points to.
+**
+** The external key is pKey and is nKey bytes long. The last nIgnore bytes
+** of the key associated with pCur are ignored, as if they do not exist.
+** (The normal case is for nIgnore to be zero in which case the entire
+** internal key is used in the comparison.)
+**
+** The comparison result is written to *pRes as follows:
+**
+** *pRes<0 This means pCur<pKey
+**
+** *pRes==0 This means pCur==pKey for all nKey bytes
+**
+** *pRes>0 This means pCur>pKey
+**
+** When one key is an exact prefix of the other, the shorter key is
+** considered less than the longer one. In order to be equal the
+** keys must be exactly the same length. (The length of the pCur key
+** is the actual key length minus nIgnore bytes.)
+*/
+static int fileBtreeKeyCompare(
+ BtCursor *pCur, /* Pointer to entry to compare against */
+ const void *pKey, /* Key to compare against entry that pCur points to */
+ int nKey, /* Number of bytes in pKey */
+ int nIgnore, /* Ignore this many bytes at the end of pCur */
+ int *pResult /* Write the result here */
+){
+ Pgno nextPage;
+ int n, c, rc, nLocal;
+ Cell *pCell;
+ Btree *pBt = pCur->pBt;
+ const char *zKey = (const char*)pKey;
+
+ assert( pCur->pPage );
+ assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
+ pCell = pCur->pPage->apCell[pCur->idx];
+ nLocal = NKEY(pBt, pCell->h) - nIgnore;
+ if( nLocal<0 ) nLocal = 0;
+ n = nKey<nLocal ? nKey : nLocal;
+ if( n>MX_LOCAL_PAYLOAD ){
+ n = MX_LOCAL_PAYLOAD;
+ }
+ c = memcmp(pCell->aPayload, zKey, n);
+ if( c!=0 ){
+ *pResult = c;
+ return SQLITE_OK;
+ }
+ zKey += n;
+ nKey -= n;
+ nLocal -= n;
+ nextPage = SWAB32(pBt, pCell->ovfl);
+ while( nKey>0 && nLocal>0 ){
+ OverflowPage *pOvfl;
+ if( nextPage==0 ){
+ return SQLITE_CORRUPT;
+ }
+ rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
+ if( rc ){
+ return rc;
+ }
+ nextPage = SWAB32(pBt, pOvfl->iNext);
+ n = nKey<nLocal ? nKey : nLocal;
+ if( n>OVERFLOW_SIZE ){
+ n = OVERFLOW_SIZE;
+ }
+ c = memcmp(pOvfl->aPayload, zKey, n);
+ sqlitepager_unref(pOvfl);
+ if( c!=0 ){
+ *pResult = c;
+ return SQLITE_OK;
+ }
+ nKey -= n;
+ nLocal -= n;
+ zKey += n;
+ }
+ if( c==0 ){
+ c = nLocal - nKey;
+ }
+ *pResult = c;
+ return SQLITE_OK;
+}
+
+/*
+** Move the cursor down to a new child page. The newPgno argument is the
+** page number of the child page in the byte order of the disk image.
+*/
+static int moveToChild(BtCursor *pCur, int newPgno){
+ int rc;
+ MemPage *pNewPage;
+ Btree *pBt = pCur->pBt;
+
+ newPgno = SWAB32(pBt, newPgno);
+ rc = sqlitepager_get(pBt->pPager, newPgno, (void**)&pNewPage);
+ if( rc ) return rc;
+ rc = initPage(pBt, pNewPage, newPgno, pCur->pPage);
+ if( rc ) return rc;
+ assert( pCur->idx>=pCur->pPage->nCell
+ || pCur->pPage->apCell[pCur->idx]->h.leftChild==SWAB32(pBt,newPgno) );
+ assert( pCur->idx<pCur->pPage->nCell
+ || pCur->pPage->u.hdr.rightChild==SWAB32(pBt,newPgno) );
+ pNewPage->idxParent = pCur->idx;
+ pCur->pPage->idxShift = 0;
+ sqlitepager_unref(pCur->pPage);
+ pCur->pPage = pNewPage;
+ pCur->idx = 0;
+ if( pNewPage->nCell<1 ){
+ return SQLITE_CORRUPT;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Move the cursor up to the parent page.
+**
+** pCur->idx is set to the cell index that contains the pointer
+** to the page we are coming from. If we are coming from the
+** right-most child page then pCur->idx is set to one more than
+** the largest cell index.
+*/
+static void moveToParent(BtCursor *pCur){
+ Pgno oldPgno;
+ MemPage *pParent;
+ MemPage *pPage;
+ int idxParent;
+ pPage = pCur->pPage;
+ assert( pPage!=0 );
+ pParent = pPage->pParent;
+ assert( pParent!=0 );
+ idxParent = pPage->idxParent;
+ sqlitepager_ref(pParent);
+ sqlitepager_unref(pPage);
+ pCur->pPage = pParent;
+ assert( pParent->idxShift==0 );
+ if( pParent->idxShift==0 ){
+ pCur->idx = idxParent;
+#ifndef NDEBUG
+ /* Verify that pCur->idx is the correct index to point back to the child
+ ** page we just came from
+ */
+ oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
+ if( pCur->idx<pParent->nCell ){
+ assert( pParent->apCell[idxParent]->h.leftChild==oldPgno );
+ }else{
+ assert( pParent->u.hdr.rightChild==oldPgno );
+ }
+#endif
+ }else{
+ /* The MemPage.idxShift flag indicates that cell indices might have
+ ** changed since idxParent was set and hence idxParent might be out
+ ** of date. So recompute the parent cell index by scanning all cells
+ ** and locating the one that points to the child we just came from.
+ */
+ int i;
+ pCur->idx = pParent->nCell;
+ oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
+ for(i=0; i<pParent->nCell; i++){
+ if( pParent->apCell[i]->h.leftChild==oldPgno ){
+ pCur->idx = i;
+ break;
+ }
+ }
+ }
+}
+
+/*
+** Move the cursor to the root page
+*/
+static int moveToRoot(BtCursor *pCur){
+ MemPage *pNew;
+ int rc;
+ Btree *pBt = pCur->pBt;
+
+ rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pNew);
+ if( rc ) return rc;
+ rc = initPage(pBt, pNew, pCur->pgnoRoot, 0);
+ if( rc ) return rc;
+ sqlitepager_unref(pCur->pPage);
+ pCur->pPage = pNew;
+ pCur->idx = 0;
+ return SQLITE_OK;
+}
+
+/*
+** Move the cursor down to the left-most leaf entry beneath the
+** entry to which it is currently pointing.
+*/
+static int moveToLeftmost(BtCursor *pCur){
+ Pgno pgno;
+ int rc;
+
+ while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
+ rc = moveToChild(pCur, pgno);
+ if( rc ) return rc;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Move the cursor down to the right-most leaf entry beneath the
+** page to which it is currently pointing. Notice the difference
+** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
+** finds the left-most entry beneath the *entry* whereas moveToRightmost()
+** finds the right-most entry beneath the *page*.
+*/
+static int moveToRightmost(BtCursor *pCur){
+ Pgno pgno;
+ int rc;
+
+ while( (pgno = pCur->pPage->u.hdr.rightChild)!=0 ){
+ pCur->idx = pCur->pPage->nCell;
+ rc = moveToChild(pCur, pgno);
+ if( rc ) return rc;
+ }
+ pCur->idx = pCur->pPage->nCell - 1;
+ return SQLITE_OK;
+}
+
+/* Move the cursor to the first entry in the table. Return SQLITE_OK
+** on success. Set *pRes to 0 if the cursor actually points to something
+** or set *pRes to 1 if the table is empty.
+*/
+static int fileBtreeFirst(BtCursor *pCur, int *pRes){
+ int rc;
+ if( pCur->pPage==0 ) return SQLITE_ABORT;
+ rc = moveToRoot(pCur);
+ if( rc ) return rc;
+ if( pCur->pPage->nCell==0 ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ *pRes = 0;
+ rc = moveToLeftmost(pCur);
+ pCur->eSkip = SKIP_NONE;
+ return rc;
+}
+
+/* Move the cursor to the last entry in the table. Return SQLITE_OK
+** on success. Set *pRes to 0 if the cursor actually points to something
+** or set *pRes to 1 if the table is empty.
+*/
+static int fileBtreeLast(BtCursor *pCur, int *pRes){
+ int rc;
+ if( pCur->pPage==0 ) return SQLITE_ABORT;
+ rc = moveToRoot(pCur);
+ if( rc ) return rc;
+ assert( pCur->pPage->isInit );
+ if( pCur->pPage->nCell==0 ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ *pRes = 0;
+ rc = moveToRightmost(pCur);
+ pCur->eSkip = SKIP_NONE;
+ return rc;
+}
+
+/* Move the cursor so that it points to an entry near pKey.
+** Return a success code.
+**
+** If an exact match is not found, then the cursor is always
+** left pointing at a leaf page which would hold the entry if it
+** were present. The cursor might point to an entry that comes
+** before or after the key.
+**
+** The result of comparing the key with the entry to which the
+** cursor is left pointing is stored in pCur->iMatch. The same
+** value is also written to *pRes if pRes!=NULL. The meaning of
+** this value is as follows:
+**
+** *pRes<0 The cursor is left pointing at an entry that
+** is smaller than pKey or if the table is empty
+** and the cursor is therefore left point to nothing.
+**
+** *pRes==0 The cursor is left pointing at an entry that
+** exactly matches pKey.
+**
+** *pRes>0 The cursor is left pointing at an entry that
+** is larger than pKey.
+*/
+static
+int fileBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
+ int rc;
+ if( pCur->pPage==0 ) return SQLITE_ABORT;
+ pCur->eSkip = SKIP_NONE;
+ rc = moveToRoot(pCur);
+ if( rc ) return rc;
+ for(;;){
+ int lwr, upr;
+ Pgno chldPg;
+ MemPage *pPage = pCur->pPage;
+ int c = -1; /* pRes return if table is empty must be -1 */
+ lwr = 0;
+ upr = pPage->nCell-1;
+ while( lwr<=upr ){
+ pCur->idx = (lwr+upr)/2;
+ rc = fileBtreeKeyCompare(pCur, pKey, nKey, 0, &c);
+ if( rc ) return rc;
+ if( c==0 ){
+ pCur->iMatch = c;
+ if( pRes ) *pRes = 0;
+ return SQLITE_OK;
+ }
+ if( c<0 ){
+ lwr = pCur->idx+1;
+ }else{
+ upr = pCur->idx-1;
+ }
+ }
+ assert( lwr==upr+1 );
+ assert( pPage->isInit );
+ if( lwr>=pPage->nCell ){
+ chldPg = pPage->u.hdr.rightChild;
+ }else{
+ chldPg = pPage->apCell[lwr]->h.leftChild;
+ }
+ if( chldPg==0 ){
+ pCur->iMatch = c;
+ if( pRes ) *pRes = c;
+ return SQLITE_OK;
+ }
+ pCur->idx = lwr;
+ rc = moveToChild(pCur, chldPg);
+ if( rc ) return rc;
+ }
+ /* NOT REACHED */
+}
+
+/*
+** Advance the cursor to the next entry in the database. If
+** successful then set *pRes=0. If the cursor
+** was already pointing to the last entry in the database before
+** this routine was called, then set *pRes=1.
+*/
+static int fileBtreeNext(BtCursor *pCur, int *pRes){
+ int rc;
+ MemPage *pPage = pCur->pPage;
+ assert( pRes!=0 );
+ if( pPage==0 ){
+ *pRes = 1;
+ return SQLITE_ABORT;
+ }
+ assert( pPage->isInit );
+ assert( pCur->eSkip!=SKIP_INVALID );
+ if( pPage->nCell==0 ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ assert( pCur->idx<pPage->nCell );
+ if( pCur->eSkip==SKIP_NEXT ){
+ pCur->eSkip = SKIP_NONE;
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ pCur->eSkip = SKIP_NONE;
+ pCur->idx++;
+ if( pCur->idx>=pPage->nCell ){
+ if( pPage->u.hdr.rightChild ){
+ rc = moveToChild(pCur, pPage->u.hdr.rightChild);
+ if( rc ) return rc;
+ rc = moveToLeftmost(pCur);
+ *pRes = 0;
+ return rc;
+ }
+ do{
+ if( pPage->pParent==0 ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ moveToParent(pCur);
+ pPage = pCur->pPage;
+ }while( pCur->idx>=pPage->nCell );
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ *pRes = 0;
+ if( pPage->u.hdr.rightChild==0 ){
+ return SQLITE_OK;
+ }
+ rc = moveToLeftmost(pCur);
+ return rc;
+}
+
+/*
+** Step the cursor to the back to the previous entry in the database. If
+** successful then set *pRes=0. If the cursor
+** was already pointing to the first entry in the database before
+** this routine was called, then set *pRes=1.
+*/
+static int fileBtreePrevious(BtCursor *pCur, int *pRes){
+ int rc;
+ Pgno pgno;
+ MemPage *pPage;
+ pPage = pCur->pPage;
+ if( pPage==0 ){
+ *pRes = 1;
+ return SQLITE_ABORT;
+ }
+ assert( pPage->isInit );
+ assert( pCur->eSkip!=SKIP_INVALID );
+ if( pPage->nCell==0 ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ if( pCur->eSkip==SKIP_PREV ){
+ pCur->eSkip = SKIP_NONE;
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ pCur->eSkip = SKIP_NONE;
+ assert( pCur->idx>=0 );
+ if( (pgno = pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
+ rc = moveToChild(pCur, pgno);
+ if( rc ) return rc;
+ rc = moveToRightmost(pCur);
+ }else{
+ while( pCur->idx==0 ){
+ if( pPage->pParent==0 ){
+ if( pRes ) *pRes = 1;
+ return SQLITE_OK;
+ }
+ moveToParent(pCur);
+ pPage = pCur->pPage;
+ }
+ pCur->idx--;
+ rc = SQLITE_OK;
+ }
+ *pRes = 0;
+ return rc;
+}
+
+/*
+** Allocate a new page from the database file.
+**
+** The new page is marked as dirty. (In other words, sqlitepager_write()
+** has already been called on the new page.) The new page has also
+** been referenced and the calling routine is responsible for calling
+** sqlitepager_unref() on the new page when it is done.
+**
+** SQLITE_OK is returned on success. Any other return value indicates
+** an error. *ppPage and *pPgno are undefined in the event of an error.
+** Do not invoke sqlitepager_unref() on *ppPage if an error is returned.
+**
+** If the "nearby" parameter is not 0, then a (feeble) effort is made to
+** locate a page close to the page number "nearby". This can be used in an
+** attempt to keep related pages close to each other in the database file,
+** which in turn can make database access faster.
+*/
+static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){
+ PageOne *pPage1 = pBt->page1;
+ int rc;
+ if( pPage1->freeList ){
+ OverflowPage *pOvfl;
+ FreelistInfo *pInfo;
+
+ rc = sqlitepager_write(pPage1);
+ if( rc ) return rc;
+ SWAB_ADD(pBt, pPage1->nFree, -1);
+ rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
+ (void**)&pOvfl);
+ if( rc ) return rc;
+ rc = sqlitepager_write(pOvfl);
+ if( rc ){
+ sqlitepager_unref(pOvfl);
+ return rc;
+ }
+ pInfo = (FreelistInfo*)pOvfl->aPayload;
+ if( pInfo->nFree==0 ){
+ *pPgno = SWAB32(pBt, pPage1->freeList);
+ pPage1->freeList = pOvfl->iNext;
+ *ppPage = (MemPage*)pOvfl;
+ }else{
+ int closest, n;
+ n = SWAB32(pBt, pInfo->nFree);
+ if( n>1 && nearby>0 ){
+ int i, dist;
+ closest = 0;
+ dist = SWAB32(pBt, pInfo->aFree[0]) - nearby;
+ if( dist<0 ) dist = -dist;
+ for(i=1; i<n; i++){
+ int d2 = SWAB32(pBt, pInfo->aFree[i]) - nearby;
+ if( d2<0 ) d2 = -d2;
+ if( d2<dist ) closest = i;
+ }
+ }else{
+ closest = 0;
+ }
+ SWAB_ADD(pBt, pInfo->nFree, -1);
+ *pPgno = SWAB32(pBt, pInfo->aFree[closest]);
+ pInfo->aFree[closest] = pInfo->aFree[n-1];
+ rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
+ sqlitepager_unref(pOvfl);
+ if( rc==SQLITE_OK ){
+ sqlitepager_dont_rollback(*ppPage);
+ rc = sqlitepager_write(*ppPage);
+ }
+ }
+ }else{
+ *pPgno = sqlitepager_pagecount(pBt->pPager) + 1;
+ rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
+ if( rc ) return rc;
+ rc = sqlitepager_write(*ppPage);
+ }
+ return rc;
+}
+
+/*
+** Add a page of the database file to the freelist. Either pgno or
+** pPage but not both may be 0.
+**
+** sqlitepager_unref() is NOT called for pPage.
+*/
+static int freePage(Btree *pBt, void *pPage, Pgno pgno){
+ PageOne *pPage1 = pBt->page1;
+ OverflowPage *pOvfl = (OverflowPage*)pPage;
+ int rc;
+ int needUnref = 0;
+ MemPage *pMemPage;
+
+ if( pgno==0 ){
+ assert( pOvfl!=0 );
+ pgno = sqlitepager_pagenumber(pOvfl);
+ }
+ assert( pgno>2 );
+ assert( sqlitepager_pagenumber(pOvfl)==pgno );
+ pMemPage = (MemPage*)pPage;
+ pMemPage->isInit = 0;
+ if( pMemPage->pParent ){
+ sqlitepager_unref(pMemPage->pParent);
+ pMemPage->pParent = 0;
+ }
+ rc = sqlitepager_write(pPage1);
+ if( rc ){
+ return rc;
+ }
+ SWAB_ADD(pBt, pPage1->nFree, 1);
+ if( pPage1->nFree!=0 && pPage1->freeList!=0 ){
+ OverflowPage *pFreeIdx;
+ rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
+ (void**)&pFreeIdx);
+ if( rc==SQLITE_OK ){
+ FreelistInfo *pInfo = (FreelistInfo*)pFreeIdx->aPayload;
+ int n = SWAB32(pBt, pInfo->nFree);
+ if( n<(sizeof(pInfo->aFree)/sizeof(pInfo->aFree[0])) ){
+ rc = sqlitepager_write(pFreeIdx);
+ if( rc==SQLITE_OK ){
+ pInfo->aFree[n] = SWAB32(pBt, pgno);
+ SWAB_ADD(pBt, pInfo->nFree, 1);
+ sqlitepager_unref(pFreeIdx);
+ sqlitepager_dont_write(pBt->pPager, pgno);
+ return rc;
+ }
+ }
+ sqlitepager_unref(pFreeIdx);
+ }
+ }
+ if( pOvfl==0 ){
+ assert( pgno>0 );
+ rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pOvfl);
+ if( rc ) return rc;
+ needUnref = 1;
+ }
+ rc = sqlitepager_write(pOvfl);
+ if( rc ){
+ if( needUnref ) sqlitepager_unref(pOvfl);
+ return rc;
+ }
+ pOvfl->iNext = pPage1->freeList;
+ pPage1->freeList = SWAB32(pBt, pgno);
+ memset(pOvfl->aPayload, 0, OVERFLOW_SIZE);
+ if( needUnref ) rc = sqlitepager_unref(pOvfl);
+ return rc;
+}
+
+/*
+** Erase all the data out of a cell. This involves returning overflow
+** pages back the freelist.
+*/
+static int clearCell(Btree *pBt, Cell *pCell){
+ Pager *pPager = pBt->pPager;
+ OverflowPage *pOvfl;
+ Pgno ovfl, nextOvfl;
+ int rc;
+
+ if( NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h) <= MX_LOCAL_PAYLOAD ){
+ return SQLITE_OK;
+ }
+ ovfl = SWAB32(pBt, pCell->ovfl);
+ pCell->ovfl = 0;
+ while( ovfl ){
+ rc = sqlitepager_get(pPager, ovfl, (void**)&pOvfl);
+ if( rc ) return rc;
+ nextOvfl = SWAB32(pBt, pOvfl->iNext);
+ rc = freePage(pBt, pOvfl, ovfl);
+ if( rc ) return rc;
+ sqlitepager_unref(pOvfl);
+ ovfl = nextOvfl;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Create a new cell from key and data. Overflow pages are allocated as
+** necessary and linked to this cell.
+*/
+static int fillInCell(
+ Btree *pBt, /* The whole Btree. Needed to allocate pages */
+ Cell *pCell, /* Populate this Cell structure */
+ const void *pKey, int nKey, /* The key */
+ const void *pData,int nData /* The data */
+){
+ OverflowPage *pOvfl, *pPrior;
+ Pgno *pNext;
+ int spaceLeft;
+ int n, rc;
+ int nPayload;
+ const char *pPayload;
+ char *pSpace;
+ Pgno nearby = 0;
+
+ pCell->h.leftChild = 0;
+ pCell->h.nKey = SWAB16(pBt, nKey & 0xffff);
+ pCell->h.nKeyHi = nKey >> 16;
+ pCell->h.nData = SWAB16(pBt, nData & 0xffff);
+ pCell->h.nDataHi = nData >> 16;
+ pCell->h.iNext = 0;
+
+ pNext = &pCell->ovfl;
+ pSpace = pCell->aPayload;
+ spaceLeft = MX_LOCAL_PAYLOAD;
+ pPayload = pKey;
+ pKey = 0;
+ nPayload = nKey;
+ pPrior = 0;
+ while( nPayload>0 ){
+ if( spaceLeft==0 ){
+ rc = allocatePage(pBt, (MemPage**)&pOvfl, pNext, nearby);
+ if( rc ){
+ *pNext = 0;
+ }else{
+ nearby = *pNext;
+ }
+ if( pPrior ) sqlitepager_unref(pPrior);
+ if( rc ){
+ clearCell(pBt, pCell);
+ return rc;
+ }
+ if( pBt->needSwab ) *pNext = swab32(*pNext);
+ pPrior = pOvfl;
+ spaceLeft = OVERFLOW_SIZE;
+ pSpace = pOvfl->aPayload;
+ pNext = &pOvfl->iNext;
+ }
+ n = nPayload;
+ if( n>spaceLeft ) n = spaceLeft;
+ memcpy(pSpace, pPayload, n);
+ nPayload -= n;
+ if( nPayload==0 && pData ){
+ pPayload = pData;
+ nPayload = nData;
+ pData = 0;
+ }else{
+ pPayload += n;
+ }
+ spaceLeft -= n;
+ pSpace += n;
+ }
+ *pNext = 0;
+ if( pPrior ){
+ sqlitepager_unref(pPrior);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Change the MemPage.pParent pointer on the page whose number is
+** given in the second argument so that MemPage.pParent holds the
+** pointer in the third argument.
+*/
+static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent,int idx){
+ MemPage *pThis;
+
+ if( pgno==0 ) return;
+ assert( pPager!=0 );
+ pThis = sqlitepager_lookup(pPager, pgno);
+ if( pThis && pThis->isInit ){
+ if( pThis->pParent!=pNewParent ){
+ if( pThis->pParent ) sqlitepager_unref(pThis->pParent);
+ pThis->pParent = pNewParent;
+ if( pNewParent ) sqlitepager_ref(pNewParent);
+ }
+ pThis->idxParent = idx;
+ sqlitepager_unref(pThis);
+ }
+}
+
+/*
+** Reparent all children of the given page to be the given page.
+** In other words, for every child of pPage, invoke reparentPage()
+** to make sure that each child knows that pPage is its parent.
+**
+** This routine gets called after you memcpy() one page into
+** another.
+*/
+static void reparentChildPages(Btree *pBt, MemPage *pPage){
+ int i;
+ Pager *pPager = pBt->pPager;
+ for(i=0; i<pPage->nCell; i++){
+ reparentPage(pPager, SWAB32(pBt, pPage->apCell[i]->h.leftChild), pPage, i);
+ }
+ reparentPage(pPager, SWAB32(pBt, pPage->u.hdr.rightChild), pPage, i);
+ pPage->idxShift = 0;
+}
+
+/*
+** Remove the i-th cell from pPage. This routine effects pPage only.
+** The cell content is not freed or deallocated. It is assumed that
+** the cell content has been copied someplace else. This routine just
+** removes the reference to the cell from pPage.
+**
+** "sz" must be the number of bytes in the cell.
+**
+** Do not bother maintaining the integrity of the linked list of Cells.
+** Only the pPage->apCell[] array is important. The relinkCellList()
+** routine will be called soon after this routine in order to rebuild
+** the linked list.
+*/
+static void dropCell(Btree *pBt, MemPage *pPage, int idx, int sz){
+ int j;
+ assert( idx>=0 && idx<pPage->nCell );
+ assert( sz==cellSize(pBt, pPage->apCell[idx]) );
+ assert( sqlitepager_iswriteable(pPage) );
+ freeSpace(pBt, pPage, Addr(pPage->apCell[idx]) - Addr(pPage), sz);
+ for(j=idx; j<pPage->nCell-1; j++){
+ pPage->apCell[j] = pPage->apCell[j+1];
+ }
+ pPage->nCell--;
+ pPage->idxShift = 1;
+}
+
+/*
+** Insert a new cell on pPage at cell index "i". pCell points to the
+** content of the cell.
+**
+** If the cell content will fit on the page, then put it there. If it
+** will not fit, then just make pPage->apCell[i] point to the content
+** and set pPage->isOverfull.
+**
+** Do not bother maintaining the integrity of the linked list of Cells.
+** Only the pPage->apCell[] array is important. The relinkCellList()
+** routine will be called soon after this routine in order to rebuild
+** the linked list.
+*/
+static void insertCell(Btree *pBt, MemPage *pPage, int i, Cell *pCell, int sz){
+ int idx, j;
+ assert( i>=0 && i<=pPage->nCell );
+ assert( sz==cellSize(pBt, pCell) );
+ assert( sqlitepager_iswriteable(pPage) );
+ idx = allocateSpace(pBt, pPage, sz);
+ for(j=pPage->nCell; j>i; j--){
+ pPage->apCell[j] = pPage->apCell[j-1];
+ }
+ pPage->nCell++;
+ if( idx<=0 ){
+ pPage->isOverfull = 1;
+ pPage->apCell[i] = pCell;
+ }else{
+ memcpy(&pPage->u.aDisk[idx], pCell, sz);
+ pPage->apCell[i] = (Cell*)&pPage->u.aDisk[idx];
+ }
+ pPage->idxShift = 1;
+}
+
+/*
+** Rebuild the linked list of cells on a page so that the cells
+** occur in the order specified by the pPage->apCell[] array.
+** Invoke this routine once to repair damage after one or more
+** invocations of either insertCell() or dropCell().
+*/
+static void relinkCellList(Btree *pBt, MemPage *pPage){
+ int i;
+ u16 *pIdx;
+ assert( sqlitepager_iswriteable(pPage) );
+ pIdx = &pPage->u.hdr.firstCell;
+ for(i=0; i<pPage->nCell; i++){
+ int idx = Addr(pPage->apCell[i]) - Addr(pPage);
+ assert( idx>0 && idx<SQLITE_USABLE_SIZE );
+ *pIdx = SWAB16(pBt, idx);
+ pIdx = &pPage->apCell[i]->h.iNext;
+ }
+ *pIdx = 0;
+}
+
+/*
+** Make a copy of the contents of pFrom into pTo. The pFrom->apCell[]
+** pointers that point into pFrom->u.aDisk[] must be adjusted to point
+** into pTo->u.aDisk[] instead. But some pFrom->apCell[] entries might
+** not point to pFrom->u.aDisk[]. Those are unchanged.
+*/
+static void copyPage(MemPage *pTo, MemPage *pFrom){
+ uptr from, to;
+ int i;
+ memcpy(pTo->u.aDisk, pFrom->u.aDisk, SQLITE_USABLE_SIZE);
+ pTo->pParent = 0;
+ pTo->isInit = 1;
+ pTo->nCell = pFrom->nCell;
+ pTo->nFree = pFrom->nFree;
+ pTo->isOverfull = pFrom->isOverfull;
+ to = Addr(pTo);
+ from = Addr(pFrom);
+ for(i=0; i<pTo->nCell; i++){
+ uptr x = Addr(pFrom->apCell[i]);
+ if( x>from && x<from+SQLITE_USABLE_SIZE ){
+ *((uptr*)&pTo->apCell[i]) = x + to - from;
+ }else{
+ pTo->apCell[i] = pFrom->apCell[i];
+ }
+ }
+}
+
+/*
+** The following parameters determine how many adjacent pages get involved
+** in a balancing operation. NN is the number of neighbors on either side
+** of the page that participate in the balancing operation. NB is the
+** total number of pages that participate, including the target page and
+** NN neighbors on either side.
+**
+** The minimum value of NN is 1 (of course). Increasing NN above 1
+** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
+** in exchange for a larger degradation in INSERT and UPDATE performance.
+** The value of NN appears to give the best results overall.
+*/
+#define NN 1 /* Number of neighbors on either side of pPage */
+#define NB (NN*2+1) /* Total pages involved in the balance */
+
+/*
+** This routine redistributes Cells on pPage and up to two siblings
+** of pPage so that all pages have about the same amount of free space.
+** Usually one sibling on either side of pPage is used in the balancing,
+** though both siblings might come from one side if pPage is the first
+** or last child of its parent. If pPage has fewer than two siblings
+** (something which can only happen if pPage is the root page or a
+** child of root) then all available siblings participate in the balancing.
+**
+** The number of siblings of pPage might be increased or decreased by
+** one in an effort to keep pages between 66% and 100% full. The root page
+** is special and is allowed to be less than 66% full. If pPage is
+** the root page, then the depth of the tree might be increased
+** or decreased by one, as necessary, to keep the root page from being
+** overfull or empty.
+**
+** This routine calls relinkCellList() on its input page regardless of
+** whether or not it does any real balancing. Client routines will typically
+** invoke insertCell() or dropCell() before calling this routine, so we
+** need to call relinkCellList() to clean up the mess that those other
+** routines left behind.
+**
+** pCur is left pointing to the same cell as when this routine was called
+** even if that cell gets moved to a different page. pCur may be NULL.
+** Set the pCur parameter to NULL if you do not care about keeping track
+** of a cell as that will save this routine the work of keeping track of it.
+**
+** Note that when this routine is called, some of the Cells on pPage
+** might not actually be stored in pPage->u.aDisk[]. This can happen
+** if the page is overfull. Part of the job of this routine is to
+** make sure all Cells for pPage once again fit in pPage->u.aDisk[].
+**
+** In the course of balancing the siblings of pPage, the parent of pPage
+** might become overfull or underfull. If that happens, then this routine
+** is called recursively on the parent.
+**
+** If this routine fails for any reason, it might leave the database
+** in a corrupted state. So if this routine fails, the database should
+** be rolled back.
+*/
+static int balance(Btree *pBt, MemPage *pPage, BtCursor *pCur){
+ MemPage *pParent; /* The parent of pPage */
+ int nCell; /* Number of cells in apCell[] */
+ int nOld; /* Number of pages in apOld[] */
+ int nNew; /* Number of pages in apNew[] */
+ int nDiv; /* Number of cells in apDiv[] */
+ int i, j, k; /* Loop counters */
+ int idx; /* Index of pPage in pParent->apCell[] */
+ int nxDiv; /* Next divider slot in pParent->apCell[] */
+ int rc; /* The return code */
+ int iCur; /* apCell[iCur] is the cell of the cursor */
+ MemPage *pOldCurPage; /* The cursor originally points to this page */
+ int subtotal; /* Subtotal of bytes in cells on one page */
+ MemPage *extraUnref = 0; /* A page that needs to be unref-ed */
+ MemPage *apOld[NB]; /* pPage and up to two siblings */
+ Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
+ MemPage *apNew[NB+1]; /* pPage and up to NB siblings after balancing */
+ Pgno pgnoNew[NB+1]; /* Page numbers for each page in apNew[] */
+ int idxDiv[NB]; /* Indices of divider cells in pParent */
+ Cell *apDiv[NB]; /* Divider cells in pParent */
+ Cell aTemp[NB]; /* Temporary holding area for apDiv[] */
+ int cntNew[NB+1]; /* Index in apCell[] of cell after i-th page */
+ int szNew[NB+1]; /* Combined size of cells place on i-th page */
+ MemPage aOld[NB]; /* Temporary copies of pPage and its siblings */
+ Cell *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */
+ int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */
+
+ /*
+ ** Return without doing any work if pPage is neither overfull nor
+ ** underfull.
+ */
+ assert( sqlitepager_iswriteable(pPage) );
+ if( !pPage->isOverfull && pPage->nFree<SQLITE_USABLE_SIZE/2
+ && pPage->nCell>=2){
+ relinkCellList(pBt, pPage);
+ return SQLITE_OK;
+ }
+
+ /*
+ ** Find the parent of the page to be balanceed.
+ ** If there is no parent, it means this page is the root page and
+ ** special rules apply.
+ */
+ pParent = pPage->pParent;
+ if( pParent==0 ){
+ Pgno pgnoChild;
+ MemPage *pChild;
+ assert( pPage->isInit );
+ if( pPage->nCell==0 ){
+ if( pPage->u.hdr.rightChild ){
+ /*
+ ** The root page is empty. Copy the one child page
+ ** into the root page and return. This reduces the depth
+ ** of the BTree by one.
+ */
+ pgnoChild = SWAB32(pBt, pPage->u.hdr.rightChild);
+ rc = sqlitepager_get(pBt->pPager, pgnoChild, (void**)&pChild);
+ if( rc ) return rc;
+ memcpy(pPage, pChild, SQLITE_USABLE_SIZE);
+ pPage->isInit = 0;
+ rc = initPage(pBt, pPage, sqlitepager_pagenumber(pPage), 0);
+ assert( rc==SQLITE_OK );
+ reparentChildPages(pBt, pPage);
+ if( pCur && pCur->pPage==pChild ){
+ sqlitepager_unref(pChild);
+ pCur->pPage = pPage;
+ sqlitepager_ref(pPage);
+ }
+ freePage(pBt, pChild, pgnoChild);
+ sqlitepager_unref(pChild);
+ }else{
+ relinkCellList(pBt, pPage);
+ }
+ return SQLITE_OK;
+ }
+ if( !pPage->isOverfull ){
+ /* It is OK for the root page to be less than half full.
+ */
+ relinkCellList(pBt, pPage);
+ return SQLITE_OK;
+ }
+ /*
+ ** If we get to here, it means the root page is overfull.
+ ** When this happens, Create a new child page and copy the
+ ** contents of the root into the child. Then make the root
+ ** page an empty page with rightChild pointing to the new
+ ** child. Then fall thru to the code below which will cause
+ ** the overfull child page to be split.
+ */
+ rc = sqlitepager_write(pPage);
+ if( rc ) return rc;
+ rc = allocatePage(pBt, &pChild, &pgnoChild, sqlitepager_pagenumber(pPage));
+ if( rc ) return rc;
+ assert( sqlitepager_iswriteable(pChild) );
+ copyPage(pChild, pPage);
+ pChild->pParent = pPage;
+ pChild->idxParent = 0;
+ sqlitepager_ref(pPage);
+ pChild->isOverfull = 1;
+ if( pCur && pCur->pPage==pPage ){
+ sqlitepager_unref(pPage);
+ pCur->pPage = pChild;
+ }else{
+ extraUnref = pChild;
+ }
+ zeroPage(pBt, pPage);
+ pPage->u.hdr.rightChild = SWAB32(pBt, pgnoChild);
+ pParent = pPage;
+ pPage = pChild;
+ }
+ rc = sqlitepager_write(pParent);
+ if( rc ) return rc;
+ assert( pParent->isInit );
+
+ /*
+ ** Find the Cell in the parent page whose h.leftChild points back
+ ** to pPage. The "idx" variable is the index of that cell. If pPage
+ ** is the rightmost child of pParent then set idx to pParent->nCell
+ */
+ if( pParent->idxShift ){
+ Pgno pgno, swabPgno;
+ pgno = sqlitepager_pagenumber(pPage);
+ swabPgno = SWAB32(pBt, pgno);
+ for(idx=0; idx<pParent->nCell; idx++){
+ if( pParent->apCell[idx]->h.leftChild==swabPgno ){
+ break;
+ }
+ }
+ assert( idx<pParent->nCell || pParent->u.hdr.rightChild==swabPgno );
+ }else{
+ idx = pPage->idxParent;
+ }
+
+ /*
+ ** Initialize variables so that it will be safe to jump
+ ** directly to balance_cleanup at any moment.
+ */
+ nOld = nNew = 0;
+ sqlitepager_ref(pParent);
+
+ /*
+ ** Find sibling pages to pPage and the Cells in pParent that divide
+ ** the siblings. An attempt is made to find NN siblings on either
+ ** side of pPage. More siblings are taken from one side, however, if
+ ** pPage there are fewer than NN siblings on the other side. If pParent
+ ** has NB or fewer children then all children of pParent are taken.
+ */
+ nxDiv = idx - NN;
+ if( nxDiv + NB > pParent->nCell ){
+ nxDiv = pParent->nCell - NB + 1;
+ }
+ if( nxDiv<0 ){
+ nxDiv = 0;
+ }
+ nDiv = 0;
+ for(i=0, k=nxDiv; i<NB; i++, k++){
+ if( k<pParent->nCell ){
+ idxDiv[i] = k;
+ apDiv[i] = pParent->apCell[k];
+ nDiv++;
+ pgnoOld[i] = SWAB32(pBt, apDiv[i]->h.leftChild);
+ }else if( k==pParent->nCell ){
+ pgnoOld[i] = SWAB32(pBt, pParent->u.hdr.rightChild);
+ }else{
+ break;
+ }
+ rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]);
+ if( rc ) goto balance_cleanup;
+ rc = initPage(pBt, apOld[i], pgnoOld[i], pParent);
+ if( rc ) goto balance_cleanup;
+ apOld[i]->idxParent = k;
+ nOld++;
+ }
+
+ /*
+ ** Set iCur to be the index in apCell[] of the cell that the cursor
+ ** is pointing to. We will need this later on in order to keep the
+ ** cursor pointing at the same cell. If pCur points to a page that
+ ** has no involvement with this rebalancing, then set iCur to a large
+ ** number so that the iCur==j tests always fail in the main cell
+ ** distribution loop below.
+ */
+ if( pCur ){
+ iCur = 0;
+ for(i=0; i<nOld; i++){
+ if( pCur->pPage==apOld[i] ){
+ iCur += pCur->idx;
+ break;
+ }
+ iCur += apOld[i]->nCell;
+ if( i<nOld-1 && pCur->pPage==pParent && pCur->idx==idxDiv[i] ){
+ break;
+ }
+ iCur++;
+ }
+ pOldCurPage = pCur->pPage;
+ }
+
+ /*
+ ** Make copies of the content of pPage and its siblings into aOld[].
+ ** The rest of this function will use data from the copies rather
+ ** that the original pages since the original pages will be in the
+ ** process of being overwritten.
+ */
+ for(i=0; i<nOld; i++){
+ copyPage(&aOld[i], apOld[i]);
+ }
+
+ /*
+ ** Load pointers to all cells on sibling pages and the divider cells
+ ** into the local apCell[] array. Make copies of the divider cells
+ ** into aTemp[] and remove the the divider Cells from pParent.
+ */
+ nCell = 0;
+ for(i=0; i<nOld; i++){
+ MemPage *pOld = &aOld[i];
+ for(j=0; j<pOld->nCell; j++){
+ apCell[nCell] = pOld->apCell[j];
+ szCell[nCell] = cellSize(pBt, apCell[nCell]);
+ nCell++;
+ }
+ if( i<nOld-1 ){
+ szCell[nCell] = cellSize(pBt, apDiv[i]);
+ memcpy(&aTemp[i], apDiv[i], szCell[nCell]);
+ apCell[nCell] = &aTemp[i];
+ dropCell(pBt, pParent, nxDiv, szCell[nCell]);
+ assert( SWAB32(pBt, apCell[nCell]->h.leftChild)==pgnoOld[i] );
+ apCell[nCell]->h.leftChild = pOld->u.hdr.rightChild;
+ nCell++;
+ }
+ }
+
+ /*
+ ** Figure out the number of pages needed to hold all nCell cells.
+ ** Store this number in "k". Also compute szNew[] which is the total
+ ** size of all cells on the i-th page and cntNew[] which is the index
+ ** in apCell[] of the cell that divides path i from path i+1.
+ ** cntNew[k] should equal nCell.
+ **
+ ** This little patch of code is critical for keeping the tree
+ ** balanced.
+ */
+ for(subtotal=k=i=0; i<nCell; i++){
+ subtotal += szCell[i];
+ if( subtotal > USABLE_SPACE ){
+ szNew[k] = subtotal - szCell[i];
+ cntNew[k] = i;
+ subtotal = 0;
+ k++;
+ }
+ }
+ szNew[k] = subtotal;
+ cntNew[k] = nCell;
+ k++;
+ for(i=k-1; i>0; i--){
+ while( szNew[i]<USABLE_SPACE/2 ){
+ cntNew[i-1]--;
+ assert( cntNew[i-1]>0 );
+ szNew[i] += szCell[cntNew[i-1]];
+ szNew[i-1] -= szCell[cntNew[i-1]-1];
+ }
+ }
+ assert( cntNew[0]>0 );
+
+ /*
+ ** Allocate k new pages. Reuse old pages where possible.
+ */
+ for(i=0; i<k; i++){
+ if( i<nOld ){
+ apNew[i] = apOld[i];
+ pgnoNew[i] = pgnoOld[i];
+ apOld[i] = 0;
+ sqlitepager_write(apNew[i]);
+ }else{
+ rc = allocatePage(pBt, &apNew[i], &pgnoNew[i], pgnoNew[i-1]);
+ if( rc ) goto balance_cleanup;
+ }
+ nNew++;
+ zeroPage(pBt, apNew[i]);
+ apNew[i]->isInit = 1;
+ }
+
+ /* Free any old pages that were not reused as new pages.
+ */
+ while( i<nOld ){
+ rc = freePage(pBt, apOld[i], pgnoOld[i]);
+ if( rc ) goto balance_cleanup;
+ sqlitepager_unref(apOld[i]);
+ apOld[i] = 0;
+ i++;
+ }
+
+ /*
+ ** Put the new pages in accending order. This helps to
+ ** keep entries in the disk file in order so that a scan
+ ** of the table is a linear scan through the file. That
+ ** in turn helps the operating system to deliver pages
+ ** from the disk more rapidly.
+ **
+ ** An O(n^2) insertion sort algorithm is used, but since
+ ** n is never more than NB (a small constant), that should
+ ** not be a problem.
+ **
+ ** When NB==3, this one optimization makes the database
+ ** about 25% faster for large insertions and deletions.
+ */
+ for(i=0; i<k-1; i++){
+ int minV = pgnoNew[i];
+ int minI = i;
+ for(j=i+1; j<k; j++){
+ if( pgnoNew[j]<(unsigned)minV ){
+ minI = j;
+ minV = pgnoNew[j];
+ }
+ }
+ if( minI>i ){
+ int t;
+ MemPage *pT;
+ t = pgnoNew[i];
+ pT = apNew[i];
+ pgnoNew[i] = pgnoNew[minI];
+ apNew[i] = apNew[minI];
+ pgnoNew[minI] = t;
+ apNew[minI] = pT;
+ }
+ }
+
+ /*
+ ** Evenly distribute the data in apCell[] across the new pages.
+ ** Insert divider cells into pParent as necessary.
+ */
+ j = 0;
+ for(i=0; i<nNew; i++){
+ MemPage *pNew = apNew[i];
+ while( j<cntNew[i] ){
+ assert( pNew->nFree>=szCell[j] );
+ if( pCur && iCur==j ){ pCur->pPage = pNew; pCur->idx = pNew->nCell; }
+ insertCell(pBt, pNew, pNew->nCell, apCell[j], szCell[j]);
+ j++;
+ }
+ assert( pNew->nCell>0 );
+ assert( !pNew->isOverfull );
+ relinkCellList(pBt, pNew);
+ if( i<nNew-1 && j<nCell ){
+ pNew->u.hdr.rightChild = apCell[j]->h.leftChild;
+ apCell[j]->h.leftChild = SWAB32(pBt, pgnoNew[i]);
+ if( pCur && iCur==j ){ pCur->pPage = pParent; pCur->idx = nxDiv; }
+ insertCell(pBt, pParent, nxDiv, apCell[j], szCell[j]);
+ j++;
+ nxDiv++;
+ }
+ }
+ assert( j==nCell );
+ apNew[nNew-1]->u.hdr.rightChild = aOld[nOld-1].u.hdr.rightChild;
+ if( nxDiv==pParent->nCell ){
+ pParent->u.hdr.rightChild = SWAB32(pBt, pgnoNew[nNew-1]);
+ }else{
+ pParent->apCell[nxDiv]->h.leftChild = SWAB32(pBt, pgnoNew[nNew-1]);
+ }
+ if( pCur ){
+ if( j<=iCur && pCur->pPage==pParent && pCur->idx>idxDiv[nOld-1] ){
+ assert( pCur->pPage==pOldCurPage );
+ pCur->idx += nNew - nOld;
+ }else{
+ assert( pOldCurPage!=0 );
+ sqlitepager_ref(pCur->pPage);
+ sqlitepager_unref(pOldCurPage);
+ }
+ }
+
+ /*
+ ** Reparent children of all cells.
+ */
+ for(i=0; i<nNew; i++){
+ reparentChildPages(pBt, apNew[i]);
+ }
+ reparentChildPages(pBt, pParent);
+
+ /*
+ ** balance the parent page.
+ */
+ rc = balance(pBt, pParent, pCur);
+
+ /*
+ ** Cleanup before returning.
+ */
+balance_cleanup:
+ if( extraUnref ){
+ sqlitepager_unref(extraUnref);
+ }
+ for(i=0; i<nOld; i++){
+ if( apOld[i]!=0 && apOld[i]!=&aOld[i] ) sqlitepager_unref(apOld[i]);
+ }
+ for(i=0; i<nNew; i++){
+ sqlitepager_unref(apNew[i]);
+ }
+ if( pCur && pCur->pPage==0 ){
+ pCur->pPage = pParent;
+ pCur->idx = 0;
+ }else{
+ sqlitepager_unref(pParent);
+ }
+ return rc;
+}
+
+/*
+** This routine checks all cursors that point to the same table
+** as pCur points to. If any of those cursors were opened with
+** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
+** cursors point to the same table were opened with wrFlag==1
+** then this routine returns SQLITE_OK.
+**
+** In addition to checking for read-locks (where a read-lock
+** means a cursor opened with wrFlag==0) this routine also moves
+** all cursors other than pCur so that they are pointing to the
+** first Cell on root page. This is necessary because an insert
+** or delete might change the number of cells on a page or delete
+** a page entirely and we do not want to leave any cursors
+** pointing to non-existant pages or cells.
+*/
+static int checkReadLocks(BtCursor *pCur){
+ BtCursor *p;
+ assert( pCur->wrFlag );
+ for(p=pCur->pShared; p!=pCur; p=p->pShared){
+ assert( p );
+ assert( p->pgnoRoot==pCur->pgnoRoot );
+ if( p->wrFlag==0 ) return SQLITE_LOCKED;
+ if( sqlitepager_pagenumber(p->pPage)!=p->pgnoRoot ){
+ moveToRoot(p);
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Insert a new record into the BTree. The key is given by (pKey,nKey)
+** and the data is given by (pData,nData). The cursor is used only to
+** define what database the record should be inserted into. The cursor
+** is left pointing at the new record.
+*/
+static int fileBtreeInsert(
+ BtCursor *pCur, /* Insert data into the table of this cursor */
+ const void *pKey, int nKey, /* The key of the new record */
+ const void *pData, int nData /* The data of the new record */
+){
+ Cell newCell;
+ int rc;
+ int loc;
+ int szNew;
+ MemPage *pPage;
+ Btree *pBt = pCur->pBt;
+
+ if( pCur->pPage==0 ){
+ return SQLITE_ABORT; /* A rollback destroyed this cursor */
+ }
+ if( !pBt->inTrans || nKey+nData==0 ){
+ /* Must start a transaction before doing an insert */
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ assert( !pBt->readOnly );
+ if( !pCur->wrFlag ){
+ return SQLITE_PERM; /* Cursor not open for writing */
+ }
+ if( checkReadLocks(pCur) ){
+ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
+ }
+ rc = fileBtreeMoveto(pCur, pKey, nKey, &loc);
+ if( rc ) return rc;
+ pPage = pCur->pPage;
+ assert( pPage->isInit );
+ rc = sqlitepager_write(pPage);
+ if( rc ) return rc;
+ rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData);
+ if( rc ) return rc;
+ szNew = cellSize(pBt, &newCell);
+ if( loc==0 ){
+ newCell.h.leftChild = pPage->apCell[pCur->idx]->h.leftChild;
+ rc = clearCell(pBt, pPage->apCell[pCur->idx]);
+ if( rc ) return rc;
+ dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pPage->apCell[pCur->idx]));
+ }else if( loc<0 && pPage->nCell>0 ){
+ assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
+ pCur->idx++;
+ }else{
+ assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
+ }
+ insertCell(pBt, pPage, pCur->idx, &newCell, szNew);
+ rc = balance(pCur->pBt, pPage, pCur);
+ /* sqliteBtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
+ /* fflush(stdout); */
+ pCur->eSkip = SKIP_INVALID;
+ return rc;
+}
+
+/*
+** Delete the entry that the cursor is pointing to.
+**
+** The cursor is left pointing at either the next or the previous
+** entry. If the cursor is left pointing to the next entry, then
+** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to
+** sqliteBtreeNext() to be a no-op. That way, you can always call
+** sqliteBtreeNext() after a delete and the cursor will be left
+** pointing to the first entry after the deleted entry. Similarly,
+** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to
+** the entry prior to the deleted entry so that a subsequent call to
+** sqliteBtreePrevious() will always leave the cursor pointing at the
+** entry immediately before the one that was deleted.
+*/
+static int fileBtreeDelete(BtCursor *pCur){
+ MemPage *pPage = pCur->pPage;
+ Cell *pCell;
+ int rc;
+ Pgno pgnoChild;
+ Btree *pBt = pCur->pBt;
+
+ assert( pPage->isInit );
+ if( pCur->pPage==0 ){
+ return SQLITE_ABORT; /* A rollback destroyed this cursor */
+ }
+ if( !pBt->inTrans ){
+ /* Must start a transaction before doing a delete */
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ assert( !pBt->readOnly );
+ if( pCur->idx >= pPage->nCell ){
+ return SQLITE_ERROR; /* The cursor is not pointing to anything */
+ }
+ if( !pCur->wrFlag ){
+ return SQLITE_PERM; /* Did not open this cursor for writing */
+ }
+ if( checkReadLocks(pCur) ){
+ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
+ }
+ rc = sqlitepager_write(pPage);
+ if( rc ) return rc;
+ pCell = pPage->apCell[pCur->idx];
+ pgnoChild = SWAB32(pBt, pCell->h.leftChild);
+ clearCell(pBt, pCell);
+ if( pgnoChild ){
+ /*
+ ** The entry we are about to delete is not a leaf so if we do not
+ ** do something we will leave a hole on an internal page.
+ ** We have to fill the hole by moving in a cell from a leaf. The
+ ** next Cell after the one to be deleted is guaranteed to exist and
+ ** to be a leaf so we can use it.
+ */
+ BtCursor leafCur;
+ Cell *pNext;
+ int szNext;
+ int notUsed;
+ getTempCursor(pCur, &leafCur);
+ rc = fileBtreeNext(&leafCur, &notUsed);
+ if( rc!=SQLITE_OK ){
+ if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT;
+ return rc;
+ }
+ rc = sqlitepager_write(leafCur.pPage);
+ if( rc ) return rc;
+ dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
+ pNext = leafCur.pPage->apCell[leafCur.idx];
+ szNext = cellSize(pBt, pNext);
+ pNext->h.leftChild = SWAB32(pBt, pgnoChild);
+ insertCell(pBt, pPage, pCur->idx, pNext, szNext);
+ rc = balance(pBt, pPage, pCur);
+ if( rc ) return rc;
+ pCur->eSkip = SKIP_NEXT;
+ dropCell(pBt, leafCur.pPage, leafCur.idx, szNext);
+ rc = balance(pBt, leafCur.pPage, pCur);
+ releaseTempCursor(&leafCur);
+ }else{
+ dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
+ if( pCur->idx>=pPage->nCell ){
+ pCur->idx = pPage->nCell-1;
+ if( pCur->idx<0 ){
+ pCur->idx = 0;
+ pCur->eSkip = SKIP_NEXT;
+ }else{
+ pCur->eSkip = SKIP_PREV;
+ }
+ }else{
+ pCur->eSkip = SKIP_NEXT;
+ }
+ rc = balance(pBt, pPage, pCur);
+ }
+ return rc;
+}
+
+/*
+** Create a new BTree table. Write into *piTable the page
+** number for the root page of the new table.
+**
+** In the current implementation, BTree tables and BTree indices are the
+** the same. In the future, we may change this so that BTree tables
+** are restricted to having a 4-byte integer key and arbitrary data and
+** BTree indices are restricted to having an arbitrary key and no data.
+** But for now, this routine also serves to create indices.
+*/
+static int fileBtreeCreateTable(Btree *pBt, int *piTable){
+ MemPage *pRoot;
+ Pgno pgnoRoot;
+ int rc;
+ if( !pBt->inTrans ){
+ /* Must start a transaction first */
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ if( pBt->readOnly ){
+ return SQLITE_READONLY;
+ }
+ rc = allocatePage(pBt, &pRoot, &pgnoRoot, 0);
+ if( rc ) return rc;
+ assert( sqlitepager_iswriteable(pRoot) );
+ zeroPage(pBt, pRoot);
+ sqlitepager_unref(pRoot);
+ *piTable = (int)pgnoRoot;
+ return SQLITE_OK;
+}
+
+/*
+** Erase the given database page and all its children. Return
+** the page to the freelist.
+*/
+static int clearDatabasePage(Btree *pBt, Pgno pgno, int freePageFlag){
+ MemPage *pPage;
+ int rc;
+ Cell *pCell;
+ int idx;
+
+ rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pPage);
+ if( rc ) return rc;
+ rc = sqlitepager_write(pPage);
+ if( rc ) return rc;
+ rc = initPage(pBt, pPage, pgno, 0);
+ if( rc ) return rc;
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
+ while( idx>0 ){
+ pCell = (Cell*)&pPage->u.aDisk[idx];
+ idx = SWAB16(pBt, pCell->h.iNext);
+ if( pCell->h.leftChild ){
+ rc = clearDatabasePage(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
+ if( rc ) return rc;
+ }
+ rc = clearCell(pBt, pCell);
+ if( rc ) return rc;
+ }
+ if( pPage->u.hdr.rightChild ){
+ rc = clearDatabasePage(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
+ if( rc ) return rc;
+ }
+ if( freePageFlag ){
+ rc = freePage(pBt, pPage, pgno);
+ }else{
+ zeroPage(pBt, pPage);
+ }
+ sqlitepager_unref(pPage);
+ return rc;
+}
+
+/*
+** Delete all information from a single table in the database.
+*/
+static int fileBtreeClearTable(Btree *pBt, int iTable){
+ int rc;
+ BtCursor *pCur;
+ if( !pBt->inTrans ){
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
+ if( pCur->pgnoRoot==(Pgno)iTable ){
+ if( pCur->wrFlag==0 ) return SQLITE_LOCKED;
+ moveToRoot(pCur);
+ }
+ }
+ rc = clearDatabasePage(pBt, (Pgno)iTable, 0);
+ if( rc ){
+ fileBtreeRollback(pBt);
+ }
+ return rc;
+}
+
+/*
+** Erase all information in a table and add the root of the table to
+** the freelist. Except, the root of the principle table (the one on
+** page 2) is never added to the freelist.
+*/
+static int fileBtreeDropTable(Btree *pBt, int iTable){
+ int rc;
+ MemPage *pPage;
+ BtCursor *pCur;
+ if( !pBt->inTrans ){
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
+ if( pCur->pgnoRoot==(Pgno)iTable ){
+ return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */
+ }
+ }
+ rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, (void**)&pPage);
+ if( rc ) return rc;
+ rc = fileBtreeClearTable(pBt, iTable);
+ if( rc ) return rc;
+ if( iTable>2 ){
+ rc = freePage(pBt, pPage, iTable);
+ }else{
+ zeroPage(pBt, pPage);
+ }
+ sqlitepager_unref(pPage);
+ return rc;
+}
+
+#if 0 /* UNTESTED */
+/*
+** Copy all cell data from one database file into another.
+** pages back the freelist.
+*/
+static int copyCell(Btree *pBtFrom, BTree *pBtTo, Cell *pCell){
+ Pager *pFromPager = pBtFrom->pPager;
+ OverflowPage *pOvfl;
+ Pgno ovfl, nextOvfl;
+ Pgno *pPrev;
+ int rc = SQLITE_OK;
+ MemPage *pNew, *pPrevPg;
+ Pgno new;
+
+ if( NKEY(pBtTo, pCell->h) + NDATA(pBtTo, pCell->h) <= MX_LOCAL_PAYLOAD ){
+ return SQLITE_OK;
+ }
+ pPrev = &pCell->ovfl;
+ pPrevPg = 0;
+ ovfl = SWAB32(pBtTo, pCell->ovfl);
+ while( ovfl && rc==SQLITE_OK ){
+ rc = sqlitepager_get(pFromPager, ovfl, (void**)&pOvfl);
+ if( rc ) return rc;
+ nextOvfl = SWAB32(pBtFrom, pOvfl->iNext);
+ rc = allocatePage(pBtTo, &pNew, &new, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlitepager_write(pNew);
+ if( rc==SQLITE_OK ){
+ memcpy(pNew, pOvfl, SQLITE_USABLE_SIZE);
+ *pPrev = SWAB32(pBtTo, new);
+ if( pPrevPg ){
+ sqlitepager_unref(pPrevPg);
+ }
+ pPrev = &pOvfl->iNext;
+ pPrevPg = pNew;
+ }
+ }
+ sqlitepager_unref(pOvfl);
+ ovfl = nextOvfl;
+ }
+ if( pPrevPg ){
+ sqlitepager_unref(pPrevPg);
+ }
+ return rc;
+}
+#endif
+
+
+#if 0 /* UNTESTED */
+/*
+** Copy a page of data from one database over to another.
+*/
+static int copyDatabasePage(
+ Btree *pBtFrom,
+ Pgno pgnoFrom,
+ Btree *pBtTo,
+ Pgno *pTo
+){
+ MemPage *pPageFrom, *pPage;
+ Pgno to;
+ int rc;
+ Cell *pCell;
+ int idx;
+
+ rc = sqlitepager_get(pBtFrom->pPager, pgno, (void**)&pPageFrom);
+ if( rc ) return rc;
+ rc = allocatePage(pBt, &pPage, pTo, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlitepager_write(pPage);
+ }
+ if( rc==SQLITE_OK ){
+ memcpy(pPage, pPageFrom, SQLITE_USABLE_SIZE);
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
+ while( idx>0 ){
+ pCell = (Cell*)&pPage->u.aDisk[idx];
+ idx = SWAB16(pBt, pCell->h.iNext);
+ if( pCell->h.leftChild ){
+ Pgno newChld;
+ rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pCell->h.leftChild),
+ pBtTo, &newChld);
+ if( rc ) return rc;
+ pCell->h.leftChild = SWAB32(pBtFrom, newChld);
+ }
+ rc = copyCell(pBtFrom, pBtTo, pCell);
+ if( rc ) return rc;
+ }
+ if( pPage->u.hdr.rightChild ){
+ Pgno newChld;
+ rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pPage->u.hdr.rightChild),
+ pBtTo, &newChld);
+ if( rc ) return rc;
+ pPage->u.hdr.rightChild = SWAB32(pBtTo, newChild);
+ }
+ }
+ sqlitepager_unref(pPage);
+ return rc;
+}
+#endif
+
+/*
+** Read the meta-information out of a database file.
+*/
+static int fileBtreeGetMeta(Btree *pBt, int *aMeta){
+ PageOne *pP1;
+ int rc;
+ int i;
+
+ rc = sqlitepager_get(pBt->pPager, 1, (void**)&pP1);
+ if( rc ) return rc;
+ aMeta[0] = SWAB32(pBt, pP1->nFree);
+ for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
+ aMeta[i+1] = SWAB32(pBt, pP1->aMeta[i]);
+ }
+ sqlitepager_unref(pP1);
+ return SQLITE_OK;
+}
+
+/*
+** Write meta-information back into the database.
+*/
+static int fileBtreeUpdateMeta(Btree *pBt, int *aMeta){
+ PageOne *pP1;
+ int rc, i;
+ if( !pBt->inTrans ){
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ pP1 = pBt->page1;
+ rc = sqlitepager_write(pP1);
+ if( rc ) return rc;
+ for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
+ pP1->aMeta[i] = SWAB32(pBt, aMeta[i+1]);
+ }
+ return SQLITE_OK;
+}
+
+/******************************************************************************
+** The complete implementation of the BTree subsystem is above this line.
+** All the code the follows is for testing and troubleshooting the BTree
+** subsystem. None of the code that follows is used during normal operation.
+******************************************************************************/
+
+/*
+** Print a disassembly of the given page on standard output. This routine
+** is used for debugging and testing only.
+*/
+#ifdef SQLITE_TEST
+static int fileBtreePageDump(Btree *pBt, int pgno, int recursive){
+ int rc;
+ MemPage *pPage;
+ int i, j;
+ int nFree;
+ u16 idx;
+ char range[20];
+ unsigned char payload[20];
+ rc = sqlitepager_get(pBt->pPager, (Pgno)pgno, (void**)&pPage);
+ if( rc ){
+ return rc;
+ }
+ if( recursive ) printf("PAGE %d:\n", pgno);
+ i = 0;
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
+ while( idx>0 && idx<=SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
+ Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
+ int sz = cellSize(pBt, pCell);
+ sprintf(range,"%d..%d", idx, idx+sz-1);
+ sz = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
+ if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
+ memcpy(payload, pCell->aPayload, sz);
+ for(j=0; j<sz; j++){
+ if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
+ }
+ payload[sz] = 0;
+ printf(
+ "cell %2d: i=%-10s chld=%-4d nk=%-4d nd=%-4d payload=%s\n",
+ i, range, (int)pCell->h.leftChild,
+ NKEY(pBt, pCell->h), NDATA(pBt, pCell->h),
+ payload
+ );
+ if( pPage->isInit && pPage->apCell[i]!=pCell ){
+ printf("**** apCell[%d] does not match on prior entry ****\n", i);
+ }
+ i++;
+ idx = SWAB16(pBt, pCell->h.iNext);
+ }
+ if( idx!=0 ){
+ printf("ERROR: next cell index out of range: %d\n", idx);
+ }
+ printf("right_child: %d\n", SWAB32(pBt, pPage->u.hdr.rightChild));
+ nFree = 0;
+ i = 0;
+ idx = SWAB16(pBt, pPage->u.hdr.firstFree);
+ while( idx>0 && idx<SQLITE_USABLE_SIZE ){
+ FreeBlk *p = (FreeBlk*)&pPage->u.aDisk[idx];
+ sprintf(range,"%d..%d", idx, idx+p->iSize-1);
+ nFree += SWAB16(pBt, p->iSize);
+ printf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
+ i, range, SWAB16(pBt, p->iSize), nFree);
+ idx = SWAB16(pBt, p->iNext);
+ i++;
+ }
+ if( idx!=0 ){
+ printf("ERROR: next freeblock index out of range: %d\n", idx);
+ }
+ if( recursive && pPage->u.hdr.rightChild!=0 ){
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
+ while( idx>0 && idx<SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
+ Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
+ fileBtreePageDump(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
+ idx = SWAB16(pBt, pCell->h.iNext);
+ }
+ fileBtreePageDump(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
+ }
+ sqlitepager_unref(pPage);
+ return SQLITE_OK;
+}
+#endif
+
+#ifdef SQLITE_TEST
+/*
+** Fill aResult[] with information about the entry and page that the
+** cursor is pointing to.
+**
+** aResult[0] = The page number
+** aResult[1] = The entry number
+** aResult[2] = Total number of entries on this page
+** aResult[3] = Size of this entry
+** aResult[4] = Number of free bytes on this page
+** aResult[5] = Number of free blocks on the page
+** aResult[6] = Page number of the left child of this entry
+** aResult[7] = Page number of the right child for the whole page
+**
+** This routine is used for testing and debugging only.
+*/
+static int fileBtreeCursorDump(BtCursor *pCur, int *aResult){
+ int cnt, idx;
+ MemPage *pPage = pCur->pPage;
+ Btree *pBt = pCur->pBt;
+ aResult[0] = sqlitepager_pagenumber(pPage);
+ aResult[1] = pCur->idx;
+ aResult[2] = pPage->nCell;
+ if( pCur->idx>=0 && pCur->idx<pPage->nCell ){
+ aResult[3] = cellSize(pBt, pPage->apCell[pCur->idx]);
+ aResult[6] = SWAB32(pBt, pPage->apCell[pCur->idx]->h.leftChild);
+ }else{
+ aResult[3] = 0;
+ aResult[6] = 0;
+ }
+ aResult[4] = pPage->nFree;
+ cnt = 0;
+ idx = SWAB16(pBt, pPage->u.hdr.firstFree);
+ while( idx>0 && idx<SQLITE_USABLE_SIZE ){
+ cnt++;
+ idx = SWAB16(pBt, ((FreeBlk*)&pPage->u.aDisk[idx])->iNext);
+ }
+ aResult[5] = cnt;
+ aResult[7] = SWAB32(pBt, pPage->u.hdr.rightChild);
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** Return the pager associated with a BTree. This routine is used for
+** testing and debugging only.
+*/
+static Pager *fileBtreePager(Btree *pBt){
+ return pBt->pPager;
+}
+
+/*
+** This structure is passed around through all the sanity checking routines
+** in order to keep track of some global state information.
+*/
+typedef struct IntegrityCk IntegrityCk;
+struct IntegrityCk {
+ Btree *pBt; /* The tree being checked out */
+ Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
+ int nPage; /* Number of pages in the database */
+ int *anRef; /* Number of times each page is referenced */
+ char *zErrMsg; /* An error message. NULL of no errors seen. */
+};
+
+/*
+** Append a message to the error message string.
+*/
+static void checkAppendMsg(IntegrityCk *pCheck, char *zMsg1, char *zMsg2){
+ if( pCheck->zErrMsg ){
+ char *zOld = pCheck->zErrMsg;
+ pCheck->zErrMsg = 0;
+ sqliteSetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
+ sqliteFree(zOld);
+ }else{
+ sqliteSetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
+ }
+}
+
+/*
+** Add 1 to the reference count for page iPage. If this is the second
+** reference to the page, add an error message to pCheck->zErrMsg.
+** Return 1 if there are 2 ore more references to the page and 0 if
+** if this is the first reference to the page.
+**
+** Also check that the page number is in bounds.
+*/
+static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
+ if( iPage==0 ) return 1;
+ if( iPage>pCheck->nPage || iPage<0 ){
+ char zBuf[100];
+ sprintf(zBuf, "invalid page number %d", iPage);
+ checkAppendMsg(pCheck, zContext, zBuf);
+ return 1;
+ }
+ if( pCheck->anRef[iPage]==1 ){
+ char zBuf[100];
+ sprintf(zBuf, "2nd reference to page %d", iPage);
+ checkAppendMsg(pCheck, zContext, zBuf);
+ return 1;
+ }
+ return (pCheck->anRef[iPage]++)>1;
+}
+
+/*
+** Check the integrity of the freelist or of an overflow page list.
+** Verify that the number of pages on the list is N.
+*/
+static void checkList(
+ IntegrityCk *pCheck, /* Integrity checking context */
+ int isFreeList, /* True for a freelist. False for overflow page list */
+ int iPage, /* Page number for first page in the list */
+ int N, /* Expected number of pages in the list */
+ char *zContext /* Context for error messages */
+){
+ int i;
+ char zMsg[100];
+ while( N-- > 0 ){
+ OverflowPage *pOvfl;
+ if( iPage<1 ){
+ sprintf(zMsg, "%d pages missing from overflow list", N+1);
+ checkAppendMsg(pCheck, zContext, zMsg);
+ break;
+ }
+ if( checkRef(pCheck, iPage, zContext) ) break;
+ if( sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
+ sprintf(zMsg, "failed to get page %d", iPage);
+ checkAppendMsg(pCheck, zContext, zMsg);
+ break;
+ }
+ if( isFreeList ){
+ FreelistInfo *pInfo = (FreelistInfo*)pOvfl->aPayload;
+ int n = SWAB32(pCheck->pBt, pInfo->nFree);
+ for(i=0; i<n; i++){
+ checkRef(pCheck, SWAB32(pCheck->pBt, pInfo->aFree[i]), zContext);
+ }
+ N -= n;
+ }
+ iPage = SWAB32(pCheck->pBt, pOvfl->iNext);
+ sqlitepager_unref(pOvfl);
+ }
+}
+
+/*
+** Return negative if zKey1<zKey2.
+** Return zero if zKey1==zKey2.
+** Return positive if zKey1>zKey2.
+*/
+static int keyCompare(
+ const char *zKey1, int nKey1,
+ const char *zKey2, int nKey2
+){
+ int min = nKey1>nKey2 ? nKey2 : nKey1;
+ int c = memcmp(zKey1, zKey2, min);
+ if( c==0 ){
+ c = nKey1 - nKey2;
+ }
+ return c;
+}
+
+/*
+** Do various sanity checks on a single page of a tree. Return
+** the tree depth. Root pages return 0. Parents of root pages
+** return 1, and so forth.
+**
+** These checks are done:
+**
+** 1. Make sure that cells and freeblocks do not overlap
+** but combine to completely cover the page.
+** 2. Make sure cell keys are in order.
+** 3. Make sure no key is less than or equal to zLowerBound.
+** 4. Make sure no key is greater than or equal to zUpperBound.
+** 5. Check the integrity of overflow pages.
+** 6. Recursively call checkTreePage on all children.
+** 7. Verify that the depth of all children is the same.
+** 8. Make sure this page is at least 33% full or else it is
+** the root of the tree.
+*/
+static int checkTreePage(
+ IntegrityCk *pCheck, /* Context for the sanity check */
+ int iPage, /* Page number of the page to check */
+ MemPage *pParent, /* Parent page */
+ char *zParentContext, /* Parent context */
+ char *zLowerBound, /* All keys should be greater than this, if not NULL */
+ int nLower, /* Number of characters in zLowerBound */
+ char *zUpperBound, /* All keys should be less than this, if not NULL */
+ int nUpper /* Number of characters in zUpperBound */
+){
+ MemPage *pPage;
+ int i, rc, depth, d2, pgno;
+ char *zKey1, *zKey2;
+ int nKey1, nKey2;
+ BtCursor cur;
+ Btree *pBt;
+ char zMsg[100];
+ char zContext[100];
+ char hit[SQLITE_USABLE_SIZE];
+
+ /* Check that the page exists
+ */
+ cur.pBt = pBt = pCheck->pBt;
+ if( iPage==0 ) return 0;
+ if( checkRef(pCheck, iPage, zParentContext) ) return 0;
+ sprintf(zContext, "On tree page %d: ", iPage);
+ if( (rc = sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pPage))!=0 ){
+ sprintf(zMsg, "unable to get the page. error code=%d", rc);
+ checkAppendMsg(pCheck, zContext, zMsg);
+ return 0;
+ }
+ if( (rc = initPage(pBt, pPage, (Pgno)iPage, pParent))!=0 ){
+ sprintf(zMsg, "initPage() returns error code %d", rc);
+ checkAppendMsg(pCheck, zContext, zMsg);
+ sqlitepager_unref(pPage);
+ return 0;
+ }
+
+ /* Check out all the cells.
+ */
+ depth = 0;
+ if( zLowerBound ){
+ zKey1 = sqliteMalloc( nLower+1 );
+ memcpy(zKey1, zLowerBound, nLower);
+ zKey1[nLower] = 0;
+ }else{
+ zKey1 = 0;
+ }
+ nKey1 = nLower;
+ cur.pPage = pPage;
+ for(i=0; i<pPage->nCell; i++){
+ Cell *pCell = pPage->apCell[i];
+ int sz;
+
+ /* Check payload overflow pages
+ */
+ nKey2 = NKEY(pBt, pCell->h);
+ sz = nKey2 + NDATA(pBt, pCell->h);
+ sprintf(zContext, "On page %d cell %d: ", iPage, i);
+ if( sz>MX_LOCAL_PAYLOAD ){
+ int nPage = (sz - MX_LOCAL_PAYLOAD + OVERFLOW_SIZE - 1)/OVERFLOW_SIZE;
+ checkList(pCheck, 0, SWAB32(pBt, pCell->ovfl), nPage, zContext);
+ }
+
+ /* Check that keys are in the right order
+ */
+ cur.idx = i;
+ zKey2 = sqliteMallocRaw( nKey2+1 );
+ getPayload(&cur, 0, nKey2, zKey2);
+ if( zKey1 && keyCompare(zKey1, nKey1, zKey2, nKey2)>=0 ){
+ checkAppendMsg(pCheck, zContext, "Key is out of order");
+ }
+
+ /* Check sanity of left child page.
+ */
+ pgno = SWAB32(pBt, pCell->h.leftChild);
+ d2 = checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zKey2,nKey2);
+ if( i>0 && d2!=depth ){
+ checkAppendMsg(pCheck, zContext, "Child page depth differs");
+ }
+ depth = d2;
+ sqliteFree(zKey1);
+ zKey1 = zKey2;
+ nKey1 = nKey2;
+ }
+ pgno = SWAB32(pBt, pPage->u.hdr.rightChild);
+ sprintf(zContext, "On page %d at right child: ", iPage);
+ checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zUpperBound,nUpper);
+ sqliteFree(zKey1);
+
+ /* Check for complete coverage of the page
+ */
+ memset(hit, 0, sizeof(hit));
+ memset(hit, 1, sizeof(PageHdr));
+ for(i=SWAB16(pBt, pPage->u.hdr.firstCell); i>0 && i<SQLITE_USABLE_SIZE; ){
+ Cell *pCell = (Cell*)&pPage->u.aDisk[i];
+ int j;
+ for(j=i+cellSize(pBt, pCell)-1; j>=i; j--) hit[j]++;
+ i = SWAB16(pBt, pCell->h.iNext);
+ }
+ for(i=SWAB16(pBt,pPage->u.hdr.firstFree); i>0 && i<SQLITE_USABLE_SIZE; ){
+ FreeBlk *pFBlk = (FreeBlk*)&pPage->u.aDisk[i];
+ int j;
+ for(j=i+SWAB16(pBt,pFBlk->iSize)-1; j>=i; j--) hit[j]++;
+ i = SWAB16(pBt,pFBlk->iNext);
+ }
+ for(i=0; i<SQLITE_USABLE_SIZE; i++){
+ if( hit[i]==0 ){
+ sprintf(zMsg, "Unused space at byte %d of page %d", i, iPage);
+ checkAppendMsg(pCheck, zMsg, 0);
+ break;
+ }else if( hit[i]>1 ){
+ sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage);
+ checkAppendMsg(pCheck, zMsg, 0);
+ break;
+ }
+ }
+
+ /* Check that free space is kept to a minimum
+ */
+#if 0
+ if( pParent && pParent->nCell>2 && pPage->nFree>3*SQLITE_USABLE_SIZE/4 ){
+ sprintf(zMsg, "free space (%d) greater than max (%d)", pPage->nFree,
+ SQLITE_USABLE_SIZE/3);
+ checkAppendMsg(pCheck, zContext, zMsg);
+ }
+#endif
+
+ sqlitepager_unref(pPage);
+ return depth;
+}
+
+/*
+** This routine does a complete check of the given BTree file. aRoot[] is
+** an array of pages numbers were each page number is the root page of
+** a table. nRoot is the number of entries in aRoot.
+**
+** If everything checks out, this routine returns NULL. If something is
+** amiss, an error message is written into memory obtained from malloc()
+** and a pointer to that error message is returned. The calling function
+** is responsible for freeing the error message when it is done.
+*/
+char *fileBtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
+ int i;
+ int nRef;
+ IntegrityCk sCheck;
+
+ nRef = *sqlitepager_stats(pBt->pPager);
+ if( lockBtree(pBt)!=SQLITE_OK ){
+ return sqliteStrDup("Unable to actquire a read lock on the database");
+ }
+ sCheck.pBt = pBt;
+ sCheck.pPager = pBt->pPager;
+ sCheck.nPage = sqlitepager_pagecount(sCheck.pPager);
+ if( sCheck.nPage==0 ){
+ unlockBtreeIfUnused(pBt);
+ return 0;
+ }
+ sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
+ sCheck.anRef[1] = 1;
+ for(i=2; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
+ sCheck.zErrMsg = 0;
+
+ /* Check the integrity of the freelist
+ */
+ checkList(&sCheck, 1, SWAB32(pBt, pBt->page1->freeList),
+ SWAB32(pBt, pBt->page1->nFree), "Main freelist: ");
+
+ /* Check all the tables.
+ */
+ for(i=0; i<nRoot; i++){
+ if( aRoot[i]==0 ) continue;
+ checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0);
+ }
+
+ /* Make sure every page in the file is referenced
+ */
+ for(i=1; i<=sCheck.nPage; i++){
+ if( sCheck.anRef[i]==0 ){
+ char zBuf[100];
+ sprintf(zBuf, "Page %d is never used", i);
+ checkAppendMsg(&sCheck, zBuf, 0);
+ }
+ }
+
+ /* Make sure this analysis did not leave any unref() pages
+ */
+ unlockBtreeIfUnused(pBt);
+ if( nRef != *sqlitepager_stats(pBt->pPager) ){
+ char zBuf[100];
+ sprintf(zBuf,
+ "Outstanding page count goes from %d to %d during this analysis",
+ nRef, *sqlitepager_stats(pBt->pPager)
+ );
+ checkAppendMsg(&sCheck, zBuf, 0);
+ }
+
+ /* Clean up and report errors.
+ */
+ sqliteFree(sCheck.anRef);
+ return sCheck.zErrMsg;
+}
+
+/*
+** Return the full pathname of the underlying database file.
+*/
+static const char *fileBtreeGetFilename(Btree *pBt){
+ assert( pBt->pPager!=0 );
+ return sqlitepager_filename(pBt->pPager);
+}
+
+/*
+** Copy the complete content of pBtFrom into pBtTo. A transaction
+** must be active for both files.
+**
+** The size of file pBtFrom may be reduced by this operation.
+** If anything goes wrong, the transaction on pBtFrom is rolled back.
+*/
+static int fileBtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){
+ int rc = SQLITE_OK;
+ Pgno i, nPage, nToPage;
+
+ if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR;
+ if( pBtTo->needSwab!=pBtFrom->needSwab ) return SQLITE_ERROR;
+ if( pBtTo->pCursor ) return SQLITE_BUSY;
+ memcpy(pBtTo->page1, pBtFrom->page1, SQLITE_USABLE_SIZE);
+ rc = sqlitepager_overwrite(pBtTo->pPager, 1, pBtFrom->page1);
+ nToPage = sqlitepager_pagecount(pBtTo->pPager);
+ nPage = sqlitepager_pagecount(pBtFrom->pPager);
+ for(i=2; rc==SQLITE_OK && i<=nPage; i++){
+ void *pPage;
+ rc = sqlitepager_get(pBtFrom->pPager, i, &pPage);
+ if( rc ) break;
+ rc = sqlitepager_overwrite(pBtTo->pPager, i, pPage);
+ if( rc ) break;
+ sqlitepager_unref(pPage);
+ }
+ for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
+ void *pPage;
+ rc = sqlitepager_get(pBtTo->pPager, i, &pPage);
+ if( rc ) break;
+ rc = sqlitepager_write(pPage);
+ sqlitepager_unref(pPage);
+ sqlitepager_dont_write(pBtTo->pPager, i);
+ }
+ if( !rc && nPage<nToPage ){
+ rc = sqlitepager_truncate(pBtTo->pPager, nPage);
+ }
+ if( rc ){
+ fileBtreeRollback(pBtTo);
+ }
+ return rc;
+}
+
+/*
+** The following tables contain pointers to all of the interface
+** routines for this implementation of the B*Tree backend. To
+** substitute a different implemention of the backend, one has merely
+** to provide pointers to alternative functions in similar tables.
+*/
+static BtOps sqliteBtreeOps = {
+ fileBtreeClose,
+ fileBtreeSetCacheSize,
+ fileBtreeSetSafetyLevel,
+ fileBtreeBeginTrans,
+ fileBtreeCommit,
+ fileBtreeRollback,
+ fileBtreeBeginCkpt,
+ fileBtreeCommitCkpt,
+ fileBtreeRollbackCkpt,
+ fileBtreeCreateTable,
+ fileBtreeCreateTable, /* Really sqliteBtreeCreateIndex() */
+ fileBtreeDropTable,
+ fileBtreeClearTable,
+ fileBtreeCursor,
+ fileBtreeGetMeta,
+ fileBtreeUpdateMeta,
+ fileBtreeIntegrityCheck,
+ fileBtreeGetFilename,
+ fileBtreeCopyFile,
+ fileBtreePager,
+#ifdef SQLITE_TEST
+ fileBtreePageDump,
+#endif
+};
+static BtCursorOps sqliteBtreeCursorOps = {
+ fileBtreeMoveto,
+ fileBtreeDelete,
+ fileBtreeInsert,
+ fileBtreeFirst,
+ fileBtreeLast,
+ fileBtreeNext,
+ fileBtreePrevious,
+ fileBtreeKeySize,
+ fileBtreeKey,
+ fileBtreeKeyCompare,
+ fileBtreeDataSize,
+ fileBtreeData,
+ fileBtreeCloseCursor,
+#ifdef SQLITE_TEST
+ fileBtreeCursorDump,
+#endif
+};