/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** The code in this file implements execution method of the ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") ** handles housekeeping details such as creating and deleting ** VDBE instances. This file is solely interested in executing ** the VDBE program. ** ** In the external interface, an "sqlite_vm*" is an opaque pointer ** to a VDBE. ** ** The SQL parser generates a program which is then executed by ** the VDBE to do the work of the SQL statement. VDBE programs are ** similar in form to assembly language. The program consists of ** a linear sequence of operations. Each operation has an opcode ** and 3 operands. Operands P1 and P2 are integers. Operand P3 ** is a null-terminated string. The P2 operand must be non-negative. ** Opcodes will typically ignore one or more operands. Many opcodes ** ignore all three operands. ** ** Computation results are stored on a stack. Each entry on the ** stack is either an integer, a null-terminated string, a floating point ** number, or the SQL "NULL" value. An inplicit conversion from one ** type to the other occurs as necessary. ** ** Most of the code in this file is taken up by the sqliteVdbeExec() ** function which does the work of interpreting a VDBE program. ** But other routines are also provided to help in building up ** a program instruction by instruction. ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** ** $Id: vdbe.c,v 1.268 2004/03/03 01:51:25 drh Exp $ */ #include "sqliteInt.h" #include "os.h" #include #include "vdbeInt.h" /* ** The following global variable is incremented every time a cursor ** moves, either by the OP_MoveTo or the OP_Next opcode. The test ** procedures use this information to make sure that indices are ** working correctly. This variable has no function other than to ** help verify the correct operation of the library. */ int sqlite_search_count = 0; /* ** When this global variable is positive, it gets decremented once before ** each instruction in the VDBE. When reaches zero, the SQLITE_Interrupt ** of the db.flags field is set in order to simulate and interrupt. ** ** This facility is used for testing purposes only. It does not function ** in an ordinary build. */ int sqlite_interrupt_count = 0; /* ** Advance the virtual machine to the next output row. ** ** The return vale will be either SQLITE_BUSY, SQLITE_DONE, ** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE. ** ** SQLITE_BUSY means that the virtual machine attempted to open ** a locked database and there is no busy callback registered. ** Call sqlite_step() again to retry the open. *pN is set to 0 ** and *pazColName and *pazValue are both set to NULL. ** ** SQLITE_DONE means that the virtual machine has finished ** executing. sqlite_step() should not be called again on this ** virtual machine. *pN and *pazColName are set appropriately ** but *pazValue is set to NULL. ** ** SQLITE_ROW means that the virtual machine has generated another ** row of the result set. *pN is set to the number of columns in ** the row. *pazColName is set to the names of the columns followed ** by the column datatypes. *pazValue is set to the values of each ** column in the row. The value of the i-th column is (*pazValue)[i]. ** The name of the i-th column is (*pazColName)[i] and the datatype ** of the i-th column is (*pazColName)[i+*pN]. ** ** SQLITE_ERROR means that a run-time error (such as a constraint ** violation) has occurred. The details of the error will be returned ** by the next call to sqlite_finalize(). sqlite_step() should not ** be called again on the VM. ** ** SQLITE_MISUSE means that the this routine was called inappropriately. ** Perhaps it was called on a virtual machine that had already been ** finalized or on one that had previously returned SQLITE_ERROR or ** SQLITE_DONE. Or it could be the case the the same database connection ** is being used simulataneously by two or more threads. */ int sqlite_step( sqlite_vm *pVm, /* The virtual machine to execute */ int *pN, /* OUT: Number of columns in result */ const char ***pazValue, /* OUT: Column data */ const char ***pazColName /* OUT: Column names and datatypes */ ){ Vdbe *p = (Vdbe*)pVm; sqlite *db; int rc; if( p->magic!=VDBE_MAGIC_RUN ){ return SQLITE_MISUSE; } db = p->db; if( sqliteSafetyOn(db) ){ p->rc = SQLITE_MISUSE; return SQLITE_MISUSE; } if( p->explain ){ rc = sqliteVdbeList(p); }else{ rc = sqliteVdbeExec(p); } if( rc==SQLITE_DONE || rc==SQLITE_ROW ){ if( pazColName ) *pazColName = (const char**)p->azColName; if( pN ) *pN = p->nResColumn; }else{ if( pazColName) *pazColName = 0; if( pN ) *pN = 0; } if( pazValue ){ if( rc==SQLITE_ROW ){ *pazValue = (const char**)p->azResColumn; }else{ *pazValue = 0; } } if( sqliteSafetyOff(db) ){ return SQLITE_MISUSE; } return rc; } /* ** Insert a new aggregate element and make it the element that ** has focus. ** ** Return 0 on success and 1 if memory is exhausted. */ static int AggInsert(Agg *p, char *zKey, int nKey){ AggElem *pElem, *pOld; int i; Mem *pMem; pElem = sqliteMalloc( sizeof(AggElem) + nKey + (p->nMem-1)*sizeof(pElem->aMem[0]) ); if( pElem==0 ) return 1; pElem->zKey = (char*)&pElem->aMem[p->nMem]; memcpy(pElem->zKey, zKey, nKey); pElem->nKey = nKey; pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem); if( pOld!=0 ){ assert( pOld==pElem ); /* Malloc failed on insert */ sqliteFree(pOld); return 0; } for(i=0, pMem=pElem->aMem; inMem; i++, pMem++){ pMem->flags = MEM_Null; } p->pCurrent = pElem; return 0; } /* ** Get the AggElem currently in focus */ #define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P))) static AggElem *_AggInFocus(Agg *p){ HashElem *pElem = sqliteHashFirst(&p->hash); if( pElem==0 ){ AggInsert(p,"",1); pElem = sqliteHashFirst(&p->hash); } return pElem ? sqliteHashData(pElem) : 0; } /* ** Convert the given stack entity into a string if it isn't one ** already. */ #define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);} static int hardStringify(Mem *pStack){ int fg = pStack->flags; if( fg & MEM_Real ){ sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r); }else if( fg & MEM_Int ){ sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i); }else{ pStack->zShort[0] = 0; } pStack->z = pStack->zShort; pStack->n = strlen(pStack->zShort)+1; pStack->flags = MEM_Str | MEM_Short; return 0; } /* ** Convert the given stack entity into a string that has been obtained ** from sqliteMalloc(). This is different from Stringify() above in that ** Stringify() will use the NBFS bytes of static string space if the string ** will fit but this routine always mallocs for space. ** Return non-zero if we run out of memory. */ #define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0) static int hardDynamicify(Mem *pStack){ int fg = pStack->flags; char *z; if( (fg & MEM_Str)==0 ){ hardStringify(pStack); } assert( (fg & MEM_Dyn)==0 ); z = sqliteMallocRaw( pStack->n ); if( z==0 ) return 1; memcpy(z, pStack->z, pStack->n); pStack->z = z; pStack->flags |= MEM_Dyn; return 0; } /* ** An ephemeral string value (signified by the MEM_Ephem flag) contains ** a pointer to a dynamically allocated string where some other entity ** is responsible for deallocating that string. Because the stack entry ** does not control the string, it might be deleted without the stack ** entry knowing it. ** ** This routine converts an ephemeral string into a dynamically allocated ** string that the stack entry itself controls. In other words, it ** converts an MEM_Ephem string into an MEM_Dyn string. */ #define Deephemeralize(P) \ if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;} static int hardDeephem(Mem *pStack){ char *z; assert( (pStack->flags & MEM_Ephem)!=0 ); z = sqliteMallocRaw( pStack->n ); if( z==0 ) return 1; memcpy(z, pStack->z, pStack->n); pStack->z = z; pStack->flags &= ~MEM_Ephem; pStack->flags |= MEM_Dyn; return 0; } /* ** Release the memory associated with the given stack level. This ** leaves the Mem.flags field in an inconsistent state. */ #define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); } /* ** Pop the stack N times. */ static void popStack(Mem **ppTos, int N){ Mem *pTos = *ppTos; while( N>0 ){ N--; Release(pTos); pTos--; } *ppTos = pTos; } /* ** Return TRUE if zNum is a 32-bit signed integer and write ** the value of the integer into *pNum. If zNum is not an integer ** or is an integer that is too large to be expressed with just 32 ** bits, then return false. ** ** Under Linux (RedHat 7.2) this routine is much faster than atoi() ** for converting strings into integers. */ static int toInt(const char *zNum, int *pNum){ int v = 0; int neg; int i, c; if( *zNum=='-' ){ neg = 1; zNum++; }else if( *zNum=='+' ){ neg = 0; zNum++; }else{ neg = 0; } for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ v = v*10 + c - '0'; } *pNum = neg ? -v : v; return c==0 && i>0 && (i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0)); } /* ** Convert the given stack entity into a integer if it isn't one ** already. ** ** Any prior string or real representation is invalidated. ** NULLs are converted into 0. */ #define Integerify(P) if(((P)->flags&MEM_Int)==0){ hardIntegerify(P); } static void hardIntegerify(Mem *pStack){ if( pStack->flags & MEM_Real ){ pStack->i = (int)pStack->r; Release(pStack); }else if( pStack->flags & MEM_Str ){ toInt(pStack->z, &pStack->i); Release(pStack); }else{ pStack->i = 0; } pStack->flags = MEM_Int; } /* ** Get a valid Real representation for the given stack element. ** ** Any prior string or integer representation is retained. ** NULLs are converted into 0.0. */ #define Realify(P) if(((P)->flags&MEM_Real)==0){ hardRealify(P); } static void hardRealify(Mem *pStack){ if( pStack->flags & MEM_Str ){ pStack->r = sqliteAtoF(pStack->z, 0); }else if( pStack->flags & MEM_Int ){ pStack->r = pStack->i; }else{ pStack->r = 0.0; } pStack->flags |= MEM_Real; } /* ** The parameters are pointers to the head of two sorted lists ** of Sorter structures. Merge these two lists together and return ** a single sorted list. This routine forms the core of the merge-sort ** algorithm. ** ** In the case of a tie, left sorts in front of right. */ static Sorter *Merge(Sorter *pLeft, Sorter *pRight){ Sorter sHead; Sorter *pTail; pTail = &sHead; pTail->pNext = 0; while( pLeft && pRight ){ int c = sqliteSortCompare(pLeft->zKey, pRight->zKey); if( c<=0 ){ pTail->pNext = pLeft; pLeft = pLeft->pNext; }else{ pTail->pNext = pRight; pRight = pRight->pNext; } pTail = pTail->pNext; } if( pLeft ){ pTail->pNext = pLeft; }else if( pRight ){ pTail->pNext = pRight; } return sHead.pNext; } /* ** The following routine works like a replacement for the standard ** library routine fgets(). The difference is in how end-of-line (EOL) ** is handled. Standard fgets() uses LF for EOL under unix, CRLF ** under windows, and CR under mac. This routine accepts any of these ** character sequences as an EOL mark. The EOL mark is replaced by ** a single LF character in zBuf. */ static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){ int i, c; for(i=0; i0 ? zBuf : 0; } /* ** Make sure there is space in the Vdbe structure to hold at least ** mxCursor cursors. If there is not currently enough space, then ** allocate more. ** ** If a memory allocation error occurs, return 1. Return 0 if ** everything works. */ static int expandCursorArraySize(Vdbe *p, int mxCursor){ if( mxCursor>=p->nCursor ){ Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) ); if( aCsr==0 ) return 1; p->aCsr = aCsr; memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor)); p->nCursor = mxCursor+1; } return 0; } #ifdef VDBE_PROFILE /* ** The following routine only works on pentium-class processors. ** It uses the RDTSC opcode to read cycle count value out of the ** processor and returns that value. This can be used for high-res ** profiling. */ __inline__ unsigned long long int hwtime(void){ unsigned long long int x; __asm__("rdtsc\n\t" "mov %%edx, %%ecx\n\t" :"=A" (x)); return x; } #endif /* ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the ** sqlite_interrupt() routine has been called. If it has been, then ** processing of the VDBE program is interrupted. ** ** This macro added to every instruction that does a jump in order to ** implement a loop. This test used to be on every single instruction, ** but that meant we more testing that we needed. By only testing the ** flag on jump instructions, we get a (small) speed improvement. */ #define CHECK_FOR_INTERRUPT \ if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt; /* ** Execute as much of a VDBE program as we can then return. ** ** sqliteVdbeMakeReady() must be called before this routine in order to ** close the program with a final OP_Halt and to set up the callbacks ** and the error message pointer. ** ** Whenever a row or result data is available, this routine will either ** invoke the result callback (if there is one) or return with ** SQLITE_ROW. ** ** If an attempt is made to open a locked database, then this routine ** will either invoke the busy callback (if there is one) or it will ** return SQLITE_BUSY. ** ** If an error occurs, an error message is written to memory obtained ** from sqliteMalloc() and p->zErrMsg is made to point to that memory. ** The error code is stored in p->rc and this routine returns SQLITE_ERROR. ** ** If the callback ever returns non-zero, then the program exits ** immediately. There will be no error message but the p->rc field is ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. ** ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this ** routine to return SQLITE_ERROR. ** ** Other fatal errors return SQLITE_ERROR. ** ** After this routine has finished, sqliteVdbeFinalize() should be ** used to clean up the mess that was left behind. */ int sqliteVdbeExec( Vdbe *p /* The VDBE */ ){ int pc; /* The program counter */ Op *pOp; /* Current operation */ int rc = SQLITE_OK; /* Value to return */ sqlite *db = p->db; /* The database */ Mem *pTos; /* Top entry in the operand stack */ char zBuf[100]; /* Space to sprintf() an integer */ #ifdef VDBE_PROFILE unsigned long long start; /* CPU clock count at start of opcode */ int origPc; /* Program counter at start of opcode */ #endif #ifndef SQLITE_OMIT_PROGRESS_CALLBACK int nProgressOps = 0; /* Opcodes executed since progress callback. */ #endif if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE; assert( db->magic==SQLITE_MAGIC_BUSY ); assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); p->rc = SQLITE_OK; assert( p->explain==0 ); if( sqlite_malloc_failed ) goto no_mem; pTos = p->pTos; if( p->popStack ){ popStack(&pTos, p->popStack); p->popStack = 0; } CHECK_FOR_INTERRUPT; for(pc=p->pc; rc==SQLITE_OK; pc++){ assert( pc>=0 && pcnOp ); assert( pTos<=&p->aStack[pc] ); #ifdef VDBE_PROFILE origPc = pc; start = hwtime(); #endif pOp = &p->aOp[pc]; /* Only allow tracing if NDEBUG is not defined. */ #ifndef NDEBUG if( p->trace ){ sqliteVdbePrintOp(p->trace, pc, pOp); } #endif /* Check to see if we need to simulate an interrupt. This only happens ** if we have a special test build. */ #ifdef SQLITE_TEST if( sqlite_interrupt_count>0 ){ sqlite_interrupt_count--; if( sqlite_interrupt_count==0 ){ sqlite_interrupt(db); } } #endif #ifndef SQLITE_OMIT_PROGRESS_CALLBACK /* Call the progress callback if it is configured and the retquired number ** of VDBE ops have been executed (either since this invocation of ** sqliteVdbeExec() or since last time the progress callback was called). ** If the progress callback returns non-zero, exit the virtual machine with ** a return code SQLITE_ABORT. */ if( db->xProgress ){ if( db->nProgressOps==nProgressOps ){ if( db->xProgress(db->pProgressArg)!=0 ){ rc = SQLITE_ABORT; continue; /* skip to the next iteration of the for loop */ } nProgressOps = 0; } nProgressOps++; } #endif switch( pOp->opcode ){ /***************************************************************************** ** What follows is a massive switch statement where each case implements a ** separate instruction in the virtual machine. If we follow the usual ** indentation conventions, each case should be indented by 6 spaces. But ** that is a lot of wasted space on the left margin. So the code within ** the switch statement will break with convention and be flush-left. Another ** big comment (similar to this one) will mark the point in the code where ** we transition back to normal indentation. ** ** The formatting of each case is important. The makefile for SQLite ** generates two C files "opcodes.h" and "opcodes.c" by scanning this ** file looking for lines that begin with "case OP_". The opcodes.h files ** will be filled with #defines that give unique integer values to each ** opcode and the opcodes.c file is filled with an array of strings where ** each string is the symbolic name for the corresponding opcode. ** ** Documentation about VDBE opcodes is generated by scanning this file ** for lines of that contain "Opcode:". That line and all subsequent ** comment lines are used in the generation of the opcode.html documentation ** file. ** ** SUMMARY: ** ** Formatting is important to scripts that scan this file. ** Do not deviate from the formatting style currently in use. ** *****************************************************************************/ /* Opcode: Goto * P2 * ** ** An unconditional jump to address P2. ** The next instruction executed will be ** the one at index P2 from the beginning of ** the program. */ case OP_Goto: { CHECK_FOR_INTERRUPT; pc = pOp->p2 - 1; break; } /* Opcode: Gosub * P2 * ** ** Push the current address plus 1 onto the return address stack ** and then jump to address P2. ** ** The return address stack is of limited depth. If too many ** OP_Gosub operations occur without intervening OP_Returns, then ** the return address stack will fill up and processing will abort ** with a fatal error. */ case OP_Gosub: { if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){ sqliteSetString(&p->zErrMsg, "return address stack overflow", (char*)0); p->rc = SQLITE_INTERNAL; return SQLITE_ERROR; } p->returnStack[p->returnDepth++] = pc+1; pc = pOp->p2 - 1; break; } /* Opcode: Return * * * ** ** Jump immediately to the next instruction after the last unreturned ** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then ** processing aborts with a fatal error. */ case OP_Return: { if( p->returnDepth<=0 ){ sqliteSetString(&p->zErrMsg, "return address stack underflow", (char*)0); p->rc = SQLITE_INTERNAL; return SQLITE_ERROR; } p->returnDepth--; pc = p->returnStack[p->returnDepth] - 1; break; } /* Opcode: Halt P1 P2 * ** ** Exit immediately. All open cursors, Lists, Sorts, etc are closed ** automatically. ** ** P1 is the result code returned by sqlite_exec(). For a normal ** halt, this should be SQLITE_OK (0). For errors, it can be some ** other value. If P1!=0 then P2 will determine whether or not to ** rollback the current transaction. Do not rollback if P2==OE_Fail. ** Do the rollback if P2==OE_Rollback. If P2==OE_Abort, then back ** out all changes that have occurred during this execution of the ** VDBE, but do not rollback the transaction. ** ** There is an implied "Halt 0 0 0" instruction inserted at the very end of ** every program. So a jump past the last instruction of the program ** is the same as executing Halt. */ case OP_Halt: { p->magic = VDBE_MAGIC_HALT; p->pTos = pTos; if( pOp->p1!=SQLITE_OK ){ p->rc = pOp->p1; p->errorAction = pOp->p2; if( pOp->p3 ){ sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0); } return SQLITE_ERROR; }else{ p->rc = SQLITE_OK; return SQLITE_DONE; } } /* Opcode: Integer P1 * P3 ** ** The integer value P1 is pushed onto the stack. If P3 is not zero ** then it is assumed to be a string representation of the same integer. */ case OP_Integer: { pTos++; pTos->i = pOp->p1; pTos->flags = MEM_Int; if( pOp->p3 ){ pTos->z = pOp->p3; pTos->flags |= MEM_Str | MEM_Static; pTos->n = strlen(pOp->p3)+1; } break; } /* Opcode: String * * P3 ** ** The string value P3 is pushed onto the stack. If P3==0 then a ** NULL is pushed onto the stack. */ case OP_String: { char *z = pOp->p3; pTos++; if( z==0 ){ pTos->flags = MEM_Null; }else{ pTos->z = z; pTos->n = strlen(z) + 1; pTos->flags = MEM_Str | MEM_Static; } break; } /* Opcode: Variable P1 * * ** ** Push the value of variable P1 onto the stack. A variable is ** an unknown in the original SQL string as handed to sqlite_compile(). ** Any occurance of the '?' character in the original SQL is considered ** a variable. Variables in the SQL string are number from left to ** right beginning with 1. The values of variables are set using the ** sqlite_bind() API. */ case OP_Variable: { int j = pOp->p1 - 1; pTos++; if( j>=0 && jnVar && p->azVar[j]!=0 ){ pTos->z = p->azVar[j]; pTos->n = p->anVar[j]; pTos->flags = MEM_Str | MEM_Static; }else{ pTos->flags = MEM_Null; } break; } /* Opcode: Pop P1 * * ** ** P1 elements are popped off of the top of stack and discarded. */ case OP_Pop: { assert( pOp->p1>=0 ); popStack(&pTos, pOp->p1); assert( pTos>=&p->aStack[-1] ); break; } /* Opcode: Dup P1 P2 * ** ** A copy of the P1-th element of the stack ** is made and pushed onto the top of the stack. ** The top of the stack is element 0. So the ** instruction "Dup 0 0 0" will make a copy of the ** top of the stack. ** ** If the content of the P1-th element is a dynamically ** allocated string, then a new copy of that string ** is made if P2==0. If P2!=0, then just a pointer ** to the string is copied. ** ** Also see the Pull instruction. */ case OP_Dup: { Mem *pFrom = &pTos[-pOp->p1]; assert( pFrom<=pTos && pFrom>=p->aStack ); pTos++; memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS); if( pTos->flags & MEM_Str ){ if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){ pTos->flags &= ~MEM_Dyn; pTos->flags |= MEM_Ephem; }else if( pTos->flags & MEM_Short ){ memcpy(pTos->zShort, pFrom->zShort, pTos->n); pTos->z = pTos->zShort; }else if( (pTos->flags & MEM_Static)==0 ){ pTos->z = sqliteMallocRaw(pFrom->n); if( sqlite_malloc_failed ) goto no_mem; memcpy(pTos->z, pFrom->z, pFrom->n); pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short); pTos->flags |= MEM_Dyn; } } break; } /* Opcode: Pull P1 * * ** ** The P1-th element is removed from its current location on ** the stack and pushed back on top of the stack. The ** top of the stack is element 0, so "Pull 0 0 0" is ** a no-op. "Pull 1 0 0" swaps the top two elements of ** the stack. ** ** See also the Dup instruction. */ case OP_Pull: { Mem *pFrom = &pTos[-pOp->p1]; int i; Mem ts; ts = *pFrom; Deephemeralize(pTos); for(i=0; ip1; i++, pFrom++){ Deephemeralize(&pFrom[1]); *pFrom = pFrom[1]; assert( (pFrom->flags & MEM_Ephem)==0 ); if( pFrom->flags & MEM_Short ){ assert( pFrom->flags & MEM_Str ); assert( pFrom->z==pFrom[1].zShort ); pFrom->z = pFrom->zShort; } } *pTos = ts; if( pTos->flags & MEM_Short ){ assert( pTos->flags & MEM_Str ); assert( pTos->z==pTos[-pOp->p1].zShort ); pTos->z = pTos->zShort; } break; } /* Opcode: Push P1 * * ** ** Overwrite the value of the P1-th element down on the ** stack (P1==0 is the top of the stack) with the value ** of the top of the stack. Then pop the top of the stack. */ case OP_Push: { Mem *pTo = &pTos[-pOp->p1]; assert( pTo>=p->aStack ); Deephemeralize(pTos); Release(pTo); *pTo = *pTos; if( pTo->flags & MEM_Short ){ assert( pTo->z==pTos->zShort ); pTo->z = pTo->zShort; } pTos--; break; } /* Opcode: ColumnName P1 P2 P3 ** ** P3 becomes the P1-th column name (first is 0). An array of pointers ** to all column names is passed as the 4th parameter to the callback. ** If P2==1 then this is the last column in the result set and thus the ** number of columns in the result set will be P1. There must be at least ** one OP_ColumnName with a P2==1 before invoking OP_Callback and the ** number of columns specified in OP_Callback must one more than the P1 ** value of the OP_ColumnName that has P2==1. */ case OP_ColumnName: { assert( pOp->p1>=0 && pOp->p1nOp ); p->azColName[pOp->p1] = pOp->p3; p->nCallback = 0; if( pOp->p2 ) p->nResColumn = pOp->p1+1; break; } /* Opcode: Callback P1 * * ** ** Pop P1 values off the stack and form them into an array. Then ** invoke the callback function using the newly formed array as the ** 3rd parameter. */ case OP_Callback: { int i; char **azArgv = p->zArgv; Mem *pCol; pCol = &pTos[1-pOp->p1]; assert( pCol>=p->aStack ); for(i=0; ip1; i++, pCol++){ if( pCol->flags & MEM_Null ){ azArgv[i] = 0; }else{ Stringify(pCol); azArgv[i] = pCol->z; } } azArgv[i] = 0; p->nCallback++; p->azResColumn = azArgv; assert( p->nResColumn==pOp->p1 ); p->popStack = pOp->p1; p->pc = pc + 1; p->pTos = pTos; return SQLITE_ROW; } /* Opcode: Concat P1 P2 P3 ** ** Look at the first P1 elements of the stack. Append them all ** together with the lowest element first. Use P3 as a separator. ** Put the result on the top of the stack. The original P1 elements ** are popped from the stack if P2==0 and retained if P2==1. If ** any element of the stack is NULL, then the result is NULL. ** ** If P3 is NULL, then use no separator. When P1==1, this routine ** makes a copy of the top stack element into memory obtained ** from sqliteMalloc(). */ case OP_Concat: { char *zNew; int nByte; int nField; int i, j; char *zSep; int nSep; Mem *pTerm; nField = pOp->p1; zSep = pOp->p3; if( zSep==0 ) zSep = ""; nSep = strlen(zSep); assert( &pTos[1-nField] >= p->aStack ); nByte = 1 - nSep; pTerm = &pTos[1-nField]; for(i=0; iflags & MEM_Null ){ nByte = -1; break; }else{ Stringify(pTerm); nByte += pTerm->n - 1 + nSep; } } if( nByte<0 ){ if( pOp->p2==0 ){ popStack(&pTos, nField); } pTos++; pTos->flags = MEM_Null; break; } zNew = sqliteMallocRaw( nByte ); if( zNew==0 ) goto no_mem; j = 0; pTerm = &pTos[1-nField]; for(i=j=0; iflags & MEM_Str ); memcpy(&zNew[j], pTerm->z, pTerm->n-1); j += pTerm->n-1; if( nSep>0 && ip2==0 ){ popStack(&pTos, nField); } pTos++; pTos->n = nByte; pTos->flags = MEM_Str|MEM_Dyn; pTos->z = zNew; break; } /* Opcode: Add * * * ** ** Pop the top two elements from the stack, add them together, ** and push the result back onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the addition. ** If either operand is NULL, the result is NULL. */ /* Opcode: Multiply * * * ** ** Pop the top two elements from the stack, multiply them together, ** and push the result back onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the multiplication. ** If either operand is NULL, the result is NULL. */ /* Opcode: Subtract * * * ** ** Pop the top two elements from the stack, subtract the ** first (what was on top of the stack) from the second (the ** next on stack) ** and push the result back onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the subtraction. ** If either operand is NULL, the result is NULL. */ /* Opcode: Divide * * * ** ** Pop the top two elements from the stack, divide the ** first (what was on top of the stack) from the second (the ** next on stack) ** and push the result back onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the division. Division by zero returns NULL. ** If either operand is NULL, the result is NULL. */ /* Opcode: Remainder * * * ** ** Pop the top two elements from the stack, divide the ** first (what was on top of the stack) from the second (the ** next on stack) ** and push the remainder after division onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the division. Division by zero returns NULL. ** If either operand is NULL, the result is NULL. */ case OP_Add: case OP_Subtract: case OP_Multiply: case OP_Divide: case OP_Remainder: { Mem *pNos = &pTos[-1]; assert( pNos>=p->aStack ); if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){ Release(pTos); pTos--; Release(pTos); pTos->flags = MEM_Null; }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){ int a, b; a = pTos->i; b = pNos->i; switch( pOp->opcode ){ case OP_Add: b += a; break; case OP_Subtract: b -= a; break; case OP_Multiply: b *= a; break; case OP_Divide: { if( a==0 ) goto divide_by_zero; b /= a; break; } default: { if( a==0 ) goto divide_by_zero; b %= a; break; } } Release(pTos); pTos--; Release(pTos); pTos->i = b; pTos->flags = MEM_Int; }else{ double a, b; Realify(pTos); Realify(pNos); a = pTos->r; b = pNos->r; switch( pOp->opcode ){ case OP_Add: b += a; break; case OP_Subtract: b -= a; break; case OP_Multiply: b *= a; break; case OP_Divide: { if( a==0.0 ) goto divide_by_zero; b /= a; break; } default: { int ia = (int)a; int ib = (int)b; if( ia==0.0 ) goto divide_by_zero; b = ib % ia; break; } } Release(pTos); pTos--; Release(pTos); pTos->r = b; pTos->flags = MEM_Real; } break; divide_by_zero: Release(pTos); pTos--; Release(pTos); pTos->flags = MEM_Null; break; } /* Opcode: Function P1 * P3 ** ** Invoke a user function (P3 is a pointer to a Function structure that ** defines the function) with P1 string arguments taken from the stack. ** Pop all arguments from the stack and push back the result. ** ** See also: AggFunc */ case OP_Function: { int n, i; Mem *pArg; char **azArgv; sqlite_func ctx; n = pOp->p1; pArg = &pTos[1-n]; azArgv = p->zArgv; for(i=0; iflags & MEM_Null ){ azArgv[i] = 0; }else{ Stringify(pArg); azArgv[i] = pArg->z; } } ctx.pFunc = (FuncDef*)pOp->p3; ctx.s.flags = MEM_Null; ctx.s.z = 0; ctx.isError = 0; ctx.isStep = 0; if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; (*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv); if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; popStack(&pTos, n); pTos++; *pTos = ctx.s; if( pTos->flags & MEM_Short ){ pTos->z = pTos->zShort; } if( ctx.isError ){ sqliteSetString(&p->zErrMsg, (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0); rc = SQLITE_ERROR; } break; } /* Opcode: BitAnd * * * ** ** Pop the top two elements from the stack. Convert both elements ** to integers. Push back onto the stack the bit-wise AND of the ** two elements. ** If either operand is NULL, the result is NULL. */ /* Opcode: BitOr * * * ** ** Pop the top two elements from the stack. Convert both elements ** to integers. Push back onto the stack the bit-wise OR of the ** two elements. ** If either operand is NULL, the result is NULL. */ /* Opcode: ShiftLeft * * * ** ** Pop the top two elements from the stack. Convert both elements ** to integers. Push back onto the stack the top element shifted ** left by N bits where N is the second element on the stack. ** If either operand is NULL, the result is NULL. */ /* Opcode: ShiftRight * * * ** ** Pop the top two elements from the stack. Convert both elements ** to integers. Push back onto the stack the top element shifted ** right by N bits where N is the second element on the stack. ** If either operand is NULL, the result is NULL. */ case OP_BitAnd: case OP_BitOr: case OP_ShiftLeft: case OP_ShiftRight: { Mem *pNos = &pTos[-1]; int a, b; assert( pNos>=p->aStack ); if( (pTos->flags | pNos->flags) & MEM_Null ){ popStack(&pTos, 2); pTos++; pTos->flags = MEM_Null; break; } Integerify(pTos); Integerify(pNos); a = pTos->i; b = pNos->i; switch( pOp->opcode ){ case OP_BitAnd: a &= b; break; case OP_BitOr: a |= b; break; case OP_ShiftLeft: a <<= b; break; case OP_ShiftRight: a >>= b; break; default: /* CANT HAPPEN */ break; } assert( (pTos->flags & MEM_Dyn)==0 ); assert( (pNos->flags & MEM_Dyn)==0 ); pTos--; Release(pTos); pTos->i = a; pTos->flags = MEM_Int; break; } /* Opcode: AddImm P1 * * ** ** Add the value P1 to whatever is on top of the stack. The result ** is always an integer. ** ** To force the top of the stack to be an integer, just add 0. */ case OP_AddImm: { assert( pTos>=p->aStack ); Integerify(pTos); pTos->i += pOp->p1; break; } /* Opcode: ForceInt P1 P2 * ** ** Convert the top of the stack into an integer. If the current top of ** the stack is not numeric (meaning that is is a NULL or a string that ** does not look like an integer or floating point number) then pop the ** stack and jump to P2. If the top of the stack is numeric then ** convert it into the least integer that is greater than or equal to its ** current value if P1==0, or to the least integer that is strictly ** greater than its current value if P1==1. */ case OP_ForceInt: { int v; assert( pTos>=p->aStack ); if( (pTos->flags & (MEM_Int|MEM_Real))==0 && ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){ Release(pTos); pTos--; pc = pOp->p2 - 1; break; } if( pTos->flags & MEM_Int ){ v = pTos->i + (pOp->p1!=0); }else{ Realify(pTos); v = (int)pTos->r; if( pTos->r>(double)v ) v++; if( pOp->p1 && pTos->r==(double)v ) v++; } Release(pTos); pTos->i = v; pTos->flags = MEM_Int; break; } /* Opcode: MustBeInt P1 P2 * ** ** Force the top of the stack to be an integer. If the top of the ** stack is not an integer and cannot be converted into an integer ** with out data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. ** ** If the top of the stack is not an integer and P2 is not zero and ** P1 is 1, then the stack is popped. In all other cases, the depth ** of the stack is unchanged. */ case OP_MustBeInt: { assert( pTos>=p->aStack ); if( pTos->flags & MEM_Int ){ /* Do nothing */ }else if( pTos->flags & MEM_Real ){ int i = (int)pTos->r; double r = (double)i; if( r!=pTos->r ){ goto mismatch; } pTos->i = i; }else if( pTos->flags & MEM_Str ){ int v; if( !toInt(pTos->z, &v) ){ double r; if( !sqliteIsNumber(pTos->z) ){ goto mismatch; } Realify(pTos); v = (int)pTos->r; r = (double)v; if( r!=pTos->r ){ goto mismatch; } } pTos->i = v; }else{ goto mismatch; } Release(pTos); pTos->flags = MEM_Int; break; mismatch: if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ if( pOp->p1 ) popStack(&pTos, 1); pc = pOp->p2 - 1; } break; } /* Opcode: Eq P1 P2 * ** ** Pop the top two elements from the stack. If they are equal, then ** jump to instruction P2. Otherwise, continue to the next instruction. ** ** If either operand is NULL (and thus if the result is unknown) then ** take the jump if P1 is true. ** ** If both values are numeric, they are converted to doubles using atof() ** and compared for equality that way. Otherwise the strcmp() library ** routine is used for the comparison. For a pure text comparison ** use OP_StrEq. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ /* Opcode: Ne P1 P2 * ** ** Pop the top two elements from the stack. If they are not equal, then ** jump to instruction P2. Otherwise, continue to the next instruction. ** ** If either operand is NULL (and thus if the result is unknown) then ** take the jump if P1 is true. ** ** If both values are numeric, they are converted to doubles using atof() ** and compared in that format. Otherwise the strcmp() library ** routine is used for the comparison. For a pure text comparison ** use OP_StrNe. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ /* Opcode: Lt P1 P2 * ** ** Pop the top two elements from the stack. If second element (the ** next on stack) is less than the first (the top of stack), then ** jump to instruction P2. Otherwise, continue to the next instruction. ** In other words, jump if NOSTOS. ** ** If either operand is NULL (and thus if the result is unknown) then ** take the jump if P1 is true. ** ** If both values are numeric, they are converted to doubles using atof() ** and compared in that format. Numeric values are always less than ** non-numeric values. If both operands are non-numeric, the strcmp() library ** routine is used for the comparison. For a pure text comparison ** use OP_StrGt. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ /* Opcode: Ge P1 P2 * ** ** Pop the top two elements from the stack. If second element (the next ** on stack) is greater than or equal to the first (the top of stack), ** then jump to instruction P2. In other words, jump if NOS>=TOS. ** ** If either operand is NULL (and thus if the result is unknown) then ** take the jump if P1 is true. ** ** If both values are numeric, they are converted to doubles using atof() ** and compared in that format. Numeric values are always less than ** non-numeric values. If both operands are non-numeric, the strcmp() library ** routine is used for the comparison. For a pure text comparison ** use OP_StrGe. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ case OP_Eq: case OP_Ne: case OP_Lt: case OP_Le: case OP_Gt: case OP_Ge: { Mem *pNos = &pTos[-1]; int c, v; int ft, fn; assert( pNos>=p->aStack ); ft = pTos->flags; fn = pNos->flags; if( (ft | fn) & MEM_Null ){ popStack(&pTos, 2); if( pOp->p2 ){ if( pOp->p1 ) pc = pOp->p2-1; }else{ pTos++; pTos->flags = MEM_Null; } break; }else if( (ft & fn & MEM_Int)==MEM_Int ){ c = pNos->i - pTos->i; }else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){ c = v - pTos->i; }else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){ c = pNos->i - v; }else{ Stringify(pTos); Stringify(pNos); c = sqliteCompare(pNos->z, pTos->z); } switch( pOp->opcode ){ case OP_Eq: c = c==0; break; case OP_Ne: c = c!=0; break; case OP_Lt: c = c<0; break; case OP_Le: c = c<=0; break; case OP_Gt: c = c>0; break; default: c = c>=0; break; } popStack(&pTos, 2); if( pOp->p2 ){ if( c ) pc = pOp->p2-1; }else{ pTos++; pTos->i = c; pTos->flags = MEM_Int; } break; } /* INSERT NO CODE HERE! ** ** The opcode numbers are extracted from this source file by doing ** ** grep '^case OP_' vdbe.c | ... >opcodes.h ** ** The opcodes are numbered in the order that they appear in this file. ** But in order for the expression generating code to work right, the ** string comparison operators that follow must be numbered exactly 6 ** greater than the numeric comparison opcodes above. So no other ** cases can appear between the two. */ /* Opcode: StrEq P1 P2 * ** ** Pop the top two elements from the stack. If they are equal, then ** jump to instruction P2. Otherwise, continue to the next instruction. ** ** If either operand is NULL (and thus if the result is unknown) then ** take the jump if P1 is true. ** ** The strcmp() library routine is used for the comparison. For a ** numeric comparison, use OP_Eq. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ /* Opcode: StrNe P1 P2 * ** ** Pop the top two elements from the stack. If they are not equal, then ** jump to instruction P2. Otherwise, continue to the next instruction. ** ** If either operand is NULL (and thus if the result is unknown) then ** take the jump if P1 is true. ** ** The strcmp() library routine is used for the comparison. For a ** numeric comparison, use OP_Ne. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ /* Opcode: StrLt P1 P2 * ** ** Pop the top two elements from the stack. If second element (the ** next on stack) is less than the first (the top of stack), then ** jump to instruction P2. Otherwise, continue to the next instruction. ** In other words, jump if NOSTOS. ** ** If either operand is NULL (and thus if the result is unknown) then ** take the jump if P1 is true. ** ** The strcmp() library routine is used for the comparison. For a ** numeric comparison, use OP_Gt. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ /* Opcode: StrGe P1 P2 * ** ** Pop the top two elements from the stack. If second element (the next ** on stack) is greater than or equal to the first (the top of stack), ** then jump to instruction P2. In other words, jump if NOS>=TOS. ** ** If either operand is NULL (and thus if the result is unknown) then ** take the jump if P1 is true. ** ** The strcmp() library routine is used for the comparison. For a ** numeric comparison, use OP_Ge. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ case OP_StrEq: case OP_StrNe: case OP_StrLt: case OP_StrLe: case OP_StrGt: case OP_StrGe: { Mem *pNos = &pTos[-1]; int c; assert( pNos>=p->aStack ); if( (pNos->flags | pTos->flags) & MEM_Null ){ popStack(&pTos, 2); if( pOp->p2 ){ if( pOp->p1 ) pc = pOp->p2-1; }else{ pTos++; pTos->flags = MEM_Null; } break; }else{ Stringify(pTos); Stringify(pNos); c = strcmp(pNos->z, pTos->z); } /* The asserts on each case of the following switch are there to verify ** that string comparison opcodes are always exactly 6 greater than the ** corresponding numeric comparison opcodes. The code generator depends ** on this fact. */ switch( pOp->opcode ){ case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break; case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break; case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break; case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break; case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break; default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break; } popStack(&pTos, 2); if( pOp->p2 ){ if( c ) pc = pOp->p2-1; }else{ pTos++; pTos->flags = MEM_Int; pTos->i = c; } break; } /* Opcode: And * * * ** ** Pop two values off the stack. Take the logical AND of the ** two values and push the resulting boolean value back onto the ** stack. */ /* Opcode: Or * * * ** ** Pop two values off the stack. Take the logical OR of the ** two values and push the resulting boolean value back onto the ** stack. */ case OP_And: case OP_Or: { Mem *pNos = &pTos[-1]; int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */ assert( pNos>=p->aStack ); if( pTos->flags & MEM_Null ){ v1 = 2; }else{ Integerify(pTos); v1 = pTos->i==0; } if( pNos->flags & MEM_Null ){ v2 = 2; }else{ Integerify(pNos); v2 = pNos->i==0; } if( pOp->opcode==OP_And ){ static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; v1 = and_logic[v1*3+v2]; }else{ static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; v1 = or_logic[v1*3+v2]; } popStack(&pTos, 2); pTos++; if( v1==2 ){ pTos->flags = MEM_Null; }else{ pTos->i = v1==0; pTos->flags = MEM_Int; } break; } /* Opcode: Negative * * * ** ** Treat the top of the stack as a numeric quantity. Replace it ** with its additive inverse. If the top of the stack is NULL ** its value is unchanged. */ /* Opcode: AbsValue * * * ** ** Treat the top of the stack as a numeric quantity. Replace it ** with its absolute value. If the top of the stack is NULL ** its value is unchanged. */ case OP_Negative: case OP_AbsValue: { assert( pTos>=p->aStack ); if( pTos->flags & MEM_Real ){ Release(pTos); if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ pTos->r = -pTos->r; } pTos->flags = MEM_Real; }else if( pTos->flags & MEM_Int ){ Release(pTos); if( pOp->opcode==OP_Negative || pTos->i<0 ){ pTos->i = -pTos->i; } pTos->flags = MEM_Int; }else if( pTos->flags & MEM_Null ){ /* Do nothing */ }else{ Realify(pTos); Release(pTos); if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ pTos->r = -pTos->r; } pTos->flags = MEM_Real; } break; } /* Opcode: Not * * * ** ** Interpret the top of the stack as a boolean value. Replace it ** with its complement. If the top of the stack is NULL its value ** is unchanged. */ case OP_Not: { assert( pTos>=p->aStack ); if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ Integerify(pTos); Release(pTos); pTos->i = !pTos->i; pTos->flags = MEM_Int; break; } /* Opcode: BitNot * * * ** ** Interpret the top of the stack as an value. Replace it ** with its ones-complement. If the top of the stack is NULL its ** value is unchanged. */ case OP_BitNot: { assert( pTos>=p->aStack ); if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ Integerify(pTos); Release(pTos); pTos->i = ~pTos->i; pTos->flags = MEM_Int; break; } /* Opcode: Noop * * * ** ** Do nothing. This instruction is often useful as a jump ** destination. */ case OP_Noop: { break; } /* Opcode: If P1 P2 * ** ** Pop a single boolean from the stack. If the boolean popped is ** true, then jump to p2. Otherwise continue to the next instruction. ** An integer is false if zero and true otherwise. A string is ** false if it has zero length and true otherwise. ** ** If the value popped of the stack is NULL, then take the jump if P1 ** is true and fall through if P1 is false. */ /* Opcode: IfNot P1 P2 * ** ** Pop a single boolean from the stack. If the boolean popped is ** false, then jump to p2. Otherwise continue to the next instruction. ** An integer is false if zero and true otherwise. A string is ** false if it has zero length and true otherwise. ** ** If the value popped of the stack is NULL, then take the jump if P1 ** is true and fall through if P1 is false. */ case OP_If: case OP_IfNot: { int c; assert( pTos>=p->aStack ); if( pTos->flags & MEM_Null ){ c = pOp->p1; }else{ Integerify(pTos); c = pTos->i; if( pOp->opcode==OP_IfNot ) c = !c; } assert( (pTos->flags & MEM_Dyn)==0 ); pTos--; if( c ) pc = pOp->p2-1; break; } /* Opcode: IsNull P1 P2 * ** ** If any of the top abs(P1) values on the stack are NULL, then jump ** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack ** unchanged. */ case OP_IsNull: { int i, cnt; Mem *pTerm; cnt = pOp->p1; if( cnt<0 ) cnt = -cnt; pTerm = &pTos[1-cnt]; assert( pTerm>=p->aStack ); for(i=0; iflags & MEM_Null ){ pc = pOp->p2-1; break; } } if( pOp->p1>0 ) popStack(&pTos, cnt); break; } /* Opcode: NotNull P1 P2 * ** ** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the ** stack if P1 times if P1 is greater than zero. If P1 is less than ** zero then leave the stack unchanged. */ case OP_NotNull: { int i, cnt; cnt = pOp->p1; if( cnt<0 ) cnt = -cnt; assert( &pTos[1-cnt] >= p->aStack ); for(i=0; i=cnt ) pc = pOp->p2-1; if( pOp->p1>0 ) popStack(&pTos, cnt); break; } /* Opcode: MakeRecord P1 P2 * ** ** Convert the top P1 entries of the stack into a single entry ** suitable for use as a data record in a database table. The ** details of the format are irrelavant as long as the OP_Column ** opcode can decode the record later. Refer to source code ** comments for the details of the record format. ** ** If P2 is true (non-zero) and one or more of the P1 entries ** that go into building the record is NULL, then add some extra ** bytes to the record to make it distinct for other entries created ** during the same run of the VDBE. The extra bytes added are a ** counter that is reset with each run of the VDBE, so records ** created this way will not necessarily be distinct across runs. ** But they should be distinct for transient tables (created using ** OP_OpenTemp) which is what they are intended for. ** ** (Later:) The P2==1 option was intended to make NULLs distinct ** for the UNION operator. But I have since discovered that NULLs ** are indistinct for UNION. So this option is never used. */ case OP_MakeRecord: { char *zNewRecord; int nByte; int nField; int i, j; int idxWidth; u32 addr; Mem *pRec; int addUnique = 0; /* True to cause bytes to be added to make the ** generated record distinct */ char zTemp[NBFS]; /* Temp space for small records */ /* Assuming the record contains N fields, the record format looks ** like this: ** ** ------------------------------------------------------------------- ** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) | ** ------------------------------------------------------------------- ** ** All data fields are converted to strings before being stored and ** are stored with their null terminators. NULL entries omit the ** null terminator. Thus an empty string uses 1 byte and a NULL uses ** zero bytes. Data(0) is taken from the lowest element of the stack ** and data(N-1) is the top of the stack. ** ** Each of the idx() entries is either 1, 2, or 3 bytes depending on ** how big the total record is. Idx(0) contains the offset to the start ** of data(0). Idx(k) contains the offset to the start of data(k). ** Idx(N) contains the total number of bytes in the record. */ nField = pOp->p1; pRec = &pTos[1-nField]; assert( pRec>=p->aStack ); nByte = 0; for(i=0; iflags & MEM_Null ){ addUnique = pOp->p2; }else{ Stringify(pRec); nByte += pRec->n; } } if( addUnique ) nByte += sizeof(p->uniqueCnt); if( nByte + nField + 1 < 256 ){ idxWidth = 1; }else if( nByte + 2*nField + 2 < 65536 ){ idxWidth = 2; }else{ idxWidth = 3; } nByte += idxWidth*(nField + 1); if( nByte>MAX_BYTES_PER_ROW ){ rc = SQLITE_TOOBIG; goto abort_due_to_error; } if( nByte<=NBFS ){ zNewRecord = zTemp; }else{ zNewRecord = sqliteMallocRaw( nByte ); if( zNewRecord==0 ) goto no_mem; } j = 0; addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt); for(i=0, pRec=&pTos[1-nField]; i1 ){ zNewRecord[j++] = (addr>>8)&0xff; if( idxWidth>2 ){ zNewRecord[j++] = (addr>>16)&0xff; } } if( (pRec->flags & MEM_Null)==0 ){ addr += pRec->n; } } zNewRecord[j++] = addr & 0xff; if( idxWidth>1 ){ zNewRecord[j++] = (addr>>8)&0xff; if( idxWidth>2 ){ zNewRecord[j++] = (addr>>16)&0xff; } } if( addUnique ){ memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt)); p->uniqueCnt++; j += sizeof(p->uniqueCnt); } for(i=0, pRec=&pTos[1-nField]; iflags & MEM_Null)==0 ){ memcpy(&zNewRecord[j], pRec->z, pRec->n); j += pRec->n; } } popStack(&pTos, nField); pTos++; pTos->n = nByte; if( nByte<=NBFS ){ assert( zNewRecord==zTemp ); memcpy(pTos->zShort, zTemp, nByte); pTos->z = pTos->zShort; pTos->flags = MEM_Str | MEM_Short; }else{ assert( zNewRecord!=zTemp ); pTos->z = zNewRecord; pTos->flags = MEM_Str | MEM_Dyn; } break; } /* Opcode: MakeKey P1 P2 P3 ** ** Convert the top P1 entries of the stack into a single entry suitable ** for use as the key in an index. The top P1 records are ** converted to strings and merged. The null-terminators ** are retained and used as separators. ** The lowest entry in the stack is the first field and the top of the ** stack becomes the last. ** ** If P2 is not zero, then the original entries remain on the stack ** and the new key is pushed on top. If P2 is zero, the original ** data is popped off the stack first then the new key is pushed ** back in its place. ** ** P3 is a string that is P1 characters long. Each character is either ** an 'n' or a 't' to indicates if the argument should be intepreted as ** numeric or text type. The first character of P3 corresponds to the ** lowest element on the stack. If P3 is NULL then all arguments are ** assumed to be of the numeric type. ** ** The type makes a difference in that text-type fields may not be ** introduced by 'b' (as described in the next paragraph). The ** first character of a text-type field must be either 'a' (if it is NULL) ** or 'c'. Numeric fields will be introduced by 'b' if their content ** looks like a well-formed number. Otherwise the 'a' or 'c' will be ** used. ** ** The key is a concatenation of fields. Each field is terminated by ** a single 0x00 character. A NULL field is introduced by an 'a' and ** is followed immediately by its 0x00 terminator. A numeric field is ** introduced by a single character 'b' and is followed by a sequence ** of characters that represent the number such that a comparison of ** the character string using memcpy() sorts the numbers in numerical ** order. The character strings for numbers are generated using the ** sqliteRealToSortable() function. A text field is introduced by a ** 'c' character and is followed by the exact text of the field. The ** use of an 'a', 'b', or 'c' character at the beginning of each field ** guarantees that NULLs sort before numbers and that numbers sort ** before text. 0x00 characters do not occur except as separators ** between fields. ** ** See also: MakeIdxKey, SortMakeKey */ /* Opcode: MakeIdxKey P1 P2 P3 ** ** Convert the top P1 entries of the stack into a single entry suitable ** for use as the key in an index. In addition, take one additional integer ** off of the stack, treat that integer as a four-byte record number, and ** append the four bytes to the key. Thus a total of P1+1 entries are ** popped from the stack for this instruction and a single entry is pushed ** back. The first P1 entries that are popped are strings and the last ** entry (the lowest on the stack) is an integer record number. ** ** The converstion of the first P1 string entries occurs just like in ** MakeKey. Each entry is separated from the others by a null. ** The entire concatenation is null-terminated. The lowest entry ** in the stack is the first field and the top of the stack becomes the ** last. ** ** If P2 is not zero and one or more of the P1 entries that go into the ** generated key is NULL, then jump to P2 after the new key has been ** pushed on the stack. In other words, jump to P2 if the key is ** guaranteed to be unique. This jump can be used to skip a subsequent ** uniqueness test. ** ** P3 is a string that is P1 characters long. Each character is either ** an 'n' or a 't' to indicates if the argument should be numeric or ** text. The first character corresponds to the lowest element on the ** stack. If P3 is null then all arguments are assumed to be numeric. ** ** See also: MakeKey, SortMakeKey */ case OP_MakeIdxKey: case OP_MakeKey: { char *zNewKey; int nByte; int nField; int addRowid; int i, j; int containsNull = 0; Mem *pRec; char zTemp[NBFS]; addRowid = pOp->opcode==OP_MakeIdxKey; nField = pOp->p1; pRec = &pTos[1-nField]; assert( pRec>=p->aStack ); nByte = 0; for(j=0, i=0; iflags; int len; char *z; if( flags & MEM_Null ){ nByte += 2; containsNull = 1; }else if( pOp->p3 && pOp->p3[j]=='t' ){ Stringify(pRec); pRec->flags &= ~(MEM_Int|MEM_Real); nByte += pRec->n+1; }else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){ if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){ pRec->r = pRec->i; }else if( (flags & (MEM_Real|MEM_Int))==0 ){ pRec->r = sqliteAtoF(pRec->z, 0); } Release(pRec); z = pRec->zShort; sqliteRealToSortable(pRec->r, z); len = strlen(z); pRec->z = 0; pRec->flags = MEM_Real; pRec->n = len+1; nByte += pRec->n+1; }else{ nByte += pRec->n+1; } } if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){ rc = SQLITE_TOOBIG; goto abort_due_to_error; } if( addRowid ) nByte += sizeof(u32); if( nByte<=NBFS ){ zNewKey = zTemp; }else{ zNewKey = sqliteMallocRaw( nByte ); if( zNewKey==0 ) goto no_mem; } j = 0; pRec = &pTos[1-nField]; for(i=0; iflags & MEM_Null ){ zNewKey[j++] = 'a'; zNewKey[j++] = 0; }else if( pRec->flags==MEM_Real ){ zNewKey[j++] = 'b'; memcpy(&zNewKey[j], pRec->zShort, pRec->n); j += pRec->n; }else{ assert( pRec->flags & MEM_Str ); zNewKey[j++] = 'c'; memcpy(&zNewKey[j], pRec->z, pRec->n); j += pRec->n; } } if( addRowid ){ u32 iKey; pRec = &pTos[-nField]; assert( pRec>=p->aStack ); Integerify(pRec); iKey = intToKey(pRec->i); memcpy(&zNewKey[j], &iKey, sizeof(u32)); popStack(&pTos, nField+1); if( pOp->p2 && containsNull ) pc = pOp->p2 - 1; }else{ if( pOp->p2==0 ) popStack(&pTos, nField); } pTos++; pTos->n = nByte; if( nByte<=NBFS ){ assert( zNewKey==zTemp ); pTos->z = pTos->zShort; memcpy(pTos->zShort, zTemp, nByte); pTos->flags = MEM_Str | MEM_Short; }else{ pTos->z = zNewKey; pTos->flags = MEM_Str | MEM_Dyn; } break; } /* Opcode: IncrKey * * * ** ** The top of the stack should contain an index key generated by ** The MakeKey opcode. This routine increases the least significant ** byte of that key by one. This is used so that the MoveTo opcode ** will move to the first entry greater than the key rather than to ** the key itself. */ case OP_IncrKey: { assert( pTos>=p->aStack ); /* The IncrKey opcode is only applied to keys generated by ** MakeKey or MakeIdxKey and the results of those operands ** are always dynamic strings or zShort[] strings. So we ** are always free to modify the string in place. */ assert( pTos->flags & (MEM_Dyn|MEM_Short) ); pTos->z[pTos->n-1]++; break; } /* Opcode: Checkpoint P1 * * ** ** Begin a checkpoint. A checkpoint is the beginning of a operation that ** is part of a larger transaction but which might need to be rolled back ** itself without effecting the containing transaction. A checkpoint will ** be automatically committed or rollback when the VDBE halts. ** ** The checkpoint is begun on the database file with index P1. The main ** database file has an index of 0 and the file used for temporary tables ** has an index of 1. */ case OP_Checkpoint: { int i = pOp->p1; if( i>=0 && inDb && db->aDb[i].pBt && db->aDb[i].inTrans==1 ){ rc = sqliteBtreeBeginCkpt(db->aDb[i].pBt); if( rc==SQLITE_OK ) db->aDb[i].inTrans = 2; } break; } /* Opcode: Transaction P1 * * ** ** Begin a transaction. The transaction ends when a Commit or Rollback ** opcode is encountered. Depending on the ON CONFLICT setting, the ** transaction might also be rolled back if an error is encountered. ** ** P1 is the index of the database file on which the transaction is ** started. Index 0 is the main database file and index 1 is the ** file used for temporary tables. ** ** A write lock is obtained on the database file when a transaction is ** started. No other process can read or write the file while the ** transaction is underway. Starting a transaction also creates a ** rollback journal. A transaction must be started before any changes ** can be made to the database. */ case OP_Transaction: { int busy = 1; int i = pOp->p1; assert( i>=0 && inDb ); if( db->aDb[i].inTrans ) break; while( db->aDb[i].pBt!=0 && busy ){ rc = sqliteBtreeBeginTrans(db->aDb[i].pBt); switch( rc ){ case SQLITE_BUSY: { if( db->xBusyCallback==0 ){ p->pc = pc; p->undoTransOnError = 1; p->rc = SQLITE_BUSY; p->pTos = pTos; return SQLITE_BUSY; }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); busy = 0; } break; } case SQLITE_READONLY: { rc = SQLITE_OK; /* Fall thru into the next case */ } case SQLITE_OK: { p->inTempTrans = 0; busy = 0; break; } default: { goto abort_due_to_error; } } } db->aDb[i].inTrans = 1; p->undoTransOnError = 1; break; } /* Opcode: Commit * * * ** ** Cause all modifications to the database that have been made since the ** last Transaction to actually take effect. No additional modifications ** are allowed until another transaction is started. The Commit instruction ** deletes the journal file and releases the write lock on the database. ** A read lock continues to be held if there are still cursors open. */ case OP_Commit: { int i; if( db->xCommitCallback!=0 ){ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; if( db->xCommitCallback(db->pCommitArg)!=0 ){ rc = SQLITE_CONSTRAINT; } if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; } for(i=0; rc==SQLITE_OK && inDb; i++){ if( db->aDb[i].inTrans ){ rc = sqliteBtreeCommit(db->aDb[i].pBt); db->aDb[i].inTrans = 0; } } if( rc==SQLITE_OK ){ sqliteCommitInternalChanges(db); }else{ sqliteRollbackAll(db); } break; } /* Opcode: Rollback P1 * * ** ** Cause all modifications to the database that have been made since the ** last Transaction to be undone. The database is restored to its state ** before the Transaction opcode was executed. No additional modifications ** are allowed until another transaction is started. ** ** P1 is the index of the database file that is committed. An index of 0 ** is used for the main database and an index of 1 is used for the file used ** to hold temporary tables. ** ** This instruction automatically closes all cursors and releases both ** the read and write locks on the indicated database. */ case OP_Rollback: { sqliteRollbackAll(db); break; } /* Opcode: ReadCookie P1 P2 * ** ** Read cookie number P2 from database P1 and push it onto the stack. ** P2==0 is the schema version. P2==1 is the database format. ** P2==2 is the recommended pager cache size, and so forth. P1==0 is ** the main database file and P1==1 is the database file used to store ** temporary tables. ** ** There must be a read-lock on the database (either a transaction ** must be started or there must be an open cursor) before ** executing this instruction. */ case OP_ReadCookie: { int aMeta[SQLITE_N_BTREE_META]; assert( pOp->p2p1>=0 && pOp->p1nDb ); assert( db->aDb[pOp->p1].pBt!=0 ); rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); pTos++; pTos->i = aMeta[1+pOp->p2]; pTos->flags = MEM_Int; break; } /* Opcode: SetCookie P1 P2 * ** ** Write the top of the stack into cookie number P2 of database P1. ** P2==0 is the schema version. P2==1 is the database format. ** P2==2 is the recommended pager cache size, and so forth. P1==0 is ** the main database file and P1==1 is the database file used to store ** temporary tables. ** ** A transaction must be started before executing this opcode. */ case OP_SetCookie: { int aMeta[SQLITE_N_BTREE_META]; assert( pOp->p2p1>=0 && pOp->p1nDb ); assert( db->aDb[pOp->p1].pBt!=0 ); assert( pTos>=p->aStack ); Integerify(pTos) rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); if( rc==SQLITE_OK ){ aMeta[1+pOp->p2] = pTos->i; rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta); } Release(pTos); pTos--; break; } /* Opcode: VerifyCookie P1 P2 * ** ** Check the value of global database parameter number 0 (the ** schema version) and make sure it is equal to P2. ** P1 is the database number which is 0 for the main database file ** and 1 for the file holding temporary tables and some higher number ** for auxiliary databases. ** ** The cookie changes its value whenever the database schema changes. ** This operation is used to detect when that the cookie has changed ** and that the current process needs to reread the schema. ** ** Either a transaction needs to have been started or an OP_Open needs ** to be executed (to establish a read lock) before this opcode is ** invoked. */ case OP_VerifyCookie: { int aMeta[SQLITE_N_BTREE_META]; assert( pOp->p1>=0 && pOp->p1nDb ); rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); if( rc==SQLITE_OK && aMeta[1]!=pOp->p2 ){ sqliteSetString(&p->zErrMsg, "database schema has changed", (char*)0); rc = SQLITE_SCHEMA; } break; } /* Opcode: OpenRead P1 P2 P3 ** ** Open a read-only cursor for the database table whose root page is ** P2 in a database file. The database file is determined by an ** integer from the top of the stack. 0 means the main database and ** 1 means the database used for temporary tables. Give the new ** cursor an identifier of P1. The P1 values need not be contiguous ** but all P1 values should be small integers. It is an error for ** P1 to be negative. ** ** If P2==0 then take the root page number from the next of the stack. ** ** There will be a read lock on the database whenever there is an ** open cursor. If the database was unlocked prior to this instruction ** then a read lock is actquired as part of this instruction. A read ** lock allows other processes to read the database but prohibits ** any other process from modifying the database. The read lock is ** released when all cursors are closed. If this instruction attempts ** to get a read lock but fails, the script terminates with an ** SQLITE_BUSY error code. ** ** The P3 value is the name of the table or index being opened. ** The P3 value is not actually used by this opcode and may be ** omitted. But the code generator usually inserts the index or ** table name into P3 to make the code easier to read. ** ** See also OpenWrite. */ /* Opcode: OpenWrite P1 P2 P3 ** ** Open a read/write cursor named P1 on the table or index whose root ** page is P2. If P2==0 then take the root page number from the stack. ** ** The P3 value is the name of the table or index being opened. ** The P3 value is not actually used by this opcode and may be ** omitted. But the code generator usually inserts the index or ** table name into P3 to make the code easier to read. ** ** This instruction works just like OpenRead except that it opens the cursor ** in read/write mode. For a given table, there can be one or more read-only ** cursors or a single read/write cursor but not both. ** ** See also OpenRead. */ case OP_OpenRead: case OP_OpenWrite: { int busy = 0; int i = pOp->p1; int p2 = pOp->p2; int wrFlag; Btree *pX; int iDb; assert( pTos>=p->aStack ); Integerify(pTos); iDb = pTos->i; pTos--; assert( iDb>=0 && iDbnDb ); pX = db->aDb[iDb].pBt; assert( pX!=0 ); wrFlag = pOp->opcode==OP_OpenWrite; if( p2<=0 ){ assert( pTos>=p->aStack ); Integerify(pTos); p2 = pTos->i; pTos--; if( p2<2 ){ sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0); rc = SQLITE_INTERNAL; break; } } assert( i>=0 ); if( expandCursorArraySize(p, i) ) goto no_mem; sqliteVdbeCleanupCursor(&p->aCsr[i]); memset(&p->aCsr[i], 0, sizeof(Cursor)); p->aCsr[i].nullRow = 1; if( pX==0 ) break; do{ rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor); switch( rc ){ case SQLITE_BUSY: { if( db->xBusyCallback==0 ){ p->pc = pc; p->rc = SQLITE_BUSY; p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */ return SQLITE_BUSY; }else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); busy = 0; } break; } case SQLITE_OK: { busy = 0; break; } default: { goto abort_due_to_error; } } }while( busy ); break; } /* Opcode: OpenTemp P1 P2 * ** ** Open a new cursor to a transient table. ** The transient cursor is always opened read/write even if ** the main database is read-only. The transient table is deleted ** automatically when the cursor is closed. ** ** The cursor points to a BTree table if P2==0 and to a BTree index ** if P2==1. A BTree table must have an integer key and can have arbitrary ** data. A BTree index has no data but can have an arbitrary key. ** ** This opcode is used for tables that exist for the duration of a single ** SQL statement only. Tables created using CREATE TEMPORARY TABLE ** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the ** context of this opcode means for the duration of a single SQL statement ** whereas "Temporary" in the context of CREATE TABLE means for the duration ** of the connection to the database. Same word; different meanings. */ case OP_OpenTemp: { int i = pOp->p1; Cursor *pCx; assert( i>=0 ); if( expandCursorArraySize(p, i) ) goto no_mem; pCx = &p->aCsr[i]; sqliteVdbeCleanupCursor(pCx); memset(pCx, 0, sizeof(*pCx)); pCx->nullRow = 1; rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt); if( rc==SQLITE_OK ){ rc = sqliteBtreeBeginTrans(pCx->pBt); } if( rc==SQLITE_OK ){ if( pOp->p2 ){ int pgno; rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno); if( rc==SQLITE_OK ){ rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor); } }else{ rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor); } } break; } /* Opcode: OpenPseudo P1 * * ** ** Open a new cursor that points to a fake table that contains a single ** row of data. Any attempt to write a second row of data causes the ** first row to be deleted. All data is deleted when the cursor is ** closed. ** ** A pseudo-table created by this opcode is useful for holding the ** NEW or OLD tables in a trigger. */ case OP_OpenPseudo: { int i = pOp->p1; Cursor *pCx; assert( i>=0 ); if( expandCursorArraySize(p, i) ) goto no_mem; pCx = &p->aCsr[i]; sqliteVdbeCleanupCursor(pCx); memset(pCx, 0, sizeof(*pCx)); pCx->nullRow = 1; pCx->pseudoTable = 1; break; } /* Opcode: Close P1 * * ** ** Close a cursor previously opened as P1. If P1 is not ** currently open, this instruction is a no-op. */ case OP_Close: { int i = pOp->p1; if( i>=0 && inCursor ){ sqliteVdbeCleanupCursor(&p->aCsr[i]); } break; } /* Opcode: MoveTo P1 P2 * ** ** Pop the top of the stack and use its value as a key. Reposition ** cursor P1 so that it points to an entry with a matching key. If ** the table contains no record with a matching key, then the cursor ** is left pointing at the first record that is greater than the key. ** If there are no records greater than the key and P2 is not zero, ** then an immediate jump to P2 is made. ** ** See also: Found, NotFound, Distinct, MoveLt */ /* Opcode: MoveLt P1 P2 * ** ** Pop the top of the stack and use its value as a key. Reposition ** cursor P1 so that it points to the entry with the largest key that is ** less than the key popped from the stack. ** If there are no records less than than the key and P2 ** is not zero then an immediate jump to P2 is made. ** ** See also: MoveTo */ case OP_MoveLt: case OP_MoveTo: { int i = pOp->p1; Cursor *pC; assert( pTos>=p->aStack ); assert( i>=0 && inCursor ); pC = &p->aCsr[i]; if( pC->pCursor!=0 ){ int res, oc; pC->nullRow = 0; if( pTos->flags & MEM_Int ){ int iKey = intToKey(pTos->i); if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){ pC->movetoTarget = iKey; pC->deferredMoveto = 1; Release(pTos); pTos--; break; } sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res); pC->lastRecno = pTos->i; pC->recnoIsValid = res==0; }else{ Stringify(pTos); sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); pC->recnoIsValid = 0; } pC->deferredMoveto = 0; sqlite_search_count++; oc = pOp->opcode; if( oc==OP_MoveTo && res<0 ){ sqliteBtreeNext(pC->pCursor, &res); pC->recnoIsValid = 0; if( res && pOp->p2>0 ){ pc = pOp->p2 - 1; } }else if( oc==OP_MoveLt ){ if( res>=0 ){ sqliteBtreePrevious(pC->pCursor, &res); pC->recnoIsValid = 0; }else{ /* res might be negative because the table is empty. Check to ** see if this is the case. */ int keysize; res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0; } if( res && pOp->p2>0 ){ pc = pOp->p2 - 1; } } } Release(pTos); pTos--; break; } /* Opcode: Distinct P1 P2 * ** ** Use the top of the stack as a string key. If a record with that key does ** not exist in the table of cursor P1, then jump to P2. If the record ** does already exist, then fall thru. The cursor is left pointing ** at the record if it exists. The key is not popped from the stack. ** ** This operation is similar to NotFound except that this operation ** does not pop the key from the stack. ** ** See also: Found, NotFound, MoveTo, IsUnique, NotExists */ /* Opcode: Found P1 P2 * ** ** Use the top of the stack as a string key. If a record with that key ** does exist in table of P1, then jump to P2. If the record ** does not exist, then fall thru. The cursor is left pointing ** to the record if it exists. The key is popped from the stack. ** ** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists */ /* Opcode: NotFound P1 P2 * ** ** Use the top of the stack as a string key. If a record with that key ** does not exist in table of P1, then jump to P2. If the record ** does exist, then fall thru. The cursor is left pointing to the ** record if it exists. The key is popped from the stack. ** ** The difference between this operation and Distinct is that ** Distinct does not pop the key from the stack. ** ** See also: Distinct, Found, MoveTo, NotExists, IsUnique */ case OP_Distinct: case OP_NotFound: case OP_Found: { int i = pOp->p1; int alreadyExists = 0; Cursor *pC; assert( pTos>=p->aStack ); assert( i>=0 && inCursor ); if( (pC = &p->aCsr[i])->pCursor!=0 ){ int res, rx; Stringify(pTos); rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); alreadyExists = rx==SQLITE_OK && res==0; pC->deferredMoveto = 0; } if( pOp->opcode==OP_Found ){ if( alreadyExists ) pc = pOp->p2 - 1; }else{ if( !alreadyExists ) pc = pOp->p2 - 1; } if( pOp->opcode!=OP_Distinct ){ Release(pTos); pTos--; } break; } /* Opcode: IsUnique P1 P2 * ** ** The top of the stack is an integer record number. Call this ** record number R. The next on the stack is an index key created ** using MakeIdxKey. Call it K. This instruction pops R from the ** stack but it leaves K unchanged. ** ** P1 is an index. So all but the last four bytes of K are an ** index string. The last four bytes of K are a record number. ** ** This instruction asks if there is an entry in P1 where the ** index string matches K but the record number is different ** from R. If there is no such entry, then there is an immediate ** jump to P2. If any entry does exist where the index string ** matches K but the record number is not R, then the record ** number for that entry is pushed onto the stack and control ** falls through to the next instruction. ** ** See also: Distinct, NotFound, NotExists, Found */ case OP_IsUnique: { int i = pOp->p1; Mem *pNos = &pTos[-1]; BtCursor *pCrsr; int R; /* Pop the value R off the top of the stack */ assert( pNos>=p->aStack ); Integerify(pTos); R = pTos->i; pTos--; assert( i>=0 && i<=p->nCursor ); if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res, rc; int v; /* The record number on the P1 entry that matches K */ char *zKey; /* The value of K */ int nKey; /* Number of bytes in K */ /* Make sure K is a string and make zKey point to K */ Stringify(pNos); zKey = pNos->z; nKey = pNos->n; assert( nKey >= 4 ); /* Search for an entry in P1 where all but the last four bytes match K. ** If there is no such entry, jump immediately to P2. */ assert( p->aCsr[i].deferredMoveto==0 ); rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; if( res<0 ){ rc = sqliteBtreeNext(pCrsr, &res); if( res ){ pc = pOp->p2 - 1; break; } } rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; if( res>0 ){ pc = pOp->p2 - 1; break; } /* At this point, pCrsr is pointing to an entry in P1 where all but ** the last for bytes of the key match K. Check to see if the last ** four bytes of the key are different from R. If the last four ** bytes equal R then jump immediately to P2. */ sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v); v = keyToInt(v); if( v==R ){ pc = pOp->p2 - 1; break; } /* The last four bytes of the key are different from R. Convert the ** last four bytes of the key into an integer and push it onto the ** stack. (These bytes are the record number of an entry that ** violates a UNITQUE constraint.) */ pTos++; pTos->i = v; pTos->flags = MEM_Int; } break; } /* Opcode: NotExists P1 P2 * ** ** Use the top of the stack as a integer key. If a record with that key ** does not exist in table of P1, then jump to P2. If the record ** does exist, then fall thru. The cursor is left pointing to the ** record if it exists. The integer key is popped from the stack. ** ** The difference between this operation and NotFound is that this ** operation assumes the key is an integer and NotFound assumes it ** is a string. ** ** See also: Distinct, Found, MoveTo, NotFound, IsUnique */ case OP_NotExists: { int i = pOp->p1; BtCursor *pCrsr; assert( pTos>=p->aStack ); assert( i>=0 && inCursor ); if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res, rx, iKey; assert( pTos->flags & MEM_Int ); iKey = intToKey(pTos->i); rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res); p->aCsr[i].lastRecno = pTos->i; p->aCsr[i].recnoIsValid = res==0; p->aCsr[i].nullRow = 0; if( rx!=SQLITE_OK || res!=0 ){ pc = pOp->p2 - 1; p->aCsr[i].recnoIsValid = 0; } } Release(pTos); pTos--; break; } /* Opcode: NewRecno P1 * * ** ** Get a new integer record number used as the key to a table. ** The record number is not previously used as a key in the database ** table that cursor P1 points to. The new record number is pushed ** onto the stack. */ case OP_NewRecno: { int i = pOp->p1; int v = 0; Cursor *pC; assert( i>=0 && inCursor ); if( (pC = &p->aCsr[i])->pCursor==0 ){ v = 0; }else{ /* The next rowid or record number (different terms for the same ** thing) is obtained in a two-step algorithm. ** ** First we attempt to find the largest existing rowid and add one ** to that. But if the largest existing rowid is already the maximum ** positive integer, we have to fall through to the second ** probabilistic algorithm ** ** The second algorithm is to select a rowid at random and see if ** it already exists in the table. If it does not exist, we have ** succeeded. If the random rowid does exist, we select a new one ** and try again, up to 1000 times. ** ** For a table with less than 2 billion entries, the probability ** of not finding a unused rowid is about 1.0e-300. This is a ** non-zero probability, but it is still vanishingly small and should ** never cause a problem. You are much, much more likely to have a ** hardware failure than for this algorithm to fail. ** ** The analysis in the previous paragraph assumes that you have a good ** source of random numbers. Is a library function like lrand48() ** good enough? Maybe. Maybe not. It's hard to know whether there ** might be subtle bugs is some implementations of lrand48() that ** could cause problems. To avoid uncertainty, SQLite uses its own ** random number generator based on the RC4 algorithm. ** ** To promote locality of reference for repetitive inserts, the ** first few attempts at chosing a random rowid pick values just a little ** larger than the previous rowid. This has been shown experimentally ** to double the speed of the COPY operation. */ int res, rx, cnt, x; cnt = 0; if( !pC->useRandomRowid ){ if( pC->nextRowidValid ){ v = pC->nextRowid; }else{ rx = sqliteBtreeLast(pC->pCursor, &res); if( res ){ v = 1; }else{ sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v); v = keyToInt(v); if( v==0x7fffffff ){ pC->useRandomRowid = 1; }else{ v++; } } } if( v<0x7fffffff ){ pC->nextRowidValid = 1; pC->nextRowid = v+1; }else{ pC->nextRowidValid = 0; } } if( pC->useRandomRowid ){ v = db->priorNewRowid; cnt = 0; do{ if( v==0 || cnt>2 ){ sqliteRandomness(sizeof(v), &v); if( cnt<5 ) v &= 0xffffff; }else{ unsigned char r; sqliteRandomness(1, &r); v += r + 1; } if( v==0 ) continue; x = intToKey(v); rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res); cnt++; }while( cnt<1000 && rx==SQLITE_OK && res==0 ); db->priorNewRowid = v; if( rx==SQLITE_OK && res==0 ){ rc = SQLITE_FULL; goto abort_due_to_error; } } pC->recnoIsValid = 0; pC->deferredMoveto = 0; } pTos++; pTos->i = v; pTos->flags = MEM_Int; break; } /* Opcode: PutIntKey P1 P2 * ** ** Write an entry into the table of cursor P1. A new entry is ** created if it doesn't already exist or the data for an existing ** entry is overwritten. The data is the value on the top of the ** stack. The key is the next value down on the stack. The key must ** be an integer. The stack is popped twice by this instruction. ** ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is ** incremented (otherwise not). If the OPFLAG_CSCHANGE flag is set, ** then the current statement change count is incremented (otherwise not). ** If the OPFLAG_LASTROWID flag of P2 is set, then rowid is ** stored for subsequent return by the sqlite_last_insert_rowid() function ** (otherwise it's unmodified). */ /* Opcode: PutStrKey P1 * * ** ** Write an entry into the table of cursor P1. A new entry is ** created if it doesn't already exist or the data for an existing ** entry is overwritten. The data is the value on the top of the ** stack. The key is the next value down on the stack. The key must ** be a string. The stack is popped twice by this instruction. ** ** P1 may not be a pseudo-table opened using the OpenPseudo opcode. */ case OP_PutIntKey: case OP_PutStrKey: { Mem *pNos = &pTos[-1]; int i = pOp->p1; Cursor *pC; assert( pNos>=p->aStack ); assert( i>=0 && inCursor ); if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){ char *zKey; int nKey, iKey; if( pOp->opcode==OP_PutStrKey ){ Stringify(pNos); nKey = pNos->n; zKey = pNos->z; }else{ assert( pNos->flags & MEM_Int ); nKey = sizeof(int); iKey = intToKey(pNos->i); zKey = (char*)&iKey; if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++; if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i; if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++; if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){ pC->nextRowidValid = 0; } } if( pTos->flags & MEM_Null ){ pTos->z = 0; pTos->n = 0; }else{ assert( pTos->flags & MEM_Str ); } if( pC->pseudoTable ){ /* PutStrKey does not work for pseudo-tables. ** The following assert makes sure we are not trying to use ** PutStrKey on a pseudo-table */ assert( pOp->opcode==OP_PutIntKey ); sqliteFree(pC->pData); pC->iKey = iKey; pC->nData = pTos->n; if( pTos->flags & MEM_Dyn ){ pC->pData = pTos->z; pTos->flags = MEM_Null; }else{ pC->pData = sqliteMallocRaw( pC->nData ); if( pC->pData ){ memcpy(pC->pData, pTos->z, pC->nData); } } pC->nullRow = 0; }else{ rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n); } pC->recnoIsValid = 0; pC->deferredMoveto = 0; } popStack(&pTos, 2); break; } /* Opcode: Delete P1 P2 * ** ** Delete the record at which the P1 cursor is currently pointing. ** ** The cursor will be left pointing at either the next or the previous ** record in the table. If it is left pointing at the next record, then ** the next Next instruction will be a no-op. Hence it is OK to delete ** a record from within an Next loop. ** ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is ** incremented (otherwise not). If OPFLAG_CSCHANGE flag is set, ** then the current statement change count is incremented (otherwise not). ** ** If P1 is a pseudo-table, then this instruction is a no-op. */ case OP_Delete: { int i = pOp->p1; Cursor *pC; assert( i>=0 && inCursor ); pC = &p->aCsr[i]; if( pC->pCursor!=0 ){ sqliteVdbeCursorMoveto(pC); rc = sqliteBtreeDelete(pC->pCursor); pC->nextRowidValid = 0; } if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++; if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++; break; } /* Opcode: SetCounts * * * ** ** Called at end of statement. Updates lsChange (last statement change count) ** and resets csChange (current statement change count) to 0. */ case OP_SetCounts: { db->lsChange=db->csChange; db->csChange=0; break; } /* Opcode: KeyAsData P1 P2 * ** ** Turn the key-as-data mode for cursor P1 either on (if P2==1) or ** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls ** data off of the key rather than the data. This is used for ** processing compound selects. */ case OP_KeyAsData: { int i = pOp->p1; assert( i>=0 && inCursor ); p->aCsr[i].keyAsData = pOp->p2; break; } /* Opcode: RowData P1 * * ** ** Push onto the stack the complete row data for cursor P1. ** There is no interpretation of the data. It is just copied ** onto the stack exactly as it is found in the database file. ** ** If the cursor is not pointing to a valid row, a NULL is pushed ** onto the stack. */ /* Opcode: RowKey P1 * * ** ** Push onto the stack the complete row key for cursor P1. ** There is no interpretation of the key. It is just copied ** onto the stack exactly as it is found in the database file. ** ** If the cursor is not pointing to a valid row, a NULL is pushed ** onto the stack. */ case OP_RowKey: case OP_RowData: { int i = pOp->p1; Cursor *pC; int n; pTos++; assert( i>=0 && inCursor ); pC = &p->aCsr[i]; if( pC->nullRow ){ pTos->flags = MEM_Null; }else if( pC->pCursor!=0 ){ BtCursor *pCrsr = pC->pCursor; sqliteVdbeCursorMoveto(pC); if( pC->nullRow ){ pTos->flags = MEM_Null; break; }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){ sqliteBtreeKeySize(pCrsr, &n); }else{ sqliteBtreeDataSize(pCrsr, &n); } pTos->n = n; if( n<=NBFS ){ pTos->flags = MEM_Str | MEM_Short; pTos->z = pTos->zShort; }else{ char *z = sqliteMallocRaw( n ); if( z==0 ) goto no_mem; pTos->flags = MEM_Str | MEM_Dyn; pTos->z = z; } if( pC->keyAsData || pOp->opcode==OP_RowKey ){ sqliteBtreeKey(pCrsr, 0, n, pTos->z); }else{ sqliteBtreeData(pCrsr, 0, n, pTos->z); } }else if( pC->pseudoTable ){ pTos->n = pC->nData; pTos->z = pC->pData; pTos->flags = MEM_Str|MEM_Ephem; }else{ pTos->flags = MEM_Null; } break; } /* Opcode: Column P1 P2 * ** ** Interpret the data that cursor P1 points to as ** a structure built using the MakeRecord instruction. ** (See the MakeRecord opcode for additional information about ** the format of the data.) ** Push onto the stack the value of the P2-th column contained ** in the data. ** ** If the KeyAsData opcode has previously executed on this cursor, ** then the field might be extracted from the key rather than the ** data. ** ** If P1 is negative, then the record is stored on the stack rather ** than in a table. For P1==-1, the top of the stack is used. ** For P1==-2, the next on the stack is used. And so forth. The ** value pushed is always just a pointer into the record which is ** stored further down on the stack. The column value is not copied. */ case OP_Column: { int amt, offset, end, payloadSize; int i = pOp->p1; int p2 = pOp->p2; Cursor *pC; char *zRec; BtCursor *pCrsr; int idxWidth; unsigned char aHdr[10]; assert( inCursor ); pTos++; if( i<0 ){ assert( &pTos[i]>=p->aStack ); assert( pTos[i].flags & MEM_Str ); zRec = pTos[i].z; payloadSize = pTos[i].n; }else if( (pC = &p->aCsr[i])->pCursor!=0 ){ sqliteVdbeCursorMoveto(pC); zRec = 0; pCrsr = pC->pCursor; if( pC->nullRow ){ payloadSize = 0; }else if( pC->keyAsData ){ sqliteBtreeKeySize(pCrsr, &payloadSize); }else{ sqliteBtreeDataSize(pCrsr, &payloadSize); } }else if( pC->pseudoTable ){ payloadSize = pC->nData; zRec = pC->pData; assert( payloadSize==0 || zRec!=0 ); }else{ payloadSize = 0; } /* Figure out how many bytes in the column data and where the column ** data begins. */ if( payloadSize==0 ){ pTos->flags = MEM_Null; break; }else if( payloadSize<256 ){ idxWidth = 1; }else if( payloadSize<65536 ){ idxWidth = 2; }else{ idxWidth = 3; } /* Figure out where the requested column is stored and how big it is. */ if( payloadSize < idxWidth*(p2+1) ){ rc = SQLITE_CORRUPT; goto abort_due_to_error; } if( zRec ){ memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2); }else if( pC->keyAsData ){ sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr); }else{ sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr); } offset = aHdr[0]; end = aHdr[idxWidth]; if( idxWidth>1 ){ offset |= aHdr[1]<<8; end |= aHdr[idxWidth+1]<<8; if( idxWidth>2 ){ offset |= aHdr[2]<<16; end |= aHdr[idxWidth+2]<<16; } } amt = end - offset; if( amt<0 || offset<0 || end>payloadSize ){ rc = SQLITE_CORRUPT; goto abort_due_to_error; } /* amt and offset now hold the offset to the start of data and the ** amount of data. Go get the data and put it on the stack. */ pTos->n = amt; if( amt==0 ){ pTos->flags = MEM_Null; }else if( zRec ){ pTos->flags = MEM_Str | MEM_Ephem; pTos->z = &zRec[offset]; }else{ if( amt<=NBFS ){ pTos->flags = MEM_Str | MEM_Short; pTos->z = pTos->zShort; }else{ char *z = sqliteMallocRaw( amt ); if( z==0 ) goto no_mem; pTos->flags = MEM_Str | MEM_Dyn; pTos->z = z; } if( pC->keyAsData ){ sqliteBtreeKey(pCrsr, offset, amt, pTos->z); }else{ sqliteBtreeData(pCrsr, offset, amt, pTos->z); } } break; } /* Opcode: Recno P1 * * ** ** Push onto the stack an integer which is the first 4 bytes of the ** the key to the current entry in a sequential scan of the database ** file P1. The sequential scan should have been started using the ** Next opcode. */ case OP_Recno: { int i = pOp->p1; Cursor *pC; int v; assert( i>=0 && inCursor ); pC = &p->aCsr[i]; sqliteVdbeCursorMoveto(pC); pTos++; if( pC->recnoIsValid ){ v = pC->lastRecno; }else if( pC->pseudoTable ){ v = keyToInt(pC->iKey); }else if( pC->nullRow || pC->pCursor==0 ){ pTos->flags = MEM_Null; break; }else{ assert( pC->pCursor!=0 ); sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v); v = keyToInt(v); } pTos->i = v; pTos->flags = MEM_Int; break; } /* Opcode: FullKey P1 * * ** ** Extract the complete key from the record that cursor P1 is currently ** pointing to and push the key onto the stack as a string. ** ** Compare this opcode to Recno. The Recno opcode extracts the first ** 4 bytes of the key and pushes those bytes onto the stack as an ** integer. This instruction pushes the entire key as a string. ** ** This opcode may not be used on a pseudo-table. */ case OP_FullKey: { int i = pOp->p1; BtCursor *pCrsr; assert( p->aCsr[i].keyAsData ); assert( !p->aCsr[i].pseudoTable ); assert( i>=0 && inCursor ); pTos++; if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ int amt; char *z; sqliteVdbeCursorMoveto(&p->aCsr[i]); sqliteBtreeKeySize(pCrsr, &amt); if( amt<=0 ){ rc = SQLITE_CORRUPT; goto abort_due_to_error; } if( amt>NBFS ){ z = sqliteMallocRaw( amt ); if( z==0 ) goto no_mem; pTos->flags = MEM_Str | MEM_Dyn; }else{ z = pTos->zShort; pTos->flags = MEM_Str | MEM_Short; } sqliteBtreeKey(pCrsr, 0, amt, z); pTos->z = z; pTos->n = amt; } break; } /* Opcode: NullRow P1 * * ** ** Move the cursor P1 to a null row. Any OP_Column operations ** that occur while the cursor is on the null row will always push ** a NULL onto the stack. */ case OP_NullRow: { int i = pOp->p1; assert( i>=0 && inCursor ); p->aCsr[i].nullRow = 1; p->aCsr[i].recnoIsValid = 0; break; } /* Opcode: Last P1 P2 * ** ** The next use of the Recno or Column or Next instruction for P1 ** will refer to the last entry in the database table or index. ** If the table or index is empty and P2>0, then jump immediately to P2. ** If P2 is 0 or if the table or index is not empty, fall through ** to the following instruction. */ case OP_Last: { int i = pOp->p1; Cursor *pC; BtCursor *pCrsr; assert( i>=0 && inCursor ); pC = &p->aCsr[i]; if( (pCrsr = pC->pCursor)!=0 ){ int res; rc = sqliteBtreeLast(pCrsr, &res); pC->nullRow = res; pC->deferredMoveto = 0; if( res && pOp->p2>0 ){ pc = pOp->p2 - 1; } }else{ pC->nullRow = 0; } break; } /* Opcode: Rewind P1 P2 * ** ** The next use of the Recno or Column or Next instruction for P1 ** will refer to the first entry in the database table or index. ** If the table or index is empty and P2>0, then jump immediately to P2. ** If P2 is 0 or if the table or index is not empty, fall through ** to the following instruction. */ case OP_Rewind: { int i = pOp->p1; Cursor *pC; BtCursor *pCrsr; assert( i>=0 && inCursor ); pC = &p->aCsr[i]; if( (pCrsr = pC->pCursor)!=0 ){ int res; rc = sqliteBtreeFirst(pCrsr, &res); pC->atFirst = res==0; pC->nullRow = res; pC->deferredMoveto = 0; if( res && pOp->p2>0 ){ pc = pOp->p2 - 1; } }else{ pC->nullRow = 0; } break; } /* Opcode: Next P1 P2 * ** ** Advance cursor P1 so that it points to the next key/data pair in its ** table or index. If there are no more key/value pairs then fall through ** to the following instruction. But if the cursor advance was successful, ** jump immediately to P2. ** ** See also: Prev */ /* Opcode: Prev P1 P2 * ** ** Back up cursor P1 so that it points to the previous key/data pair in its ** table or index. If there is no previous key/value pairs then fall through ** to the following instruction. But if the cursor backup was successful, ** jump immediately to P2. */ case OP_Prev: case OP_Next: { Cursor *pC; BtCursor *pCrsr; CHECK_FOR_INTERRUPT; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = &p->aCsr[pOp->p1]; if( (pCrsr = pC->pCursor)!=0 ){ int res; if( pC->nullRow ){ res = 1; }else{ assert( pC->deferredMoveto==0 ); rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) : sqliteBtreePrevious(pCrsr, &res); pC->nullRow = res; } if( res==0 ){ pc = pOp->p2 - 1; sqlite_search_count++; } }else{ pC->nullRow = 1; } pC->recnoIsValid = 0; break; } /* Opcode: IdxPut P1 P2 P3 ** ** The top of the stack holds a SQL index key made using the ** MakeIdxKey instruction. This opcode writes that key into the ** index P1. Data for the entry is nil. ** ** If P2==1, then the key must be unique. If the key is not unique, ** the program aborts with a SQLITE_CONSTRAINT error and the database ** is rolled back. If P3 is not null, then it becomes part of the ** error message returned with the SQLITE_CONSTRAINT. */ case OP_IdxPut: { int i = pOp->p1; BtCursor *pCrsr; assert( pTos>=p->aStack ); assert( i>=0 && inCursor ); assert( pTos->flags & MEM_Str ); if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ int nKey = pTos->n; const char *zKey = pTos->z; if( pOp->p2 ){ int res, n; assert( nKey >= 4 ); rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; while( res!=0 ){ int c; sqliteBtreeKeySize(pCrsr, &n); if( n==nKey && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK && c==0 ){ rc = SQLITE_CONSTRAINT; if( pOp->p3 && pOp->p3[0] ){ sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0); } goto abort_due_to_error; } if( res<0 ){ sqliteBtreeNext(pCrsr, &res); res = +1; }else{ break; } } } rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0); assert( p->aCsr[i].deferredMoveto==0 ); } Release(pTos); pTos--; break; } /* Opcode: IdxDelete P1 * * ** ** The top of the stack is an index key built using the MakeIdxKey opcode. ** This opcode removes that entry from the index. */ case OP_IdxDelete: { int i = pOp->p1; BtCursor *pCrsr; assert( pTos>=p->aStack ); assert( pTos->flags & MEM_Str ); assert( i>=0 && inCursor ); if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ int rx, res; rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res); if( rx==SQLITE_OK && res==0 ){ rc = sqliteBtreeDelete(pCrsr); } assert( p->aCsr[i].deferredMoveto==0 ); } Release(pTos); pTos--; break; } /* Opcode: IdxRecno P1 * * ** ** Push onto the stack an integer which is the last 4 bytes of the ** the key to the current entry in index P1. These 4 bytes should ** be the record number of the table entry to which this index entry ** points. ** ** See also: Recno, MakeIdxKey. */ case OP_IdxRecno: { int i = pOp->p1; BtCursor *pCrsr; assert( i>=0 && inCursor ); pTos++; if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ int v; int sz; assert( p->aCsr[i].deferredMoveto==0 ); sqliteBtreeKeySize(pCrsr, &sz); if( szflags = MEM_Null; }else{ sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v); v = keyToInt(v); pTos->i = v; pTos->flags = MEM_Int; } }else{ pTos->flags = MEM_Null; } break; } /* Opcode: IdxGT P1 P2 * ** ** Compare the top of the stack against the key on the index entry that ** cursor P1 is currently pointing to. Ignore the last 4 bytes of the ** index entry. If the index entry is greater than the top of the stack ** then jump to P2. Otherwise fall through to the next instruction. ** In either case, the stack is popped once. */ /* Opcode: IdxGE P1 P2 * ** ** Compare the top of the stack against the key on the index entry that ** cursor P1 is currently pointing to. Ignore the last 4 bytes of the ** index entry. If the index entry is greater than or equal to ** the top of the stack ** then jump to P2. Otherwise fall through to the next instruction. ** In either case, the stack is popped once. */ /* Opcode: IdxLT P1 P2 * ** ** Compare the top of the stack against the key on the index entry that ** cursor P1 is currently pointing to. Ignore the last 4 bytes of the ** index entry. If the index entry is less than the top of the stack ** then jump to P2. Otherwise fall through to the next instruction. ** In either case, the stack is popped once. */ case OP_IdxLT: case OP_IdxGT: case OP_IdxGE: { int i= pOp->p1; BtCursor *pCrsr; assert( i>=0 && inCursor ); assert( pTos>=p->aStack ); if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res, rc; Stringify(pTos); assert( p->aCsr[i].deferredMoveto==0 ); rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res); if( rc!=SQLITE_OK ){ break; } if( pOp->opcode==OP_IdxLT ){ res = -res; }else if( pOp->opcode==OP_IdxGE ){ res++; } if( res>0 ){ pc = pOp->p2 - 1 ; } } Release(pTos); pTos--; break; } /* Opcode: IdxIsNull P1 P2 * ** ** The top of the stack contains an index entry such as might be generated ** by the MakeIdxKey opcode. This routine looks at the first P1 fields of ** that key. If any of the first P1 fields are NULL, then a jump is made ** to address P2. Otherwise we fall straight through. ** ** The index entry is always popped from the stack. */ case OP_IdxIsNull: { int i = pOp->p1; int k, n; const char *z; assert( pTos>=p->aStack ); assert( pTos->flags & MEM_Str ); z = pTos->z; n = pTos->n; for(k=0; k0; i--){ if( z[k]=='a' ){ pc = pOp->p2-1; break; } while( kaDb[pOp->p2].pBt, pOp->p1); break; } /* Opcode: Clear P1 P2 * ** ** Delete all contents of the database table or index whose root page ** in the database file is given by P1. But, unlike Destroy, do not ** remove the table or index from the database file. ** ** The table being clear is in the main database file if P2==0. If ** P2==1 then the table to be clear is in the auxiliary database file ** that is used to store tables create using CREATE TEMPORARY TABLE. ** ** See also: Destroy */ case OP_Clear: { rc = sqliteBtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1); break; } /* Opcode: CreateTable * P2 P3 ** ** Allocate a new table in the main database file if P2==0 or in the ** auxiliary database file if P2==1. Push the page number ** for the root page of the new table onto the stack. ** ** The root page number is also written to a memory location that P3 ** points to. This is the mechanism is used to write the root page ** number into the parser's internal data structures that describe the ** new table. ** ** The difference between a table and an index is this: A table must ** have a 4-byte integer key and can have arbitrary data. An index ** has an arbitrary key but no data. ** ** See also: CreateIndex */ /* Opcode: CreateIndex * P2 P3 ** ** Allocate a new index in the main database file if P2==0 or in the ** auxiliary database file if P2==1. Push the page number of the ** root page of the new index onto the stack. ** ** See documentation on OP_CreateTable for additional information. */ case OP_CreateIndex: case OP_CreateTable: { int pgno; assert( pOp->p3!=0 && pOp->p3type==P3_POINTER ); assert( pOp->p2>=0 && pOp->p2nDb ); assert( db->aDb[pOp->p2].pBt!=0 ); if( pOp->opcode==OP_CreateTable ){ rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno); }else{ rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno); } pTos++; if( rc==SQLITE_OK ){ pTos->i = pgno; pTos->flags = MEM_Int; *(u32*)pOp->p3 = pgno; pOp->p3 = 0; }else{ pTos->flags = MEM_Null; } break; } /* Opcode: IntegrityCk P1 P2 * ** ** Do an analysis of the currently open database. Push onto the ** stack the text of an error message describing any problems. ** If there are no errors, push a "ok" onto the stack. ** ** P1 is the index of a set that contains the root page numbers ** for all tables and indices in the main database file. The set ** is cleared by this opcode. In other words, after this opcode ** has executed, the set will be empty. ** ** If P2 is not zero, the check is done on the auxiliary database ** file, not the main database file. ** ** This opcode is used for testing purposes only. */ case OP_IntegrityCk: { int nRoot; int *aRoot; int iSet = pOp->p1; Set *pSet; int j; HashElem *i; char *z; assert( iSet>=0 && iSetnSet ); pTos++; pSet = &p->aSet[iSet]; nRoot = sqliteHashCount(&pSet->hash); aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) ); if( aRoot==0 ) goto no_mem; for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){ toInt((char*)sqliteHashKey(i), &aRoot[j]); } aRoot[j] = 0; sqliteHashClear(&pSet->hash); pSet->prev = 0; z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot); if( z==0 || z[0]==0 ){ if( z ) sqliteFree(z); pTos->z = "ok"; pTos->n = 3; pTos->flags = MEM_Str | MEM_Static; }else{ pTos->z = z; pTos->n = strlen(z) + 1; pTos->flags = MEM_Str | MEM_Dyn; } sqliteFree(aRoot); break; } /* Opcode: ListWrite * * * ** ** Write the integer on the top of the stack ** into the temporary storage list. */ case OP_ListWrite: { Keylist *pKeylist; assert( pTos>=p->aStack ); pKeylist = p->pList; if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){ pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) ); if( pKeylist==0 ) goto no_mem; pKeylist->nKey = 1000; pKeylist->nRead = 0; pKeylist->nUsed = 0; pKeylist->pNext = p->pList; p->pList = pKeylist; } Integerify(pTos); pKeylist->aKey[pKeylist->nUsed++] = pTos->i; Release(pTos); pTos--; break; } /* Opcode: ListRewind * * * ** ** Rewind the temporary buffer back to the beginning. */ case OP_ListRewind: { /* What this opcode codes, really, is reverse the order of the ** linked list of Keylist structures so that they are read out ** in the same order that they were read in. */ Keylist *pRev, *pTop; pRev = 0; while( p->pList ){ pTop = p->pList; p->pList = pTop->pNext; pTop->pNext = pRev; pRev = pTop; } p->pList = pRev; break; } /* Opcode: ListRead * P2 * ** ** Attempt to read an integer from the temporary storage buffer ** and push it onto the stack. If the storage buffer is empty, ** push nothing but instead jump to P2. */ case OP_ListRead: { Keylist *pKeylist; CHECK_FOR_INTERRUPT; pKeylist = p->pList; if( pKeylist!=0 ){ assert( pKeylist->nRead>=0 ); assert( pKeylist->nReadnUsed ); assert( pKeylist->nReadnKey ); pTos++; pTos->i = pKeylist->aKey[pKeylist->nRead++]; pTos->flags = MEM_Int; if( pKeylist->nRead>=pKeylist->nUsed ){ p->pList = pKeylist->pNext; sqliteFree(pKeylist); } }else{ pc = pOp->p2 - 1; } break; } /* Opcode: ListReset * * * ** ** Reset the temporary storage buffer so that it holds nothing. */ case OP_ListReset: { if( p->pList ){ sqliteVdbeKeylistFree(p->pList); p->pList = 0; } break; } /* Opcode: ListPush * * * ** ** Save the current Vdbe list such that it can be restored by a ListPop ** opcode. The list is empty after this is executed. */ case OP_ListPush: { p->keylistStackDepth++; assert(p->keylistStackDepth > 0); p->keylistStack = sqliteRealloc(p->keylistStack, sizeof(Keylist *) * p->keylistStackDepth); if( p->keylistStack==0 ) goto no_mem; p->keylistStack[p->keylistStackDepth - 1] = p->pList; p->pList = 0; break; } /* Opcode: ListPop * * * ** ** Restore the Vdbe list to the state it was in when ListPush was last ** executed. */ case OP_ListPop: { assert(p->keylistStackDepth > 0); p->keylistStackDepth--; sqliteVdbeKeylistFree(p->pList); p->pList = p->keylistStack[p->keylistStackDepth]; p->keylistStack[p->keylistStackDepth] = 0; if( p->keylistStackDepth == 0 ){ sqliteFree(p->keylistStack); p->keylistStack = 0; } break; } /* Opcode: ContextPush * * * ** ** Save the current Vdbe context such that it can be restored by a ContextPop ** opcode. The context stores the last insert row id, the last statement change ** count, and the current statement change count. */ case OP_ContextPush: { p->contextStackDepth++; assert(p->contextStackDepth > 0); p->contextStack = sqliteRealloc(p->contextStack, sizeof(Context) * p->contextStackDepth); if( p->contextStack==0 ) goto no_mem; p->contextStack[p->contextStackDepth - 1].lastRowid = p->db->lastRowid; p->contextStack[p->contextStackDepth - 1].lsChange = p->db->lsChange; p->contextStack[p->contextStackDepth - 1].csChange = p->db->csChange; break; } /* Opcode: ContextPop * * * ** ** Restore the Vdbe context to the state it was in when contextPush was last ** executed. The context stores the last insert row id, the last statement ** change count, and the current statement change count. */ case OP_ContextPop: { assert(p->contextStackDepth > 0); p->contextStackDepth--; p->db->lastRowid = p->contextStack[p->contextStackDepth].lastRowid; p->db->lsChange = p->contextStack[p->contextStackDepth].lsChange; p->db->csChange = p->contextStack[p->contextStackDepth].csChange; if( p->contextStackDepth == 0 ){ sqliteFree(p->contextStack); p->contextStack = 0; } break; } /* Opcode: SortPut * * * ** ** The TOS is the key and the NOS is the data. Pop both from the stack ** and put them on the sorter. The key and data should have been ** made using SortMakeKey and SortMakeRec, respectively. */ case OP_SortPut: { Mem *pNos = &pTos[-1]; Sorter *pSorter; assert( pNos>=p->aStack ); if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem; pSorter = sqliteMallocRaw( sizeof(Sorter) ); if( pSorter==0 ) goto no_mem; pSorter->pNext = p->pSort; p->pSort = pSorter; assert( pTos->flags & MEM_Dyn ); pSorter->nKey = pTos->n; pSorter->zKey = pTos->z; assert( pNos->flags & MEM_Dyn ); pSorter->nData = pNos->n; pSorter->pData = pNos->z; pTos -= 2; break; } /* Opcode: SortMakeRec P1 * * ** ** The top P1 elements are the arguments to a callback. Form these ** elements into a single data entry that can be stored on a sorter ** using SortPut and later fed to a callback using SortCallback. */ case OP_SortMakeRec: { char *z; char **azArg; int nByte; int nField; int i; Mem *pRec; nField = pOp->p1; pRec = &pTos[1-nField]; assert( pRec>=p->aStack ); nByte = 0; for(i=0; iflags & MEM_Null)==0 ){ Stringify(pRec); nByte += pRec->n; } } nByte += sizeof(char*)*(nField+1); azArg = sqliteMallocRaw( nByte ); if( azArg==0 ) goto no_mem; z = (char*)&azArg[nField+1]; for(pRec=&pTos[1-nField], i=0; iflags & MEM_Null ){ azArg[i] = 0; }else{ azArg[i] = z; memcpy(z, pRec->z, pRec->n); z += pRec->n; } } popStack(&pTos, nField); pTos++; pTos->n = nByte; pTos->z = (char*)azArg; pTos->flags = MEM_Str | MEM_Dyn; break; } /* Opcode: SortMakeKey * * P3 ** ** Convert the top few entries of the stack into a sort key. The ** number of stack entries consumed is the number of characters in ** the string P3. One character from P3 is prepended to each entry. ** The first character of P3 is prepended to the element lowest in ** the stack and the last character of P3 is prepended to the top of ** the stack. All stack entries are separated by a \000 character ** in the result. The whole key is terminated by two \000 characters ** in a row. ** ** "N" is substituted in place of the P3 character for NULL values. ** ** See also the MakeKey and MakeIdxKey opcodes. */ case OP_SortMakeKey: { char *zNewKey; int nByte; int nField; int i, j, k; Mem *pRec; nField = strlen(pOp->p3); pRec = &pTos[1-nField]; nByte = 1; for(i=0; iflags & MEM_Null ){ nByte += 2; }else{ Stringify(pRec); nByte += pRec->n+2; } } zNewKey = sqliteMallocRaw( nByte ); if( zNewKey==0 ) goto no_mem; j = 0; k = 0; for(pRec=&pTos[1-nField], i=0; iflags & MEM_Null ){ zNewKey[j++] = 'N'; zNewKey[j++] = 0; k++; }else{ zNewKey[j++] = pOp->p3[k++]; memcpy(&zNewKey[j], pRec->z, pRec->n-1); j += pRec->n-1; zNewKey[j++] = 0; } } zNewKey[j] = 0; assert( jn = nByte; pTos->flags = MEM_Str|MEM_Dyn; pTos->z = zNewKey; break; } /* Opcode: Sort * * * ** ** Sort all elements on the sorter. The algorithm is a ** mergesort. */ case OP_Sort: { int i; Sorter *pElem; Sorter *apSorter[NSORT]; for(i=0; ipSort ){ pElem = p->pSort; p->pSort = pElem->pNext; pElem->pNext = 0; for(i=0; i=NSORT-1 ){ apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem); } } pElem = 0; for(i=0; ipSort = pElem; break; } /* Opcode: SortNext * P2 * ** ** Push the data for the topmost element in the sorter onto the ** stack, then remove the element from the sorter. If the sorter ** is empty, push nothing on the stack and instead jump immediately ** to instruction P2. */ case OP_SortNext: { Sorter *pSorter = p->pSort; CHECK_FOR_INTERRUPT; if( pSorter!=0 ){ p->pSort = pSorter->pNext; pTos++; pTos->z = pSorter->pData; pTos->n = pSorter->nData; pTos->flags = MEM_Str|MEM_Dyn; sqliteFree(pSorter->zKey); sqliteFree(pSorter); }else{ pc = pOp->p2 - 1; } break; } /* Opcode: SortCallback P1 * * ** ** The top of the stack contains a callback record built using ** the SortMakeRec operation with the same P1 value as this ** instruction. Pop this record from the stack and invoke the ** callback on it. */ case OP_SortCallback: { assert( pTos>=p->aStack ); assert( pTos->flags & MEM_Str ); p->nCallback++; p->pc = pc+1; p->azResColumn = (char**)pTos->z; assert( p->nResColumn==pOp->p1 ); p->popStack = 1; p->pTos = pTos; return SQLITE_ROW; } /* Opcode: SortReset * * * ** ** Remove any elements that remain on the sorter. */ case OP_SortReset: { sqliteVdbeSorterReset(p); break; } /* Opcode: FileOpen * * P3 ** ** Open the file named by P3 for reading using the FileRead opcode. ** If P3 is "stdin" then open standard input for reading. */ case OP_FileOpen: { assert( pOp->p3!=0 ); if( p->pFile ){ if( p->pFile!=stdin ) fclose(p->pFile); p->pFile = 0; } if( sqliteStrICmp(pOp->p3,"stdin")==0 ){ p->pFile = stdin; }else{ p->pFile = fopen(pOp->p3, "r"); } if( p->pFile==0 ){ sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, (char*)0); rc = SQLITE_ERROR; } break; } /* Opcode: FileRead P1 P2 P3 ** ** Read a single line of input from the open file (the file opened using ** FileOpen). If we reach end-of-file, jump immediately to P2. If ** we are able to get another line, split the line apart using P3 as ** a delimiter. There should be P1 fields. If the input line contains ** more than P1 fields, ignore the excess. If the input line contains ** fewer than P1 fields, assume the remaining fields contain NULLs. ** ** Input ends if a line consists of just "\.". A field containing only ** "\N" is a null field. The backslash \ character can be used be used ** to escape newlines or the delimiter. */ case OP_FileRead: { int n, eol, nField, i, c, nDelim; char *zDelim, *z; CHECK_FOR_INTERRUPT; if( p->pFile==0 ) goto fileread_jump; nField = pOp->p1; if( nField<=0 ) goto fileread_jump; if( nField!=p->nField || p->azField==0 ){ char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1); if( azField==0 ){ goto no_mem; } p->azField = azField; p->nField = nField; } n = 0; eol = 0; while( eol==0 ){ if( p->zLine==0 || n+200>p->nLineAlloc ){ char *zLine; p->nLineAlloc = p->nLineAlloc*2 + 300; zLine = sqliteRealloc(p->zLine, p->nLineAlloc); if( zLine==0 ){ p->nLineAlloc = 0; sqliteFree(p->zLine); p->zLine = 0; goto no_mem; } p->zLine = zLine; } if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){ eol = 1; p->zLine[n] = 0; }else{ int c; while( (c = p->zLine[n])!=0 ){ if( c=='\\' ){ if( p->zLine[n+1]==0 ) break; n += 2; }else if( c=='\n' ){ p->zLine[n] = 0; eol = 1; break; }else{ n++; } } } } if( n==0 ) goto fileread_jump; z = p->zLine; if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){ goto fileread_jump; } zDelim = pOp->p3; if( zDelim==0 ) zDelim = "\t"; c = zDelim[0]; nDelim = strlen(zDelim); p->azField[0] = z; for(i=1; *z!=0 && i<=nField; i++){ int from, to; from = to = 0; if( z[0]=='\\' && z[1]=='N' && (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){ if( i<=nField ) p->azField[i-1] = 0; z += 2 + nDelim; if( iazField[i] = z; continue; } while( z[from] ){ if( z[from]=='\\' && z[from+1]!=0 ){ int tx = z[from+1]; switch( tx ){ case 'b': tx = '\b'; break; case 'f': tx = '\f'; break; case 'n': tx = '\n'; break; case 'r': tx = '\r'; break; case 't': tx = '\t'; break; case 'v': tx = '\v'; break; default: break; } z[to++] = tx; from += 2; continue; } if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break; z[to++] = z[from++]; } if( z[from] ){ z[to] = 0; z += from + nDelim; if( iazField[i] = z; }else{ z[to] = 0; z = ""; } } while( iazField[i++] = 0; } break; /* If we reach end-of-file, or if anything goes wrong, jump here. ** This code will cause a jump to P2 */ fileread_jump: pc = pOp->p2 - 1; break; } /* Opcode: FileColumn P1 * * ** ** Push onto the stack the P1-th column of the most recently read line ** from the input file. */ case OP_FileColumn: { int i = pOp->p1; char *z; assert( i>=0 && inField ); if( p->azField ){ z = p->azField[i]; }else{ z = 0; } pTos++; if( z ){ pTos->n = strlen(z) + 1; pTos->z = z; pTos->flags = MEM_Str | MEM_Ephem; }else{ pTos->flags = MEM_Null; } break; } /* Opcode: MemStore P1 P2 * ** ** Write the top of the stack into memory location P1. ** P1 should be a small integer since space is allocated ** for all memory locations between 0 and P1 inclusive. ** ** After the data is stored in the memory location, the ** stack is popped once if P2 is 1. If P2 is zero, then ** the original data remains on the stack. */ case OP_MemStore: { int i = pOp->p1; Mem *pMem; assert( pTos>=p->aStack ); if( i>=p->nMem ){ int nOld = p->nMem; Mem *aMem; p->nMem = i + 5; aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0])); if( aMem==0 ) goto no_mem; if( aMem!=p->aMem ){ int j; for(j=0; jaMem = aMem; if( nOldnMem ){ memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld)); } } Deephemeralize(pTos); pMem = &p->aMem[i]; Release(pMem); *pMem = *pTos; if( pMem->flags & MEM_Dyn ){ if( pOp->p2 ){ pTos->flags = MEM_Null; }else{ pMem->z = sqliteMallocRaw( pMem->n ); if( pMem->z==0 ) goto no_mem; memcpy(pMem->z, pTos->z, pMem->n); } }else if( pMem->flags & MEM_Short ){ pMem->z = pMem->zShort; } if( pOp->p2 ){ Release(pTos); pTos--; } break; } /* Opcode: MemLoad P1 * * ** ** Push a copy of the value in memory location P1 onto the stack. ** ** If the value is a string, then the value pushed is a pointer to ** the string that is stored in the memory location. If the memory ** location is subsequently changed (using OP_MemStore) then the ** value pushed onto the stack will change too. */ case OP_MemLoad: { int i = pOp->p1; assert( i>=0 && inMem ); pTos++; memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);; if( pTos->flags & MEM_Str ){ pTos->flags |= MEM_Ephem; pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short); } break; } /* Opcode: MemIncr P1 P2 * ** ** Increment the integer valued memory cell P1 by 1. If P2 is not zero ** and the result after the increment is greater than zero, then jump ** to P2. ** ** This instruction throws an error if the memory cell is not initially ** an integer. */ case OP_MemIncr: { int i = pOp->p1; Mem *pMem; assert( i>=0 && inMem ); pMem = &p->aMem[i]; assert( pMem->flags==MEM_Int ); pMem->i++; if( pOp->p2>0 && pMem->i>0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: AggReset * P2 * ** ** Reset the aggregator so that it no longer contains any data. ** Future aggregator elements will contain P2 values each. */ case OP_AggReset: { sqliteVdbeAggReset(&p->agg); p->agg.nMem = pOp->p2; p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) ); if( p->agg.apFunc==0 ) goto no_mem; break; } /* Opcode: AggInit * P2 P3 ** ** Initialize the function parameters for an aggregate function. ** The aggregate will operate out of aggregate column P2. ** P3 is a pointer to the FuncDef structure for the function. */ case OP_AggInit: { int i = pOp->p2; assert( i>=0 && iagg.nMem ); p->agg.apFunc[i] = (FuncDef*)pOp->p3; break; } /* Opcode: AggFunc * P2 P3 ** ** Execute the step function for an aggregate. The ** function has P2 arguments. P3 is a pointer to the FuncDef ** structure that specifies the function. ** ** The top of the stack must be an integer which is the index of ** the aggregate column that corresponds to this aggregate function. ** Ideally, this index would be another parameter, but there are ** no free parameters left. The integer is popped from the stack. */ case OP_AggFunc: { int n = pOp->p2; int i; Mem *pMem, *pRec; char **azArgv = p->zArgv; sqlite_func ctx; assert( n>=0 ); assert( pTos->flags==MEM_Int ); pRec = &pTos[-n]; assert( pRec>=p->aStack ); for(i=0; iflags & MEM_Null ){ azArgv[i] = 0; }else{ Stringify(pRec); azArgv[i] = pRec->z; } } i = pTos->i; assert( i>=0 && iagg.nMem ); ctx.pFunc = (FuncDef*)pOp->p3; pMem = &p->agg.pCurrent->aMem[i]; ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */ ctx.pAgg = pMem->z; ctx.cnt = ++pMem->i; ctx.isError = 0; ctx.isStep = 1; (ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv); pMem->z = ctx.pAgg; pMem->flags = MEM_AggCtx; popStack(&pTos, n+1); if( ctx.isError ){ rc = SQLITE_ERROR; } break; } /* Opcode: AggFocus * P2 * ** ** Pop the top of the stack and use that as an aggregator key. If ** an aggregator with that same key already exists, then make the ** aggregator the current aggregator and jump to P2. If no aggregator ** with the given key exists, create one and make it current but ** do not jump. ** ** The order of aggregator opcodes is important. The order is: ** AggReset AggFocus AggNext. In other words, you must execute ** AggReset first, then zero or more AggFocus operations, then ** zero or more AggNext operations. You must not execute an AggFocus ** in between an AggNext and an AggReset. */ case OP_AggFocus: { AggElem *pElem; char *zKey; int nKey; assert( pTos>=p->aStack ); Stringify(pTos); zKey = pTos->z; nKey = pTos->n; pElem = sqliteHashFind(&p->agg.hash, zKey, nKey); if( pElem ){ p->agg.pCurrent = pElem; pc = pOp->p2 - 1; }else{ AggInsert(&p->agg, zKey, nKey); if( sqlite_malloc_failed ) goto no_mem; } Release(pTos); pTos--; break; } /* Opcode: AggSet * P2 * ** ** Move the top of the stack into the P2-th field of the current ** aggregate. String values are duplicated into new memory. */ case OP_AggSet: { AggElem *pFocus = AggInFocus(p->agg); Mem *pMem; int i = pOp->p2; assert( pTos>=p->aStack ); if( pFocus==0 ) goto no_mem; assert( i>=0 && iagg.nMem ); Deephemeralize(pTos); pMem = &pFocus->aMem[i]; Release(pMem); *pMem = *pTos; if( pMem->flags & MEM_Dyn ){ pTos->flags = MEM_Null; }else if( pMem->flags & MEM_Short ){ pMem->z = pMem->zShort; } Release(pTos); pTos--; break; } /* Opcode: AggGet * P2 * ** ** Push a new entry onto the stack which is a copy of the P2-th field ** of the current aggregate. Strings are not duplicated so ** string values will be ephemeral. */ case OP_AggGet: { AggElem *pFocus = AggInFocus(p->agg); Mem *pMem; int i = pOp->p2; if( pFocus==0 ) goto no_mem; assert( i>=0 && iagg.nMem ); pTos++; pMem = &pFocus->aMem[i]; *pTos = *pMem; if( pTos->flags & MEM_Str ){ pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short); pTos->flags |= MEM_Ephem; } break; } /* Opcode: AggNext * P2 * ** ** Make the next aggregate value the current aggregate. The prior ** aggregate is deleted. If all aggregate values have been consumed, ** jump to P2. ** ** The order of aggregator opcodes is important. The order is: ** AggReset AggFocus AggNext. In other words, you must execute ** AggReset first, then zero or more AggFocus operations, then ** zero or more AggNext operations. You must not execute an AggFocus ** in between an AggNext and an AggReset. */ case OP_AggNext: { CHECK_FOR_INTERRUPT; if( p->agg.pSearch==0 ){ p->agg.pSearch = sqliteHashFirst(&p->agg.hash); }else{ p->agg.pSearch = sqliteHashNext(p->agg.pSearch); } if( p->agg.pSearch==0 ){ pc = pOp->p2 - 1; } else { int i; sqlite_func ctx; Mem *aMem; p->agg.pCurrent = sqliteHashData(p->agg.pSearch); aMem = p->agg.pCurrent->aMem; for(i=0; iagg.nMem; i++){ int freeCtx; if( p->agg.apFunc[i]==0 ) continue; if( p->agg.apFunc[i]->xFinalize==0 ) continue; ctx.s.flags = MEM_Null; ctx.s.z = aMem[i].zShort; ctx.pAgg = (void*)aMem[i].z; freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort; ctx.cnt = aMem[i].i; ctx.isStep = 0; ctx.pFunc = p->agg.apFunc[i]; (*p->agg.apFunc[i]->xFinalize)(&ctx); if( freeCtx ){ sqliteFree( aMem[i].z ); } aMem[i] = ctx.s; if( aMem[i].flags & MEM_Short ){ aMem[i].z = aMem[i].zShort; } } } break; } /* Opcode: SetInsert P1 * P3 ** ** If Set P1 does not exist then create it. Then insert value ** P3 into that set. If P3 is NULL, then insert the top of the ** stack into the set. */ case OP_SetInsert: { int i = pOp->p1; if( p->nSet<=i ){ int k; Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) ); if( aSet==0 ) goto no_mem; p->aSet = aSet; for(k=p->nSet; k<=i; k++){ sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1); } p->nSet = i+1; } if( pOp->p3 ){ sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p); }else{ assert( pTos>=p->aStack ); Stringify(pTos); sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p); Release(pTos); pTos--; } if( sqlite_malloc_failed ) goto no_mem; break; } /* Opcode: SetFound P1 P2 * ** ** Pop the stack once and compare the value popped off with the ** contents of set P1. If the element popped exists in set P1, ** then jump to P2. Otherwise fall through. */ case OP_SetFound: { int i = pOp->p1; assert( pTos>=p->aStack ); Stringify(pTos); if( i>=0 && inSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){ pc = pOp->p2 - 1; } Release(pTos); pTos--; break; } /* Opcode: SetNotFound P1 P2 * ** ** Pop the stack once and compare the value popped off with the ** contents of set P1. If the element popped does not exists in ** set P1, then jump to P2. Otherwise fall through. */ case OP_SetNotFound: { int i = pOp->p1; assert( pTos>=p->aStack ); Stringify(pTos); if( i<0 || i>=p->nSet || sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){ pc = pOp->p2 - 1; } Release(pTos); pTos--; break; } /* Opcode: SetFirst P1 P2 * ** ** Read the first element from set P1 and push it onto the stack. If the ** set is empty, push nothing and jump immediately to P2. This opcode is ** used in combination with OP_SetNext to loop over all elements of a set. */ /* Opcode: SetNext P1 P2 * ** ** Read the next element from set P1 and push it onto the stack. If there ** are no more elements in the set, do not do the push and fall through. ** Otherwise, jump to P2 after pushing the next set element. */ case OP_SetFirst: case OP_SetNext: { Set *pSet; CHECK_FOR_INTERRUPT; if( pOp->p1<0 || pOp->p1>=p->nSet ){ if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1; break; } pSet = &p->aSet[pOp->p1]; if( pOp->opcode==OP_SetFirst ){ pSet->prev = sqliteHashFirst(&pSet->hash); if( pSet->prev==0 ){ pc = pOp->p2 - 1; break; } }else{ assert( pSet->prev ); pSet->prev = sqliteHashNext(pSet->prev); if( pSet->prev==0 ){ break; }else{ pc = pOp->p2 - 1; } } pTos++; pTos->z = sqliteHashKey(pSet->prev); pTos->n = sqliteHashKeysize(pSet->prev); pTos->flags = MEM_Str | MEM_Ephem; break; } /* Opcode: Vacuum * * * ** ** Vacuum the entire database. This opcode will cause other virtual ** machines to be created and run. It may not be called from within ** a transaction. */ case OP_Vacuum: { if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; rc = sqliteRunVacuum(&p->zErrMsg, db); if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; break; } /* An other opcode is illegal... */ default: { sqlite_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode); sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0); rc = SQLITE_INTERNAL; break; } /***************************************************************************** ** The cases of the switch statement above this line should all be indented ** by 6 spaces. But the left-most 6 spaces have been removed to improve the ** readability. From this point on down, the normal indentation rules are ** restored. *****************************************************************************/ } #ifdef VDBE_PROFILE { long long elapse = hwtime() - start; pOp->cycles += elapse; pOp->cnt++; #if 0 fprintf(stdout, "%10lld ", elapse); sqliteVdbePrintOp(stdout, origPc, &p->aOp[origPc]); #endif } #endif /* The following code adds nothing to the actual functionality ** of the program. It is only here for testing and debugging. ** On the other hand, it does burn CPU cycles every time through ** the evaluator loop. So we can leave it out when NDEBUG is defined. */ #ifndef NDEBUG /* Sanity checking on the top element of the stack */ if( pTos>=p->aStack ){ assert( pTos->flags!=0 ); /* Must define some type */ if( pTos->flags & MEM_Str ){ int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); assert( x!=0 ); /* Strings must define a string subtype */ assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */ assert( pTos->z!=0 ); /* Strings must have a value */ /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */ assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort ); assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort ); }else{ /* Cannot define a string subtype for non-string objects */ assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 ); } /* MEM_Null excludes all other types */ assert( pTos->flags==MEM_Null || (pTos->flags&MEM_Null)==0 ); } if( pc<-1 || pc>=p->nOp ){ sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0); rc = SQLITE_INTERNAL; } if( p->trace && pTos>=p->aStack ){ int i; fprintf(p->trace, "Stack:"); for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){ if( pTos[i].flags & MEM_Null ){ fprintf(p->trace, " NULL"); }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ fprintf(p->trace, " si:%d", pTos[i].i); }else if( pTos[i].flags & MEM_Int ){ fprintf(p->trace, " i:%d", pTos[i].i); }else if( pTos[i].flags & MEM_Real ){ fprintf(p->trace, " r:%g", pTos[i].r); }else if( pTos[i].flags & MEM_Str ){ int j, k; char zBuf[100]; zBuf[0] = ' '; if( pTos[i].flags & MEM_Dyn ){ zBuf[1] = 'z'; assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 ); }else if( pTos[i].flags & MEM_Static ){ zBuf[1] = 't'; assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 ); }else if( pTos[i].flags & MEM_Ephem ){ zBuf[1] = 'e'; assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 ); }else{ zBuf[1] = 's'; } zBuf[2] = '['; k = 3; for(j=0; j<20 && jtrace, "%s", zBuf); }else{ fprintf(p->trace, " ???"); } } if( rc!=0 ) fprintf(p->trace," rc=%d",rc); fprintf(p->trace,"\n"); } #endif } /* The end of the for(;;) loop the loops through opcodes */ /* If we reach this point, it means that execution is finished. */ vdbe_halt: if( rc ){ p->rc = rc; rc = SQLITE_ERROR; }else{ rc = SQLITE_DONE; } p->magic = VDBE_MAGIC_HALT; p->pTos = pTos; return rc; /* Jump to here if a malloc() fails. It's hard to get a malloc() ** to fail on a modern VM computer, so this code is untested. */ no_mem: sqliteSetString(&p->zErrMsg, "out of memory", (char*)0); rc = SQLITE_NOMEM; goto vdbe_halt; /* Jump to here for an SQLITE_MISUSE error. */ abort_due_to_misuse: rc = SQLITE_MISUSE; /* Fall thru into abort_due_to_error */ /* Jump to here for any other kind of fatal error. The "rc" variable ** should hold the error number. */ abort_due_to_error: if( p->zErrMsg==0 ){ if( sqlite_malloc_failed ) rc = SQLITE_NOMEM; sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); } goto vdbe_halt; /* Jump to here if the sqlite_interrupt() API sets the interrupt ** flag. */ abort_due_to_interrupt: assert( db->flags & SQLITE_Interrupt ); db->flags &= ~SQLITE_Interrupt; if( db->magic!=SQLITE_MAGIC_BUSY ){ rc = SQLITE_MISUSE; }else{ rc = SQLITE_INTERRUPT; } sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); goto vdbe_halt; }