/********************************************************************** ** ** Implementation of TQCanvas and associated classes ** ** Created : 991211 ** ** Copyright (C) 1999-2008 Trolltech ASA. All rights reserved. ** ** This file is part of the canvas module of the TQt GUI Toolkit. ** ** This file may be used under the terms of the GNU General ** Public License versions 2.0 or 3.0 as published by the Free ** Software Foundation and appearing in the files LICENSE.GPL2 ** and LICENSE.GPL3 included in the packaging of this file. ** Alternatively you may (at your option) use any later version ** of the GNU General Public License if such license has been ** publicly approved by Trolltech ASA (or its successors, if any) ** and the KDE Free TQt Foundation. ** ** Please review the following information to ensure GNU General ** Public Licensing requirements will be met: ** http://trolltech.com/products/qt/licenses/licensing/opensource/. ** If you are unsure which license is appropriate for your use, please ** review the following information: ** http://trolltech.com/products/qt/licenses/licensing/licensingoverview ** or contact the sales department at sales@trolltech.com. ** ** This file may be used under the terms of the Q Public License as ** defined by Trolltech ASA and appearing in the file LICENSE.TQPL ** included in the packaging of this file. Licensees holding valid TQt ** Commercial licenses may use this file in accordance with the TQt ** Commercial License Agreement provided with the Software. ** ** This file is provided "AS IS" with NO WARRANTY OF ANY KIND, ** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR ** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted ** herein. ** **********************************************************************/ #include "ntqcanvas.h" #ifndef QT_NO_CANVAS #include "ntqapplication.h" #include "ntqbitmap.h" #include "ntqimage.h" #include "ntqptrdict.h" #include "ntqpainter.h" #include "ntqpolygonscanner.h" #include "ntqtimer.h" #include "ntqtl.h" #include class TQCanvasData { public: TQCanvasData() : itemDict(1013), animDict(503) { } TQPtrList viewList; TQPtrDict itemDict; TQPtrDict animDict; }; class TQCanvasViewData { public: TQCanvasViewData() : repaint_from_moving( FALSE ) {} #ifndef QT_NO_TRANSFORMATIONS TQWMatrix xform; TQWMatrix ixform; #endif bool repaint_from_moving; }; // clusterizer class TQCanvasClusterizer { public: TQCanvasClusterizer(int maxclusters); ~TQCanvasClusterizer(); void add(int x, int y); // 1x1 rectangle (point) void add(int x, int y, int w, int h); void add(const TQRect& rect); void clear(); int clusters() { return count; } const TQRect& operator[](int i); private: TQRect* cluster; int count; const int maxcl; }; static void include(TQRect& r, const TQRect& rect) { if (rect.left()r.right()) { r.setRight(rect.right()); } if (rect.top()r.bottom()) { r.setBottom(rect.bottom()); } } /* A TQCanvasClusterizer groups rectangles (TQRects) into non-overlapping rectangles by a merging heuristic. */ TQCanvasClusterizer::TQCanvasClusterizer(int maxclusters) : cluster(new TQRect[maxclusters]), count(0), maxcl(maxclusters) { } TQCanvasClusterizer::~TQCanvasClusterizer() { delete [] cluster; } void TQCanvasClusterizer::clear() { count=0; } void TQCanvasClusterizer::add(int x, int y) { add(TQRect(x,y,1,1)); } void TQCanvasClusterizer::add(int x, int y, int w, int h) { add(TQRect(x,y,w,h)); } void TQCanvasClusterizer::add(const TQRect& rect) { TQRect biggerrect(rect.x()-1,rect.y()-1,rect.width()+2,rect.height()+2); //assert(rect.width()>0 && rect.height()>0); int cursor; for (cursor=0; cursor=0) { include(cluster[cheapest],rect); return; } if (count < maxcl) { cluster[count++]=rect; return; } // Do cheapest of: // add to closest cluster // do cheapest cluster merge, add to new cluster lowestcost=9999999; cheapest=-1; cursor=0; while( cursor=0) { include(cluster[cheapestmerge1],cluster[cheapestmerge2]); cluster[cheapestmerge2]=cluster[count--]; } else { // if (!cheapest) debugRectangles(rect); include(cluster[cheapest],rect); } // NB: clusters do not intersect (or intersection will // overwrite). This is a result of the above algorithm, // given the assumption that (x,y) are ordered topleft // to bottomright. // ### // // add explicit x/y ordering to that comment, move it to the top // and rephrase it as pre-/post-conditions. } const TQRect& TQCanvasClusterizer::operator[](int i) { return cluster[i]; } // end of clusterizer class TQM_EXPORT_CANVAS TQCanvasItemPtr { public: TQCanvasItemPtr() : ptr(0) { } TQCanvasItemPtr( TQCanvasItem* p ) : ptr(p) { } bool operator<=(const TQCanvasItemPtr& that) const { // Order same-z objects by identity. if (that.ptr->z()==ptr->z()) return that.ptr <= ptr; return that.ptr->z() <= ptr->z(); } bool operator<(const TQCanvasItemPtr& that) const { // Order same-z objects by identity. if (that.ptr->z()==ptr->z()) return that.ptr < ptr; return that.ptr->z() < ptr->z(); } bool operator>(const TQCanvasItemPtr& that) const { // Order same-z objects by identity. if (that.ptr->z()==ptr->z()) return that.ptr > ptr; return that.ptr->z() > ptr->z(); } bool operator==(const TQCanvasItemPtr& that) const { return that.ptr == ptr; } operator TQCanvasItem*() const { return ptr; } private: TQCanvasItem* ptr; }; /*! \class TQCanvasItemList \brief The TQCanvasItemList class is a list of TQCanvasItems. \if defined(commercial) It is part of the TQt Enterprise Edition. \endif \module canvas \ingroup graphics \ingroup images TQCanvasItemList is a TQValueList of pointers to \l{TQCanvasItem}s. This class is used by some methods in TQCanvas that need to return a list of canvas items. The \l TQValueList documentation describes how to use this list. */ /*! \internal */ void TQCanvasItemList::sort() { qHeapSort(*((TQValueList*)this)); } /*! \internal */ void TQCanvasItemList::drawUnique( TQPainter& painter ) { TQCanvasItem* prev=0; for (Iterator it=fromLast(); it!=end(); --it) { TQCanvasItem *g=*it; if (g!=prev) { g->draw(painter); prev=g; } } } /*! Returns the concatenation of this list and list \a l. */ TQCanvasItemList TQCanvasItemList::operator+(const TQCanvasItemList &l) const { TQCanvasItemList l2(*this); for(const_iterator it = l.begin(); it != l.end(); ++it) l2.append(*it); return l2; } class TQCanvasChunk { public: TQCanvasChunk() : changed(TRUE) { } // Other code assumes lists are not deleted. Assignment is also // done on ChunkRecs. So don't add that sort of thing here. void sort() { list.sort(); } const TQCanvasItemList* listPtr() const { return &list; } void add(TQCanvasItem* item) { list.prepend(item); changed = TRUE; } void remove(TQCanvasItem* item) { list.remove(item); changed = TRUE; } void change() { changed = TRUE; } bool hasChanged() const { return changed; } bool takeChange() { bool y = changed; changed = FALSE; return y; } private: TQCanvasItemList list; bool changed; }; static int gcd(int a, int b) { int r; while ( (r = a%b) ) { a=b; b=r; } return b; } static int scm(int a, int b) { int g = gcd(a,b); return a/g*b; } /*! \class TQCanvas ntqcanvas.h \brief The TQCanvas class provides a 2D area that can contain TQCanvasItem objects. \if defined(commercial) It is part of the TQt Enterprise Edition. \endif \ingroup abstractwidgets \ingroup graphics \ingroup images \mainclass \module canvas The TQCanvas class manages its 2D graphic area and all the canvas items the area contains. The canvas has no visual appearance of its own. Instead, it is displayed on screen using a TQCanvasView. Multiple TQCanvasView widgets may be associated with a canvas to provide multiple views of the same canvas. The canvas is optimized for large numbers of items, particularly where only a small percentage of the items change at any one time. If the entire display changes very frequently, you should consider using your own custom TQScrollView subclass. TQt provides a rich set of canvas item classes, e.g. TQCanvasEllipse, TQCanvasLine, TQCanvasPolygon, TQCanvasPolygonalItem, TQCanvasRectangle, TQCanvasSpline, TQCanvasSprite and TQCanvasText. You can subclass to create your own canvas items; TQCanvasPolygonalItem is the most common base class used for this purpose. Items appear on the canvas after their \link TQCanvasItem::show() show()\endlink function has been called (or \link TQCanvasItem::setVisible() setVisible(TRUE)\endlink), and \e after update() has been called. The canvas only shows items that are \link TQCanvasItem::setVisible() visible\endlink, and then only if \l update() is called. (By default the canvas is white and so are canvas items, so if nothing appears try changing colors.) If you created the canvas without passing a width and height to the constructor you must also call resize(). Although a canvas may appear to be similar to a widget with child widgets, there are several notable differences: \list \i Canvas items are usually much faster to manipulate and redraw than child widgets, with the speed advantage becoming especially great when there are \e many canvas items and non-rectangular items. In most situations canvas items are also a lot more memory efficient than child widgets. \i It's easy to detect overlapping items (collision detection). \i The canvas can be larger than a widget. A million-by-million canvas is perfectly possible. At such a size a widget might be very inefficient, and some window systems might not support it at all, whereas TQCanvas scales well. Even with a billion pixels and a million items, finding a particular canvas item, detecting collisions, etc., is still fast (though the memory consumption may be prohibitive at such extremes). \i Two or more TQCanvasView objects can view the same canvas. \i An arbitrary transformation matrix can be set on each TQCanvasView which makes it easy to zoom, rotate or shear the viewed canvas. \i Widgets provide a lot more functionality, such as input (TQKeyEvent, TQMouseEvent etc.) and layout management (TQGridLayout etc.). \endlist A canvas consists of a background, a number of canvas items organized by x, y and z coordinates, and a foreground. A canvas item's z coordinate can be treated as a layer number -- canvas items with a higher z coordinate appear in front of canvas items with a lower z coordinate. The background is white by default, but can be set to a different color using setBackgroundColor(), or to a repeated pixmap using setBackgroundPixmap() or to a mosaic of smaller pixmaps using setTiles(). Individual tiles can be set with setTile(). There are corresponding get functions, e.g. backgroundColor() and backgroundPixmap(). Note that TQCanvas does not inherit from TQWidget, even though it has some functions which provide the same functionality as those in TQWidget. One of these is setBackgroundPixmap(); some others are resize(), size(), width() and height(). \l TQCanvasView is the widget used to display a canvas on the screen. Canvas items are added to a canvas by constructing them and passing the canvas to the canvas item's constructor. An item can be moved to a different canvas using TQCanvasItem::setCanvas(). Canvas items are movable (and in the case of TQCanvasSprites, animated) objects that inherit TQCanvasItem. Each canvas item has a position on the canvas (x, y coordinates) and a height (z coordinate), all of which are held as floating-point numbers. Moving canvas items also have x and y velocities. It's possible for a canvas item to be outside the canvas (for example TQCanvasItem::x() is greater than width()). When a canvas item is off the canvas, onCanvas() returns FALSE and the canvas disregards the item. (Canvas items off the canvas do not slow down any of the common operations on the canvas.) Canvas items can be moved with TQCanvasItem::move(). The advance() function moves all TQCanvasItem::animated() canvas items and setAdvancePeriod() makes TQCanvas move them automatically on a periodic basis. In the context of the TQCanvas classes, to `animate' a canvas item is to set it in motion, i.e. using TQCanvasItem::setVelocity(). Animation of a canvas item itself, i.e. items which change over time, is enabled by calling TQCanvasSprite::setFrameAnimation(), or more generally by subclassing and reimplementing TQCanvasItem::advance(). To detect collisions use one of the TQCanvasItem::collisions() functions. The changed parts of the canvas are redrawn (if they are visible in a canvas view) whenever update() is called. You can either call update() manually after having changed the contents of the canvas, or force periodic updates using setUpdatePeriod(). If you have moving objects on the canvas, you must call advance() every time the objects should move one step further. Periodic calls to advance() can be forced using setAdvancePeriod(). The advance() function will call TQCanvasItem::advance() on every item that is \link TQCanvasItem::animated() animated\endlink and trigger an update of the affected areas afterwards. (A canvas item that is `animated' is simply a canvas item that is in motion.) TQCanvas organizes its canvas items into \e chunks; these are areas on the canvas that are used to speed up most operations. Many operations start by eliminating most chunks (i.e. those which haven't changed) and then process only the canvas items that are in the few interesting (i.e. changed) chunks. A valid chunk, validChunk(), is one which is on the canvas. The chunk size is a key factor to TQCanvas's speed: if there are too many chunks, the speed benefit of grouping canvas items into chunks is reduced. If the chunks are too large, it takes too long to process each one. The TQCanvas constructor tries to pick a suitable size, but you can call retune() to change it at any time. The chunkSize() function returns the current chunk size. The canvas items always make sure they're in the right chunks; all you need to make sure of is that the canvas uses the right chunk size. A good rule of thumb is that the size should be a bit smaller than the average canvas item size. If you have moving objects, the chunk size should be a bit smaller than the average size of the moving items. The foreground is normally nothing, but if you reimplement drawForeground(), you can draw things in front of all the canvas items. Areas can be set as changed with setChanged() and set unchanged with setUnchanged(). The entire canvas can be set as changed with setAllChanged(). A list of all the items on the canvas is returned by allItems(). An area can be copied (painted) to a TQPainter with drawArea(). If the canvas is resized it emits the resized() signal. The examples/canvas application and the 2D graphics page of the examples/demo application demonstrate many of TQCanvas's facilities. \sa TQCanvasView TQCanvasItem */ void TQCanvas::init(int w, int h, int chunksze, int mxclusters) { d = new TQCanvasData; awidth=w; aheight=h; chunksize=chunksze; maxclusters=mxclusters; chwidth=(w+chunksize-1)/chunksize; chheight=(h+chunksize-1)/chunksize; chunks=new TQCanvasChunk[chwidth*chheight]; update_timer = 0; bgcolor = white; grid = 0; htiles = 0; vtiles = 0; dblbuf = TRUE; debug_redraw_areas = FALSE; } /*! Create a TQCanvas with no size. \a parent and \a name are passed to the TQObject superclass. \warning You \e must call resize() at some time after creation to be able to use the canvas. */ TQCanvas::TQCanvas( TQObject* parent, const char* name ) : TQObject( parent, name ) { init(0,0); } /*! Constructs a TQCanvas that is \a w pixels wide and \a h pixels high. */ TQCanvas::TQCanvas(int w, int h) { init(w,h); } /*! Constructs a TQCanvas which will be composed of \a h tiles horizontally and \a v tiles vertically. Each tile will be an image \a tilewidth by \a tileheight pixels taken from pixmap \a p. The pixmap \a p is a list of tiles, arranged left to right, (and in the case of pixmaps that have multiple rows of tiles, top to bottom), with tile 0 in the top-left corner, tile 1 next to the right, and so on, e.g. \table \row \i 0 \i 1 \i 2 \i 3 \row \i 4 \i 5 \i 6 \i 7 \endtable The TQCanvas is initially sized to show exactly the given number of tiles horizontally and vertically. If it is resized to be larger, the entire matrix of tiles will be repeated as often as necessary to cover the area. If it is smaller, tiles to the right and bottom will not be visible. \sa setTiles() */ TQCanvas::TQCanvas( TQPixmap p, int h, int v, int tilewidth, int tileheight ) { init(h*tilewidth, v*tileheight, scm(tilewidth,tileheight) ); setTiles( p, h, v, tilewidth, tileheight ); } void qt_unview(TQCanvas* c) { for (TQCanvasView* view=c->d->viewList.first(); view != 0; view=c->d->viewList.next()) { view->viewing = 0; } } /*! Destroys the canvas and all the canvas's canvas items. */ TQCanvas::~TQCanvas() { qt_unview(this); TQCanvasItemList all = allItems(); for (TQCanvasItemList::Iterator it=all.begin(); it!=all.end(); ++it) delete *it; delete [] chunks; delete [] grid; delete d; } /*! \internal Returns the chunk at a chunk position \a i, \a j. */ TQCanvasChunk& TQCanvas::chunk(int i, int j) const { return chunks[i+chwidth*j]; } /*! \internal Returns the chunk at a pixel position \a x, \a y. */ TQCanvasChunk& TQCanvas::chunkContaining(int x, int y) const { return chunk(x/chunksize,y/chunksize); } /*! Returns a list of all the items in the canvas. */ TQCanvasItemList TQCanvas::allItems() { TQCanvasItemList list; for (TQPtrDictIterator it=d->itemDict; it.currentKey(); ++it) { list.prepend((TQCanvasItem*)it.currentKey()); } return list; } /*! Changes the size of the canvas to have a width of \a w and a height of \a h. This is a slow operation. */ void TQCanvas::resize(int w, int h) { if (awidth==w && aheight==h) return; TQCanvasItem* item; TQPtrList hidden; for (TQPtrDictIterator it=d->itemDict; it.currentKey(); ++it) { if (((TQCanvasItem*)it.currentKey())->isVisible()) { ((TQCanvasItem*)it.currentKey())->hide(); hidden.append(((TQCanvasItem*)it.currentKey())); } } int nchwidth=(w+chunksize-1)/chunksize; int nchheight=(h+chunksize-1)/chunksize; TQCanvasChunk* newchunks = new TQCanvasChunk[nchwidth*nchheight]; // Commit the new values. // awidth=w; aheight=h; chwidth=nchwidth; chheight=nchheight; delete [] chunks; chunks=newchunks; for (item=hidden.first(); item != 0; item=hidden.next()) { item->show(); } setAllChanged(); emit resized(); } /*! \fn void TQCanvas::resized() This signal is emitted whenever the canvas is resized. Each TQCanvasView connects to this signal to keep the scrollview's size correct. */ /*! Change the efficiency tuning parameters to \a mxclusters clusters, each of size \a chunksze. This is a slow operation if there are many objects on the canvas. The canvas is divided into chunks which are rectangular areas \a chunksze wide by \a chunksze high. Use a chunk size which is about the average size of the canvas items. If you choose a chunk size which is too small it will increase the amount of calculation required when drawing since each change will affect many chunks. If you choose a chunk size which is too large the amount of drawing required will increase because for each change, a lot of drawing will be required since there will be many (unchanged) canvas items which are in the same chunk as the changed canvas items. Internally, a canvas uses a low-resolution "chunk matrix" to keep track of all the items in the canvas. A 64x64 chunk matrix is the default for a 1024x1024 pixel canvas, where each chunk collects canvas items in a 16x16 pixel square. This default is also affected by setTiles(). You can tune this default using this function. For example if you have a very large canvas and want to trade off speed for memory then you might set the chunk size to 32 or 64. The \a mxclusters argument is the number of rectangular groups of chunks that will be separately drawn. If the canvas has a large number of small, dispersed items, this should be about that number. Our testing suggests that a large number of clusters is almost always best. */ void TQCanvas::retune(int chunksze, int mxclusters) { maxclusters=mxclusters; if ( chunksize!=chunksze ) { TQPtrList hidden; for (TQPtrDictIterator it=d->itemDict; it.currentKey(); ++it) { if (((TQCanvasItem*)it.currentKey())->isVisible()) { ((TQCanvasItem*)it.currentKey())->hide(); hidden.append(((TQCanvasItem*)it.currentKey())); } } chunksize=chunksze; int nchwidth=(awidth+chunksize-1)/chunksize; int nchheight=(aheight+chunksize-1)/chunksize; TQCanvasChunk* newchunks = new TQCanvasChunk[nchwidth*nchheight]; // Commit the new values. // chwidth=nchwidth; chheight=nchheight; delete [] chunks; chunks=newchunks; for (TQCanvasItem* item=hidden.first(); item != 0; item=hidden.next()) { item->show(); } } } /*! \fn int TQCanvas::width() const Returns the width of the canvas, in pixels. */ /*! \fn int TQCanvas::height() const Returns the height of the canvas, in pixels. */ /*! \fn TQSize TQCanvas::size() const Returns the size of the canvas, in pixels. */ /*! \fn TQRect TQCanvas::rect() const Returns a rectangle the size of the canvas. */ /*! \fn bool TQCanvas::onCanvas( int x, int y ) const Returns TRUE if the pixel position (\a x, \a y) is on the canvas; otherwise returns FALSE. \sa validChunk() */ /*! \fn bool TQCanvas::onCanvas( const TQPoint& p ) const \overload Returns TRUE if the pixel position \a p is on the canvas; otherwise returns FALSE. \sa validChunk() */ /*! \fn bool TQCanvas::validChunk( int x, int y ) const Returns TRUE if the chunk position (\a x, \a y) is on the canvas; otherwise returns FALSE. \sa onCanvas() */ /*! \fn bool TQCanvas::validChunk( const TQPoint& p ) const \overload Returns TRUE if the chunk position \a p is on the canvas; otherwise returns FALSE. \sa onCanvas() */ /*! \fn int TQCanvas::chunkSize() const Returns the chunk size of the canvas. \sa retune() */ /*! \fn bool TQCanvas::sameChunk(int x1, int y1, int x2, int y2) const \internal Tells if the points ( \a x1, \a y1 ) and ( \a x2, \a y2 ) are within the same chunk. */ /*! \internal This method adds an the item \a item to the list of TQCanvasItem objects in the TQCanvas. The TQCanvasItem class calls this. */ void TQCanvas::addItem(TQCanvasItem* item) { d->itemDict.insert((void*)item,(void*)1); } /*! \internal This method adds the item \a item to the list of TQCanvasItem objects to be moved. The TQCanvasItem class calls this. */ void TQCanvas::addAnimation(TQCanvasItem* item) { d->animDict.insert((void*)item,(void*)1); } /*! \internal This method adds the item \a item to the list of TQCanvasItem objects which are no longer to be moved. The TQCanvasItem class calls this. */ void TQCanvas::removeAnimation(TQCanvasItem* item) { d->animDict.remove((void*)item); } /*! \internal This method removes the item \a item from the list of TQCanvasItem objects in this TQCanvas. The TQCanvasItem class calls this. */ void TQCanvas::removeItem(TQCanvasItem* item) { d->itemDict.remove((void*)item); } /*! \internal This method adds the view \a view to the list of TQCanvasView objects viewing this TQCanvas. The TQCanvasView class calls this. */ void TQCanvas::addView(TQCanvasView* view) { d->viewList.append(view); if ( htiles>1 || vtiles>1 || pm.isNull() ) view->viewport()->setBackgroundColor(backgroundColor()); } /*! \internal This method removes the view \a view from the list of TQCanvasView objects viewing this TQCanvas. The TQCanvasView class calls this. */ void TQCanvas::removeView(TQCanvasView* view) { d->viewList.removeRef(view); } /*! Sets the canvas to call advance() every \a ms milliseconds. Any previous setting by setAdvancePeriod() or setUpdatePeriod() is overridden. If \a ms is less than 0 advancing will be stopped. */ void TQCanvas::setAdvancePeriod(int ms) { if ( ms<0 ) { if ( update_timer ) update_timer->stop(); } else { if ( update_timer ) delete update_timer; update_timer = new TQTimer(this); connect(update_timer,SIGNAL(timeout()),this,SLOT(advance())); update_timer->start(ms); } } /*! Sets the canvas to call update() every \a ms milliseconds. Any previous setting by setAdvancePeriod() or setUpdatePeriod() is overridden. If \a ms is less than 0 automatic updating will be stopped. */ void TQCanvas::setUpdatePeriod(int ms) { if ( ms<0 ) { if ( update_timer ) update_timer->stop(); } else { if ( update_timer ) delete update_timer; update_timer = new TQTimer(this); connect(update_timer,SIGNAL(timeout()),this,SLOT(update())); update_timer->start(ms); } } /*! Moves all TQCanvasItem::animated() canvas items on the canvas and refreshes all changes to all views of the canvas. (An `animated' item is an item that is in motion; see setVelocity().) The advance takes place in two phases. In phase 0, the TQCanvasItem::advance() function of each TQCanvasItem::animated() canvas item is called with paramater 0. Then all these canvas items are called again, with parameter 1. In phase 0, the canvas items should not change position, merely examine other items on the canvas for which special processing is required, such as collisions between items. In phase 1, all canvas items should change positions, ignoring any other items on the canvas. This two-phase approach allows for considerations of "fairness", although no TQCanvasItem subclasses supplied with TQt do anything interesting in phase 0. The canvas can be configured to call this function periodically with setAdvancePeriod(). \sa update() */ void TQCanvas::advance() { TQPtrDictIterator it=d->animDict; while ( it.current() ) { TQCanvasItem* i = (TQCanvasItem*)(void*)it.currentKey(); ++it; if ( i ) i->advance(0); } // we expect the dict contains the exact same items as in the // first pass. it.toFirst(); while ( it.current() ) { TQCanvasItem* i = (TQCanvasItem*)(void*)it.currentKey(); ++it; if ( i ) i->advance(1); } update(); } // Don't call this unless you know what you're doing. // p is in the content's co-ordinate example. /*! \internal */ void TQCanvas::drawViewArea( TQCanvasView* view, TQPainter* p, const TQRect& vr, bool dbuf ) { TQPoint tl = view->contentsToViewport(TQPoint(0,0)); #ifndef QT_NO_TRANSFORMATIONS TQWMatrix wm = view->worldMatrix(); TQWMatrix iwm = wm.invert(); // ivr = covers all chunks in vr TQRect ivr = iwm.map(vr); ivr.addCoords(-1, -1, 1, 1); TQWMatrix twm; twm.translate(tl.x(),tl.y()); #else TQRect ivr = vr; #endif TQRect all(0,0,width(),height()); if ( !all.contains(ivr) ) { // Need to clip with edge of canvas. #ifndef QT_NO_TRANSFORMATIONS // For translation-only transformation, it is safe to include the right // and bottom edges, but otherwise, these must be excluded since they // are not precisely defined (different bresenham paths). TQPointArray a; if ( wm.m12()==0.0 && wm.m21()==0.0 && wm.m11() == 1.0 && wm.m22() == 1.0 ) a = TQPointArray( TQRect(all.x(),all.y(),all.width()+1,all.height()+1) ); else a = TQPointArray( all ); a = (wm*twm).map(a); #else TQPointArray a( TQRect(all.x(),all.y(),all.width()+1,all.height()+1) ); #endif if ( view->viewport()->backgroundMode() == NoBackground ) { TQRect cvr = vr; cvr.moveBy(tl.x(),tl.y()); p->setClipRegion(TQRegion(cvr)-TQRegion(a)); p->fillRect(vr,view->viewport()->palette() .brush(TQPalette::Active,TQColorGroup::Background)); } p->setClipRegion(a); } if ( dbuf ) { offscr = TQPixmap(vr.size().expandedTo(TQSize(1, 1))); #ifdef Q_WS_X11 offscr.x11SetScreen(p->device()->x11Screen()); #endif TQPainter dbp(&offscr); #ifndef QT_NO_TRANSFORMATIONS twm.translate(-vr.x(),-vr.y()); twm.translate(-tl.x(),-tl.y()); dbp.setWorldMatrix( wm*twm, TRUE ); #else dbp.translate(-vr.x()-tl.x(),-vr.y()-tl.y()); #endif dbp.setClipRect(0,0,vr.width(), vr.height()); drawCanvasArea(ivr,&dbp,FALSE); dbp.end(); p->drawPixmap(vr.x(), vr.y(), offscr, 0, 0, vr.width(), vr.height()); } else { TQRect r = vr; r.moveBy(tl.x(),tl.y()); // move to untransformed co-ords if ( !all.contains(ivr) ) { TQRegion inside = p->clipRegion() & r; //TQRegion outside = p->clipRegion() - r; //p->setClipRegion(outside); //p->fillRect(outside.boundingRect(),red); p->setClipRegion(inside); } else { p->setClipRect(r); } #ifndef QT_NO_TRANSFORMATIONS p->setWorldMatrix( wm*twm ); #else #endif p->setBrushOrigin(tl.x(), tl.y()); drawCanvasArea(ivr,p,FALSE); } } /*! Repaints changed areas in all views of the canvas. \sa advance() */ void TQCanvas::update() { TQCanvasClusterizer clusterizer(d->viewList.count()); #ifndef QT_NO_TRANSFORMATIONS TQPtrList doneareas; doneareas.setAutoDelete(TRUE); #endif TQPtrListIterator it(d->viewList); TQCanvasView* view; while( (view=it.current()) != 0 ) { ++it; #ifndef QT_NO_TRANSFORMATIONS TQWMatrix wm = view->worldMatrix(); #endif TQRect area(view->contentsX(),view->contentsY(), view->visibleWidth(),view->visibleHeight()); if (area.width()>0 && area.height()>0) { #ifndef QT_NO_TRANSFORMATIONS if ( !wm.isIdentity() ) { // r = Visible area of the canvas where there are changes TQRect r = changeBounds(view->inverseWorldMatrix().map(area)); if ( !r.isEmpty() ) { TQPainter p(view->viewport()); // Translate to the coordinate system of drawViewArea(). TQPoint tl = view->contentsToViewport(TQPoint(0,0)); p.translate(tl.x(),tl.y()); drawViewArea( view, &p, wm.map(r), dblbuf ); doneareas.append(new TQRect(r)); } } else #endif { clusterizer.add(area); } } } for (int i=0; ichwidth) mx=chwidth; if (my>chheight) my=chheight; int x=thearea.x()/chunksize; while( xchwidth) mx=chwidth; if (my>chheight) my=chheight; int x=thearea.x()/chunksize; while( x chwidth) mx=chwidth; if (my > chheight) my=chheight; TQRect result; int x=area.x()/chunksize; while( x chwidth) mx=chwidth; if (my > chheight) my=chheight; int x=area.x()/chunksize; while( xviewList.first() && !p) return; // Nothing to do. int lx=area.x()/chunksize; int ly=area.y()/chunksize; int mx=area.right()/chunksize; int my=area.bottom()/chunksize; if (mx>=chwidth) mx=chwidth-1; if (my>=chheight) my=chheight-1; TQCanvasItemList allvisible; // Stores the region within area that need to be drawn. It is relative // to area.topLeft() (so as to keep within bounds of 16-bit XRegions) TQRegion rgn; for (int x=lx; x<=mx; x++) { for (int y=ly; y<=my; y++) { // Only reset change if all views updating, and // wholy within area. (conservative: ignore entire boundary) // // Disable this to help debugging. // if (!p) { if ( chunk(x,y).takeChange() ) { // ### should at least make bands rgn |= TQRegion(x*chunksize-area.x(),y*chunksize-area.y(), chunksize,chunksize); allvisible += *chunk(x,y).listPtr(); } } else { allvisible += *chunk(x,y).listPtr(); } } } allvisible.sort(); if ( double_buffer ) { offscr = TQPixmap(area.size().expandedTo(TQSize(1, 1))); #ifdef Q_WS_X11 if (p) offscr.x11SetScreen(p->device()->x11Screen()); #endif } if ( double_buffer && !offscr.isNull() ) { TQPainter painter; painter.begin(&offscr); painter.translate(-area.x(),-area.y()); painter.setBrushOrigin(-area.x(),-area.y()); if ( p ) { painter.setClipRect(TQRect(0,0,area.width(),area.height())); } else { painter.setClipRegion(rgn); } drawBackground(painter,area); allvisible.drawUnique(painter); drawForeground(painter,area); painter.end(); if ( p ) { p->drawPixmap( area.x(), area.y(), offscr, 0, 0, area.width(), area.height() ); return; } } else if ( p ) { drawBackground(*p,area); allvisible.drawUnique(*p); drawForeground(*p,area); return; } TQPoint trtr; // keeps track of total translation of rgn trtr -= area.topLeft(); for (TQCanvasView* view=d->viewList.first(); view; view=d->viewList.next()) { #ifndef QT_NO_TRANSFORMATIONS if ( !view->worldMatrix().isIdentity() ) continue; // Cannot paint those here (see callers). #endif TQPainter painter(view->viewport()); TQPoint tr = view->contentsToViewport(area.topLeft()); TQPoint nrtr = view->contentsToViewport(TQPoint(0,0)); // new translation TQPoint rtr = nrtr - trtr; // extra translation of rgn trtr += rtr; // add to total if (double_buffer) { rgn.translate(rtr.x(),rtr.y()); painter.setClipRegion(rgn); painter.drawPixmap(tr,offscr, TQRect(TQPoint(0,0),area.size())); } else { painter.translate(nrtr.x(),nrtr.y()); rgn.translate(rtr.x(),rtr.y()); painter.setClipRegion(rgn); drawBackground(painter,area); allvisible.drawUnique(painter); drawForeground(painter,area); painter.translate(-nrtr.x(),-nrtr.y()); } } } /*! \internal This method to informs the TQCanvas that a given chunk is `dirty' and needs to be redrawn in the next Update. (\a x,\a y) is a chunk location. The sprite classes call this. Any new derived class of TQCanvasItem must do so too. SetChangedChunkContaining can be used instead. */ void TQCanvas::setChangedChunk(int x, int y) { if (validChunk(x,y)) { TQCanvasChunk& ch=chunk(x,y); ch.change(); } } /*! \internal This method to informs the TQCanvas that the chunk containing a given pixel is `dirty' and needs to be redrawn in the next Update. (\a x,\a y) is a pixel location. The item classes call this. Any new derived class of TQCanvasItem must do so too. SetChangedChunk can be used instead. */ void TQCanvas::setChangedChunkContaining(int x, int y) { if (x>=0 && x=0 && y=0 && x=0 && y=0 && x=0 && yviewList.first(); while ( view != 0 ) { /* XXX this doesn't look right. Shouldn't this be more like setBackgroundPixmap? : Ian */ view->viewport()->setEraseColor( bgcolor ); view=d->viewList.next(); } setAllChanged(); } } /*! Returns the pixmap set by setBackgroundPixmap(). By default, this is a null pixmap. \sa setBackgroundPixmap(), backgroundColor() */ TQPixmap TQCanvas::backgroundPixmap() const { return pm; } /*! Sets the solid background to be the pixmap \a p repeated as necessary to cover the entire canvas. \sa backgroundPixmap(), setBackgroundColor(), setTiles() */ void TQCanvas::setBackgroundPixmap( const TQPixmap& p ) { setTiles(p, 1, 1, p.width(), p.height()); TQCanvasView* view = d->viewList.first(); while ( view != 0 ) { view->updateContents(); view = d->viewList.next(); } } /*! This virtual function is called for all updates of the canvas. It renders any background graphics using the painter \a painter, in the area \a clip. If the canvas has a background pixmap or a tiled background, that graphic is used, otherwise the canvas is cleared using the background color. If the graphics for an area change, you must explicitly call setChanged(const TQRect&) for the result to be visible when update() is next called. \sa setBackgroundColor(), setBackgroundPixmap(), setTiles() */ void TQCanvas::drawBackground(TQPainter& painter, const TQRect& clip) { if ( pm.isNull() ) { painter.fillRect(clip,bgcolor); } else if ( !grid ) { for (int x=clip.x()/pm.width(); x<(clip.x()+clip.width()+pm.width()-1)/pm.width(); x++) { for (int y=clip.y()/pm.height(); y<(clip.y()+clip.height()+pm.height()-1)/pm.height(); y++) { painter.drawPixmap(x*pm.width(), y*pm.height(),pm); } } } else { const int x1 = clip.left()/tilew; int x2 = clip.right()/tilew; const int y1 = clip.top()/tileh; int y2 = clip.bottom()/tileh; const int roww = pm.width()/tilew; for (int j=y1; j<=y2; j++) { int jj = j%tilesVertically(); for (int i=x1; i<=x2; i++) { int t = tile(i%tilesHorizontally(), jj); int tx = t % roww; int ty = t / roww; painter.drawPixmap( i*tilew, j*tileh, pm, tx*tilew, ty*tileh, tilew, tileh ); } } } } /*! This virtual function is called for all updates of the canvas. It renders any foreground graphics using the painter \a painter, in the area \a clip. If the graphics for an area change, you must explicitly call setChanged(const TQRect&) for the result to be visible when update() is next called. The default is to draw nothing. */ void TQCanvas::drawForeground(TQPainter& painter, const TQRect& clip) { if ( debug_redraw_areas ) { painter.setPen(red); painter.setBrush(NoBrush); painter.drawRect(clip); } } /*! If \a y is TRUE (the default) double-buffering is switched on; otherwise double-buffering is switched off. Turning off double-buffering causes the redrawn areas to flicker a little and also gives a (usually small) performance improvement. */ void TQCanvas::setDoubleBuffering(bool y) { dblbuf = y; } /*! Sets the TQCanvas to be composed of \a h tiles horizontally and \a v tiles vertically. Each tile will be an image \a tilewidth by \a tileheight pixels from pixmap \a p. The pixmap \a p is a list of tiles, arranged left to right, (and in the case of pixmaps that have multiple rows of tiles, top to bottom), with tile 0 in the top-left corner, tile 1 next to the right, and so on, e.g. \table \row \i 0 \i 1 \i 2 \i 3 \row \i 4 \i 5 \i 6 \i 7 \endtable If the canvas is larger than the matrix of tiles, the entire matrix is repeated as necessary to cover the whole canvas. If it is smaller, tiles to the right and bottom are not visible. The width and height of \a p must be a multiple of \a tilewidth and \a tileheight. If they are not the function will do nothing. If you want to unset any tiling set, then just pass in a null pixmap and 0 for \a h, \a v, \a tilewidth, and \a tileheight. */ void TQCanvas::setTiles( TQPixmap p, int h, int v, int tilewidth, int tileheight ) { if ( !p.isNull() && (!tilewidth || !tileheight || p.width() % tilewidth != 0 || p.height() % tileheight != 0 ) ) return; htiles = h; vtiles = v; delete[] grid; pm = p; if ( h && v && !p.isNull() ) { grid = new ushort[h*v]; memset( grid, 0, h*v*sizeof(ushort) ); tilew = tilewidth; tileh = tileheight; } else { grid = 0; } if ( h + v > 10 ) { int s = scm(tilewidth,tileheight); retune( s < 128 ? s : TQMAX(tilewidth,tileheight) ); } setAllChanged(); } /*! \fn int TQCanvas::tile( int x, int y ) const Returns the tile at position (\a x, \a y). Initially, all tiles are 0. The parameters must be within range, i.e. 0 \< \a x \< tilesHorizontally() and 0 \< \a y \< tilesVertically(). \sa setTile() */ /*! \fn int TQCanvas::tilesHorizontally() const Returns the number of tiles horizontally. */ /*! \fn int TQCanvas::tilesVertically() const Returns the number of tiles vertically. */ /*! \fn int TQCanvas::tileWidth() const Returns the width of each tile. */ /*! \fn int TQCanvas::tileHeight() const Returns the height of each tile. */ /*! Sets the tile at (\a x, \a y) to use tile number \a tilenum, which is an index into the tile pixmaps. The canvas will update appropriately when update() is next called. The images are taken from the pixmap set by setTiles() and are arranged left to right, (and in the case of pixmaps that have multiple rows of tiles, top to bottom), with tile 0 in the top-left corner, tile 1 next to the right, and so on, e.g. \table \row \i 0 \i 1 \i 2 \i 3 \row \i 4 \i 5 \i 6 \i 7 \endtable \sa tile() setTiles() */ void TQCanvas::setTile( int x, int y, int tilenum ) { ushort& t = grid[x+y*htiles]; if ( t != tilenum ) { t = tilenum; if ( tilew == tileh && tilew == chunksize ) setChangedChunk( x, y ); // common case else setChanged( TQRect(x*tilew,y*tileh,tilew,tileh) ); } } // lesser-used data in canvas item, plus room for extension. // Be careful adding to this - check all usages. class TQCanvasItemExtra { TQCanvasItemExtra() : vx(0.0), vy(0.0) { } double vx,vy; friend class TQCanvasItem; }; /*! \class TQCanvasItem ntqcanvas.h \brief The TQCanvasItem class provides an abstract graphic object on a TQCanvas. \if defined(commercial) It is part of the TQt Enterprise Edition. \endif \module canvas \ingroup graphics \ingroup images A variety of TQCanvasItem subclasses provide immediately usable behaviour. This class is a pure abstract superclass providing the behaviour that is shared among all the concrete canvas item classes. TQCanvasItem is not intended for direct subclassing. It is much easier to subclass one of its subclasses, e.g. TQCanvasPolygonalItem (the commonest base class), TQCanvasRectangle, TQCanvasSprite, TQCanvasEllipse or TQCanvasText. Canvas items are added to a canvas by constructing them and passing the canvas to the canvas item's constructor. An item can be moved to a different canvas using setCanvas(). Items appear on the canvas after their \link show() show()\endlink function has been called (or \link setVisible() setVisible(TRUE)\endlink), and \e after update() has been called. The canvas only shows items that are \link setVisible() visible\endlink, and then only if \l update() is called. If you created the canvas without passing a width and height to the constructor you'll also need to call \link TQCanvas::resize() resize()\endlink. Since the canvas background defaults to white and canvas items default to white, you may need to change colors to see your items. A TQCanvasItem object can be moved in the x(), y() and z() dimensions using functions such as move(), moveBy(), setX(), setY() and setZ(). A canvas item can be set in motion, `animated', using setAnimated() and given a velocity in the x and y directions with setXVelocity() and setYVelocity() -- the same effect can be achieved by calling setVelocity(). Use the collidesWith() function to see if the canvas item will collide on the \e next advance(1) and use collisions() to see what collisions have occurred. Use TQCanvasSprite or your own subclass of TQCanvasSprite to create canvas items which are animated, i.e. which change over time. The size of a canvas item is given by boundingRect(). Use boundingRectAdvanced() to see what the size of the canvas item will be \e after the next advance(1) call. The rtti() function is used for identifying subclasses of TQCanvasItem. The canvas() function returns a pointer to the canvas which contains the canvas item. TQCanvasItem provides the show() and isVisible() functions like those in TQWidget. TQCanvasItem also provides the setEnabled(), setActive() and setSelected() functions; these functions set the relevant boolean and cause a repaint but the boolean values they set are not used in TQCanvasItem itself. You can make use of these booleans in your subclasses. By default, canvas items have no velocity, no size, and are not in motion. The subclasses provided in TQt do not change these defaults except where noted. */ /*! \enum TQCanvasItem::RttiValues This enum is used to name the different types of canvas item. \value Rtti_Item Canvas item abstract base class \value Rtti_Ellipse \value Rtti_Line \value Rtti_Polygon \value Rtti_PolygonalItem \value Rtti_Rectangle \value Rtti_Spline \value Rtti_Sprite \value Rtti_Text */ /*! \fn void TQCanvasItem::update() Call this function to repaint the canvas's changed chunks. */ /*! Constructs a TQCanvasItem on canvas \a canvas. \sa setCanvas() */ TQCanvasItem::TQCanvasItem(TQCanvas* canvas) : cnv(canvas), myx(0),myy(0),myz(0) { ani=0; vis=0; val=0; sel=0; ena=0; act=0; ext = 0; if (cnv) cnv->addItem(this); } /*! Destroys the TQCanvasItem and removes it from its canvas. */ TQCanvasItem::~TQCanvasItem() { if (cnv) { cnv->removeItem(this); cnv->removeAnimation(this); } delete ext; } TQCanvasItemExtra& TQCanvasItem::extra() { if ( !ext ) ext = new TQCanvasItemExtra; return *ext; } /*! \fn double TQCanvasItem::x() const Returns the horizontal position of the canvas item. Note that subclasses often have an origin other than the top-left corner. */ /*! \fn double TQCanvasItem::y() const Returns the vertical position of the canvas item. Note that subclasses often have an origin other than the top-left corner. */ /*! \fn double TQCanvasItem::z() const Returns the z index of the canvas item, which is used for visual order: higher-z items obscure (are in front of) lower-z items. */ /*! \fn void TQCanvasItem::setX(double x) Moves the canvas item so that its x-position is \a x. \sa x(), move() */ /*! \fn void TQCanvasItem::setY(double y) Moves the canvas item so that its y-position is \a y. \sa y(), move() */ /*! \fn void TQCanvasItem::setZ(double z) Sets the z index of the canvas item to \a z. Higher-z items obscure (are in front of) lower-z items. \sa z(), move() */ /*! Moves the canvas item relative to its current position by (\a dx, \a dy). */ void TQCanvasItem::moveBy( double dx, double dy ) { if ( dx || dy ) { removeFromChunks(); myx += dx; myy += dy; addToChunks(); } } /*! Moves the canvas item to the absolute position (\a x, \a y). */ void TQCanvasItem::move( double x, double y ) { moveBy( x-myx, y-myy ); } /*! Returns TRUE if the canvas item is in motion; otherwise returns FALSE. \sa setVelocity(), setAnimated() */ bool TQCanvasItem::animated() const { return (bool)ani; } /*! Sets the canvas item to be in motion if \a y is TRUE, or not if \a y is FALSE. The speed and direction of the motion is set with setVelocity(), or with setXVelocity() and setYVelocity(). \sa advance(), TQCanvas::advance() */ void TQCanvasItem::setAnimated(bool y) { if ( y != (bool)ani ) { ani = (uint)y; if ( y ) { cnv->addAnimation(this); } else { cnv->removeAnimation(this); } } } /*! \fn void TQCanvasItem::setXVelocity( double vx ) Sets the horizontal component of the canvas item's velocity to \a vx. \sa setYVelocity() setVelocity() */ /*! \fn void TQCanvasItem::setYVelocity( double vy ) Sets the vertical component of the canvas item's velocity to \a vy. \sa setXVelocity() setVelocity() */ /*! Sets the canvas item to be in motion, moving by \a vx and \a vy pixels in the horizontal and vertical directions respectively. \sa advance() setXVelocity() setYVelocity() */ void TQCanvasItem::setVelocity( double vx, double vy) { if ( ext || vx!=0.0 || vy!=0.0 ) { if ( !ani ) setAnimated(TRUE); extra().vx = vx; extra().vy = vy; } } /*! Returns the horizontal velocity component of the canvas item. */ double TQCanvasItem::xVelocity() const { return ext ? ext->vx : 0; } /*! Returns the vertical velocity component of the canvas item. */ double TQCanvasItem::yVelocity() const { return ext ? ext->vy : 0; } /*! The default implementation moves the canvas item, if it is animated(), by the preset velocity if \a phase is 1, and does nothing if \a phase is 0. Note that if you reimplement this function, the reimplementation must not change the canvas in any way, for example it must not add or remove items. \sa TQCanvas::advance() setVelocity() */ void TQCanvasItem::advance(int phase) { if ( ext && phase==1 ) moveBy(ext->vx,ext->vy); } /*! \fn void TQCanvasItem::draw(TQPainter& painter) This abstract virtual function draws the canvas item using \a painter. \warning When you reimplement this function, make sure that you leave the painter in the same state as you found it. For example, if you start by calling TQPainter::translate(50, 50), end your code by calling TQPainter::translate(-50, -50). Be also aware that the painter might already have some transformations set (i.e., don't call TQPainter::resetXForm() when you're done). */ /*! Sets the TQCanvas upon which the canvas item is to be drawn to \a c. \sa canvas() */ void TQCanvasItem::setCanvas(TQCanvas* c) { bool v=isVisible(); setVisible(FALSE); if (cnv) { if (ext) cnv->removeAnimation(this); cnv->removeItem(this); } cnv=c; if (cnv) { cnv->addItem(this); if ( ext ) cnv->addAnimation(this); } setVisible(v); } /*! \fn TQCanvas* TQCanvasItem::canvas() const Returns the canvas containing the canvas item. */ /*! Shorthand for setVisible(TRUE). */ void TQCanvasItem::show() { setVisible(TRUE); } /*! Shorthand for setVisible(FALSE). */ void TQCanvasItem::hide() { setVisible(FALSE); } /*! Makes the canvas item visible if \a yes is TRUE, or invisible if \a yes is FALSE. The change takes effect when TQCanvas::update() is next called. */ void TQCanvasItem::setVisible(bool yes) { if ((bool)vis!=yes) { if (yes) { vis=(uint)yes; addToChunks(); } else { removeFromChunks(); vis=(uint)yes; } } } /*! \obsolete \fn bool TQCanvasItem::visible() const Use isVisible() instead. */ /*! \fn bool TQCanvasItem::isVisible() const Returns TRUE if the canvas item is visible; otherwise returns FALSE. Note that in this context TRUE does \e not mean that the canvas item is currently in a view, merely that if a view is showing the area where the canvas item is positioned, and the item is not obscured by items with higher z values, and the view is not obscured by overlaying windows, it would be visible. \sa setVisible(), z() */ /*! \obsolete \fn bool TQCanvasItem::selected() const Use isSelected() instead. */ /*! \fn bool TQCanvasItem::isSelected() const Returns TRUE if the canvas item is selected; otherwise returns FALSE. */ /*! Sets the selected flag of the item to \a yes. If this changes the item's selected state the item will be redrawn when TQCanvas::update() is next called. The TQCanvas, TQCanvasItem and the TQt-supplied TQCanvasItem subclasses do not make use of this value. The setSelected() function is supplied because many applications need it, but it is up to you how you use the isSelected() value. */ void TQCanvasItem::setSelected(bool yes) { if ((bool)sel!=yes) { sel=(uint)yes; changeChunks(); } } /*! \obsolete \fn bool TQCanvasItem::enabled() const Use isEnabled() instead. */ /*! \fn bool TQCanvasItem::isEnabled() const Returns TRUE if the TQCanvasItem is enabled; otherwise returns FALSE. */ /*! Sets the enabled flag of the item to \a yes. If this changes the item's enabled state the item will be redrawn when TQCanvas::update() is next called. The TQCanvas, TQCanvasItem and the TQt-supplied TQCanvasItem subclasses do not make use of this value. The setEnabled() function is supplied because many applications need it, but it is up to you how you use the isEnabled() value. */ void TQCanvasItem::setEnabled(bool yes) { if (ena!=(uint)yes) { ena=(uint)yes; changeChunks(); } } /*! \obsolete \fn bool TQCanvasItem::active() const Use isActive() instead. */ /*! \fn bool TQCanvasItem::isActive() const Returns TRUE if the TQCanvasItem is active; otherwise returns FALSE. */ /*! Sets the active flag of the item to \a yes. If this changes the item's active state the item will be redrawn when TQCanvas::update() is next called. The TQCanvas, TQCanvasItem and the TQt-supplied TQCanvasItem subclasses do not make use of this value. The setActive() function is supplied because many applications need it, but it is up to you how you use the isActive() value. */ void TQCanvasItem::setActive(bool yes) { if (act!=(uint)yes) { act=(uint)yes; changeChunks(); } } bool qt_testCollision(const TQCanvasSprite* s1, const TQCanvasSprite* s2) { const TQImage* s2image = s2->imageAdvanced()->collision_mask; TQRect s2area = s2->boundingRectAdvanced(); TQRect cyourarea(s2area.x(),s2area.y(), s2area.width(),s2area.height()); TQImage* s1image=s1->imageAdvanced()->collision_mask; TQRect s1area = s1->boundingRectAdvanced(); TQRect ourarea = s1area.intersect(cyourarea); if ( ourarea.isEmpty() ) return FALSE; int x2=ourarea.x()-cyourarea.x(); int y2=ourarea.y()-cyourarea.y(); int x1=ourarea.x()-s1area.x(); int y1=ourarea.y()-s1area.y(); int w=ourarea.width(); int h=ourarea.height(); if ( !s2image ) { if ( !s1image ) return w>0 && h>0; // swap everything around int t; t=x1; x1=x2; x2=t; t=y1; x1=y2; y2=t; s2image = s1image; s1image = 0; } // s2image != 0 // A non-linear search may be more efficient. // Perhaps spiralling out from the center, or a simpler // vertical expansion from the centreline. // We assume that sprite masks don't have // different bit orders. // // Q_ASSERT(s1image->bitOrder()==s2image->bitOrder()); if (s1image) { if (s1image->bitOrder() == TQImage::LittleEndian) { for (int j=0; jscanLine(y1+j); uchar* yl = s2image->scanLine(y2+j); for (int i=0; i> 3)) & (1 << ((x2+i) & 7)) && *(ml + ((x1+i) >> 3)) & (1 << ((x1+i) & 7))) { return TRUE; } } } } else { for (int j=0; jscanLine(y1+j); uchar* yl = s2image->scanLine(y2+j); for (int i=0; i> 3)) & (1 << (7-((x2+i) & 7))) && *(ml + ((x1+i) >> 3)) & (1 << (7-((x1+i) & 7)))) { return TRUE; } } } } } else { if (s2image->bitOrder() == TQImage::LittleEndian) { for (int j=0; jscanLine(y2+j); for (int i=0; i> 3)) & (1 << ((x2+i) & 7))) { return TRUE; } } } } else { for (int j=0; jscanLine(y2+j); for (int i=0; i> 3)) & (1 << (7-((x2+i) & 7)))) { return TRUE; } } } } } return FALSE; } static bool collision_double_dispatch( const TQCanvasSprite* s1, const TQCanvasPolygonalItem* p1, const TQCanvasRectangle* r1, const TQCanvasEllipse* e1, const TQCanvasText* t1, const TQCanvasSprite* s2, const TQCanvasPolygonalItem* p2, const TQCanvasRectangle* r2, const TQCanvasEllipse* e2, const TQCanvasText* t2 ) { const TQCanvasItem* i1 = s1 ? (const TQCanvasItem*)s1 : p1 ? (const TQCanvasItem*)p1 : r1 ? (const TQCanvasItem*)r1 : e1 ? (const TQCanvasItem*)e1 : (const TQCanvasItem*)t1; const TQCanvasItem* i2 = s2 ? (const TQCanvasItem*)s2 : p2 ? (const TQCanvasItem*)p2 : r2 ? (const TQCanvasItem*)r2 : e2 ? (const TQCanvasItem*)e2 : (const TQCanvasItem*)t2; if ( s1 && s2 ) { // a return qt_testCollision(s1,s2); } else if ( (r1 || t1 || s1) && (r2 || t2 || s2) ) { // b TQRect rc1 = i1->boundingRectAdvanced(); TQRect rc2 = i2->boundingRectAdvanced(); return rc1.intersects(rc2); } else if ( e1 && e2 && e1->angleLength()>=360*16 && e2->angleLength()>=360*16 && e1->width()==e1->height() && e2->width()==e2->height() ) { // c double xd = (e1->x()+e1->xVelocity())-(e2->x()+e1->xVelocity()); double yd = (e1->y()+e1->yVelocity())-(e2->y()+e1->yVelocity()); double rd = (e1->width()+e2->width())/2; return xd*xd+yd*yd <= rd*rd; } else if ( p1 && (p2 || s2 || t2) ) { // d TQPointArray pa1 = p1->areaPointsAdvanced(); TQPointArray pa2 = p2 ? p2->areaPointsAdvanced() : TQPointArray(i2->boundingRectAdvanced()); bool col= !(TQRegion(pa1) & TQRegion(pa2,TRUE)).isEmpty(); return col; } else { return collision_double_dispatch(s2,p2,r2,e2,t2, s1,p1,r1,e1,t1); } } /*! \fn bool TQCanvasItem::collidesWith( const TQCanvasItem* other ) const Returns TRUE if the canvas item will collide with the \a other item \e after they have moved by their current velocities; otherwise returns FALSE. \sa collisions() */ /*! \class TQCanvasSprite ntqcanvas.h \brief The TQCanvasSprite class provides an animated canvas item on a TQCanvas. \if defined(commercial) It is part of the TQt Enterprise Edition. \endif \module canvas \ingroup graphics \ingroup images A canvas sprite is an object which can contain any number of images (referred to as frames), only one of which is current, i.e. displayed, at any one time. The images can be passed in the constructor or set or changed later with setSequence(). If you subclass TQCanvasSprite you can change the frame that is displayed periodically, e.g. whenever TQCanvasItem::advance(1) is called to create the effect of animation. The current frame can be set with setFrame() or with move(). The number of frames available is given by frameCount(). The bounding rectangle of the current frame is returned by boundingRect(). The current frame's image can be retrieved with image(); use imageAdvanced() to retrieve the image for the frame that will be shown after advance(1) is called. Use the image() overload passing it an integer index to retrieve a particular image from the list of frames. Use width() and height() to retrieve the dimensions of the current frame. Use leftEdge() and rightEdge() to retrieve the current frame's left-hand and right-hand x-coordinates respectively. Use bottomEdge() and topEdge() to retrieve the current frame's bottom and top y-coordinates respectively. These functions have an overload which will accept an integer frame number to retrieve the coordinates of a particular frame. TQCanvasSprite draws very tquickly, at the expense of memory. The current frame's image can be drawn on a painter with draw(). Like any other canvas item, canvas sprites can be moved with move() which sets the x and y coordinates and the frame number, as well as with TQCanvasItem::move() and TQCanvasItem::moveBy(), or by setting coordinates with TQCanvasItem::setX(), TQCanvasItem::setY() and TQCanvasItem::setZ(). */ /*! \reimp */ bool TQCanvasSprite::collidesWith( const TQCanvasItem* i ) const { return i->collidesWith(this,0,0,0,0); } /*! Returns TRUE if the canvas item collides with any of the given items; otherwise returns FALSE. The parameters, \a s, \a p, \a r, \a e and \a t, are all the same object, this is just a type resolution trick. */ bool TQCanvasSprite::collidesWith( const TQCanvasSprite* s, const TQCanvasPolygonalItem* p, const TQCanvasRectangle* r, const TQCanvasEllipse* e, const TQCanvasText* t ) const { return collision_double_dispatch(s,p,r,e,t,this,0,0,0,0); } /*! \reimp */ bool TQCanvasPolygonalItem::collidesWith( const TQCanvasItem* i ) const { return i->collidesWith(0,this,0,0,0); } bool TQCanvasPolygonalItem::collidesWith( const TQCanvasSprite* s, const TQCanvasPolygonalItem* p, const TQCanvasRectangle* r, const TQCanvasEllipse* e, const TQCanvasText* t ) const { return collision_double_dispatch(s,p,r,e,t,0,this,0,0,0); } /*! \reimp */ bool TQCanvasRectangle::collidesWith( const TQCanvasItem* i ) const { return i->collidesWith(0,this,this,0,0); } bool TQCanvasRectangle::collidesWith( const TQCanvasSprite* s, const TQCanvasPolygonalItem* p, const TQCanvasRectangle* r, const TQCanvasEllipse* e, const TQCanvasText* t ) const { return collision_double_dispatch(s,p,r,e,t,0,this,this,0,0); } /*! \reimp */ bool TQCanvasEllipse::collidesWith( const TQCanvasItem* i ) const { return i->collidesWith(0,this,0,this,0); } bool TQCanvasEllipse::collidesWith( const TQCanvasSprite* s, const TQCanvasPolygonalItem* p, const TQCanvasRectangle* r, const TQCanvasEllipse* e, const TQCanvasText* t ) const { return collision_double_dispatch(s,p,r,e,t,0,this,0,this,0); } /*! \reimp */ bool TQCanvasText::collidesWith( const TQCanvasItem* i ) const { return i->collidesWith(0,0,0,0,this); } bool TQCanvasText::collidesWith( const TQCanvasSprite* s, const TQCanvasPolygonalItem* p, const TQCanvasRectangle* r, const TQCanvasEllipse* e, const TQCanvasText* t ) const { return collision_double_dispatch(s,p,r,e,t,0,0,0,0,this); } /*! Returns the list of canvas items that this canvas item has collided with. A collision is generally defined as occurring when the pixels of one item draw on the pixels of another item, but not all subclasses are so precise. Also, since pixel-wise collision detection can be slow, this function works in either exact or inexact mode, according to the \a exact parameter. If \a exact is TRUE, the canvas items returned have been accurately tested for collision with the canvas item. If \a exact is FALSE, the canvas items returned are \e near the canvas item. You can test the canvas items returned using collidesWith() if any are interesting collision candidates. By using this approach, you can ignore some canvas items for which collisions are not relevant. The returned list is a list of TQCanvasItems, but often you will need to cast the items to their subclass types. The safe way to do this is to use rtti() before casting. This provides some of the functionality of the standard C++ dynamic cast operation even on compilers where dynamic casts are not available. Note that a canvas item may be `on' a canvas, e.g. it was created with the canvas as parameter, even though its coordinates place it beyond the edge of the canvas's area. Collision detection only works for canvas items which are wholly or partly within the canvas's area. Note that if items have a velocity (see \l setVelocity()), then collision testing is done based on where the item \e will be when it moves, not its current location. For example, a "ball" item doesn't need to actually embed into a "wall" item before a collision is detected. For items without velocity, plain intersection is used. */ TQCanvasItemList TQCanvasItem::collisions(bool exact) const { return canvas()->collisions(chunks(),this,exact); } /*! Returns a list of canvas items that collide with the point \a p. The list is ordered by z coordinates, from highest z coordinate (front-most item) to lowest z coordinate (rear-most item). */ TQCanvasItemList TQCanvas::collisions(const TQPoint& p) const { return collisions(TQRect(p,TQSize(1,1))); } /*! \overload Returns a list of items which collide with the rectangle \a r. The list is ordered by z coordinates, from highest z coordinate (front-most item) to lowest z coordinate (rear-most item). */ TQCanvasItemList TQCanvas::collisions(const TQRect& r) const { TQCanvasRectangle i(r,(TQCanvas*)this); i.setPen(NoPen); i.show(); // doesn't actually show, since we destroy it TQCanvasItemList l = i.collisions(TRUE); l.sort(); return l; } /*! \overload Returns a list of canvas items which intersect with the chunks listed in \a chunklist, excluding \a item. If \a exact is TRUE, only those which actually \link TQCanvasItem::collidesWith() collide with\endlink \a item are returned; otherwise canvas items are included just for being in the chunks. This is a utility function mainly used to implement the simpler TQCanvasItem::collisions() function. */ TQCanvasItemList TQCanvas::collisions(const TQPointArray& chunklist, const TQCanvasItem* item, bool exact) const { TQPtrDict seen; TQCanvasItemList result; for (int i=0; i<(int)chunklist.count(); i++) { int x = chunklist[i].x(); int y = chunklist[i].y(); if ( validChunk(x,y) ) { const TQCanvasItemList* l = chunk(x,y).listPtr(); for (TQCanvasItemList::ConstIterator it=l->begin(); it!=l->end(); ++it) { TQCanvasItem *g=*it; if ( g != item ) { if ( !seen.find(g) ) { seen.replace(g,(void*)1); if ( !exact || item->collidesWith(g) ) result.append(g); } } } } } return result; } /*! \internal Adds the item to all the chunks it covers. */ void TQCanvasItem::addToChunks() { if (isVisible() && canvas()) { TQPointArray pa = chunks(); for (int i=0; i<(int)pa.count(); i++) canvas()->addItemToChunk(this,pa[i].x(),pa[i].y()); val=(uint)TRUE; } } /*! \internal Removes the item from all the chunks it covers. */ void TQCanvasItem::removeFromChunks() { if (isVisible() && canvas()) { TQPointArray pa = chunks(); for (int i=0; i<(int)pa.count(); i++) canvas()->removeItemFromChunk(this,pa[i].x(),pa[i].y()); } } /*! \internal Sets all the chunks covered by the item to be refreshed with TQCanvas::update() is next called. */ void TQCanvasItem::changeChunks() { if (isVisible() && canvas()) { if (!val) addToChunks(); TQPointArray pa = chunks(); for (int i=0; i<(int)pa.count(); i++) canvas()->setChangedChunk(pa[i].x(),pa[i].y()); } } /*! \fn TQRect TQCanvasItem::boundingRect() const Returns the bounding rectangle in pixels that the canvas item covers. \sa boundingRectAdvanced() */ /*! Returns the bounding rectangle of pixels that the canvas item \e will cover after advance(1) is called. \sa boundingRect() */ TQRect TQCanvasItem::boundingRectAdvanced() const { int dx = int(x()+xVelocity())-int(x()); int dy = int(y()+yVelocity())-int(y()); TQRect r = boundingRect(); r.moveBy(dx,dy); return r; } /*! \class TQCanvasPixmap ntqcanvas.h \brief The TQCanvasPixmap class provides pixmaps for TQCanvasSprites. \if defined(commercial) It is part of the TQt Enterprise Edition. \endif \module canvas \ingroup graphics \ingroup images If you want to show a single pixmap on a TQCanvas use a TQCanvasSprite with just one pixmap. When pixmaps are inserted into a TQCanvasPixmapArray they are held as TQCanvasPixmaps. \l{TQCanvasSprite}s are used to show pixmaps on \l{TQCanvas}es and hold their pixmaps in a TQCanvasPixmapArray. If you retrieve a frame (pixmap) from a TQCanvasSprite it will be returned as a TQCanvasPixmap. The pixmap is a TQPixmap and can only be set in the constructor. There are three different constructors, one taking a TQPixmap, one a TQImage and one a file name that refers to a file in any supported file format (see TQImageIO). TQCanvasPixmap can have a hotspot which is defined in terms of an (x, y) offset. When you create a TQCanvasPixmap from a PNG file or from a TQImage that has a TQImage::offset(), the offset() is initialized appropriately, otherwise the constructor leaves it at (0, 0). You can set it later using setOffset(). When the TQCanvasPixmap is used in a TQCanvasSprite, the offset position is the point at TQCanvasItem::x() and TQCanvasItem::y(), not the top-left corner of the pixmap. Note that for TQCanvasPixmap objects created by a TQCanvasSprite, the position of each TQCanvasPixmap object is set so that the hotspot stays in the same position. \sa TQCanvasPixmapArray TQCanvasItem TQCanvasSprite */ #ifndef QT_NO_IMAGEIO /*! Constructs a TQCanvasPixmap that uses the image stored in \a datafilename. */ TQCanvasPixmap::TQCanvasPixmap(const TQString& datafilename) { TQImage image(datafilename); init(image); } #endif /*! Constructs a TQCanvasPixmap from the image \a image. */ TQCanvasPixmap::TQCanvasPixmap(const TQImage& image) { init(image); } /*! Constructs a TQCanvasPixmap from the pixmap \a pm using the offset \a offset. */ TQCanvasPixmap::TQCanvasPixmap(const TQPixmap& pm, const TQPoint& offset) { init(pm,offset.x(),offset.y()); } void TQCanvasPixmap::init(const TQImage& image) { convertFromImage(image); hotx = image.offset().x(); hoty = image.offset().y(); #ifndef QT_NO_IMAGE_DITHER_TO_1 if( image.hasAlphaBuffer() ) { TQImage i = image.createAlphaMask(); collision_mask = new TQImage(i); } else #endif collision_mask = 0; } void TQCanvasPixmap::init(const TQPixmap& pixmap, int hx, int hy) { (TQPixmap&)*this = pixmap; hotx = hx; hoty = hy; if( pixmap.mask() ) { TQImage i = mask()->convertToImage(); collision_mask = new TQImage(i); } else collision_mask = 0; } /*! Destroys the pixmap. */ TQCanvasPixmap::~TQCanvasPixmap() { delete collision_mask; } /*! \fn int TQCanvasPixmap::offsetX() const Returns the x-offset of the pixmap's hotspot. \sa setOffset() */ /*! \fn int TQCanvasPixmap::offsetY() const Returns the y-offset of the pixmap's hotspot. \sa setOffset() */ /*! \fn void TQCanvasPixmap::setOffset(int x, int y) Sets the offset of the pixmap's hotspot to (\a x, \a y). \warning Do not call this function if any TQCanvasSprites are currently showing this pixmap. */ /*! \class TQCanvasPixmapArray ntqcanvas.h \brief The TQCanvasPixmapArray class provides an array of TQCanvasPixmaps. \if defined(commercial) It is part of the TQt Enterprise Edition. \endif \module canvas \ingroup graphics \ingroup images This class is used by TQCanvasSprite to hold an array of pixmaps. It is used to implement animated sprites, i.e. images that change over time, with each pixmap in the array holding one frame. Depending on the constructor you use you can load multiple pixmaps into the array either from a directory (specifying a wildcard pattern for the files), or from a list of TQPixmaps. You can also read in a set of pixmaps after construction using readPixmaps(). Individual pixmaps can be set with setImage() and retrieved with image(). The number of pixmaps in the array is returned by count(). TQCanvasSprite uses an image's mask for collision detection. You can change this by reading in a separate set of image masks using readCollisionMasks(). */ /*! Constructs an invalid array (i.e. isValid() will return FALSE). You must call readPixmaps() before being able to use this TQCanvasPixmapArray. */ TQCanvasPixmapArray::TQCanvasPixmapArray() : framecount( 0 ), img( 0 ) { } #ifndef QT_NO_IMAGEIO /*! Constructs a TQCanvasPixmapArray from files. The \a fc parameter sets the number of frames to be loaded for this image. If \a fc is not 0, \a datafilenamepattern should contain "%1", e.g. "foo%1.png". The actual filenames are formed by replacing the %1 with four-digit integers from 0 to (fc - 1), e.g. foo0000.png, foo0001.png, foo0002.png, etc. If \a fc is 0, \a datafilenamepattern is asssumed to be a filename, and the image contained in this file will be loaded as the first (and only) frame. If \a datafilenamepattern does not exist, is not readable, isn't an image, or some other error occurs, the array ends up empty and isValid() returns FALSE. */ TQCanvasPixmapArray::TQCanvasPixmapArray( const TQString& datafilenamepattern, int fc ) : framecount( 0 ), img( 0 ) { readPixmaps(datafilenamepattern,fc); } #endif /*! \obsolete Use TQCanvasPixmapArray::TQCanvasPixmapArray( TQValueList, TQPointArray ) instead. Constructs a TQCanvasPixmapArray from the list of TQPixmaps \a list. The \a hotspots list has to be of the same size as \a list. */ TQCanvasPixmapArray::TQCanvasPixmapArray(TQPtrList list, TQPtrList hotspots) : framecount(list.count()), img(new TQCanvasPixmap*[list.count()]) { if (list.count() != hotspots.count()) { qWarning("TQCanvasPixmapArray: lists have different lengths"); reset(); img = 0; } else { list.first(); hotspots.first(); for (int i=0; i list, TQPointArray hotspots) : framecount((int)list.size()), img(new TQCanvasPixmap*[list.size()]) { bool have_hotspots = ( hotspots.size() != 0 ); if (have_hotspots && list.count() != hotspots.count()) { qWarning("TQCanvasPixmapArray: lists have different lengths"); reset(); img = 0; } else { TQValueList::iterator it; it = list.begin(); for (int i=0; i 1; if ( !arg ) framecount=1; for (int i=0; icollision_mask) img[i]->collision_mask = new TQImage(); img[i]->collision_mask->load( arg ? datafilenamepattern.arg(r) : datafilenamepattern); ok = ok && !img[i]->collision_mask->isNull() && img[i]->collision_mask->depth()==1; } else { img[i]=new TQCanvasPixmap( arg ? datafilenamepattern.arg(r) : datafilenamepattern); ok = ok && !img[i]->isNull(); } } if ( !ok ) { reset(); } return ok; } #endif /*! \obsolete Use isValid() instead. This returns FALSE if the array is valid, and TRUE if it is not. */ bool TQCanvasPixmapArray::operator!() { return img==0; } /*! Returns TRUE if the pixmap array is valid; otherwise returns FALSE. */ bool TQCanvasPixmapArray::isValid() const { return (img != 0); } /*! \fn TQCanvasPixmap* TQCanvasPixmapArray::image(int i) const Returns pixmap \a i in the array, if \a i is non-negative and less than than count(), and returns an unspecified value otherwise. */ // ### wouldn't it be better to put empty TQCanvasPixmaps in there instead of // initializing the additional elements in the array to 0? Lars /*! Replaces the pixmap at index \a i with pixmap \a p. The array takes ownership of \a p and will delete \a p when the array itself is deleted. If \a i is beyond the end of the array the array is extended to at least i+1 elements, with elements count() to i-1 being initialized to 0. */ void TQCanvasPixmapArray::setImage(int i, TQCanvasPixmap* p) { if ( i >= framecount ) { TQCanvasPixmap** newimg = new TQCanvasPixmap*[i+1]; memcpy(newimg, img, sizeof( TQCanvasPixmap * )*framecount); memset(newimg + framecount, 0, sizeof( TQCanvasPixmap * )*( i+1 - framecount ) ); framecount = i+1; delete [] img; img = newimg; } delete img[i]; img[i]=p; } /*! \fn uint TQCanvasPixmapArray::count() const Returns the number of pixmaps in the array. */ /*! Returns the x-coordinate of the current left edge of the sprite. (This may change as the sprite animates since different frames may have different left edges.) \sa rightEdge() bottomEdge() topEdge() */ int TQCanvasSprite::leftEdge() const { return int(x()) - image()->hotx; } /*! \overload Returns what the x-coordinate of the left edge of the sprite would be if the sprite (actually its hotspot) were moved to x-position \a nx. \sa rightEdge() bottomEdge() topEdge() */ int TQCanvasSprite::leftEdge(int nx) const { return nx - image()->hotx; } /*! Returns the y-coordinate of the top edge of the sprite. (This may change as the sprite animates since different frames may have different top edges.) \sa leftEdge() rightEdge() bottomEdge() */ int TQCanvasSprite::topEdge() const { return int(y()) - image()->hoty; } /*! \overload Returns what the y-coordinate of the top edge of the sprite would be if the sprite (actually its hotspot) were moved to y-position \a ny. \sa leftEdge() rightEdge() bottomEdge() */ int TQCanvasSprite::topEdge(int ny) const { return ny - image()->hoty; } /*! Returns the x-coordinate of the current right edge of the sprite. (This may change as the sprite animates since different frames may have different right edges.) \sa leftEdge() bottomEdge() topEdge() */ int TQCanvasSprite::rightEdge() const { return leftEdge() + image()->width()-1; } /*! \overload Returns what the x-coordinate of the right edge of the sprite would be if the sprite (actually its hotspot) were moved to x-position \a nx. \sa leftEdge() bottomEdge() topEdge() */ int TQCanvasSprite::rightEdge(int nx) const { return leftEdge(nx) + image()->width()-1; } /*! Returns the y-coordinate of the current bottom edge of the sprite. (This may change as the sprite animates since different frames may have different bottom edges.) \sa leftEdge() rightEdge() topEdge() */ int TQCanvasSprite::bottomEdge() const { return topEdge() + image()->height()-1; } /*! \overload Returns what the y-coordinate of the top edge of the sprite would be if the sprite (actually its hotspot) were moved to y-position \a ny. \sa leftEdge() rightEdge() topEdge() */ int TQCanvasSprite::bottomEdge(int ny) const { return topEdge(ny) + image()->height()-1; } /*! \fn TQCanvasPixmap* TQCanvasSprite::image() const Returns the current frame's image. \sa frame(), setFrame() */ /*! \fn TQCanvasPixmap* TQCanvasSprite::image(int f) const \overload Returns the image for frame \a f. Does not do any bounds checking on \a f. */ /*! Returns the image the sprite \e will have after advance(1) is called. By default this is the same as image(). */ TQCanvasPixmap* TQCanvasSprite::imageAdvanced() const { return image(); } /*! Returns the bounding rectangle for the image in the sprite's current frame. This assumes that the images are tightly cropped (i.e. do not have transparent pixels all along a side). */ TQRect TQCanvasSprite::boundingRect() const { return TQRect(leftEdge(), topEdge(), width(), height()); } /*! \internal Returns the chunks covered by the item. */ TQPointArray TQCanvasItem::chunks() const { TQPointArray r; int n=0; TQRect br = boundingRect(); if (isVisible() && canvas()) { int chunksize=canvas()->chunkSize(); br &= TQRect(0,0,canvas()->width(),canvas()->height()); if ( br.isValid() ) { r.resize((br.width()/chunksize+2)*(br.height()/chunksize+2)); for (int j=br.top()/chunksize; j<=br.bottom()/chunksize; j++) { for (int i=br.left()/chunksize; i<=br.right()/chunksize; i++) { r[n++] = TQPoint(i,j); } } } } r.resize(n); return r; } /*! \internal Add the sprite to the chunks in its TQCanvas which it overlaps. */ void TQCanvasSprite::addToChunks() { if (isVisible() && canvas()) { int chunksize=canvas()->chunkSize(); for (int j=topEdge()/chunksize; j<=bottomEdge()/chunksize; j++) { for (int i=leftEdge()/chunksize; i<=rightEdge()/chunksize; i++) { canvas()->addItemToChunk(this,i,j); } } } } /*! \internal Remove the sprite from the chunks in its TQCanvas which it overlaps. \sa addToChunks() */ void TQCanvasSprite::removeFromChunks() { if (isVisible() && canvas()) { int chunksize=canvas()->chunkSize(); for (int j=topEdge()/chunksize; j<=bottomEdge()/chunksize; j++) { for (int i=leftEdge()/chunksize; i<=rightEdge()/chunksize; i++) { canvas()->removeItemFromChunk(this,i,j); } } } } /*! The width of the sprite for the current frame's image. \sa frame() */ //### mark: Why don't we have width(int) and height(int) to be //consistent with leftEdge() and leftEdge(int)? int TQCanvasSprite::width() const { return image()->width(); } /*! The height of the sprite for the current frame's image. \sa frame() */ int TQCanvasSprite::height() const { return image()->height(); } /*! Draws the current frame's image at the sprite's current position on painter \a painter. */ void TQCanvasSprite::draw(TQPainter& painter) { painter.drawPixmap(leftEdge(),topEdge(),*image()); } /*! \class TQCanvasView ntqcanvas.h \brief The TQCanvasView class provides an on-screen view of a TQCanvas. \if defined(commercial) It is part of the TQt Enterprise Edition. \endif \module canvas \ingroup graphics \ingroup images A TQCanvasView is widget which provides a view of a TQCanvas. If you want users to be able to interact with a canvas view, subclass TQCanvasView. You might then reimplement TQScrollView::contentsMousePressEvent(). For example, assuming no transformation matrix is set: \code void MyCanvasView::contentsMousePressEvent( TQMouseEvent* e ) { TQCanvasItemList l = canvas()->collisions(e->pos()); for (TQCanvasItemList::Iterator it=l.begin(); it!=l.end(); ++it) { if ( (*it)->rtti() == TQCanvasRectangle::RTTI ) qDebug("A TQCanvasRectangle lies somewhere at this point"); } } \endcode The canvas view shows canvas canvas(); this can be changed using setCanvas(). A transformation matrix can be used to transform the view of the canvas in various ways, for example, zooming in or out or rotating. For example: \code TQWMatrix wm; wm.scale( 2, 2 ); // Zooms in by 2 times wm.rotate( 90 ); // Rotates 90 degrees counter clockwise // around the origin. wm.translate( 0, -canvas->height() ); // moves the canvas down so what was visible // before is still visible. myCanvasView->setWorldMatrix( wm ); \endcode Use setWorldMatrix() to set the canvas view's world matrix: you must ensure that the world matrix is invertible. The current world matrix is retrievable with worldMatrix(), and its inversion is retrievable with inverseWorldMatrix(). Example: The following code finds the part of the canvas that is visible in this view, i.e. the bounding rectangle of the view in canvas coordinates. \code TQRect rc = TQRect( myCanvasView->contentsX(), myCanvasView->contentsY(), myCanvasView->visibleWidth(), myCanvasView->visibleHeight() ); TQRect canvasRect = myCanvasView->inverseWorldMatrix().mapRect(rc); \endcode \sa TQWMatrix TQPainter::setWorldMatrix() */ /*! Constructs a TQCanvasView with parent \a parent, and name \a name, using the widget flags \a f. The canvas view is not associated with a canvas, so you must to call setCanvas() to view a canvas. */ TQCanvasView::TQCanvasView(TQWidget* parent, const char* name, WFlags f) : TQScrollView(parent,name,f|WResizeNoErase|WStaticContents) { d = new TQCanvasViewData; viewing = 0; setCanvas(0); connect(this,SIGNAL(contentsMoving(int,int)),this,SLOT(cMoving(int,int))); } /*! \overload Constructs a TQCanvasView which views canvas \a canvas, with parent \a parent, and name \a name, using the widget flags \a f. */ TQCanvasView::TQCanvasView(TQCanvas* canvas, TQWidget* parent, const char* name, WFlags f) : TQScrollView(parent,name,f|WResizeNoErase|WStaticContents) { d = new TQCanvasViewData; viewing = 0; setCanvas(canvas); connect(this,SIGNAL(contentsMoving(int,int)),this,SLOT(cMoving(int,int))); } /*! Destroys the canvas view. The associated canvas is \e not deleted. */ TQCanvasView::~TQCanvasView() { delete d; d = 0; setCanvas(0); } /*! \fn TQCanvas* TQCanvasView::canvas() const Returns a pointer to the canvas which the TQCanvasView is currently showing. */ /*! Sets the canvas that the TQCanvasView is showing to the canvas \a canvas. */ void TQCanvasView::setCanvas(TQCanvas* canvas) { if (viewing) { disconnect(viewing); viewing->removeView(this); } viewing=canvas; if (viewing) { connect(viewing,SIGNAL(resized()), this, SLOT(updateContentsSize())); viewing->addView(this); } if ( d ) // called by d'tor updateContentsSize(); } #ifndef QT_NO_TRANSFORMATIONS /*! Returns a reference to the canvas view's current transformation matrix. \sa setWorldMatrix() inverseWorldMatrix() */ const TQWMatrix &TQCanvasView::worldMatrix() const { return d->xform; } /*! Returns a reference to the inverse of the canvas view's current transformation matrix. \sa setWorldMatrix() worldMatrix() */ const TQWMatrix &TQCanvasView::inverseWorldMatrix() const { return d->ixform; } /*! Sets the transformation matrix of the TQCanvasView to \a wm. The matrix must be invertible (i.e. if you create a world matrix that zooms out by 2 times, then the inverse of this matrix is one that will zoom in by 2 times). When you use this, you should note that the performance of the TQCanvasView will decrease considerably. Returns FALSE if \a wm is not invertable; otherwise returns TRUE. \sa worldMatrix() inverseWorldMatrix() TQWMatrix::isInvertible() */ bool TQCanvasView::setWorldMatrix( const TQWMatrix & wm ) { bool ok = wm.isInvertible(); if ( ok ) { d->xform = wm; d->ixform = wm.invert(); updateContentsSize(); viewport()->update(); } return ok; } #endif void TQCanvasView::updateContentsSize() { if ( viewing ) { TQRect br; #ifndef QT_NO_TRANSFORMATIONS br = d->xform.map(TQRect(0,0,viewing->width(),viewing->height())); #else br = TQRect(0,0,viewing->width(),viewing->height()); #endif if ( br.width() < contentsWidth() ) { TQRect r(contentsToViewport(TQPoint(br.width(),0)), TQSize(contentsWidth()-br.width(),contentsHeight())); viewport()->erase(r); } if ( br.height() < contentsHeight() ) { TQRect r(contentsToViewport(TQPoint(0,br.height())), TQSize(contentsWidth(),contentsHeight()-br.height())); viewport()->erase(r); } resizeContents(br.width(),br.height()); } else { viewport()->erase(); resizeContents(1,1); } } void TQCanvasView::cMoving(int x, int y) { // A little kludge to smooth up repaints when scrolling int dx = x - contentsX(); int dy = y - contentsY(); d->repaint_from_moving = TQABS(dx) < width()/8 && TQABS(dy) < height()/8; } /*! Repaints part of the TQCanvas that the canvas view is showing starting at \a cx by \a cy, with a width of \a cw and a height of \a ch using the painter \a p. \warning When double buffering is enabled, drawContents() will not respect the current settings of the painter when setting up the painter for the double buffer (e.g., viewport() and window()). Also, be aware that TQCanvas::update() bypasses drawContents(), which means any reimplementation of drawContents() is not called. \sa TQCanvas::setDoubleBuffering() */ void TQCanvasView::drawContents(TQPainter *p, int cx, int cy, int cw, int ch) { TQRect r(cx,cy,cw,ch); if (viewing) { //viewing->drawViewArea(this,p,r,TRUE); viewing->drawViewArea(this,p,r,!d->repaint_from_moving); d->repaint_from_moving = FALSE; } else { p->eraseRect(r); } } /*! \reimp \internal (Implemented to get rid of a compiler warning.) */ void TQCanvasView::drawContents( TQPainter * ) { } /*! Suggests a size sufficient to view the entire canvas. */ TQSize TQCanvasView::sizeHint() const { if ( !canvas() ) return TQScrollView::sizeHint(); // should maybe take transformations into account return ( canvas()->size() + 2 * TQSize(frameWidth(), frameWidth()) ) .boundedTo( 3 * TQApplication::desktop()->size() / 4 ); } // ### TQt 4.0 customer request: operate on doubles rather than int. // ### I know, almost impossible due to the use of TQRegion etc. /*! \class TQCanvasPolygonalItem ntqcanvas.h \brief The TQCanvasPolygonalItem class provides a polygonal canvas item on a TQCanvas. \if defined(commercial) It is part of the TQt Enterprise Edition. \endif \module canvas \ingroup graphics \ingroup images The mostly rectangular classes, such as TQCanvasSprite and TQCanvasText, use the object's bounding rectangle for movement, repainting and collision calculations. For most other items, the bounding rectangle can be far too large -- a diagonal line being the worst case, and there are many other cases which are also bad. TQCanvasPolygonalItem provides polygon-based bounding rectangle handling, etc., which is much faster for non-rectangular items. Derived classes should try to define as small an area as possible to maximize efficiency, but the polygon must \e definitely be contained completely within the polygonal area. Calculating the exact requirements is usually difficult, but if you allow a small overestimate it can be easy and tquick, while still getting almost all of TQCanvasPolygonalItem's speed. Note that all subclasses \e must call hide() in their destructor since hide() needs to be able to access areaPoints(). Normally, TQCanvasPolygonalItem uses the odd-even algorithm for determining whether an object intersects this object. You can change this to the winding algorithm using setWinding(). The bounding rectangle is available using boundingRect(). The points bounding the polygonal item are retrieved with areaPoints(). Use areaPointsAdvanced() to retrieve the bounding points the polygonal item \e will have after TQCanvasItem::advance(1) has been called. If the shape of the polygonal item is about to change while the item is visible, call invalidate() before updating with a different result from \l areaPoints(). By default, TQCanvasPolygonalItem objects have a black pen and no brush (the default TQPen and TQBrush constructors). You can change this with setPen() and setBrush(), but note that some TQCanvasPolygonalItem subclasses only use the brush, ignoring the pen setting. The polygonal item can be drawn on a painter with draw(). Subclasses must reimplement drawShape() to draw themselves. Like any other canvas item polygonal items can be moved with TQCanvasItem::move() and TQCanvasItem::moveBy(), or by setting coordinates with TQCanvasItem::setX(), TQCanvasItem::setY() and TQCanvasItem::setZ(). */ /* Since most polygonal items don't have a pen, the default is NoPen and a black brush. */ static const TQPen& defaultPolygonPen() { static TQPen* dp=0; if ( !dp ) dp = new TQPen; return *dp; } static const TQBrush& defaultPolygonBrush() { static TQBrush* db=0; if ( !db ) db = new TQBrush; return *db; } /*! Constructs a TQCanvasPolygonalItem on the canvas \a canvas. */ TQCanvasPolygonalItem::TQCanvasPolygonalItem(TQCanvas* canvas) : TQCanvasItem(canvas), br(defaultPolygonBrush()), pn(defaultPolygonPen()) { wind=0; } /*! Note that all subclasses \e must call hide() in their destructor since hide() needs to be able to access areaPoints(). */ TQCanvasPolygonalItem::~TQCanvasPolygonalItem() { } /*! Returns TRUE if the polygonal item uses the winding algorithm to determine the "inside" of the polygon. Returns FALSE if it uses the odd-even algorithm. The default is to use the odd-even algorithm. \sa setWinding() */ bool TQCanvasPolygonalItem::winding() const { return wind; } /*! If \a enable is TRUE, the polygonal item will use the winding algorithm to determine the "inside" of the polygon; otherwise the odd-even algorithm will be used. The default is to use the odd-even algorithm. \sa winding() */ void TQCanvasPolygonalItem::setWinding(bool enable) { wind = enable; } /*! Invalidates all information about the area covered by the canvas item. The item will be updated automatically on the next call that changes the item's status, for example, move() or update(). Call this function if you are going to change the shape of the item (as returned by areaPoints()) while the item is visible. */ void TQCanvasPolygonalItem::invalidate() { val = (uint)FALSE; removeFromChunks(); } /*! \fn TQCanvasPolygonalItem::isValid() const Returns TRUE if the polygonal item's area information has not been invalidated; otherwise returns FALSE. \sa invalidate() */ /*! Returns the points the polygonal item \e will have after TQCanvasItem::advance(1) is called, i.e. what the points are when advanced by the current xVelocity() and yVelocity(). */ TQPointArray TQCanvasPolygonalItem::areaPointsAdvanced() const { int dx = int(x()+xVelocity())-int(x()); int dy = int(y()+yVelocity())-int(y()); TQPointArray r = areaPoints(); r.detach(); // Explicit sharing is stupid. if ( dx || dy ) r.translate(dx,dy); return r; } //#define TQCANVAS_POLYGONS_DEBUG #ifdef TQCANVAS_POLYGONS_DEBUG static TQWidget* dbg_wid=0; static TQPainter* dbg_ptr=0; #endif class TQPolygonalProcessor { public: TQPolygonalProcessor(TQCanvas* c, const TQPointArray& pa) : canvas(c) { TQRect pixelbounds = pa.boundingRect(); int cs = canvas->chunkSize(); TQRect canvasbounds = pixelbounds.intersect(canvas->rect()); bounds.setLeft(canvasbounds.left()/cs); bounds.setRight(canvasbounds.right()/cs); bounds.setTop(canvasbounds.top()/cs); bounds.setBottom(canvasbounds.bottom()/cs); bitmap = TQImage(bounds.width() + 1, bounds.height(), 1, 2, TQImage::LittleEndian); pnt = 0; bitmap.fill(0); #ifdef TQCANVAS_POLYGONS_DEBUG dbg_start(); #endif } inline void add(int x, int y) { if ( pnt >= (int)result.size() ) { result.resize(pnt*2+10); } result[pnt++] = TQPoint(x+bounds.x(),y+bounds.y()); #ifdef TQCANVAS_POLYGONS_DEBUG if ( dbg_ptr ) { int cs = canvas->chunkSize(); TQRect r(x*cs+bounds.x()*cs,y*cs+bounds.y()*cs,cs-1,cs-1); dbg_ptr->setPen(TQt::blue); dbg_ptr->drawRect(r); } #endif } inline void addBits(int x1, int x2, uchar newbits, int xo, int yo) { for (int i=x1; i<=x2; i++) if ( newbits & (1<resize(800,600); dbg_wid->show(); dbg_ptr = new TQPainter(dbg_wid); dbg_ptr->setBrush(TQt::NoBrush); } dbg_ptr->fillRect(dbg_wid->rect(),TQt::white); } #endif void doSpans(int n, TQPoint* pt, int* w) { int cs = canvas->chunkSize(); for (int j=0; j= bitmap.height() || y < 0) continue; uchar* l = bitmap.scanLine(y); int x = pt[j].x(); int x1 = x/cs-bounds.x(); if (x1 > bounds.width()) continue; x1 = TQMAX(0,x1); int x2 = (x+w[j])/cs-bounds.x(); if (x2 < 0) continue; x2 = TQMIN(bounds.width(), x2); int x1q = x1/8; int x1r = x1%8; int x2q = x2/8; int x2r = x2%8; #ifdef TQCANVAS_POLYGONS_DEBUG if ( dbg_ptr ) dbg_ptr->setPen(TQt::yellow); #endif if ( x1q == x2q ) { uchar newbits = (~l[x1q]) & (((2<<(x2r-x1r))-1)<setPen(TQt::darkGreen); #endif addBits(x1r,x2r,newbits,x1q*8,y); l[x1q] |= newbits; } } else { #ifdef TQCANVAS_POLYGONS_DEBUG if ( dbg_ptr ) dbg_ptr->setPen(TQt::blue); #endif uchar newbits1 = (~l[x1q]) & (0xff<setPen(TQt::green); #endif addBits(x1r,7,newbits1,x1q*8,y); l[x1q] |= newbits1; } for (int i=x1q+1; i>(7-x2r)); if ( newbits2 ) { #ifdef TQCANVAS_POLYGONS_DEBUG if ( dbg_ptr ) dbg_ptr->setPen(TQt::red); #endif addBits(0,x2r,newbits2,x2q*8,y); l[x2q] |= newbits2; } } #ifdef TQCANVAS_POLYGONS_DEBUG if ( dbg_ptr ) { dbg_ptr->drawLine(pt[j],pt[j]+TQPoint(w[j],0)); } #endif } result.resize(pnt); } int pnt; TQPointArray result; TQCanvas* canvas; TQRect bounds; TQImage bitmap; }; TQPointArray TQCanvasPolygonalItem::chunks() const { TQPointArray pa = areaPoints(); if ( !pa.size() ) { pa.detach(); // Explicit sharing is stupid. return pa; } TQPolygonalProcessor processor(canvas(),pa); scanPolygon(pa, wind, processor); return processor.result; } /*! Simply calls TQCanvasItem::chunks(). */ TQPointArray TQCanvasRectangle::chunks() const { // No need to do a polygon scan! return TQCanvasItem::chunks(); } /*! Returns the bounding rectangle of the polygonal item, based on areaPoints(). */ TQRect TQCanvasPolygonalItem::boundingRect() const { return areaPoints().boundingRect(); } /*! Reimplemented from TQCanvasItem, this draws the polygonal item by setting the pen and brush for the item on the painter \a p and calling drawShape(). */ void TQCanvasPolygonalItem::draw(TQPainter & p) { p.setPen(pn); p.setBrush(br); drawShape(p); } /*! \fn void TQCanvasPolygonalItem::drawShape(TQPainter & p) Subclasses must reimplement this function to draw their shape. The pen and brush of \a p are already set to pen() and brush() prior to calling this function. \warning When you reimplement this function, make sure that you leave the painter in the same state as you found it. For example, if you start by calling TQPainter::translate(50, 50), end your code by calling TQPainter::translate(-50, -50). Be also aware that the painter might already have some transformations set (i.e., don't call TQPainter::resetXForm() when you're done). \sa draw() */ /*! \fn TQPen TQCanvasPolygonalItem::pen() const Returns the TQPen used to draw the outline of the item, if any. \sa setPen() */ /*! \fn TQBrush TQCanvasPolygonalItem::brush() const Returns the TQBrush used to fill the item, if filled. \sa setBrush() */ /*! Sets the TQPen used when drawing the item to the pen \a p. Note that many TQCanvasPolygonalItems do not use the pen value. \sa setBrush(), pen(), drawShape() */ void TQCanvasPolygonalItem::setPen(TQPen p) { if ( pn != p ) { removeFromChunks(); pn = p; addToChunks(); } } /*! Sets the TQBrush used when drawing the polygonal item to the brush \a b. \sa setPen(), brush(), drawShape() */ void TQCanvasPolygonalItem::setBrush(TQBrush b) { if ( br != b) { br = b; changeChunks(); } } /*! \class TQCanvasPolygon ntqcanvas.h \brief The TQCanvasPolygon class provides a polygon on a TQCanvas. \if defined(commercial) It is part of the TQt Enterprise Edition. \endif \module canvas \ingroup graphics \ingroup images Paints a polygon with a TQBrush. The polygon's points can be set in the constructor or set or changed later using setPoints(). Use points() to retrieve the points, or areaPoints() to retrieve the points relative to the canvas's origin. The polygon can be drawn on a painter with drawShape(). Like any other canvas item polygons can be moved with TQCanvasItem::move() and TQCanvasItem::moveBy(), or by setting coordinates with TQCanvasItem::setX(), TQCanvasItem::setY() and TQCanvasItem::setZ(). Note: TQCanvasPolygon does not use the pen. */ /*! Constructs a point-less polygon on the canvas \a canvas. You should call setPoints() before using it further. */ TQCanvasPolygon::TQCanvasPolygon(TQCanvas* canvas) : TQCanvasPolygonalItem(canvas) { } /*! Destroys the polygon. */ TQCanvasPolygon::~TQCanvasPolygon() { hide(); } /*! Draws the polygon using the painter \a p. Note that TQCanvasPolygon does not support an outline (the pen is always NoPen). */ void TQCanvasPolygon::drawShape(TQPainter & p) { // ### why can't we draw outlines? We could use drawPolyline for it. Lars // ### see other message. Warwick p.setPen(NoPen); // since TQRegion(TQPointArray) excludes outline :-( )-: p.drawPolygon(poly); } /*! Sets the points of the polygon to be \a pa. These points will have their x and y coordinates automatically translated by x(), y() as the polygon is moved. */ void TQCanvasPolygon::setPoints(TQPointArray pa) { removeFromChunks(); poly = pa; poly.detach(); // Explicit sharing is stupid. poly.translate((int)x(),(int)y()); addToChunks(); } /*! \reimp */ void TQCanvasPolygon::moveBy(double dx, double dy) { // Note: does NOT call TQCanvasPolygonalItem::moveBy(), since that // only does half this work. // int idx = int(x()+dx)-int(x()); int idy = int(y()+dy)-int(y()); if ( idx || idy ) { removeFromChunks(); poly.translate(idx,idy); } myx+=dx; myy+=dy; if ( idx || idy ) { addToChunks(); } } /*! \class TQCanvasSpline ntqcanvas.h \brief The TQCanvasSpline class provides multi-bezier splines on a TQCanvas. \if defined(commercial) It is part of the TQt Enterprise Edition. \endif \module canvas \ingroup graphics \ingroup images A TQCanvasSpline is a sequence of 4-point bezier curves joined together to make a curved shape. You set the control points of the spline with setControlPoints(). If the bezier is closed(), then the first control point will be re-used as the last control point. Therefore, a closed bezier must have a multiple of 3 control points and an open bezier must have one extra point. The beziers are not necessarily joined "smoothly". To ensure this, set control points appropriately (general reference texts about beziers will explain this in detail). Like any other canvas item splines can be moved with TQCanvasItem::move() and TQCanvasItem::moveBy(), or by setting coordinates with TQCanvasItem::setX(), TQCanvasItem::setY() and TQCanvasItem::setZ(). */ /*! Create a spline with no control points on the canvas \a canvas. \sa setControlPoints() */ TQCanvasSpline::TQCanvasSpline(TQCanvas* canvas) : TQCanvasPolygon(canvas), cl(TRUE) { } /*! Destroy the spline. */ TQCanvasSpline::~TQCanvasSpline() { } // ### shouldn't we handle errors more gracefully than with an assert? Lars // ### no, since it's a programming error. Warwick /*! Set the spline control points to \a ctrl. If \a close is TRUE, then the first point in \a ctrl will be re-used as the last point, and the number of control points must be a multiple of 3. If \a close is FALSE, one additional control point is required, and the number of control points must be one of (4, 7, 10, 13, ...). If the number of control points doesn't meet the above conditions, the number of points will be truncated to the largest number of points that do meet the requirement. */ void TQCanvasSpline::setControlPoints(TQPointArray ctrl, bool close) { if ( (int)ctrl.count() % 3 != (close ? 0 : 1) ) { qWarning( "TQCanvasSpline::setControlPoints(): Number of points doesn't fit." ); int numCurves = (ctrl.count() - (close ? 0 : 1 ))/ 3; ctrl.resize( numCurves*3 + ( close ? 0 : 1 ) ); } cl = close; bez = ctrl; recalcPoly(); } /*! Returns the current set of control points. \sa setControlPoints(), closed() */ TQPointArray TQCanvasSpline::controlPoints() const { return bez; } /*! Returns TRUE if the control points are a closed set; otherwise returns FALSE. */ bool TQCanvasSpline::closed() const { return cl; } void TQCanvasSpline::recalcPoly() { TQPtrList segs; segs.setAutoDelete(TRUE); int n=0; for (int i=0; i<(int)bez.count()-1; i+=3) { TQPointArray ctrl(4); ctrl[0] = bez[i+0]; ctrl[1] = bez[i+1]; ctrl[2] = bez[i+2]; if ( cl ) ctrl[3] = bez[(i+3)%(int)bez.count()]; else ctrl[3] = bez[i+3]; TQPointArray *seg = new TQPointArray(ctrl.cubicBezier()); n += seg->count()-1; segs.append(seg); } TQPointArray p(n+1); n=0; for (TQPointArray* seg = segs.first(); seg; seg = segs.next()) { for (int i=0; i<(int)seg->count()-1; i++) p[n++] = seg->point(i); if ( n == (int)p.count()-1 ) p[n] = seg->point(seg->count()-1); } TQCanvasPolygon::setPoints(p); } /*! \fn TQPointArray TQCanvasPolygonalItem::areaPoints() const This function must be reimplemented by subclasses. It \e must return the points bounding (i.e. outside and not touching) the shape or drawing errors will occur. */ /*! \fn TQPointArray TQCanvasPolygon::points() const Returns the vertices of the polygon, not translated by the position. \sa setPoints(), areaPoints() */ TQPointArray TQCanvasPolygon::points() const { TQPointArray pa = areaPoints(); pa.translate(int(-x()),int(-y())); return pa; } /*! Returns the vertices of the polygon translated by the polygon's current x(), y() position, i.e. relative to the canvas's origin. \sa setPoints(), points() */ TQPointArray TQCanvasPolygon::areaPoints() const { return poly.copy(); } // ### mark: Why don't we offer a constructor that lets the user set the // points -- that way for some uses just the constructor call would be // required? /*! \class TQCanvasLine ntqcanvas.h \brief The TQCanvasLine class provides a line on a TQCanvas. \if defined(commercial) It is part of the TQt Enterprise Edition. \endif \module canvas \ingroup graphics \ingroup images The line inherits functionality from TQCanvasPolygonalItem, for example the setPen() function. The start and end points of the line are set with setPoints(). Like any other canvas item lines can be moved with TQCanvasItem::move() and TQCanvasItem::moveBy(), or by setting coordinates with TQCanvasItem::setX(), TQCanvasItem::setY() and TQCanvasItem::setZ(). */ /*! Constructs a line from (0,0) to (0,0) on \a canvas. \sa setPoints(). */ TQCanvasLine::TQCanvasLine(TQCanvas* canvas) : TQCanvasPolygonalItem(canvas) { x1 = y1 = x2 = y2 = 0; } /*! Destroys the line. */ TQCanvasLine::~TQCanvasLine() { hide(); } /*! \reimp */ void TQCanvasLine::setPen(TQPen p) { TQCanvasPolygonalItem::setPen(p); } /*! \fn TQPoint TQCanvasLine::startPoint () const Returns the start point of the line. \sa setPoints(), endPoint() */ /*! \fn TQPoint TQCanvasLine::endPoint () const Returns the end point of the line. \sa setPoints(), startPoint() */ /*! Sets the line's start point to (\a xa, \a ya) and its end point to (\a xb, \a yb). */ void TQCanvasLine::setPoints(int xa, int ya, int xb, int yb) { if ( x1 != xa || x2 != xb || y1 != ya || y2 != yb ) { removeFromChunks(); x1 = xa; y1 = ya; x2 = xb; y2 = yb; addToChunks(); } } /*! \reimp */ void TQCanvasLine::drawShape(TQPainter &p) { p.drawLine((int)(x()+x1), (int)(y()+y1), (int)(x()+x2), (int)(y()+y2)); } /*! \reimp Note that the area defined by the line is somewhat thicker than the line that is actually drawn. */ TQPointArray TQCanvasLine::areaPoints() const { TQPointArray p(4); int xi = int(x()); int yi = int(y()); int pw = pen().width(); int dx = TQABS(x1-x2); int dy = TQABS(y1-y2); pw = pw*4/3+2; // approx pw*sqrt(2) int px = x1 dy ? (dx*2/dy <= 2) : (dy*2/dx <= 2)) ) { // steep if ( px == py ) { p[0] = TQPoint(x1+xi ,y1+yi+py); p[1] = TQPoint(x2+xi-px,y2+yi ); p[2] = TQPoint(x2+xi ,y2+yi-py); p[3] = TQPoint(x1+xi+px,y1+yi ); } else { p[0] = TQPoint(x1+xi+px,y1+yi ); p[1] = TQPoint(x2+xi ,y2+yi-py); p[2] = TQPoint(x2+xi-px,y2+yi ); p[3] = TQPoint(x1+xi ,y1+yi+py); } } else if ( dx > dy ) { // horizontal p[0] = TQPoint(x1+xi+px,y1+yi+py); p[1] = TQPoint(x2+xi-px,y2+yi+py); p[2] = TQPoint(x2+xi-px,y2+yi-py); p[3] = TQPoint(x1+xi+px,y1+yi-py); } else { // vertical p[0] = TQPoint(x1+xi+px,y1+yi+py); p[1] = TQPoint(x2+xi+px,y2+yi-py); p[2] = TQPoint(x2+xi-px,y2+yi-py); p[3] = TQPoint(x1+xi-px,y1+yi+py); } return p; } /*! \reimp */ void TQCanvasLine::moveBy(double dx, double dy) { TQCanvasPolygonalItem::moveBy(dx, dy); } /*! \class TQCanvasRectangle ntqcanvas.h \brief The TQCanvasRectangle class provides a rectangle on a TQCanvas. \if defined(commercial) It is part of the TQt Enterprise Edition. \endif \module canvas \ingroup graphics \ingroup images This item paints a single rectangle which may have any pen() and brush(), but may not be tilted/rotated. For rotated rectangles, use TQCanvasPolygon. The rectangle's size and initial position can be set in the constructor. The size can be set or changed later using setSize(). Use height() and width() to retrieve the rectangle's dimensions. The rectangle can be drawn on a painter with drawShape(). Like any other canvas item rectangles can be moved with TQCanvasItem::move() and TQCanvasItem::moveBy(), or by setting coordinates with TQCanvasItem::setX(), TQCanvasItem::setY() and TQCanvasItem::setZ(). */ /*! Constructs a rectangle at position (0,0) with both width and height set to 32 pixels on \a canvas. */ TQCanvasRectangle::TQCanvasRectangle(TQCanvas* canvas) : TQCanvasPolygonalItem(canvas), w(32), h(32) { } /*! Constructs a rectangle positioned and sized by \a r on \a canvas. */ TQCanvasRectangle::TQCanvasRectangle(const TQRect& r, TQCanvas* canvas) : TQCanvasPolygonalItem(canvas), w(r.width()), h(r.height()) { move(r.x(),r.y()); } /*! Constructs a rectangle at position (\a x, \a y) and size \a width by \a height, on \a canvas. */ TQCanvasRectangle::TQCanvasRectangle(int x, int y, int width, int height, TQCanvas* canvas) : TQCanvasPolygonalItem(canvas), w(width), h(height) { move(x,y); } /*! Destroys the rectangle. */ TQCanvasRectangle::~TQCanvasRectangle() { hide(); } /*! Returns the width of the rectangle. */ int TQCanvasRectangle::width() const { return w; } /*! Returns the height of the rectangle. */ int TQCanvasRectangle::height() const { return h; } /*! Sets the \a width and \a height of the rectangle. */ void TQCanvasRectangle::setSize(int width, int height) { if ( w != width || h != height ) { removeFromChunks(); w = width; h = height; addToChunks(); } } /*! \fn TQSize TQCanvasRectangle::size() const Returns the width() and height() of the rectangle. \sa rect(), setSize() */ /*! \fn TQRect TQCanvasRectangle::rect() const Returns the integer-converted x(), y() position and size() of the rectangle as a TQRect. */ /*! \reimp */ TQPointArray TQCanvasRectangle::areaPoints() const { TQPointArray pa(4); int pw = (pen().width()+1)/2; if ( pw < 1 ) pw = 1; if ( pen() == NoPen ) pw = 0; pa[0] = TQPoint((int)x()-pw,(int)y()-pw); pa[1] = pa[0] + TQPoint(w+pw*2,0); pa[2] = pa[1] + TQPoint(0,h+pw*2); pa[3] = pa[0] + TQPoint(0,h+pw*2); return pa; } /*! Draws the rectangle on painter \a p. */ void TQCanvasRectangle::drawShape(TQPainter & p) { p.drawRect((int)x(), (int)y(), w, h); } /*! \class TQCanvasEllipse ntqcanvas.h \brief The TQCanvasEllipse class provides an ellipse or ellipse segment on a TQCanvas. \if defined(commercial) It is part of the TQt Enterprise Edition. \endif \module canvas \ingroup graphics \ingroup images A canvas item that paints an ellipse or ellipse segment with a TQBrush. The ellipse's height, width, start angle and angle length can be set at construction time. The size can be changed at runtime with setSize(), and the angles can be changed (if you're displaying an ellipse segment rather than a whole ellipse) with setAngles(). Note that angles are specified in 16ths of a degree. \target anglediagram \img qcanvasellipse.png Ellipse If a start angle and length angle are set then an ellipse segment will be drawn. The start angle is the angle that goes from zero in a counter-clockwise direction (shown in green in the diagram). The length angle is the angle from the start angle in a counter-clockwise direction (shown in blue in the diagram). The blue segment is the segment of the ellipse that would be drawn. If no start angle and length angle are specified the entire ellipse is drawn. The ellipse can be drawn on a painter with drawShape(). Like any other canvas item ellipses can be moved with move() and moveBy(), or by setting coordinates with setX(), setY() and setZ(). Note: TQCanvasEllipse does not use the pen. */ /*! Constructs a 32x32 ellipse, centered at (0, 0) on \a canvas. */ TQCanvasEllipse::TQCanvasEllipse(TQCanvas* canvas) : TQCanvasPolygonalItem(canvas), w(32), h(32), a1(0), a2(360*16) { } /*! Constructs a \a width by \a height pixel ellipse, centered at (0, 0) on \a canvas. */ TQCanvasEllipse::TQCanvasEllipse(int width, int height, TQCanvas* canvas) : TQCanvasPolygonalItem(canvas), w(width),h(height), a1(0),a2(360*16) { } // ### add a constructor taking degrees in float. 1/16 degrees is stupid. Lars // ### it's how TQPainter does it, so TQCanvas does too for consistency. If it's // ### a good idea, it should be added to TQPainter, not just to TQCanvas. Warwick /*! Constructs a \a width by \a height pixel ellipse, centered at (0, 0) on \a canvas. Only a segment of the ellipse is drawn, starting at angle \a startangle, and extending for angle \a angle (the angle length). Note that angles are specified in 1/16ths of a degree. */ TQCanvasEllipse::TQCanvasEllipse(int width, int height, int startangle, int angle, TQCanvas* canvas) : TQCanvasPolygonalItem(canvas), w(width),h(height), a1(startangle),a2(angle) { } /*! Destroys the ellipse. */ TQCanvasEllipse::~TQCanvasEllipse() { hide(); } /*! Returns the width of the ellipse. */ int TQCanvasEllipse::width() const { return w; } /*! Returns the height of the ellipse. */ int TQCanvasEllipse::height() const { return h; } /*! Sets the \a width and \a height of the ellipse. */ void TQCanvasEllipse::setSize(int width, int height) { if ( w != width || h != height ) { removeFromChunks(); w = width; h = height; addToChunks(); } } /*! \fn int TQCanvasEllipse::angleStart() const Returns the start angle in 16ths of a degree. Initially this will be 0. \sa setAngles(), angleLength() */ /*! \fn int TQCanvasEllipse::angleLength() const Returns the length angle (the extent of the ellipse segment) in 16ths of a degree. Initially this will be 360 * 16 (a complete ellipse). \sa setAngles(), angleStart() */ /*! Sets the angles for the ellipse. The start angle is \a start and the extent of the segment is \a length (the angle length) from the \a start. The angles are specified in 16ths of a degree. By default the ellipse will start at 0 and have an angle length of 360 * 16 (a complete ellipse). \sa angleStart(), angleLength() */ void TQCanvasEllipse::setAngles(int start, int length) { if ( a1 != start || a2 != length ) { removeFromChunks(); a1 = start; a2 = length; addToChunks(); } } /*! \reimp */ TQPointArray TQCanvasEllipse::areaPoints() const { TQPointArray r; // makeArc at 0,0, then translate so that fixed point math doesn't overflow r.makeArc(int(x()-w/2.0+0.5)-1, int(y()-h/2.0+0.5)-1, w+3, h+3, a1, a2); r.resize(r.size()+1); r.setPoint(r.size()-1,int(x()),int(y())); return r; } // ### support outlines! Lars // ### TQRegion doesn't, so we cannot (try it). Warwick /*! Draws the ellipse, centered at x(), y() using the painter \a p. Note that TQCanvasEllipse does not support an outline (the pen is always NoPen). */ void TQCanvasEllipse::drawShape(TQPainter & p) { p.setPen(NoPen); // since TQRegion(TQPointArray) excludes outline :-( )-: if ( !a1 && a2 == 360*16 ) { p.drawEllipse(int(x()-w/2.0+0.5), int(y()-h/2.0+0.5), w, h); } else { p.drawPie(int(x()-w/2.0+0.5), int(y()-h/2.0+0.5), w, h, a1, a2); } } /*! \class TQCanvasText ntqcanvas.h \brief The TQCanvasText class provides a text object on a TQCanvas. \if defined(commercial) It is part of the TQt Enterprise Edition. \endif \module canvas \ingroup graphics \ingroup images A canvas text item has text with font, color and alignment attributes. The text and font can be set in the constructor or set or changed later with setText() and setFont(). The color is set with setColor() and the alignment with setTextFlags(). The text item's bounding rectangle is retrieved with boundingRect(). The text can be drawn on a painter with draw(). Like any other canvas item text items can be moved with TQCanvasItem::move() and TQCanvasItem::moveBy(), or by setting coordinates with TQCanvasItem::setX(), TQCanvasItem::setY() and TQCanvasItem::setZ(). */ /*! Constructs a TQCanvasText with the text "\", on \a canvas. */ TQCanvasText::TQCanvasText(TQCanvas* canvas) : TQCanvasItem(canvas), txt(""), flags(0) { setRect(); } // ### add textflags to the constructor? Lars /*! Constructs a TQCanvasText with the text \a t, on canvas \a canvas. */ TQCanvasText::TQCanvasText(const TQString& t, TQCanvas* canvas) : TQCanvasItem(canvas), txt(t), flags(0) { setRect(); } // ### see above /*! Constructs a TQCanvasText with the text \a t and font \a f, on the canvas \a canvas. */ TQCanvasText::TQCanvasText(const TQString& t, TQFont f, TQCanvas* canvas) : TQCanvasItem(canvas), txt(t), flags(0), fnt(f) { setRect(); } /*! Destroys the canvas text item. */ TQCanvasText::~TQCanvasText() { removeFromChunks(); } /*! Returns the bounding rectangle of the text. */ TQRect TQCanvasText::boundingRect() const { return brect; } void TQCanvasText::setRect() { brect = TQFontMetrics(fnt).boundingRect(int(x()), int(y()), 0, 0, flags, txt); brect.setWidth(brect.width()+1); } /*! \fn int TQCanvasText::textFlags() const Returns the currently set alignment flags. \sa setTextFlags() TQt::AlignmentFlags */ /*! Sets the alignment flags to \a f. These are a bitwise OR of the flags available to TQPainter::drawText() -- see the \l{TQt::AlignmentFlags}. \sa setFont() setColor() */ void TQCanvasText::setTextFlags(int f) { if ( flags != f ) { removeFromChunks(); flags = f; setRect(); addToChunks(); } } /*! Returns the text item's text. \sa setText() */ TQString TQCanvasText::text() const { return txt; } /*! Sets the text item's text to \a t. The text may contain newlines. \sa text(), setFont(), setColor() setTextFlags() */ void TQCanvasText::setText( const TQString& t ) { if ( txt != t ) { removeFromChunks(); txt = t; setRect(); addToChunks(); } } /*! Returns the font in which the text is drawn. \sa setFont() */ TQFont TQCanvasText::font() const { return fnt; } /*! Sets the font in which the text is drawn to font \a f. \sa font() */ void TQCanvasText::setFont( const TQFont& f ) { if ( f != fnt ) { removeFromChunks(); fnt = f; setRect(); addToChunks(); } } /*! Returns the color of the text. \sa setColor() */ TQColor TQCanvasText::color() const { return col; } /*! Sets the color of the text to the color \a c. \sa color(), setFont() */ void TQCanvasText::setColor(const TQColor& c) { col=c; changeChunks(); } /*! \reimp */ void TQCanvasText::moveBy(double dx, double dy) { int idx = int(x()+dx)-int(x()); int idy = int(y()+dy)-int(y()); if ( idx || idy ) { removeFromChunks(); } myx+=dx; myy+=dy; if ( idx || idy ) { brect.moveBy(idx,idy); addToChunks(); } } /*! Draws the text using the painter \a painter. */ void TQCanvasText::draw(TQPainter& painter) { painter.setFont(fnt); painter.setPen(col); painter.drawText(brect, flags, txt); } /*! \reimp */ void TQCanvasText::changeChunks() { if (isVisible() && canvas()) { int chunksize=canvas()->chunkSize(); for (int j=brect.top()/chunksize; j<=brect.bottom()/chunksize; j++) { for (int i=brect.left()/chunksize; i<=brect.right()/chunksize; i++) { canvas()->setChangedChunk(i,j); } } } } /*! Adds the text item to the appropriate chunks. */ void TQCanvasText::addToChunks() { if (isVisible() && canvas()) { int chunksize=canvas()->chunkSize(); for (int j=brect.top()/chunksize; j<=brect.bottom()/chunksize; j++) { for (int i=brect.left()/chunksize; i<=brect.right()/chunksize; i++) { canvas()->addItemToChunk(this,i,j); } } } } /*! Removes the text item from the appropriate chunks. */ void TQCanvasText::removeFromChunks() { if (isVisible() && canvas()) { int chunksize=canvas()->chunkSize(); for (int j=brect.top()/chunksize; j<=brect.bottom()/chunksize; j++) { for (int i=brect.left()/chunksize; i<=brect.right()/chunksize; i++) { canvas()->removeItemFromChunk(this,i,j); } } } } /*! Returns 0 (TQCanvasItem::Rtti_Item). Make your derived classes return their own values for rtti(), so that you can distinguish between objects returned by TQCanvas::at(). You should use values greater than 1000 to allow for extensions to this class. Overuse of this functionality can damage it's extensibility. For example, once you have identified a base class of a TQCanvasItem found by TQCanvas::at(), cast it to that type and call meaningful methods rather than acting upon the object based on its rtti value. For example: \code TQCanvasItem* item; // Find an item, e.g. with TQCanvasItem::collisions(). ... if (item->rtti() == MySprite::RTTI ) { MySprite* s = (MySprite*)item; if (s->isDamagable()) s->loseHitPoints(1000); if (s->isHot()) myself->loseHitPoints(1000); ... } \endcode */ int TQCanvasItem::rtti() const { return RTTI; } int TQCanvasItem::RTTI = Rtti_Item; /*! Returns 1 (TQCanvasItem::Rtti_Sprite). \sa TQCanvasItem::rtti() */ int TQCanvasSprite::rtti() const { return RTTI; } int TQCanvasSprite::RTTI = Rtti_Sprite; /*! Returns 2 (TQCanvasItem::Rtti_PolygonalItem). \sa TQCanvasItem::rtti() */ int TQCanvasPolygonalItem::rtti() const { return RTTI; } int TQCanvasPolygonalItem::RTTI = Rtti_PolygonalItem; /*! Returns 3 (TQCanvasItem::Rtti_Text). \sa TQCanvasItem::rtti() */ int TQCanvasText::rtti() const { return RTTI; } int TQCanvasText::RTTI = Rtti_Text; /*! Returns 4 (TQCanvasItem::Rtti_Polygon). \sa TQCanvasItem::rtti() */ int TQCanvasPolygon::rtti() const { return RTTI; } int TQCanvasPolygon::RTTI = Rtti_Polygon; /*! Returns 5 (TQCanvasItem::Rtti_Rectangle). \sa TQCanvasItem::rtti() */ int TQCanvasRectangle::rtti() const { return RTTI; } int TQCanvasRectangle::RTTI = Rtti_Rectangle; /*! Returns 6 (TQCanvasItem::Rtti_Ellipse). \sa TQCanvasItem::rtti() */ int TQCanvasEllipse::rtti() const { return RTTI; } int TQCanvasEllipse::RTTI = Rtti_Ellipse; /*! Returns 7 (TQCanvasItem::Rtti_Line). \sa TQCanvasItem::rtti() */ int TQCanvasLine::rtti() const { return RTTI; } int TQCanvasLine::RTTI = Rtti_Line; /*! Returns 8 (TQCanvasItem::Rtti_Spline). \sa TQCanvasItem::rtti() */ int TQCanvasSpline::rtti() const { return RTTI; } int TQCanvasSpline::RTTI = Rtti_Spline; /*! Constructs a TQCanvasSprite which uses images from the TQCanvasPixmapArray \a a. The sprite in initially positioned at (0, 0) on \a canvas, using frame 0. */ TQCanvasSprite::TQCanvasSprite(TQCanvasPixmapArray* a, TQCanvas* canvas) : TQCanvasItem(canvas), frm(0), anim_val(0), anim_state(0), anim_type(0), images(a) { } /*! Set the array of images used for displaying the sprite to the TQCanvasPixmapArray \a a. If the current frame() is larger than the number of images in \a a, the current frame will be reset to 0. */ void TQCanvasSprite::setSequence(TQCanvasPixmapArray* a) { bool isvisible = isVisible(); if ( isvisible && images ) hide(); images = a; if ( frm >= (int)images->count() ) frm = 0; if ( isvisible ) show(); } /*! \internal Marks any chunks the sprite touches as changed. */ void TQCanvasSprite::changeChunks() { if (isVisible() && canvas()) { int chunksize=canvas()->chunkSize(); for (int j=topEdge()/chunksize; j<=bottomEdge()/chunksize; j++) { for (int i=leftEdge()/chunksize; i<=rightEdge()/chunksize; i++) { canvas()->setChangedChunk(i,j); } } } } /*! Destroys the sprite and removes it from the canvas. Does \e not delete the images. */ TQCanvasSprite::~TQCanvasSprite() { removeFromChunks(); } /*! Sets the animation frame used for displaying the sprite to \a f, an index into the TQCanvasSprite's TQCanvasPixmapArray. The call will be ignored if \a f is larger than frameCount() or smaller than 0. \sa frame() move() */ void TQCanvasSprite::setFrame(int f) { move(x(),y(),f); } /*! \enum TQCanvasSprite::FrameAnimationType This enum is used to identify the different types of frame animation offered by TQCanvasSprite. \value Cycle at each advance the frame number will be incremented by 1 (modulo the frame count). \value Oscillate at each advance the frame number will be incremented by 1 up to the frame count then decremented to by 1 to 0, repeating this sequence forever. */ /*! Sets the animation characteristics for the sprite. For \a type == \c Cycle, the frames will increase by \a step at each advance, modulo the frameCount(). For \a type == \c Oscillate, the frames will increase by \a step at each advance, up to the frameCount(), then decrease by \a step back to 0, repeating forever. The \a state parameter is for internal use. */ void TQCanvasSprite::setFrameAnimation(FrameAnimationType type, int step, int state) { anim_val = step; anim_type = type; anim_state = state; setAnimated(TRUE); } /*! Extends the default TQCanvasItem implementation to provide the functionality of setFrameAnimation(). The \a phase is 0 or 1: see TQCanvasItem::advance() for details. \sa TQCanvasItem::advance() setVelocity() */ void TQCanvasSprite::advance(int phase) { if ( phase==1 ) { int nf = frame(); if ( anim_type == Oscillate ) { if ( anim_state ) nf += anim_val; else nf -= anim_val; if ( nf < 0 ) { nf = abs(anim_val); anim_state = !anim_state; } else if ( nf >= frameCount() ) { nf = frameCount()-1-abs(anim_val); anim_state = !anim_state; } } else { nf = (nf + anim_val + frameCount()) % frameCount(); } move(x()+xVelocity(),y()+yVelocity(),nf); } } /*! \fn int TQCanvasSprite::frame() const Returns the index of the current animation frame in the TQCanvasSprite's TQCanvasPixmapArray. \sa setFrame(), move() */ /*! \fn int TQCanvasSprite::frameCount() const Returns the number of frames in the TQCanvasSprite's TQCanvasPixmapArray. */ /*! \reimp \internal Moves the sprite to the position \a x, \a y. Keep it visible. */ void TQCanvasSprite::move(double x, double y) { TQCanvasItem::move(x,y); } /*! \fn void TQCanvasSprite::move(double nx, double ny, int nf) Set the position of the sprite to \a nx, \a ny and the current frame to \a nf. \a nf will be ignored if it is larger than frameCount() or smaller than 0. */ void TQCanvasSprite::move(double nx, double ny, int nf) { if (isVisible() && canvas()) { hide(); TQCanvasItem::move(nx,ny); if ( nf >= 0 && nf < frameCount() ) frm=nf; show(); } else { TQCanvasItem::move(nx,ny); if ( nf >= 0 && nf < frameCount() ) frm=nf; } } class TQCanvasPolygonScanner : public TQPolygonScanner { TQPolygonalProcessor& processor; public: TQCanvasPolygonScanner(TQPolygonalProcessor& p) : processor(p) { } void processSpans( int n, TQPoint* point, int* width ) { processor.doSpans(n,point,width); } }; void TQCanvasPolygonalItem::scanPolygon(const TQPointArray& pa, int winding, TQPolygonalProcessor& process) const { TQCanvasPolygonScanner scanner(process); scanner.scan(pa,winding); } #endif // QT_NO_CANVAS