/**************************************************************************** ** ** Implementation of TQPixmap class ** ** Created : 950301 ** ** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved. ** ** This file is part of the kernel module of the TQt GUI Toolkit. ** ** This file may be used under the terms of the GNU General ** Public License versions 2.0 or 3.0 as published by the Free ** Software Foundation and appearing in the files LICENSE.GPL2 ** and LICENSE.GPL3 included in the packaging of this file. ** Alternatively you may (at your option) use any later version ** of the GNU General Public License if such license has been ** publicly approved by Trolltech ASA (or its successors, if any) ** and the KDE Free TQt Foundation. ** ** Please review the following information to ensure GNU General ** Public Licensing requirements will be met: ** http://trolltech.com/products/qt/licenses/licensing/opensource/. ** If you are unsure which license is appropriate for your use, please ** review the following information: ** http://trolltech.com/products/qt/licenses/licensing/licensingoverview ** or contact the sales department at sales@trolltech.com. ** ** This file may be used under the terms of the Q Public License as ** defined by Trolltech ASA and appearing in the file LICENSE.TQPL ** included in the packaging of this file. Licensees holding valid TQt ** Commercial licenses may use this file in accordance with the TQt ** Commercial License Agreement provided with the Software. ** ** This file is provided "AS IS" with NO WARRANTY OF ANY KIND, ** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR ** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted ** herein. ** **********************************************************************/ #include "ntqpixmap.h" #include "ntqbitmap.h" #include "ntqimage.h" #include "ntqwidget.h" #include "ntqpainter.h" #include "ntqdatastream.h" #include "ntqbuffer.h" #include "ntqobjectlist.h" #include "ntqapplication.h" #include <private/qinternal_p.h> #include "ntqmime.h" #include "ntqdragobject.h" #include "ntqfile.h" /*! \class TQPixmap ntqpixmap.h \brief The TQPixmap class is an off-screen, pixel-based paint device. \ingroup graphics \ingroup images \ingroup shared \mainclass TQPixmap is one of the two classes TQt provides for dealing with images; the other is TQImage. TQPixmap is designed and optimized for drawing; TQImage is designed and optimized for I/O and for direct pixel access/manipulation. There are (slow) functions to convert between TQImage and TQPixmap: convertToImage() and convertFromImage(). One common use of the TQPixmap class is to enable smooth updating of widgets. Whenever something complex needs to be drawn, you can use a pixmap to obtain flicker-free drawing, like this: \list 1 \i Create a pixmap with the same size as the widget. \i Fill the pixmap with the widget background color. \i Paint the pixmap. \i bitBlt() the pixmap contents onto the widget. \endlist Pixel data in a pixmap is internal and is managed by the underlying window system. Pixels can be accessed only through TQPainter functions, through bitBlt(), and by converting the TQPixmap to a TQImage. You can easily display a TQPixmap on the screen using TQLabel::setPixmap(). For example, all the TQButton subclasses support pixmap use. The TQPixmap class uses \link shclass.html copy-on-write\endlink, so it is practical to pass TQPixmap objects by value. You can retrieve the width(), height(), depth() and size() of a pixmap. The enclosing rectangle is given by rect(). Pixmaps can be filled with fill() and resized with resize(). You can create and set a mask with createHeuristicMask() and setMask(). Use selfMask() to see if the pixmap is identical to its mask. In addition to loading a pixmap from file using load() you can also loadFromData(). You can control optimization with setOptimization() and obtain a transformed version of the pixmap using xForm() Note regarding Windows 95 and 98: on Windows 9x the system crashes if you create more than about 1000 pixmaps, independent of the size of the pixmaps or installed RAM. Windows NT-systems (including 2000, XP and following versions) do not have the same limitation, but depending on the graphics equipment the system will fail to allocate pixmap objects at some point (due to system running out of GDI resources). TQt tries to work around the resource limitation. If you set the pixmap optimization to \c TQPixmap::MemoryOptim and the width of your pixmap is less than or equal to 128 pixels, TQt stores the pixmap in a way that is very memory-efficient when there are many pixmaps. If your application uses dozens or hundreds of pixmaps (for example on tool bar buttons and in popup menus), and you plan to run it on Windows 95 or Windows 98, we recommend using code like this: \code TQPixmap::setDefaultOptimization( TQPixmap::MemoryOptim ); while ( ... ) { // load tool bar pixmaps etc. TQPixmap *pixmap = new TQPixmap(fileName); } TQPixmap::setDefaultOptimization( TQPixmap::NormalOptim ); \endcode In general it is recommended to make as much use of TQPixmap's implicit sharing and the TQPixmapCache as possible. \sa TQBitmap, TQImage, TQImageIO, \link shclass.html Shared Classes\endlink */ /*! \enum TQPixmap::ColorMode This enum type defines the color modes that exist for converting TQImage objects to TQPixmap. \value Auto Select \c Color or \c Mono on a case-by-case basis. \value Color Always create colored pixmaps. \value Mono Always create bitmaps. */ /*! \enum TQPixmap::Optimization TQPixmap has the choice of optimizing for speed or memory in a few places; the best choice varies from pixmap to pixmap but can generally be derived heuristically. This enum type defines a number of optimization modes that you can set for any pixmap to tweak the speed/memory tradeoffs: \value DefaultOptim Whatever TQPixmap::defaultOptimization() returns. A pixmap with this optimization will have whatever the current default optimization is. If the default optimization is changed using setDefaultOptimization(), then this will not effect any pixmaps that have already been created. \value NoOptim No optimization (currently the same as \c MemoryOptim). \value MemoryOptim Optimize for minimal memory use on Windows 9x and X11 systems. \value NormalOptim Optimize for typical usage. Often uses more memory than \c MemoryOptim, and is often faster. \value BestOptim Optimize for pixmaps that are drawn very often and where performance is critical. Generally uses more memory than \c NormalOptim and may provide a little more speed. We recommend using \c DefaultOptim. */ TQPixmap::Optimization TQPixmap::defOptim = TQPixmap::NormalOptim; /*! \internal Private constructor which takes the bitmap flag, the optimization.and a screen. */ TQPixmap::TQPixmap( int w, int h, int depth, bool bitmap, Optimization optimization ) : TQPaintDevice( TQInternal::Pixmap ) { init( w, h, depth, bitmap, optimization ); } /*! Constructs a null pixmap. \sa isNull() */ TQPixmap::TQPixmap() : TQPaintDevice( TQInternal::Pixmap ) { init( 0, 0, 0, FALSE, defOptim ); } /*! Constructs a pixmap from the TQImage \a image. \sa convertFromImage() */ TQPixmap::TQPixmap( const TQImage& image ) : TQPaintDevice( TQInternal::Pixmap ) { init( 0, 0, 0, FALSE, defOptim ); convertFromImage( image ); } /*! Constructs a pixmap with \a w width, \a h height and \a depth bits per pixel. The pixmap is optimized in accordance with the \a optimization value. The contents of the pixmap is uninitialized. The \a depth can be either 1 (monochrome) or the depth of the current video mode. If \a depth is negative, then the hardware depth of the current video mode will be used. If either \a w or \a h is zero, a null pixmap is constructed. \sa isNull() TQPixmap::Optimization */ TQPixmap::TQPixmap( int w, int h, int depth, Optimization optimization ) : TQPaintDevice( TQInternal::Pixmap ) { init( w, h, depth, FALSE, optimization ); } /*! \overload TQPixmap::TQPixmap( const TQSize &size, int depth, Optimization optimization ) Constructs a pixmap of size \a size, \a depth bits per pixel, optimized in accordance with the \a optimization value. */ TQPixmap::TQPixmap( const TQSize &size, int depth, Optimization optimization ) : TQPaintDevice( TQInternal::Pixmap ) { init( size.width(), size.height(), depth, FALSE, optimization ); } #ifndef QT_NO_IMAGEIO /*! Constructs a pixmap from the file \a fileName. If the file does not exist or is of an unknown format, the pixmap becomes a null pixmap. The \a fileName, \a format and \a conversion_flags parameters are passed on to load(). This means that the data in \a fileName is not compiled into the binary. If \a fileName contains a relative path (e.g. the filename only) the relevant file must be found relative to the runtime working directory. If the image needs to be modified to fit in a lower-resolution result (e.g. converting from 32-bit to 8-bit), use the \a conversion_flags to specify how you'd prefer this to happen. \sa TQt::ImageConversionFlags isNull(), load(), loadFromData(), save(), imageFormat() */ TQPixmap::TQPixmap( const TQString& fileName, const char *format, int conversion_flags ) : TQPaintDevice( TQInternal::Pixmap ) { init( 0, 0, 0, FALSE, defOptim ); load( fileName, format, conversion_flags ); } /*! Constructs a pixmap from the file \a fileName. If the file does not exist or is of an unknown format, the pixmap becomes a null pixmap. The \a fileName, \a format and \a mode parameters are passed on to load(). This means that the data in \a fileName is not compiled into the binary. If \a fileName contains a relative path (e.g. the filename only) the relevant file must be found relative to the runtime working directory. \sa TQPixmap::ColorMode isNull(), load(), loadFromData(), save(), imageFormat() */ TQPixmap::TQPixmap( const TQString& fileName, const char *format, ColorMode mode ) : TQPaintDevice( TQInternal::Pixmap ) { init( 0, 0, 0, FALSE, defOptim ); load( fileName, format, mode ); } /*! Constructs a pixmap from \a xpm, which must be a valid XPM image. Errors are silently ignored. Note that it's possible to squeeze the XPM variable a little bit by using an unusual declaration: \code static const char * const start_xpm[]={ "16 15 8 1", "a c #cec6bd", .... \endcode The extra \c const makes the entire definition read-only, which is slightly more efficient (for example, when the code is in a shared library) and ROMable when the application is to be stored in ROM. In order to use that sort of declaration you must cast the variable back to \c{const char **} when you create the TQPixmap. */ TQPixmap::TQPixmap( const char *xpm[] ) : TQPaintDevice( TQInternal::Pixmap ) { init( 0, 0, 0, FALSE, defOptim ); TQImage image( xpm ); if ( !image.isNull() ) convertFromImage( image ); } /*! Constructs a pixmaps by loading from \a img_data. The data can be in any image format supported by TQt. \sa loadFromData() */ TQPixmap::TQPixmap( const TQByteArray & img_data ) : TQPaintDevice( TQInternal::Pixmap ) { init( 0, 0, 0, FALSE, defOptim ); loadFromData( img_data ); } #endif //QT_NO_IMAGEIO /*! Constructs a pixmap that is a copy of \a pixmap. */ TQPixmap::TQPixmap( const TQPixmap &pixmap ) : TQPaintDevice( TQInternal::Pixmap ) { if ( pixmap.paintingActive() ) { // make a deep copy data = 0; operator=( pixmap.copy() ); } else { data = pixmap.data; data->ref(); devFlags = pixmap.devFlags; // copy TQPaintDevice flags #if defined(Q_WS_WIN) hdc = pixmap.hdc; // copy Windows device context #elif defined(Q_WS_X11) hd = pixmap.hd; // copy X11 drawable rendhd = pixmap.rendhd; copyX11Data( &pixmap ); // copy x11Data #elif defined(Q_WS_MAC) hd = pixmap.hd; #endif } } /*! Destroys the pixmap. */ TQPixmap::~TQPixmap() { deref(); } /*! Convenience function. Gets the data associated with the absolute name \a abs_name from the default mime source factory and decodes it to a pixmap. \sa TQMimeSourceFactory, TQImage::fromMimeSource(), TQImageDrag::decode() */ #ifndef QT_NO_MIME TQPixmap TQPixmap::fromMimeSource( const TQString &abs_name ) { const TQMimeSource *m = TQMimeSourceFactory::defaultFactory()->data( abs_name ); if ( !m ) { if ( TQFile::exists( abs_name ) ) return TQPixmap( abs_name ); #if defined(QT_CHECK_STATE) if ( !abs_name.isEmpty() ) tqWarning( "TQPixmap::fromMimeSource: Cannot find pixmap \"%s\" in the mime source factory", abs_name.latin1() ); #endif return TQPixmap(); } TQPixmap pix; TQImageDrag::decode( m, pix ); return pix; } #endif /*! Returns a \link shclass.html deep copy\endlink of the pixmap using the bitBlt() function to copy the pixels. \sa operator=() */ TQPixmap TQPixmap::copy( bool ignoreMask ) const { #if defined(Q_WS_X11) int old = x11SetDefaultScreen( x11Screen() ); #endif // Q_WS_X11 TQPixmap pm( data->w, data->h, data->d, data->bitmap, data->optim ); if ( !pm.isNull() ) { // copy the bitmap #if defined(Q_WS_X11) pm.cloneX11Data( this ); #endif // Q_WS_X11 if ( ignoreMask ) bitBlt( &pm, 0, 0, this, 0, 0, data->w, data->h, TQt::CopyROP, TRUE ); else copyBlt( &pm, 0, 0, this, 0, 0, data->w, data->h ); } #if defined(Q_WS_X11) x11SetDefaultScreen( old ); #endif // Q_WS_X11 return pm; } /*! Assigns the pixmap \a pixmap to this pixmap and returns a reference to this pixmap. */ TQPixmap &TQPixmap::operator=( const TQPixmap &pixmap ) { if ( paintingActive() ) { #if defined(QT_CHECK_STATE) tqWarning("TQPixmap::operator=: Cannot assign to pixmap during painting"); #endif return *this; } pixmap.data->ref(); // avoid 'x = x' deref(); if ( pixmap.paintingActive() ) { // make a deep copy init( pixmap.width(), pixmap.height(), pixmap.depth(), pixmap.data->bitmap, pixmap.data->optim ); data->uninit = FALSE; if ( !isNull() ) copyBlt( this, 0, 0, &pixmap, 0, 0, pixmap.width(), pixmap.height() ); pixmap.data->deref(); } else { data = pixmap.data; devFlags = pixmap.devFlags; // copy TQPaintDevice flags #if defined(Q_WS_WIN) hdc = pixmap.hdc; #elif defined(Q_WS_X11) hd = pixmap.hd; // copy TQPaintDevice drawable rendhd = pixmap.rendhd; copyX11Data( &pixmap ); // copy x11Data #elif defined(Q_WS_MACX) || defined(Q_OS_MAC9) hd = pixmap.hd; #endif } return *this; } /*! \overload Converts the image \a image to a pixmap that is assigned to this pixmap. Returns a reference to the pixmap. \sa convertFromImage(). */ TQPixmap &TQPixmap::operator=( const TQImage &image ) { convertFromImage( image ); return *this; } /*! \fn bool TQPixmap::isTQBitmap() const Returns TRUE if this is a TQBitmap; otherwise returns FALSE. */ /*! \fn bool TQPixmap::isNull() const Returns TRUE if this is a null pixmap; otherwise returns FALSE. A null pixmap has zero width, zero height and no contents. You cannot draw in a null pixmap or bitBlt() anything to it. Resizing an existing pixmap to (0, 0) makes a pixmap into a null pixmap. \sa resize() */ /*! \fn int TQPixmap::width() const Returns the width of the pixmap. \sa height(), size(), rect() */ /*! \fn int TQPixmap::height() const Returns the height of the pixmap. \sa width(), size(), rect() */ /*! \fn TQSize TQPixmap::size() const Returns the size of the pixmap. \sa width(), height(), rect() */ /*! \fn TQRect TQPixmap::rect() const Returns the enclosing rectangle (0,0,width(),height()) of the pixmap. \sa width(), height(), size() */ /*! \fn int TQPixmap::depth() const Returns the depth of the pixmap. The pixmap depth is also called bits per pixel (bpp) or bit planes of a pixmap. A null pixmap has depth 0. \sa defaultDepth(), isNull(), TQImage::convertDepth() */ /*! \overload void TQPixmap::fill( const TQWidget *widget, const TQPoint &ofs ) Fills the pixmap with the \a widget's background color or pixmap. If the background is empty, nothing is done. The \a ofs point is an offset in the widget. The point \a ofs is a point in the widget's coordinate system. The pixmap's top-left pixel will be mapped to the point \a ofs in the widget. This is significant if the widget has a background pixmap; otherwise the pixmap will simply be filled with the background color of the widget. Example: \code void CuteWidget::paintEvent( TQPaintEvent *e ) { TQRect ur = e->rect(); // rectangle to update TQPixmap pix( ur.size() ); // Pixmap for double-buffering pix.fill( this, ur.topLeft() ); // fill with widget background TQPainter p( &pix ); p.translate( -ur.x(), -ur.y() ); // use widget coordinate system // when drawing on pixmap // ... draw on pixmap ... p.end(); bitBlt( this, ur.topLeft(), &pix ); } \endcode */ /*! \overload void TQPixmap::fill( const TQWidget *widget, int xofs, int yofs ) Fills the pixmap with the \a widget's background color or pixmap. If the background is empty, nothing is done. \a xofs, \a yofs is an offset in the widget. */ void TQPixmap::fill( const TQWidget *widget, int xofs, int yofs ) { const TQPixmap* bgpm = widget->backgroundPixmap(); fill( widget->backgroundColor() ); if ( bgpm ) { if ( !bgpm->isNull() ) { TQPoint ofs = widget->backgroundOffset(); xofs += ofs.x(); yofs += ofs.y(); TQPainter p; p.begin( this ); p.setPen( NoPen ); p.drawTiledPixmap( 0, 0, width(), height(), *widget->backgroundPixmap(), xofs, yofs ); p.end(); } } } /*! \overload void TQPixmap::resize( const TQSize &size ) Resizes the pixmap to size \a size. */ /*! Resizes the pixmap to \a w width and \a h height. If either \a w or \a h is 0, the pixmap becomes a null pixmap. If both \a w and \a h are greater than 0, a valid pixmap is created. New pixels will be uninitialized (random) if the pixmap is expanded. */ void TQPixmap::resize( int w, int h ) { if ( w < 1 || h < 1 ) { // becomes null TQPixmap pm( 0, 0, 0, data->bitmap, data->optim ); *this = pm; return; } int d; if ( depth() > 0 ) d = depth(); else d = isTQBitmap() ? 1 : -1; // Create new pixmap TQPixmap pm( w, h, d, data->bitmap, data->optim ); #ifdef Q_WS_X11 pm.x11SetScreen( x11Screen() ); #endif // Q_WS_X11 if ( !data->uninit && !isNull() ) // has existing pixmap bitBlt( &pm, 0, 0, this, 0, 0, // copy old pixmap TQMIN(width(), w), TQMIN(height(),h), CopyROP, TRUE ); #if defined(Q_WS_MAC) if(data->alphapm) { data->alphapm->resize(w, h); } else #elif defined(Q_WS_X11) && !defined(QT_NO_XFTFREETYPE) if (data->alphapm) tqWarning("TQPixmap::resize: TODO: resize alpha data"); else #endif // Q_WS_X11 if ( data->mask ) { // resize mask as well if ( data->selfmask ) { // preserve self-mask pm.setMask( *((TQBitmap*)&pm) ); } else { // independent mask TQBitmap m = *data->mask; m.resize( w, h ); pm.setMask( m ); } } *this = pm; } /*! \fn const TQBitmap *TQPixmap::mask() const Returns the mask bitmap, or 0 if no mask has been set. \sa setMask(), TQBitmap, hasAlpha() */ /*! Sets a mask bitmap. The \a newmask bitmap defines the clip mask for this pixmap. Every pixel in \a newmask corresponds to a pixel in this pixmap. Pixel value 1 means opaque and pixel value 0 means transparent. The mask must have the same size as this pixmap. \warning Setting the mask on a pixmap will cause any alpha channel data to be cleared. For example: \code TQPixmap alpha( "image-with-alpha.png" ); TQPixmap alphacopy = alpha; alphacopy.setMask( *alphacopy.mask() ); \endcode Now, alpha and alphacopy are visually different. Setting a \link isNull() null\endlink mask resets the mask. \sa mask(), createHeuristicMask(), TQBitmap */ void TQPixmap::setMask( const TQBitmap &newmask ) { const TQPixmap *tmp = &newmask; // dec cxx bug if ( (data == tmp->data) || ( newmask.handle() && newmask.handle() == handle() ) ) { TQPixmap m = tmp->copy( TRUE ); setMask( *((TQBitmap*)&m) ); data->selfmask = TRUE; // mask == pixmap return; } if ( newmask.isNull() ) { // reset the mask if (data->mask) { detach(); data->selfmask = FALSE; delete data->mask; data->mask = 0; } return; } detach(); data->selfmask = FALSE; if ( newmask.width() != width() || newmask.height() != height() ) { #if defined(QT_CHECK_RANGE) tqWarning( "TQPixmap::setMask: The pixmap and the mask must have " "the same size" ); #endif return; } #if defined(Q_WS_MAC) || (defined(Q_WS_X11) && !defined(QT_NO_XFTFREETYPE)) // when setting the mask, we get rid of the alpha channel completely delete data->alphapm; data->alphapm = 0; #endif // Q_WS_X11 && !QT_NO_XFTFREETYPE delete data->mask; TQBitmap* newmaskcopy; if ( newmask.mask() ) newmaskcopy = (TQBitmap*)new TQPixmap( tmp->copy( TRUE ) ); else newmaskcopy = new TQBitmap( newmask ); #ifdef Q_WS_X11 newmaskcopy->x11SetScreen( x11Screen() ); #endif data->mask = newmaskcopy; } /*! \fn bool TQPixmap::selfMask() const Returns TRUE if the pixmap's mask is identical to the pixmap itself; otherwise returns FALSE. \sa mask() */ #ifndef QT_NO_IMAGE_HEURISTIC_MASK /*! Creates and returns a heuristic mask for this pixmap. It works by selecting a color from one of the corners and then chipping away pixels of that color, starting at all the edges. The mask may not be perfect but it should be reasonable, so you can do things such as the following: \code pm->setMask( pm->createHeuristicMask() ); \endcode This function is slow because it involves transformation to a TQImage, non-trivial computations and a transformation back to a TQBitmap. If \a clipTight is TRUE the mask is just large enough to cover the pixels; otherwise, the mask is larger than the data pixels. \sa TQImage::createHeuristicMask() */ TQBitmap TQPixmap::createHeuristicMask( bool clipTight ) const { TQBitmap m; m.convertFromImage( convertToImage().createHeuristicMask(clipTight) ); return m; } #endif #ifndef QT_NO_IMAGEIO /*! Returns a string that specifies the image format of the file \a fileName, or 0 if the file cannot be read or if the format cannot be recognized. The TQImageIO documentation lists the supported image formats. \sa load(), save() */ const char* TQPixmap::imageFormat( const TQString &fileName ) { return TQImageIO::imageFormat(fileName); } /*! Loads a pixmap from the file \a fileName at runtime. Returns TRUE if successful; otherwise returns FALSE. If \a format is specified, the loader attempts to read the pixmap using the specified format. If \a format is not specified (default), the loader reads a few bytes from the header to guess the file's format. See the convertFromImage() documentation for a description of the \a conversion_flags argument. The TQImageIO documentation lists the supported image formats and explains how to add extra formats. \sa loadFromData(), save(), imageFormat(), TQImage::load(), TQImageIO */ bool TQPixmap::load( const TQString &fileName, const char *format, int conversion_flags ) { TQImageIO io( fileName, format ); bool result = io.read(); if ( result ) { detach(); // ###hanord: Why detach here, convertFromImage does it result = convertFromImage( io.image(), conversion_flags ); } return result; } /*! \overload Loads a pixmap from the file \a fileName at runtime. If \a format is specified, the loader attempts to read the pixmap using the specified format. If \a format is not specified (default), the loader reads a few bytes from the header to guess the file's format. The \a mode is used to specify the color mode of the pixmap. \sa TQPixmap::ColorMode */ bool TQPixmap::load( const TQString &fileName, const char *format, ColorMode mode ) { int conversion_flags = 0; switch (mode) { case Color: conversion_flags |= ColorOnly; break; case Mono: conversion_flags |= MonoOnly; break; default: break;// Nothing. } return load( fileName, format, conversion_flags ); } #endif //QT_NO_IMAGEIO /*! \overload Converts \a image and sets this pixmap using color mode \a mode. Returns TRUE if successful; otherwise returns FALSE. \sa TQPixmap::ColorMode */ bool TQPixmap::convertFromImage( const TQImage &image, ColorMode mode ) { if ( image.isNull() ) { // convert null image to null pixmap *this = TQPixmap(); return TRUE; } int conversion_flags = 0; switch (mode) { case Color: conversion_flags |= ColorOnly; break; case Mono: conversion_flags |= MonoOnly; break; default: break;// Nothing. } return convertFromImage( image, conversion_flags ); } #ifndef QT_NO_IMAGEIO /*! Loads a pixmap from the binary data in \a buf (\a len bytes). Returns TRUE if successful; otherwise returns FALSE. If \a format is specified, the loader attempts to read the pixmap using the specified format. If \a format is not specified (default), the loader reads a few bytes from the header to guess the file's format. See the convertFromImage() documentation for a description of the \a conversion_flags argument. The TQImageIO documentation lists the supported image formats and explains how to add extra formats. \sa load(), save(), imageFormat(), TQImage::loadFromData(), TQImageIO */ bool TQPixmap::loadFromData( const uchar *buf, uint len, const char *format, int conversion_flags ) { TQByteArray a; a.setRawData( (char *)buf, len ); TQBuffer b( a ); b.open( IO_ReadOnly ); TQImageIO io( &b, format ); bool result = io.read(); b.close(); a.resetRawData( (char *)buf, len ); if ( result ) { detach(); result = convertFromImage( io.image(), conversion_flags ); } return result; } /*! \overload Loads a pixmap from the binary data in \a buf (\a len bytes) using color mode \a mode. Returns TRUE if successful; otherwise returns FALSE. If \a format is specified, the loader attempts to read the pixmap using the specified format. If \a format is not specified (default), the loader reads a few bytes from the header to guess the file's format. \sa TQPixmap::ColorMode */ bool TQPixmap::loadFromData( const uchar *buf, uint len, const char *format, ColorMode mode ) { int conversion_flags = 0; switch (mode) { case Color: conversion_flags |= ColorOnly; break; case Mono: conversion_flags |= MonoOnly; break; default: break;// Nothing. } return loadFromData( buf, len, format, conversion_flags ); } /*! \overload */ bool TQPixmap::loadFromData( const TQByteArray &buf, const char *format, int conversion_flags ) { return loadFromData( (const uchar *)(buf.data()), buf.size(), format, conversion_flags ); } /*! Saves the pixmap to the file \a fileName using the image file format \a format and a quality factor \a quality. \a quality must be in the range [0,100] or -1. Specify 0 to obtain small compressed files, 100 for large uncompressed files, and -1 to use the default settings. Returns TRUE if successful; otherwise returns FALSE. \sa load(), loadFromData(), imageFormat(), TQImage::save(), TQImageIO */ bool TQPixmap::save( const TQString &fileName, const char *format, int quality ) const { if ( isNull() ) return FALSE; // nothing to save TQImageIO io( fileName, format ); return doImageIO( &io, quality ); } /*! \overload This function writes a TQPixmap to the TQIODevice, \a device. This can be used, for example, to save a pixmap directly into a TQByteArray: \code TQPixmap pixmap; TQByteArray ba; TQBuffer buffer( ba ); buffer.open( IO_WriteOnly ); pixmap.save( &buffer, "PNG" ); // writes pixmap into ba in PNG format \endcode */ bool TQPixmap::save( TQIODevice* device, const char* format, int quality ) const { if ( isNull() ) return FALSE; // nothing to save TQImageIO io( device, format ); return doImageIO( &io, quality ); } /*! \internal */ bool TQPixmap::doImageIO( TQImageIO* io, int quality ) const { if ( !io ) return FALSE; io->setImage( convertToImage() ); #if defined(QT_CHECK_RANGE) if ( quality > 100 || quality < -1 ) tqWarning( "TQPixmap::save: quality out of range [-1,100]" ); #endif if ( quality >= 0 ) io->setQuality( TQMIN(quality,100) ); return io->write(); } #endif //QT_NO_IMAGEIO /*! \fn int TQPixmap::serialNumber() const Returns a number that uniquely identifies the contents of this TQPixmap object. This means that multiple TQPixmap objects can have the same serial number as long as they refer to the same contents. An example of where this is useful is for caching TQPixmaps. \sa TQPixmapCache */ /*! Returns the default pixmap optimization setting. \sa setDefaultOptimization(), setOptimization(), optimization() */ TQPixmap::Optimization TQPixmap::defaultOptimization() { return defOptim; } /*! Sets the default pixmap optimization. All \e new pixmaps that are created will use this default optimization. You may also set optimization for individual pixmaps using the setOptimization() function. The initial default \a optimization setting is \c TQPixmap::Normal. \sa defaultOptimization(), setOptimization(), optimization() */ void TQPixmap::setDefaultOptimization( Optimization optimization ) { if ( optimization != DefaultOptim ) defOptim = optimization; } // helper for next function. static TQPixmap grabChildWidgets( TQWidget * w ) { TQPixmap res( w->width(), w->height() ); if ( res.isNull() && w->width() ) return res; res.fill( w, TQPoint( 0, 0 ) ); TQPaintDevice *oldRedirect = TQPainter::redirect( w ); TQPainter::redirect( w, &res ); bool dblbfr = TQSharedDoubleBuffer::isDisabled(); TQSharedDoubleBuffer::setDisabled( TRUE ); TQPaintEvent e( w->rect(), FALSE ); TQApplication::sendEvent( w, &e ); TQSharedDoubleBuffer::setDisabled( dblbfr ); TQPainter::redirect( w, oldRedirect ); const TQObjectList * children = w->children(); if ( children ) { TQPainter p( &res ); TQObjectListIt it( *children ); TQObject * child; while( (child=it.current()) != 0 ) { ++it; if ( child->isWidgetType() && !((TQWidget *)child)->isHidden() && !((TQWidget *)child)->isTopLevel() && ((TQWidget *)child)->geometry().intersects( w->rect() ) ) { // those conditions aren't quite right, it's possible // to have a grandchild completely outside its // grandparent, but partially inside its parent. no // point in optimizing for that. // make sure to evaluate pos() first - who knows what // the paint event(s) inside grabChildWidgets() will do. TQPoint childpos = ((TQWidget *)child)->pos(); TQPixmap cpm = grabChildWidgets( (TQWidget *)child ); if ( cpm.isNull() ) { // Some child pixmap failed - abort and reset res.resize( 0, 0 ); break; } p.drawPixmap( childpos, cpm); } } } return res; } /*! Creates a pixmap and paints \a widget in it. If the \a widget has any children, then they are also painted in the appropriate positions. If you specify \a x, \a y, \a w or \a h, only the rectangle you specify is painted. The defaults are 0, 0 (top-left corner) and -1,-1 (which means the entire widget). (If \a w is negative, the function copies everything to the right border of the window. If \a h is negative, the function copies everything to the bottom of the window.) If \a widget is 0, or if the rectangle defined by \a x, \a y, the modified \a w and the modified \a h does not overlap the \a {widget}->rect(), this function will return a null TQPixmap. This function actually asks \a widget to paint itself (and its children to paint themselves). TQPixmap::grabWindow() grabs pixels off the screen, which is a bit faster and picks up \e exactly what's on-screen. This function works by calling paintEvent() with painter redirection turned on. If there are overlaying windows, grabWindow() will see them, but not this function. If there is overlap, it returns a pixmap of the size you want, containing a rendering of \a widget. If the rectangle you ask for is a superset of \a widget, the areas outside \a widget are covered with the widget's background. If an error occurs when trying to grab the widget, such as the size of the widget being too large to fit in memory, an isNull() pixmap is returned. \sa grabWindow() TQPainter::redirect() TQWidget::paintEvent() */ TQPixmap TQPixmap::grabWidget( TQWidget * widget, int x, int y, int w, int h ) { TQPixmap res; if ( !widget ) return res; if ( w < 0 ) w = widget->width() - x; if ( h < 0 ) h = widget->height() - y; TQRect wr( x, y, w, h ); if ( wr == widget->rect() ) return grabChildWidgets( widget ); if ( !wr.intersects( widget->rect() ) ) return res; res.resize( w, h ); if( res.isNull() ) return res; res.fill( widget, TQPoint( w,h ) ); TQPixmap tmp( grabChildWidgets( widget ) ); if( tmp.isNull() ) return tmp; ::bitBlt( &res, 0, 0, &tmp, x, y, w, h ); return res; } /*! Returns the actual matrix used for transforming a pixmap with \a w width and \a h height and matrix \a matrix. When transforming a pixmap with xForm(), the transformation matrix is internally adjusted to compensate for unwanted translation, i.e. xForm() returns the smallest pixmap containing all transformed points of the original pixmap. This function returns the modified matrix, which maps points correctly from the original pixmap into the new pixmap. \sa xForm(), TQWMatrix */ #ifndef QT_NO_PIXMAP_TRANSFORMATION TQWMatrix TQPixmap::trueMatrix( const TQWMatrix &matrix, int w, int h ) { const double dt = (double)0.; double x1,y1, x2,y2, x3,y3, x4,y4; // get corners double xx = (double)w; double yy = (double)h; TQWMatrix mat( matrix.m11(), matrix.m12(), matrix.m21(), matrix.m22(), 0., 0. ); mat.map( dt, dt, &x1, &y1 ); mat.map( xx, dt, &x2, &y2 ); mat.map( xx, yy, &x3, &y3 ); mat.map( dt, yy, &x4, &y4 ); double ymin = y1; // lowest y value if ( y2 < ymin ) ymin = y2; if ( y3 < ymin ) ymin = y3; if ( y4 < ymin ) ymin = y4; double xmin = x1; // lowest x value if ( x2 < xmin ) xmin = x2; if ( x3 < xmin ) xmin = x3; if ( x4 < xmin ) xmin = x4; double ymax = y1; // lowest y value if ( y2 > ymax ) ymax = y2; if ( y3 > ymax ) ymax = y3; if ( y4 > ymax ) ymax = y4; double xmax = x1; // lowest x value if ( x2 > xmax ) xmax = x2; if ( x3 > xmax ) xmax = x3; if ( x4 > xmax ) xmax = x4; if ( xmax-xmin > 1.0 ) xmin -= xmin/(xmax-xmin); if ( ymax-ymin > 1.0 ) ymin -= ymin/(ymax-ymin); mat.setMatrix( matrix.m11(), matrix.m12(), matrix.m21(), matrix.m22(), -xmin, -ymin ); return mat; } #endif // QT_NO_WMATRIX /***************************************************************************** TQPixmap stream functions *****************************************************************************/ #if !defined(QT_NO_DATASTREAM) && !defined(QT_NO_IMAGEIO) /*! \relates TQPixmap Writes the pixmap \a pixmap to the stream \a s as a PNG image. Note that writing the stream to a file will not produce a valid image file. \sa TQPixmap::save() \link datastreamformat.html Format of the TQDataStream operators \endlink */ TQDataStream &operator<<( TQDataStream &s, const TQPixmap &pixmap ) { s << pixmap.convertToImage(); return s; } /*! \relates TQPixmap Reads a pixmap from the stream \a s into the pixmap \a pixmap. \sa TQPixmap::load() \link datastreamformat.html Format of the TQDataStream operators \endlink */ TQDataStream &operator>>( TQDataStream &s, TQPixmap &pixmap ) { TQImage img; s >> img; pixmap.convertFromImage( img ); return s; } #endif //QT_NO_DATASTREAM /***************************************************************************** TQPixmap (and TQImage) helper functions *****************************************************************************/ /* This internal function contains the common (i.e. platform independent) code to do a transformation of pixel data. It is used by TQPixmap::xForm() and by TQImage::xForm(). \a trueMat is the true transformation matrix (see TQPixmap::trueMatrix()) and \a xoffset is an offset to the matrix. \a msbfirst specifies for 1bpp images, if the MSB or LSB comes first and \a depth specifies the colordepth of the data. \a dptr is a pointer to the destination data, \a dbpl specifies the bits per line for the destination data, \a p_inc is the offset that we advance for every scanline and \a dHeight is the height of the destination image. \a sprt is the pointer to the source data, \a sbpl specifies the bits per line of the source data, \a sWidth and \a sHeight are the width and height of the source data. */ #ifndef QT_NO_PIXMAP_TRANSFORMATION #undef IWX_MSB #define IWX_MSB(b) if ( trigx < maxws && trigy < maxhs ) { \ if ( *(sptr+sbpl*(trigy>>16)+(trigx>>19)) & \ (1 << (7-((trigx>>16)&7))) ) \ *dptr |= b; \ } \ trigx += m11; \ trigy += m12; // END OF MACRO #undef IWX_LSB #define IWX_LSB(b) if ( trigx < maxws && trigy < maxhs ) { \ if ( *(sptr+sbpl*(trigy>>16)+(trigx>>19)) & \ (1 << ((trigx>>16)&7)) ) \ *dptr |= b; \ } \ trigx += m11; \ trigy += m12; // END OF MACRO #undef IWX_PIX #define IWX_PIX(b) if ( trigx < maxws && trigy < maxhs ) { \ if ( (*(sptr+sbpl*(trigy>>16)+(trigx>>19)) & \ (1 << (7-((trigx>>16)&7)))) == 0 ) \ *dptr &= ~b; \ } \ trigx += m11; \ trigy += m12; // END OF MACRO bool qt_xForm_helper( const TQWMatrix &trueMat, int xoffset, int type, int depth, uchar *dptr, int dbpl, int p_inc, int dHeight, uchar *sptr, int sbpl, int sWidth, int sHeight ) { int m11 = int(trueMat.m11()*65536.0 + 1.); int m12 = int(trueMat.m12()*65536.0 + 1.); int m21 = int(trueMat.m21()*65536.0 + 1.); int m22 = int(trueMat.m22()*65536.0 + 1.); int dx = tqRound(trueMat.dx() *65536.0); int dy = tqRound(trueMat.dy() *65536.0); int m21ydx = dx + (xoffset<<16); int m22ydy = dy; uint trigx; uint trigy; uint maxws = sWidth<<16; uint maxhs = sHeight<<16; for ( int y=0; y<dHeight; y++ ) { // for each target scanline trigx = m21ydx; trigy = m22ydy; uchar *maxp = dptr + dbpl; if ( depth != 1 ) { switch ( depth ) { case 8: // 8 bpp transform while ( dptr < maxp ) { if ( trigx < maxws && trigy < maxhs ) *dptr = *(sptr+sbpl*(trigy>>16)+(trigx>>16)); trigx += m11; trigy += m12; dptr++; } break; case 16: // 16 bpp transform while ( dptr < maxp ) { if ( trigx < maxws && trigy < maxhs ) *((ushort*)dptr) = *((ushort *)(sptr+sbpl*(trigy>>16) + ((trigx>>16)<<1))); trigx += m11; trigy += m12; dptr++; dptr++; } break; case 24: { // 24 bpp transform uchar *p2; while ( dptr < maxp ) { if ( trigx < maxws && trigy < maxhs ) { p2 = sptr+sbpl*(trigy>>16) + ((trigx>>16)*3); dptr[0] = p2[0]; dptr[1] = p2[1]; dptr[2] = p2[2]; } trigx += m11; trigy += m12; dptr += 3; } } break; case 32: // 32 bpp transform while ( dptr < maxp ) { if ( trigx < maxws && trigy < maxhs ) *((uint*)dptr) = *((uint *)(sptr+sbpl*(trigy>>16) + ((trigx>>16)<<2))); trigx += m11; trigy += m12; dptr += 4; } break; default: { return FALSE; } } } else { switch ( type ) { case QT_XFORM_TYPE_MSBFIRST: while ( dptr < maxp ) { IWX_MSB(128); IWX_MSB(64); IWX_MSB(32); IWX_MSB(16); IWX_MSB(8); IWX_MSB(4); IWX_MSB(2); IWX_MSB(1); dptr++; } break; case QT_XFORM_TYPE_LSBFIRST: while ( dptr < maxp ) { IWX_LSB(1); IWX_LSB(2); IWX_LSB(4); IWX_LSB(8); IWX_LSB(16); IWX_LSB(32); IWX_LSB(64); IWX_LSB(128); dptr++; } break; # if defined(Q_WS_WIN) case QT_XFORM_TYPE_WINDOWSPIXMAP: while ( dptr < maxp ) { IWX_PIX(128); IWX_PIX(64); IWX_PIX(32); IWX_PIX(16); IWX_PIX(8); IWX_PIX(4); IWX_PIX(2); IWX_PIX(1); dptr++; } break; # endif } } m21ydx += m21; m22ydy += m22; dptr += p_inc; } return TRUE; } #undef IWX_MSB #undef IWX_LSB #undef IWX_PIX #endif // QT_NO_PIXMAP_TRANSFORMATION