/**************************************************************************** ** ** Implementation of TQBitArray class ** ** Created : 940118 ** ** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved. ** ** This file is part of the tools module of the TQt GUI Toolkit. ** ** This file may be used under the terms of the GNU General ** Public License versions 2.0 or 3.0 as published by the Free ** Software Foundation and appearing in the files LICENSE.GPL2 ** and LICENSE.GPL3 included in the packaging of this file. ** Alternatively you may (at your option) use any later version ** of the GNU General Public License if such license has been ** publicly approved by Trolltech ASA (or its successors, if any) ** and the KDE Free TQt Foundation. ** ** Please review the following information to ensure GNU General ** Public Licensing requirements will be met: ** http://trolltech.com/products/qt/licenses/licensing/opensource/. ** If you are unsure which license is appropriate for your use, please ** review the following information: ** http://trolltech.com/products/qt/licenses/licensing/licensingoverview ** or contact the sales department at sales@trolltech.com. ** ** This file may be used under the terms of the Q Public License as ** defined by Trolltech ASA and appearing in the file LICENSE.TQPL ** included in the packaging of this file. Licensees holding valid TQt ** Commercial licenses may use this file in accordance with the TQt ** Commercial License Agreement provided with the Software. ** ** This file is provided "AS IS" with NO WARRANTY OF ANY KIND, ** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR ** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted ** herein. ** **********************************************************************/ #include "ntqbitarray.h" #include "ntqdatastream.h" #define SHBLOCK ((bitarr_data*)(sharedBlock())) /*! \class TQBitVal ntqbitarray.h \reentrant \brief The TQBitVal class is an internal class, used with TQBitArray. \ingroup collection The TQBitVal is required by the indexing [] operator on bit arrays. It is not for use in any other context. */ /*! \fn TQBitVal::TQBitVal (TQBitArray* a, uint i) Constructs a reference to element \a i in the TQBitArray \a a. This is what TQBitArray::operator[] constructs its return value with. */ /*! \fn TQBitVal::operator int() Returns the value referenced by the TQBitVal. */ /*! \fn TQBitVal& TQBitVal::operator= (const TQBitVal& v) Sets the value referenced by the TQBitVal to that referenced by TQBitVal \a v. */ /*! \overload TQBitVal& TQBitVal::operator= (bool v) Sets the value referenced by the TQBitVal to \a v. */ /*! \class TQBitArray ntqbitarray.h \reentrant \brief The TQBitArray class provides an array of bits. \ingroup collection \ingroup tools \ingroup shared Because TQBitArray is a TQMemArray, it uses explicit \link shclass.html sharing\endlink with a reference count. A TQBitArray is a special byte array that can access individual bits and perform bit-operations (AND, OR, XOR and NOT) on entire arrays or bits. Bits can be manipulated by the setBit() and clearBit() functions, but it is also possible to use the indexing [] operator to test and set individual bits. The [] operator is a little slower than setBit() and clearBit() because some tricks are required to implement single-bit assignments. Example: \code TQBitArray a(3); a.setBit( 0 ); a.clearBit( 1 ); a.setBit( 2 ); // a = [1 0 1] TQBitArray b(3); b[0] = 1; b[1] = 1; b[2] = 0; // b = [1 1 0] TQBitArray c; c = ~a & b; // c = [0 1 0] \endcode When a TQBitArray is constructed the bits are uninitialized. Use fill() to set all the bits to 0 or 1. The array can be resized with resize() and copied with copy(). Bits can be set with setBit() and cleared with clearBit(). Bits can be toggled with toggleBit(). A bit's value can be obtained with testBit() and with at(). TQBitArray supports the \& (AND), | (OR), ^ (XOR) and ~ (NOT) operators. */ /*! \class TQBitArray::bitarr_data \brief The TQBitArray::bitarr_data class is internal. \internal */ /*! Constructs an empty bit array. */ TQBitArray::TQBitArray() : TQByteArray( 0, 0 ) { bitarr_data *x = new bitarr_data; TQ_CHECK_PTR( x ); x->nbits = 0; setSharedBlock( x ); } /*! Constructs a bit array of \a size bits. The bits are uninitialized. \sa fill() */ TQBitArray::TQBitArray( uint size ) : TQByteArray( 0, 0 ) { bitarr_data *x = new bitarr_data; TQ_CHECK_PTR( x ); x->nbits = 0; setSharedBlock( x ); resize( size ); } /*! \fn TQBitArray::TQBitArray( const TQBitArray &a ) Constructs a shallow copy of \a a. */ /*! \fn TQBitArray &TQBitArray::operator=( const TQBitArray &a ) Assigns a shallow copy of \a a to this bit array and returns a reference to this array. */ /*! Pad last byte with 0-bits. */ void TQBitArray::pad0() { uint sz = size(); if ( sz && sz%8 ) *(data()+sz/8) &= (1 << (sz%8)) - 1; } /*! \fn uint TQBitArray::size() const Returns the bit array's size (number of bits). \sa resize() */ /*! Resizes the bit array to \a size bits and returns TRUE if the bit array could be resized; otherwise returns FALSE. The array becomes a null array if \a size == 0. If the array is expanded, the new bits are set to 0. \sa size() */ bool TQBitArray::resize( uint size ) { uint s = this->size(); if ( !TQByteArray::resize( (size+7)/8 ) ) return FALSE; // cannot resize SHBLOCK->nbits = size; if ( size != 0 ) { // not null array int ds = (int)(size+7)/8 - (int)(s+7)/8;// number of bytes difference if ( ds > 0 ) // expanding array memset( data() + (s+7)/8, 0, ds ); // reset new data } return TRUE; } /*! Fills the bit array with \a v (1's if \a v is TRUE, or 0's if \a v is FALSE). fill() resizes the bit array to \a size bits if \a size is nonnegative. Returns FALSE if a nonnegative \e size was specified and the bit array could not be resized; otherwise returns TRUE. \sa resize() */ bool TQBitArray::fill( bool v, int size ) { if ( size >= 0 ) { // resize first if ( !resize( size ) ) return FALSE; // cannot resize } else { size = this->size(); } if ( size > 0 ) memset( data(), v ? 0xff : 0, (size + 7) / 8 ); if ( v ) pad0(); return TRUE; } /*! Detaches from shared bit array data and makes sure that this bit array is the only one referring to the data. If multiple bit arrays share common data, this bit array dereferences the data and gets a copy of the data. Nothing happens if there is only a single reference. \sa copy() */ void TQBitArray::detach() { int nbits = SHBLOCK->nbits; this->duplicate( *this ); SHBLOCK->nbits = nbits; } /*! Returns a deep copy of the bit array. \sa detach() */ TQBitArray TQBitArray::copy() const { TQBitArray tmp; tmp.duplicate( *this ); ((bitarr_data*)(tmp.sharedBlock()))->nbits = SHBLOCK->nbits; return tmp; } /*! Returns TRUE if the bit at position \a index is set, i.e. is 1; otherwise returns FALSE. \sa setBit(), clearBit() */ bool TQBitArray::testBit( uint index ) const { #if defined(QT_CHECK_RANGE) if ( index >= size() ) { tqWarning( "TQBitArray::testBit: Index %d out of range", index ); return FALSE; } #endif return (*(data()+(index>>3)) & (1 << (index & 7))) != 0; } /*! \overload Sets the bit at position \a index to 1. \sa clearBit() toggleBit() */ void TQBitArray::setBit( uint index ) { #if defined(QT_CHECK_RANGE) if ( index >= size() ) { tqWarning( "TQBitArray::setBit: Index %d out of range", index ); return; } #endif *(data()+(index>>3)) |= (1 << (index & 7)); } /*! \fn void TQBitArray::setBit( uint index, bool value ) Sets the bit at position \a index to \a value. Equivalent to: \code if ( value ) setBit( index ); else clearBit( index ); \endcode \sa clearBit() toggleBit() */ /*! Clears the bit at position \a index, i.e. sets it to 0. \sa setBit(), toggleBit() */ void TQBitArray::clearBit( uint index ) { #if defined(QT_CHECK_RANGE) if ( index >= size() ) { tqWarning( "TQBitArray::clearBit: Index %d out of range", index ); return; } #endif *(data()+(index>>3)) &= ~(1 << (index & 7)); } /*! Toggles the bit at position \a index. If the previous value was 0, the new value will be 1. If the previous value was 1, the new value will be 0. \sa setBit(), clearBit() */ bool TQBitArray::toggleBit( uint index ) { #if defined(QT_CHECK_RANGE) if ( index >= size() ) { tqWarning( "TQBitArray::toggleBit: Index %d out of range", index ); return FALSE; } #endif uchar *p = (uchar *)data() + (index>>3); uchar b = (1 << (index & 7)); // bit position uchar c = *p & b; // read bit *p ^= b; // toggle bit return c; } /*! \fn bool TQBitArray::at( uint index ) const Returns the value (0 or 1) of the bit at position \a index. \sa operator[]() */ /*! \fn TQBitVal TQBitArray::operator[]( int index ) Implements the [] operator for bit arrays. The returned TQBitVal is a context object. It makes it possible to get and set a single bit value by its \a index position. Example: \code TQBitArray a( 3 ); a[0] = 0; a[1] = 1; a[2] = a[0] ^ a[1]; \endcode The functions testBit(), setBit() and clearBit() are faster. \sa at() */ /*! \overload bool TQBitArray::operator[]( int index ) const Implements the [] operator for constant bit arrays. */ /*! Performs the AND operation between all bits in this bit array and \a a. Returns a reference to this bit array. The result has the length of the longest of the two bit arrays, with any missing bits (i.e. if one array is shorter than the other), taken to be 0. \code TQBitArray a( 3 ), b( 2 ); a[0] = 1; a[1] = 0; a[2] = 1; // a = [1 0 1] b[0] = 1; b[1] = 0; // b = [1 0] a &= b; // a = [1 0 0] \endcode \sa operator|=(), operator^=(), operator~() */ TQBitArray &TQBitArray::operator&=( const TQBitArray &a ) { resize( TQMAX(size(), a.size()) ); uchar *a1 = (uchar *)data(); uchar *a2 = (uchar *)a.data(); int n = TQMIN( TQByteArray::size(), a.TQByteArray::size() ); int p = TQMAX( TQByteArray::size(), a.TQByteArray::size() ) - n; while ( n-- > 0 ) *a1++ &= *a2++; while ( p-- > 0 ) *a1++ = 0; return *this; } /*! Performs the OR operation between all bits in this bit array and \a a. Returns a reference to this bit array. The result has the length of the longest of the two bit arrays, with any missing bits (i.e. if one array is shorter than the other), taken to be 0. \code TQBitArray a( 3 ), b( 2 ); a[0] = 1; a[1] = 0; a[2] = 1; // a = [1 0 1] b[0] = 1; b[1] = 0; // b = [1 0] a |= b; // a = [1 0 1] \endcode \sa operator&=(), operator^=(), operator~() */ TQBitArray &TQBitArray::operator|=( const TQBitArray &a ) { resize( TQMAX(size(), a.size()) ); uchar *a1 = (uchar *)data(); uchar *a2 = (uchar *)a.data(); int n = TQMIN( TQByteArray::size(), a.TQByteArray::size() ); while ( n-- > 0 ) *a1++ |= *a2++; return *this; } /*! Performs the XOR operation between all bits in this bit array and \a a. Returns a reference to this bit array. The result has the length of the longest of the two bit arrays, with any missing bits (i.e. if one array is shorter than the other), taken to be 0. \code TQBitArray a( 3 ), b( 2 ); a[0] = 1; a[1] = 0; a[2] = 1; // a = [1 0 1] b[0] = 1; b[1] = 0; // b = [1 0] a ^= b; // a = [0 0 1] \endcode \sa operator&=(), operator|=(), operator~() */ TQBitArray &TQBitArray::operator^=( const TQBitArray &a ) { resize( TQMAX(size(), a.size()) ); uchar *a1 = (uchar *)data(); uchar *a2 = (uchar *)a.data(); int n = TQMIN( TQByteArray::size(), a.TQByteArray::size() ); while ( n-- > 0 ) *a1++ ^= *a2++; return *this; } /*! Returns a bit array that contains the inverted bits of this bit array. Example: \code TQBitArray a( 3 ), b; a[0] = 1; a[1] = 0; a[2] = 1; // a = [1 0 1] b = ~a; // b = [0 1 0] \endcode */ TQBitArray TQBitArray::operator~() const { TQBitArray a( size() ); uchar *a1 = (uchar *)data(); uchar *a2 = (uchar *)a.data(); int n = TQByteArray::size(); while ( n-- ) *a2++ = ~*a1++; a.pad0(); return a; } /*! \relates TQBitArray Returns the AND result between the bit arrays \a a1 and \a a2. The result has the length of the longest of the two bit arrays, with any missing bits (i.e. if one array is shorter than the other), taken to be 0. \sa TQBitArray::operator&=() */ TQBitArray operator&( const TQBitArray &a1, const TQBitArray &a2 ) { TQBitArray tmp = a1.copy(); tmp &= a2; return tmp; } /*! \relates TQBitArray Returns the OR result between the bit arrays \a a1 and \a a2. The result has the length of the longest of the two bit arrays, with any missing bits (i.e. if one array is shorter than the other), taken to be 0. \sa TQBitArray::operator|=() */ TQBitArray operator|( const TQBitArray &a1, const TQBitArray &a2 ) { TQBitArray tmp = a1.copy(); tmp |= a2; return tmp; } /*! \relates TQBitArray Returns the XOR result between the bit arrays \a a1 and \a a2. The result has the length of the longest of the two bit arrays, with any missing bits (i.e. if one array is shorter than the other), taken to be 0. \sa TQBitArray::operator^() */ TQBitArray operator^( const TQBitArray &a1, const TQBitArray &a2 ) { TQBitArray tmp = a1.copy(); tmp ^= a2; return tmp; } /* \enum TQGArray::array_data \warning This will be renamed in the next major release of TQt. Until then it is undocumented and we recommend against its use. \internal ### 3.0 rename ### ### 3.0 move it to TQGArray? ### */ /*! \fn TQBitArray::array_data * TQBitArray::newData() \internal Returns data specific to TQBitArray that extends what TQGArray provides. TQPtrCollection mechanism for allowing extra/different data. */ /*! \fn void TQBitArray::deleteData ( array_data * d ) \internal Deletes data specific to TQBitArray that extended what TQGArray provided. TQPtrCollection mechanism for allowing extra/different data. */ /***************************************************************************** TQBitArray stream functions *****************************************************************************/ /*! \relates TQBitArray Writes bit array \a a to stream \a s. \sa \link datastreamformat.html Format of the TQDataStream operators \endlink */ #ifndef QT_NO_DATASTREAM TQDataStream &operator<<( TQDataStream &s, const TQBitArray &a ) { TQ_UINT32 len = a.size(); s << len; // write size of array if ( len > 0 ) // write data s.writeRawBytes( a.data(), a.TQByteArray::size() ); return s; } /*! \relates TQBitArray Reads a bit array into \a a from stream \a s. \sa \link datastreamformat.html Format of the TQDataStream operators \endlink */ TQDataStream &operator>>( TQDataStream &s, TQBitArray &a ) { TQ_UINT32 len; s >> len; // read size of array if ( !a.resize( (uint)len ) ) { // resize array #if defined(QT_CHECK_NULL) tqWarning( "TQDataStream: Not enough memory to read TQBitArray" ); #endif len = 0; } if ( len > 0 ) // read data s.readRawBytes( a.data(), a.TQByteArray::size() ); return s; } #endif // QT_NO_DATASTREAM