1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
/****************************************************************************
**
** Implementation of TQRegion class
**
** Created : 950726
**
** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved.
**
** This file is part of the kernel module of the TQt GUI Toolkit.
**
** This file may be used under the terms of the GNU General
** Public License versions 2.0 or 3.0 as published by the Free
** Software Foundation and appearing in the files LICENSE.GPL2
** and LICENSE.GPL3 included in the packaging of this file.
** Alternatively you may (at your option) use any later version
** of the GNU General Public License if such license has been
** publicly approved by Trolltech ASA (or its successors, if any)
** and the KDE Free TQt Foundation.
**
** Please review the following information to ensure GNU General
** Public Licensing requirements will be met:
** http://trolltech.com/products/qt/licenses/licensing/opensource/.
** If you are unsure which license is appropriate for your use, please
** review the following information:
** http://trolltech.com/products/qt/licenses/licensing/licensingoverview
** or contact the sales department at [email protected].
**
** This file may be used under the terms of the Q Public License as
** defined by Trolltech ASA and appearing in the file LICENSE.TQPL
** included in the packaging of this file. Licensees holding valid TQt
** Commercial licenses may use this file in accordance with the TQt
** Commercial License Agreement provided with the Software.
**
** This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted
** herein.
**
**********************************************************************/
#include "ntqregion.h"
#include "ntqpointarray.h"
#include "ntqbuffer.h"
#include "ntqdatastream.h"
// BEING REVISED: paul
/*!
\class TQRegion ntqregion.h
\brief The TQRegion class specifies a clip region for a painter.
\ingroup images
\ingroup graphics
TQRegion is used with TQPainter::setClipRegion() to limit the paint
area to what needs to be painted. There is also a
TQWidget::repaint() that takes a TQRegion parameter. TQRegion is the
best tool for reducing flicker.
A region can be created from a rectangle, an ellipse, a polygon or
a bitmap. Complex regions may be created by combining simple
regions using unite(), intersect(), subtract() or eor() (exclusive
or). You can move a region using translate().
You can test whether a region isNull(), isEmpty() or if it
contains() a TQPoint or TQRect. The bounding rectangle is given by
boundingRect().
The function rects() gives a decomposition of the region into
rectangles.
Example of using complex regions:
\code
void MyWidget::paintEvent( TQPaintEvent * )
{
TQPainter p; // our painter
TQRegion r1( TQRect(100,100,200,80), // r1 = elliptic region
TQRegion::Ellipse );
TQRegion r2( TQRect(100,120,90,30) ); // r2 = rectangular region
TQRegion r3 = r1.intersect( r2 ); // r3 = intersection
p.begin( this ); // start painting widget
p.setClipRegion( r3 ); // set clip region
... // paint clipped graphics
p.end(); // painting done
}
\endcode
TQRegion is an \link shclass.html implicitly shared\endlink class.
\warning Due to window system limitations, the whole coordinate
space for a region is limited to the points between -32767 and
32767 on Mac OS X and Windows 95/98/ME.
\sa TQPainter::setClipRegion(), TQPainter::setClipRect()
*/
/*!
\enum TQRegion::RegionType
Specifies the shape of the region to be created.
\value Rectangle the region covers the entire rectangle.
\value Ellipse the region is an ellipse inside the rectangle.
*/
/*!
\fn Region TQRegion::handle() const
Returns the region's handle.
*/
/*****************************************************************************
TQRegion member functions
*****************************************************************************/
/*!
Constructs a rectangular or elliptic region.
If \a t is \c Rectangle, the region is the filled rectangle (\a x,
\a y, \a w, \a h). If \a t is \c Ellipse, the region is the filled
ellipse with center at (\a x + \a w / 2, \a y + \a h / 2) and size
(\a w ,\a h ).
*/
TQRegion::TQRegion( int x, int y, int w, int h, RegionType t )
{
TQRegion tmp(TQRect(x,y,w,h),t);
tmp.data->ref();
data = tmp.data;
}
/*!
Detaches from shared region data to make sure that this region is
the only one referring to the data.
\sa copy(), \link shclass.html shared classes\endlink
*/
void TQRegion::detach()
{
if ( data->count != 1 )
*this = copy();
}
#ifndef QT_NO_DATASTREAM
/*
Executes region commands in the internal buffer and rebuilds the
original region.
We do this when we read a region from the data stream.
If \a ver is non-0, uses the format version \a ver on reading the
byte array.
*/
void TQRegion::exec( const TQByteArray &buffer, int ver )
{
TQBuffer buf( buffer );
TQDataStream s( &buf );
if ( ver )
s.setVersion( ver );
buf.open( IO_ReadOnly );
TQRegion rgn;
#if defined(QT_CHECK_STATE)
int test_cnt = 0;
#endif
while ( !s.eof() ) {
Q_INT32 id;
if ( s.version() == 1 ) {
int id_int;
s >> id_int;
id = id_int;
} else {
s >> id;
}
#if defined(QT_CHECK_STATE)
if ( test_cnt > 0 && id != TQRGN_TRANSLATE )
qWarning( "TQRegion::exec: Internal error" );
test_cnt++;
#endif
if ( id == TQRGN_SETRECT || id == TQRGN_SETELLIPSE ) {
TQRect r;
s >> r;
rgn = TQRegion( r, id == TQRGN_SETRECT ? Rectangle : Ellipse );
} else if ( id == TQRGN_SETPTARRAY_ALT || id == TQRGN_SETPTARRAY_WIND ) {
TQPointArray a;
s >> a;
rgn = TQRegion( a, id == TQRGN_SETPTARRAY_WIND );
} else if ( id == TQRGN_TRANSLATE ) {
TQPoint p;
s >> p;
rgn.translate( p.x(), p.y() );
} else if ( id >= TQRGN_OR && id <= TQRGN_XOR ) {
TQByteArray bop1, bop2;
TQRegion r1, r2;
s >> bop1; r1.exec( bop1 );
s >> bop2; r2.exec( bop2 );
switch ( id ) {
case TQRGN_OR:
rgn = r1.unite( r2 );
break;
case TQRGN_AND:
rgn = r1.intersect( r2 );
break;
case TQRGN_SUB:
rgn = r1.subtract( r2 );
break;
case TQRGN_XOR:
rgn = r1.eor( r2 );
break;
}
} else if ( id == TQRGN_RECTS ) {
// (This is the only form used in TQt 2.0)
Q_UINT32 n;
s >> n;
TQRect r;
for ( int i=0; i<(int)n; i++ ) {
s >> r;
rgn = rgn.unite( TQRegion(r) );
}
}
}
buf.close();
*this = rgn;
}
/*****************************************************************************
TQRegion stream functions
*****************************************************************************/
/*!
\relates TQRegion
Writes the region \a r to the stream \a s and returns a reference
to the stream.
\sa \link datastreamformat.html Format of the TQDataStream operators \endlink
*/
TQDataStream &operator<<( TQDataStream &s, const TQRegion &r )
{
TQMemArray<TQRect> a = r.rects();
if ( a.isEmpty() ) {
s << (Q_UINT32)0;
} else {
if ( s.version() == 1 ) {
int i;
for ( i=(int)a.size()-1; i>0; i-- ) {
s << (Q_UINT32)(12+i*24);
s << (int)TQRGN_OR;
}
for ( i=0; i<(int)a.size(); i++ ) {
s << (Q_UINT32)(4+8) << (int)TQRGN_SETRECT << a[i];
}
}
else {
s << (Q_UINT32)(4+4+16*a.size()); // 16: storage size of TQRect
s << (Q_INT32)TQRGN_RECTS;
s << (Q_UINT32)a.size();
for ( int i=0; i<(int)a.size(); i++ )
s << a[i];
}
}
return s;
}
/*!
\relates TQRegion
Reads a region from the stream \a s into \a r and returns a
reference to the stream.
\sa \link datastreamformat.html Format of the TQDataStream operators \endlink
*/
TQDataStream &operator>>( TQDataStream &s, TQRegion &r )
{
TQByteArray b;
s >> b;
r.exec( b, s.version() );
return s;
}
#endif //QT_NO_DATASTREAM
// These are not inline - they can be implemented better on some platforms
// (eg. Windows at least provides 3-variable operations). For now, simple.
/*!
Applies the unite() function to this region and \a r. \c r1|r2 is
equivalent to \c r1.unite(r2)
\sa unite(), operator+()
*/
const TQRegion TQRegion::operator|( const TQRegion &r ) const
{ return unite(r); }
/*!
Applies the unite() function to this region and \a r. \c r1+r2 is
equivalent to \c r1.unite(r2)
\sa unite(), operator|()
*/
const TQRegion TQRegion::operator+( const TQRegion &r ) const
{ return unite(r); }
/*!
Applies the intersect() function to this region and \a r. \c r1&r2
is equivalent to \c r1.intersect(r2)
\sa intersect()
*/
const TQRegion TQRegion::operator&( const TQRegion &r ) const
{ return intersect(r); }
/*!
Applies the subtract() function to this region and \a r. \c r1-r2
is equivalent to \c r1.subtract(r2)
\sa subtract()
*/
const TQRegion TQRegion::operator-( const TQRegion &r ) const
{ return subtract(r); }
/*!
Applies the eor() function to this region and \a r. \c r1^r2 is
equivalent to \c r1.eor(r2)
\sa eor()
*/
const TQRegion TQRegion::operator^( const TQRegion &r ) const
{ return eor(r); }
/*!
Applies the unite() function to this region and \a r and assigns
the result to this region. \c r1|=r2 is equivalent to \c
r1=r1.unite(r2)
\sa unite()
*/
TQRegion& TQRegion::operator|=( const TQRegion &r )
{ return *this = *this | r; }
/*!
Applies the unite() function to this region and \a r and assigns
the result to this region. \c r1+=r2 is equivalent to \c
r1=r1.unite(r2)
\sa intersect()
*/
TQRegion& TQRegion::operator+=( const TQRegion &r )
{ return *this = *this + r; }
/*!
Applies the intersect() function to this region and \a r and
assigns the result to this region. \c r1&=r2 is equivalent to \c
r1=r1.intersect(r2)
\sa intersect()
*/
TQRegion& TQRegion::operator&=( const TQRegion &r )
{ return *this = *this & r; }
/*!
Applies the subtract() function to this region and \a r and
assigns the result to this region. \c r1-=r2 is equivalent to \c
r1=r1.subtract(r2)
\sa subtract()
*/
TQRegion& TQRegion::operator-=( const TQRegion &r )
{ return *this = *this - r; }
/*!
Applies the eor() function to this region and \a r and
assigns the result to this region. \c r1^=r2 is equivalent to \c
r1=r1.eor(r2)
\sa eor()
*/
TQRegion& TQRegion::operator^=( const TQRegion &r )
{ return *this = *this ^ r; }
|