1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
|
/****************************************************************************
**
** Implementation of TQWMatrix class
**
** Created : 941020
**
** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved.
**
** This file is part of the kernel module of the TQt GUI Toolkit.
**
** This file may be used under the terms of the GNU General
** Public License versions 2.0 or 3.0 as published by the Free
** Software Foundation and appearing in the files LICENSE.GPL2
** and LICENSE.GPL3 included in the packaging of this file.
** Alternatively you may (at your option) use any later version
** of the GNU General Public License if such license has been
** publicly approved by Trolltech ASA (or its successors, if any)
** and the KDE Free TQt Foundation.
**
** Please review the following information to ensure GNU General
** Public Licensing retquirements will be met:
** http://trolltech.com/products/qt/licenses/licensing/opensource/.
** If you are unsure which license is appropriate for your use, please
** review the following information:
** http://trolltech.com/products/qt/licenses/licensing/licensingoverview
** or contact the sales department at [email protected].
**
** This file may be used under the terms of the Q Public License as
** defined by Trolltech ASA and appearing in the file LICENSE.TQPL
** included in the packaging of this file. Licensees holding valid TQt
** Commercial licenses may use this file in accordance with the TQt
** Commercial License Agreement provided with the Software.
**
** This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted
** herein.
**
**********************************************************************/
#include "qwmatrix.h"
#include "qdatastream.h"
#include "qregion.h"
#if defined(Q_WS_X11)
double qsincos( double, bool calcCos ); // defined in qpainter_x11.cpp
#else
#include <math.h>
#endif
#include <limits.h>
#ifndef QT_NO_WMATRIX
/*!
\class TQWMatrix qwmatrix.h
\brief The TQWMatrix class specifies 2D transformations of a
coordinate system.
\ingroup graphics
\ingroup images
The standard coordinate system of a \link TQPaintDevice paint
device\endlink has the origin located at the top-left position. X
values increase to the right; Y values increase downward.
This coordinate system is the default for the TQPainter, which
renders graphics in a paint device. A user-defined coordinate
system can be specified by setting a TQWMatrix for the painter.
Example:
\code
MyWidget::paintEvent( TQPaintEvent * )
{
TQPainter p; // our painter
TQWMatrix m; // our transformation matrix
m.rotate( 22.5 ); // rotated coordinate system
p.begin( this ); // start painting
p.setWorldMatrix( m ); // use rotated coordinate system
p.drawText( 30,20, "detator" ); // draw rotated text at 30,20
p.end(); // painting done
}
\endcode
A matrix specifies how to translate, scale, shear or rotate the
graphics; the actual transformation is performed by the drawing
routines in TQPainter and by TQPixmap::xForm().
The TQWMatrix class contains a 3x3 matrix of the form:
<table align=center border=1 cellpadding=1 cellspacing=0>
<tr align=center><td>m11</td><td>m12</td><td> 0 </td></tr>
<tr align=center><td>m21</td><td>m22</td><td> 0 </td></tr>
<tr align=center><td>dx</td> <td>dy</td> <td> 1 </td></tr>
</table>
A matrix transforms a point in the plane to another point:
\code
x' = m11*x + m21*y + dx
y' = m22*y + m12*x + dy
\endcode
The point \e (x, y) is the original point, and \e (x', y') is the
transformed point. \e (x', y') can be transformed back to \e (x,
y) by performing the same operation on the \link
TQWMatrix::invert() inverted matrix\endlink.
The elements \e dx and \e dy specify horizontal and vertical
translation. The elements \e m11 and \e m22 specify horizontal and
vertical scaling. The elements \e m12 and \e m21 specify
horizontal and vertical shearing.
The identity matrix has \e m11 and \e m22 set to 1; all others are
set to 0. This matrix maps a point to itself.
Translation is the simplest transformation. Setting \e dx and \e
dy will move the coordinate system \e dx units along the X axis
and \e dy units along the Y axis.
Scaling can be done by setting \e m11 and \e m22. For example,
setting \e m11 to 2 and \e m22 to 1.5 will double the height and
increase the width by 50%.
Shearing is controlled by \e m12 and \e m21. Setting these
elements to values different from zero will twist the coordinate
system.
Rotation is achieved by carefully setting both the shearing
factors and the scaling factors. The TQWMatrix also has a function
that sets \link rotate() rotation \endlink directly.
TQWMatrix lets you combine transformations like this:
\code
TQWMatrix m; // identity matrix
m.translate(10, -20); // first translate (10,-20)
m.rotate(25); // then rotate 25 degrees
m.scale(1.2, 0.7); // finally scale it
\endcode
Here's the same example using basic matrix operations:
\code
double a = pi/180 * 25; // convert 25 to radians
double sina = sin(a);
double cosa = cos(a);
TQWMatrix m1(1, 0, 0, 1, 10, -20); // translation matrix
TQWMatrix m2( cosa, sina, // rotation matrix
-sina, cosa, 0, 0 );
TQWMatrix m3(1.2, 0, 0, 0.7, 0, 0); // scaling matrix
TQWMatrix m;
m = m3 * m2 * m1; // combine all transformations
\endcode
\l TQPainter has functions to translate, scale, shear and rotate the
coordinate system without using a TQWMatrix. Although these
functions are very convenient, it can be more efficient to build a
TQWMatrix and call TQPainter::setWorldMatrix() if you want to perform
more than a single transform operation.
\sa TQPainter::setWorldMatrix(), TQPixmap::xForm()
*/
bool qt_old_transformations = TRUE;
/*!
\enum TQWMatrix::TransformationMode
\keyword transformation matrix
TQWMatrix offers two transformation modes. Calculations can either
be done in terms of points (Points mode, the default), or in
terms of area (Area mode).
In Points mode the transformation is applied to the points that
mark out the shape's bounding line. In Areas mode the
transformation is applied in such a way that the area of the
contained region is correctly transformed under the matrix.
\value Points transformations are applied to the shape's points.
\value Areas transformations are applied (e.g. to the width and
height) so that the area is transformed.
Example:
Suppose we have a rectangle,
\c{TQRect( 10, 20, 30, 40 )} and a transformation matrix
\c{TQWMatrix( 2, 0, 0, 2, 0, 0 )} to double the rectangle's size.
In Points mode, the matrix will transform the top-left (10,20) and
the bottom-right (39,59) points producing a rectangle with its
top-left point at (20,40) and its bottom-right point at (78,118),
i.e. with a width of 59 and a height of 79.
In Areas mode, the matrix will transform the top-left point in
the same way as in Points mode to (20/40), and double the width
and height, so the bottom-right will become (69,99), i.e. a width
of 60 and a height of 80.
Because integer arithmetic is used (for speed), rounding
differences mean that the modes will produce slightly different
results given the same shape and the same transformation,
especially when scaling up. This also means that some operations
are not commutative.
Under Points mode, \c{matrix * ( region1 | region2 )} is not equal to
\c{matrix * region1 | matrix * region2}. Under Area mode, \c{matrix *
(pointarray[i])} is not neccesarily equal to
\c{(matrix * pointarry)[i]}.
\img xform.png Comparison of Points and Areas TransformationModes
*/
/*!
Sets the transformation mode that TQWMatrix and painter
transformations use to \a m.
\sa TQWMatrix::TransformationMode
*/
void TQWMatrix::setTransformationMode( TQWMatrix::TransformationMode m )
{
if ( m == TQWMatrix::Points )
qt_old_transformations = TRUE;
else
qt_old_transformations = FALSE;
}
/*!
Returns the current transformation mode.
\sa TQWMatrix::TransformationMode
*/
TQWMatrix::TransformationMode TQWMatrix::transformationMode()
{
return (qt_old_transformations ? TQWMatrix::Points : TQWMatrix::Areas );
}
// some defines to inline some code
#define MAPDOUBLE( x, y, nx, ny ) \
{ \
double fx = x; \
double fy = y; \
nx = _m11*fx + _m21*fy + _dx; \
ny = _m12*fx + _m22*fy + _dy; \
}
#define MAPINT( x, y, nx, ny ) \
{ \
double fx = x; \
double fy = y; \
nx = qRound(_m11*fx + _m21*fy + _dx); \
ny = qRound(_m12*fx + _m22*fy + _dy); \
}
/*****************************************************************************
TQWMatrix member functions
*****************************************************************************/
/*!
Constructs an identity matrix. All elements are set to zero except
\e m11 and \e m22 (scaling), which are set to 1.
*/
TQWMatrix::TQWMatrix()
{
_m11 = _m22 = 1.0;
_m12 = _m21 = _dx = _dy = 0.0;
}
/*!
Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a
m22, \a dx and \a dy.
*/
TQWMatrix::TQWMatrix( double m11, double m12, double m21, double m22,
double dx, double dy )
{
_m11 = m11; _m12 = m12;
_m21 = m21; _m22 = m22;
_dx = dx; _dy = dy;
}
/*!
Sets the matrix elements to the specified values, \a m11, \a m12,
\a m21, \a m22, \a dx and \a dy.
*/
void TQWMatrix::setMatrix( double m11, double m12, double m21, double m22,
double dx, double dy )
{
_m11 = m11; _m12 = m12;
_m21 = m21; _m22 = m22;
_dx = dx; _dy = dy;
}
/*!
\fn double TQWMatrix::m11() const
Returns the X scaling factor.
*/
/*!
\fn double TQWMatrix::m12() const
Returns the vertical shearing factor.
*/
/*!
\fn double TQWMatrix::m21() const
Returns the horizontal shearing factor.
*/
/*!
\fn double TQWMatrix::m22() const
Returns the Y scaling factor.
*/
/*!
\fn double TQWMatrix::dx() const
Returns the horizontal translation.
*/
/*!
\fn double TQWMatrix::dy() const
Returns the vertical translation.
*/
/*!
\overload
Transforms ( \a x, \a y ) to ( \a *tx, \a *ty ) using the
following formulae:
\code
*tx = m11*x + m21*y + dx
*ty = m22*y + m12*x + dy
\endcode
*/
void TQWMatrix::map( double x, double y, double *tx, double *ty ) const
{
MAPDOUBLE( x, y, *tx, *ty );
}
/*!
Transforms ( \a x, \a y ) to ( \a *tx, \a *ty ) using the formulae:
\code
*tx = m11*x + m21*y + dx (rounded to the nearest integer)
*ty = m22*y + m12*x + dy (rounded to the nearest integer)
\endcode
*/
void TQWMatrix::map( int x, int y, int *tx, int *ty ) const
{
MAPINT( x, y, *tx, *ty );
}
/*!
\fn TQPoint TQWMatrix::map( const TQPoint &p ) const
\overload
Transforms \a p to using the formulae:
\code
retx = m11*px + m21*py + dx (rounded to the nearest integer)
rety = m22*py + m12*px + dy (rounded to the nearest integer)
\endcode
*/
/*!
\fn TQRect TQWMatrix::map( const TQRect &r ) const
\obsolete
Please use \l TQWMatrix::mapRect() instead.
Note that this method does return the bounding rectangle of the \a r, when
shearing or rotations are used.
*/
/*!
\fn TQPointArray TQWMatrix::map( const TQPointArray &a ) const
\overload
Returns the point array \a a transformed by calling map for each point.
*/
/*!
\fn TQRegion TQWMatrix::map( const TQRegion &r ) const
\overload
Transforms the region \a r.
Calling this method can be rather expensive, if rotations or
shearing are used.
*/
/*!
\fn TQRegion TQWMatrix::mapToRegion( const TQRect &rect ) const
Returns the transformed rectangle \a rect.
A rectangle which has been rotated or sheared may result in a
non-rectangular region being returned.
Calling this method can be expensive, if rotations or shearing are
used. If you just need to know the bounding rectangle of the
returned region, use mapRect() which is a lot faster than this
function.
\sa TQWMatrix::mapRect()
*/
/*!
Returns the transformed rectangle \a rect.
The bounding rectangle is returned if rotation or shearing has
been specified.
If you need to know the exact region \a rect maps to use \l
operator*().
\sa operator*()
*/
TQRect TQWMatrix::mapRect( const TQRect &rect ) const
{
TQRect result;
if( qt_old_transformations ) {
if ( _m12 == 0.0F && _m21 == 0.0F ) {
result = TQRect( map(rect.topLeft()), map(rect.bottomRight()) ).normalize();
} else {
TQPointArray a( rect );
a = map( a );
result = a.boundingRect();
}
} else {
if ( _m12 == 0.0F && _m21 == 0.0F ) {
int x = qRound( _m11*rect.x() + _dx );
int y = qRound( _m22*rect.y() + _dy );
int w = qRound( _m11*rect.width() );
int h = qRound( _m22*rect.height() );
if ( w < 0 ) {
w = -w;
x -= w-1;
}
if ( h < 0 ) {
h = -h;
y -= h-1;
}
result = TQRect( x, y, w, h );
} else {
// see mapToPolygon for explanations of the algorithm.
double x0, y0;
double x, y;
MAPDOUBLE( rect.left(), rect.top(), x0, y0 );
double xmin = x0;
double ymin = y0;
double xmax = x0;
double ymax = y0;
MAPDOUBLE( rect.right() + 1, rect.top(), x, y );
xmin = TQMIN( xmin, x );
ymin = TQMIN( ymin, y );
xmax = TQMAX( xmax, x );
ymax = TQMAX( ymax, y );
MAPDOUBLE( rect.right() + 1, rect.bottom() + 1, x, y );
xmin = TQMIN( xmin, x );
ymin = TQMIN( ymin, y );
xmax = TQMAX( xmax, x );
ymax = TQMAX( ymax, y );
MAPDOUBLE( rect.left(), rect.bottom() + 1, x, y );
xmin = TQMIN( xmin, x );
ymin = TQMIN( ymin, y );
xmax = TQMAX( xmax, x );
ymax = TQMAX( ymax, y );
double w = xmax - xmin;
double h = ymax - ymin;
xmin -= ( xmin - x0 ) / w;
ymin -= ( ymin - y0 ) / h;
xmax -= ( xmax - x0 ) / w;
ymax -= ( ymax - y0 ) / h;
result = TQRect( qRound(xmin), qRound(ymin), qRound(xmax)-qRound(xmin)+1, qRound(ymax)-qRound(ymin)+1 );
}
}
return result;
}
/*!
\internal
*/
TQPoint TQWMatrix::operator *( const TQPoint &p ) const
{
double fx = p.x();
double fy = p.y();
return TQPoint( qRound(_m11*fx + _m21*fy + _dx),
qRound(_m12*fx + _m22*fy + _dy) );
}
struct TQWMDoublePoint {
double x;
double y;
};
/*!
\internal
*/
TQPointArray TQWMatrix::operator *( const TQPointArray &a ) const
{
if( qt_old_transformations ) {
TQPointArray result = a.copy();
int x, y;
for ( int i=0; i<(int)result.size(); i++ ) {
result.point( i, &x, &y );
MAPINT( x, y, x, y );
result.setPoint( i, x, y );
}
return result;
} else {
int size = a.size();
int i;
TQMemArray<TQWMDoublePoint> p( size );
TQPoint *da = a.data();
TQWMDoublePoint *dp = p.data();
double xmin = INT_MAX;
double ymin = xmin;
double xmax = INT_MIN;
double ymax = xmax;
int xminp = 0;
int yminp = 0;
for( i = 0; i < size; i++ ) {
dp[i].x = da[i].x();
dp[i].y = da[i].y();
if ( dp[i].x < xmin ) {
xmin = dp[i].x;
xminp = i;
}
if ( dp[i].y < ymin ) {
ymin = dp[i].y;
yminp = i;
}
xmax = TQMAX( xmax, dp[i].x );
ymax = TQMAX( ymax, dp[i].y );
}
double w = TQMAX( xmax - xmin, 1 );
double h = TQMAX( ymax - ymin, 1 );
for( i = 0; i < size; i++ ) {
dp[i].x += (dp[i].x - xmin)/w;
dp[i].y += (dp[i].y - ymin)/h;
MAPDOUBLE( dp[i].x, dp[i].y, dp[i].x, dp[i].y );
}
// now apply correction back for transformed values...
xmin = INT_MAX;
ymin = xmin;
xmax = INT_MIN;
ymax = xmax;
for( i = 0; i < size; i++ ) {
xmin = TQMIN( xmin, dp[i].x );
ymin = TQMIN( ymin, dp[i].y );
xmax = TQMAX( xmax, dp[i].x );
ymax = TQMAX( ymax, dp[i].y );
}
w = TQMAX( xmax - xmin, 1 );
h = TQMAX( ymax - ymin, 1 );
TQPointArray result( size );
TQPoint *dr = result.data();
for( i = 0; i < size; i++ ) {
dr[i].setX( qRound( dp[i].x - (dp[i].x - dp[xminp].x)/w ) );
dr[i].setY( qRound( dp[i].y - (dp[i].y - dp[yminp].y)/h ) );
}
return result;
}
}
/*!
\internal
*/
TQRegion TQWMatrix::operator * (const TQRect &rect ) const
{
TQRegion result;
if ( isIdentity() ) {
result = rect;
} else if ( _m12 == 0.0F && _m21 == 0.0F ) {
if( qt_old_transformations ) {
result = TQRect( map(rect.topLeft()), map(rect.bottomRight()) ).normalize();
} else {
int x = qRound( _m11*rect.x() + _dx );
int y = qRound( _m22*rect.y() + _dy );
int w = qRound( _m11*rect.width() );
int h = qRound( _m22*rect.height() );
if ( w < 0 ) {
w = -w;
x -= w - 1;
}
if ( h < 0 ) {
h = -h;
y -= h - 1;
}
result = TQRect( x, y, w, h );
}
} else {
result = TQRegion( mapToPolygon( rect ) );
}
return result;
}
/*!
Returns the transformed rectangle \a rect as a polygon.
Polygons and rectangles behave slightly differently
when transformed (due to integer rounding), so
\c{matrix.map( TQPointArray( rect ) )} is not always the same as
\c{matrix.mapToPolygon( rect )}.
*/
TQPointArray TQWMatrix::mapToPolygon( const TQRect &rect ) const
{
TQPointArray a( 4 );
if ( qt_old_transformations ) {
a = TQPointArray( rect );
return operator *( a );
}
double x[4], y[4];
if ( _m12 == 0.0F && _m21 == 0.0F ) {
x[0] = qRound( _m11*rect.x() + _dx );
y[0] = qRound( _m22*rect.y() + _dy );
double w = qRound( _m11*rect.width() );
double h = qRound( _m22*rect.height() );
if ( w < 0 ) {
w = -w;
x[0] -= w - 1.;
}
if ( h < 0 ) {
h = -h;
y[0] -= h - 1.;
}
x[1] = x[0]+w-1;
x[2] = x[1];
x[3] = x[0];
y[1] = y[0];
y[2] = y[0]+h-1;
y[3] = y[2];
} else {
MAPINT( rect.left(), rect.top(), x[0], y[0] );
MAPINT( rect.right() + 1, rect.top(), x[1], y[1] );
MAPINT( rect.right() + 1, rect.bottom() + 1, x[2], y[2] );
MAPINT( rect.left(), rect.bottom() + 1, x[3], y[3] );
/*
Including rectangles as we have are evil.
We now have a rectangle that is one pixel to wide and one to
high. the tranformed position of the top-left corner is
correct. All other points need some adjustments.
Doing this mathematically exact would force us to calculate some square roots,
something we don't want for the sake of speed.
Instead we use an approximation, that converts to the correct
answer when m12 -> 0 and m21 -> 0, and accept smaller
errors in the general transformation case.
The solution is to calculate the width and height of the
bounding rect, and scale the points 1/2/3 by (xp-x0)/xw pixel direction
to point 0.
*/
double xmin = x[0];
double ymin = y[0];
double xmax = x[0];
double ymax = y[0];
int i;
for( i = 1; i< 4; i++ ) {
xmin = TQMIN( xmin, x[i] );
ymin = TQMIN( ymin, y[i] );
xmax = TQMAX( xmax, x[i] );
ymax = TQMAX( ymax, y[i] );
}
double w = xmax - xmin;
double h = ymax - ymin;
for( i = 1; i < 4; i++ ) {
x[i] -= (x[i] - x[0])/w;
y[i] -= (y[i] - y[0])/h;
}
}
#if 0
int i;
for( i = 0; i< 4; i++ )
qDebug("coords(%d) = (%f/%f) (%d/%d)", i, x[i], y[i], qRound(x[i]), qRound(y[i]) );
qDebug( "width=%f, height=%f", sqrt( (x[1]-x[0])*(x[1]-x[0]) + (y[1]-y[0])*(y[1]-y[0]) ),
sqrt( (x[0]-x[3])*(x[0]-x[3]) + (y[0]-y[3])*(y[0]-y[3]) ) );
#endif
// all coordinates are correctly, tranform to a pointarray
// (rounding to the next integer)
a.setPoints( 4, qRound( x[0] ), qRound( y[0] ),
qRound( x[1] ), qRound( y[1] ),
qRound( x[2] ), qRound( y[2] ),
qRound( x[3] ), qRound( y[3] ) );
return a;
}
/*!
\internal
*/
TQRegion TQWMatrix::operator * (const TQRegion &r ) const
{
if ( isIdentity() )
return r;
TQMemArray<TQRect> rects = r.rects();
TQRegion result;
register TQRect *rect = rects.data();
register int i = rects.size();
if ( _m12 == 0.0F && _m21 == 0.0F && _m11 > 1.0F && _m22 > 1.0F ) {
// simple case, no rotation
while ( i ) {
int x = qRound( _m11*rect->x() + _dx );
int y = qRound( _m22*rect->y() + _dy );
int w = qRound( _m11*rect->width() );
int h = qRound( _m22*rect->height() );
if ( w < 0 ) {
w = -w;
x -= w-1;
}
if ( h < 0 ) {
h = -h;
y -= h-1;
}
*rect = TQRect( x, y, w, h );
rect++;
i--;
}
result.setRects( rects.data(), rects.size() );
} else {
while ( i ) {
result |= operator *( *rect );
rect++;
i--;
}
}
return result;
}
/*!
Resets the matrix to an identity matrix.
All elements are set to zero, except \e m11 and \e m22 (scaling)
which are set to 1.
\sa isIdentity()
*/
void TQWMatrix::reset()
{
_m11 = _m22 = 1.0;
_m12 = _m21 = _dx = _dy = 0.0;
}
/*!
Returns TRUE if the matrix is the identity matrix; otherwise returns FALSE.
\sa reset()
*/
bool TQWMatrix::isIdentity() const
{
return _m11 == 1.0 && _m22 == 1.0 && _m12 == 0.0 && _m21 == 0.0
&& _dx == 0.0 && _dy == 0.0;
}
/*!
Moves the coordinate system \a dx along the X-axis and \a dy along
the Y-axis.
Returns a reference to the matrix.
\sa scale(), shear(), rotate()
*/
TQWMatrix &TQWMatrix::translate( double dx, double dy )
{
_dx += dx*_m11 + dy*_m21;
_dy += dy*_m22 + dx*_m12;
return *this;
}
/*!
Scales the coordinate system unit by \a sx horizontally and \a sy
vertically.
Returns a reference to the matrix.
\sa translate(), shear(), rotate()
*/
TQWMatrix &TQWMatrix::scale( double sx, double sy )
{
_m11 *= sx;
_m12 *= sx;
_m21 *= sy;
_m22 *= sy;
return *this;
}
/*!
Shears the coordinate system by \a sh horizontally and \a sv
vertically.
Returns a reference to the matrix.
\sa translate(), scale(), rotate()
*/
TQWMatrix &TQWMatrix::shear( double sh, double sv )
{
double tm11 = sv*_m21;
double tm12 = sv*_m22;
double tm21 = sh*_m11;
double tm22 = sh*_m12;
_m11 += tm11;
_m12 += tm12;
_m21 += tm21;
_m22 += tm22;
return *this;
}
const double deg2rad = 0.017453292519943295769; // pi/180
/*!
Rotates the coordinate system \a a degrees counterclockwise.
Returns a reference to the matrix.
\sa translate(), scale(), shear()
*/
TQWMatrix &TQWMatrix::rotate( double a )
{
double b = deg2rad*a; // convert to radians
#if defined(Q_WS_X11)
double sina = qsincos(b,FALSE); // fast and convenient
double cosa = qsincos(b,TRUE);
#else
double sina = sin(b);
double cosa = cos(b);
#endif
double tm11 = cosa*_m11 + sina*_m21;
double tm12 = cosa*_m12 + sina*_m22;
double tm21 = -sina*_m11 + cosa*_m21;
double tm22 = -sina*_m12 + cosa*_m22;
_m11 = tm11; _m12 = tm12;
_m21 = tm21; _m22 = tm22;
return *this;
}
/*!
\fn bool TQWMatrix::isInvertible() const
Returns TRUE if the matrix is invertible; otherwise returns FALSE.
\sa invert()
*/
/*!
\fn double TQWMatrix::det() const
Returns the matrix's determinant.
*/
/*!
Returns the inverted matrix.
If the matrix is singular (not invertible), the identity matrix is
returned.
If \a invertible is not 0: the value of \a *invertible is set
to TRUE if the matrix is invertible; otherwise \a *invertible is
set to FALSE.
\sa isInvertible()
*/
TQWMatrix TQWMatrix::invert( bool *invertible ) const
{
double determinant = det();
if ( determinant == 0.0 ) {
if ( invertible )
*invertible = FALSE; // singular matrix
TQWMatrix defaultMatrix;
return defaultMatrix;
}
else { // invertible matrix
if ( invertible )
*invertible = TRUE;
double dinv = 1.0/determinant;
TQWMatrix imatrix( (_m22*dinv), (-_m12*dinv),
(-_m21*dinv), ( _m11*dinv),
((_m21*_dy - _m22*_dx)*dinv),
((_m12*_dx - _m11*_dy)*dinv) );
return imatrix;
}
}
/*!
Returns TRUE if this matrix is equal to \a m; otherwise returns FALSE.
*/
bool TQWMatrix::operator==( const TQWMatrix &m ) const
{
return _m11 == m._m11 &&
_m12 == m._m12 &&
_m21 == m._m21 &&
_m22 == m._m22 &&
_dx == m._dx &&
_dy == m._dy;
}
/*!
Returns TRUE if this matrix is not equal to \a m; otherwise returns FALSE.
*/
bool TQWMatrix::operator!=( const TQWMatrix &m ) const
{
return _m11 != m._m11 ||
_m12 != m._m12 ||
_m21 != m._m21 ||
_m22 != m._m22 ||
_dx != m._dx ||
_dy != m._dy;
}
/*!
Returns the result of multiplying this matrix by matrix \a m.
*/
TQWMatrix &TQWMatrix::operator*=( const TQWMatrix &m )
{
double tm11 = _m11*m._m11 + _m12*m._m21;
double tm12 = _m11*m._m12 + _m12*m._m22;
double tm21 = _m21*m._m11 + _m22*m._m21;
double tm22 = _m21*m._m12 + _m22*m._m22;
double tdx = _dx*m._m11 + _dy*m._m21 + m._dx;
double tdy = _dx*m._m12 + _dy*m._m22 + m._dy;
_m11 = tm11; _m12 = tm12;
_m21 = tm21; _m22 = tm22;
_dx = tdx; _dy = tdy;
return *this;
}
/*!
\overload
\relates TQWMatrix
Returns the product of \a m1 * \a m2.
Note that matrix multiplication is not commutative, i.e. a*b !=
b*a.
*/
TQWMatrix operator*( const TQWMatrix &m1, const TQWMatrix &m2 )
{
TQWMatrix result = m1;
result *= m2;
return result;
}
/*****************************************************************************
TQWMatrix stream functions
*****************************************************************************/
#ifndef QT_NO_DATASTREAM
/*!
\relates TQWMatrix
Writes the matrix \a m to the stream \a s and returns a reference
to the stream.
\sa \link datastreamformat.html Format of the TQDataStream operators \endlink
*/
TQDataStream &operator<<( TQDataStream &s, const TQWMatrix &m )
{
if ( s.version() == 1 )
s << (float)m.m11() << (float)m.m12() << (float)m.m21()
<< (float)m.m22() << (float)m.dx() << (float)m.dy();
else
s << m.m11() << m.m12() << m.m21() << m.m22()
<< m.dx() << m.dy();
return s;
}
/*!
\relates TQWMatrix
Reads the matrix \a m from the stream \a s and returns a reference
to the stream.
\sa \link datastreamformat.html Format of the TQDataStream operators \endlink
*/
TQDataStream &operator>>( TQDataStream &s, TQWMatrix &m )
{
if ( s.version() == 1 ) {
float m11, m12, m21, m22, dx, dy;
s >> m11; s >> m12; s >> m21; s >> m22;
s >> dx; s >> dy;
m.setMatrix( m11, m12, m21, m22, dx, dy );
}
else {
double m11, m12, m21, m22, dx, dy;
s >> m11; s >> m12; s >> m21; s >> m22;
s >> dx; s >> dy;
m.setMatrix( m11, m12, m21, m22, dx, dy );
}
return s;
}
#endif // QT_NO_DATASTREAM
#endif // QT_NO_WMATRIX
|