summaryrefslogtreecommitdiffstats
path: root/src/number.c
diff options
context:
space:
mode:
authortpearson <tpearson@283d02a7-25f6-0310-bc7c-ecb5cbfe19da>2010-01-09 06:41:55 +0000
committertpearson <tpearson@283d02a7-25f6-0310-bc7c-ecb5cbfe19da>2010-01-09 06:41:55 +0000
commit8bec1dda934fa75cbb1402c58cb879b23305dc40 (patch)
treeb4294963397117f1cf022e7a62452697df996de3 /src/number.c
downloadabakus-8bec1dda934fa75cbb1402c58cb879b23305dc40.tar.gz
abakus-8bec1dda934fa75cbb1402c58cb879b23305dc40.zip
Add abakus
git-svn-id: svn://anonsvn.kde.org/home/kde/branches/trinity/applications/abakus@1071969 283d02a7-25f6-0310-bc7c-ecb5cbfe19da
Diffstat (limited to 'src/number.c')
-rw-r--r--src/number.c1809
1 files changed, 1809 insertions, 0 deletions
diff --git a/src/number.c b/src/number.c
new file mode 100644
index 0000000..3ba4297
--- /dev/null
+++ b/src/number.c
@@ -0,0 +1,1809 @@
+/* number.c: Implements arbitrary precision numbers. */
+/*
+ Copyright (C) 1991, 1992, 1993, 1994, 1997, 2000 Free Software Foundation, Inc.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License , or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; see the file COPYING. If not, write to:
+
+ The Free Software Foundation, Inc.
+ 59 Temple Place, Suite 330
+ Boston, MA 02110-1301 USA.
+
+
+ You may contact the author by:
+ us-mail: Philip A. Nelson
+ Computer Science Department, 9062
+ Western Washington University
+ Bellingham, WA 98226-9062
+
+*************************************************************************/
+
+#include "number.h"
+
+#include <stdio.h>
+#include <assert.h>
+#include <stdlib.h>
+#include <string.h>
+#include <ctype.h>/* Prototypes needed for external utility routines. */
+
+#define bc_rt_warn rt_warn
+#define bc_rt_error rt_error
+#define bc_out_of_memory out_of_memory
+
+_PROTOTYPE(void rt_warn, (char *mesg ,...));
+_PROTOTYPE(void rt_error, (char *mesg ,...));
+_PROTOTYPE(void out_of_memory, (void));
+
+
+void out_of_memory(void){
+ return;
+}
+
+void rt_warn(char *mesg ,...){
+ return;
+}
+
+void rt_error(char *mesg ,...){
+ return;
+}
+
+/* Storage used for special numbers. */
+bc_num _zero_;
+bc_num _one_;
+bc_num _two_;
+
+static bc_num _bc_Free_list = NULL;
+
+/* new_num allocates a number and sets fields to known values. */
+
+bc_num
+bc_new_num (length, scale)
+ int length, scale;
+{
+ bc_num temp;
+
+ if (_bc_Free_list != NULL) {
+ temp = _bc_Free_list;
+ _bc_Free_list = temp->n_next;
+ } else {
+ temp = (bc_num) malloc (sizeof(bc_struct));
+ if (temp == NULL) bc_out_of_memory ();
+ }
+ temp->n_sign = PLUS;
+ temp->n_len = length;
+ temp->n_scale = scale;
+ temp->n_refs = 1;
+ temp->n_ptr = (char *) malloc (length+scale+1);
+ if (temp->n_ptr == NULL) bc_out_of_memory();
+ temp->n_value = temp->n_ptr;
+ memset (temp->n_ptr, 0, length+scale);
+ return temp;
+}
+
+/* "Frees" a bc_num NUM. Actually decreases reference count and only
+ frees the storage if reference count is zero. */
+
+void
+bc_free_num (num)
+ bc_num *num;
+{
+ if (*num == NULL) return;
+ (*num)->n_refs--;
+ if ((*num)->n_refs == 0) {
+ if ((*num)->n_ptr)
+ free ((*num)->n_ptr);
+ (*num)->n_next = _bc_Free_list;
+ _bc_Free_list = *num;
+ }
+ *num = NULL;
+}
+
+
+/* Intitialize the number package! */
+
+void
+bc_init_numbers ()
+{
+ _zero_ = bc_new_num (1,0);
+ _one_ = bc_new_num (1,0);
+ _one_->n_value[0] = 1;
+ _two_ = bc_new_num (1,0);
+ _two_->n_value[0] = 2;
+}
+
+
+/* Make a copy of a number! Just increments the reference count! */
+
+bc_num
+bc_copy_num (num)
+ bc_num num;
+{
+ num->n_refs++;
+ return num;
+}
+
+
+/* Initialize a number NUM by making it a copy of zero. */
+
+void
+bc_init_num (num)
+ bc_num *num;
+{
+ *num = bc_copy_num (_zero_);
+}
+
+/* For many things, we may have leading zeros in a number NUM.
+ _bc_rm_leading_zeros just moves the data "value" pointer to the
+ correct place and adjusts the length. */
+
+static void
+_bc_rm_leading_zeros (num)
+ bc_num num;
+{
+ /* We can move n_value to point to the first non zero digit! */
+ while (*num->n_value == 0 && num->n_len > 1) {
+ num->n_value++;
+ num->n_len--;
+ }
+}
+
+
+/* Compare two bc numbers. Return value is 0 if equal, -1 if N1 is less
+ than N2 and +1 if N1 is greater than N2. If USE_SIGN is false, just
+ compare the magnitudes. */
+
+static int
+_bc_do_compare (n1, n2, use_sign, ignore_last)
+ bc_num n1, n2;
+ int use_sign;
+ int ignore_last;
+{
+ char *n1ptr, *n2ptr;
+ int count;
+
+ /* First, compare signs. */
+ if (use_sign && n1->n_sign != n2->n_sign)
+ {
+ if (n1->n_sign == PLUS)
+ return (1); /* Positive N1 > Negative N2 */
+ else
+ return (-1); /* Negative N1 < Positive N1 */
+ }
+
+ /* Now compare the magnitude. */
+ if (n1->n_len != n2->n_len)
+ {
+ if (n1->n_len > n2->n_len)
+ {
+ /* Magnitude of n1 > n2. */
+ if (!use_sign || n1->n_sign == PLUS)
+ return (1);
+ else
+ return (-1);
+ }
+ else
+ {
+ /* Magnitude of n1 < n2. */
+ if (!use_sign || n1->n_sign == PLUS)
+ return (-1);
+ else
+ return (1);
+ }
+ }
+
+ /* If we get here, they have the same number of integer digits.
+ check the integer part and the equal length part of the fraction. */
+ count = n1->n_len + MIN (n1->n_scale, n2->n_scale);
+ n1ptr = n1->n_value;
+ n2ptr = n2->n_value;
+
+ while ((count > 0) && (*n1ptr == *n2ptr))
+ {
+ n1ptr++;
+ n2ptr++;
+ count--;
+ }
+ if (ignore_last && count == 1 && n1->n_scale == n2->n_scale)
+ return (0);
+ if (count != 0)
+ {
+ if (*n1ptr > *n2ptr)
+ {
+ /* Magnitude of n1 > n2. */
+ if (!use_sign || n1->n_sign == PLUS)
+ return (1);
+ else
+ return (-1);
+ }
+ else
+ {
+ /* Magnitude of n1 < n2. */
+ if (!use_sign || n1->n_sign == PLUS)
+ return (-1);
+ else
+ return (1);
+ }
+ }
+
+ /* They are equal up to the last part of the equal part of the fraction. */
+ if (n1->n_scale != n2->n_scale)
+ {
+ if (n1->n_scale > n2->n_scale)
+ {
+ for (count = n1->n_scale-n2->n_scale; count>0; count--)
+ if (*n1ptr++ != 0)
+ {
+ /* Magnitude of n1 > n2. */
+ if (!use_sign || n1->n_sign == PLUS)
+ return (1);
+ else
+ return (-1);
+ }
+ }
+ else
+ {
+ for (count = n2->n_scale-n1->n_scale; count>0; count--)
+ if (*n2ptr++ != 0)
+ {
+ /* Magnitude of n1 < n2. */
+ if (!use_sign || n1->n_sign == PLUS)
+ return (-1);
+ else
+ return (1);
+ }
+ }
+ }
+
+ /* They must be equal! */
+ return (0);
+}
+
+
+/* This is the "user callable" routine to compare numbers N1 and N2. */
+
+int
+bc_compare (n1, n2)
+ bc_num n1, n2;
+{
+ return _bc_do_compare (n1, n2, TRUE, FALSE);
+}
+
+/* In some places we need to check if the number is negative. */
+
+char
+bc_is_neg (num)
+ bc_num num;
+{
+ return num->n_sign == MINUS;
+}
+
+/* In some places we need to check if the number NUM is zero. */
+
+char
+bc_is_zero (num)
+ bc_num num;
+{
+ int count;
+ char *nptr;
+
+ /* Quick check. */
+ if (num == _zero_) return TRUE;
+
+ /* Initialize */
+ count = num->n_len + num->n_scale;
+ nptr = num->n_value;
+
+ /* The check */
+ while ((count > 0) && (*nptr++ == 0)) count--;
+
+ if (count != 0)
+ return FALSE;
+ else
+ return TRUE;
+}
+
+/* In some places we need to check if the number NUM is almost zero.
+ Specifically, all but the last digit is 0 and the last digit is 1.
+ Last digit is defined by scale. */
+
+char
+bc_is_near_zero (num, scale)
+ bc_num num;
+ int scale;
+{
+ int count;
+ char *nptr;
+
+ /* Error checking */
+ if (scale > num->n_scale)
+ scale = num->n_scale;
+
+ /* Initialize */
+ count = num->n_len + scale;
+ nptr = num->n_value;
+
+ /* The check */
+ while ((count > 0) && (*nptr++ == 0)) count--;
+
+ if (count != 0 && (count != 1 || *--nptr != 1))
+ return FALSE;
+ else
+ return TRUE;
+}
+
+
+/* Perform addition: N1 is added to N2 and the value is
+ returned. The signs of N1 and N2 are ignored.
+ SCALE_MIN is to set the minimum scale of the result. */
+
+static bc_num
+_bc_do_add (n1, n2, scale_min)
+ bc_num n1, n2;
+ int scale_min;
+{
+ bc_num sum;
+ int sum_scale, sum_digits;
+ char *n1ptr, *n2ptr, *sumptr;
+ int carry, n1bytes, n2bytes;
+ int count;
+
+ /* Prepare sum. */
+ sum_scale = MAX (n1->n_scale, n2->n_scale);
+ sum_digits = MAX (n1->n_len, n2->n_len) + 1;
+ sum = bc_new_num (sum_digits, MAX(sum_scale, scale_min));
+
+ /* Zero extra digits made by scale_min. */
+ if (scale_min > sum_scale)
+ {
+ sumptr = (char *) (sum->n_value + sum_scale + sum_digits);
+ for (count = scale_min - sum_scale; count > 0; count--)
+ *sumptr++ = 0;
+ }
+
+ /* Start with the fraction part. Initialize the pointers. */
+ n1bytes = n1->n_scale;
+ n2bytes = n2->n_scale;
+ n1ptr = (char *) (n1->n_value + n1->n_len + n1bytes - 1);
+ n2ptr = (char *) (n2->n_value + n2->n_len + n2bytes - 1);
+ sumptr = (char *) (sum->n_value + sum_scale + sum_digits - 1);
+
+ /* Add the fraction part. First copy the longer fraction.*/
+ if (n1bytes != n2bytes)
+ {
+ if (n1bytes > n2bytes)
+ while (n1bytes>n2bytes)
+ { *sumptr-- = *n1ptr--; n1bytes--;}
+ else
+ while (n2bytes>n1bytes)
+ { *sumptr-- = *n2ptr--; n2bytes--;}
+ }
+
+ /* Now add the remaining fraction part and equal size integer parts. */
+ n1bytes += n1->n_len;
+ n2bytes += n2->n_len;
+ carry = 0;
+ while ((n1bytes > 0) && (n2bytes > 0))
+ {
+ *sumptr = *n1ptr-- + *n2ptr-- + carry;
+ if (*sumptr > (BASE-1))
+ {
+ carry = 1;
+ *sumptr -= BASE;
+ }
+ else
+ carry = 0;
+ sumptr--;
+ n1bytes--;
+ n2bytes--;
+ }
+
+ /* Now add carry the longer integer part. */
+ if (n1bytes == 0)
+ { n1bytes = n2bytes; n1ptr = n2ptr; }
+ while (n1bytes-- > 0)
+ {
+ *sumptr = *n1ptr-- + carry;
+ if (*sumptr > (BASE-1))
+ {
+ carry = 1;
+ *sumptr -= BASE;
+ }
+ else
+ carry = 0;
+ sumptr--;
+ }
+
+ /* Set final carry. */
+ if (carry == 1)
+ *sumptr += 1;
+
+ /* Adjust sum and return. */
+ _bc_rm_leading_zeros (sum);
+ return sum;
+}
+
+
+/* Perform subtraction: N2 is subtracted from N1 and the value is
+ returned. The signs of N1 and N2 are ignored. Also, N1 is
+ assumed to be larger than N2. SCALE_MIN is the minimum scale
+ of the result. */
+
+static bc_num
+_bc_do_sub (n1, n2, scale_min)
+ bc_num n1, n2;
+ int scale_min;
+{
+ bc_num diff;
+ int diff_scale, diff_len;
+ int min_scale, min_len;
+ char *n1ptr, *n2ptr, *diffptr;
+ int borrow, count, val;
+
+ /* Allocate temporary storage. */
+ diff_len = MAX (n1->n_len, n2->n_len);
+ diff_scale = MAX (n1->n_scale, n2->n_scale);
+ min_len = MIN (n1->n_len, n2->n_len);
+ min_scale = MIN (n1->n_scale, n2->n_scale);
+ diff = bc_new_num (diff_len, MAX(diff_scale, scale_min));
+
+ /* Zero extra digits made by scale_min. */
+ if (scale_min > diff_scale)
+ {
+ diffptr = (char *) (diff->n_value + diff_len + diff_scale);
+ for (count = scale_min - diff_scale; count > 0; count--)
+ *diffptr++ = 0;
+ }
+
+ /* Initialize the subtract. */
+ n1ptr = (char *) (n1->n_value + n1->n_len + n1->n_scale -1);
+ n2ptr = (char *) (n2->n_value + n2->n_len + n2->n_scale -1);
+ diffptr = (char *) (diff->n_value + diff_len + diff_scale -1);
+
+ /* Subtract the numbers. */
+ borrow = 0;
+
+ /* Take care of the longer scaled number. */
+ if (n1->n_scale != min_scale)
+ {
+ /* n1 has the longer scale */
+ for (count = n1->n_scale - min_scale; count > 0; count--)
+ *diffptr-- = *n1ptr--;
+ }
+ else
+ {
+ /* n2 has the longer scale */
+ for (count = n2->n_scale - min_scale; count > 0; count--)
+ {
+ val = - *n2ptr-- - borrow;
+ if (val < 0)
+ {
+ val += BASE;
+ borrow = 1;
+ }
+ else
+ borrow = 0;
+ *diffptr-- = val;
+ }
+ }
+
+ /* Now do the equal length scale and integer parts. */
+
+ for (count = 0; count < min_len + min_scale; count++)
+ {
+ val = *n1ptr-- - *n2ptr-- - borrow;
+ if (val < 0)
+ {
+ val += BASE;
+ borrow = 1;
+ }
+ else
+ borrow = 0;
+ *diffptr-- = val;
+ }
+
+ /* If n1 has more digits then n2, we now do that subtract. */
+ if (diff_len != min_len)
+ {
+ for (count = diff_len - min_len; count > 0; count--)
+ {
+ val = *n1ptr-- - borrow;
+ if (val < 0)
+ {
+ val += BASE;
+ borrow = 1;
+ }
+ else
+ borrow = 0;
+ *diffptr-- = val;
+ }
+ }
+
+ /* Clean up and return. */
+ _bc_rm_leading_zeros (diff);
+ return diff;
+}
+
+
+/* Here is the full subtract routine that takes care of negative numbers.
+ N2 is subtracted from N1 and the result placed in RESULT. SCALE_MIN
+ is the minimum scale for the result. */
+
+void
+bc_sub (n1, n2, result, scale_min)
+ bc_num n1, n2, *result;
+ int scale_min;
+{
+ bc_num diff = NULL;
+ int cmp_res;
+ int res_scale;
+
+ if (n1->n_sign != n2->n_sign)
+ {
+ diff = _bc_do_add (n1, n2, scale_min);
+ diff->n_sign = n1->n_sign;
+ }
+ else
+ {
+ /* subtraction must be done. */
+ /* Compare magnitudes. */
+ cmp_res = _bc_do_compare (n1, n2, FALSE, FALSE);
+ switch (cmp_res)
+ {
+ case -1:
+ /* n1 is less than n2, subtract n1 from n2. */
+ diff = _bc_do_sub (n2, n1, scale_min);
+ diff->n_sign = (n2->n_sign == PLUS ? MINUS : PLUS);
+ break;
+ case 0:
+ /* They are equal! return zero! */
+ res_scale = MAX (scale_min, MAX(n1->n_scale, n2->n_scale));
+ diff = bc_new_num (1, res_scale);
+ memset (diff->n_value, 0, res_scale+1);
+ break;
+ case 1:
+ /* n2 is less than n1, subtract n2 from n1. */
+ diff = _bc_do_sub (n1, n2, scale_min);
+ diff->n_sign = n1->n_sign;
+ break;
+ }
+ }
+
+ /* Clean up and return. */
+ bc_free_num (result);
+ *result = diff;
+}
+
+
+/* Here is the full add routine that takes care of negative numbers.
+ N1 is added to N2 and the result placed into RESULT. SCALE_MIN
+ is the minimum scale for the result. */
+
+void
+bc_add (n1, n2, result, scale_min)
+ bc_num n1, n2, *result;
+ int scale_min;
+{
+ bc_num sum = NULL;
+ int cmp_res;
+ int res_scale;
+
+ if (n1->n_sign == n2->n_sign)
+ {
+ sum = _bc_do_add (n1, n2, scale_min);
+ sum->n_sign = n1->n_sign;
+ }
+ else
+ {
+ /* subtraction must be done. */
+ cmp_res = _bc_do_compare (n1, n2, FALSE, FALSE); /* Compare magnitudes. */
+ switch (cmp_res)
+ {
+ case -1:
+ /* n1 is less than n2, subtract n1 from n2. */
+ sum = _bc_do_sub (n2, n1, scale_min);
+ sum->n_sign = n2->n_sign;
+ break;
+ case 0:
+ /* They are equal! return zero with the correct scale! */
+ res_scale = MAX (scale_min, MAX(n1->n_scale, n2->n_scale));
+ sum = bc_new_num (1, res_scale);
+ memset (sum->n_value, 0, res_scale+1);
+ break;
+ case 1:
+ /* n2 is less than n1, subtract n2 from n1. */
+ sum = _bc_do_sub (n1, n2, scale_min);
+ sum->n_sign = n1->n_sign;
+ }
+ }
+
+ /* Clean up and return. */
+ bc_free_num (result);
+ *result = sum;
+}
+
+/* Recursive vs non-recursive multiply crossover ranges. */
+#if defined(MULDIGITS)
+#include "muldigits.h"
+#else
+#define MUL_BASE_DIGITS 80
+#endif
+
+int mul_base_digits = MUL_BASE_DIGITS;
+#define MUL_SMALL_DIGITS mul_base_digits/4
+
+/* Multiply utility routines */
+
+static bc_num
+new_sub_num (length, scale, value)
+ int length, scale;
+ char *value;
+{
+ bc_num temp;
+
+ if (_bc_Free_list != NULL) {
+ temp = _bc_Free_list;
+ _bc_Free_list = temp->n_next;
+ } else {
+ temp = (bc_num) malloc (sizeof(bc_struct));
+ if (temp == NULL) bc_out_of_memory ();
+ }
+ temp->n_sign = PLUS;
+ temp->n_len = length;
+ temp->n_scale = scale;
+ temp->n_refs = 1;
+ temp->n_ptr = NULL;
+ temp->n_value = value;
+ return temp;
+}
+
+static void
+_bc_simp_mul (bc_num n1, int n1len, bc_num n2, int n2len, bc_num *prod,
+ int full_scale)
+{
+ char *n1ptr, *n2ptr, *pvptr;
+ char *n1end, *n2end; /* To the end of n1 and n2. */
+ int indx, sum, prodlen;
+
+ prodlen = n1len+n2len+1;
+
+ *prod = bc_new_num (prodlen, 0);
+
+ n1end = (char *) (n1->n_value + n1len - 1);
+ n2end = (char *) (n2->n_value + n2len - 1);
+ pvptr = (char *) ((*prod)->n_value + prodlen - 1);
+ sum = 0;
+
+ /* Here is the loop... */
+ for (indx = 0; indx < prodlen-1; indx++)
+ {
+ n1ptr = (char *) (n1end - MAX(0, indx-n2len+1));
+ n2ptr = (char *) (n2end - MIN(indx, n2len-1));
+ while ((n1ptr >= n1->n_value) && (n2ptr <= n2end))
+ sum += *n1ptr-- * *n2ptr++;
+ *pvptr-- = sum % BASE;
+ sum = sum / BASE;
+ }
+ *pvptr = sum;
+}
+
+
+/* A special adder/subtractor for the recursive divide and conquer
+ multiply algorithm. Note: if sub is called, accum must
+ be larger that what is being subtracted. Also, accum and val
+ must have n_scale = 0. (e.g. they must look like integers. *) */
+static void
+_bc_shift_addsub (bc_num accum, bc_num val, int shift, int sub)
+{
+ signed char *accp, *valp;
+ int count, carry;
+
+ count = val->n_len;
+ if (val->n_value[0] == 0)
+ count--;
+ assert (accum->n_len+accum->n_scale >= shift+count);
+
+ /* Set up pointers and others */
+ accp = (signed char *)(accum->n_value +
+ accum->n_len + accum->n_scale - shift - 1);
+ valp = (signed char *)(val->n_value + val->n_len - 1);
+ carry = 0;
+
+ if (sub) {
+ /* Subtraction, carry is really borrow. */
+ while (count--) {
+ *accp -= *valp-- + carry;
+ if (*accp < 0) {
+ carry = 1;
+ *accp-- += BASE;
+ } else {
+ carry = 0;
+ accp--;
+ }
+ }
+ while (carry) {
+ *accp -= carry;
+ if (*accp < 0)
+ *accp-- += BASE;
+ else
+ carry = 0;
+ }
+ } else {
+ /* Addition */
+ while (count--) {
+ *accp += *valp-- + carry;
+ if (*accp > (BASE-1)) {
+ carry = 1;
+ *accp-- -= BASE;
+ } else {
+ carry = 0;
+ accp--;
+ }
+ }
+ while (carry) {
+ *accp += carry;
+ if (*accp > (BASE-1))
+ *accp-- -= BASE;
+ else
+ carry = 0;
+ }
+ }
+}
+
+/* Recursive divide and conquer multiply algorithm.
+ Based on
+ Let u = u0 + u1*(b^n)
+ Let v = v0 + v1*(b^n)
+ Then uv = (B^2n+B^n)*u1*v1 + B^n*(u1-u0)*(v0-v1) + (B^n+1)*u0*v0
+
+ B is the base of storage, number of digits in u1,u0 close to equal.
+*/
+static void
+_bc_rec_mul (bc_num u, int ulen, bc_num v, int vlen, bc_num *prod,
+ int full_scale)
+{
+ bc_num u0, u1, v0, v1;
+ int u0len, v0len;
+ bc_num m1, m2, m3, d1, d2;
+ int n, prodlen, m1zero;
+ int d1len, d2len;
+
+ /* Base case? */
+ if ((ulen+vlen) < mul_base_digits
+ || ulen < MUL_SMALL_DIGITS
+ || vlen < MUL_SMALL_DIGITS ) {
+ _bc_simp_mul (u, ulen, v, vlen, prod, full_scale);
+ return;
+ }
+
+ /* Calculate n -- the u and v split point in digits. */
+ n = (MAX(ulen, vlen)+1) / 2;
+
+ /* Split u and v. */
+ if (ulen < n) {
+ u1 = bc_copy_num (_zero_);
+ u0 = new_sub_num (ulen,0, u->n_value);
+ } else {
+ u1 = new_sub_num (ulen-n, 0, u->n_value);
+ u0 = new_sub_num (n, 0, u->n_value+ulen-n);
+ }
+ if (vlen < n) {
+ v1 = bc_copy_num (_zero_);
+ v0 = new_sub_num (vlen,0, v->n_value);
+ } else {
+ v1 = new_sub_num (vlen-n, 0, v->n_value);
+ v0 = new_sub_num (n, 0, v->n_value+vlen-n);
+ }
+ _bc_rm_leading_zeros (u1);
+ _bc_rm_leading_zeros (u0);
+ u0len = u0->n_len;
+ _bc_rm_leading_zeros (v1);
+ _bc_rm_leading_zeros (v0);
+ v0len = v0->n_len;
+
+ m1zero = bc_is_zero(u1) || bc_is_zero(v1);
+
+ /* Calculate sub results ... */
+
+ bc_init_num(&d1);
+ bc_init_num(&d2);
+ bc_sub (u1, u0, &d1, 0);
+ d1len = d1->n_len;
+ bc_sub (v0, v1, &d2, 0);
+ d2len = d2->n_len;
+
+
+ /* Do recursive multiplies and shifted adds. */
+ if (m1zero)
+ m1 = bc_copy_num (_zero_);
+ else
+ _bc_rec_mul (u1, u1->n_len, v1, v1->n_len, &m1, 0);
+
+ if (bc_is_zero(d1) || bc_is_zero(d2))
+ m2 = bc_copy_num (_zero_);
+ else
+ _bc_rec_mul (d1, d1len, d2, d2len, &m2, 0);
+
+ if (bc_is_zero(u0) || bc_is_zero(v0))
+ m3 = bc_copy_num (_zero_);
+ else
+ _bc_rec_mul (u0, u0->n_len, v0, v0->n_len, &m3, 0);
+
+ /* Initialize product */
+ prodlen = ulen+vlen+1;
+ *prod = bc_new_num(prodlen, 0);
+
+ if (!m1zero) {
+ _bc_shift_addsub (*prod, m1, 2*n, 0);
+ _bc_shift_addsub (*prod, m1, n, 0);
+ }
+ _bc_shift_addsub (*prod, m3, n, 0);
+ _bc_shift_addsub (*prod, m3, 0, 0);
+ _bc_shift_addsub (*prod, m2, n, d1->n_sign != d2->n_sign);
+
+ /* Now clean up! */
+ bc_free_num (&u1);
+ bc_free_num (&u0);
+ bc_free_num (&v1);
+ bc_free_num (&m1);
+ bc_free_num (&v0);
+ bc_free_num (&m2);
+ bc_free_num (&m3);
+ bc_free_num (&d1);
+ bc_free_num (&d2);
+}
+
+/* The multiply routine. N2 times N1 is put int PROD with the scale of
+ the result being MIN(N2 scale+N1 scale, MAX (SCALE, N2 scale, N1 scale)).
+ */
+
+void
+bc_multiply (n1, n2, prod, scale)
+ bc_num n1, n2, *prod;
+ int scale;
+{
+ bc_num pval;
+ int len1, len2;
+ int full_scale, prod_scale;
+
+ /* Initialize things. */
+ len1 = n1->n_len + n1->n_scale;
+ len2 = n2->n_len + n2->n_scale;
+ full_scale = n1->n_scale + n2->n_scale;
+ prod_scale = MIN(full_scale,MAX(scale,MAX(n1->n_scale,n2->n_scale)));
+
+ /* Do the multiply */
+ _bc_rec_mul (n1, len1, n2, len2, &pval, full_scale);
+
+ /* Assign to prod and clean up the number. */
+ pval->n_sign = ( n1->n_sign == n2->n_sign ? PLUS : MINUS );
+ pval->n_value = pval->n_ptr;
+ pval->n_len = len2 + len1 + 1 - full_scale;
+ pval->n_scale = prod_scale;
+ _bc_rm_leading_zeros (pval);
+ if (bc_is_zero (pval))
+ pval->n_sign = PLUS;
+ bc_free_num (prod);
+ *prod = pval;
+}
+
+/* Some utility routines for the divide: First a one digit multiply.
+ NUM (with SIZE digits) is multiplied by DIGIT and the result is
+ placed into RESULT. It is written so that NUM and RESULT can be
+ the same pointers. */
+
+static void
+_one_mult (num, size, digit, result)
+ unsigned char *num;
+ int size, digit;
+ unsigned char *result;
+{
+ int carry, value;
+ unsigned char *nptr, *rptr;
+
+ if (digit == 0)
+ memset (result, 0, size);
+ else
+ {
+ if (digit == 1)
+ memcpy (result, num, size);
+ else
+ {
+ /* Initialize */
+ nptr = (unsigned char *) (num+size-1);
+ rptr = (unsigned char *) (result+size-1);
+ carry = 0;
+
+ while (size-- > 0)
+ {
+ value = *nptr-- * digit + carry;
+ *rptr-- = value % BASE;
+ carry = value / BASE;
+ }
+
+ if (carry != 0) *rptr = carry;
+ }
+ }
+}
+
+
+/* The full division routine. This computes N1 / N2. It returns
+ 0 if the division is ok and the result is in QUOT. The number of
+ digits after the decimal point is SCALE. It returns -1 if division
+ by zero is tried. The algorithm is found in Knuth Vol 2. p237. */
+
+int
+bc_divide (n1, n2, quot, scale)
+ bc_num n1, n2, *quot;
+ int scale;
+{
+ bc_num qval;
+ unsigned char *num1, *num2;
+ unsigned char *ptr1, *ptr2, *n2ptr, *qptr;
+ int scale1, val;
+ unsigned int len1, len2, scale2, qdigits, extra, count;
+ unsigned int qdig, qguess, borrow, carry;
+ unsigned char *mval;
+ char zero;
+ unsigned int norm;
+
+ /* Test for divide by zero. */
+ if (bc_is_zero (n2)) return -1;
+
+ /* Test for divide by 1. If it is we must truncate. */
+ if (n2->n_scale == 0)
+ {
+ if (n2->n_len == 1 && *n2->n_value == 1)
+ {
+ qval = bc_new_num (n1->n_len, scale);
+ qval->n_sign = (n1->n_sign == n2->n_sign ? PLUS : MINUS);
+ memset (&qval->n_value[n1->n_len],0,scale);
+ memcpy (qval->n_value, n1->n_value,
+ n1->n_len + MIN(n1->n_scale,scale));
+ bc_free_num (quot);
+ *quot = qval;
+ }
+ }
+
+ /* Set up the divide. Move the decimal point on n1 by n2's scale.
+ Remember, zeros on the end of num2 are wasted effort for dividing. */
+ scale2 = n2->n_scale;
+ n2ptr = (unsigned char *) n2->n_value+n2->n_len+scale2-1;
+ while ((scale2 > 0) && (*n2ptr-- == 0)) scale2--;
+
+ len1 = n1->n_len + scale2;
+ scale1 = n1->n_scale - scale2;
+ if (scale1 < scale)
+ extra = scale - scale1;
+ else
+ extra = 0;
+ num1 = (unsigned char *) malloc (n1->n_len+n1->n_scale+extra+2);
+ if (num1 == NULL) bc_out_of_memory();
+ memset (num1, 0, n1->n_len+n1->n_scale+extra+2);
+ memcpy (num1+1, n1->n_value, n1->n_len+n1->n_scale);
+
+ len2 = n2->n_len + scale2;
+ num2 = (unsigned char *) malloc (len2+1);
+ if (num2 == NULL) bc_out_of_memory();
+ memcpy (num2, n2->n_value, len2);
+ *(num2+len2) = 0;
+ n2ptr = num2;
+ while (*n2ptr == 0)
+ {
+ n2ptr++;
+ len2--;
+ }
+
+ /* Calculate the number of quotient digits. */
+ if (len2 > len1+scale)
+ {
+ qdigits = scale+1;
+ zero = TRUE;
+ }
+ else
+ {
+ zero = FALSE;
+ if (len2>len1)
+ qdigits = scale+1; /* One for the zero integer part. */
+ else
+ qdigits = len1-len2+scale+1;
+ }
+
+ /* Allocate and zero the storage for the quotient. */
+ qval = bc_new_num (qdigits-scale,scale);
+ memset (qval->n_value, 0, qdigits);
+
+ /* Allocate storage for the temporary storage mval. */
+ mval = (unsigned char *) malloc (len2+1);
+ if (mval == NULL) bc_out_of_memory ();
+
+ /* Now for the full divide algorithm. */
+ if (!zero)
+ {
+ /* Normalize */
+ norm = 10 / ((int)*n2ptr + 1);
+ if (norm != 1)
+ {
+ _one_mult (num1, len1+scale1+extra+1, norm, num1);
+ _one_mult (n2ptr, len2, norm, n2ptr);
+ }
+
+ /* Initialize divide loop. */
+ qdig = 0;
+ if (len2 > len1)
+ qptr = (unsigned char *) qval->n_value+len2-len1;
+ else
+ qptr = (unsigned char *) qval->n_value;
+
+ /* Loop */
+ while (qdig <= len1+scale-len2)
+ {
+ /* Calculate the quotient digit guess. */
+ if (*n2ptr == num1[qdig])
+ qguess = 9;
+ else
+ qguess = (num1[qdig]*10 + num1[qdig+1]) / *n2ptr;
+
+ /* Test qguess. */
+ if (n2ptr[1]*qguess >
+ (num1[qdig]*10 + num1[qdig+1] - *n2ptr*qguess)*10
+ + num1[qdig+2])
+ {
+ qguess--;
+ /* And again. */
+ if (n2ptr[1]*qguess >
+ (num1[qdig]*10 + num1[qdig+1] - *n2ptr*qguess)*10
+ + num1[qdig+2])
+ qguess--;
+ }
+
+ /* Multiply and subtract. */
+ borrow = 0;
+ if (qguess != 0)
+ {
+ *mval = 0;
+ _one_mult (n2ptr, len2, qguess, mval+1);
+ ptr1 = (unsigned char *) num1+qdig+len2;
+ ptr2 = (unsigned char *) mval+len2;
+ for (count = 0; count < len2+1; count++)
+ {
+ val = (int) *ptr1 - (int) *ptr2-- - borrow;
+ if (val < 0)
+ {
+ val += 10;
+ borrow = 1;
+ }
+ else
+ borrow = 0;
+ *ptr1-- = val;
+ }
+ }
+
+ /* Test for negative result. */
+ if (borrow == 1)
+ {
+ qguess--;
+ ptr1 = (unsigned char *) num1+qdig+len2;
+ ptr2 = (unsigned char *) n2ptr+len2-1;
+ carry = 0;
+ for (count = 0; count < len2; count++)
+ {
+ val = (int) *ptr1 + (int) *ptr2-- + carry;
+ if (val > 9)
+ {
+ val -= 10;
+ carry = 1;
+ }
+ else
+ carry = 0;
+ *ptr1-- = val;
+ }
+ if (carry == 1) *ptr1 = (*ptr1 + 1) % 10;
+ }
+
+ /* We now know the quotient digit. */
+ *qptr++ = qguess;
+ qdig++;
+ }
+ }
+
+ /* Clean up and return the number. */
+ qval->n_sign = ( n1->n_sign == n2->n_sign ? PLUS : MINUS );
+ if (bc_is_zero (qval)) qval->n_sign = PLUS;
+ _bc_rm_leading_zeros (qval);
+ bc_free_num (quot);
+ *quot = qval;
+
+ /* Clean up temporary storage. */
+ free (mval);
+ free (num1);
+ free (num2);
+
+ return 0; /* Everything is OK. */
+}
+
+
+/* Division *and* modulo for numbers. This computes both NUM1 / NUM2 and
+ NUM1 % NUM2 and puts the results in QUOT and REM, except that if QUOT
+ is NULL then that store will be omitted.
+ */
+
+int
+bc_divmod (num1, num2, quot, rem, scale)
+ bc_num num1, num2, *quot, *rem;
+ int scale;
+{
+ bc_num quotient = NULL;
+ bc_num temp;
+ int rscale;
+
+ /* Check for correct numbers. */
+ if (bc_is_zero (num2)) return -1;
+
+ /* Calculate final scale. */
+ rscale = MAX (num1->n_scale, num2->n_scale+scale);
+ bc_init_num(&temp);
+
+ /* Calculate it. */
+ bc_divide (num1, num2, &temp, scale);
+ if (quot)
+ quotient = bc_copy_num (temp);
+ bc_multiply (temp, num2, &temp, rscale);
+ bc_sub (num1, temp, rem, rscale);
+ bc_free_num (&temp);
+
+ if (quot)
+ {
+ bc_free_num (quot);
+ *quot = quotient;
+ }
+
+ return 0; /* Everything is OK. */
+}
+
+
+/* Modulo for numbers. This computes NUM1 % NUM2 and puts the
+ result in RESULT. */
+
+int
+bc_modulo (num1, num2, result, scale)
+ bc_num num1, num2, *result;
+ int scale;
+{
+ return bc_divmod (num1, num2, NULL, result, scale);
+}
+
+/* Raise BASE to the EXPO power, reduced modulo MOD. The result is
+ placed in RESULT. If a EXPO is not an integer,
+ only the integer part is used. */
+
+int
+bc_raisemod (base, expo, mod, result, scale)
+ bc_num base, expo, mod, *result;
+ int scale;
+{
+ bc_num power, exponent, parity, temp;
+ int rscale;
+
+ /* Check for correct numbers. */
+ if (bc_is_zero(mod)) return -1;
+ if (bc_is_neg(expo)) return -1;
+
+ /* Set initial values. */
+ power = bc_copy_num (base);
+ exponent = bc_copy_num (expo);
+ temp = bc_copy_num (_one_);
+ bc_init_num(&parity);
+
+ /* Check the base for scale digits. */
+ if (base->n_scale != 0)
+ bc_rt_warn ("non-zero scale in base");
+
+ /* Check the exponent for scale digits. */
+ if (exponent->n_scale != 0)
+ {
+ bc_rt_warn ("non-zero scale in exponent");
+ bc_divide (exponent, _one_, &exponent, 0); /*truncate */
+ }
+
+ /* Check the modulus for scale digits. */
+ if (mod->n_scale != 0)
+ bc_rt_warn ("non-zero scale in modulus");
+
+ /* Do the calculation. */
+ rscale = MAX(scale, base->n_scale);
+ while ( !bc_is_zero(exponent) )
+ {
+ (void) bc_divmod (exponent, _two_, &exponent, &parity, 0);
+ if ( !bc_is_zero(parity) )
+ {
+ bc_multiply (temp, power, &temp, rscale);
+ (void) bc_modulo (temp, mod, &temp, scale);
+ }
+
+ bc_multiply (power, power, &power, rscale);
+ (void) bc_modulo (power, mod, &power, scale);
+ }
+
+ /* Assign the value. */
+ bc_free_num (&power);
+ bc_free_num (&exponent);
+ bc_free_num (result);
+ *result = temp;
+ return 0; /* Everything is OK. */
+}
+
+/* Raise NUM1 to the NUM2 power. The result is placed in RESULT.
+ Maximum exponent is LONG_MAX. If a NUM2 is not an integer,
+ only the integer part is used. */
+
+void
+bc_raise (num1, num2, result, scale)
+ bc_num num1, num2, *result;
+ int scale;
+{
+ bc_num temp, power;
+ long exponent;
+ int rscale;
+ int pwrscale;
+ int calcscale;
+ char neg;
+
+ /* Check the exponent for scale digits and convert to a long. */
+ if (num2->n_scale != 0)
+ bc_rt_warn ("non-zero scale in exponent");
+ exponent = bc_num2long (num2);
+ if (exponent == 0 && (num2->n_len > 1 || num2->n_value[0] != 0))
+ bc_rt_error ("exponent too large in raise");
+
+ /* Special case if exponent is a zero. */
+ if (exponent == 0)
+ {
+ bc_free_num (result);
+ *result = bc_copy_num (_one_);
+ return;
+ }
+
+ /* Other initializations. */
+ if (exponent < 0)
+ {
+ neg = TRUE;
+ exponent = -exponent;
+ rscale = scale;
+ }
+ else
+ {
+ neg = FALSE;
+ rscale = MIN (num1->n_scale*exponent, MAX(scale, num1->n_scale));
+ }
+
+ /* Set initial value of temp. */
+ power = bc_copy_num (num1);
+ pwrscale = num1->n_scale;
+ while ((exponent & 1) == 0)
+ {
+ pwrscale = 2*pwrscale;
+ bc_multiply (power, power, &power, pwrscale);
+ exponent = exponent >> 1;
+ }
+ temp = bc_copy_num (power);
+ calcscale = pwrscale;
+ exponent = exponent >> 1;
+
+ /* Do the calculation. */
+ while (exponent > 0)
+ {
+ pwrscale = 2*pwrscale;
+ bc_multiply (power, power, &power, pwrscale);
+ if ((exponent & 1) == 1) {
+ calcscale = pwrscale + calcscale;
+ bc_multiply (temp, power, &temp, calcscale);
+ }
+ exponent = exponent >> 1;
+ }
+
+ /* Assign the value. */
+ if (neg)
+ {
+ bc_divide (_one_, temp, result, rscale);
+ bc_free_num (&temp);
+ }
+ else
+ {
+ bc_free_num (result);
+ *result = temp;
+ if ((*result)->n_scale > rscale)
+ (*result)->n_scale = rscale;
+ }
+ bc_free_num (&power);
+}
+
+/* Take the square root NUM and return it in NUM with SCALE digits
+ after the decimal place. */
+
+int
+bc_sqrt (num, scale)
+ bc_num *num;
+ int scale;
+{
+ int rscale, cmp_res, done;
+ int cscale;
+ bc_num guess, guess1, point5, diff;
+
+ /* Initial checks. */
+ cmp_res = bc_compare (*num, _zero_);
+ if (cmp_res < 0)
+ return 0; /* error */
+ else
+ {
+ if (cmp_res == 0)
+ {
+ bc_free_num (num);
+ *num = bc_copy_num (_zero_);
+ return 1;
+ }
+ }
+ cmp_res = bc_compare (*num, _one_);
+ if (cmp_res == 0)
+ {
+ bc_free_num (num);
+ *num = bc_copy_num (_one_);
+ return 1;
+ }
+
+ /* Initialize the variables. */
+ rscale = MAX (scale, (*num)->n_scale);
+ bc_init_num(&guess);
+ bc_init_num(&guess1);
+ bc_init_num(&diff);
+ point5 = bc_new_num (1,1);
+ point5->n_value[1] = 5;
+
+
+ /* Calculate the initial guess. */
+ if (cmp_res < 0)
+ {
+ /* The number is between 0 and 1. Guess should start at 1. */
+ guess = bc_copy_num (_one_);
+ cscale = (*num)->n_scale;
+ }
+ else
+ {
+ /* The number is greater than 1. Guess should start at 10^(exp/2). */
+ bc_int2num (&guess,10);
+
+ bc_int2num (&guess1,(*num)->n_len);
+ bc_multiply (guess1, point5, &guess1, 0);
+ guess1->n_scale = 0;
+ bc_raise (guess, guess1, &guess, 0);
+ bc_free_num (&guess1);
+ cscale = 3;
+ }
+
+ /* Find the square root using Newton's algorithm. */
+ done = FALSE;
+ while (!done)
+ {
+ bc_free_num (&guess1);
+ guess1 = bc_copy_num (guess);
+ bc_divide (*num, guess, &guess, cscale);
+ bc_add (guess, guess1, &guess, 0);
+ bc_multiply (guess, point5, &guess, cscale);
+ bc_sub (guess, guess1, &diff, cscale+1);
+ if (bc_is_near_zero (diff, cscale))
+ {
+ if (cscale < rscale+1)
+ cscale = MIN (cscale*3, rscale+1);
+ else
+ done = TRUE;
+ }
+ }
+
+ /* Assign the number and clean up. */
+ bc_free_num (num);
+ bc_divide (guess,_one_,num,rscale);
+ bc_free_num (&guess);
+ bc_free_num (&guess1);
+ bc_free_num (&point5);
+ bc_free_num (&diff);
+ return 1;
+}
+
+
+/* The following routines provide output for bcd numbers package
+ using the rules of POSIX bc for output. */
+
+/* This structure is used for saving digits in the conversion process. */
+typedef struct stk_rec {
+ long digit;
+ struct stk_rec *next;
+} stk_rec;
+
+/* The reference string for digits. */
+static char ref_str[] = "0123456789ABCDEF";
+
+
+/* A special output routine for "multi-character digits." Exactly
+ SIZE characters must be output for the value VAL. If SPACE is
+ non-zero, we must output one space before the number. OUT_CHAR
+ is the actual routine for writing the characters. */
+
+void
+bc_out_long (val, size, space, out_char)
+ long val;
+ int size, space;
+#ifdef NUMBER__STDC__
+ void (*out_char)(int);
+#else
+ void (*out_char)();
+#endif
+{
+ char digits[40];
+ int len, ix;
+
+ if (space) (*out_char) (' ');
+ sprintf (digits, "%ld", val);
+ len = strlen (digits);
+ while (size > len)
+ {
+ (*out_char) ('0');
+ size--;
+ }
+ for (ix=0; ix < len; ix++)
+ (*out_char) (digits[ix]);
+}
+
+/* Output of a bcd number. NUM is written in base O_BASE using OUT_CHAR
+ as the routine to do the actual output of the characters. */
+
+void
+bc_out_num (num, o_base, out_char, leading_zero)
+ bc_num num;
+ int o_base;
+#ifdef NUMBER__STDC__
+ void (*out_char)(int);
+#else
+ void (*out_char)();
+#endif
+ int leading_zero;
+{
+ char *nptr;
+ int index, fdigit, pre_space;
+ stk_rec *digits, *temp;
+ bc_num int_part, frac_part, base, cur_dig, t_num, max_o_digit;
+
+ /* The negative sign if needed. */
+ if (num->n_sign == MINUS) (*out_char) ('-');
+
+ /* Output the number. */
+ if (bc_is_zero (num))
+ (*out_char) ('0');
+ else
+ if (o_base == 10)
+ {
+ /* The number is in base 10, do it the fast way. */
+ nptr = num->n_value;
+ if (num->n_len > 1 || *nptr != 0)
+ for (index=num->n_len; index>0; index--)
+ (*out_char) (BCD_CHAR(*nptr++));
+ else
+ nptr++;
+
+ if (leading_zero && bc_is_zero (num))
+ (*out_char) ('0');
+
+ /* Now the fraction. */
+ if (num->n_scale > 0)
+ {
+ (*out_char) ('.');
+ for (index=0; index<num->n_scale; index++)
+ (*out_char) (BCD_CHAR(*nptr++));
+ }
+ }
+ else
+ {
+ /* special case ... */
+ if (leading_zero && bc_is_zero (num))
+ (*out_char) ('0');
+
+ /* The number is some other base. */
+ digits = NULL;
+ bc_init_num (&int_part);
+ bc_divide (num, _one_, &int_part, 0);
+ bc_init_num (&frac_part);
+ bc_init_num (&cur_dig);
+ bc_init_num (&base);
+ bc_sub (num, int_part, &frac_part, 0);
+ /* Make the INT_PART and FRAC_PART positive. */
+ int_part->n_sign = PLUS;
+ frac_part->n_sign = PLUS;
+ bc_int2num (&base, o_base);
+ bc_init_num (&max_o_digit);
+ bc_int2num (&max_o_digit, o_base-1);
+
+
+ /* Get the digits of the integer part and push them on a stack. */
+ while (!bc_is_zero (int_part))
+ {
+ bc_modulo (int_part, base, &cur_dig, 0);
+ temp = (stk_rec *) malloc (sizeof(stk_rec));
+ if (temp == NULL) bc_out_of_memory();
+ temp->digit = bc_num2long (cur_dig);
+ temp->next = digits;
+ digits = temp;
+ bc_divide (int_part, base, &int_part, 0);
+ }
+
+ /* Print the digits on the stack. */
+ if (digits != NULL)
+ {
+ /* Output the digits. */
+ while (digits != NULL)
+ {
+ temp = digits;
+ digits = digits->next;
+ if (o_base <= 16)
+ (*out_char) (ref_str[ (int) temp->digit]);
+ else
+ bc_out_long (temp->digit, max_o_digit->n_len, 1, out_char);
+ free (temp);
+ }
+ }
+
+ /* Get and print the digits of the fraction part. */
+ if (num->n_scale > 0)
+ {
+ (*out_char) ('.');
+ pre_space = 0;
+ t_num = bc_copy_num (_one_);
+ while (t_num->n_len <= num->n_scale) {
+ bc_multiply (frac_part, base, &frac_part, num->n_scale);
+ fdigit = bc_num2long (frac_part);
+ bc_int2num (&int_part, fdigit);
+ bc_sub (frac_part, int_part, &frac_part, 0);
+ if (o_base <= 16)
+ (*out_char) (ref_str[fdigit]);
+ else {
+ bc_out_long (fdigit, max_o_digit->n_len, pre_space, out_char);
+ pre_space = 1;
+ }
+ bc_multiply (t_num, base, &t_num, 0);
+ }
+ bc_free_num (&t_num);
+ }
+
+ /* Clean up. */
+ bc_free_num (&int_part);
+ bc_free_num (&frac_part);
+ bc_free_num (&base);
+ bc_free_num (&cur_dig);
+ bc_free_num (&max_o_digit);
+ }
+}
+/* Convert a number NUM to a long. The function returns only the integer
+ part of the number. For numbers that are too large to represent as
+ a long, this function returns a zero. This can be detected by checking
+ the NUM for zero after having a zero returned. */
+
+long
+bc_num2long (num)
+ bc_num num;
+{
+ long val;
+ char *nptr;
+ int index;
+
+ /* Extract the int value, ignore the fraction. */
+ val = 0;
+ nptr = num->n_value;
+ for (index=num->n_len; (index>0) && (val<=(LONG_MAX/BASE)); index--)
+ val = val*BASE + *nptr++;
+
+ /* Check for overflow. If overflow, return zero. */
+ if (index>0) val = 0;
+ if (val < 0) val = 0;
+
+ /* Return the value. */
+ if (num->n_sign == PLUS)
+ return (val);
+ else
+ return (-val);
+}
+
+
+/* Convert an integer VAL to a bc number NUM. */
+
+void
+bc_int2num (num, val)
+ bc_num *num;
+ int val;
+{
+ char buffer[30];
+ char *bptr, *vptr;
+ int ix = 1;
+ char neg = 0;
+
+ /* Sign. */
+ if (val < 0)
+ {
+ neg = 1;
+ val = -val;
+ }
+
+ /* Get things going. */
+ bptr = buffer;
+ *bptr++ = val % BASE;
+ val = val / BASE;
+
+ /* Extract remaining digits. */
+ while (val != 0)
+ {
+ *bptr++ = val % BASE;
+ val = val / BASE;
+ ix++; /* Count the digits. */
+ }
+
+ /* Make the number. */
+ bc_free_num (num);
+ *num = bc_new_num (ix, 0);
+ if (neg) (*num)->n_sign = MINUS;
+
+ /* Assign the digits. */
+ vptr = (*num)->n_value;
+ while (ix-- > 0)
+ *vptr++ = *--bptr;
+}
+
+/* Convert a numbers to a string. Base 10 only.*/
+
+char
+*bc_num2str (num)
+ bc_num num;
+{
+ char *str, *sptr;
+ char *nptr;
+ int index, signch;
+
+ /* Allocate the string memory. */
+ signch = ( num->n_sign == PLUS ? 0 : 1 ); /* Number of sign chars. */
+ if (num->n_scale > 0)
+ str = (char *) malloc (num->n_len + num->n_scale + 2 + signch);
+ else
+ str = (char *) malloc (num->n_len + 1 + signch);
+ if (str == NULL) bc_out_of_memory();
+
+ /* The negative sign if needed. */
+ sptr = str;
+ if (signch) *sptr++ = '-';
+
+ /* Load the whole number. */
+ nptr = num->n_value;
+ for (index=num->n_len; index>0; index--)
+ *sptr++ = BCD_CHAR(*nptr++);
+
+ /* Now the fraction. */
+ if (num->n_scale > 0)
+ {
+ *sptr++ = '.';
+ for (index=0; index<num->n_scale; index++)
+ *sptr++ = BCD_CHAR(*nptr++);
+ }
+
+ /* Terminate the string and return it! */
+ *sptr = '\0';
+ return (str);
+}
+/* Convert strings to bc numbers. Base 10 only.*/
+
+void
+bc_str2num (num, str, scale)
+ bc_num *num;
+ char *str;
+ int scale;
+{
+ int digits, strscale;
+ char *ptr, *nptr;
+ char zero_int;
+
+ /* Prepare num. */
+ bc_free_num (num);
+
+ /* Check for valid number and count digits. */
+ ptr = str;
+ digits = 0;
+ strscale = 0;
+ zero_int = FALSE;
+ if ( (*ptr == '+') || (*ptr == '-')) ptr++; /* Sign */
+ while (*ptr == '0') ptr++; /* Skip leading zeros. */
+ while (isdigit((int)*ptr)) ptr++, digits++; /* digits */
+ if (*ptr == '.') ptr++; /* decimal point */
+ while (isdigit((int)*ptr)) ptr++, strscale++; /* digits */
+ if ((*ptr != '\0') || (digits+strscale == 0))
+ {
+ *num = bc_copy_num (_zero_);
+ return;
+ }
+
+ /* Adjust numbers and allocate storage and initialize fields. */
+ strscale = MIN(strscale, scale);
+ if (digits == 0)
+ {
+ zero_int = TRUE;
+ digits = 1;
+ }
+ *num = bc_new_num (digits, strscale);
+
+ /* Build the whole number. */
+ ptr = str;
+ if (*ptr == '-')
+ {
+ (*num)->n_sign = MINUS;
+ ptr++;
+ }
+ else
+ {
+ (*num)->n_sign = PLUS;
+ if (*ptr == '+') ptr++;
+ }
+ while (*ptr == '0') ptr++; /* Skip leading zeros. */
+ nptr = (*num)->n_value;
+ if (zero_int)
+ {
+ *nptr++ = 0;
+ digits = 0;
+ }
+ for (;digits > 0; digits--)
+ *nptr++ = CH_VAL(*ptr++);
+
+
+ /* Build the fractional part. */
+ if (strscale > 0)
+ {
+ ptr++; /* skip the decimal point! */
+ for (;strscale > 0; strscale--)
+ *nptr++ = CH_VAL(*ptr++);
+ }
+}
+
+/* pn prints the number NUM in base 10. */
+
+static void
+out_char (int c)
+{
+ putchar(c);
+}
+
+
+void
+pn (num)
+ bc_num num;
+{
+ bc_out_num (num, 10, out_char, 0);
+ out_char ('\n');
+}
+
+
+/* pv prints a character array as if it was a string of bcd digits. */
+void
+pv (name, num, len)
+ char *name;
+ unsigned char *num;
+ int len;
+{
+ int i;
+ printf ("%s=", name);
+ for (i=0; i<len; i++) printf ("%c",BCD_CHAR(num[i]));
+ printf ("\n");
+}
+
+// vim: set et sw=2 ts=8: