summaryrefslogtreecommitdiffstats
path: root/flow/gsl/gslfilter.c
diff options
context:
space:
mode:
authortpearson <tpearson@283d02a7-25f6-0310-bc7c-ecb5cbfe19da>2010-01-05 00:01:18 +0000
committertpearson <tpearson@283d02a7-25f6-0310-bc7c-ecb5cbfe19da>2010-01-05 00:01:18 +0000
commit42995d7bf396933ee60c5f89c354ea89cf13df0d (patch)
treecfdcea0ac57420e7baf570bfe435e107bb842541 /flow/gsl/gslfilter.c
downloadarts-42995d7bf396933ee60c5f89c354ea89cf13df0d.tar.gz
arts-42995d7bf396933ee60c5f89c354ea89cf13df0d.zip
Copy of aRts for Trinity modifications
git-svn-id: svn://anonsvn.kde.org/home/kde/branches/trinity/dependencies/arts@1070145 283d02a7-25f6-0310-bc7c-ecb5cbfe19da
Diffstat (limited to 'flow/gsl/gslfilter.c')
-rw-r--r--flow/gsl/gslfilter.c1379
1 files changed, 1379 insertions, 0 deletions
diff --git a/flow/gsl/gslfilter.c b/flow/gsl/gslfilter.c
new file mode 100644
index 0000000..5bf8ff5
--- /dev/null
+++ b/flow/gsl/gslfilter.c
@@ -0,0 +1,1379 @@
+/* GSL - Generic Sound Layer
+ * Copyright (C) 2001 Stefan Westerfeld and Tim Janik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General
+ * Public License along with this library; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place, Suite 330,
+ * Boston, MA 02111-1307, USA.
+ */
+#include "gslfilter.h"
+
+#include "gslfft.h"
+#include "gslsignal.h"
+#include <string.h>
+
+
+/* --- common utilities --- */
+static inline double
+cotan (double x)
+{
+ return - tan (x + GSL_PI * 0.5);
+}
+
+static double
+gsl_db_invert (double x)
+{
+ /* db = 20*log(x)/log(10); */
+ return exp (x * log (10) / 20.0);
+}
+
+static void
+band_filter_common (unsigned int iorder,
+ double p_freq, /* 0..pi */
+ double s_freq, /* 0..pi */
+ double epsilon,
+ GslComplex *roots,
+ GslComplex *poles,
+ double *a, /* [0..iorder] */
+ double *b,
+ gboolean band_pass,
+ gboolean t1_norm)
+{
+ unsigned int iorder2 = iorder >> 1;
+ GslComplex *poly = g_newa (GslComplex, iorder + 1);
+ GslComplex fpoly[2 + 1] = { { 0, }, { 0, }, { 1, 0 } };
+ double alpha, norm;
+ guint i;
+
+ epsilon = gsl_trans_zepsilon2ss (epsilon);
+ alpha = cos ((s_freq + p_freq) * 0.5) / cos ((s_freq - p_freq) * 0.5);
+
+ fpoly[0] = gsl_complex (1, 0);
+ fpoly[1] = gsl_complex (1, 0);
+ for (i = 0; i < iorder2; i++)
+ {
+ fpoly[0] = gsl_complex_mul (fpoly[0], gsl_complex_sub (gsl_complex (1, 0), gsl_complex_reciprocal (roots[i])));
+ fpoly[1] = gsl_complex_mul (fpoly[1], gsl_complex_sub (gsl_complex (1, 0), gsl_complex_reciprocal (poles[i])));
+ }
+ norm = gsl_complex_div (fpoly[1], fpoly[0]).re;
+
+ if ((iorder2 & 1) == 0) /* norm is fluctuation minimum */
+ norm *= sqrt (1.0 / (1.0 + epsilon * epsilon));
+
+ /* z nominator polynomial */
+ poly[0] = gsl_complex (norm, 0);
+ for (i = 0; i < iorder2; i++)
+ {
+ GslComplex t, alphac = gsl_complex (alpha, 0);
+
+ t = band_pass ? gsl_complex_inv (roots[i]) : roots[i];
+ fpoly[1] = gsl_complex_sub (gsl_complex_div (alphac, t), alphac);
+ fpoly[0] = gsl_complex_inv (gsl_complex_reciprocal (t));
+ gsl_cpoly_mul (poly, i * 2, poly, 2, fpoly);
+ }
+ for (i = 0; i <= iorder; i++)
+ a[i] = poly[i].re;
+
+ /* z denominator polynomial */
+ poly[0] = gsl_complex (1, 0);
+ for (i = 0; i < iorder2; i++)
+ {
+ GslComplex t, alphac = gsl_complex (alpha, 0);
+
+ t = band_pass ? gsl_complex_inv (poles[i]) : poles[i];
+ fpoly[1] = gsl_complex_sub (gsl_complex_div (alphac, t), alphac);
+ fpoly[0] = gsl_complex_inv (gsl_complex_reciprocal (t));
+ gsl_cpoly_mul (poly, i * 2, poly, 2, fpoly);
+ }
+ for (i = 0; i <= iorder; i++)
+ b[i] = poly[i].re;
+ gsl_poly_scale (iorder, a, 1.0 / b[0]);
+ gsl_poly_scale (iorder, b, 1.0 / b[0]);
+}
+
+static void
+filter_rp_to_z (unsigned int iorder,
+ GslComplex *roots, /* [0..iorder-1] */
+ GslComplex *poles,
+ double *a, /* [0..iorder] */
+ double *b)
+{
+ GslComplex *poly = g_newa (GslComplex, iorder + 1);
+ guint i;
+
+ /* z nominator polynomial */
+ poly[0] = gsl_complex (1, 0);
+ for (i = 0; i < iorder; i++)
+ gsl_cpoly_mul_reciprocal (i + 1, poly, roots[i]);
+ for (i = 0; i <= iorder; i++)
+ a[i] = poly[i].re;
+
+ /* z denominator polynomial */
+ poly[0] = gsl_complex (1, 0);
+ for (i = 0; i < iorder; i++)
+ gsl_cpoly_mul_reciprocal (i + 1, poly, poles[i]);
+ for (i = 0; i <= iorder; i++)
+ b[i] = poly[i].re;
+}
+
+static void
+filter_lp_invert (unsigned int iorder,
+ double *a, /* [0..iorder] */
+ double *b)
+{
+ guint i;
+
+ for (i = 1; i <= iorder; i +=2)
+ {
+ a[i] = -a[i];
+ b[i] = -b[i];
+ }
+}
+
+
+/* --- butterworth filter --- */
+void
+gsl_filter_butter_rp (unsigned int iorder,
+ double freq, /* 0..pi */
+ double epsilon,
+ GslComplex *roots, /* [0..iorder-1] */
+ GslComplex *poles)
+{
+ double pi = GSL_PI, order = iorder;
+ double beta_mul = pi / (2.0 * order);
+ /* double kappa = gsl_trans_freq2s (freq); */
+ double kappa;
+ GslComplex root;
+ unsigned int i;
+
+ epsilon = gsl_trans_zepsilon2ss (epsilon);
+ kappa = gsl_trans_freq2s (freq) * pow (epsilon, -1.0 / order);
+
+ /* construct poles for butterworth filter */
+ for (i = 1; i <= iorder; i++)
+ {
+ double t = (i << 1) + iorder - 1;
+ double beta = t * beta_mul;
+
+ root.re = kappa * cos (beta);
+ root.im = kappa * sin (beta);
+ poles[i - 1] = gsl_trans_s2z (root);
+ }
+
+ /* z nominator polynomial */
+ for (i = 0; i < iorder; i++)
+ roots[i] = gsl_complex (-1, 0);
+}
+
+
+/* --- tschebyscheff type 1 filter --- */
+static double
+tschebyscheff_eval (unsigned int degree,
+ double x)
+{
+ double td = x, td_m_1 = 1;
+ unsigned int d = 1;
+
+ /* eval polynomial for a certain x */
+ if (degree == 0)
+ return 1;
+
+ while (d < degree)
+ {
+ double td1 = 2 * x * td - td_m_1;
+
+ td_m_1 = td;
+ td = td1;
+ d++;
+ }
+ return td;
+}
+
+static double
+tschebyscheff_inverse (unsigned int degree,
+ double x)
+{
+ /* note, that thebyscheff_eval(degree,x)=cosh(degree*acosh(x)) */
+ return cosh (acosh (x) / degree);
+}
+
+void
+gsl_filter_tscheb1_rp (unsigned int iorder,
+ double freq, /* 1..pi */
+ double epsilon,
+ GslComplex *roots, /* [0..iorder-1] */
+ GslComplex *poles)
+{
+ double pi = GSL_PI, order = iorder;
+ double alpha;
+ double beta_mul = pi / (2.0 * order);
+ double kappa = gsl_trans_freq2s (freq);
+ GslComplex root;
+ unsigned int i;
+
+ epsilon = gsl_trans_zepsilon2ss (epsilon);
+ alpha = asinh (1.0 / epsilon) / order;
+
+ /* construct poles polynomial from tschebyscheff polynomial */
+ for (i = 1; i <= iorder; i++)
+ {
+ double t = (i << 1) + iorder - 1;
+ double beta = t * beta_mul;
+
+ root.re = kappa * sinh (alpha) * cos (beta);
+ root.im = kappa * cosh (alpha) * sin (beta);
+ poles[i - 1] = gsl_trans_s2z (root);
+ }
+
+ /* z nominator polynomial */
+ for (i = 0; i < iorder; i++)
+ roots[i] = gsl_complex (-1, 0);
+}
+
+
+/* --- tschebyscheff type 2 filter --- */
+void
+gsl_filter_tscheb2_rp (unsigned int iorder,
+ double c_freq, /* 1..pi */
+ double steepness,
+ double epsilon,
+ GslComplex *roots, /* [0..iorder-1] */
+ GslComplex *poles)
+{
+ double pi = GSL_PI, order = iorder;
+ double r_freq = c_freq * steepness;
+ double kappa_c = gsl_trans_freq2s (c_freq);
+ double kappa_r = gsl_trans_freq2s (r_freq);
+ double tepsilon;
+ double alpha;
+ double beta_mul = pi / (2.0 * order);
+ GslComplex root;
+ unsigned int i;
+
+#if 0
+ /* triggers an internal compiler error with gcc-2.95.4 (and certain
+ * combinations of optimization options)
+ */
+ g_return_if_fail (c_freq * steepness < GSL_PI);
+#endif
+ g_return_if_fail (steepness > 1.0);
+
+ epsilon = gsl_trans_zepsilon2ss (epsilon);
+ tepsilon = epsilon * tschebyscheff_eval (iorder, kappa_r / kappa_c);
+ alpha = asinh (tepsilon) / order;
+
+ /* construct poles polynomial from tschebyscheff polynomial */
+ for (i = 1; i <= iorder; i++)
+ {
+ double t = (i << 1) + iorder - 1;
+ double beta = t * beta_mul;
+
+ root.re = sinh (alpha) * cos (beta);
+ root.im = cosh (alpha) * sin (beta);
+ root = gsl_complex_div (gsl_complex (kappa_r, 0), root);
+ root = gsl_trans_s2z (root);
+ poles[i - 1] = root;
+ }
+
+ /* construct roots polynomial from tschebyscheff polynomial */
+ for (i = 1; i <= iorder; i++)
+ {
+ double t = (i << 1) - 1;
+ GslComplex root = gsl_complex (0, cos (t * beta_mul));
+
+ if (fabs (root.im) > 1e-14)
+ {
+ root = gsl_complex_div (gsl_complex (kappa_r, 0), root);
+ root = gsl_trans_s2z (root);
+ }
+ else
+ root = gsl_complex (-1, 0);
+ roots[i - 1] = root;
+ }
+}
+
+/**
+ * gsl_filter_tscheb2_steepness_db
+ * @iorder: filter order
+ * @c_freq: passband cutoff frequency (0..pi)
+ * @epsilon: fall off at passband frequency (0..1)
+ * @stopband_db: reduction in stopband in dB (>= 0)
+ * Calculates the steepness parameter for Tschebyscheff type 2 lowpass filter,
+ * based on the ripple residue in the stop band.
+ */
+double
+gsl_filter_tscheb2_steepness_db (unsigned int iorder,
+ double c_freq,
+ double epsilon,
+ double stopband_db)
+{
+ return gsl_filter_tscheb2_steepness (iorder, c_freq, epsilon, gsl_db_invert (-stopband_db));
+}
+
+/**
+ * gsl_filter_tscheb2_steepness
+ * @iorder: filter order
+ * @c_freq: passband cutoff frequency (0..pi)
+ * @epsilon: fall off at passband frequency (0..1)
+ * @residue: maximum of transfer function in stopband (0..1)
+ * Calculates the steepness parameter for Tschebyscheff type 2 lowpass filter,
+ * based on ripple residue in the stop band.
+ */
+double
+gsl_filter_tscheb2_steepness (unsigned int iorder,
+ double c_freq,
+ double epsilon,
+ double residue)
+{
+ double kappa_c, kappa_r, r_freq;
+
+ epsilon = gsl_trans_zepsilon2ss (epsilon);
+ kappa_c = gsl_trans_freq2s (c_freq);
+ kappa_r = tschebyscheff_inverse (iorder, sqrt (1.0 / (residue * residue) - 1.0) / epsilon) * kappa_c;
+ r_freq = gsl_trans_freq2z (kappa_r);
+
+ return r_freq / c_freq;
+}
+
+
+/* --- lowpass filters --- */
+/**
+ * gsl_filter_butter_lp
+ * @iorder: filter order
+ * @freq: cutoff frequency (0..pi)
+ * @epsilon: fall off at cutoff frequency (0..1)
+ * @a: root polynomial coefficients a[0..iorder]
+ * @b: pole polynomial coefficients b[0..iorder]
+ * Butterworth lowpass filter.
+ */
+void
+gsl_filter_butter_lp (unsigned int iorder,
+ double freq, /* 0..pi */
+ double epsilon,
+ double *a, /* [0..iorder] */
+ double *b)
+{
+ GslComplex *roots = g_newa (GslComplex, iorder);
+ GslComplex *poles = g_newa (GslComplex, iorder);
+ double norm;
+
+ g_return_if_fail (freq > 0 && freq < GSL_PI);
+
+ gsl_filter_butter_rp (iorder, freq, epsilon, roots, poles);
+ filter_rp_to_z (iorder, roots, poles, a, b);
+
+ /* scale maximum to 1.0 */
+ norm = gsl_poly_eval (iorder, b, 1) / gsl_poly_eval (iorder, a, 1);
+ gsl_poly_scale (iorder, a, norm);
+}
+
+/**
+ * gsl_filter_tscheb1_lp
+ * @iorder: filter order
+ * @freq: cutoff frequency (0..pi)
+ * @epsilon: fall off at cutoff frequency (0..1)
+ * @a: root polynomial coefficients a[0..iorder]
+ * @b: pole polynomial coefficients b[0..iorder]
+ * Tschebyscheff type 1 lowpass filter.
+ */
+void
+gsl_filter_tscheb1_lp (unsigned int iorder,
+ double freq, /* 0..pi */
+ double epsilon,
+ double *a, /* [0..iorder] */
+ double *b)
+{
+ GslComplex *roots = g_newa (GslComplex, iorder);
+ GslComplex *poles = g_newa (GslComplex, iorder);
+ double norm;
+
+ g_return_if_fail (freq > 0 && freq < GSL_PI);
+
+ gsl_filter_tscheb1_rp (iorder, freq, epsilon, roots, poles);
+ filter_rp_to_z (iorder, roots, poles, a, b);
+
+ /* scale maximum to 1.0 */
+ norm = gsl_poly_eval (iorder, b, 1) / gsl_poly_eval (iorder, a, 1);
+ if ((iorder & 1) == 0) /* norm is fluctuation minimum */
+ {
+ epsilon = gsl_trans_zepsilon2ss (epsilon);
+ norm *= sqrt (1.0 / (1.0 + epsilon * epsilon));
+ }
+ gsl_poly_scale (iorder, a, norm);
+}
+
+/**
+ * gsl_filter_tscheb2_lp
+ * @iorder: filter order
+ * @freq: passband cutoff frequency (0..pi)
+ * @steepness: frequency steepness (c_freq * steepness < pi)
+ * @epsilon: fall off at passband frequency (0..1)
+ * @a: root polynomial coefficients a[0..iorder]
+ * @b: pole polynomial coefficients b[0..iorder]
+ * Tschebyscheff type 2 lowpass filter.
+ * To gain a transition band between freq1 and freq2, pass arguements
+ * @freq=freq1 and @steepness=freq2/freq1. To specify the transition
+ * band width in fractions of octaves, pass @steepness=2^octave_fraction.
+ */
+void
+gsl_filter_tscheb2_lp (unsigned int iorder,
+ double freq, /* 0..pi */
+ double steepness,
+ double epsilon,
+ double *a, /* [0..iorder] */
+ double *b)
+{
+ GslComplex *roots = g_newa (GslComplex, iorder);
+ GslComplex *poles = g_newa (GslComplex, iorder);
+ double norm;
+
+ g_return_if_fail (freq > 0 && freq < GSL_PI);
+ g_return_if_fail (freq * steepness < GSL_PI);
+ g_return_if_fail (steepness > 1.0);
+
+ gsl_filter_tscheb2_rp (iorder, freq, steepness, epsilon, roots, poles);
+ filter_rp_to_z (iorder, roots, poles, a, b);
+
+ /* scale maximum to 1.0 */
+ norm = gsl_poly_eval (iorder, b, 1) / gsl_poly_eval (iorder, a, 1); /* H(z=0):=1, e^(j*omega) for omega=0 => e^0==1 */
+ gsl_poly_scale (iorder, a, norm);
+}
+
+
+/* --- highpass filters --- */
+/**
+ * gsl_filter_butter_hp
+ * @iorder: filter order
+ * @freq: passband frequency (0..pi)
+ * @epsilon: fall off at passband frequency (0..1)
+ * @a: root polynomial coefficients a[0..iorder]
+ * @b: pole polynomial coefficients b[0..iorder]
+ * Butterworth highpass filter.
+ */
+void
+gsl_filter_butter_hp (unsigned int iorder,
+ double freq, /* 0..pi */
+ double epsilon,
+ double *a, /* [0..iorder] */
+ double *b)
+{
+ g_return_if_fail (freq > 0 && freq < GSL_PI);
+
+ freq = GSL_PI - freq;
+ gsl_filter_butter_lp (iorder, freq, epsilon, a, b);
+ filter_lp_invert (iorder, a, b);
+}
+
+/**
+ * gsl_filter_tscheb1_hp
+ * @iorder: filter order
+ * @freq: passband frequency (0..pi)
+ * @epsilon: fall off at passband frequency (0..1)
+ * @a: root polynomial coefficients a[0..iorder]
+ * @b: pole polynomial coefficients b[0..iorder]
+ * Tschebyscheff type 1 highpass filter.
+ */
+void
+gsl_filter_tscheb1_hp (unsigned int iorder,
+ double freq, /* 0..pi */
+ double epsilon,
+ double *a, /* [0..iorder] */
+ double *b)
+{
+ g_return_if_fail (freq > 0 && freq < GSL_PI);
+
+ freq = GSL_PI - freq;
+ gsl_filter_tscheb1_lp (iorder, freq, epsilon, a, b);
+ filter_lp_invert (iorder, a, b);
+}
+
+/**
+ * gsl_filter_tscheb2_hp
+ * @iorder: filter order
+ * @freq: stopband frequency (0..pi)
+ * @steepness: frequency steepness
+ * @epsilon: fall off at passband frequency (0..1)
+ * @a: root polynomial coefficients a[0..iorder]
+ * @b: pole polynomial coefficients b[0..iorder]
+ * Tschebyscheff type 2 highpass filter.
+ */
+void
+gsl_filter_tscheb2_hp (unsigned int iorder,
+ double freq,
+ double steepness,
+ double epsilon,
+ double *a, /* [0..iorder] */
+ double *b)
+{
+ g_return_if_fail (freq > 0 && freq < GSL_PI);
+
+ freq = GSL_PI - freq;
+ gsl_filter_tscheb2_lp (iorder, freq, steepness, epsilon, a, b);
+ filter_lp_invert (iorder, a, b);
+}
+
+
+/* --- bandpass filters --- */
+/**
+ * gsl_filter_butter_bp
+ * @iorder: filter order (must be even)
+ * @freq1: stopband end frequency (0..pi)
+ * @freq2: passband end frequency (0..pi)
+ * @epsilon: fall off at passband frequency (0..1)
+ * @a: root polynomial coefficients a[0..iorder]
+ * @b: pole polynomial coefficients b[0..iorder]
+ * Butterworth bandpass filter.
+ */
+void
+gsl_filter_butter_bp (unsigned int iorder,
+ double freq1, /* 0..pi */
+ double freq2, /* 0..pi */
+ double epsilon,
+ double *a, /* [0..iorder] */
+ double *b)
+{
+ unsigned int iorder2 = iorder >> 1;
+ GslComplex *roots = g_newa (GslComplex, iorder2);
+ GslComplex *poles = g_newa (GslComplex, iorder2);
+ double theta;
+
+ g_return_if_fail ((iorder & 0x01) == 0);
+ g_return_if_fail (freq1 > 0);
+ g_return_if_fail (freq1 < freq2);
+ g_return_if_fail (freq2 < GSL_PI);
+
+ theta = 2. * atan2 (1., cotan ((freq2 - freq1) * 0.5));
+
+ gsl_filter_butter_rp (iorder2, theta, epsilon, roots, poles);
+ band_filter_common (iorder, freq1, freq2, epsilon, roots, poles, a, b, TRUE, FALSE);
+}
+
+/**
+ * gsl_filter_tscheb1_bp
+ * @iorder: filter order (must be even)
+ * @freq1: stopband end frequency (0..pi)
+ * @freq2: passband end frequency (0..pi)
+ * @epsilon: fall off at passband frequency (0..1)
+ * @a: root polynomial coefficients a[0..iorder]
+ * @b: pole polynomial coefficients b[0..iorder]
+ * Tschebyscheff type 1 bandpass filter.
+ */
+void
+gsl_filter_tscheb1_bp (unsigned int iorder,
+ double freq1, /* 0..pi */
+ double freq2, /* 0..pi */
+ double epsilon,
+ double *a, /* [0..iorder] */
+ double *b)
+{
+ unsigned int iorder2 = iorder >> 1;
+ GslComplex *roots = g_newa (GslComplex, iorder2);
+ GslComplex *poles = g_newa (GslComplex, iorder2);
+ double theta;
+
+ g_return_if_fail ((iorder & 0x01) == 0);
+ g_return_if_fail (freq1 > 0);
+ g_return_if_fail (freq1 < freq2);
+ g_return_if_fail (freq2 < GSL_PI);
+
+ theta = 2. * atan2 (1., cotan ((freq2 - freq1) * 0.5));
+
+ gsl_filter_tscheb1_rp (iorder2, theta, epsilon, roots, poles);
+ band_filter_common (iorder, freq1, freq2, epsilon, roots, poles, a, b, TRUE, TRUE);
+}
+
+/**
+ * gsl_filter_tscheb2_bp
+ * @iorder: filter order (must be even)
+ * @freq1: stopband end frequency (0..pi)
+ * @freq2: passband end frequency (0..pi)
+ * @steepness: frequency steepness factor
+ * @epsilon: fall off at passband frequency (0..1)
+ * @a: root polynomial coefficients a[0..iorder]
+ * @b: pole polynomial coefficients b[0..iorder]
+ * Tschebyscheff type 2 bandpass filter.
+ */
+void
+gsl_filter_tscheb2_bp (unsigned int iorder,
+ double freq1, /* 0..pi */
+ double freq2, /* 0..pi */
+ double steepness,
+ double epsilon,
+ double *a, /* [0..iorder] */
+ double *b)
+{
+ unsigned int iorder2 = iorder >> 1;
+ GslComplex *roots = g_newa (GslComplex, iorder2);
+ GslComplex *poles = g_newa (GslComplex, iorder2);
+ double theta;
+
+ g_return_if_fail ((iorder & 0x01) == 0);
+ g_return_if_fail (freq1 > 0);
+ g_return_if_fail (freq1 < freq2);
+ g_return_if_fail (freq2 < GSL_PI);
+
+ theta = 2. * atan2 (1., cotan ((freq2 - freq1) * 0.5));
+
+ gsl_filter_tscheb2_rp (iorder2, theta, steepness, epsilon, roots, poles);
+ band_filter_common (iorder, freq1, freq2, epsilon, roots, poles, a, b, TRUE, FALSE);
+}
+
+
+/* --- bandstop filters --- */
+/**
+ * gsl_filter_butter_bs
+ * @iorder: filter order (must be even)
+ * @freq1: passband end frequency (0..pi)
+ * @freq2: stopband end frequency (0..pi)
+ * @epsilon: fall off at passband frequency (0..1)
+ * @a: root polynomial coefficients a[0..iorder]
+ * @b: pole polynomial coefficients b[0..iorder]
+ * Butterworth bandstop filter.
+ */
+void
+gsl_filter_butter_bs (unsigned int iorder,
+ double freq1, /* 0..pi */
+ double freq2, /* 0..pi */
+ double epsilon,
+ double *a, /* [0..iorder] */
+ double *b)
+{
+ unsigned int iorder2 = iorder >> 1;
+ GslComplex *roots = g_newa (GslComplex, iorder2);
+ GslComplex *poles = g_newa (GslComplex, iorder2);
+ double theta;
+
+ g_return_if_fail ((iorder & 0x01) == 0);
+ g_return_if_fail (freq1 > 0);
+ g_return_if_fail (freq1 < freq2);
+ g_return_if_fail (freq2 < GSL_PI);
+
+ theta = 2. * atan2 (1., tan ((freq2 - freq1) * 0.5));
+
+ gsl_filter_butter_rp (iorder2, theta, epsilon, roots, poles);
+ band_filter_common (iorder, freq1, freq2, epsilon, roots, poles, a, b, FALSE, FALSE);
+}
+
+/**
+ * gsl_filter_tscheb1_bs
+ * @iorder: filter order (must be even)
+ * @freq1: passband end frequency (0..pi)
+ * @freq2: stopband end frequency (0..pi)
+ * @epsilon: fall off at passband frequency (0..1)
+ * @a: root polynomial coefficients a[0..iorder]
+ * @b: pole polynomial coefficients b[0..iorder]
+ * Tschebyscheff type 1 bandstop filter.
+ */
+void
+gsl_filter_tscheb1_bs (unsigned int iorder,
+ double freq1, /* 0..pi */
+ double freq2, /* 0..pi */
+ double epsilon,
+ double *a, /* [0..iorder] */
+ double *b)
+{
+ unsigned int iorder2 = iorder >> 1;
+ GslComplex *roots = g_newa (GslComplex, iorder2);
+ GslComplex *poles = g_newa (GslComplex, iorder2);
+ double theta;
+
+ g_return_if_fail ((iorder & 0x01) == 0);
+ g_return_if_fail (freq1 > 0);
+ g_return_if_fail (freq1 < freq2);
+ g_return_if_fail (freq2 < GSL_PI);
+
+ theta = 2. * atan2 (1., tan ((freq2 - freq1) * 0.5));
+
+ gsl_filter_tscheb1_rp (iorder2, theta, epsilon, roots, poles);
+ band_filter_common (iorder, freq1, freq2, epsilon, roots, poles, a, b, FALSE, TRUE);
+}
+
+/**
+ * gsl_filter_tscheb2_bs
+ * @iorder: filter order (must be even)
+ * @freq1: passband end frequency (0..pi)
+ * @freq2: stopband end frequency (0..pi)
+ * @steepness: frequency steepness factor
+ * @epsilon: fall off at passband frequency (0..1)
+ * @a: root polynomial coefficients a[0..iorder]
+ * @b: pole polynomial coefficients b[0..iorder]
+ * Tschebyscheff type 2 bandstop filter.
+ */
+void
+gsl_filter_tscheb2_bs (unsigned int iorder,
+ double freq1, /* 0..pi */
+ double freq2, /* 0..pi */
+ double steepness,
+ double epsilon,
+ double *a, /* [0..iorder] */
+ double *b)
+{
+ unsigned int iorder2 = iorder >> 1;
+ GslComplex *roots = g_newa (GslComplex, iorder2);
+ GslComplex *poles = g_newa (GslComplex, iorder2);
+ double theta;
+
+ g_return_if_fail ((iorder & 0x01) == 0);
+ g_return_if_fail (freq1 > 0);
+ g_return_if_fail (freq1 < freq2);
+ g_return_if_fail (freq2 < GSL_PI);
+
+ theta = 2. * atan2 (1., tan ((freq2 - freq1) * 0.5));
+
+ gsl_filter_tscheb2_rp (iorder2, theta, steepness, epsilon, roots, poles);
+ band_filter_common (iorder, freq1, freq2, epsilon, roots, poles, a, b, FALSE, FALSE);
+}
+
+
+/* --- tschebyscheff type 1 via generic root-finding --- */
+#if 0
+static void
+tschebyscheff_poly (unsigned int degree,
+ double *v)
+{
+ /* construct all polynomial koefficients */
+ if (degree == 0)
+ v[0] = 1;
+ else if (degree == 1)
+ {
+ v[1] = 1; v[0] = 0;
+ }
+ else
+ {
+ double *u = g_newa (double, 1 + degree);
+
+ u[degree] = 0; u[degree - 1] = 0;
+ tschebyscheff_poly (degree - 2, u);
+
+ v[0] = 0;
+ tschebyscheff_poly (degree - 1, v + 1);
+ gsl_poly_scale (degree - 1, v + 1, 2);
+
+ gsl_poly_sub (degree, v, u);
+ }
+}
+
+static void
+gsl_filter_tscheb1_test (unsigned int iorder,
+ double zomega,
+ double epsilon,
+ double *a, /* [0..iorder] */
+ double *b)
+{
+ GslComplex *roots = g_newa (GslComplex, iorder * 2), *r;
+ GslComplex *zf = g_newa (GslComplex, 1 + iorder);
+ double *vk = g_newa (double, 1 + iorder), norm;
+ double *q = g_newa (double, 2 * (1 + iorder));
+ double O = gsl_trans_freq2s (zomega);
+ unsigned int i;
+
+ /* calc Vk() */
+ tschebyscheff_poly (iorder, vk);
+
+ /* calc q=1+e^2*Vk()^2 */
+ gsl_poly_mul (q, iorder >> 1, vk, iorder >> 1, vk);
+ iorder *= 2;
+ gsl_poly_scale (iorder, q, epsilon * epsilon);
+ q[0] += 1;
+
+ /* find roots, fix roots by 1/(jO) */
+ gsl_poly_complex_roots (iorder, q, roots);
+ for (i = 0; i < iorder; i++)
+ roots[i] = gsl_complex_mul (roots[i], gsl_complex (0, O));
+
+ /* choose roots from the left half-plane */
+ if (0)
+ g_print ("zhqr-root:\n%s\n", gsl_complex_list (iorder, roots, " "));
+ r = roots;
+ for (i = 0; i < iorder; i++)
+ if (roots[i].re < 0)
+ {
+ r->re = roots[i].re;
+ r->im = roots[i].im;
+ r++;
+ }
+ iorder /= 2;
+
+ /* assert roots found */
+ if (!(r - roots == iorder))
+ {
+ g_print ("ERROR: n_roots=%u != iorder=%u\n", r - roots, iorder);
+ abort ();
+ }
+
+ /* s => z */
+ for (i = 0; i < iorder; i++)
+ roots[i] = gsl_trans_s2z (roots[i]);
+
+ /* z denominator polynomial */
+ gsl_cpoly_from_roots (iorder, zf, roots);
+ for (i = 0; i <= iorder; i++)
+ b[i] = zf[i].re;
+
+ /* z nominator polynomial */
+ for (i = 0; i < iorder; i++)
+ {
+ roots[i].re = -1;
+ roots[i].im = 0;
+ }
+ gsl_cpoly_from_roots (iorder, zf, roots);
+ for (i = 0; i <= iorder; i++)
+ a[i] = zf[i].re;
+
+ /* scale for b[0]==1.0 */
+ gsl_poly_scale (iorder, b, 1.0 / b[0]);
+
+ /* scale maximum to 1.0 */
+ norm = gsl_poly_eval (iorder, a, 1) / gsl_poly_eval (iorder, b, 1);
+ if ((iorder & 0x01) == 0) /* norm is fluctuation minimum */
+ norm /= sqrt (1.0 / (1.0 + epsilon * epsilon));
+ gsl_poly_scale (iorder, a, 1.0 / norm);
+}
+#endif
+
+
+/* --- windowed fir approximation --- */
+/* returns a blackman window: x is supposed to be in the interval [0..1] */
+static inline double
+gsl_blackman_window (double x)
+{
+ if (x < 0)
+ return 0;
+ if (x > 1)
+ return 0;
+ return 0.42 - 0.5 * cos (GSL_PI * x * 2) + 0.08 * cos (4 * GSL_PI * x);
+}
+
+/**
+ * gsl_filter_fir_approx
+ *
+ * @iorder: order of the filter (must be oven, >= 2)
+ * @freq: the frequencies of the transfer function
+ * @value: the desired value of the transfer function
+ *
+ * Approximates a given transfer function with an iorder-coefficient FIR filter.
+ * It is recommended to provide enough frequency values, so that
+ * @n_points >= @iorder.
+ */
+void
+gsl_filter_fir_approx (unsigned int iorder,
+ double *a, /* [0..iorder] */
+ unsigned int n_points,
+ const double *freq,
+ const double *value)
+{
+ /* TODO:
+ *
+ * a) does fft_size matter for the quality of the approximation? i.e. do
+ * larger fft_sizes produce better filters?
+ * b) generalize windowing
+ */
+ unsigned int fft_size = 8;
+ unsigned int point = 0, i;
+ double lfreq = -2, lval = 1.0, rfreq = -1, rval = 1.0;
+ double *fft_in, *fft_out;
+ double ffact;
+
+ g_return_if_fail (iorder >= 2);
+ g_return_if_fail ((iorder & 1) == 0);
+
+ while (fft_size / 2 <= iorder)
+ fft_size *= 2;
+
+ fft_in = g_newa (double, fft_size*2);
+ fft_out = fft_in+fft_size;
+ ffact = 2.0 * GSL_PI / (double)fft_size;
+
+ for (i = 0; i <= fft_size / 2; i++)
+ {
+ double f = (double) i * ffact;
+ double pos, val;
+
+ while (f > rfreq && point != n_points)
+ {
+ lfreq = rfreq;
+ rfreq = freq[point];
+ lval = rval;
+ rval = value[point];
+ point++;
+ }
+
+ pos = (f - lfreq) / (rfreq - lfreq);
+ val = lval * (1.0 - pos) + rval * pos;
+
+ if (i != fft_size / 2)
+ {
+ fft_in[2 * i] = val;
+ fft_in[2 * i + 1] = 0.0;
+ }
+ else
+ fft_in[1] = val;
+ }
+
+ gsl_power2_fftsr (fft_size, fft_in, fft_out);
+
+ for (i = 0; i <= iorder / 2; i++)
+ {
+ double c = fft_out[i] * gsl_blackman_window (0.5 + (double) i / (iorder + 2.0));
+ a[iorder / 2 - i] = c;
+ a[iorder / 2 + i] = c;
+ }
+}
+
+
+/* --- filter evaluation --- */
+void
+gsl_iir_filter_setup (GslIIRFilter *f,
+ guint order,
+ const gdouble *a,
+ const gdouble *b,
+ gdouble *buffer) /* 4*(order+1) */
+{
+ guint i;
+
+ g_return_if_fail (f != NULL && a != NULL && b != NULL && buffer != NULL);
+ g_return_if_fail (order > 0);
+
+ f->order = order;
+ f->a = buffer;
+ f->b = f->a + order + 1;
+ f->w = f->b + order + 1;
+
+ memcpy (f->a, a, sizeof (a[0]) * (order + 1));
+ for (i = 0; i <= order; i++)
+ f->b[i] = -b[i];
+ memset (f->w, 0, sizeof (f->w[0]) * (order + 1) * 2);
+
+ g_return_if_fail (fabs (b[0] - 1.0) < 1e-14);
+}
+
+void
+gsl_iir_filter_change (GslIIRFilter *f,
+ guint order,
+ const gdouble *a,
+ const gdouble *b,
+ gdouble *buffer)
+{
+ guint i;
+
+ g_return_if_fail (f != NULL && a != NULL && b != NULL && buffer != NULL);
+ g_return_if_fail (order > 0);
+
+ /* there's no point in calling this function if f wasn't setup properly
+ * and it's only the As and Bs that changed
+ */
+ g_return_if_fail (f->a == buffer && f->b == f->a + f->order + 1 && f->w == f->b + f->order + 1);
+
+ /* if the order changed there's no chance preserving state */
+ if (f->order != order)
+ {
+ gsl_iir_filter_setup (f, order, a, b, buffer);
+ return;
+ }
+
+ memcpy (f->a, a, sizeof (a[0]) * (order + 1));
+ for (i = 0; i <= order; i++)
+ f->b[i] = -b[i];
+ /* leaving f->w to preserve state */
+
+ g_return_if_fail (fabs (b[0] - 1.0) < 1e-14);
+}
+
+static inline gdouble /* Y */
+filter_step_direct_canon_2 (GslIIRFilter *f,
+ gdouble X)
+{
+ register guint n = f->order;
+ gdouble *a = f->a, *b = f->b, *w = f->w;
+ gdouble x, y, v;
+
+ v = w[n];
+ x = b[n] * v;
+ y = a[n] * v;
+
+ while (--n)
+ {
+ gdouble t1, t2;
+
+ v = w[n];
+ t1 = v * b[n];
+ t2 = v * a[n];
+ w[n+1] = v;
+ x += t1;
+ y += t2;
+ }
+
+ x += X;
+ w[1] = x;
+ y += x * a[0];
+ /* w[0] unused */
+
+ return y;
+}
+
+static inline gdouble /* Y */
+filter_step_direct_canon_1 (GslIIRFilter *f,
+ gdouble X)
+{
+ register guint n = f->order;
+ gdouble *a = f->a, *b = f->b, *w = f->w;
+ gdouble y, v;
+
+ /* w[n] unused */
+ y = X * a[0] + w[0];
+ v = X * a[n] + y * b[n];
+
+ while (--n)
+ {
+ gdouble t = w[n];
+
+ w[n] = v;
+ t += X * a[n];
+ v = y * b[n];
+ v += t;
+ }
+ w[0] = v;
+
+ return y;
+}
+
+#define filter_step filter_step_direct_canon_1
+
+void
+gsl_iir_filter_eval (GslIIRFilter *f,
+ guint n_values,
+ const gfloat *x,
+ gfloat *y)
+{
+ const gfloat *bound;
+
+ g_return_if_fail (f != NULL && x != NULL && y != NULL);
+ g_return_if_fail (f->order > 0);
+
+ bound = x + n_values;
+ while (x < bound)
+ {
+ *y = filter_step (f, *x);
+ x++;
+ y++;
+ }
+}
+
+
+/* --- biquad filters --- */
+void
+gsl_biquad_config_init (GslBiquadConfig *c,
+ GslBiquadType type,
+ GslBiquadNormalize normalize)
+{
+ g_return_if_fail (c != NULL);
+
+ memset (c, 0, sizeof (*c));
+ c->type = type;
+ c->normalize = normalize;
+ gsl_biquad_config_setup (c, 0.5, 3, 1);
+ c->approx_values = TRUE; /* need _setup() */
+}
+
+void
+gsl_biquad_config_setup (GslBiquadConfig *c,
+ gfloat f_fn,
+ gfloat gain,
+ gfloat quality)
+{
+ g_return_if_fail (c != NULL);
+ g_return_if_fail (f_fn >= 0 && f_fn <= 1);
+
+ if (c->type == GSL_BIQUAD_RESONANT_HIGHPASS)
+ f_fn = 1.0 - f_fn;
+ c->f_fn = f_fn; /* nyquist relative (0=DC, 1=nyquist) */
+ c->gain = gain;
+ c->quality = quality; /* FIXME */
+ c->k = tan (c->f_fn * GSL_PI / 2.);
+ c->v = pow (10, c->gain / 20.); /* v=10^(gain[dB]/20) */
+ c->dirty = TRUE;
+ c->approx_values = FALSE;
+}
+
+void
+gsl_biquad_config_approx_freq (GslBiquadConfig *c,
+ gfloat f_fn)
+{
+ g_return_if_fail (f_fn >= 0 && f_fn <= 1);
+
+ if (c->type == GSL_BIQUAD_RESONANT_HIGHPASS)
+ f_fn = 1.0 - f_fn;
+ c->f_fn = f_fn; /* nyquist relative (0=DC, 1=nyquist) */
+ c->k = tan (c->f_fn * GSL_PI / 2.); /* FIXME */
+ c->dirty = TRUE;
+ c->approx_values = TRUE;
+}
+
+void
+gsl_biquad_config_approx_gain (GslBiquadConfig *c,
+ gfloat gain)
+{
+ c->gain = gain;
+ c->v = gsl_approx_exp2 (c->gain * GSL_LOG2POW20_10);
+ c->dirty = TRUE;
+ c->approx_values = TRUE;
+}
+
+static void
+biquad_lpreso (GslBiquadConfig *c,
+ GslBiquadFilter *f)
+{
+ gdouble kk, sqrt2_reso, denominator;
+ gdouble r2p_norm = 0; /* resonance gain to peak gain (pole: -sqrt2_reso+-j) */
+
+ kk = c->k * c->k;
+ sqrt2_reso = 1 / c->v;
+ denominator = 1 + (c->k + sqrt2_reso) * c->k;
+
+ switch (c->normalize)
+ {
+ case GSL_BIQUAD_NORMALIZE_PASSBAND:
+ r2p_norm = kk;
+ break;
+ case GSL_BIQUAD_NORMALIZE_RESONANCE_GAIN:
+ r2p_norm = kk * sqrt2_reso;
+ break;
+ case GSL_BIQUAD_NORMALIZE_PEAK_GAIN:
+ r2p_norm = (GSL_SQRT2 * sqrt2_reso - 1.0) / (sqrt2_reso * sqrt2_reso - 0.5);
+ r2p_norm = r2p_norm > 1 ? kk * sqrt2_reso : kk * r2p_norm * sqrt2_reso;
+ break;
+ }
+ f->xc0 = r2p_norm / denominator;
+ f->xc1 = 2 * f->xc0;
+ f->xc2 = f->xc0;
+ f->yc1 = 2 * (kk - 1) / denominator;
+ f->yc2 = (1 + (c->k - sqrt2_reso) * c->k) / denominator;
+}
+
+void
+gsl_biquad_filter_config (GslBiquadFilter *f,
+ GslBiquadConfig *c,
+ gboolean reset_state)
+{
+ g_return_if_fail (f != NULL);
+ g_return_if_fail (c != NULL);
+
+ if (c->dirty)
+ {
+ switch (c->type)
+ {
+ case GSL_BIQUAD_RESONANT_LOWPASS:
+ biquad_lpreso (c, f);
+ break;
+ case GSL_BIQUAD_RESONANT_HIGHPASS:
+ biquad_lpreso (c, f);
+ f->xc1 = -f->xc1;
+ f->yc1 = -f->yc1;
+ break;
+ default:
+ g_assert_not_reached ();
+ }
+ c->dirty = FALSE;
+ }
+
+ if (reset_state)
+ f->xd1 = f->xd2 = f->yd1 = f->yd2 = 0;
+}
+
+void
+gsl_biquad_filter_eval (GslBiquadFilter *f,
+ guint n_values,
+ const gfloat *x,
+ gfloat *y)
+{
+ const gfloat *bound;
+ gdouble xc0, xc1, xc2, yc1, yc2, xd1, xd2, yd1, yd2;
+
+ g_return_if_fail (f != NULL && x != NULL && y != NULL);
+
+ xc0 = f->xc0;
+ xc1 = f->xc1;
+ xc2 = f->xc2;
+ yc1 = f->yc1;
+ yc2 = f->yc2;
+ xd1 = f->xd1;
+ xd2 = f->xd2;
+ yd1 = f->yd1;
+ yd2 = f->yd2;
+ bound = x + n_values;
+ while (x < bound)
+ {
+ gdouble k0, k1, k2;
+
+ k2 = xd2 * xc2;
+ k1 = xd1 * xc1;
+ xd2 = xd1;
+ xd1 = *x++;
+ k2 -= yd2 * yc2;
+ k1 -= yd1 * yc1;
+ yd2 = yd1;
+ k0 = xd1 * xc0;
+ yd1 = k2 + k1;
+ *y++ = yd1 += k0;
+ }
+ f->xd1 = xd1;
+ f->xd2 = xd2;
+ f->yd1 = yd1;
+ f->yd2 = yd2;
+}
+
+#if 0
+void
+gsl_biquad_lphp_reso (GslBiquadFilter *c,
+ gfloat f_fn, /* nyquist relative (0=DC, 1=nyquist) */
+ float gain,
+ gboolean design_highpass,
+ GslBiquadNormalize normalize)
+{
+ double k, kk, v;
+ double sqrt2_reso;
+ double denominator;
+ double r2p_norm = 0; /* resonance gain to peak gain (pole: -sqrt2_reso+-j) */
+
+ g_return_if_fail (c != NULL);
+ g_return_if_fail (f_fn >= 0 && f_fn <= 1);
+
+ if (design_highpass)
+ f_fn = 1.0 - f_fn;
+
+ v = pow (10, gain / 20.); /* v=10^(gain[dB]/20) */
+ k = tan (f_fn * GSL_PI / 2.);
+ kk = k * k;
+ sqrt2_reso = 1 / v;
+ denominator = 1 + (k + sqrt2_reso) * k;
+
+ if (0)
+ g_printerr ("BIQUAD-lp: R=%f\n", GSL_SQRT2 * sqrt2_reso);
+
+ switch (normalize)
+ {
+ case GSL_BIQUAD_NORMALIZE_PASSBAND:
+ r2p_norm = kk;
+ break;
+ case GSL_BIQUAD_NORMALIZE_RESONANCE_GAIN:
+ r2p_norm = kk * sqrt2_reso;
+ break;
+ case GSL_BIQUAD_NORMALIZE_PEAK_GAIN:
+ r2p_norm = (GSL_SQRT2 * sqrt2_reso - 1.0) / (sqrt2_reso * sqrt2_reso - 0.5);
+ g_print ("BIQUAD-lp: (peak-gain) r2p_norm = %f \n", r2p_norm);
+ r2p_norm = r2p_norm > 1 ? kk * sqrt2_reso : kk * r2p_norm * sqrt2_reso;
+ break;
+ }
+ c->xc0 = r2p_norm / denominator;
+ c->xc1 = 2 * c->xc0;
+ c->xc2 = c->xc0;
+ c->yc1 = 2 * (kk - 1) / denominator;
+ c->yc2 = (1 + (k - sqrt2_reso) * k) / denominator;
+
+ if (design_highpass)
+ {
+ c->xc1 = -c->xc1;
+ c->yc1 = -c->yc1;
+ }
+ /* normalization notes:
+ * pole: -sqrt2_reso+-j
+ * freq=0.5: reso->peak gain=8adjust:0.9799887, 9adjust:0.98415
+ * resonance gain = 1/(1-R)=sqrt2_reso
+ * sqrt2_reso*(1-R)=1
+ * 1-R=1/sqrt2_reso
+ * R= 1-1/sqrt2_reso
+ * peak gain = 2/(1-R^2)
+ * = 2 * (1 - (1 - 1 / sqrt2_reso) * (1 - 1 / sqrt2_reso))
+ * = 2 - 2 * (1 - 1 / sqrt2_reso)^2
+ */
+}
+#endif
+
+
+/* --- filter scanning -- */
+#define SINE_SCAN_SIZE 1024
+
+/**
+ * gsl_filter_sine_scan
+ *
+ * @order: order of the iir filter
+ * @a: root polynomial coefficients of the filter a[0..order]
+ * @b: pole polynomial coefficients of the filter b[0..order]
+ * @freq: frequency to test
+ * @n_values: number of samples
+ *
+ * This function sends a sine signal of the desired frequency through an IIR
+ * filter, to test the value of the transfer function at a given point. It uses
+ * gsl_iir_filter_eval to do so.
+ *
+ * Compared to a "mathematical approach" of finding the transfer function,
+ * this function makes it possible to see the effects of finite arithmetic
+ * during filter evaluation.
+ *
+ * The first half of the output signal is not considered, since a lot of IIR
+ * filters have a transient phase where also overshoot is possible.
+ *
+ * For n_values, you should specify a reasonable large value. It should be
+ * a lot larger than the filter order, and large enough to let the input
+ * signal become (close to) 1.0 multiple times.
+ */
+gdouble
+gsl_filter_sine_scan (guint order,
+ const gdouble *a,
+ const gdouble *b,
+ gdouble freq,
+ guint n_values)
+{
+ gfloat x[SINE_SCAN_SIZE], y[SINE_SCAN_SIZE];
+ gdouble pos = 0.0;
+ gdouble result = 0.0;
+ GslIIRFilter filter;
+ gdouble *filter_state;
+ guint scan_start = n_values / 2;
+
+ g_return_val_if_fail (order > 0, 0.0);
+ g_return_val_if_fail (a != NULL, 0.0);
+ g_return_val_if_fail (b != NULL, 0.0);
+ g_return_val_if_fail (freq > 0 && freq < GSL_PI, 0.0);
+ g_return_val_if_fail (n_values > 0, 0.0);
+
+ filter_state = g_newa (double, (order + 1) * 4);
+ gsl_iir_filter_setup (&filter, order, a, b, filter_state);
+
+ while (n_values)
+ {
+ guint todo = MIN (n_values, SINE_SCAN_SIZE);
+ guint i;
+
+ for (i = 0; i < todo; i++)
+ {
+ x[i] = sin (pos);
+ pos += freq;
+ }
+
+ gsl_iir_filter_eval (&filter, SINE_SCAN_SIZE, x, y);
+
+ for (i = 0; i < todo; i++)
+ if (n_values - i < scan_start)
+ result = MAX (y[i], result);
+
+ n_values -= todo;
+ }
+ return result;
+}
+
+
+
+
+
+/* vim:set ts=8 sts=2 sw=2: */