diff options
author | tpearson <tpearson@283d02a7-25f6-0310-bc7c-ecb5cbfe19da> | 2010-01-05 00:01:18 +0000 |
---|---|---|
committer | tpearson <tpearson@283d02a7-25f6-0310-bc7c-ecb5cbfe19da> | 2010-01-05 00:01:18 +0000 |
commit | 42995d7bf396933ee60c5f89c354ea89cf13df0d (patch) | |
tree | cfdcea0ac57420e7baf570bfe435e107bb842541 /flow/gsl/gslmath.h | |
download | arts-42995d7bf396933ee60c5f89c354ea89cf13df0d.tar.gz arts-42995d7bf396933ee60c5f89c354ea89cf13df0d.zip |
Copy of aRts for Trinity modifications
git-svn-id: svn://anonsvn.kde.org/home/kde/branches/trinity/dependencies/arts@1070145 283d02a7-25f6-0310-bc7c-ecb5cbfe19da
Diffstat (limited to 'flow/gsl/gslmath.h')
-rw-r--r-- | flow/gsl/gslmath.h | 518 |
1 files changed, 518 insertions, 0 deletions
diff --git a/flow/gsl/gslmath.h b/flow/gsl/gslmath.h new file mode 100644 index 0000000..b690a54 --- /dev/null +++ b/flow/gsl/gslmath.h @@ -0,0 +1,518 @@ +/* GSL - Generic Sound Layer + * Copyright (C) 2001 Stefan Westerfeld and Tim Janik + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General + * Public License along with this library; if not, write to the + * Free Software Foundation, Inc., 59 Temple Place, Suite 330, + * Boston, MA 02111-1307, USA. + */ +#ifndef __GSL_MATH_H__ +#define __GSL_MATH_H__ + +#include <gsl/gslieee754.h> +#include <gsl/gsldefs.h> +#include <math.h> + +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ + + +/* --- constants --- */ +#define GSL_PI (3.1415926535897932384626433832795029 /* pi */) +#define GSL_PI_DIV_2 (1.5707963267948966192313216916397514 /* pi/2 */) +#define GSL_PI_DIV_4 (0.7853981633974483096156608458198757 /* pi/4 */) +#define GSL_1_DIV_PI (0.3183098861837906715377675267450287 /* 1/pi */) +#define GSL_2_DIV_PI (0.6366197723675813430755350534900574 /* 2/pi */) +#define GSL_2_DIV_SQRT_PI (1.1283791670955125738961589031215452 /* 2/sqrt(pi) */) +#define GSL_SQRT2 (1.4142135623730950488016887242096981 /* sqrt(2) */) +#define GSL_1_DIV_SQRT2 (0.7071067811865475244008443621048490 /* 1/sqrt(2) */) +#define GSL_E (2.7182818284590452353602874713526625 /* e */) +#define GSL_LOG2E (1.4426950408889634073599246810018922 /* log_2(e) */) +#define GSL_LOG10E (0.4342944819032518276511289189166051 /* log_10(e) */) +#define GSL_LN2 (0.6931471805599453094172321214581766 /* ln(2) */) +#define GSL_LN10 (2.3025850929940456840179914546843642 /* ln(10) */) +#define GSL_2_POW_1_DIV_12 (1.0594630943592952645618252949463417 /* 2^(1/12) */) +#define GSL_2_POW_1_DIV_72 (1.0096735332285108621925214011186051 /* 2^(1/72) */) +#define GSL_LN_2_POW_1_DIV_12 (0.0577622650466621091181026767881814 /* ln(2^(1/12)) */) +#define GSL_LN_2_POW_1_DIV_72 (0.0096270441744436848530171127980302 /* ln(2^(1/72)) */) +#define GSL_LOG2_10 (3.3219280948873623478703194294893902 /* log_2(10) */) +#define GSL_LOG2POW20_10 (0.1660964047443681173935159714744695 /* log_2(10)/20 */) + + +/* --- structures --- */ +struct _GslComplex +{ + double re; + double im; +}; + + +/* --- float/double signbit extraction --- */ +#ifdef signbit +# define gsl_float_sign(dblflt) (signbit (dblflt)) +#else +# define gsl_float_sign(dblflt) ((dblflt) < -0.0) /* good enough for us */ +#endif + + +/* --- complex numbers --- */ +static inline GslComplex gsl_complex (double re, + double im); +static inline GslComplex gsl_complex_polar (double abs, + double arg); +static inline GslComplex gsl_complex_add (GslComplex c1, + GslComplex c2); +static inline GslComplex gsl_complex_add3 (GslComplex c1, + GslComplex c2, + GslComplex c3); +static inline GslComplex gsl_complex_sub (GslComplex c1, + GslComplex c2); +static inline GslComplex gsl_complex_sub3 (GslComplex c1, + GslComplex c2, + GslComplex c3); +static inline GslComplex gsl_complex_scale (GslComplex c1, + double scale); +static inline GslComplex gsl_complex_mul (GslComplex c1, + GslComplex c2); +static inline GslComplex gsl_complex_mul3 (GslComplex c1, + GslComplex c2, + GslComplex c3); +static inline GslComplex gsl_complex_div (GslComplex a, + GslComplex b); +static inline GslComplex gsl_complex_reciprocal (GslComplex c); +static inline GslComplex gsl_complex_sqrt (GslComplex z); +static inline GslComplex gsl_complex_conj (GslComplex c); /* {re, -im} */ +static inline GslComplex gsl_complex_id (GslComplex c); +static inline GslComplex gsl_complex_inv (GslComplex c); /* {-re, -im} */ +static inline double gsl_complex_abs (GslComplex c); +static inline double gsl_complex_arg (GslComplex c); +static inline GslComplex gsl_complex_sin (GslComplex c); +static inline GslComplex gsl_complex_cos (GslComplex c); +static inline GslComplex gsl_complex_tan (GslComplex c); +static inline GslComplex gsl_complex_sinh (GslComplex c); +static inline GslComplex gsl_complex_cosh (GslComplex c); +static inline GslComplex gsl_complex_tanh (GslComplex c); +char* gsl_complex_str (GslComplex c); +char* gsl_complex_list (unsigned int n_points, + GslComplex *points, + const char *indent); +void gsl_complex_gnuplot (const char *file_name, + unsigned int n_points, + GslComplex *points); + + +/* --- polynomials --- */ +/* example, degree=2: 5+2x+7x^2 => a[0..degree] = { 5, 2, 7 } */ +static inline void gsl_poly_add (unsigned int degree, + double *a, /* a[0..degree] */ + double *b); +static inline void gsl_poly_sub (unsigned int order, + double *a, /* [0..degree] */ + double *b); +static inline void gsl_poly_mul (double *p, /* out:[0..aorder+border] */ + unsigned int aorder, + const double *a, /* in:[0..aorder] */ + unsigned int border, + const double *b); /* in:[0..border] */ +static inline void gsl_poly_scale (unsigned int order, + double *a, /* [0..degree] */ + double scale); +static inline void gsl_poly_xscale (unsigned int order, + double *a, /* [0..degree] */ + double xscale); +static inline double gsl_poly_eval (unsigned int degree, + double *a, /* [0..degree] */ + double x); +void gsl_poly_complex_roots (unsigned int poly_degree, + double *a, /* [0..degree] (degree+1 elements) */ + GslComplex *roots); /* [degree] */ +void gsl_poly_from_re_roots (unsigned int poly_degree, + double *a, /* [0..degree] */ + GslComplex *roots); +void gsl_cpoly_from_roots (unsigned int poly_degree, + GslComplex *c, /* [0..degree] */ + GslComplex *roots); +static inline void gsl_cpoly_mul_monomial (unsigned int degree, /* _new_ degree */ + GslComplex *c, /* in:[0..degree-1] out:[0..degree] */ + GslComplex root); /* c(x) *= (x^1 - root) */ +static inline void gsl_cpoly_mul_reciprocal (unsigned int degree, /* _new_ degree */ + GslComplex *c, /* in:[0..degree-1] out:[0..degree] */ + GslComplex root); /* c(x) *= (1 - root * x^-1) */ +static inline void gsl_cpoly_mul (GslComplex *p, /* out:[0..aorder+border] */ + unsigned int aorder, + GslComplex *a, /* in:[0..aorder] */ + unsigned int border, + GslComplex *b); /* in:[0..border] */ + +char* gsl_poly_str (unsigned int degree, + double *a, + const char *var); +char* gsl_poly_str1 (unsigned int degree, + double *a, + const char *var); + + +/* --- transformations --- */ +double gsl_temp_freq (double kammer_freq, + int halftone_delta); + + +/* --- miscellaneous --- */ +double gsl_bit_depth_epsilon (guint n_bits); /* 1..32 */ + + +/* --- ellipses --- */ +double gsl_ellip_rf (double x, + double y, + double z); +double gsl_ellip_F (double phi, + double ak); +double gsl_ellip_sn (double u, + double emmc); +double gsl_ellip_asn (double y, + double emmc); +GslComplex gsl_complex_ellip_asn (GslComplex y, + GslComplex emmc); +GslComplex gsl_complex_ellip_sn (GslComplex u, + GslComplex emmc); + + +/* --- implementations --- */ +static inline GslComplex +gsl_complex (double re, + double im) +{ + GslComplex r; + r.re = re; + r.im = im; + return r; +} +static inline GslComplex +gsl_complex_polar (double abs, + double arg) +{ + return gsl_complex (abs * cos (arg), abs * sin (arg)); +} +static inline GslComplex +gsl_complex_add (GslComplex c1, + GslComplex c2) +{ + return gsl_complex (c1.re + c2.re, c1.im + c2.im); +} +static inline GslComplex +gsl_complex_add3 (GslComplex c1, + GslComplex c2, + GslComplex c3) +{ + return gsl_complex (c1.re + c2.re + c3.re, c1.im + c2.im + c3.im); +} +static inline GslComplex +gsl_complex_sub (GslComplex c1, + GslComplex c2) +{ + return gsl_complex (c1.re - c2.re, c1.im - c2.im); +} +static inline GslComplex +gsl_complex_sub3 (GslComplex c1, + GslComplex c2, + GslComplex c3) +{ + return gsl_complex (c1.re - c2.re - c3.re, c1.im - c2.im - c3.im); +} +static inline GslComplex +gsl_complex_scale (GslComplex c1, + double scale) +{ + return gsl_complex (c1.re * scale, c1.im * scale); +} +static inline GslComplex +gsl_complex_mul (GslComplex c1, + GslComplex c2) +{ + return gsl_complex (c1.re * c2.re - c1.im * c2.im, c1.re * c2.im + c1.im * c2.re); +} +static inline GslComplex +gsl_complex_mul3 (GslComplex c1, + GslComplex c2, + GslComplex c3) +{ + double aec = c1.re * c2.re * c3.re; + double bde = c1.im * c2.im * c3.re; + double adf = c1.re * c2.im * c3.im; + double bcf = c1.im * c2.re * c3.im; + double ade = c1.re * c2.im * c3.re; + double bce = c1.im * c2.re * c3.re; + double acf = c1.re * c2.re * c3.im; + double bdf = c1.im * c2.im * c3.im; + + return gsl_complex (aec - bde - adf - bcf, ade + bce + acf - bdf); +} +static inline GslComplex +gsl_complex_div (GslComplex a, + GslComplex b) +{ + GslComplex c; + if (fabs (b.re) >= fabs (b.im)) + { + double r = b.im / b.re, den = b.re + r * b.im; + c.re = (a.re + r * a.im) / den; + c.im = (a.im - r * a.re) / den; + } + else + { + double r = b.re / b.im, den = b.im + r * b.re; + c.re = (a.re * r + a.im) / den; + c.im = (a.im * r - a.re) / den; + } + return c; +} +static inline GslComplex +gsl_complex_reciprocal (GslComplex c) +{ + if (fabs (c.re) >= fabs (c.im)) + { + double r = c.im / c.re, den = c.re + r * c.im; + c.re = 1. / den; + c.im = - r / den; + } + else + { + double r = c.re / c.im, den = c.im + r * c.re; + c.re = r / den; + c.im = - 1. / den; + } + return c; +} +static inline GslComplex +gsl_complex_sqrt (GslComplex z) +{ + if (z.re == 0.0 && z.im == 0.0) + return z; + else + { + GslComplex c; + double w, x = fabs (z.re), y = fabs (z.im); + if (x >= y) + { + double r = y / x; + w = sqrt (x) * sqrt (0.5 * (1.0 + sqrt (1.0 + r * r))); + } + else + { + double r = x / y; + w = sqrt (y) * sqrt (0.5 * (r + sqrt (1.0 + r * r))); + } + if (z.re >= 0.0) + { + c.re = w; + c.im = z.im / (2.0 * w); + } + else + { + c.im = z.im >= 0 ? w : -w; + c.re = z.im / (2.0 * c.im); + } + return c; + } +} +static inline GslComplex +gsl_complex_conj (GslComplex c) +{ + return gsl_complex (c.re, -c.im); +} +static inline GslComplex +gsl_complex_inv (GslComplex c) +{ + return gsl_complex (-c.re, -c.im); +} +static inline GslComplex +gsl_complex_id (GslComplex c) +{ + return c; +} +static inline double +gsl_complex_abs (GslComplex c) +{ + /* compute (a^2 + b^2)^(1/2) without destructive underflow or overflow */ + double absa = fabs (c.re), absb = fabs (c.im); + return (absa > absb ? + absb == 0.0 ? absa : + absa * sqrt (1.0 + (absb / absa) * (absb / absa)) : + absb == 0.0 ? 0.0 : + absb * sqrt (1.0 + (absa / absb) * (absa / absb))); +} +static inline double +gsl_complex_arg (GslComplex c) +{ + double a = atan2 (c.im, c.re); + return a; +} +static inline GslComplex +gsl_complex_sin (GslComplex c) +{ + return gsl_complex (sin (c.re) * cosh (c.im), cos (c.re) * sinh (c.im)); +} +static inline GslComplex +gsl_complex_cos (GslComplex c) +{ + return gsl_complex (cos (c.re) * cosh (c.im), - sin (c.re) * sinh (c.im)); +} +static inline GslComplex +gsl_complex_tan (GslComplex c) +{ + return gsl_complex_div (gsl_complex (tan (c.re), tanh (c.im)), + gsl_complex (1.0, -tan (c.re) * tanh (c.im))); +} +static inline GslComplex +gsl_complex_sinh (GslComplex c) +{ + return gsl_complex (sinh (c.re) * cos (c.im), cosh (c.re) * sin (c.im)); +} +static inline GslComplex +gsl_complex_cosh (GslComplex c) +{ + return gsl_complex (cosh (c.re) * cos (c.im), sinh (c.re) * sin (c.im)); +} +static inline GslComplex +gsl_complex_tanh (GslComplex c) +{ + return gsl_complex_div (gsl_complex_sinh (c), + gsl_complex_cosh (c)); +} +static inline void +gsl_poly_add (unsigned int degree, + double *a, + double *b) +{ + unsigned int i; + + for (i = 0; i <= degree; i++) + a[i] += b[i]; +} +static inline void +gsl_poly_sub (unsigned int degree, + double *a, + double *b) +{ + unsigned int i; + + for (i = 0; i <= degree; i++) + a[i] -= b[i]; +} +static inline void +gsl_poly_mul (double *p, /* out:[0..aorder+border] */ + unsigned int aorder, + const double *a, /* in:[0..aorder] */ + unsigned int border, + const double *b) /* in:[0..border] */ +{ + unsigned int i; + + for (i = aorder + border; i > 0; i--) + { + unsigned int j; + double t = 0; + + for (j = i - MIN (border, i); j <= MIN (aorder, i); j++) + t += a[j] * b[i - j]; + p[i] = t; + } + p[0] = a[0] * b[0]; +} +static inline void +gsl_cpoly_mul_monomial (unsigned int degree, + GslComplex *c, + GslComplex root) +{ + unsigned int j; + + c[degree] = c[degree - 1]; + for (j = degree - 1; j >= 1; j--) + c[j] = gsl_complex_sub (c[j - 1], gsl_complex_mul (c[j], root)); + c[0] = gsl_complex_mul (c[0], gsl_complex_inv (root)); +} +static inline void +gsl_cpoly_mul_reciprocal (unsigned int degree, + GslComplex *c, + GslComplex root) +{ + unsigned int j; + + c[degree] = gsl_complex_mul (c[degree - 1], gsl_complex_inv (root)); + for (j = degree - 1; j >= 1; j--) + c[j] = gsl_complex_sub (c[j], gsl_complex_mul (c[j - 1], root)); + /* c[0] = c[0]; */ +} +static inline void +gsl_cpoly_mul (GslComplex *p, /* [0..aorder+border] */ + unsigned int aorder, + GslComplex *a, + unsigned int border, + GslComplex *b) +{ + unsigned int i; + + for (i = aorder + border; i > 0; i--) + { + GslComplex t; + unsigned int j; + + t = gsl_complex (0, 0); + for (j = i - MIN (i, border); j <= MIN (aorder, i); j++) + t = gsl_complex_add (t, gsl_complex_mul (a[j], b[i - j])); + p[i] = t; + } + p[0] = gsl_complex_mul (a[0], b[0]); +} +static inline void +gsl_poly_scale (unsigned int degree, + double *a, + double scale) +{ + unsigned int i; + + for (i = 0; i <= degree; i++) + a[i] *= scale; +} +static inline void +gsl_poly_xscale (unsigned int degree, + double *a, + double xscale) +{ + double scale = xscale; + unsigned int i; + + for (i = 1; i <= degree; i++) + { + a[i] *= scale; + scale *= xscale; + } +} +static inline double +gsl_poly_eval (unsigned int degree, + double *a, + double x) +{ + double sum = a[degree]; + + while (degree--) + sum = sum * x + a[degree]; + return sum; +} + +#ifdef __cplusplus +} +#endif /* __cplusplus */ + +#endif /* __GSL_MATH_H__ */ /* vim: set ts=8 sw=2 sts=2: */ |