1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
/* GSL - Generic Sound Layer
* Copyright (C) 2001-2002 Tim Janik and Stefan Westerfeld
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Library General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef __GSL_SIGNAL_H__
#define __GSL_SIGNAL_H__
#include <gsl/gsldefs.h>
#include <gsl/gslieee754.h>
#include <gsl/gslmath.h>
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/* smallest value of a signal sample, greater than zero
*/
#define GSL_SIGNAL_EPSILON (1.15e-14) /* 1.16415321826934814453125e-9 ~= 1/2^33 */
/* maximum value of a signal sample
*/
#define GSL_SIGNAL_KAPPA (1.5)
/* catch edges in sync signals.
* sync signals should be constant, do comparing against
* an epsilon just hurts speed in the common case
*/
#define GSL_SIGNAL_RAISING_EDGE(v1,v2) ((v1) < (v2))
#define GSL_SIGNAL_FALLING_EDGE(v1,v2) ((v1) > (v2))
/* value changes in signals which represent frequencies
*/
#define GSL_SIGNAL_FREQ_CHANGED(v1,v2) (fabs ((v1) - (v2)) > 1e-7)
/* value changes in signals which represent modulation
*/
#define GSL_SIGNAL_MOD_CHANGED(v1,v2) (fabs ((v1) - (v2)) > 1e-8)
/* value changes in signals which represent dB ranges
*/
#define GSL_SIGNAL_GAIN_CHANGED(v1,v2) (fabs ((v1) - (v2)) > 1e-8)
/* convert between literal frequencies and signal values
*/
#if defined (BSE_COMPILATION) || defined (BSE_PLUGIN_FALLBACK)
#include <bse/bseglobals.h>
# define GSL_SIGNAL_TO_FREQ_FACTOR (BSE_MAX_FREQUENCY_f)
# define GSL_SIGNAL_FROM_FREQ_FACTOR (1.0 / BSE_MAX_FREQUENCY_f)
# define GSL_SIGNAL_TO_FREQ(value) (((gfloat) (value)) * GSL_SIGNAL_TO_FREQ_FACTOR)
# define GSL_SIGNAL_FROM_FREQ(freq) (((gfloat) (freq)) * GSL_SIGNAL_FROM_FREQ_FACTOR)
#elif defined (GSL_USE_ARTS_THREADS) /* must be aRts */
# define GSL_SIGNAL_TO_FREQ(x) (x)
# define GSL_SIGNAL_FROM_FREQ(x) (x)
#endif
/* --- frequency modulation --- */
typedef struct {
gfloat fm_strength; /* linear: 0..1, exponential: n_octaves */
guint exponential_fm : 1;
gfloat signal_freq; /* for ifreq == NULL (as GSL_SIGNAL_FROM_FREQ) */
gint fine_tune; /* -100..+100 */
} GslFrequencyModulator;
void gsl_frequency_modulator (const GslFrequencyModulator *fm,
guint n_values,
const gfloat *ifreq,
const gfloat *ifmod,
gfloat *fm_buffer);
/* --- function approximations --- */
/**
* gsl_signal_exp2
* Deprecated in favour of gsl_approx_exp2().
*/
static inline float gsl_signal_exp2 (float x) G_GNUC_CONST;
/**
* gsl_approx_exp2
* @ex: exponent within [-127..127]
* @RETURNS: y approximating 2^x
* Fast approximation of 2 raised to the power of x.
* Multiplicative error stays below 8e-6 and aproaches zero
* for integer values of x (i.e. x - floor (x) = 0).
*/
static inline double gsl_approx_exp2 (float ex) G_GNUC_CONST;
/**
* gsl_approx_atan1
* Fast atan(x)/(PI/2) approximation, with maximum error < 0.01 and
* gsl_approx_atan1(0)==0, according to the formula:
* n1 = -0.41156875521951602506487246309908;
* n2 = -1.0091272542790025586079663559158;
* d1 = 0.81901156857081841441890603235599;
* d2 = 1.0091272542790025586079663559158;
* positive_atan1(x) = 1 + (n1 * x + n2) / ((1 + d1 * x) * x + d2);
*/
static inline double gsl_approx_atan1 (double x) G_GNUC_CONST;
/**
* gsl_approx_atan1_prescale
* @boost_amount: boost amount between [0..1]
* @RETURNS: prescale factor for gsl_approx_atan1()
* Calculate the prescale factor for gsl_approx_atan1(x*prescale) from
* a linear boost factor, where 0.5 amounts to prescale=1.0, 1.0 results
* in maximum boost and 0.0 results in maximum attenuation.
*/
double gsl_approx_atan1_prescale (double boost_amount);
/**
* gsl_approx_qcircle1
* @x: x within [0..1]
* @RETURNS: y for circle approximation within [0..1]
* Fast approximation of the upper right quadrant of a circle.
* Errors at x=0 and x=1 are zero, for the rest of the curve, the error
* wasn't minimized, but distributed to best fit the curverture of a
* quarter circle. The maximum error is below 0.092.
*/
static inline double gsl_approx_qcircle1 (double x) G_GNUC_CONST;
/**
* gsl_approx_qcircle2
* @x: x within [0..1]
* @RETURNS: y for circle approximation within [0..1]
* Fast approximation of the upper left quadrant of a circle.
* Errors at x=0 and x=1 are zero, for the rest of the curve, the error
* wasn't minimized, but distributed to best fit the curverture of a
* quarter circle. The maximum error is below 0.092.
*/
static inline double gsl_approx_qcircle2 (double x) G_GNUC_CONST;
/**
* gsl_approx_qcircle3
* @x: x within [0..1]
* @RETURNS: y for circle approximation within [0..1]
* Fast approximation of the lower left quadrant of a circle.
* Errors at x=0 and x=1 are zero, for the rest of the curve, the error
* wasn't minimized, but distributed to best fit the curverture of a
* quarter circle. The maximum error is below 0.092.
*/
static inline double gsl_approx_qcircle3 (double x) G_GNUC_CONST;
/**
* gsl_approx_qcircle4
* @x: x within [0..1]
* @RETURNS: y for circle approximation within [0..1]
* Fast approximation of the lower right quadrant of a circle.
* Errors at x=0 and x=1 are zero, for the rest of the curve, the error
* wasn't minimized, but distributed to best fit the curverture of a
* quarter circle. The maximum error is below 0.092.
*/
static inline double gsl_approx_qcircle4 (double x) G_GNUC_CONST;
/* --- windows --- */
double gsl_window_bartlett (double x); /* narrowest */
double gsl_window_blackman (double x);
double gsl_window_cos (double x);
double gsl_window_hamming (double x);
double gsl_window_sinc (double x);
double gsl_window_rect (double x); /* widest */
/* --- cents (1/100th of a semitone) --- */
#define gsl_cent_factor(index /* -100..100 */) (gsl_cent_table[index])
extern const gdouble *gsl_cent_table;
/* --- implementation details --- */
static inline double G_GNUC_CONST
gsl_approx_atan1 (double x)
{
if (x < 0) /* make use of -atan(-x)==atan(x) */
{
double numerator, denominator = -1.0;
denominator += x * 0.81901156857081841441890603235599; /* d1 */
numerator = x * 0.41156875521951602506487246309908; /* -n1 */
denominator *= x;
numerator += -1.0091272542790025586079663559158; /* n2 */
denominator += 1.0091272542790025586079663559158; /* d2 */
return -1.0 - numerator / denominator;
}
else
{
double numerator, denominator = 1.0;
denominator += x * 0.81901156857081841441890603235599; /* d1 */
numerator = x * -0.41156875521951602506487246309908; /* n1 */
denominator *= x;
numerator += -1.0091272542790025586079663559158; /* n2 */
denominator += 1.0091272542790025586079663559158; /* d2 */
return 1.0 + numerator / denominator;
}
}
static inline double G_GNUC_CONST
gsl_approx_qcircle1 (double x)
{
double numerator = 1.20460124790369468987715633298929 * x - 1.20460124790369468987715633298929;
double denominator = x - 1.20460124790369468987715633298929;
/* R1(x)=(1.2046012479036946898771563 * x - 1.2046012479036946898771563) / (x - 1.2046012479036946898771563) */
return numerator / denominator;
}
static inline double G_GNUC_CONST
gsl_approx_qcircle2 (double x)
{
double numerator = 1.20460124790369468987715633298929*x;
double denominator = x + 0.20460124790369468987715633298929;
/* R2(x)=1.2046012479036946898771563*x/(x + 0.2046012479036946898771563) */
return numerator / denominator;
}
static inline double G_GNUC_CONST
gsl_approx_qcircle3 (double x)
{
double numerator = 0.20460124790369468987715633298929 - 0.20460124790369468987715633298929 * x;
double denominator = x + 0.20460124790369468987715633298929;
/* R3(x)=(0.2046012479036946898771563 - 0.2046012479036946898771563 * x) / (x + 0.2046012479036946898771563) */
return numerator / denominator;
}
static inline double G_GNUC_CONST
gsl_approx_qcircle4 (double x)
{
double numerator = -0.20460124790369468987715633298929 * x;
double denominator = x - 1.20460124790369468987715633298929;
/* R4(x)=-0.2046012479036946898771563 * x / (x - 1.2046012479036946898771563) */
return numerator / denominator;
}
static inline double G_GNUC_CONST
gsl_approx_exp2 (float ex)
{
GslFloatIEEE754 fp = { 0, };
double numer, denom, x;
gint i;
i = gsl_ftoi (ex);
fp.mpn.biased_exponent = GSL_FLOAT_BIAS + i;
x = ex - i;
numer = x * 1.022782938747283388104723674300322141276;
denom = x - 8.72117024533378044415954808601135282456;
numer += 8.786902350800703562041965087953613538091;
denom *= x;
numer *= x;
denom += 25.25880955504064143887016455761526606757;
numer += 25.2588095552441757401874424757283407864;
return numer / denom * fp.v_float;
}
static inline float G_GNUC_CONST
_gsl_signal_exp2_fraction (float x) /* 2^x, -0.5 <= x <= 0.5 */
{
static const float exp2taylorC0 = 1.0000000000000000000000000000000000000000;
static const float exp2taylorC1 = 0.6931471805599452862267639829951804131269;
static const float exp2taylorC2 = 0.2402265069591006940719069007172947749496;
static const float exp2taylorC3 = 0.0555041086648215761800706502526736585423;
static const float exp2taylorC4 = 0.0096181291076284768787330037298488605302;
static const float exp2taylorC5 = 0.0013333558146428443284131626356270317046;
#if 0
static const float exp2taylorC6 = 0.0001540353039338160877607525334198612654;
static const float exp2taylorC7 = 0.0000152527338040598393887042200089965149;
static const float exp2taylorC8 = 0.0000013215486790144307390984122416166535;
static const float exp2taylorC9 = 0.0000001017808600923969859895309888857262;
#endif
float r = 0.0;
/* order 5 taylor series aproximation */
r += exp2taylorC5;
r *= x;
r += exp2taylorC4;
r *= x;
r += exp2taylorC3;
r *= x;
r += exp2taylorC2;
r *= x;
r += exp2taylorC1;
r *= x;
r += exp2taylorC0;
return r;
}
static inline float G_GNUC_CONST
gsl_signal_exp2 (float x) /* 2^x, -3.5 <= x <= 3.5, prec>16bit */
{
if_reject (x < -0.5)
{
if_reject (x < -1.5)
{
if (x < -2.5)
return 0.125 * _gsl_signal_exp2_fraction (x + 3);
else /* -2.5 <= x < -1.5 */
return 0.25 * _gsl_signal_exp2_fraction (x + 2);
}
else /* -1.5 <= x < -0.5 */
return 0.5 * _gsl_signal_exp2_fraction (x + 1);
}
else if_reject (x > 0.5)
{
if_reject (x > 1.5)
{
if (x > 2.5)
return 8 * _gsl_signal_exp2_fraction (x - 3);
else /* 1.5 < x <= 2.5 */
return 4 * _gsl_signal_exp2_fraction (x - 2);
}
else /* 0.5 < x <= 1.5 */
return 2 * _gsl_signal_exp2_fraction (x - 1);
}
else
return _gsl_signal_exp2_fraction (x);
}
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif /* __GSL_SIGNAL_H__ */
|