1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
|
/* */
/* Little cms - profiler construction set */
/* Copyright (C) 1998-2001 Marti Maria <[email protected]> */
/* */
/* THIS SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY */
/* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. */
/* */
/* IN NO EVENT SHALL MARTI MARIA BE LIABLE FOR ANY SPECIAL, INCIDENTAL, */
/* INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, */
/* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF */
/* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE */
/* OF THIS SOFTWARE. */
/* */
/* This file is free software; you can redistribute it and/or modify it */
/* under the terms of the GNU General Public License as published by */
/* the Free Software Foundation; either version 2 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, but */
/* WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU */
/* General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with this program; if not, write to the Free Software */
/* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
/* */
/* As a special exception to the GNU General Public License, if you */
/* distribute this file as part of a program that contains a */
/* configuration script generated by Autoconf, you may include it under */
/* the same distribution terms that you use for the rest of that program. */
/* */
/* Version 1.09a */
#include "lcmsprf.h"
/* There are three kinds of lies: */
/* */
/* * lies */
/* * damn lies */
/* * statistics */
/* */
/* -Some Wag */
/* */
/* */
/* This module handles multiple linear regression stuff */
/* A measurement of error
typedef struct {
double SSE; // The error sum of squares
double MSE; // The error mean sum of squares
double SSR; // The regression sum of squares
double MSR; // The regression mean sum of squares
double SSTO; // Total sum of squares
double F; // The Fisher-F value (MSR / MSE)
double R2; // Proportion of variability explained by the regression
// (root is Pearson correlation coefficient)
double R2adj; // The adjusted coefficient of multiple determination.
// R2-adjusted or R2adj. This is calculated as
// R2adj = 1 - (1-R2)(N-n-1)/(N-1)
// and used as multiple correlation coefficient
// (really, it should be square root)
} MLRSTATISTICS, FAR* LPMLRSTATISTICS;
*/
int cdecl cmsxRegressionCreateMatrix(LPMEASUREMENT m, SETOFPATCHES Allowed, int nterms,
int ColorSpace,
LPMATN* lpMat, LPMLRSTATISTICS Stat);
BOOL cdecl cmsxRegressionRGB2Lab(double r, double g, double b,
LPMATN tfm, LPcmsCIELab Lab);
BOOL cdecl cmsxRegressionRGB2XYZ(double r, double g, double b,
LPMATN tfm, LPcmsCIEXYZ XYZ);
/* -------------------------------------------------------------- Implementation */
/* #define DEBUG 1 */
/* Multiple linear regression. Also keep track of error. */
/* Returns false if something goes wrong, or true if all Ok. */
static
BOOL MultipleLinearRegression(const LPMATN xi, /* Dependent variable */
const LPMATN y, /* Independent variable */
int nvar, /* Number of samples */
int npar, /* Number of parameters (terms) */
double* coeff, /* Returned coefficients */
LPMATN vcb, /* Variance-covariance array */
double *tvl, /* T-Values */
LPMLRSTATISTICS ans) /* The returned statistics */
{
LPMATN bt, xt, a, xy, yt, b;
double sum;
LPMATN temp1, temp2;
int i;
/* |xt| = |xi| T */
xt = MATNtranspose(xi);
if (xt == NULL) return false;
/* |a| = |xt|* |xi| */
a = MATNmult(xt, xi);
if (a == NULL) return false;
/* |xy| = |xy| * |y| */
xy = MATNmult (xt, y);
if (xy == NULL) return false;
/* solve system |a|*|xy| = 0 */
if (!MATNsolve(a, xy)) return false;
/* b will hold coefficients */
b = MATNalloc (xy->Rows, 1);
if (b == NULL) return false;
for (i = 0; i < npar; i++)
b->Values[i][0] = xy->Values[i][0];
/* Store a copy for later user */
for (i = 0; i < npar; i++)
coeff[i] = b->Values[i][0];
/* Error analysis. */
/* SSE and MSE. */
temp1 = MATNalloc (1,1);
if ((temp1->Values[0][0] = MATNcross(y)) == 0) return false;
/* |bt| = |b| T */
bt = MATNtranspose (b);
if (bt == NULL) return false;
/* |yt| = |bt| * |xt| */
yt = MATNmult (bt, xt);
if (yt == NULL) return false;
/* |temp2| = |yt|* |y| */
temp2 = MATNmult (yt, y);
if (temp2 == NULL) return false;
/* SSE, MSE */
ans->SSE = temp1 -> Values[0][0] - temp2 -> Values[0][0];
ans->MSE = ans->SSE / (double) (nvar - npar);
/* SSTO */
sum = 0;
for (i=0; i < nvar; i++)
sum += y->Values[i][0];
sum *= sum / (double) nvar;
ans->SSTO = temp1->Values[0][0] - sum;
/* SSR, MSR, and Fisher-F */
ans->SSR = temp2->Values[0][0] - sum;
ans->MSR = ans->SSR / (double) (npar - 1);
ans->F = ans->MSR / ans->MSE;
/* Correlation coefficients. */
ans->R2 = ans->SSR/ans->SSTO;
ans->R2adj = 1.0 - (ans->SSE/ans->SSTO)*((nvar-1.)/(nvar-npar));
/* Variance-covariance matrix */
/* */
/* In RGB->Lab, for example: */
/* */
/* Var(R) Cov(R,G) Cov(R,B) */
/* |vcb| = Cov(R,G) Var(G) Cov(G,B) */
/* Cov(R,B) Cov(G,B) Var(B) */
/* */
MATNscalar(a, ans->MSE, vcb);
/* Determine the T-values */
for (i=0; i < npar; i++) {
temp1->Values[0][0] = fabs(vcb->Values[i][0]);
if ( temp1->Values[0][0] == 0)
tvl[i] = 0; /* This should never happen */
else
tvl[i] = b->Values[i][0] / sqrt(temp1->Values[0][0]);
}
/* Ok, done */
MATNfree(a); MATNfree(xy); MATNfree(yt); MATNfree(b);
MATNfree(temp1); MATNfree(temp2); MATNfree(bt); MATNfree(xt);
return true;
}
/* Does create (so, it allocates) the regression matrix, */
/* keeping track of error as well. */
static
BOOL CreateRegressionMatrix(const LPMATN Input, const LPMATN Output,
LPMATN* ptrMatrix, LPMLRSTATISTICS maxErrorMeas)
{
double* coef;
double* tval;
LPMATN ivar, dvar, vcov;
MLRSTATISTICS ErrorMeas, PeakErrorMeas;
int i, j, nIn, nOut, NumOfPatches;
nIn = Input -> Cols;
nOut = Output -> Cols;
NumOfPatches = Input -> Rows;
/* Checkpoint */
if (Output -> Rows != NumOfPatches) {
cmsSignalError(LCMS_ERRC_ABORTED, "(internal) Regression matrix mismatch");
return false;
}
coef = (double*) malloc(nIn * sizeof(double));
if (coef == NULL) return false;
tval = (double*) malloc(nIn * sizeof(double));
if (tval == NULL) {
free(coef);
return false;
}
ivar = MATNalloc(NumOfPatches, nIn);
dvar = MATNalloc(NumOfPatches, 1);
/* Copy In to ivar, */
for (i = 0; i < NumOfPatches; i++) {
for (j = 0; j < nIn; j++)
ivar->Values[i][j] = Input->Values[i][j];
}
/* This is the (symmetric) Covariance matrix */
vcov = MATNalloc(nIn, nIn);
/* This is the regression matrix */
*ptrMatrix = MATNalloc(nIn, nOut);
PeakErrorMeas.R2adj = 0;
for (j = 0; j < nOut; ++j)
{
for (i = 0; i < NumOfPatches; ++i)
dvar->Values[i][0] = Output->Values[i][j];
if (MultipleLinearRegression(ivar, dvar, NumOfPatches, nIn, coef, vcov, tval, &ErrorMeas)) {
/* Ok so far... store values */
for (i = 0; i < nIn; i++)
(*ptrMatrix)->Values[i][j] = coef[i];
}
else {
/* Boo... got error. Discard whole point. */
MATNfree(ivar); MATNfree(dvar); MATNfree(vcov);
if (coef) free(coef);
if (tval) free(tval);
MATNfree(*ptrMatrix); *ptrMatrix = NULL;
return false;
}
/* Did this colorant got higer error? If so, this is */
/* the peak of all pixel */
if(fabs(ErrorMeas.R2adj) > fabs(PeakErrorMeas.R2adj))
PeakErrorMeas = ErrorMeas;
}
/* This is the peak error on all components */
*maxErrorMeas = PeakErrorMeas;
#ifdef DEBUG
MATNprintf("Variance-Covariance", vcov);
printf("R2adj: %g, F: %g\n", PeakErrorMeas.R2adj, PeakErrorMeas.F);
#endif
/* Free stuff. */
MATNfree(ivar); MATNfree(dvar); MATNfree(vcov);
if (coef) free(coef);
if (tval) free(tval);
return true;
}
/* Does compute the term of regression based on inputs. */
static
double Term(int n, double r, double g, double b)
{
switch (n) {
/* 0 */
case 0 : return 255.0; /* 0 0 0 */
/* 1 */
case 1 : return r; /* 1 0 0 */
case 2 : return g; /* 0 1 0 */
case 3 : return b; /* 0 0 1 */
/* 2 */
case 4 : return r * g; /* 1 1 0 */
case 5 : return r * b; /* 1 0 1 */
case 6 : return g * b; /* 0 1 1 */
case 7 : return r * r; /* 2 0 0 */
case 8 : return g * g; /* 0 2 0 */
case 9 : return b * b; /* 0 0 2 */
/* 3 */
case 10: return r * g * b; /* 1 1 1 */
case 11: return r * r * r; /* 3 0 0 */
case 12: return g * g * g; /* 0 3 0 */
case 13: return b * b * b; /* 0 0 3 */
case 14: return r * g * g; /* 1 2 0 */
case 15: return r * r * g; /* 2 1 0 */
case 16: return g * g * b; /* 0 2 1 */
case 17: return b * r * r; /* 2 0 1 */
case 18: return b * b * r; /* 1 0 2 */
/* 4 */
case 19: return r * r * g * g; /* 2 2 0 */
case 20: return g * g * b * b; /* 0 2 2 */
case 21: return r * r * b * b; /* 2 0 2 */
case 22: return r * r * g * b; /* 2 1 1 */
case 23: return r * g * g * b; /* 1 2 1 */
case 24: return r * g * b * b; /* 1 1 2 */
case 25: return r * r * r * g; /* 3 1 0 */
case 26: return r * r * r * b; /* 3 0 1 */
case 27: return r * g * g * g; /* 1 3 0 */
case 28: return g * g * g * b; /* 0 3 1 */
case 29: return r * b * b * b; /* 1 0 3 */
case 30: return g * b * b * b; /* 0 1 3 */
case 31: return r * r * r * r; /* 4 0 0 */
case 32: return g * g * g * g; /* 0 4 0 */
case 33: return b * b * b * b; /* 0 0 4 */
/* 5 */
case 34: return r * r * g * g * b; /* 2 2 1 */
case 35: return r * g * g * b * b; /* 1 2 2 */
case 36: return r * r * g * b * b; /* 2 1 2 */
case 37: return r * r * r * g * g; /* 3 2 0 */
case 38: return r * r * r * g * b; /* 3 1 1 */
case 39: return r * r * r * b * b; /* 3 0 2 */
case 40: return g * g * g * b * b; /* 0 3 2 */
case 41: return r * r * g * g * g; /* 2 3 0 */
case 42: return r * g * g * g * b; /* 1 3 1 */
case 43: return r * r * b * b * b; /* 2 0 3 */
case 44: return g * g * b * b * b; /* 0 2 3 */
case 45: return r * g * b * b * b; /* 1 1 3 */
case 46: return r * r * r * r * g; /* 4 1 0 */
case 47: return r * r * r * r * b; /* 4 0 1 */
case 48: return r * g * g * g * g; /* 1 4 0 */
case 49: return g * g * g * g * b; /* 0 4 1 */
case 50: return r * b * b * b * b; /* 1 0 4 */
case 51: return g * b * b * b * b; /* 0 1 4 */
case 52: return r * r * r * r * r; /* 5 0 0 */
case 53: return g * g * g * g * g; /* 0 5 0 */
case 54: return b * b * b * b * b; /* 0 0 5 */
default: return 0;
}
}
int cmsxRegressionCreateMatrix(LPMEASUREMENT m, SETOFPATCHES Allowed, int nterms,
int ColorSpace,
LPMATN* lpMat, LPMLRSTATISTICS Stat)
{
LPMATN Input, Output;
int nCollected = cmsxPCollCountSet(m, Allowed);
int i, j, n, rc;
/* We are going always 3 -> 3 for now.... */
Input = MATNalloc(nCollected, nterms);
Output = MATNalloc(nCollected, 3);
/* Set independent terms */
for (n = i = 0; i < m -> nPatches; i++)
{
if (Allowed[i]) {
LPPATCH p = m -> Patches + i;
for (j=0; j < nterms; j++)
Input -> Values[n][j] = Term(j, p -> Colorant.RGB[0], p -> Colorant.RGB[1], p->Colorant.RGB[2]);
switch (ColorSpace) {
case PT_Lab:
Output-> Values[n][0] = p -> Lab.L;
Output-> Values[n][1] = p -> Lab.a;
Output-> Values[n][2] = p -> Lab.b;
break;
case PT_XYZ:
Output-> Values[n][0] = p -> XYZ.X;
Output-> Values[n][1] = p -> XYZ.Y;
Output-> Values[n][2] = p -> XYZ.Z;
break;
default:
cmsSignalError(LCMS_ERRC_ABORTED, "Invalid colorspace");
}
n++;
}
}
/* Apply multiple linear regression */
if (*lpMat) MATNfree(*lpMat);
rc = CreateRegressionMatrix(Input, Output, lpMat, Stat);
/* Free variables */
MATNfree(Input);
MATNfree(Output);
#ifdef DEBUG
if (rc == true)
MATNprintf("tfm", *lpMat);
#endif
return rc;
}
/* Convert a RGB triplet to Lab by using regression matrix */
BOOL cmsxRegressionRGB2Lab(double r, double g, double b, LPMATN tfm, LPcmsCIELab Lab)
{
LPMATN inVec, outVec;
int i;
inVec = MATNalloc(1, tfm->Rows);
if (inVec == NULL)
return false;
/* Put terms */
for (i=0; i < tfm->Rows; i++)
inVec -> Values[0][i] = Term(i, r, g, b);
/* Across regression matrix */
outVec = MATNmult(inVec, tfm);
/* Store result */
if (outVec != NULL) {
Lab->L = outVec->Values[0][0];
Lab->a = outVec->Values[0][1];
Lab->b = outVec->Values[0][2];
MATNfree(outVec);
}
MATNfree(inVec);
return true;
}
/* Convert a RGB triplet to XYX by using regression matrix */
BOOL cmsxRegressionRGB2XYZ(double r, double g, double b, LPMATN tfm, LPcmsCIEXYZ XYZ)
{
LPMATN inVec, outVec;
int i;
inVec = MATNalloc(1, tfm->Rows);
if (inVec == NULL)
return false;
/* Put terms */
for (i=0; i < tfm->Rows; i++)
inVec -> Values[0][i] = Term(i, r, g, b);
/* Across regression matrix */
outVec = MATNmult(inVec, tfm);
/* Store result */
if (outVec != NULL) {
XYZ->X = outVec->Values[0][0];
XYZ->Y = outVec->Values[0][1];
XYZ->Z = outVec->Values[0][2];
MATNfree(outVec);
}
MATNfree(inVec);
return true;
}
/* Convert a RGB triplet to XYX by using regression matrix */
BOOL cmsxRegressionXYZ2RGB(LPcmsCIEXYZ XYZ, LPMATN tfm, double RGB[3])
{
LPMATN inVec, outVec;
int i;
inVec = MATNalloc(1, tfm->Rows);
if (inVec == NULL)
return false;
/* Put terms */
for (i=0; i < tfm->Rows; i++)
inVec -> Values[0][i] = Term(i, XYZ->X, XYZ->Y, XYZ->Z);
/* Across regression matrix */
outVec = MATNmult(inVec, tfm);
/* Store result */
if (outVec != NULL) {
RGB[0] = outVec->Values[0][0];
RGB[1] = outVec->Values[0][1];
RGB[2] = outVec->Values[0][2];
MATNfree(outVec);
}
MATNfree(inVec);
return true;
}
|