diff options
author | Michele Calgaro <[email protected]> | 2019-04-21 23:22:20 +0900 |
---|---|---|
committer | Michele Calgaro <[email protected]> | 2019-04-21 23:22:20 +0900 |
commit | dba036816b279bc1539a9f3894fbc414665d2bce (patch) | |
tree | 29e4bf00bafe515e7afdd02168d65a47a3f9fbc0 /tqtinterface/qt4/src/3rdparty/sqlite/vdbe.c | |
parent | 6f1b4f0c7505a049d992a33f6e409b7c75732d4b (diff) | |
download | experimental-dba036816b279bc1539a9f3894fbc414665d2bce.tar.gz experimental-dba036816b279bc1539a9f3894fbc414665d2bce.zip |
Removed unnecessary and/or TDE-unrelated code.
Signed-off-by: Michele Calgaro <[email protected]>
Signed-off-by: Slávek Banko <[email protected]>
Diffstat (limited to 'tqtinterface/qt4/src/3rdparty/sqlite/vdbe.c')
-rw-r--r-- | tqtinterface/qt4/src/3rdparty/sqlite/vdbe.c | 4885 |
1 files changed, 0 insertions, 4885 deletions
diff --git a/tqtinterface/qt4/src/3rdparty/sqlite/vdbe.c b/tqtinterface/qt4/src/3rdparty/sqlite/vdbe.c deleted file mode 100644 index 5171275..0000000 --- a/tqtinterface/qt4/src/3rdparty/sqlite/vdbe.c +++ /dev/null @@ -1,4885 +0,0 @@ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** The code in this file implements execution method of the -** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") -** handles housekeeping details such as creating and deleting -** VDBE instances. This file is solely interested in executing -** the VDBE program. -** -** In the external interface, an "sqlite_vm*" is an opaque pointer -** to a VDBE. -** -** The SQL parser generates a program which is then executed by -** the VDBE to do the work of the SQL statement. VDBE programs are -** similar in form to assembly language. The program consists of -** a linear sequence of operations. Each operation has an opcode -** and 3 operands. Operands P1 and P2 are integers. Operand P3 -** is a null-terminated string. The P2 operand must be non-negative. -** Opcodes will typically ignore one or more operands. Many opcodes -** ignore all three operands. -** -** Computation results are stored on a stack. Each entry on the -** stack is either an integer, a null-terminated string, a floating point -** number, or the SQL "NULL" value. An inplicit conversion from one -** type to the other occurs as necessary. -** -** Most of the code in this file is taken up by the sqliteVdbeExec() -** function which does the work of interpreting a VDBE program. -** But other routines are also provided to help in building up -** a program instruction by instruction. -** -** Various scripts scan this source file in order to generate HTML -** documentation, headers files, or other derived files. The formatting -** of the code in this file is, therefore, important. See other comments -** in this file for details. If in doubt, do not deviate from existing -** commenting and indentation practices when changing or adding code. -** -** $Id: vdbe.c,v 1.268 2004/03/03 01:51:25 drh Exp $ -*/ -#include "sqliteInt.h" -#include "os.h" -#include <ctype.h> -#include "vdbeInt.h" - -/* -** The following global variable is incremented every time a cursor -** moves, either by the OP_MoveTo or the OP_Next opcode. The test -** procedures use this information to make sure that indices are -** working correctly. This variable has no function other than to -** help verify the correct operation of the library. -*/ -int sqlite_search_count = 0; - -/* -** When this global variable is positive, it gets decremented once before -** each instruction in the VDBE. When reaches zero, the STQLITE_Interrupt -** of the db.flags field is set in order to simulate and interrupt. -** -** This facility is used for testing purposes only. It does not function -** in an ordinary build. -*/ -int sqlite_interrupt_count = 0; - -/* -** Advance the virtual machine to the next output row. -** -** The return vale will be either STQLITE_BUSY, STQLITE_DONE, -** STQLITE_ROW, STQLITE_ERROR, or STQLITE_MISUSE. -** -** STQLITE_BUSY means that the virtual machine attempted to open -** a locked database and there is no busy callback registered. -** Call sqlite_step() again to retry the open. *pN is set to 0 -** and *pazColName and *pazValue are both set to NULL. -** -** STQLITE_DONE means that the virtual machine has finished -** executing. sqlite_step() should not be called again on this -** virtual machine. *pN and *pazColName are set appropriately -** but *pazValue is set to NULL. -** -** STQLITE_ROW means that the virtual machine has generated another -** row of the result set. *pN is set to the number of columns in -** the row. *pazColName is set to the names of the columns followed -** by the column datatypes. *pazValue is set to the values of each -** column in the row. The value of the i-th column is (*pazValue)[i]. -** The name of the i-th column is (*pazColName)[i] and the datatype -** of the i-th column is (*pazColName)[i+*pN]. -** -** STQLITE_ERROR means that a run-time error (such as a constraint -** violation) has occurred. The details of the error will be returned -** by the next call to sqlite_finalize(). sqlite_step() should not -** be called again on the VM. -** -** STQLITE_MISUSE means that the this routine was called inappropriately. -** Perhaps it was called on a virtual machine that had already been -** finalized or on one that had previously returned STQLITE_ERROR or -** STQLITE_DONE. Or it could be the case the the same database connection -** is being used simulataneously by two or more threads. -*/ -int sqlite_step( - sqlite_vm *pVm, /* The virtual machine to execute */ - int *pN, /* OUT: Number of columns in result */ - const char ***pazValue, /* OUT: Column data */ - const char ***pazColName /* OUT: Column names and datatypes */ -){ - Vdbe *p = (Vdbe*)pVm; - sqlite *db; - int rc; - - if( p->magic!=VDBE_MAGIC_RUN ){ - return STQLITE_MISUSE; - } - db = p->db; - if( sqliteSafetyOn(db) ){ - p->rc = STQLITE_MISUSE; - return STQLITE_MISUSE; - } - if( p->explain ){ - rc = sqliteVdbeList(p); - }else{ - rc = sqliteVdbeExec(p); - } - if( rc==STQLITE_DONE || rc==STQLITE_ROW ){ - if( pazColName ) *pazColName = (const char**)p->azColName; - if( pN ) *pN = p->nResColumn; - }else{ - if( pazColName) *pazColName = 0; - if( pN ) *pN = 0; - } - if( pazValue ){ - if( rc==STQLITE_ROW ){ - *pazValue = (const char**)p->azResColumn; - }else{ - *pazValue = 0; - } - } - if( sqliteSafetyOff(db) ){ - return STQLITE_MISUSE; - } - return rc; -} - -/* -** Insert a new aggregate element and make it the element that -** has focus. -** -** Return 0 on success and 1 if memory is exhausted. -*/ -static int AggInsert(Agg *p, char *zKey, int nKey){ - AggElem *pElem, *pOld; - int i; - Mem *pMem; - pElem = sqliteMalloc( sizeof(AggElem) + nKey + - (p->nMem-1)*sizeof(pElem->aMem[0]) ); - if( pElem==0 ) return 1; - pElem->zKey = (char*)&pElem->aMem[p->nMem]; - memcpy(pElem->zKey, zKey, nKey); - pElem->nKey = nKey; - pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem); - if( pOld!=0 ){ - assert( pOld==pElem ); /* Malloc failed on insert */ - sqliteFree(pOld); - return 0; - } - for(i=0, pMem=pElem->aMem; i<p->nMem; i++, pMem++){ - pMem->flags = MEM_Null; - } - p->pCurrent = pElem; - return 0; -} - -/* -** Get the AggElem currently in focus -*/ -#define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P))) -static AggElem *_AggInFocus(Agg *p){ - HashElem *pElem = sqliteHashFirst(&p->hash); - if( pElem==0 ){ - AggInsert(p,"",1); - pElem = sqliteHashFirst(&p->hash); - } - return pElem ? sqliteHashData(pElem) : 0; -} - -/* -** Convert the given stack entity into a string if it isn't one -** already. -*/ -#define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);} -static int hardStringify(Mem *pStack){ - int fg = pStack->flags; - if( fg & MEM_Real ){ - sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r); - }else if( fg & MEM_Int ){ - sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i); - }else{ - pStack->zShort[0] = 0; - } - pStack->z = pStack->zShort; - pStack->n = strlen(pStack->zShort)+1; - pStack->flags = MEM_Str | MEM_Short; - return 0; -} - -/* -** Convert the given stack entity into a string that has been obtained -** from sqliteMalloc(). This is different from Stringify() above in that -** Stringify() will use the NBFS bytes of static string space if the string -** will fit but this routine always mallocs for space. -** Return non-zero if we run out of memory. -*/ -#define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0) -static int hardDynamicify(Mem *pStack){ - int fg = pStack->flags; - char *z; - if( (fg & MEM_Str)==0 ){ - hardStringify(pStack); - } - assert( (fg & MEM_Dyn)==0 ); - z = sqliteMallocRaw( pStack->n ); - if( z==0 ) return 1; - memcpy(z, pStack->z, pStack->n); - pStack->z = z; - pStack->flags |= MEM_Dyn; - return 0; -} - -/* -** An ephemeral string value (signified by the MEM_Ephem flag) contains -** a pointer to a dynamically allocated string where some other entity -** is responsible for deallocating that string. Because the stack entry -** does not control the string, it might be deleted without the stack -** entry knowing it. -** -** This routine converts an ephemeral string into a dynamically allocated -** string that the stack entry itself controls. In other words, it -** converts an MEM_Ephem string into an MEM_Dyn string. -*/ -#define Deephemeralize(P) \ - if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;} -static int hardDeephem(Mem *pStack){ - char *z; - assert( (pStack->flags & MEM_Ephem)!=0 ); - z = sqliteMallocRaw( pStack->n ); - if( z==0 ) return 1; - memcpy(z, pStack->z, pStack->n); - pStack->z = z; - pStack->flags &= ~MEM_Ephem; - pStack->flags |= MEM_Dyn; - return 0; -} - -/* -** Release the memory associated with the given stack level. This -** leaves the Mem.flags field in an inconsistent state. -*/ -#define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); } - -/* -** Pop the stack N times. -*/ -static void popStack(Mem **ppTos, int N){ - Mem *pTos = *ppTos; - while( N>0 ){ - N--; - Release(pTos); - pTos--; - } - *ppTos = pTos; -} - -/* -** Return TRUE if zNum is a 32-bit signed integer and write -** the value of the integer into *pNum. If zNum is not an integer -** or is an integer that is too large to be expressed with just 32 -** bits, then return false. -** -** Under Linux (RedHat 7.2) this routine is much faster than atoi() -** for converting strings into integers. -*/ -static int toInt(const char *zNum, int *pNum){ - int v = 0; - int neg; - int i, c; - if( *zNum=='-' ){ - neg = 1; - zNum++; - }else if( *zNum=='+' ){ - neg = 0; - zNum++; - }else{ - neg = 0; - } - for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ - v = v*10 + c - '0'; - } - *pNum = neg ? -v : v; - return c==0 && i>0 && (i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0)); -} - -/* -** Convert the given stack entity into a integer if it isn't one -** already. -** -** Any prior string or real representation is invalidated. -** NULLs are converted into 0. -*/ -#define Integerify(P) if(((P)->flags&MEM_Int)==0){ hardIntegerify(P); } -static void hardIntegerify(Mem *pStack){ - if( pStack->flags & MEM_Real ){ - pStack->i = (int)pStack->r; - Release(pStack); - }else if( pStack->flags & MEM_Str ){ - toInt(pStack->z, &pStack->i); - Release(pStack); - }else{ - pStack->i = 0; - } - pStack->flags = MEM_Int; -} - -/* -** Get a valid Real representation for the given stack element. -** -** Any prior string or integer representation is retained. -** NULLs are converted into 0.0. -*/ -#define Realify(P) if(((P)->flags&MEM_Real)==0){ hardRealify(P); } -static void hardRealify(Mem *pStack){ - if( pStack->flags & MEM_Str ){ - pStack->r = sqliteAtoF(pStack->z, 0); - }else if( pStack->flags & MEM_Int ){ - pStack->r = pStack->i; - }else{ - pStack->r = 0.0; - } - pStack->flags |= MEM_Real; -} - -/* -** The parameters are pointers to the head of two sorted lists -** of Sorter structures. Merge these two lists together and return -** a single sorted list. This routine forms the core of the merge-sort -** algorithm. -** -** In the case of a tie, left sorts in front of right. -*/ -static Sorter *Merge(Sorter *pLeft, Sorter *pRight){ - Sorter sHead; - Sorter *pTail; - pTail = &sHead; - pTail->pNext = 0; - while( pLeft && pRight ){ - int c = sqliteSortCompare(pLeft->zKey, pRight->zKey); - if( c<=0 ){ - pTail->pNext = pLeft; - pLeft = pLeft->pNext; - }else{ - pTail->pNext = pRight; - pRight = pRight->pNext; - } - pTail = pTail->pNext; - } - if( pLeft ){ - pTail->pNext = pLeft; - }else if( pRight ){ - pTail->pNext = pRight; - } - return sHead.pNext; -} - -/* -** The following routine works like a replacement for the standard -** library routine fgets(). The difference is in how end-of-line (EOL) -** is handled. Standard fgets() uses LF for EOL under unix, CRLF -** under windows, and CR under mac. This routine accepts any of these -** character sequences as an EOL mark. The EOL mark is replaced by -** a single LF character in zBuf. -*/ -static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){ - int i, c; - for(i=0; i<nBuf-1 && (c=getc(in))!=EOF; i++){ - zBuf[i] = c; - if( c=='\r' || c=='\n' ){ - if( c=='\r' ){ - zBuf[i] = '\n'; - c = getc(in); - if( c!=EOF && c!='\n' ) ungetc(c, in); - } - i++; - break; - } - } - zBuf[i] = 0; - return i>0 ? zBuf : 0; -} - -/* -** Make sure there is space in the Vdbe structure to hold at least -** mxCursor cursors. If there is not currently enough space, then -** allocate more. -** -** If a memory allocation error occurs, return 1. Return 0 if -** everything works. -*/ -static int expandCursorArraySize(Vdbe *p, int mxCursor){ - if( mxCursor>=p->nCursor ){ - Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) ); - if( aCsr==0 ) return 1; - p->aCsr = aCsr; - memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor)); - p->nCursor = mxCursor+1; - } - return 0; -} - -#ifdef VDBE_PROFILE -/* -** The following routine only works on pentium-class processors. -** It uses the RDTSC opcode to read cycle count value out of the -** processor and returns that value. This can be used for high-res -** profiling. -*/ -__inline__ unsigned long long int hwtime(void){ - unsigned long long int x; - __asm__("rdtsc\n\t" - "mov %%edx, %%ecx\n\t" - :"=A" (x)); - return x; -} -#endif - -/* -** The CHECK_FOR_INTERRUPT macro defined here looks to see if the -** sqlite_interrupt() routine has been called. If it has been, then -** processing of the VDBE program is interrupted. -** -** This macro added to every instruction that does a jump in order to -** implement a loop. This test used to be on every single instruction, -** but that meant we more testing that we needed. By only testing the -** flag on jump instructions, we get a (small) speed improvement. -*/ -#define CHECK_FOR_INTERRUPT \ - if( db->flags & STQLITE_Interrupt ) goto abort_due_to_interrupt; - - -/* -** Execute as much of a VDBE program as we can then return. -** -** sqliteVdbeMakeReady() must be called before this routine in order to -** close the program with a final OP_Halt and to set up the callbacks -** and the error message pointer. -** -** Whenever a row or result data is available, this routine will either -** invoke the result callback (if there is one) or return with -** STQLITE_ROW. -** -** If an attempt is made to open a locked database, then this routine -** will either invoke the busy callback (if there is one) or it will -** return STQLITE_BUSY. -** -** If an error occurs, an error message is written to memory obtained -** from sqliteMalloc() and p->zErrMsg is made to point to that memory. -** The error code is stored in p->rc and this routine returns STQLITE_ERROR. -** -** If the callback ever returns non-zero, then the program exits -** immediately. There will be no error message but the p->rc field is -** set to STQLITE_ABORT and this routine will return STQLITE_ERROR. -** -** A memory allocation error causes p->rc to be set to STQLITE_NOMEM and this -** routine to return STQLITE_ERROR. -** -** Other fatal errors return STQLITE_ERROR. -** -** After this routine has finished, sqliteVdbeFinalize() should be -** used to clean up the mess that was left behind. -*/ -int sqliteVdbeExec( - Vdbe *p /* The VDBE */ -){ - int pc; /* The program counter */ - Op *pOp; /* Current operation */ - int rc = STQLITE_OK; /* Value to return */ - sqlite *db = p->db; /* The database */ - Mem *pTos; /* Top entry in the operand stack */ - char zBuf[100]; /* Space to sprintf() an integer */ -#ifdef VDBE_PROFILE - unsigned long long start; /* CPU clock count at start of opcode */ - int origPc; /* Program counter at start of opcode */ -#endif -#ifndef STQLITE_OMIT_PROGRESS_CALLBACK - int nProgressOps = 0; /* Opcodes executed since progress callback. */ -#endif - - if( p->magic!=VDBE_MAGIC_RUN ) return STQLITE_MISUSE; - assert( db->magic==STQLITE_MAGIC_BUSY ); - assert( p->rc==STQLITE_OK || p->rc==STQLITE_BUSY ); - p->rc = STQLITE_OK; - assert( p->explain==0 ); - if( sqlite_malloc_failed ) goto no_mem; - pTos = p->pTos; - if( p->popStack ){ - popStack(&pTos, p->popStack); - p->popStack = 0; - } - CHECK_FOR_INTERRUPT; - for(pc=p->pc; rc==STQLITE_OK; pc++){ - assert( pc>=0 && pc<p->nOp ); - assert( pTos<=&p->aStack[pc] ); -#ifdef VDBE_PROFILE - origPc = pc; - start = hwtime(); -#endif - pOp = &p->aOp[pc]; - - /* Only allow tracing if NDEBUG is not defined. - */ -#ifndef NDEBUG - if( p->trace ){ - sqliteVdbePrintOp(p->trace, pc, pOp); - } -#endif - - /* Check to see if we need to simulate an interrupt. This only happens - ** if we have a special test build. - */ -#ifdef STQLITE_TEST - if( sqlite_interrupt_count>0 ){ - sqlite_interrupt_count--; - if( sqlite_interrupt_count==0 ){ - sqlite_interrupt(db); - } - } -#endif - -#ifndef STQLITE_OMIT_PROGRESS_CALLBACK - /* Call the progress callback if it is configured and the required number - ** of VDBE ops have been executed (either since this invocation of - ** sqliteVdbeExec() or since last time the progress callback was called). - ** If the progress callback returns non-zero, exit the virtual machine with - ** a return code STQLITE_ABORT. - */ - if( db->xProgress ){ - if( db->nProgressOps==nProgressOps ){ - if( db->xProgress(db->pProgressArg)!=0 ){ - rc = STQLITE_ABORT; - continue; /* skip to the next iteration of the for loop */ - } - nProgressOps = 0; - } - nProgressOps++; - } -#endif - - switch( pOp->opcode ){ - -/***************************************************************************** -** What follows is a massive switch statement where each case implements a -** separate instruction in the virtual machine. If we follow the usual -** indentation conventions, each case should be indented by 6 spaces. But -** that is a lot of wasted space on the left margin. So the code within -** the switch statement will break with convention and be flush-left. Another -** big comment (similar to this one) will mark the point in the code where -** we transition back to normal indentation. -** -** The formatting of each case is important. The makefile for STQLite -** generates two C files "opcodes.h" and "opcodes.c" by scanning this -** file looking for lines that begin with "case OP_". The opcodes.h files -** will be filled with #defines that give unique integer values to each -** opcode and the opcodes.c file is filled with an array of strings where -** each string is the symbolic name for the corresponding opcode. -** -** Documentation about VDBE opcodes is generated by scanning this file -** for lines of that contain "Opcode:". That line and all subsequent -** comment lines are used in the generation of the opcode.html documentation -** file. -** -** SUMMARY: -** -** Formatting is important to scripts that scan this file. -** Do not deviate from the formatting style currently in use. -** -*****************************************************************************/ - -/* Opcode: Goto * P2 * -** -** An unconditional jump to address P2. -** The next instruction executed will be -** the one at index P2 from the beginning of -** the program. -*/ -case OP_Goto: { - CHECK_FOR_INTERRUPT; - pc = pOp->p2 - 1; - break; -} - -/* Opcode: Gosub * P2 * -** -** Push the current address plus 1 onto the return address stack -** and then jump to address P2. -** -** The return address stack is of limited depth. If too many -** OP_Gosub operations occur without intervening OP_Returns, then -** the return address stack will fill up and processing will abort -** with a fatal error. -*/ -case OP_Gosub: { - if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){ - sqliteSetString(&p->zErrMsg, "return address stack overflow", (char*)0); - p->rc = STQLITE_INTERNAL; - return STQLITE_ERROR; - } - p->returnStack[p->returnDepth++] = pc+1; - pc = pOp->p2 - 1; - break; -} - -/* Opcode: Return * * * -** -** Jump immediately to the next instruction after the last unreturned -** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then -** processing aborts with a fatal error. -*/ -case OP_Return: { - if( p->returnDepth<=0 ){ - sqliteSetString(&p->zErrMsg, "return address stack underflow", (char*)0); - p->rc = STQLITE_INTERNAL; - return STQLITE_ERROR; - } - p->returnDepth--; - pc = p->returnStack[p->returnDepth] - 1; - break; -} - -/* Opcode: Halt P1 P2 * -** -** Exit immediately. All open cursors, Lists, Sorts, etc are closed -** automatically. -** -** P1 is the result code returned by sqlite_exec(). For a normal -** halt, this should be STQLITE_OK (0). For errors, it can be some -** other value. If P1!=0 then P2 will determine whether or not to -** rollback the current transaction. Do not rollback if P2==OE_Fail. -** Do the rollback if P2==OE_Rollback. If P2==OE_Abort, then back -** out all changes that have occurred during this execution of the -** VDBE, but do not rollback the transaction. -** -** There is an implied "Halt 0 0 0" instruction inserted at the very end of -** every program. So a jump past the last instruction of the program -** is the same as executing Halt. -*/ -case OP_Halt: { - p->magic = VDBE_MAGIC_HALT; - p->pTos = pTos; - if( pOp->p1!=STQLITE_OK ){ - p->rc = pOp->p1; - p->errorAction = pOp->p2; - if( pOp->p3 ){ - sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0); - } - return STQLITE_ERROR; - }else{ - p->rc = STQLITE_OK; - return STQLITE_DONE; - } -} - -/* Opcode: Integer P1 * P3 -** -** The integer value P1 is pushed onto the stack. If P3 is not zero -** then it is assumed to be a string representation of the same integer. -*/ -case OP_Integer: { - pTos++; - pTos->i = pOp->p1; - pTos->flags = MEM_Int; - if( pOp->p3 ){ - pTos->z = pOp->p3; - pTos->flags |= MEM_Str | MEM_Static; - pTos->n = strlen(pOp->p3)+1; - } - break; -} - -/* Opcode: String * * P3 -** -** The string value P3 is pushed onto the stack. If P3==0 then a -** NULL is pushed onto the stack. -*/ -case OP_String: { - char *z = pOp->p3; - pTos++; - if( z==0 ){ - pTos->flags = MEM_Null; - }else{ - pTos->z = z; - pTos->n = strlen(z) + 1; - pTos->flags = MEM_Str | MEM_Static; - } - break; -} - -/* Opcode: Variable P1 * * -** -** Push the value of variable P1 onto the stack. A variable is -** an unknown in the original SQL string as handed to sqlite_compile(). -** Any occurance of the '?' character in the original SQL is considered -** a variable. Variables in the SQL string are number from left to -** right beginning with 1. The values of variables are set using the -** sqlite_bind() API. -*/ -case OP_Variable: { - int j = pOp->p1 - 1; - pTos++; - if( j>=0 && j<p->nVar && p->azVar[j]!=0 ){ - pTos->z = p->azVar[j]; - pTos->n = p->anVar[j]; - pTos->flags = MEM_Str | MEM_Static; - }else{ - pTos->flags = MEM_Null; - } - break; -} - -/* Opcode: Pop P1 * * -** -** P1 elements are popped off of the top of stack and discarded. -*/ -case OP_Pop: { - assert( pOp->p1>=0 ); - popStack(&pTos, pOp->p1); - assert( pTos>=&p->aStack[-1] ); - break; -} - -/* Opcode: Dup P1 P2 * -** -** A copy of the P1-th element of the stack -** is made and pushed onto the top of the stack. -** The top of the stack is element 0. So the -** instruction "Dup 0 0 0" will make a copy of the -** top of the stack. -** -** If the content of the P1-th element is a dynamically -** allocated string, then a new copy of that string -** is made if P2==0. If P2!=0, then just a pointer -** to the string is copied. -** -** Also see the Pull instruction. -*/ -case OP_Dup: { - Mem *pFrom = &pTos[-pOp->p1]; - assert( pFrom<=pTos && pFrom>=p->aStack ); - pTos++; - memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS); - if( pTos->flags & MEM_Str ){ - if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){ - pTos->flags &= ~MEM_Dyn; - pTos->flags |= MEM_Ephem; - }else if( pTos->flags & MEM_Short ){ - memcpy(pTos->zShort, pFrom->zShort, pTos->n); - pTos->z = pTos->zShort; - }else if( (pTos->flags & MEM_Static)==0 ){ - pTos->z = sqliteMallocRaw(pFrom->n); - if( sqlite_malloc_failed ) goto no_mem; - memcpy(pTos->z, pFrom->z, pFrom->n); - pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short); - pTos->flags |= MEM_Dyn; - } - } - break; -} - -/* Opcode: Pull P1 * * -** -** The P1-th element is removed from its current location on -** the stack and pushed back on top of the stack. The -** top of the stack is element 0, so "Pull 0 0 0" is -** a no-op. "Pull 1 0 0" swaps the top two elements of -** the stack. -** -** See also the Dup instruction. -*/ -case OP_Pull: { - Mem *pFrom = &pTos[-pOp->p1]; - int i; - Mem ts; - - ts = *pFrom; - Deephemeralize(pTos); - for(i=0; i<pOp->p1; i++, pFrom++){ - Deephemeralize(&pFrom[1]); - *pFrom = pFrom[1]; - assert( (pFrom->flags & MEM_Ephem)==0 ); - if( pFrom->flags & MEM_Short ){ - assert( pFrom->flags & MEM_Str ); - assert( pFrom->z==pFrom[1].zShort ); - pFrom->z = pFrom->zShort; - } - } - *pTos = ts; - if( pTos->flags & MEM_Short ){ - assert( pTos->flags & MEM_Str ); - assert( pTos->z==pTos[-pOp->p1].zShort ); - pTos->z = pTos->zShort; - } - break; -} - -/* Opcode: Push P1 * * -** -** Overwrite the value of the P1-th element down on the -** stack (P1==0 is the top of the stack) with the value -** of the top of the stack. Then pop the top of the stack. -*/ -case OP_Push: { - Mem *pTo = &pTos[-pOp->p1]; - - assert( pTo>=p->aStack ); - Deephemeralize(pTos); - Release(pTo); - *pTo = *pTos; - if( pTo->flags & MEM_Short ){ - assert( pTo->z==pTos->zShort ); - pTo->z = pTo->zShort; - } - pTos--; - break; -} - - -/* Opcode: ColumnName P1 P2 P3 -** -** P3 becomes the P1-th column name (first is 0). An array of pointers -** to all column names is passed as the 4th parameter to the callback. -** If P2==1 then this is the last column in the result set and thus the -** number of columns in the result set will be P1. There must be at least -** one OP_ColumnName with a P2==1 before invoking OP_Callback and the -** number of columns specified in OP_Callback must one more than the P1 -** value of the OP_ColumnName that has P2==1. -*/ -case OP_ColumnName: { - assert( pOp->p1>=0 && pOp->p1<p->nOp ); - p->azColName[pOp->p1] = pOp->p3; - p->nCallback = 0; - if( pOp->p2 ) p->nResColumn = pOp->p1+1; - break; -} - -/* Opcode: Callback P1 * * -** -** Pop P1 values off the stack and form them into an array. Then -** invoke the callback function using the newly formed array as the -** 3rd parameter. -*/ -case OP_Callback: { - int i; - char **azArgv = p->zArgv; - Mem *pCol; - - pCol = &pTos[1-pOp->p1]; - assert( pCol>=p->aStack ); - for(i=0; i<pOp->p1; i++, pCol++){ - if( pCol->flags & MEM_Null ){ - azArgv[i] = 0; - }else{ - Stringify(pCol); - azArgv[i] = pCol->z; - } - } - azArgv[i] = 0; - p->nCallback++; - p->azResColumn = azArgv; - assert( p->nResColumn==pOp->p1 ); - p->popStack = pOp->p1; - p->pc = pc + 1; - p->pTos = pTos; - return STQLITE_ROW; -} - -/* Opcode: Concat P1 P2 P3 -** -** Look at the first P1 elements of the stack. Append them all -** together with the lowest element first. Use P3 as a separator. -** Put the result on the top of the stack. The original P1 elements -** are popped from the stack if P2==0 and retained if P2==1. If -** any element of the stack is NULL, then the result is NULL. -** -** If P3 is NULL, then use no separator. When P1==1, this routine -** makes a copy of the top stack element into memory obtained -** from sqliteMalloc(). -*/ -case OP_Concat: { - char *zNew; - int nByte; - int nField; - int i, j; - char *zSep; - int nSep; - Mem *pTerm; - - nField = pOp->p1; - zSep = pOp->p3; - if( zSep==0 ) zSep = ""; - nSep = strlen(zSep); - assert( &pTos[1-nField] >= p->aStack ); - nByte = 1 - nSep; - pTerm = &pTos[1-nField]; - for(i=0; i<nField; i++, pTerm++){ - if( pTerm->flags & MEM_Null ){ - nByte = -1; - break; - }else{ - Stringify(pTerm); - nByte += pTerm->n - 1 + nSep; - } - } - if( nByte<0 ){ - if( pOp->p2==0 ){ - popStack(&pTos, nField); - } - pTos++; - pTos->flags = MEM_Null; - break; - } - zNew = sqliteMallocRaw( nByte ); - if( zNew==0 ) goto no_mem; - j = 0; - pTerm = &pTos[1-nField]; - for(i=j=0; i<nField; i++, pTerm++){ - assert( pTerm->flags & MEM_Str ); - memcpy(&zNew[j], pTerm->z, pTerm->n-1); - j += pTerm->n-1; - if( nSep>0 && i<nField-1 ){ - memcpy(&zNew[j], zSep, nSep); - j += nSep; - } - } - zNew[j] = 0; - if( pOp->p2==0 ){ - popStack(&pTos, nField); - } - pTos++; - pTos->n = nByte; - pTos->flags = MEM_Str|MEM_Dyn; - pTos->z = zNew; - break; -} - -/* Opcode: Add * * * -** -** Pop the top two elements from the stack, add them together, -** and push the result back onto the stack. If either element -** is a string then it is converted to a double using the atof() -** function before the addition. -** If either operand is NULL, the result is NULL. -*/ -/* Opcode: Multiply * * * -** -** Pop the top two elements from the stack, multiply them together, -** and push the result back onto the stack. If either element -** is a string then it is converted to a double using the atof() -** function before the multiplication. -** If either operand is NULL, the result is NULL. -*/ -/* Opcode: Subtract * * * -** -** Pop the top two elements from the stack, subtract the -** first (what was on top of the stack) from the second (the -** next on stack) -** and push the result back onto the stack. If either element -** is a string then it is converted to a double using the atof() -** function before the subtraction. -** If either operand is NULL, the result is NULL. -*/ -/* Opcode: Divide * * * -** -** Pop the top two elements from the stack, divide the -** first (what was on top of the stack) from the second (the -** next on stack) -** and push the result back onto the stack. If either element -** is a string then it is converted to a double using the atof() -** function before the division. Division by zero returns NULL. -** If either operand is NULL, the result is NULL. -*/ -/* Opcode: Remainder * * * -** -** Pop the top two elements from the stack, divide the -** first (what was on top of the stack) from the second (the -** next on stack) -** and push the remainder after division onto the stack. If either element -** is a string then it is converted to a double using the atof() -** function before the division. Division by zero returns NULL. -** If either operand is NULL, the result is NULL. -*/ -case OP_Add: -case OP_Subtract: -case OP_Multiply: -case OP_Divide: -case OP_Remainder: { - Mem *pNos = &pTos[-1]; - assert( pNos>=p->aStack ); - if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){ - Release(pTos); - pTos--; - Release(pTos); - pTos->flags = MEM_Null; - }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){ - int a, b; - a = pTos->i; - b = pNos->i; - switch( pOp->opcode ){ - case OP_Add: b += a; break; - case OP_Subtract: b -= a; break; - case OP_Multiply: b *= a; break; - case OP_Divide: { - if( a==0 ) goto divide_by_zero; - b /= a; - break; - } - default: { - if( a==0 ) goto divide_by_zero; - b %= a; - break; - } - } - Release(pTos); - pTos--; - Release(pTos); - pTos->i = b; - pTos->flags = MEM_Int; - }else{ - double a, b; - Realify(pTos); - Realify(pNos); - a = pTos->r; - b = pNos->r; - switch( pOp->opcode ){ - case OP_Add: b += a; break; - case OP_Subtract: b -= a; break; - case OP_Multiply: b *= a; break; - case OP_Divide: { - if( a==0.0 ) goto divide_by_zero; - b /= a; - break; - } - default: { - int ia = (int)a; - int ib = (int)b; - if( ia==0.0 ) goto divide_by_zero; - b = ib % ia; - break; - } - } - Release(pTos); - pTos--; - Release(pTos); - pTos->r = b; - pTos->flags = MEM_Real; - } - break; - -divide_by_zero: - Release(pTos); - pTos--; - Release(pTos); - pTos->flags = MEM_Null; - break; -} - -/* Opcode: Function P1 * P3 -** -** Invoke a user function (P3 is a pointer to a Function structure that -** defines the function) with P1 string arguments taken from the stack. -** Pop all arguments from the stack and push back the result. -** -** See also: AggFunc -*/ -case OP_Function: { - int n, i; - Mem *pArg; - char **azArgv; - sqlite_func ctx; - - n = pOp->p1; - pArg = &pTos[1-n]; - azArgv = p->zArgv; - for(i=0; i<n; i++, pArg++){ - if( pArg->flags & MEM_Null ){ - azArgv[i] = 0; - }else{ - Stringify(pArg); - azArgv[i] = pArg->z; - } - } - ctx.pFunc = (FuncDef*)pOp->p3; - ctx.s.flags = MEM_Null; - ctx.s.z = 0; - ctx.isError = 0; - ctx.isStep = 0; - if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; - (*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv); - if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; - popStack(&pTos, n); - pTos++; - *pTos = ctx.s; - if( pTos->flags & MEM_Short ){ - pTos->z = pTos->zShort; - } - if( ctx.isError ){ - sqliteSetString(&p->zErrMsg, - (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0); - rc = STQLITE_ERROR; - } - break; -} - -/* Opcode: BitAnd * * * -** -** Pop the top two elements from the stack. Convert both elements -** to integers. Push back onto the stack the bit-wise AND of the -** two elements. -** If either operand is NULL, the result is NULL. -*/ -/* Opcode: BitOr * * * -** -** Pop the top two elements from the stack. Convert both elements -** to integers. Push back onto the stack the bit-wise OR of the -** two elements. -** If either operand is NULL, the result is NULL. -*/ -/* Opcode: ShiftLeft * * * -** -** Pop the top two elements from the stack. Convert both elements -** to integers. Push back onto the stack the top element shifted -** left by N bits where N is the second element on the stack. -** If either operand is NULL, the result is NULL. -*/ -/* Opcode: ShiftRight * * * -** -** Pop the top two elements from the stack. Convert both elements -** to integers. Push back onto the stack the top element shifted -** right by N bits where N is the second element on the stack. -** If either operand is NULL, the result is NULL. -*/ -case OP_BitAnd: -case OP_BitOr: -case OP_ShiftLeft: -case OP_ShiftRight: { - Mem *pNos = &pTos[-1]; - int a, b; - - assert( pNos>=p->aStack ); - if( (pTos->flags | pNos->flags) & MEM_Null ){ - popStack(&pTos, 2); - pTos++; - pTos->flags = MEM_Null; - break; - } - Integerify(pTos); - Integerify(pNos); - a = pTos->i; - b = pNos->i; - switch( pOp->opcode ){ - case OP_BitAnd: a &= b; break; - case OP_BitOr: a |= b; break; - case OP_ShiftLeft: a <<= b; break; - case OP_ShiftRight: a >>= b; break; - default: /* CANT HAPPEN */ break; - } - assert( (pTos->flags & MEM_Dyn)==0 ); - assert( (pNos->flags & MEM_Dyn)==0 ); - pTos--; - Release(pTos); - pTos->i = a; - pTos->flags = MEM_Int; - break; -} - -/* Opcode: AddImm P1 * * -** -** Add the value P1 to whatever is on top of the stack. The result -** is always an integer. -** -** To force the top of the stack to be an integer, just add 0. -*/ -case OP_AddImm: { - assert( pTos>=p->aStack ); - Integerify(pTos); - pTos->i += pOp->p1; - break; -} - -/* Opcode: ForceInt P1 P2 * -** -** Convert the top of the stack into an integer. If the current top of -** the stack is not numeric (meaning that is is a NULL or a string that -** does not look like an integer or floating point number) then pop the -** stack and jump to P2. If the top of the stack is numeric then -** convert it into the least integer that is greater than or equal to its -** current value if P1==0, or to the least integer that is strictly -** greater than its current value if P1==1. -*/ -case OP_ForceInt: { - int v; - assert( pTos>=p->aStack ); - if( (pTos->flags & (MEM_Int|MEM_Real))==0 - && ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){ - Release(pTos); - pTos--; - pc = pOp->p2 - 1; - break; - } - if( pTos->flags & MEM_Int ){ - v = pTos->i + (pOp->p1!=0); - }else{ - Realify(pTos); - v = (int)pTos->r; - if( pTos->r>(double)v ) v++; - if( pOp->p1 && pTos->r==(double)v ) v++; - } - Release(pTos); - pTos->i = v; - pTos->flags = MEM_Int; - break; -} - -/* Opcode: MustBeInt P1 P2 * -** -** Force the top of the stack to be an integer. If the top of the -** stack is not an integer and cannot be converted into an integer -** with out data loss, then jump immediately to P2, or if P2==0 -** raise an STQLITE_MISMATCH exception. -** -** If the top of the stack is not an integer and P2 is not zero and -** P1 is 1, then the stack is popped. In all other cases, the depth -** of the stack is unchanged. -*/ -case OP_MustBeInt: { - assert( pTos>=p->aStack ); - if( pTos->flags & MEM_Int ){ - /* Do nothing */ - }else if( pTos->flags & MEM_Real ){ - int i = (int)pTos->r; - double r = (double)i; - if( r!=pTos->r ){ - goto mismatch; - } - pTos->i = i; - }else if( pTos->flags & MEM_Str ){ - int v; - if( !toInt(pTos->z, &v) ){ - double r; - if( !sqliteIsNumber(pTos->z) ){ - goto mismatch; - } - Realify(pTos); - v = (int)pTos->r; - r = (double)v; - if( r!=pTos->r ){ - goto mismatch; - } - } - pTos->i = v; - }else{ - goto mismatch; - } - Release(pTos); - pTos->flags = MEM_Int; - break; - -mismatch: - if( pOp->p2==0 ){ - rc = STQLITE_MISMATCH; - goto abort_due_to_error; - }else{ - if( pOp->p1 ) popStack(&pTos, 1); - pc = pOp->p2 - 1; - } - break; -} - -/* Opcode: Eq P1 P2 * -** -** Pop the top two elements from the stack. If they are equal, then -** jump to instruction P2. Otherwise, continue to the next instruction. -** -** If either operand is NULL (and thus if the result is unknown) then -** take the jump if P1 is true. -** -** If both values are numeric, they are converted to doubles using atof() -** and compared for equality that way. Otherwise the strcmp() library -** routine is used for the comparison. For a pure text comparison -** use OP_StrEq. -** -** If P2 is zero, do not jump. Instead, push an integer 1 onto the -** stack if the jump would have been taken, or a 0 if not. Push a -** NULL if either operand was NULL. -*/ -/* Opcode: Ne P1 P2 * -** -** Pop the top two elements from the stack. If they are not equal, then -** jump to instruction P2. Otherwise, continue to the next instruction. -** -** If either operand is NULL (and thus if the result is unknown) then -** take the jump if P1 is true. -** -** If both values are numeric, they are converted to doubles using atof() -** and compared in that format. Otherwise the strcmp() library -** routine is used for the comparison. For a pure text comparison -** use OP_StrNe. -** -** If P2 is zero, do not jump. Instead, push an integer 1 onto the -** stack if the jump would have been taken, or a 0 if not. Push a -** NULL if either operand was NULL. -*/ -/* Opcode: Lt P1 P2 * -** -** Pop the top two elements from the stack. If second element (the -** next on stack) is less than the first (the top of stack), then -** jump to instruction P2. Otherwise, continue to the next instruction. -** In other words, jump if NOS<TOS. -** -** If either operand is NULL (and thus if the result is unknown) then -** take the jump if P1 is true. -** -** If both values are numeric, they are converted to doubles using atof() -** and compared in that format. Numeric values are always less than -** non-numeric values. If both operands are non-numeric, the strcmp() library -** routine is used for the comparison. For a pure text comparison -** use OP_StrLt. -** -** If P2 is zero, do not jump. Instead, push an integer 1 onto the -** stack if the jump would have been taken, or a 0 if not. Push a -** NULL if either operand was NULL. -*/ -/* Opcode: Le P1 P2 * -** -** Pop the top two elements from the stack. If second element (the -** next on stack) is less than or equal to the first (the top of stack), -** then jump to instruction P2. In other words, jump if NOS<=TOS. -** -** If either operand is NULL (and thus if the result is unknown) then -** take the jump if P1 is true. -** -** If both values are numeric, they are converted to doubles using atof() -** and compared in that format. Numeric values are always less than -** non-numeric values. If both operands are non-numeric, the strcmp() library -** routine is used for the comparison. For a pure text comparison -** use OP_StrLe. -** -** If P2 is zero, do not jump. Instead, push an integer 1 onto the -** stack if the jump would have been taken, or a 0 if not. Push a -** NULL if either operand was NULL. -*/ -/* Opcode: Gt P1 P2 * -** -** Pop the top two elements from the stack. If second element (the -** next on stack) is greater than the first (the top of stack), -** then jump to instruction P2. In other words, jump if NOS>TOS. -** -** If either operand is NULL (and thus if the result is unknown) then -** take the jump if P1 is true. -** -** If both values are numeric, they are converted to doubles using atof() -** and compared in that format. Numeric values are always less than -** non-numeric values. If both operands are non-numeric, the strcmp() library -** routine is used for the comparison. For a pure text comparison -** use OP_StrGt. -** -** If P2 is zero, do not jump. Instead, push an integer 1 onto the -** stack if the jump would have been taken, or a 0 if not. Push a -** NULL if either operand was NULL. -*/ -/* Opcode: Ge P1 P2 * -** -** Pop the top two elements from the stack. If second element (the next -** on stack) is greater than or equal to the first (the top of stack), -** then jump to instruction P2. In other words, jump if NOS>=TOS. -** -** If either operand is NULL (and thus if the result is unknown) then -** take the jump if P1 is true. -** -** If both values are numeric, they are converted to doubles using atof() -** and compared in that format. Numeric values are always less than -** non-numeric values. If both operands are non-numeric, the strcmp() library -** routine is used for the comparison. For a pure text comparison -** use OP_StrGe. -** -** If P2 is zero, do not jump. Instead, push an integer 1 onto the -** stack if the jump would have been taken, or a 0 if not. Push a -** NULL if either operand was NULL. -*/ -case OP_Eq: -case OP_Ne: -case OP_Lt: -case OP_Le: -case OP_Gt: -case OP_Ge: { - Mem *pNos = &pTos[-1]; - int c, v; - int ft, fn; - assert( pNos>=p->aStack ); - ft = pTos->flags; - fn = pNos->flags; - if( (ft | fn) & MEM_Null ){ - popStack(&pTos, 2); - if( pOp->p2 ){ - if( pOp->p1 ) pc = pOp->p2-1; - }else{ - pTos++; - pTos->flags = MEM_Null; - } - break; - }else if( (ft & fn & MEM_Int)==MEM_Int ){ - c = pNos->i - pTos->i; - }else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){ - c = v - pTos->i; - }else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){ - c = pNos->i - v; - }else{ - Stringify(pTos); - Stringify(pNos); - c = sqliteCompare(pNos->z, pTos->z); - } - switch( pOp->opcode ){ - case OP_Eq: c = c==0; break; - case OP_Ne: c = c!=0; break; - case OP_Lt: c = c<0; break; - case OP_Le: c = c<=0; break; - case OP_Gt: c = c>0; break; - default: c = c>=0; break; - } - popStack(&pTos, 2); - if( pOp->p2 ){ - if( c ) pc = pOp->p2-1; - }else{ - pTos++; - pTos->i = c; - pTos->flags = MEM_Int; - } - break; -} -/* INSERT NO CODE HERE! -** -** The opcode numbers are extracted from this source file by doing -** -** grep '^case OP_' vdbe.c | ... >opcodes.h -** -** The opcodes are numbered in the order that they appear in this file. -** But in order for the expression generating code to work right, the -** string comparison operators that follow must be numbered exactly 6 -** greater than the numeric comparison opcodes above. So no other -** cases can appear between the two. -*/ -/* Opcode: StrEq P1 P2 * -** -** Pop the top two elements from the stack. If they are equal, then -** jump to instruction P2. Otherwise, continue to the next instruction. -** -** If either operand is NULL (and thus if the result is unknown) then -** take the jump if P1 is true. -** -** The strcmp() library routine is used for the comparison. For a -** numeric comparison, use OP_Eq. -** -** If P2 is zero, do not jump. Instead, push an integer 1 onto the -** stack if the jump would have been taken, or a 0 if not. Push a -** NULL if either operand was NULL. -*/ -/* Opcode: StrNe P1 P2 * -** -** Pop the top two elements from the stack. If they are not equal, then -** jump to instruction P2. Otherwise, continue to the next instruction. -** -** If either operand is NULL (and thus if the result is unknown) then -** take the jump if P1 is true. -** -** The strcmp() library routine is used for the comparison. For a -** numeric comparison, use OP_Ne. -** -** If P2 is zero, do not jump. Instead, push an integer 1 onto the -** stack if the jump would have been taken, or a 0 if not. Push a -** NULL if either operand was NULL. -*/ -/* Opcode: StrLt P1 P2 * -** -** Pop the top two elements from the stack. If second element (the -** next on stack) is less than the first (the top of stack), then -** jump to instruction P2. Otherwise, continue to the next instruction. -** In other words, jump if NOS<TOS. -** -** If either operand is NULL (and thus if the result is unknown) then -** take the jump if P1 is true. -** -** The strcmp() library routine is used for the comparison. For a -** numeric comparison, use OP_Lt. -** -** If P2 is zero, do not jump. Instead, push an integer 1 onto the -** stack if the jump would have been taken, or a 0 if not. Push a -** NULL if either operand was NULL. -*/ -/* Opcode: StrLe P1 P2 * -** -** Pop the top two elements from the stack. If second element (the -** next on stack) is less than or equal to the first (the top of stack), -** then jump to instruction P2. In other words, jump if NOS<=TOS. -** -** If either operand is NULL (and thus if the result is unknown) then -** take the jump if P1 is true. -** -** The strcmp() library routine is used for the comparison. For a -** numeric comparison, use OP_Le. -** -** If P2 is zero, do not jump. Instead, push an integer 1 onto the -** stack if the jump would have been taken, or a 0 if not. Push a -** NULL if either operand was NULL. -*/ -/* Opcode: StrGt P1 P2 * -** -** Pop the top two elements from the stack. If second element (the -** next on stack) is greater than the first (the top of stack), -** then jump to instruction P2. In other words, jump if NOS>TOS. -** -** If either operand is NULL (and thus if the result is unknown) then -** take the jump if P1 is true. -** -** The strcmp() library routine is used for the comparison. For a -** numeric comparison, use OP_Gt. -** -** If P2 is zero, do not jump. Instead, push an integer 1 onto the -** stack if the jump would have been taken, or a 0 if not. Push a -** NULL if either operand was NULL. -*/ -/* Opcode: StrGe P1 P2 * -** -** Pop the top two elements from the stack. If second element (the next -** on stack) is greater than or equal to the first (the top of stack), -** then jump to instruction P2. In other words, jump if NOS>=TOS. -** -** If either operand is NULL (and thus if the result is unknown) then -** take the jump if P1 is true. -** -** The strcmp() library routine is used for the comparison. For a -** numeric comparison, use OP_Ge. -** -** If P2 is zero, do not jump. Instead, push an integer 1 onto the -** stack if the jump would have been taken, or a 0 if not. Push a -** NULL if either operand was NULL. -*/ -case OP_StrEq: -case OP_StrNe: -case OP_StrLt: -case OP_StrLe: -case OP_StrGt: -case OP_StrGe: { - Mem *pNos = &pTos[-1]; - int c; - assert( pNos>=p->aStack ); - if( (pNos->flags | pTos->flags) & MEM_Null ){ - popStack(&pTos, 2); - if( pOp->p2 ){ - if( pOp->p1 ) pc = pOp->p2-1; - }else{ - pTos++; - pTos->flags = MEM_Null; - } - break; - }else{ - Stringify(pTos); - Stringify(pNos); - c = strcmp(pNos->z, pTos->z); - } - /* The asserts on each case of the following switch are there to verify - ** that string comparison opcodes are always exactly 6 greater than the - ** corresponding numeric comparison opcodes. The code generator depends - ** on this fact. - */ - switch( pOp->opcode ){ - case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break; - case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break; - case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break; - case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break; - case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break; - default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break; - } - popStack(&pTos, 2); - if( pOp->p2 ){ - if( c ) pc = pOp->p2-1; - }else{ - pTos++; - pTos->flags = MEM_Int; - pTos->i = c; - } - break; -} - -/* Opcode: And * * * -** -** Pop two values off the stack. Take the logical AND of the -** two values and push the resulting boolean value back onto the -** stack. -*/ -/* Opcode: Or * * * -** -** Pop two values off the stack. Take the logical OR of the -** two values and push the resulting boolean value back onto the -** stack. -*/ -case OP_And: -case OP_Or: { - Mem *pNos = &pTos[-1]; - int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */ - - assert( pNos>=p->aStack ); - if( pTos->flags & MEM_Null ){ - v1 = 2; - }else{ - Integerify(pTos); - v1 = pTos->i==0; - } - if( pNos->flags & MEM_Null ){ - v2 = 2; - }else{ - Integerify(pNos); - v2 = pNos->i==0; - } - if( pOp->opcode==OP_And ){ - static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; - v1 = and_logic[v1*3+v2]; - }else{ - static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; - v1 = or_logic[v1*3+v2]; - } - popStack(&pTos, 2); - pTos++; - if( v1==2 ){ - pTos->flags = MEM_Null; - }else{ - pTos->i = v1==0; - pTos->flags = MEM_Int; - } - break; -} - -/* Opcode: Negative * * * -** -** Treat the top of the stack as a numeric quantity. Replace it -** with its additive inverse. If the top of the stack is NULL -** its value is unchanged. -*/ -/* Opcode: AbsValue * * * -** -** Treat the top of the stack as a numeric quantity. Replace it -** with its absolute value. If the top of the stack is NULL -** its value is unchanged. -*/ -case OP_Negative: -case OP_AbsValue: { - assert( pTos>=p->aStack ); - if( pTos->flags & MEM_Real ){ - Release(pTos); - if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ - pTos->r = -pTos->r; - } - pTos->flags = MEM_Real; - }else if( pTos->flags & MEM_Int ){ - Release(pTos); - if( pOp->opcode==OP_Negative || pTos->i<0 ){ - pTos->i = -pTos->i; - } - pTos->flags = MEM_Int; - }else if( pTos->flags & MEM_Null ){ - /* Do nothing */ - }else{ - Realify(pTos); - Release(pTos); - if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ - pTos->r = -pTos->r; - } - pTos->flags = MEM_Real; - } - break; -} - -/* Opcode: Not * * * -** -** Interpret the top of the stack as a boolean value. Replace it -** with its complement. If the top of the stack is NULL its value -** is unchanged. -*/ -case OP_Not: { - assert( pTos>=p->aStack ); - if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ - Integerify(pTos); - Release(pTos); - pTos->i = !pTos->i; - pTos->flags = MEM_Int; - break; -} - -/* Opcode: BitNot * * * -** -** Interpret the top of the stack as an value. Replace it -** with its ones-complement. If the top of the stack is NULL its -** value is unchanged. -*/ -case OP_BitNot: { - assert( pTos>=p->aStack ); - if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ - Integerify(pTos); - Release(pTos); - pTos->i = ~pTos->i; - pTos->flags = MEM_Int; - break; -} - -/* Opcode: Noop * * * -** -** Do nothing. This instruction is often useful as a jump -** destination. -*/ -case OP_Noop: { - break; -} - -/* Opcode: If P1 P2 * -** -** Pop a single boolean from the stack. If the boolean popped is -** true, then jump to p2. Otherwise continue to the next instruction. -** An integer is false if zero and true otherwise. A string is -** false if it has zero length and true otherwise. -** -** If the value popped of the stack is NULL, then take the jump if P1 -** is true and fall through if P1 is false. -*/ -/* Opcode: IfNot P1 P2 * -** -** Pop a single boolean from the stack. If the boolean popped is -** false, then jump to p2. Otherwise continue to the next instruction. -** An integer is false if zero and true otherwise. A string is -** false if it has zero length and true otherwise. -** -** If the value popped of the stack is NULL, then take the jump if P1 -** is true and fall through if P1 is false. -*/ -case OP_If: -case OP_IfNot: { - int c; - assert( pTos>=p->aStack ); - if( pTos->flags & MEM_Null ){ - c = pOp->p1; - }else{ - Integerify(pTos); - c = pTos->i; - if( pOp->opcode==OP_IfNot ) c = !c; - } - assert( (pTos->flags & MEM_Dyn)==0 ); - pTos--; - if( c ) pc = pOp->p2-1; - break; -} - -/* Opcode: IsNull P1 P2 * -** -** If any of the top abs(P1) values on the stack are NULL, then jump -** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack -** unchanged. -*/ -case OP_IsNull: { - int i, cnt; - Mem *pTerm; - cnt = pOp->p1; - if( cnt<0 ) cnt = -cnt; - pTerm = &pTos[1-cnt]; - assert( pTerm>=p->aStack ); - for(i=0; i<cnt; i++, pTerm++){ - if( pTerm->flags & MEM_Null ){ - pc = pOp->p2-1; - break; - } - } - if( pOp->p1>0 ) popStack(&pTos, cnt); - break; -} - -/* Opcode: NotNull P1 P2 * -** -** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the -** stack if P1 times if P1 is greater than zero. If P1 is less than -** zero then leave the stack unchanged. -*/ -case OP_NotNull: { - int i, cnt; - cnt = pOp->p1; - if( cnt<0 ) cnt = -cnt; - assert( &pTos[1-cnt] >= p->aStack ); - for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){} - if( i>=cnt ) pc = pOp->p2-1; - if( pOp->p1>0 ) popStack(&pTos, cnt); - break; -} - -/* Opcode: MakeRecord P1 P2 * -** -** Convert the top P1 entries of the stack into a single entry -** suitable for use as a data record in a database table. The -** details of the format are irrelavant as long as the OP_Column -** opcode can decode the record later. Refer to source code -** comments for the details of the record format. -** -** If P2 is true (non-zero) and one or more of the P1 entries -** that go into building the record is NULL, then add some extra -** bytes to the record to make it distinct for other entries created -** during the same run of the VDBE. The extra bytes added are a -** counter that is reset with each run of the VDBE, so records -** created this way will not necessarily be distinct across runs. -** But they should be distinct for transient tables (created using -** OP_OpenTemp) which is what they are intended for. -** -** (Later:) The P2==1 option was intended to make NULLs distinct -** for the UNION operator. But I have since discovered that NULLs -** are indistinct for UNION. So this option is never used. -*/ -case OP_MakeRecord: { - char *zNewRecord; - int nByte; - int nField; - int i, j; - int idxWidth; - u32 addr; - Mem *pRec; - int addUnique = 0; /* True to cause bytes to be added to make the - ** generated record distinct */ - char zTemp[NBFS]; /* Temp space for small records */ - - /* Assuming the record contains N fields, the record format looks - ** like this: - ** - ** ------------------------------------------------------------------- - ** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) | - ** ------------------------------------------------------------------- - ** - ** All data fields are converted to strings before being stored and - ** are stored with their null terminators. NULL entries omit the - ** null terminator. Thus an empty string uses 1 byte and a NULL uses - ** zero bytes. Data(0) is taken from the lowest element of the stack - ** and data(N-1) is the top of the stack. - ** - ** Each of the idx() entries is either 1, 2, or 3 bytes depending on - ** how big the total record is. Idx(0) contains the offset to the start - ** of data(0). Idx(k) contains the offset to the start of data(k). - ** Idx(N) contains the total number of bytes in the record. - */ - nField = pOp->p1; - pRec = &pTos[1-nField]; - assert( pRec>=p->aStack ); - nByte = 0; - for(i=0; i<nField; i++, pRec++){ - if( pRec->flags & MEM_Null ){ - addUnique = pOp->p2; - }else{ - Stringify(pRec); - nByte += pRec->n; - } - } - if( addUnique ) nByte += sizeof(p->uniqueCnt); - if( nByte + nField + 1 < 256 ){ - idxWidth = 1; - }else if( nByte + 2*nField + 2 < 65536 ){ - idxWidth = 2; - }else{ - idxWidth = 3; - } - nByte += idxWidth*(nField + 1); - if( nByte>MAX_BYTES_PER_ROW ){ - rc = STQLITE_TOOBIG; - goto abort_due_to_error; - } - if( nByte<=NBFS ){ - zNewRecord = zTemp; - }else{ - zNewRecord = sqliteMallocRaw( nByte ); - if( zNewRecord==0 ) goto no_mem; - } - j = 0; - addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt); - for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){ - zNewRecord[j++] = addr & 0xff; - if( idxWidth>1 ){ - zNewRecord[j++] = (addr>>8)&0xff; - if( idxWidth>2 ){ - zNewRecord[j++] = (addr>>16)&0xff; - } - } - if( (pRec->flags & MEM_Null)==0 ){ - addr += pRec->n; - } - } - zNewRecord[j++] = addr & 0xff; - if( idxWidth>1 ){ - zNewRecord[j++] = (addr>>8)&0xff; - if( idxWidth>2 ){ - zNewRecord[j++] = (addr>>16)&0xff; - } - } - if( addUnique ){ - memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt)); - p->uniqueCnt++; - j += sizeof(p->uniqueCnt); - } - for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){ - if( (pRec->flags & MEM_Null)==0 ){ - memcpy(&zNewRecord[j], pRec->z, pRec->n); - j += pRec->n; - } - } - popStack(&pTos, nField); - pTos++; - pTos->n = nByte; - if( nByte<=NBFS ){ - assert( zNewRecord==zTemp ); - memcpy(pTos->zShort, zTemp, nByte); - pTos->z = pTos->zShort; - pTos->flags = MEM_Str | MEM_Short; - }else{ - assert( zNewRecord!=zTemp ); - pTos->z = zNewRecord; - pTos->flags = MEM_Str | MEM_Dyn; - } - break; -} - -/* Opcode: MakeKey P1 P2 P3 -** -** Convert the top P1 entries of the stack into a single entry suitable -** for use as the key in an index. The top P1 records are -** converted to strings and merged. The null-terminators -** are retained and used as separators. -** The lowest entry in the stack is the first field and the top of the -** stack becomes the last. -** -** If P2 is not zero, then the original entries remain on the stack -** and the new key is pushed on top. If P2 is zero, the original -** data is popped off the stack first then the new key is pushed -** back in its place. -** -** P3 is a string that is P1 characters long. Each character is either -** an 'n' or a 't' to indicates if the argument should be intepreted as -** numeric or text type. The first character of P3 corresponds to the -** lowest element on the stack. If P3 is NULL then all arguments are -** assumed to be of the numeric type. -** -** The type makes a difference in that text-type fields may not be -** introduced by 'b' (as described in the next paragraph). The -** first character of a text-type field must be either 'a' (if it is NULL) -** or 'c'. Numeric fields will be introduced by 'b' if their content -** looks like a well-formed number. Otherwise the 'a' or 'c' will be -** used. -** -** The key is a concatenation of fields. Each field is terminated by -** a single 0x00 character. A NULL field is introduced by an 'a' and -** is followed immediately by its 0x00 terminator. A numeric field is -** introduced by a single character 'b' and is followed by a sequence -** of characters that represent the number such that a comparison of -** the character string using memcpy() sorts the numbers in numerical -** order. The character strings for numbers are generated using the -** sqliteRealToSortable() function. A text field is introduced by a -** 'c' character and is followed by the exact text of the field. The -** use of an 'a', 'b', or 'c' character at the beginning of each field -** guarantees that NULLs sort before numbers and that numbers sort -** before text. 0x00 characters do not occur except as separators -** between fields. -** -** See also: MakeIdxKey, SortMakeKey -*/ -/* Opcode: MakeIdxKey P1 P2 P3 -** -** Convert the top P1 entries of the stack into a single entry suitable -** for use as the key in an index. In addition, take one additional integer -** off of the stack, treat that integer as a four-byte record number, and -** append the four bytes to the key. Thus a total of P1+1 entries are -** popped from the stack for this instruction and a single entry is pushed -** back. The first P1 entries that are popped are strings and the last -** entry (the lowest on the stack) is an integer record number. -** -** The converstion of the first P1 string entries occurs just like in -** MakeKey. Each entry is separated from the others by a null. -** The entire concatenation is null-terminated. The lowest entry -** in the stack is the first field and the top of the stack becomes the -** last. -** -** If P2 is not zero and one or more of the P1 entries that go into the -** generated key is NULL, then jump to P2 after the new key has been -** pushed on the stack. In other words, jump to P2 if the key is -** guaranteed to be unique. This jump can be used to skip a subsequent -** uniqueness test. -** -** P3 is a string that is P1 characters long. Each character is either -** an 'n' or a 't' to indicates if the argument should be numeric or -** text. The first character corresponds to the lowest element on the -** stack. If P3 is null then all arguments are assumed to be numeric. -** -** See also: MakeKey, SortMakeKey -*/ -case OP_MakeIdxKey: -case OP_MakeKey: { - char *zNewKey; - int nByte; - int nField; - int addRowid; - int i, j; - int containsNull = 0; - Mem *pRec; - char zTemp[NBFS]; - - addRowid = pOp->opcode==OP_MakeIdxKey; - nField = pOp->p1; - pRec = &pTos[1-nField]; - assert( pRec>=p->aStack ); - nByte = 0; - for(j=0, i=0; i<nField; i++, j++, pRec++){ - int flags = pRec->flags; - int len; - char *z; - if( flags & MEM_Null ){ - nByte += 2; - containsNull = 1; - }else if( pOp->p3 && pOp->p3[j]=='t' ){ - Stringify(pRec); - pRec->flags &= ~(MEM_Int|MEM_Real); - nByte += pRec->n+1; - }else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){ - if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){ - pRec->r = pRec->i; - }else if( (flags & (MEM_Real|MEM_Int))==0 ){ - pRec->r = sqliteAtoF(pRec->z, 0); - } - Release(pRec); - z = pRec->zShort; - sqliteRealToSortable(pRec->r, z); - len = strlen(z); - pRec->z = 0; - pRec->flags = MEM_Real; - pRec->n = len+1; - nByte += pRec->n+1; - }else{ - nByte += pRec->n+1; - } - } - if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){ - rc = STQLITE_TOOBIG; - goto abort_due_to_error; - } - if( addRowid ) nByte += sizeof(u32); - if( nByte<=NBFS ){ - zNewKey = zTemp; - }else{ - zNewKey = sqliteMallocRaw( nByte ); - if( zNewKey==0 ) goto no_mem; - } - j = 0; - pRec = &pTos[1-nField]; - for(i=0; i<nField; i++, pRec++){ - if( pRec->flags & MEM_Null ){ - zNewKey[j++] = 'a'; - zNewKey[j++] = 0; - }else if( pRec->flags==MEM_Real ){ - zNewKey[j++] = 'b'; - memcpy(&zNewKey[j], pRec->zShort, pRec->n); - j += pRec->n; - }else{ - assert( pRec->flags & MEM_Str ); - zNewKey[j++] = 'c'; - memcpy(&zNewKey[j], pRec->z, pRec->n); - j += pRec->n; - } - } - if( addRowid ){ - u32 iKey; - pRec = &pTos[-nField]; - assert( pRec>=p->aStack ); - Integerify(pRec); - iKey = intToKey(pRec->i); - memcpy(&zNewKey[j], &iKey, sizeof(u32)); - popStack(&pTos, nField+1); - if( pOp->p2 && containsNull ) pc = pOp->p2 - 1; - }else{ - if( pOp->p2==0 ) popStack(&pTos, nField); - } - pTos++; - pTos->n = nByte; - if( nByte<=NBFS ){ - assert( zNewKey==zTemp ); - pTos->z = pTos->zShort; - memcpy(pTos->zShort, zTemp, nByte); - pTos->flags = MEM_Str | MEM_Short; - }else{ - pTos->z = zNewKey; - pTos->flags = MEM_Str | MEM_Dyn; - } - break; -} - -/* Opcode: IncrKey * * * -** -** The top of the stack should contain an index key generated by -** The MakeKey opcode. This routine increases the least significant -** byte of that key by one. This is used so that the MoveTo opcode -** will move to the first entry greater than the key rather than to -** the key itself. -*/ -case OP_IncrKey: { - assert( pTos>=p->aStack ); - /* The IncrKey opcode is only applied to keys generated by - ** MakeKey or MakeIdxKey and the results of those operands - ** are always dynamic strings or zShort[] strings. So we - ** are always free to modify the string in place. - */ - assert( pTos->flags & (MEM_Dyn|MEM_Short) ); - pTos->z[pTos->n-1]++; - break; -} - -/* Opcode: Checkpoint P1 * * -** -** Begin a checkpoint. A checkpoint is the beginning of a operation that -** is part of a larger transaction but which might need to be rolled back -** itself without effecting the containing transaction. A checkpoint will -** be automatically committed or rollback when the VDBE halts. -** -** The checkpoint is begun on the database file with index P1. The main -** database file has an index of 0 and the file used for temporary tables -** has an index of 1. -*/ -case OP_Checkpoint: { - int i = pOp->p1; - if( i>=0 && i<db->nDb && db->aDb[i].pBt && db->aDb[i].inTrans==1 ){ - rc = sqliteBtreeBeginCkpt(db->aDb[i].pBt); - if( rc==STQLITE_OK ) db->aDb[i].inTrans = 2; - } - break; -} - -/* Opcode: Transaction P1 * * -** -** Begin a transaction. The transaction ends when a Commit or Rollback -** opcode is encountered. Depending on the ON CONFLICT setting, the -** transaction might also be rolled back if an error is encountered. -** -** P1 is the index of the database file on which the transaction is -** started. Index 0 is the main database file and index 1 is the -** file used for temporary tables. -** -** A write lock is obtained on the database file when a transaction is -** started. No other process can read or write the file while the -** transaction is underway. Starting a transaction also creates a -** rollback journal. A transaction must be started before any changes -** can be made to the database. -*/ -case OP_Transaction: { - int busy = 1; - int i = pOp->p1; - assert( i>=0 && i<db->nDb ); - if( db->aDb[i].inTrans ) break; - while( db->aDb[i].pBt!=0 && busy ){ - rc = sqliteBtreeBeginTrans(db->aDb[i].pBt); - switch( rc ){ - case STQLITE_BUSY: { - if( db->xBusyCallback==0 ){ - p->pc = pc; - p->undoTransOnError = 1; - p->rc = STQLITE_BUSY; - p->pTos = pTos; - return STQLITE_BUSY; - }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){ - sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); - busy = 0; - } - break; - } - case STQLITE_READONLY: { - rc = STQLITE_OK; - /* Fall thru into the next case */ - } - case STQLITE_OK: { - p->inTempTrans = 0; - busy = 0; - break; - } - default: { - goto abort_due_to_error; - } - } - } - db->aDb[i].inTrans = 1; - p->undoTransOnError = 1; - break; -} - -/* Opcode: Commit * * * -** -** Cause all modifications to the database that have been made since the -** last Transaction to actually take effect. No additional modifications -** are allowed until another transaction is started. The Commit instruction -** deletes the journal file and releases the write lock on the database. -** A read lock continues to be held if there are still cursors open. -*/ -case OP_Commit: { - int i; - if( db->xCommitCallback!=0 ){ - if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; - if( db->xCommitCallback(db->pCommitArg)!=0 ){ - rc = STQLITE_CONSTRAINT; - } - if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; - } - for(i=0; rc==STQLITE_OK && i<db->nDb; i++){ - if( db->aDb[i].inTrans ){ - rc = sqliteBtreeCommit(db->aDb[i].pBt); - db->aDb[i].inTrans = 0; - } - } - if( rc==STQLITE_OK ){ - sqliteCommitInternalChanges(db); - }else{ - sqliteRollbackAll(db); - } - break; -} - -/* Opcode: Rollback P1 * * -** -** Cause all modifications to the database that have been made since the -** last Transaction to be undone. The database is restored to its state -** before the Transaction opcode was executed. No additional modifications -** are allowed until another transaction is started. -** -** P1 is the index of the database file that is committed. An index of 0 -** is used for the main database and an index of 1 is used for the file used -** to hold temporary tables. -** -** This instruction automatically closes all cursors and releases both -** the read and write locks on the indicated database. -*/ -case OP_Rollback: { - sqliteRollbackAll(db); - break; -} - -/* Opcode: ReadCookie P1 P2 * -** -** Read cookie number P2 from database P1 and push it onto the stack. -** P2==0 is the schema version. P2==1 is the database format. -** P2==2 is the recommended pager cache size, and so forth. P1==0 is -** the main database file and P1==1 is the database file used to store -** temporary tables. -** -** There must be a read-lock on the database (either a transaction -** must be started or there must be an open cursor) before -** executing this instruction. -*/ -case OP_ReadCookie: { - int aMeta[STQLITE_N_BTREE_META]; - assert( pOp->p2<STQLITE_N_BTREE_META ); - assert( pOp->p1>=0 && pOp->p1<db->nDb ); - assert( db->aDb[pOp->p1].pBt!=0 ); - rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); - pTos++; - pTos->i = aMeta[1+pOp->p2]; - pTos->flags = MEM_Int; - break; -} - -/* Opcode: SetCookie P1 P2 * -** -** Write the top of the stack into cookie number P2 of database P1. -** P2==0 is the schema version. P2==1 is the database format. -** P2==2 is the recommended pager cache size, and so forth. P1==0 is -** the main database file and P1==1 is the database file used to store -** temporary tables. -** -** A transaction must be started before executing this opcode. -*/ -case OP_SetCookie: { - int aMeta[STQLITE_N_BTREE_META]; - assert( pOp->p2<STQLITE_N_BTREE_META ); - assert( pOp->p1>=0 && pOp->p1<db->nDb ); - assert( db->aDb[pOp->p1].pBt!=0 ); - assert( pTos>=p->aStack ); - Integerify(pTos) - rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); - if( rc==STQLITE_OK ){ - aMeta[1+pOp->p2] = pTos->i; - rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta); - } - Release(pTos); - pTos--; - break; -} - -/* Opcode: VerifyCookie P1 P2 * -** -** Check the value of global database parameter number 0 (the -** schema version) and make sure it is equal to P2. -** P1 is the database number which is 0 for the main database file -** and 1 for the file holding temporary tables and some higher number -** for auxiliary databases. -** -** The cookie changes its value whenever the database schema changes. -** This operation is used to detect when that the cookie has changed -** and that the current process needs to reread the schema. -** -** Either a transaction needs to have been started or an OP_Open needs -** to be executed (to establish a read lock) before this opcode is -** invoked. -*/ -case OP_VerifyCookie: { - int aMeta[STQLITE_N_BTREE_META]; - assert( pOp->p1>=0 && pOp->p1<db->nDb ); - rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); - if( rc==STQLITE_OK && aMeta[1]!=pOp->p2 ){ - sqliteSetString(&p->zErrMsg, "database schema has changed", (char*)0); - rc = STQLITE_SCHEMA; - } - break; -} - -/* Opcode: OpenRead P1 P2 P3 -** -** Open a read-only cursor for the database table whose root page is -** P2 in a database file. The database file is determined by an -** integer from the top of the stack. 0 means the main database and -** 1 means the database used for temporary tables. Give the new -** cursor an identifier of P1. The P1 values need not be contiguous -** but all P1 values should be small integers. It is an error for -** P1 to be negative. -** -** If P2==0 then take the root page number from the next of the stack. -** -** There will be a read lock on the database whenever there is an -** open cursor. If the database was unlocked prior to this instruction -** then a read lock is acquired as part of this instruction. A read -** lock allows other processes to read the database but prohibits -** any other process from modifying the database. The read lock is -** released when all cursors are closed. If this instruction attempts -** to get a read lock but fails, the script terminates with an -** STQLITE_BUSY error code. -** -** The P3 value is the name of the table or index being opened. -** The P3 value is not actually used by this opcode and may be -** omitted. But the code generator usually inserts the index or -** table name into P3 to make the code easier to read. -** -** See also OpenWrite. -*/ -/* Opcode: OpenWrite P1 P2 P3 -** -** Open a read/write cursor named P1 on the table or index whose root -** page is P2. If P2==0 then take the root page number from the stack. -** -** The P3 value is the name of the table or index being opened. -** The P3 value is not actually used by this opcode and may be -** omitted. But the code generator usually inserts the index or -** table name into P3 to make the code easier to read. -** -** This instruction works just like OpenRead except that it opens the cursor -** in read/write mode. For a given table, there can be one or more read-only -** cursors or a single read/write cursor but not both. -** -** See also OpenRead. -*/ -case OP_OpenRead: -case OP_OpenWrite: { - int busy = 0; - int i = pOp->p1; - int p2 = pOp->p2; - int wrFlag; - Btree *pX; - int iDb; - - assert( pTos>=p->aStack ); - Integerify(pTos); - iDb = pTos->i; - pTos--; - assert( iDb>=0 && iDb<db->nDb ); - pX = db->aDb[iDb].pBt; - assert( pX!=0 ); - wrFlag = pOp->opcode==OP_OpenWrite; - if( p2<=0 ){ - assert( pTos>=p->aStack ); - Integerify(pTos); - p2 = pTos->i; - pTos--; - if( p2<2 ){ - sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0); - rc = STQLITE_INTERNAL; - break; - } - } - assert( i>=0 ); - if( expandCursorArraySize(p, i) ) goto no_mem; - sqliteVdbeCleanupCursor(&p->aCsr[i]); - memset(&p->aCsr[i], 0, sizeof(Cursor)); - p->aCsr[i].nullRow = 1; - if( pX==0 ) break; - do{ - rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor); - switch( rc ){ - case STQLITE_BUSY: { - if( db->xBusyCallback==0 ){ - p->pc = pc; - p->rc = STQLITE_BUSY; - p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */ - return STQLITE_BUSY; - }else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){ - sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); - busy = 0; - } - break; - } - case STQLITE_OK: { - busy = 0; - break; - } - default: { - goto abort_due_to_error; - } - } - }while( busy ); - break; -} - -/* Opcode: OpenTemp P1 P2 * -** -** Open a new cursor to a transient table. -** The transient cursor is always opened read/write even if -** the main database is read-only. The transient table is deleted -** automatically when the cursor is closed. -** -** The cursor points to a BTree table if P2==0 and to a BTree index -** if P2==1. A BTree table must have an integer key and can have arbitrary -** data. A BTree index has no data but can have an arbitrary key. -** -** This opcode is used for tables that exist for the duration of a single -** SQL statement only. Tables created using CREATE TEMPORARY TABLE -** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the -** context of this opcode means for the duration of a single SQL statement -** whereas "Temporary" in the context of CREATE TABLE means for the duration -** of the connection to the database. Same word; different meanings. -*/ -case OP_OpenTemp: { - int i = pOp->p1; - Cursor *pCx; - assert( i>=0 ); - if( expandCursorArraySize(p, i) ) goto no_mem; - pCx = &p->aCsr[i]; - sqliteVdbeCleanupCursor(pCx); - memset(pCx, 0, sizeof(*pCx)); - pCx->nullRow = 1; - rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt); - - if( rc==STQLITE_OK ){ - rc = sqliteBtreeBeginTrans(pCx->pBt); - } - if( rc==STQLITE_OK ){ - if( pOp->p2 ){ - int pgno; - rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno); - if( rc==STQLITE_OK ){ - rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor); - } - }else{ - rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor); - } - } - break; -} - -/* Opcode: OpenPseudo P1 * * -** -** Open a new cursor that points to a fake table that contains a single -** row of data. Any attempt to write a second row of data causes the -** first row to be deleted. All data is deleted when the cursor is -** closed. -** -** A pseudo-table created by this opcode is useful for holding the -** NEW or OLD tables in a trigger. -*/ -case OP_OpenPseudo: { - int i = pOp->p1; - Cursor *pCx; - assert( i>=0 ); - if( expandCursorArraySize(p, i) ) goto no_mem; - pCx = &p->aCsr[i]; - sqliteVdbeCleanupCursor(pCx); - memset(pCx, 0, sizeof(*pCx)); - pCx->nullRow = 1; - pCx->pseudoTable = 1; - break; -} - -/* Opcode: Close P1 * * -** -** Close a cursor previously opened as P1. If P1 is not -** currently open, this instruction is a no-op. -*/ -case OP_Close: { - int i = pOp->p1; - if( i>=0 && i<p->nCursor ){ - sqliteVdbeCleanupCursor(&p->aCsr[i]); - } - break; -} - -/* Opcode: MoveTo P1 P2 * -** -** Pop the top of the stack and use its value as a key. Reposition -** cursor P1 so that it points to an entry with a matching key. If -** the table contains no record with a matching key, then the cursor -** is left pointing at the first record that is greater than the key. -** If there are no records greater than the key and P2 is not zero, -** then an immediate jump to P2 is made. -** -** See also: Found, NotFound, Distinct, MoveLt -*/ -/* Opcode: MoveLt P1 P2 * -** -** Pop the top of the stack and use its value as a key. Reposition -** cursor P1 so that it points to the entry with the largest key that is -** less than the key popped from the stack. -** If there are no records less than than the key and P2 -** is not zero then an immediate jump to P2 is made. -** -** See also: MoveTo -*/ -case OP_MoveLt: -case OP_MoveTo: { - int i = pOp->p1; - Cursor *pC; - - assert( pTos>=p->aStack ); - assert( i>=0 && i<p->nCursor ); - pC = &p->aCsr[i]; - if( pC->pCursor!=0 ){ - int res, oc; - pC->nullRow = 0; - if( pTos->flags & MEM_Int ){ - int iKey = intToKey(pTos->i); - if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){ - pC->movetoTarget = iKey; - pC->deferredMoveto = 1; - Release(pTos); - pTos--; - break; - } - sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res); - pC->lastRecno = pTos->i; - pC->recnoIsValid = res==0; - }else{ - Stringify(pTos); - sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); - pC->recnoIsValid = 0; - } - pC->deferredMoveto = 0; - sqlite_search_count++; - oc = pOp->opcode; - if( oc==OP_MoveTo && res<0 ){ - sqliteBtreeNext(pC->pCursor, &res); - pC->recnoIsValid = 0; - if( res && pOp->p2>0 ){ - pc = pOp->p2 - 1; - } - }else if( oc==OP_MoveLt ){ - if( res>=0 ){ - sqliteBtreePrevious(pC->pCursor, &res); - pC->recnoIsValid = 0; - }else{ - /* res might be negative because the table is empty. Check to - ** see if this is the case. - */ - int keysize; - res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0; - } - if( res && pOp->p2>0 ){ - pc = pOp->p2 - 1; - } - } - } - Release(pTos); - pTos--; - break; -} - -/* Opcode: Distinct P1 P2 * -** -** Use the top of the stack as a string key. If a record with that key does -** not exist in the table of cursor P1, then jump to P2. If the record -** does already exist, then fall thru. The cursor is left pointing -** at the record if it exists. The key is not popped from the stack. -** -** This operation is similar to NotFound except that this operation -** does not pop the key from the stack. -** -** See also: Found, NotFound, MoveTo, IsUnique, NotExists -*/ -/* Opcode: Found P1 P2 * -** -** Use the top of the stack as a string key. If a record with that key -** does exist in table of P1, then jump to P2. If the record -** does not exist, then fall thru. The cursor is left pointing -** to the record if it exists. The key is popped from the stack. -** -** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists -*/ -/* Opcode: NotFound P1 P2 * -** -** Use the top of the stack as a string key. If a record with that key -** does not exist in table of P1, then jump to P2. If the record -** does exist, then fall thru. The cursor is left pointing to the -** record if it exists. The key is popped from the stack. -** -** The difference between this operation and Distinct is that -** Distinct does not pop the key from the stack. -** -** See also: Distinct, Found, MoveTo, NotExists, IsUnique -*/ -case OP_Distinct: -case OP_NotFound: -case OP_Found: { - int i = pOp->p1; - int alreadyExists = 0; - Cursor *pC; - assert( pTos>=p->aStack ); - assert( i>=0 && i<p->nCursor ); - if( (pC = &p->aCsr[i])->pCursor!=0 ){ - int res, rx; - Stringify(pTos); - rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); - alreadyExists = rx==STQLITE_OK && res==0; - pC->deferredMoveto = 0; - } - if( pOp->opcode==OP_Found ){ - if( alreadyExists ) pc = pOp->p2 - 1; - }else{ - if( !alreadyExists ) pc = pOp->p2 - 1; - } - if( pOp->opcode!=OP_Distinct ){ - Release(pTos); - pTos--; - } - break; -} - -/* Opcode: IsUnique P1 P2 * -** -** The top of the stack is an integer record number. Call this -** record number R. The next on the stack is an index key created -** using MakeIdxKey. Call it K. This instruction pops R from the -** stack but it leaves K unchanged. -** -** P1 is an index. So all but the last four bytes of K are an -** index string. The last four bytes of K are a record number. -** -** This instruction asks if there is an entry in P1 where the -** index string matches K but the record number is different -** from R. If there is no such entry, then there is an immediate -** jump to P2. If any entry does exist where the index string -** matches K but the record number is not R, then the record -** number for that entry is pushed onto the stack and control -** falls through to the next instruction. -** -** See also: Distinct, NotFound, NotExists, Found -*/ -case OP_IsUnique: { - int i = pOp->p1; - Mem *pNos = &pTos[-1]; - BtCursor *pCrsr; - int R; - - /* Pop the value R off the top of the stack - */ - assert( pNos>=p->aStack ); - Integerify(pTos); - R = pTos->i; - pTos--; - assert( i>=0 && i<=p->nCursor ); - if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ - int res, rc; - int v; /* The record number on the P1 entry that matches K */ - char *zKey; /* The value of K */ - int nKey; /* Number of bytes in K */ - - /* Make sure K is a string and make zKey point to K - */ - Stringify(pNos); - zKey = pNos->z; - nKey = pNos->n; - assert( nKey >= 4 ); - - /* Search for an entry in P1 where all but the last four bytes match K. - ** If there is no such entry, jump immediately to P2. - */ - assert( p->aCsr[i].deferredMoveto==0 ); - rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res); - if( rc!=STQLITE_OK ) goto abort_due_to_error; - if( res<0 ){ - rc = sqliteBtreeNext(pCrsr, &res); - if( res ){ - pc = pOp->p2 - 1; - break; - } - } - rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res); - if( rc!=STQLITE_OK ) goto abort_due_to_error; - if( res>0 ){ - pc = pOp->p2 - 1; - break; - } - - /* At this point, pCrsr is pointing to an entry in P1 where all but - ** the last for bytes of the key match K. Check to see if the last - ** four bytes of the key are different from R. If the last four - ** bytes equal R then jump immediately to P2. - */ - sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v); - v = keyToInt(v); - if( v==R ){ - pc = pOp->p2 - 1; - break; - } - - /* The last four bytes of the key are different from R. Convert the - ** last four bytes of the key into an integer and push it onto the - ** stack. (These bytes are the record number of an entry that - ** violates a UNITQUE constraint.) - */ - pTos++; - pTos->i = v; - pTos->flags = MEM_Int; - } - break; -} - -/* Opcode: NotExists P1 P2 * -** -** Use the top of the stack as a integer key. If a record with that key -** does not exist in table of P1, then jump to P2. If the record -** does exist, then fall thru. The cursor is left pointing to the -** record if it exists. The integer key is popped from the stack. -** -** The difference between this operation and NotFound is that this -** operation assumes the key is an integer and NotFound assumes it -** is a string. -** -** See also: Distinct, Found, MoveTo, NotFound, IsUnique -*/ -case OP_NotExists: { - int i = pOp->p1; - BtCursor *pCrsr; - assert( pTos>=p->aStack ); - assert( i>=0 && i<p->nCursor ); - if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ - int res, rx, iKey; - assert( pTos->flags & MEM_Int ); - iKey = intToKey(pTos->i); - rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res); - p->aCsr[i].lastRecno = pTos->i; - p->aCsr[i].recnoIsValid = res==0; - p->aCsr[i].nullRow = 0; - if( rx!=STQLITE_OK || res!=0 ){ - pc = pOp->p2 - 1; - p->aCsr[i].recnoIsValid = 0; - } - } - Release(pTos); - pTos--; - break; -} - -/* Opcode: NewRecno P1 * * -** -** Get a new integer record number used as the key to a table. -** The record number is not previously used as a key in the database -** table that cursor P1 points to. The new record number is pushed -** onto the stack. -*/ -case OP_NewRecno: { - int i = pOp->p1; - int v = 0; - Cursor *pC; - assert( i>=0 && i<p->nCursor ); - if( (pC = &p->aCsr[i])->pCursor==0 ){ - v = 0; - }else{ - /* The next rowid or record number (different terms for the same - ** thing) is obtained in a two-step algorithm. - ** - ** First we attempt to find the largest existing rowid and add one - ** to that. But if the largest existing rowid is already the maximum - ** positive integer, we have to fall through to the second - ** probabilistic algorithm - ** - ** The second algorithm is to select a rowid at random and see if - ** it already exists in the table. If it does not exist, we have - ** succeeded. If the random rowid does exist, we select a new one - ** and try again, up to 1000 times. - ** - ** For a table with less than 2 billion entries, the probability - ** of not finding a unused rowid is about 1.0e-300. This is a - ** non-zero probability, but it is still vanishingly small and should - ** never cause a problem. You are much, much more likely to have a - ** hardware failure than for this algorithm to fail. - ** - ** The analysis in the previous paragraph assumes that you have a good - ** source of random numbers. Is a library function like lrand48() - ** good enough? Maybe. Maybe not. It's hard to know whether there - ** might be subtle bugs is some implementations of lrand48() that - ** could cause problems. To avoid uncertainty, STQLite uses its own - ** random number generator based on the RC4 algorithm. - ** - ** To promote locality of reference for repetitive inserts, the - ** first few attempts at chosing a random rowid pick values just a little - ** larger than the previous rowid. This has been shown experimentally - ** to double the speed of the COPY operation. - */ - int res, rx, cnt, x; - cnt = 0; - if( !pC->useRandomRowid ){ - if( pC->nextRowidValid ){ - v = pC->nextRowid; - }else{ - rx = sqliteBtreeLast(pC->pCursor, &res); - if( res ){ - v = 1; - }else{ - sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v); - v = keyToInt(v); - if( v==0x7fffffff ){ - pC->useRandomRowid = 1; - }else{ - v++; - } - } - } - if( v<0x7fffffff ){ - pC->nextRowidValid = 1; - pC->nextRowid = v+1; - }else{ - pC->nextRowidValid = 0; - } - } - if( pC->useRandomRowid ){ - v = db->priorNewRowid; - cnt = 0; - do{ - if( v==0 || cnt>2 ){ - sqliteRandomness(sizeof(v), &v); - if( cnt<5 ) v &= 0xffffff; - }else{ - unsigned char r; - sqliteRandomness(1, &r); - v += r + 1; - } - if( v==0 ) continue; - x = intToKey(v); - rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res); - cnt++; - }while( cnt<1000 && rx==STQLITE_OK && res==0 ); - db->priorNewRowid = v; - if( rx==STQLITE_OK && res==0 ){ - rc = STQLITE_FULL; - goto abort_due_to_error; - } - } - pC->recnoIsValid = 0; - pC->deferredMoveto = 0; - } - pTos++; - pTos->i = v; - pTos->flags = MEM_Int; - break; -} - -/* Opcode: PutIntKey P1 P2 * -** -** Write an entry into the table of cursor P1. A new entry is -** created if it doesn't already exist or the data for an existing -** entry is overwritten. The data is the value on the top of the -** stack. The key is the next value down on the stack. The key must -** be an integer. The stack is popped twice by this instruction. -** -** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is -** incremented (otherwise not). If the OPFLAG_CSCHANGE flag is set, -** then the current statement change count is incremented (otherwise not). -** If the OPFLAG_LASTROWID flag of P2 is set, then rowid is -** stored for subsequent return by the sqlite_last_insert_rowid() function -** (otherwise it's unmodified). -*/ -/* Opcode: PutStrKey P1 * * -** -** Write an entry into the table of cursor P1. A new entry is -** created if it doesn't already exist or the data for an existing -** entry is overwritten. The data is the value on the top of the -** stack. The key is the next value down on the stack. The key must -** be a string. The stack is popped twice by this instruction. -** -** P1 may not be a pseudo-table opened using the OpenPseudo opcode. -*/ -case OP_PutIntKey: -case OP_PutStrKey: { - Mem *pNos = &pTos[-1]; - int i = pOp->p1; - Cursor *pC; - assert( pNos>=p->aStack ); - assert( i>=0 && i<p->nCursor ); - if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){ - char *zKey; - int nKey, iKey; - if( pOp->opcode==OP_PutStrKey ){ - Stringify(pNos); - nKey = pNos->n; - zKey = pNos->z; - }else{ - assert( pNos->flags & MEM_Int ); - nKey = sizeof(int); - iKey = intToKey(pNos->i); - zKey = (char*)&iKey; - if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++; - if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i; - if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++; - if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){ - pC->nextRowidValid = 0; - } - } - if( pTos->flags & MEM_Null ){ - pTos->z = 0; - pTos->n = 0; - }else{ - assert( pTos->flags & MEM_Str ); - } - if( pC->pseudoTable ){ - /* PutStrKey does not work for pseudo-tables. - ** The following assert makes sure we are not trying to use - ** PutStrKey on a pseudo-table - */ - assert( pOp->opcode==OP_PutIntKey ); - sqliteFree(pC->pData); - pC->iKey = iKey; - pC->nData = pTos->n; - if( pTos->flags & MEM_Dyn ){ - pC->pData = pTos->z; - pTos->flags = MEM_Null; - }else{ - pC->pData = sqliteMallocRaw( pC->nData ); - if( pC->pData ){ - memcpy(pC->pData, pTos->z, pC->nData); - } - } - pC->nullRow = 0; - }else{ - rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n); - } - pC->recnoIsValid = 0; - pC->deferredMoveto = 0; - } - popStack(&pTos, 2); - break; -} - -/* Opcode: Delete P1 P2 * -** -** Delete the record at which the P1 cursor is currently pointing. -** -** The cursor will be left pointing at either the next or the previous -** record in the table. If it is left pointing at the next record, then -** the next Next instruction will be a no-op. Hence it is OK to delete -** a record from within an Next loop. -** -** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is -** incremented (otherwise not). If OPFLAG_CSCHANGE flag is set, -** then the current statement change count is incremented (otherwise not). -** -** If P1 is a pseudo-table, then this instruction is a no-op. -*/ -case OP_Delete: { - int i = pOp->p1; - Cursor *pC; - assert( i>=0 && i<p->nCursor ); - pC = &p->aCsr[i]; - if( pC->pCursor!=0 ){ - sqliteVdbeCursorMoveto(pC); - rc = sqliteBtreeDelete(pC->pCursor); - pC->nextRowidValid = 0; - } - if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++; - if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++; - break; -} - -/* Opcode: SetCounts * * * -** -** Called at end of statement. Updates lsChange (last statement change count) -** and resets csChange (current statement change count) to 0. -*/ -case OP_SetCounts: { - db->lsChange=db->csChange; - db->csChange=0; - break; -} - -/* Opcode: KeyAsData P1 P2 * -** -** Turn the key-as-data mode for cursor P1 either on (if P2==1) or -** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls -** data off of the key rather than the data. This is used for -** processing compound selects. -*/ -case OP_KeyAsData: { - int i = pOp->p1; - assert( i>=0 && i<p->nCursor ); - p->aCsr[i].keyAsData = pOp->p2; - break; -} - -/* Opcode: RowData P1 * * -** -** Push onto the stack the complete row data for cursor P1. -** There is no interpretation of the data. It is just copied -** onto the stack exactly as it is found in the database file. -** -** If the cursor is not pointing to a valid row, a NULL is pushed -** onto the stack. -*/ -/* Opcode: RowKey P1 * * -** -** Push onto the stack the complete row key for cursor P1. -** There is no interpretation of the key. It is just copied -** onto the stack exactly as it is found in the database file. -** -** If the cursor is not pointing to a valid row, a NULL is pushed -** onto the stack. -*/ -case OP_RowKey: -case OP_RowData: { - int i = pOp->p1; - Cursor *pC; - int n; - - pTos++; - assert( i>=0 && i<p->nCursor ); - pC = &p->aCsr[i]; - if( pC->nullRow ){ - pTos->flags = MEM_Null; - }else if( pC->pCursor!=0 ){ - BtCursor *pCrsr = pC->pCursor; - sqliteVdbeCursorMoveto(pC); - if( pC->nullRow ){ - pTos->flags = MEM_Null; - break; - }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){ - sqliteBtreeKeySize(pCrsr, &n); - }else{ - sqliteBtreeDataSize(pCrsr, &n); - } - pTos->n = n; - if( n<=NBFS ){ - pTos->flags = MEM_Str | MEM_Short; - pTos->z = pTos->zShort; - }else{ - char *z = sqliteMallocRaw( n ); - if( z==0 ) goto no_mem; - pTos->flags = MEM_Str | MEM_Dyn; - pTos->z = z; - } - if( pC->keyAsData || pOp->opcode==OP_RowKey ){ - sqliteBtreeKey(pCrsr, 0, n, pTos->z); - }else{ - sqliteBtreeData(pCrsr, 0, n, pTos->z); - } - }else if( pC->pseudoTable ){ - pTos->n = pC->nData; - pTos->z = pC->pData; - pTos->flags = MEM_Str|MEM_Ephem; - }else{ - pTos->flags = MEM_Null; - } - break; -} - -/* Opcode: Column P1 P2 * -** -** Interpret the data that cursor P1 points to as -** a structure built using the MakeRecord instruction. -** (See the MakeRecord opcode for additional information about -** the format of the data.) -** Push onto the stack the value of the P2-th column contained -** in the data. -** -** If the KeyAsData opcode has previously executed on this cursor, -** then the field might be extracted from the key rather than the -** data. -** -** If P1 is negative, then the record is stored on the stack rather -** than in a table. For P1==-1, the top of the stack is used. -** For P1==-2, the next on the stack is used. And so forth. The -** value pushed is always just a pointer into the record which is -** stored further down on the stack. The column value is not copied. -*/ -case OP_Column: { - int amt, offset, end, payloadSize; - int i = pOp->p1; - int p2 = pOp->p2; - Cursor *pC; - char *zRec; - BtCursor *pCrsr; - int idxWidth; - unsigned char aHdr[10]; - - assert( i<p->nCursor ); - pTos++; - if( i<0 ){ - assert( &pTos[i]>=p->aStack ); - assert( pTos[i].flags & MEM_Str ); - zRec = pTos[i].z; - payloadSize = pTos[i].n; - }else if( (pC = &p->aCsr[i])->pCursor!=0 ){ - sqliteVdbeCursorMoveto(pC); - zRec = 0; - pCrsr = pC->pCursor; - if( pC->nullRow ){ - payloadSize = 0; - }else if( pC->keyAsData ){ - sqliteBtreeKeySize(pCrsr, &payloadSize); - }else{ - sqliteBtreeDataSize(pCrsr, &payloadSize); - } - }else if( pC->pseudoTable ){ - payloadSize = pC->nData; - zRec = pC->pData; - assert( payloadSize==0 || zRec!=0 ); - }else{ - payloadSize = 0; - } - - /* Figure out how many bytes in the column data and where the column - ** data begins. - */ - if( payloadSize==0 ){ - pTos->flags = MEM_Null; - break; - }else if( payloadSize<256 ){ - idxWidth = 1; - }else if( payloadSize<65536 ){ - idxWidth = 2; - }else{ - idxWidth = 3; - } - - /* Figure out where the requested column is stored and how big it is. - */ - if( payloadSize < idxWidth*(p2+1) ){ - rc = STQLITE_CORRUPT; - goto abort_due_to_error; - } - if( zRec ){ - memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2); - }else if( pC->keyAsData ){ - sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr); - }else{ - sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr); - } - offset = aHdr[0]; - end = aHdr[idxWidth]; - if( idxWidth>1 ){ - offset |= aHdr[1]<<8; - end |= aHdr[idxWidth+1]<<8; - if( idxWidth>2 ){ - offset |= aHdr[2]<<16; - end |= aHdr[idxWidth+2]<<16; - } - } - amt = end - offset; - if( amt<0 || offset<0 || end>payloadSize ){ - rc = STQLITE_CORRUPT; - goto abort_due_to_error; - } - - /* amt and offset now hold the offset to the start of data and the - ** amount of data. Go get the data and put it on the stack. - */ - pTos->n = amt; - if( amt==0 ){ - pTos->flags = MEM_Null; - }else if( zRec ){ - pTos->flags = MEM_Str | MEM_Ephem; - pTos->z = &zRec[offset]; - }else{ - if( amt<=NBFS ){ - pTos->flags = MEM_Str | MEM_Short; - pTos->z = pTos->zShort; - }else{ - char *z = sqliteMallocRaw( amt ); - if( z==0 ) goto no_mem; - pTos->flags = MEM_Str | MEM_Dyn; - pTos->z = z; - } - if( pC->keyAsData ){ - sqliteBtreeKey(pCrsr, offset, amt, pTos->z); - }else{ - sqliteBtreeData(pCrsr, offset, amt, pTos->z); - } - } - break; -} - -/* Opcode: Recno P1 * * -** -** Push onto the stack an integer which is the first 4 bytes of the -** the key to the current entry in a sequential scan of the database -** file P1. The sequential scan should have been started using the -** Next opcode. -*/ -case OP_Recno: { - int i = pOp->p1; - Cursor *pC; - int v; - - assert( i>=0 && i<p->nCursor ); - pC = &p->aCsr[i]; - sqliteVdbeCursorMoveto(pC); - pTos++; - if( pC->recnoIsValid ){ - v = pC->lastRecno; - }else if( pC->pseudoTable ){ - v = keyToInt(pC->iKey); - }else if( pC->nullRow || pC->pCursor==0 ){ - pTos->flags = MEM_Null; - break; - }else{ - assert( pC->pCursor!=0 ); - sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v); - v = keyToInt(v); - } - pTos->i = v; - pTos->flags = MEM_Int; - break; -} - -/* Opcode: FullKey P1 * * -** -** Extract the complete key from the record that cursor P1 is currently -** pointing to and push the key onto the stack as a string. -** -** Compare this opcode to Recno. The Recno opcode extracts the first -** 4 bytes of the key and pushes those bytes onto the stack as an -** integer. This instruction pushes the entire key as a string. -** -** This opcode may not be used on a pseudo-table. -*/ -case OP_FullKey: { - int i = pOp->p1; - BtCursor *pCrsr; - - assert( p->aCsr[i].keyAsData ); - assert( !p->aCsr[i].pseudoTable ); - assert( i>=0 && i<p->nCursor ); - pTos++; - if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ - int amt; - char *z; - - sqliteVdbeCursorMoveto(&p->aCsr[i]); - sqliteBtreeKeySize(pCrsr, &amt); - if( amt<=0 ){ - rc = STQLITE_CORRUPT; - goto abort_due_to_error; - } - if( amt>NBFS ){ - z = sqliteMallocRaw( amt ); - if( z==0 ) goto no_mem; - pTos->flags = MEM_Str | MEM_Dyn; - }else{ - z = pTos->zShort; - pTos->flags = MEM_Str | MEM_Short; - } - sqliteBtreeKey(pCrsr, 0, amt, z); - pTos->z = z; - pTos->n = amt; - } - break; -} - -/* Opcode: NullRow P1 * * -** -** Move the cursor P1 to a null row. Any OP_Column operations -** that occur while the cursor is on the null row will always push -** a NULL onto the stack. -*/ -case OP_NullRow: { - int i = pOp->p1; - - assert( i>=0 && i<p->nCursor ); - p->aCsr[i].nullRow = 1; - p->aCsr[i].recnoIsValid = 0; - break; -} - -/* Opcode: Last P1 P2 * -** -** The next use of the Recno or Column or Next instruction for P1 -** will refer to the last entry in the database table or index. -** If the table or index is empty and P2>0, then jump immediately to P2. -** If P2 is 0 or if the table or index is not empty, fall through -** to the following instruction. -*/ -case OP_Last: { - int i = pOp->p1; - Cursor *pC; - BtCursor *pCrsr; - - assert( i>=0 && i<p->nCursor ); - pC = &p->aCsr[i]; - if( (pCrsr = pC->pCursor)!=0 ){ - int res; - rc = sqliteBtreeLast(pCrsr, &res); - pC->nullRow = res; - pC->deferredMoveto = 0; - if( res && pOp->p2>0 ){ - pc = pOp->p2 - 1; - } - }else{ - pC->nullRow = 0; - } - break; -} - -/* Opcode: Rewind P1 P2 * -** -** The next use of the Recno or Column or Next instruction for P1 -** will refer to the first entry in the database table or index. -** If the table or index is empty and P2>0, then jump immediately to P2. -** If P2 is 0 or if the table or index is not empty, fall through -** to the following instruction. -*/ -case OP_Rewind: { - int i = pOp->p1; - Cursor *pC; - BtCursor *pCrsr; - - assert( i>=0 && i<p->nCursor ); - pC = &p->aCsr[i]; - if( (pCrsr = pC->pCursor)!=0 ){ - int res; - rc = sqliteBtreeFirst(pCrsr, &res); - pC->atFirst = res==0; - pC->nullRow = res; - pC->deferredMoveto = 0; - if( res && pOp->p2>0 ){ - pc = pOp->p2 - 1; - } - }else{ - pC->nullRow = 0; - } - break; -} - -/* Opcode: Next P1 P2 * -** -** Advance cursor P1 so that it points to the next key/data pair in its -** table or index. If there are no more key/value pairs then fall through -** to the following instruction. But if the cursor advance was successful, -** jump immediately to P2. -** -** See also: Prev -*/ -/* Opcode: Prev P1 P2 * -** -** Back up cursor P1 so that it points to the previous key/data pair in its -** table or index. If there is no previous key/value pairs then fall through -** to the following instruction. But if the cursor backup was successful, -** jump immediately to P2. -*/ -case OP_Prev: -case OP_Next: { - Cursor *pC; - BtCursor *pCrsr; - - CHECK_FOR_INTERRUPT; - assert( pOp->p1>=0 && pOp->p1<p->nCursor ); - pC = &p->aCsr[pOp->p1]; - if( (pCrsr = pC->pCursor)!=0 ){ - int res; - if( pC->nullRow ){ - res = 1; - }else{ - assert( pC->deferredMoveto==0 ); - rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) : - sqliteBtreePrevious(pCrsr, &res); - pC->nullRow = res; - } - if( res==0 ){ - pc = pOp->p2 - 1; - sqlite_search_count++; - } - }else{ - pC->nullRow = 1; - } - pC->recnoIsValid = 0; - break; -} - -/* Opcode: IdxPut P1 P2 P3 -** -** The top of the stack holds a SQL index key made using the -** MakeIdxKey instruction. This opcode writes that key into the -** index P1. Data for the entry is nil. -** -** If P2==1, then the key must be unique. If the key is not unique, -** the program aborts with a STQLITE_CONSTRAINT error and the database -** is rolled back. If P3 is not null, then it becomes part of the -** error message returned with the STQLITE_CONSTRAINT. -*/ -case OP_IdxPut: { - int i = pOp->p1; - BtCursor *pCrsr; - assert( pTos>=p->aStack ); - assert( i>=0 && i<p->nCursor ); - assert( pTos->flags & MEM_Str ); - if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ - int nKey = pTos->n; - const char *zKey = pTos->z; - if( pOp->p2 ){ - int res, n; - assert( nKey >= 4 ); - rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res); - if( rc!=STQLITE_OK ) goto abort_due_to_error; - while( res!=0 ){ - int c; - sqliteBtreeKeySize(pCrsr, &n); - if( n==nKey - && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==STQLITE_OK - && c==0 - ){ - rc = STQLITE_CONSTRAINT; - if( pOp->p3 && pOp->p3[0] ){ - sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0); - } - goto abort_due_to_error; - } - if( res<0 ){ - sqliteBtreeNext(pCrsr, &res); - res = +1; - }else{ - break; - } - } - } - rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0); - assert( p->aCsr[i].deferredMoveto==0 ); - } - Release(pTos); - pTos--; - break; -} - -/* Opcode: IdxDelete P1 * * -** -** The top of the stack is an index key built using the MakeIdxKey opcode. -** This opcode removes that entry from the index. -*/ -case OP_IdxDelete: { - int i = pOp->p1; - BtCursor *pCrsr; - assert( pTos>=p->aStack ); - assert( pTos->flags & MEM_Str ); - assert( i>=0 && i<p->nCursor ); - if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ - int rx, res; - rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res); - if( rx==STQLITE_OK && res==0 ){ - rc = sqliteBtreeDelete(pCrsr); - } - assert( p->aCsr[i].deferredMoveto==0 ); - } - Release(pTos); - pTos--; - break; -} - -/* Opcode: IdxRecno P1 * * -** -** Push onto the stack an integer which is the last 4 bytes of the -** the key to the current entry in index P1. These 4 bytes should -** be the record number of the table entry to which this index entry -** points. -** -** See also: Recno, MakeIdxKey. -*/ -case OP_IdxRecno: { - int i = pOp->p1; - BtCursor *pCrsr; - - assert( i>=0 && i<p->nCursor ); - pTos++; - if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ - int v; - int sz; - assert( p->aCsr[i].deferredMoveto==0 ); - sqliteBtreeKeySize(pCrsr, &sz); - if( sz<sizeof(u32) ){ - pTos->flags = MEM_Null; - }else{ - sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v); - v = keyToInt(v); - pTos->i = v; - pTos->flags = MEM_Int; - } - }else{ - pTos->flags = MEM_Null; - } - break; -} - -/* Opcode: IdxGT P1 P2 * -** -** Compare the top of the stack against the key on the index entry that -** cursor P1 is currently pointing to. Ignore the last 4 bytes of the -** index entry. If the index entry is greater than the top of the stack -** then jump to P2. Otherwise fall through to the next instruction. -** In either case, the stack is popped once. -*/ -/* Opcode: IdxGE P1 P2 * -** -** Compare the top of the stack against the key on the index entry that -** cursor P1 is currently pointing to. Ignore the last 4 bytes of the -** index entry. If the index entry is greater than or equal to -** the top of the stack -** then jump to P2. Otherwise fall through to the next instruction. -** In either case, the stack is popped once. -*/ -/* Opcode: IdxLT P1 P2 * -** -** Compare the top of the stack against the key on the index entry that -** cursor P1 is currently pointing to. Ignore the last 4 bytes of the -** index entry. If the index entry is less than the top of the stack -** then jump to P2. Otherwise fall through to the next instruction. -** In either case, the stack is popped once. -*/ -case OP_IdxLT: -case OP_IdxGT: -case OP_IdxGE: { - int i= pOp->p1; - BtCursor *pCrsr; - - assert( i>=0 && i<p->nCursor ); - assert( pTos>=p->aStack ); - if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ - int res, rc; - - Stringify(pTos); - assert( p->aCsr[i].deferredMoveto==0 ); - rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res); - if( rc!=STQLITE_OK ){ - break; - } - if( pOp->opcode==OP_IdxLT ){ - res = -res; - }else if( pOp->opcode==OP_IdxGE ){ - res++; - } - if( res>0 ){ - pc = pOp->p2 - 1 ; - } - } - Release(pTos); - pTos--; - break; -} - -/* Opcode: IdxIsNull P1 P2 * -** -** The top of the stack contains an index entry such as might be generated -** by the MakeIdxKey opcode. This routine looks at the first P1 fields of -** that key. If any of the first P1 fields are NULL, then a jump is made -** to address P2. Otherwise we fall straight through. -** -** The index entry is always popped from the stack. -*/ -case OP_IdxIsNull: { - int i = pOp->p1; - int k, n; - const char *z; - - assert( pTos>=p->aStack ); - assert( pTos->flags & MEM_Str ); - z = pTos->z; - n = pTos->n; - for(k=0; k<n && i>0; i--){ - if( z[k]=='a' ){ - pc = pOp->p2-1; - break; - } - while( k<n && z[k] ){ k++; } - k++; - } - Release(pTos); - pTos--; - break; -} - -/* Opcode: Destroy P1 P2 * -** -** Delete an entire database table or index whose root page in the database -** file is given by P1. -** -** The table being destroyed is in the main database file if P2==0. If -** P2==1 then the table to be clear is in the auxiliary database file -** that is used to store tables create using CREATE TEMPORARY TABLE. -** -** See also: Clear -*/ -case OP_Destroy: { - rc = sqliteBtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1); - break; -} - -/* Opcode: Clear P1 P2 * -** -** Delete all contents of the database table or index whose root page -** in the database file is given by P1. But, unlike Destroy, do not -** remove the table or index from the database file. -** -** The table being clear is in the main database file if P2==0. If -** P2==1 then the table to be clear is in the auxiliary database file -** that is used to store tables create using CREATE TEMPORARY TABLE. -** -** See also: Destroy -*/ -case OP_Clear: { - rc = sqliteBtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1); - break; -} - -/* Opcode: CreateTable * P2 P3 -** -** Allocate a new table in the main database file if P2==0 or in the -** auxiliary database file if P2==1. Push the page number -** for the root page of the new table onto the stack. -** -** The root page number is also written to a memory location that P3 -** points to. This is the mechanism is used to write the root page -** number into the parser's internal data structures that describe the -** new table. -** -** The difference between a table and an index is this: A table must -** have a 4-byte integer key and can have arbitrary data. An index -** has an arbitrary key but no data. -** -** See also: CreateIndex -*/ -/* Opcode: CreateIndex * P2 P3 -** -** Allocate a new index in the main database file if P2==0 or in the -** auxiliary database file if P2==1. Push the page number of the -** root page of the new index onto the stack. -** -** See documentation on OP_CreateTable for additional information. -*/ -case OP_CreateIndex: -case OP_CreateTable: { - int pgno; - assert( pOp->p3!=0 && pOp->p3type==P3_POINTER ); - assert( pOp->p2>=0 && pOp->p2<db->nDb ); - assert( db->aDb[pOp->p2].pBt!=0 ); - if( pOp->opcode==OP_CreateTable ){ - rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno); - }else{ - rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno); - } - pTos++; - if( rc==STQLITE_OK ){ - pTos->i = pgno; - pTos->flags = MEM_Int; - *(u32*)pOp->p3 = pgno; - pOp->p3 = 0; - }else{ - pTos->flags = MEM_Null; - } - break; -} - -/* Opcode: IntegrityCk P1 P2 * -** -** Do an analysis of the currently open database. Push onto the -** stack the text of an error message describing any problems. -** If there are no errors, push a "ok" onto the stack. -** -** P1 is the index of a set that contains the root page numbers -** for all tables and indices in the main database file. The set -** is cleared by this opcode. In other words, after this opcode -** has executed, the set will be empty. -** -** If P2 is not zero, the check is done on the auxiliary database -** file, not the main database file. -** -** This opcode is used for testing purposes only. -*/ -case OP_IntegrityCk: { - int nRoot; - int *aRoot; - int iSet = pOp->p1; - Set *pSet; - int j; - HashElem *i; - char *z; - - assert( iSet>=0 && iSet<p->nSet ); - pTos++; - pSet = &p->aSet[iSet]; - nRoot = sqliteHashCount(&pSet->hash); - aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) ); - if( aRoot==0 ) goto no_mem; - for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){ - toInt((char*)sqliteHashKey(i), &aRoot[j]); - } - aRoot[j] = 0; - sqliteHashClear(&pSet->hash); - pSet->prev = 0; - z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot); - if( z==0 || z[0]==0 ){ - if( z ) sqliteFree(z); - pTos->z = "ok"; - pTos->n = 3; - pTos->flags = MEM_Str | MEM_Static; - }else{ - pTos->z = z; - pTos->n = strlen(z) + 1; - pTos->flags = MEM_Str | MEM_Dyn; - } - sqliteFree(aRoot); - break; -} - -/* Opcode: ListWrite * * * -** -** Write the integer on the top of the stack -** into the temporary storage list. -*/ -case OP_ListWrite: { - Keylist *pKeylist; - assert( pTos>=p->aStack ); - pKeylist = p->pList; - if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){ - pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) ); - if( pKeylist==0 ) goto no_mem; - pKeylist->nKey = 1000; - pKeylist->nRead = 0; - pKeylist->nUsed = 0; - pKeylist->pNext = p->pList; - p->pList = pKeylist; - } - Integerify(pTos); - pKeylist->aKey[pKeylist->nUsed++] = pTos->i; - Release(pTos); - pTos--; - break; -} - -/* Opcode: ListRewind * * * -** -** Rewind the temporary buffer back to the beginning. -*/ -case OP_ListRewind: { - /* What this opcode codes, really, is reverse the order of the - ** linked list of Keylist structures so that they are read out - ** in the same order that they were read in. */ - Keylist *pRev, *pTop; - pRev = 0; - while( p->pList ){ - pTop = p->pList; - p->pList = pTop->pNext; - pTop->pNext = pRev; - pRev = pTop; - } - p->pList = pRev; - break; -} - -/* Opcode: ListRead * P2 * -** -** Attempt to read an integer from the temporary storage buffer -** and push it onto the stack. If the storage buffer is empty, -** push nothing but instead jump to P2. -*/ -case OP_ListRead: { - Keylist *pKeylist; - CHECK_FOR_INTERRUPT; - pKeylist = p->pList; - if( pKeylist!=0 ){ - assert( pKeylist->nRead>=0 ); - assert( pKeylist->nRead<pKeylist->nUsed ); - assert( pKeylist->nRead<pKeylist->nKey ); - pTos++; - pTos->i = pKeylist->aKey[pKeylist->nRead++]; - pTos->flags = MEM_Int; - if( pKeylist->nRead>=pKeylist->nUsed ){ - p->pList = pKeylist->pNext; - sqliteFree(pKeylist); - } - }else{ - pc = pOp->p2 - 1; - } - break; -} - -/* Opcode: ListReset * * * -** -** Reset the temporary storage buffer so that it holds nothing. -*/ -case OP_ListReset: { - if( p->pList ){ - sqliteVdbeKeylistFree(p->pList); - p->pList = 0; - } - break; -} - -/* Opcode: ListPush * * * -** -** Save the current Vdbe list such that it can be restored by a ListPop -** opcode. The list is empty after this is executed. -*/ -case OP_ListPush: { - p->keylistStackDepth++; - assert(p->keylistStackDepth > 0); - p->keylistStack = sqliteRealloc(p->keylistStack, - sizeof(Keylist *) * p->keylistStackDepth); - if( p->keylistStack==0 ) goto no_mem; - p->keylistStack[p->keylistStackDepth - 1] = p->pList; - p->pList = 0; - break; -} - -/* Opcode: ListPop * * * -** -** Restore the Vdbe list to the state it was in when ListPush was last -** executed. -*/ -case OP_ListPop: { - assert(p->keylistStackDepth > 0); - p->keylistStackDepth--; - sqliteVdbeKeylistFree(p->pList); - p->pList = p->keylistStack[p->keylistStackDepth]; - p->keylistStack[p->keylistStackDepth] = 0; - if( p->keylistStackDepth == 0 ){ - sqliteFree(p->keylistStack); - p->keylistStack = 0; - } - break; -} - -/* Opcode: ContextPush * * * -** -** Save the current Vdbe context such that it can be restored by a ContextPop -** opcode. The context stores the last insert row id, the last statement change -** count, and the current statement change count. -*/ -case OP_ContextPush: { - p->contextStackDepth++; - assert(p->contextStackDepth > 0); - p->contextStack = sqliteRealloc(p->contextStack, - sizeof(Context) * p->contextStackDepth); - if( p->contextStack==0 ) goto no_mem; - p->contextStack[p->contextStackDepth - 1].lastRowid = p->db->lastRowid; - p->contextStack[p->contextStackDepth - 1].lsChange = p->db->lsChange; - p->contextStack[p->contextStackDepth - 1].csChange = p->db->csChange; - break; -} - -/* Opcode: ContextPop * * * -** -** Restore the Vdbe context to the state it was in when contextPush was last -** executed. The context stores the last insert row id, the last statement -** change count, and the current statement change count. -*/ -case OP_ContextPop: { - assert(p->contextStackDepth > 0); - p->contextStackDepth--; - p->db->lastRowid = p->contextStack[p->contextStackDepth].lastRowid; - p->db->lsChange = p->contextStack[p->contextStackDepth].lsChange; - p->db->csChange = p->contextStack[p->contextStackDepth].csChange; - if( p->contextStackDepth == 0 ){ - sqliteFree(p->contextStack); - p->contextStack = 0; - } - break; -} - -/* Opcode: SortPut * * * -** -** The TOS is the key and the NOS is the data. Pop both from the stack -** and put them on the sorter. The key and data should have been -** made using SortMakeKey and SortMakeRec, respectively. -*/ -case OP_SortPut: { - Mem *pNos = &pTos[-1]; - Sorter *pSorter; - assert( pNos>=p->aStack ); - if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem; - pSorter = sqliteMallocRaw( sizeof(Sorter) ); - if( pSorter==0 ) goto no_mem; - pSorter->pNext = p->pSort; - p->pSort = pSorter; - assert( pTos->flags & MEM_Dyn ); - pSorter->nKey = pTos->n; - pSorter->zKey = pTos->z; - assert( pNos->flags & MEM_Dyn ); - pSorter->nData = pNos->n; - pSorter->pData = pNos->z; - pTos -= 2; - break; -} - -/* Opcode: SortMakeRec P1 * * -** -** The top P1 elements are the arguments to a callback. Form these -** elements into a single data entry that can be stored on a sorter -** using SortPut and later fed to a callback using SortCallback. -*/ -case OP_SortMakeRec: { - char *z; - char **azArg; - int nByte; - int nField; - int i; - Mem *pRec; - - nField = pOp->p1; - pRec = &pTos[1-nField]; - assert( pRec>=p->aStack ); - nByte = 0; - for(i=0; i<nField; i++, pRec++){ - if( (pRec->flags & MEM_Null)==0 ){ - Stringify(pRec); - nByte += pRec->n; - } - } - nByte += sizeof(char*)*(nField+1); - azArg = sqliteMallocRaw( nByte ); - if( azArg==0 ) goto no_mem; - z = (char*)&azArg[nField+1]; - for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){ - if( pRec->flags & MEM_Null ){ - azArg[i] = 0; - }else{ - azArg[i] = z; - memcpy(z, pRec->z, pRec->n); - z += pRec->n; - } - } - popStack(&pTos, nField); - pTos++; - pTos->n = nByte; - pTos->z = (char*)azArg; - pTos->flags = MEM_Str | MEM_Dyn; - break; -} - -/* Opcode: SortMakeKey * * P3 -** -** Convert the top few entries of the stack into a sort key. The -** number of stack entries consumed is the number of characters in -** the string P3. One character from P3 is prepended to each entry. -** The first character of P3 is prepended to the element lowest in -** the stack and the last character of P3 is prepended to the top of -** the stack. All stack entries are separated by a \000 character -** in the result. The whole key is terminated by two \000 characters -** in a row. -** -** "N" is substituted in place of the P3 character for NULL values. -** -** See also the MakeKey and MakeIdxKey opcodes. -*/ -case OP_SortMakeKey: { - char *zNewKey; - int nByte; - int nField; - int i, j, k; - Mem *pRec; - - nField = strlen(pOp->p3); - pRec = &pTos[1-nField]; - nByte = 1; - for(i=0; i<nField; i++, pRec++){ - if( pRec->flags & MEM_Null ){ - nByte += 2; - }else{ - Stringify(pRec); - nByte += pRec->n+2; - } - } - zNewKey = sqliteMallocRaw( nByte ); - if( zNewKey==0 ) goto no_mem; - j = 0; - k = 0; - for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){ - if( pRec->flags & MEM_Null ){ - zNewKey[j++] = 'N'; - zNewKey[j++] = 0; - k++; - }else{ - zNewKey[j++] = pOp->p3[k++]; - memcpy(&zNewKey[j], pRec->z, pRec->n-1); - j += pRec->n-1; - zNewKey[j++] = 0; - } - } - zNewKey[j] = 0; - assert( j<nByte ); - popStack(&pTos, nField); - pTos++; - pTos->n = nByte; - pTos->flags = MEM_Str|MEM_Dyn; - pTos->z = zNewKey; - break; -} - -/* Opcode: Sort * * * -** -** Sort all elements on the sorter. The algorithm is a -** mergesort. -*/ -case OP_Sort: { - int i; - Sorter *pElem; - Sorter *apSorter[NSORT]; - for(i=0; i<NSORT; i++){ - apSorter[i] = 0; - } - while( p->pSort ){ - pElem = p->pSort; - p->pSort = pElem->pNext; - pElem->pNext = 0; - for(i=0; i<NSORT-1; i++){ - if( apSorter[i]==0 ){ - apSorter[i] = pElem; - break; - }else{ - pElem = Merge(apSorter[i], pElem); - apSorter[i] = 0; - } - } - if( i>=NSORT-1 ){ - apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem); - } - } - pElem = 0; - for(i=0; i<NSORT; i++){ - pElem = Merge(apSorter[i], pElem); - } - p->pSort = pElem; - break; -} - -/* Opcode: SortNext * P2 * -** -** Push the data for the topmost element in the sorter onto the -** stack, then remove the element from the sorter. If the sorter -** is empty, push nothing on the stack and instead jump immediately -** to instruction P2. -*/ -case OP_SortNext: { - Sorter *pSorter = p->pSort; - CHECK_FOR_INTERRUPT; - if( pSorter!=0 ){ - p->pSort = pSorter->pNext; - pTos++; - pTos->z = pSorter->pData; - pTos->n = pSorter->nData; - pTos->flags = MEM_Str|MEM_Dyn; - sqliteFree(pSorter->zKey); - sqliteFree(pSorter); - }else{ - pc = pOp->p2 - 1; - } - break; -} - -/* Opcode: SortCallback P1 * * -** -** The top of the stack contains a callback record built using -** the SortMakeRec operation with the same P1 value as this -** instruction. Pop this record from the stack and invoke the -** callback on it. -*/ -case OP_SortCallback: { - assert( pTos>=p->aStack ); - assert( pTos->flags & MEM_Str ); - p->nCallback++; - p->pc = pc+1; - p->azResColumn = (char**)pTos->z; - assert( p->nResColumn==pOp->p1 ); - p->popStack = 1; - p->pTos = pTos; - return STQLITE_ROW; -} - -/* Opcode: SortReset * * * -** -** Remove any elements that remain on the sorter. -*/ -case OP_SortReset: { - sqliteVdbeSorterReset(p); - break; -} - -/* Opcode: FileOpen * * P3 -** -** Open the file named by P3 for reading using the FileRead opcode. -** If P3 is "stdin" then open standard input for reading. -*/ -case OP_FileOpen: { - assert( pOp->p3!=0 ); - if( p->pFile ){ - if( p->pFile!=stdin ) fclose(p->pFile); - p->pFile = 0; - } - if( sqliteStrICmp(pOp->p3,"stdin")==0 ){ - p->pFile = stdin; - }else{ - p->pFile = fopen(pOp->p3, "r"); - } - if( p->pFile==0 ){ - sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, (char*)0); - rc = STQLITE_ERROR; - } - break; -} - -/* Opcode: FileRead P1 P2 P3 -** -** Read a single line of input from the open file (the file opened using -** FileOpen). If we reach end-of-file, jump immediately to P2. If -** we are able to get another line, split the line apart using P3 as -** a delimiter. There should be P1 fields. If the input line contains -** more than P1 fields, ignore the excess. If the input line contains -** fewer than P1 fields, assume the remaining fields contain NULLs. -** -** Input ends if a line consists of just "\.". A field containing only -** "\N" is a null field. The backslash \ character can be used be used -** to escape newlines or the delimiter. -*/ -case OP_FileRead: { - int n, eol, nField, i, c, nDelim; - char *zDelim, *z; - CHECK_FOR_INTERRUPT; - if( p->pFile==0 ) goto fileread_jump; - nField = pOp->p1; - if( nField<=0 ) goto fileread_jump; - if( nField!=p->nField || p->azField==0 ){ - char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1); - if( azField==0 ){ goto no_mem; } - p->azField = azField; - p->nField = nField; - } - n = 0; - eol = 0; - while( eol==0 ){ - if( p->zLine==0 || n+200>p->nLineAlloc ){ - char *zLine; - p->nLineAlloc = p->nLineAlloc*2 + 300; - zLine = sqliteRealloc(p->zLine, p->nLineAlloc); - if( zLine==0 ){ - p->nLineAlloc = 0; - sqliteFree(p->zLine); - p->zLine = 0; - goto no_mem; - } - p->zLine = zLine; - } - if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){ - eol = 1; - p->zLine[n] = 0; - }else{ - int c; - while( (c = p->zLine[n])!=0 ){ - if( c=='\\' ){ - if( p->zLine[n+1]==0 ) break; - n += 2; - }else if( c=='\n' ){ - p->zLine[n] = 0; - eol = 1; - break; - }else{ - n++; - } - } - } - } - if( n==0 ) goto fileread_jump; - z = p->zLine; - if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){ - goto fileread_jump; - } - zDelim = pOp->p3; - if( zDelim==0 ) zDelim = "\t"; - c = zDelim[0]; - nDelim = strlen(zDelim); - p->azField[0] = z; - for(i=1; *z!=0 && i<=nField; i++){ - int from, to; - from = to = 0; - if( z[0]=='\\' && z[1]=='N' - && (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){ - if( i<=nField ) p->azField[i-1] = 0; - z += 2 + nDelim; - if( i<nField ) p->azField[i] = z; - continue; - } - while( z[from] ){ - if( z[from]=='\\' && z[from+1]!=0 ){ - int tx = z[from+1]; - switch( tx ){ - case 'b': tx = '\b'; break; - case 'f': tx = '\f'; break; - case 'n': tx = '\n'; break; - case 'r': tx = '\r'; break; - case 't': tx = '\t'; break; - case 'v': tx = '\v'; break; - default: break; - } - z[to++] = tx; - from += 2; - continue; - } - if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break; - z[to++] = z[from++]; - } - if( z[from] ){ - z[to] = 0; - z += from + nDelim; - if( i<nField ) p->azField[i] = z; - }else{ - z[to] = 0; - z = ""; - } - } - while( i<nField ){ - p->azField[i++] = 0; - } - break; - - /* If we reach end-of-file, or if anything goes wrong, jump here. - ** This code will cause a jump to P2 */ -fileread_jump: - pc = pOp->p2 - 1; - break; -} - -/* Opcode: FileColumn P1 * * -** -** Push onto the stack the P1-th column of the most recently read line -** from the input file. -*/ -case OP_FileColumn: { - int i = pOp->p1; - char *z; - assert( i>=0 && i<p->nField ); - if( p->azField ){ - z = p->azField[i]; - }else{ - z = 0; - } - pTos++; - if( z ){ - pTos->n = strlen(z) + 1; - pTos->z = z; - pTos->flags = MEM_Str | MEM_Ephem; - }else{ - pTos->flags = MEM_Null; - } - break; -} - -/* Opcode: MemStore P1 P2 * -** -** Write the top of the stack into memory location P1. -** P1 should be a small integer since space is allocated -** for all memory locations between 0 and P1 inclusive. -** -** After the data is stored in the memory location, the -** stack is popped once if P2 is 1. If P2 is zero, then -** the original data remains on the stack. -*/ -case OP_MemStore: { - int i = pOp->p1; - Mem *pMem; - assert( pTos>=p->aStack ); - if( i>=p->nMem ){ - int nOld = p->nMem; - Mem *aMem; - p->nMem = i + 5; - aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0])); - if( aMem==0 ) goto no_mem; - if( aMem!=p->aMem ){ - int j; - for(j=0; j<nOld; j++){ - if( aMem[j].flags & MEM_Short ){ - aMem[j].z = aMem[j].zShort; - } - } - } - p->aMem = aMem; - if( nOld<p->nMem ){ - memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld)); - } - } - Deephemeralize(pTos); - pMem = &p->aMem[i]; - Release(pMem); - *pMem = *pTos; - if( pMem->flags & MEM_Dyn ){ - if( pOp->p2 ){ - pTos->flags = MEM_Null; - }else{ - pMem->z = sqliteMallocRaw( pMem->n ); - if( pMem->z==0 ) goto no_mem; - memcpy(pMem->z, pTos->z, pMem->n); - } - }else if( pMem->flags & MEM_Short ){ - pMem->z = pMem->zShort; - } - if( pOp->p2 ){ - Release(pTos); - pTos--; - } - break; -} - -/* Opcode: MemLoad P1 * * -** -** Push a copy of the value in memory location P1 onto the stack. -** -** If the value is a string, then the value pushed is a pointer to -** the string that is stored in the memory location. If the memory -** location is subsequently changed (using OP_MemStore) then the -** value pushed onto the stack will change too. -*/ -case OP_MemLoad: { - int i = pOp->p1; - assert( i>=0 && i<p->nMem ); - pTos++; - memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);; - if( pTos->flags & MEM_Str ){ - pTos->flags |= MEM_Ephem; - pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short); - } - break; -} - -/* Opcode: MemIncr P1 P2 * -** -** Increment the integer valued memory cell P1 by 1. If P2 is not zero -** and the result after the increment is greater than zero, then jump -** to P2. -** -** This instruction throws an error if the memory cell is not initially -** an integer. -*/ -case OP_MemIncr: { - int i = pOp->p1; - Mem *pMem; - assert( i>=0 && i<p->nMem ); - pMem = &p->aMem[i]; - assert( pMem->flags==MEM_Int ); - pMem->i++; - if( pOp->p2>0 && pMem->i>0 ){ - pc = pOp->p2 - 1; - } - break; -} - -/* Opcode: AggReset * P2 * -** -** Reset the aggregator so that it no longer contains any data. -** Future aggregator elements will contain P2 values each. -*/ -case OP_AggReset: { - sqliteVdbeAggReset(&p->agg); - p->agg.nMem = pOp->p2; - p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) ); - if( p->agg.apFunc==0 ) goto no_mem; - break; -} - -/* Opcode: AggInit * P2 P3 -** -** Initialize the function parameters for an aggregate function. -** The aggregate will operate out of aggregate column P2. -** P3 is a pointer to the FuncDef structure for the function. -*/ -case OP_AggInit: { - int i = pOp->p2; - assert( i>=0 && i<p->agg.nMem ); - p->agg.apFunc[i] = (FuncDef*)pOp->p3; - break; -} - -/* Opcode: AggFunc * P2 P3 -** -** Execute the step function for an aggregate. The -** function has P2 arguments. P3 is a pointer to the FuncDef -** structure that specifies the function. -** -** The top of the stack must be an integer which is the index of -** the aggregate column that corresponds to this aggregate function. -** Ideally, this index would be another parameter, but there are -** no free parameters left. The integer is popped from the stack. -*/ -case OP_AggFunc: { - int n = pOp->p2; - int i; - Mem *pMem, *pRec; - char **azArgv = p->zArgv; - sqlite_func ctx; - - assert( n>=0 ); - assert( pTos->flags==MEM_Int ); - pRec = &pTos[-n]; - assert( pRec>=p->aStack ); - for(i=0; i<n; i++, pRec++){ - if( pRec->flags & MEM_Null ){ - azArgv[i] = 0; - }else{ - Stringify(pRec); - azArgv[i] = pRec->z; - } - } - i = pTos->i; - assert( i>=0 && i<p->agg.nMem ); - ctx.pFunc = (FuncDef*)pOp->p3; - pMem = &p->agg.pCurrent->aMem[i]; - ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */ - ctx.pAgg = pMem->z; - ctx.cnt = ++pMem->i; - ctx.isError = 0; - ctx.isStep = 1; - (ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv); - pMem->z = ctx.pAgg; - pMem->flags = MEM_AggCtx; - popStack(&pTos, n+1); - if( ctx.isError ){ - rc = STQLITE_ERROR; - } - break; -} - -/* Opcode: AggFocus * P2 * -** -** Pop the top of the stack and use that as an aggregator key. If -** an aggregator with that same key already exists, then make the -** aggregator the current aggregator and jump to P2. If no aggregator -** with the given key exists, create one and make it current but -** do not jump. -** -** The order of aggregator opcodes is important. The order is: -** AggReset AggFocus AggNext. In other words, you must execute -** AggReset first, then zero or more AggFocus operations, then -** zero or more AggNext operations. You must not execute an AggFocus -** in between an AggNext and an AggReset. -*/ -case OP_AggFocus: { - AggElem *pElem; - char *zKey; - int nKey; - - assert( pTos>=p->aStack ); - Stringify(pTos); - zKey = pTos->z; - nKey = pTos->n; - pElem = sqliteHashFind(&p->agg.hash, zKey, nKey); - if( pElem ){ - p->agg.pCurrent = pElem; - pc = pOp->p2 - 1; - }else{ - AggInsert(&p->agg, zKey, nKey); - if( sqlite_malloc_failed ) goto no_mem; - } - Release(pTos); - pTos--; - break; -} - -/* Opcode: AggSet * P2 * -** -** Move the top of the stack into the P2-th field of the current -** aggregate. String values are duplicated into new memory. -*/ -case OP_AggSet: { - AggElem *pFocus = AggInFocus(p->agg); - Mem *pMem; - int i = pOp->p2; - assert( pTos>=p->aStack ); - if( pFocus==0 ) goto no_mem; - assert( i>=0 && i<p->agg.nMem ); - Deephemeralize(pTos); - pMem = &pFocus->aMem[i]; - Release(pMem); - *pMem = *pTos; - if( pMem->flags & MEM_Dyn ){ - pTos->flags = MEM_Null; - }else if( pMem->flags & MEM_Short ){ - pMem->z = pMem->zShort; - } - Release(pTos); - pTos--; - break; -} - -/* Opcode: AggGet * P2 * -** -** Push a new entry onto the stack which is a copy of the P2-th field -** of the current aggregate. Strings are not duplicated so -** string values will be ephemeral. -*/ -case OP_AggGet: { - AggElem *pFocus = AggInFocus(p->agg); - Mem *pMem; - int i = pOp->p2; - if( pFocus==0 ) goto no_mem; - assert( i>=0 && i<p->agg.nMem ); - pTos++; - pMem = &pFocus->aMem[i]; - *pTos = *pMem; - if( pTos->flags & MEM_Str ){ - pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short); - pTos->flags |= MEM_Ephem; - } - break; -} - -/* Opcode: AggNext * P2 * -** -** Make the next aggregate value the current aggregate. The prior -** aggregate is deleted. If all aggregate values have been consumed, -** jump to P2. -** -** The order of aggregator opcodes is important. The order is: -** AggReset AggFocus AggNext. In other words, you must execute -** AggReset first, then zero or more AggFocus operations, then -** zero or more AggNext operations. You must not execute an AggFocus -** in between an AggNext and an AggReset. -*/ -case OP_AggNext: { - CHECK_FOR_INTERRUPT; - if( p->agg.pSearch==0 ){ - p->agg.pSearch = sqliteHashFirst(&p->agg.hash); - }else{ - p->agg.pSearch = sqliteHashNext(p->agg.pSearch); - } - if( p->agg.pSearch==0 ){ - pc = pOp->p2 - 1; - } else { - int i; - sqlite_func ctx; - Mem *aMem; - p->agg.pCurrent = sqliteHashData(p->agg.pSearch); - aMem = p->agg.pCurrent->aMem; - for(i=0; i<p->agg.nMem; i++){ - int freeCtx; - if( p->agg.apFunc[i]==0 ) continue; - if( p->agg.apFunc[i]->xFinalize==0 ) continue; - ctx.s.flags = MEM_Null; - ctx.s.z = aMem[i].zShort; - ctx.pAgg = (void*)aMem[i].z; - freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort; - ctx.cnt = aMem[i].i; - ctx.isStep = 0; - ctx.pFunc = p->agg.apFunc[i]; - (*p->agg.apFunc[i]->xFinalize)(&ctx); - if( freeCtx ){ - sqliteFree( aMem[i].z ); - } - aMem[i] = ctx.s; - if( aMem[i].flags & MEM_Short ){ - aMem[i].z = aMem[i].zShort; - } - } - } - break; -} - -/* Opcode: SetInsert P1 * P3 -** -** If Set P1 does not exist then create it. Then insert value -** P3 into that set. If P3 is NULL, then insert the top of the -** stack into the set. -*/ -case OP_SetInsert: { - int i = pOp->p1; - if( p->nSet<=i ){ - int k; - Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) ); - if( aSet==0 ) goto no_mem; - p->aSet = aSet; - for(k=p->nSet; k<=i; k++){ - sqliteHashInit(&p->aSet[k].hash, STQLITE_HASH_BINARY, 1); - } - p->nSet = i+1; - } - if( pOp->p3 ){ - sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p); - }else{ - assert( pTos>=p->aStack ); - Stringify(pTos); - sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p); - Release(pTos); - pTos--; - } - if( sqlite_malloc_failed ) goto no_mem; - break; -} - -/* Opcode: SetFound P1 P2 * -** -** Pop the stack once and compare the value popped off with the -** contents of set P1. If the element popped exists in set P1, -** then jump to P2. Otherwise fall through. -*/ -case OP_SetFound: { - int i = pOp->p1; - assert( pTos>=p->aStack ); - Stringify(pTos); - if( i>=0 && i<p->nSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){ - pc = pOp->p2 - 1; - } - Release(pTos); - pTos--; - break; -} - -/* Opcode: SetNotFound P1 P2 * -** -** Pop the stack once and compare the value popped off with the -** contents of set P1. If the element popped does not exists in -** set P1, then jump to P2. Otherwise fall through. -*/ -case OP_SetNotFound: { - int i = pOp->p1; - assert( pTos>=p->aStack ); - Stringify(pTos); - if( i<0 || i>=p->nSet || - sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){ - pc = pOp->p2 - 1; - } - Release(pTos); - pTos--; - break; -} - -/* Opcode: SetFirst P1 P2 * -** -** Read the first element from set P1 and push it onto the stack. If the -** set is empty, push nothing and jump immediately to P2. This opcode is -** used in combination with OP_SetNext to loop over all elements of a set. -*/ -/* Opcode: SetNext P1 P2 * -** -** Read the next element from set P1 and push it onto the stack. If there -** are no more elements in the set, do not do the push and fall through. -** Otherwise, jump to P2 after pushing the next set element. -*/ -case OP_SetFirst: -case OP_SetNext: { - Set *pSet; - CHECK_FOR_INTERRUPT; - if( pOp->p1<0 || pOp->p1>=p->nSet ){ - if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1; - break; - } - pSet = &p->aSet[pOp->p1]; - if( pOp->opcode==OP_SetFirst ){ - pSet->prev = sqliteHashFirst(&pSet->hash); - if( pSet->prev==0 ){ - pc = pOp->p2 - 1; - break; - } - }else{ - assert( pSet->prev ); - pSet->prev = sqliteHashNext(pSet->prev); - if( pSet->prev==0 ){ - break; - }else{ - pc = pOp->p2 - 1; - } - } - pTos++; - pTos->z = sqliteHashKey(pSet->prev); - pTos->n = sqliteHashKeysize(pSet->prev); - pTos->flags = MEM_Str | MEM_Ephem; - break; -} - -/* Opcode: Vacuum * * * -** -** Vacuum the entire database. This opcode will cause other virtual -** machines to be created and run. It may not be called from within -** a transaction. -*/ -case OP_Vacuum: { - if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; - rc = sqliteRunVacuum(&p->zErrMsg, db); - if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; - break; -} - -/* An other opcode is illegal... -*/ -default: { - sqlite_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode); - sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0); - rc = STQLITE_INTERNAL; - break; -} - -/***************************************************************************** -** The cases of the switch statement above this line should all be indented -** by 6 spaces. But the left-most 6 spaces have been removed to improve the -** readability. From this point on down, the normal indentation rules are -** restored. -*****************************************************************************/ - } - -#ifdef VDBE_PROFILE - { - long long elapse = hwtime() - start; - pOp->cycles += elapse; - pOp->cnt++; -#if 0 - fprintf(stdout, "%10lld ", elapse); - sqliteVdbePrintOp(stdout, origPc, &p->aOp[origPc]); -#endif - } -#endif - - /* The following code adds nothing to the actual functionality - ** of the program. It is only here for testing and debugging. - ** On the other hand, it does burn CPU cycles every time through - ** the evaluator loop. So we can leave it out when NDEBUG is defined. - */ -#ifndef NDEBUG - /* Sanity checking on the top element of the stack */ - if( pTos>=p->aStack ){ - assert( pTos->flags!=0 ); /* Must define some type */ - if( pTos->flags & MEM_Str ){ - int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); - assert( x!=0 ); /* Strings must define a string subtype */ - assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */ - assert( pTos->z!=0 ); /* Strings must have a value */ - /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */ - assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort ); - assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort ); - }else{ - /* Cannot define a string subtype for non-string objects */ - assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 ); - } - /* MEM_Null excludes all other types */ - assert( pTos->flags==MEM_Null || (pTos->flags&MEM_Null)==0 ); - } - if( pc<-1 || pc>=p->nOp ){ - sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0); - rc = STQLITE_INTERNAL; - } - if( p->trace && pTos>=p->aStack ){ - int i; - fprintf(p->trace, "Stack:"); - for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){ - if( pTos[i].flags & MEM_Null ){ - fprintf(p->trace, " NULL"); - }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ - fprintf(p->trace, " si:%d", pTos[i].i); - }else if( pTos[i].flags & MEM_Int ){ - fprintf(p->trace, " i:%d", pTos[i].i); - }else if( pTos[i].flags & MEM_Real ){ - fprintf(p->trace, " r:%g", pTos[i].r); - }else if( pTos[i].flags & MEM_Str ){ - int j, k; - char zBuf[100]; - zBuf[0] = ' '; - if( pTos[i].flags & MEM_Dyn ){ - zBuf[1] = 'z'; - assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 ); - }else if( pTos[i].flags & MEM_Static ){ - zBuf[1] = 't'; - assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 ); - }else if( pTos[i].flags & MEM_Ephem ){ - zBuf[1] = 'e'; - assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 ); - }else{ - zBuf[1] = 's'; - } - zBuf[2] = '['; - k = 3; - for(j=0; j<20 && j<pTos[i].n; j++){ - int c = pTos[i].z[j]; - if( c==0 && j==pTos[i].n-1 ) break; - if( isprint(c) && !isspace(c) ){ - zBuf[k++] = c; - }else{ - zBuf[k++] = '.'; - } - } - zBuf[k++] = ']'; - zBuf[k++] = 0; - fprintf(p->trace, "%s", zBuf); - }else{ - fprintf(p->trace, " ???"); - } - } - if( rc!=0 ) fprintf(p->trace," rc=%d",rc); - fprintf(p->trace,"\n"); - } -#endif - } /* The end of the for(;;) loop the loops through opcodes */ - - /* If we reach this point, it means that execution is finished. - */ -vdbe_halt: - if( rc ){ - p->rc = rc; - rc = STQLITE_ERROR; - }else{ - rc = STQLITE_DONE; - } - p->magic = VDBE_MAGIC_HALT; - p->pTos = pTos; - return rc; - - /* Jump to here if a malloc() fails. It's hard to get a malloc() - ** to fail on a modern VM computer, so this code is untested. - */ -no_mem: - sqliteSetString(&p->zErrMsg, "out of memory", (char*)0); - rc = STQLITE_NOMEM; - goto vdbe_halt; - - /* Jump to here for an STQLITE_MISUSE error. - */ -abort_due_to_misuse: - rc = STQLITE_MISUSE; - /* Fall thru into abort_due_to_error */ - - /* Jump to here for any other kind of fatal error. The "rc" variable - ** should hold the error number. - */ -abort_due_to_error: - if( p->zErrMsg==0 ){ - if( sqlite_malloc_failed ) rc = STQLITE_NOMEM; - sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); - } - goto vdbe_halt; - - /* Jump to here if the sqlite_interrupt() API sets the interrupt - ** flag. - */ -abort_due_to_interrupt: - assert( db->flags & STQLITE_Interrupt ); - db->flags &= ~STQLITE_Interrupt; - if( db->magic!=STQLITE_MAGIC_BUSY ){ - rc = STQLITE_MISUSE; - }else{ - rc = STQLITE_INTERRUPT; - } - sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); - goto vdbe_halt; -} |