summaryrefslogtreecommitdiffstats
path: root/tqtinterface/qt4/src/3rdparty/sqlite/vdbe.c
diff options
context:
space:
mode:
authorMichele Calgaro <[email protected]>2019-04-21 23:22:20 +0900
committerMichele Calgaro <[email protected]>2019-04-21 23:22:20 +0900
commitdba036816b279bc1539a9f3894fbc414665d2bce (patch)
tree29e4bf00bafe515e7afdd02168d65a47a3f9fbc0 /tqtinterface/qt4/src/3rdparty/sqlite/vdbe.c
parent6f1b4f0c7505a049d992a33f6e409b7c75732d4b (diff)
downloadexperimental-dba036816b279bc1539a9f3894fbc414665d2bce.tar.gz
experimental-dba036816b279bc1539a9f3894fbc414665d2bce.zip
Removed unnecessary and/or TDE-unrelated code.
Signed-off-by: Michele Calgaro <[email protected]> Signed-off-by: Slávek Banko <[email protected]>
Diffstat (limited to 'tqtinterface/qt4/src/3rdparty/sqlite/vdbe.c')
-rw-r--r--tqtinterface/qt4/src/3rdparty/sqlite/vdbe.c4885
1 files changed, 0 insertions, 4885 deletions
diff --git a/tqtinterface/qt4/src/3rdparty/sqlite/vdbe.c b/tqtinterface/qt4/src/3rdparty/sqlite/vdbe.c
deleted file mode 100644
index 5171275..0000000
--- a/tqtinterface/qt4/src/3rdparty/sqlite/vdbe.c
+++ /dev/null
@@ -1,4885 +0,0 @@
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** The code in this file implements execution method of the
-** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
-** handles housekeeping details such as creating and deleting
-** VDBE instances. This file is solely interested in executing
-** the VDBE program.
-**
-** In the external interface, an "sqlite_vm*" is an opaque pointer
-** to a VDBE.
-**
-** The SQL parser generates a program which is then executed by
-** the VDBE to do the work of the SQL statement. VDBE programs are
-** similar in form to assembly language. The program consists of
-** a linear sequence of operations. Each operation has an opcode
-** and 3 operands. Operands P1 and P2 are integers. Operand P3
-** is a null-terminated string. The P2 operand must be non-negative.
-** Opcodes will typically ignore one or more operands. Many opcodes
-** ignore all three operands.
-**
-** Computation results are stored on a stack. Each entry on the
-** stack is either an integer, a null-terminated string, a floating point
-** number, or the SQL "NULL" value. An inplicit conversion from one
-** type to the other occurs as necessary.
-**
-** Most of the code in this file is taken up by the sqliteVdbeExec()
-** function which does the work of interpreting a VDBE program.
-** But other routines are also provided to help in building up
-** a program instruction by instruction.
-**
-** Various scripts scan this source file in order to generate HTML
-** documentation, headers files, or other derived files. The formatting
-** of the code in this file is, therefore, important. See other comments
-** in this file for details. If in doubt, do not deviate from existing
-** commenting and indentation practices when changing or adding code.
-**
-** $Id: vdbe.c,v 1.268 2004/03/03 01:51:25 drh Exp $
-*/
-#include "sqliteInt.h"
-#include "os.h"
-#include <ctype.h>
-#include "vdbeInt.h"
-
-/*
-** The following global variable is incremented every time a cursor
-** moves, either by the OP_MoveTo or the OP_Next opcode. The test
-** procedures use this information to make sure that indices are
-** working correctly. This variable has no function other than to
-** help verify the correct operation of the library.
-*/
-int sqlite_search_count = 0;
-
-/*
-** When this global variable is positive, it gets decremented once before
-** each instruction in the VDBE. When reaches zero, the STQLITE_Interrupt
-** of the db.flags field is set in order to simulate and interrupt.
-**
-** This facility is used for testing purposes only. It does not function
-** in an ordinary build.
-*/
-int sqlite_interrupt_count = 0;
-
-/*
-** Advance the virtual machine to the next output row.
-**
-** The return vale will be either STQLITE_BUSY, STQLITE_DONE,
-** STQLITE_ROW, STQLITE_ERROR, or STQLITE_MISUSE.
-**
-** STQLITE_BUSY means that the virtual machine attempted to open
-** a locked database and there is no busy callback registered.
-** Call sqlite_step() again to retry the open. *pN is set to 0
-** and *pazColName and *pazValue are both set to NULL.
-**
-** STQLITE_DONE means that the virtual machine has finished
-** executing. sqlite_step() should not be called again on this
-** virtual machine. *pN and *pazColName are set appropriately
-** but *pazValue is set to NULL.
-**
-** STQLITE_ROW means that the virtual machine has generated another
-** row of the result set. *pN is set to the number of columns in
-** the row. *pazColName is set to the names of the columns followed
-** by the column datatypes. *pazValue is set to the values of each
-** column in the row. The value of the i-th column is (*pazValue)[i].
-** The name of the i-th column is (*pazColName)[i] and the datatype
-** of the i-th column is (*pazColName)[i+*pN].
-**
-** STQLITE_ERROR means that a run-time error (such as a constraint
-** violation) has occurred. The details of the error will be returned
-** by the next call to sqlite_finalize(). sqlite_step() should not
-** be called again on the VM.
-**
-** STQLITE_MISUSE means that the this routine was called inappropriately.
-** Perhaps it was called on a virtual machine that had already been
-** finalized or on one that had previously returned STQLITE_ERROR or
-** STQLITE_DONE. Or it could be the case the the same database connection
-** is being used simulataneously by two or more threads.
-*/
-int sqlite_step(
- sqlite_vm *pVm, /* The virtual machine to execute */
- int *pN, /* OUT: Number of columns in result */
- const char ***pazValue, /* OUT: Column data */
- const char ***pazColName /* OUT: Column names and datatypes */
-){
- Vdbe *p = (Vdbe*)pVm;
- sqlite *db;
- int rc;
-
- if( p->magic!=VDBE_MAGIC_RUN ){
- return STQLITE_MISUSE;
- }
- db = p->db;
- if( sqliteSafetyOn(db) ){
- p->rc = STQLITE_MISUSE;
- return STQLITE_MISUSE;
- }
- if( p->explain ){
- rc = sqliteVdbeList(p);
- }else{
- rc = sqliteVdbeExec(p);
- }
- if( rc==STQLITE_DONE || rc==STQLITE_ROW ){
- if( pazColName ) *pazColName = (const char**)p->azColName;
- if( pN ) *pN = p->nResColumn;
- }else{
- if( pazColName) *pazColName = 0;
- if( pN ) *pN = 0;
- }
- if( pazValue ){
- if( rc==STQLITE_ROW ){
- *pazValue = (const char**)p->azResColumn;
- }else{
- *pazValue = 0;
- }
- }
- if( sqliteSafetyOff(db) ){
- return STQLITE_MISUSE;
- }
- return rc;
-}
-
-/*
-** Insert a new aggregate element and make it the element that
-** has focus.
-**
-** Return 0 on success and 1 if memory is exhausted.
-*/
-static int AggInsert(Agg *p, char *zKey, int nKey){
- AggElem *pElem, *pOld;
- int i;
- Mem *pMem;
- pElem = sqliteMalloc( sizeof(AggElem) + nKey +
- (p->nMem-1)*sizeof(pElem->aMem[0]) );
- if( pElem==0 ) return 1;
- pElem->zKey = (char*)&pElem->aMem[p->nMem];
- memcpy(pElem->zKey, zKey, nKey);
- pElem->nKey = nKey;
- pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem);
- if( pOld!=0 ){
- assert( pOld==pElem ); /* Malloc failed on insert */
- sqliteFree(pOld);
- return 0;
- }
- for(i=0, pMem=pElem->aMem; i<p->nMem; i++, pMem++){
- pMem->flags = MEM_Null;
- }
- p->pCurrent = pElem;
- return 0;
-}
-
-/*
-** Get the AggElem currently in focus
-*/
-#define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P)))
-static AggElem *_AggInFocus(Agg *p){
- HashElem *pElem = sqliteHashFirst(&p->hash);
- if( pElem==0 ){
- AggInsert(p,"",1);
- pElem = sqliteHashFirst(&p->hash);
- }
- return pElem ? sqliteHashData(pElem) : 0;
-}
-
-/*
-** Convert the given stack entity into a string if it isn't one
-** already.
-*/
-#define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);}
-static int hardStringify(Mem *pStack){
- int fg = pStack->flags;
- if( fg & MEM_Real ){
- sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r);
- }else if( fg & MEM_Int ){
- sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i);
- }else{
- pStack->zShort[0] = 0;
- }
- pStack->z = pStack->zShort;
- pStack->n = strlen(pStack->zShort)+1;
- pStack->flags = MEM_Str | MEM_Short;
- return 0;
-}
-
-/*
-** Convert the given stack entity into a string that has been obtained
-** from sqliteMalloc(). This is different from Stringify() above in that
-** Stringify() will use the NBFS bytes of static string space if the string
-** will fit but this routine always mallocs for space.
-** Return non-zero if we run out of memory.
-*/
-#define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0)
-static int hardDynamicify(Mem *pStack){
- int fg = pStack->flags;
- char *z;
- if( (fg & MEM_Str)==0 ){
- hardStringify(pStack);
- }
- assert( (fg & MEM_Dyn)==0 );
- z = sqliteMallocRaw( pStack->n );
- if( z==0 ) return 1;
- memcpy(z, pStack->z, pStack->n);
- pStack->z = z;
- pStack->flags |= MEM_Dyn;
- return 0;
-}
-
-/*
-** An ephemeral string value (signified by the MEM_Ephem flag) contains
-** a pointer to a dynamically allocated string where some other entity
-** is responsible for deallocating that string. Because the stack entry
-** does not control the string, it might be deleted without the stack
-** entry knowing it.
-**
-** This routine converts an ephemeral string into a dynamically allocated
-** string that the stack entry itself controls. In other words, it
-** converts an MEM_Ephem string into an MEM_Dyn string.
-*/
-#define Deephemeralize(P) \
- if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;}
-static int hardDeephem(Mem *pStack){
- char *z;
- assert( (pStack->flags & MEM_Ephem)!=0 );
- z = sqliteMallocRaw( pStack->n );
- if( z==0 ) return 1;
- memcpy(z, pStack->z, pStack->n);
- pStack->z = z;
- pStack->flags &= ~MEM_Ephem;
- pStack->flags |= MEM_Dyn;
- return 0;
-}
-
-/*
-** Release the memory associated with the given stack level. This
-** leaves the Mem.flags field in an inconsistent state.
-*/
-#define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); }
-
-/*
-** Pop the stack N times.
-*/
-static void popStack(Mem **ppTos, int N){
- Mem *pTos = *ppTos;
- while( N>0 ){
- N--;
- Release(pTos);
- pTos--;
- }
- *ppTos = pTos;
-}
-
-/*
-** Return TRUE if zNum is a 32-bit signed integer and write
-** the value of the integer into *pNum. If zNum is not an integer
-** or is an integer that is too large to be expressed with just 32
-** bits, then return false.
-**
-** Under Linux (RedHat 7.2) this routine is much faster than atoi()
-** for converting strings into integers.
-*/
-static int toInt(const char *zNum, int *pNum){
- int v = 0;
- int neg;
- int i, c;
- if( *zNum=='-' ){
- neg = 1;
- zNum++;
- }else if( *zNum=='+' ){
- neg = 0;
- zNum++;
- }else{
- neg = 0;
- }
- for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
- v = v*10 + c - '0';
- }
- *pNum = neg ? -v : v;
- return c==0 && i>0 && (i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0));
-}
-
-/*
-** Convert the given stack entity into a integer if it isn't one
-** already.
-**
-** Any prior string or real representation is invalidated.
-** NULLs are converted into 0.
-*/
-#define Integerify(P) if(((P)->flags&MEM_Int)==0){ hardIntegerify(P); }
-static void hardIntegerify(Mem *pStack){
- if( pStack->flags & MEM_Real ){
- pStack->i = (int)pStack->r;
- Release(pStack);
- }else if( pStack->flags & MEM_Str ){
- toInt(pStack->z, &pStack->i);
- Release(pStack);
- }else{
- pStack->i = 0;
- }
- pStack->flags = MEM_Int;
-}
-
-/*
-** Get a valid Real representation for the given stack element.
-**
-** Any prior string or integer representation is retained.
-** NULLs are converted into 0.0.
-*/
-#define Realify(P) if(((P)->flags&MEM_Real)==0){ hardRealify(P); }
-static void hardRealify(Mem *pStack){
- if( pStack->flags & MEM_Str ){
- pStack->r = sqliteAtoF(pStack->z, 0);
- }else if( pStack->flags & MEM_Int ){
- pStack->r = pStack->i;
- }else{
- pStack->r = 0.0;
- }
- pStack->flags |= MEM_Real;
-}
-
-/*
-** The parameters are pointers to the head of two sorted lists
-** of Sorter structures. Merge these two lists together and return
-** a single sorted list. This routine forms the core of the merge-sort
-** algorithm.
-**
-** In the case of a tie, left sorts in front of right.
-*/
-static Sorter *Merge(Sorter *pLeft, Sorter *pRight){
- Sorter sHead;
- Sorter *pTail;
- pTail = &sHead;
- pTail->pNext = 0;
- while( pLeft && pRight ){
- int c = sqliteSortCompare(pLeft->zKey, pRight->zKey);
- if( c<=0 ){
- pTail->pNext = pLeft;
- pLeft = pLeft->pNext;
- }else{
- pTail->pNext = pRight;
- pRight = pRight->pNext;
- }
- pTail = pTail->pNext;
- }
- if( pLeft ){
- pTail->pNext = pLeft;
- }else if( pRight ){
- pTail->pNext = pRight;
- }
- return sHead.pNext;
-}
-
-/*
-** The following routine works like a replacement for the standard
-** library routine fgets(). The difference is in how end-of-line (EOL)
-** is handled. Standard fgets() uses LF for EOL under unix, CRLF
-** under windows, and CR under mac. This routine accepts any of these
-** character sequences as an EOL mark. The EOL mark is replaced by
-** a single LF character in zBuf.
-*/
-static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){
- int i, c;
- for(i=0; i<nBuf-1 && (c=getc(in))!=EOF; i++){
- zBuf[i] = c;
- if( c=='\r' || c=='\n' ){
- if( c=='\r' ){
- zBuf[i] = '\n';
- c = getc(in);
- if( c!=EOF && c!='\n' ) ungetc(c, in);
- }
- i++;
- break;
- }
- }
- zBuf[i] = 0;
- return i>0 ? zBuf : 0;
-}
-
-/*
-** Make sure there is space in the Vdbe structure to hold at least
-** mxCursor cursors. If there is not currently enough space, then
-** allocate more.
-**
-** If a memory allocation error occurs, return 1. Return 0 if
-** everything works.
-*/
-static int expandCursorArraySize(Vdbe *p, int mxCursor){
- if( mxCursor>=p->nCursor ){
- Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) );
- if( aCsr==0 ) return 1;
- p->aCsr = aCsr;
- memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor));
- p->nCursor = mxCursor+1;
- }
- return 0;
-}
-
-#ifdef VDBE_PROFILE
-/*
-** The following routine only works on pentium-class processors.
-** It uses the RDTSC opcode to read cycle count value out of the
-** processor and returns that value. This can be used for high-res
-** profiling.
-*/
-__inline__ unsigned long long int hwtime(void){
- unsigned long long int x;
- __asm__("rdtsc\n\t"
- "mov %%edx, %%ecx\n\t"
- :"=A" (x));
- return x;
-}
-#endif
-
-/*
-** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
-** sqlite_interrupt() routine has been called. If it has been, then
-** processing of the VDBE program is interrupted.
-**
-** This macro added to every instruction that does a jump in order to
-** implement a loop. This test used to be on every single instruction,
-** but that meant we more testing that we needed. By only testing the
-** flag on jump instructions, we get a (small) speed improvement.
-*/
-#define CHECK_FOR_INTERRUPT \
- if( db->flags & STQLITE_Interrupt ) goto abort_due_to_interrupt;
-
-
-/*
-** Execute as much of a VDBE program as we can then return.
-**
-** sqliteVdbeMakeReady() must be called before this routine in order to
-** close the program with a final OP_Halt and to set up the callbacks
-** and the error message pointer.
-**
-** Whenever a row or result data is available, this routine will either
-** invoke the result callback (if there is one) or return with
-** STQLITE_ROW.
-**
-** If an attempt is made to open a locked database, then this routine
-** will either invoke the busy callback (if there is one) or it will
-** return STQLITE_BUSY.
-**
-** If an error occurs, an error message is written to memory obtained
-** from sqliteMalloc() and p->zErrMsg is made to point to that memory.
-** The error code is stored in p->rc and this routine returns STQLITE_ERROR.
-**
-** If the callback ever returns non-zero, then the program exits
-** immediately. There will be no error message but the p->rc field is
-** set to STQLITE_ABORT and this routine will return STQLITE_ERROR.
-**
-** A memory allocation error causes p->rc to be set to STQLITE_NOMEM and this
-** routine to return STQLITE_ERROR.
-**
-** Other fatal errors return STQLITE_ERROR.
-**
-** After this routine has finished, sqliteVdbeFinalize() should be
-** used to clean up the mess that was left behind.
-*/
-int sqliteVdbeExec(
- Vdbe *p /* The VDBE */
-){
- int pc; /* The program counter */
- Op *pOp; /* Current operation */
- int rc = STQLITE_OK; /* Value to return */
- sqlite *db = p->db; /* The database */
- Mem *pTos; /* Top entry in the operand stack */
- char zBuf[100]; /* Space to sprintf() an integer */
-#ifdef VDBE_PROFILE
- unsigned long long start; /* CPU clock count at start of opcode */
- int origPc; /* Program counter at start of opcode */
-#endif
-#ifndef STQLITE_OMIT_PROGRESS_CALLBACK
- int nProgressOps = 0; /* Opcodes executed since progress callback. */
-#endif
-
- if( p->magic!=VDBE_MAGIC_RUN ) return STQLITE_MISUSE;
- assert( db->magic==STQLITE_MAGIC_BUSY );
- assert( p->rc==STQLITE_OK || p->rc==STQLITE_BUSY );
- p->rc = STQLITE_OK;
- assert( p->explain==0 );
- if( sqlite_malloc_failed ) goto no_mem;
- pTos = p->pTos;
- if( p->popStack ){
- popStack(&pTos, p->popStack);
- p->popStack = 0;
- }
- CHECK_FOR_INTERRUPT;
- for(pc=p->pc; rc==STQLITE_OK; pc++){
- assert( pc>=0 && pc<p->nOp );
- assert( pTos<=&p->aStack[pc] );
-#ifdef VDBE_PROFILE
- origPc = pc;
- start = hwtime();
-#endif
- pOp = &p->aOp[pc];
-
- /* Only allow tracing if NDEBUG is not defined.
- */
-#ifndef NDEBUG
- if( p->trace ){
- sqliteVdbePrintOp(p->trace, pc, pOp);
- }
-#endif
-
- /* Check to see if we need to simulate an interrupt. This only happens
- ** if we have a special test build.
- */
-#ifdef STQLITE_TEST
- if( sqlite_interrupt_count>0 ){
- sqlite_interrupt_count--;
- if( sqlite_interrupt_count==0 ){
- sqlite_interrupt(db);
- }
- }
-#endif
-
-#ifndef STQLITE_OMIT_PROGRESS_CALLBACK
- /* Call the progress callback if it is configured and the required number
- ** of VDBE ops have been executed (either since this invocation of
- ** sqliteVdbeExec() or since last time the progress callback was called).
- ** If the progress callback returns non-zero, exit the virtual machine with
- ** a return code STQLITE_ABORT.
- */
- if( db->xProgress ){
- if( db->nProgressOps==nProgressOps ){
- if( db->xProgress(db->pProgressArg)!=0 ){
- rc = STQLITE_ABORT;
- continue; /* skip to the next iteration of the for loop */
- }
- nProgressOps = 0;
- }
- nProgressOps++;
- }
-#endif
-
- switch( pOp->opcode ){
-
-/*****************************************************************************
-** What follows is a massive switch statement where each case implements a
-** separate instruction in the virtual machine. If we follow the usual
-** indentation conventions, each case should be indented by 6 spaces. But
-** that is a lot of wasted space on the left margin. So the code within
-** the switch statement will break with convention and be flush-left. Another
-** big comment (similar to this one) will mark the point in the code where
-** we transition back to normal indentation.
-**
-** The formatting of each case is important. The makefile for STQLite
-** generates two C files "opcodes.h" and "opcodes.c" by scanning this
-** file looking for lines that begin with "case OP_". The opcodes.h files
-** will be filled with #defines that give unique integer values to each
-** opcode and the opcodes.c file is filled with an array of strings where
-** each string is the symbolic name for the corresponding opcode.
-**
-** Documentation about VDBE opcodes is generated by scanning this file
-** for lines of that contain "Opcode:". That line and all subsequent
-** comment lines are used in the generation of the opcode.html documentation
-** file.
-**
-** SUMMARY:
-**
-** Formatting is important to scripts that scan this file.
-** Do not deviate from the formatting style currently in use.
-**
-*****************************************************************************/
-
-/* Opcode: Goto * P2 *
-**
-** An unconditional jump to address P2.
-** The next instruction executed will be
-** the one at index P2 from the beginning of
-** the program.
-*/
-case OP_Goto: {
- CHECK_FOR_INTERRUPT;
- pc = pOp->p2 - 1;
- break;
-}
-
-/* Opcode: Gosub * P2 *
-**
-** Push the current address plus 1 onto the return address stack
-** and then jump to address P2.
-**
-** The return address stack is of limited depth. If too many
-** OP_Gosub operations occur without intervening OP_Returns, then
-** the return address stack will fill up and processing will abort
-** with a fatal error.
-*/
-case OP_Gosub: {
- if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){
- sqliteSetString(&p->zErrMsg, "return address stack overflow", (char*)0);
- p->rc = STQLITE_INTERNAL;
- return STQLITE_ERROR;
- }
- p->returnStack[p->returnDepth++] = pc+1;
- pc = pOp->p2 - 1;
- break;
-}
-
-/* Opcode: Return * * *
-**
-** Jump immediately to the next instruction after the last unreturned
-** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
-** processing aborts with a fatal error.
-*/
-case OP_Return: {
- if( p->returnDepth<=0 ){
- sqliteSetString(&p->zErrMsg, "return address stack underflow", (char*)0);
- p->rc = STQLITE_INTERNAL;
- return STQLITE_ERROR;
- }
- p->returnDepth--;
- pc = p->returnStack[p->returnDepth] - 1;
- break;
-}
-
-/* Opcode: Halt P1 P2 *
-**
-** Exit immediately. All open cursors, Lists, Sorts, etc are closed
-** automatically.
-**
-** P1 is the result code returned by sqlite_exec(). For a normal
-** halt, this should be STQLITE_OK (0). For errors, it can be some
-** other value. If P1!=0 then P2 will determine whether or not to
-** rollback the current transaction. Do not rollback if P2==OE_Fail.
-** Do the rollback if P2==OE_Rollback. If P2==OE_Abort, then back
-** out all changes that have occurred during this execution of the
-** VDBE, but do not rollback the transaction.
-**
-** There is an implied "Halt 0 0 0" instruction inserted at the very end of
-** every program. So a jump past the last instruction of the program
-** is the same as executing Halt.
-*/
-case OP_Halt: {
- p->magic = VDBE_MAGIC_HALT;
- p->pTos = pTos;
- if( pOp->p1!=STQLITE_OK ){
- p->rc = pOp->p1;
- p->errorAction = pOp->p2;
- if( pOp->p3 ){
- sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
- }
- return STQLITE_ERROR;
- }else{
- p->rc = STQLITE_OK;
- return STQLITE_DONE;
- }
-}
-
-/* Opcode: Integer P1 * P3
-**
-** The integer value P1 is pushed onto the stack. If P3 is not zero
-** then it is assumed to be a string representation of the same integer.
-*/
-case OP_Integer: {
- pTos++;
- pTos->i = pOp->p1;
- pTos->flags = MEM_Int;
- if( pOp->p3 ){
- pTos->z = pOp->p3;
- pTos->flags |= MEM_Str | MEM_Static;
- pTos->n = strlen(pOp->p3)+1;
- }
- break;
-}
-
-/* Opcode: String * * P3
-**
-** The string value P3 is pushed onto the stack. If P3==0 then a
-** NULL is pushed onto the stack.
-*/
-case OP_String: {
- char *z = pOp->p3;
- pTos++;
- if( z==0 ){
- pTos->flags = MEM_Null;
- }else{
- pTos->z = z;
- pTos->n = strlen(z) + 1;
- pTos->flags = MEM_Str | MEM_Static;
- }
- break;
-}
-
-/* Opcode: Variable P1 * *
-**
-** Push the value of variable P1 onto the stack. A variable is
-** an unknown in the original SQL string as handed to sqlite_compile().
-** Any occurance of the '?' character in the original SQL is considered
-** a variable. Variables in the SQL string are number from left to
-** right beginning with 1. The values of variables are set using the
-** sqlite_bind() API.
-*/
-case OP_Variable: {
- int j = pOp->p1 - 1;
- pTos++;
- if( j>=0 && j<p->nVar && p->azVar[j]!=0 ){
- pTos->z = p->azVar[j];
- pTos->n = p->anVar[j];
- pTos->flags = MEM_Str | MEM_Static;
- }else{
- pTos->flags = MEM_Null;
- }
- break;
-}
-
-/* Opcode: Pop P1 * *
-**
-** P1 elements are popped off of the top of stack and discarded.
-*/
-case OP_Pop: {
- assert( pOp->p1>=0 );
- popStack(&pTos, pOp->p1);
- assert( pTos>=&p->aStack[-1] );
- break;
-}
-
-/* Opcode: Dup P1 P2 *
-**
-** A copy of the P1-th element of the stack
-** is made and pushed onto the top of the stack.
-** The top of the stack is element 0. So the
-** instruction "Dup 0 0 0" will make a copy of the
-** top of the stack.
-**
-** If the content of the P1-th element is a dynamically
-** allocated string, then a new copy of that string
-** is made if P2==0. If P2!=0, then just a pointer
-** to the string is copied.
-**
-** Also see the Pull instruction.
-*/
-case OP_Dup: {
- Mem *pFrom = &pTos[-pOp->p1];
- assert( pFrom<=pTos && pFrom>=p->aStack );
- pTos++;
- memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS);
- if( pTos->flags & MEM_Str ){
- if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){
- pTos->flags &= ~MEM_Dyn;
- pTos->flags |= MEM_Ephem;
- }else if( pTos->flags & MEM_Short ){
- memcpy(pTos->zShort, pFrom->zShort, pTos->n);
- pTos->z = pTos->zShort;
- }else if( (pTos->flags & MEM_Static)==0 ){
- pTos->z = sqliteMallocRaw(pFrom->n);
- if( sqlite_malloc_failed ) goto no_mem;
- memcpy(pTos->z, pFrom->z, pFrom->n);
- pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short);
- pTos->flags |= MEM_Dyn;
- }
- }
- break;
-}
-
-/* Opcode: Pull P1 * *
-**
-** The P1-th element is removed from its current location on
-** the stack and pushed back on top of the stack. The
-** top of the stack is element 0, so "Pull 0 0 0" is
-** a no-op. "Pull 1 0 0" swaps the top two elements of
-** the stack.
-**
-** See also the Dup instruction.
-*/
-case OP_Pull: {
- Mem *pFrom = &pTos[-pOp->p1];
- int i;
- Mem ts;
-
- ts = *pFrom;
- Deephemeralize(pTos);
- for(i=0; i<pOp->p1; i++, pFrom++){
- Deephemeralize(&pFrom[1]);
- *pFrom = pFrom[1];
- assert( (pFrom->flags & MEM_Ephem)==0 );
- if( pFrom->flags & MEM_Short ){
- assert( pFrom->flags & MEM_Str );
- assert( pFrom->z==pFrom[1].zShort );
- pFrom->z = pFrom->zShort;
- }
- }
- *pTos = ts;
- if( pTos->flags & MEM_Short ){
- assert( pTos->flags & MEM_Str );
- assert( pTos->z==pTos[-pOp->p1].zShort );
- pTos->z = pTos->zShort;
- }
- break;
-}
-
-/* Opcode: Push P1 * *
-**
-** Overwrite the value of the P1-th element down on the
-** stack (P1==0 is the top of the stack) with the value
-** of the top of the stack. Then pop the top of the stack.
-*/
-case OP_Push: {
- Mem *pTo = &pTos[-pOp->p1];
-
- assert( pTo>=p->aStack );
- Deephemeralize(pTos);
- Release(pTo);
- *pTo = *pTos;
- if( pTo->flags & MEM_Short ){
- assert( pTo->z==pTos->zShort );
- pTo->z = pTo->zShort;
- }
- pTos--;
- break;
-}
-
-
-/* Opcode: ColumnName P1 P2 P3
-**
-** P3 becomes the P1-th column name (first is 0). An array of pointers
-** to all column names is passed as the 4th parameter to the callback.
-** If P2==1 then this is the last column in the result set and thus the
-** number of columns in the result set will be P1. There must be at least
-** one OP_ColumnName with a P2==1 before invoking OP_Callback and the
-** number of columns specified in OP_Callback must one more than the P1
-** value of the OP_ColumnName that has P2==1.
-*/
-case OP_ColumnName: {
- assert( pOp->p1>=0 && pOp->p1<p->nOp );
- p->azColName[pOp->p1] = pOp->p3;
- p->nCallback = 0;
- if( pOp->p2 ) p->nResColumn = pOp->p1+1;
- break;
-}
-
-/* Opcode: Callback P1 * *
-**
-** Pop P1 values off the stack and form them into an array. Then
-** invoke the callback function using the newly formed array as the
-** 3rd parameter.
-*/
-case OP_Callback: {
- int i;
- char **azArgv = p->zArgv;
- Mem *pCol;
-
- pCol = &pTos[1-pOp->p1];
- assert( pCol>=p->aStack );
- for(i=0; i<pOp->p1; i++, pCol++){
- if( pCol->flags & MEM_Null ){
- azArgv[i] = 0;
- }else{
- Stringify(pCol);
- azArgv[i] = pCol->z;
- }
- }
- azArgv[i] = 0;
- p->nCallback++;
- p->azResColumn = azArgv;
- assert( p->nResColumn==pOp->p1 );
- p->popStack = pOp->p1;
- p->pc = pc + 1;
- p->pTos = pTos;
- return STQLITE_ROW;
-}
-
-/* Opcode: Concat P1 P2 P3
-**
-** Look at the first P1 elements of the stack. Append them all
-** together with the lowest element first. Use P3 as a separator.
-** Put the result on the top of the stack. The original P1 elements
-** are popped from the stack if P2==0 and retained if P2==1. If
-** any element of the stack is NULL, then the result is NULL.
-**
-** If P3 is NULL, then use no separator. When P1==1, this routine
-** makes a copy of the top stack element into memory obtained
-** from sqliteMalloc().
-*/
-case OP_Concat: {
- char *zNew;
- int nByte;
- int nField;
- int i, j;
- char *zSep;
- int nSep;
- Mem *pTerm;
-
- nField = pOp->p1;
- zSep = pOp->p3;
- if( zSep==0 ) zSep = "";
- nSep = strlen(zSep);
- assert( &pTos[1-nField] >= p->aStack );
- nByte = 1 - nSep;
- pTerm = &pTos[1-nField];
- for(i=0; i<nField; i++, pTerm++){
- if( pTerm->flags & MEM_Null ){
- nByte = -1;
- break;
- }else{
- Stringify(pTerm);
- nByte += pTerm->n - 1 + nSep;
- }
- }
- if( nByte<0 ){
- if( pOp->p2==0 ){
- popStack(&pTos, nField);
- }
- pTos++;
- pTos->flags = MEM_Null;
- break;
- }
- zNew = sqliteMallocRaw( nByte );
- if( zNew==0 ) goto no_mem;
- j = 0;
- pTerm = &pTos[1-nField];
- for(i=j=0; i<nField; i++, pTerm++){
- assert( pTerm->flags & MEM_Str );
- memcpy(&zNew[j], pTerm->z, pTerm->n-1);
- j += pTerm->n-1;
- if( nSep>0 && i<nField-1 ){
- memcpy(&zNew[j], zSep, nSep);
- j += nSep;
- }
- }
- zNew[j] = 0;
- if( pOp->p2==0 ){
- popStack(&pTos, nField);
- }
- pTos++;
- pTos->n = nByte;
- pTos->flags = MEM_Str|MEM_Dyn;
- pTos->z = zNew;
- break;
-}
-
-/* Opcode: Add * * *
-**
-** Pop the top two elements from the stack, add them together,
-** and push the result back onto the stack. If either element
-** is a string then it is converted to a double using the atof()
-** function before the addition.
-** If either operand is NULL, the result is NULL.
-*/
-/* Opcode: Multiply * * *
-**
-** Pop the top two elements from the stack, multiply them together,
-** and push the result back onto the stack. If either element
-** is a string then it is converted to a double using the atof()
-** function before the multiplication.
-** If either operand is NULL, the result is NULL.
-*/
-/* Opcode: Subtract * * *
-**
-** Pop the top two elements from the stack, subtract the
-** first (what was on top of the stack) from the second (the
-** next on stack)
-** and push the result back onto the stack. If either element
-** is a string then it is converted to a double using the atof()
-** function before the subtraction.
-** If either operand is NULL, the result is NULL.
-*/
-/* Opcode: Divide * * *
-**
-** Pop the top two elements from the stack, divide the
-** first (what was on top of the stack) from the second (the
-** next on stack)
-** and push the result back onto the stack. If either element
-** is a string then it is converted to a double using the atof()
-** function before the division. Division by zero returns NULL.
-** If either operand is NULL, the result is NULL.
-*/
-/* Opcode: Remainder * * *
-**
-** Pop the top two elements from the stack, divide the
-** first (what was on top of the stack) from the second (the
-** next on stack)
-** and push the remainder after division onto the stack. If either element
-** is a string then it is converted to a double using the atof()
-** function before the division. Division by zero returns NULL.
-** If either operand is NULL, the result is NULL.
-*/
-case OP_Add:
-case OP_Subtract:
-case OP_Multiply:
-case OP_Divide:
-case OP_Remainder: {
- Mem *pNos = &pTos[-1];
- assert( pNos>=p->aStack );
- if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){
- Release(pTos);
- pTos--;
- Release(pTos);
- pTos->flags = MEM_Null;
- }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
- int a, b;
- a = pTos->i;
- b = pNos->i;
- switch( pOp->opcode ){
- case OP_Add: b += a; break;
- case OP_Subtract: b -= a; break;
- case OP_Multiply: b *= a; break;
- case OP_Divide: {
- if( a==0 ) goto divide_by_zero;
- b /= a;
- break;
- }
- default: {
- if( a==0 ) goto divide_by_zero;
- b %= a;
- break;
- }
- }
- Release(pTos);
- pTos--;
- Release(pTos);
- pTos->i = b;
- pTos->flags = MEM_Int;
- }else{
- double a, b;
- Realify(pTos);
- Realify(pNos);
- a = pTos->r;
- b = pNos->r;
- switch( pOp->opcode ){
- case OP_Add: b += a; break;
- case OP_Subtract: b -= a; break;
- case OP_Multiply: b *= a; break;
- case OP_Divide: {
- if( a==0.0 ) goto divide_by_zero;
- b /= a;
- break;
- }
- default: {
- int ia = (int)a;
- int ib = (int)b;
- if( ia==0.0 ) goto divide_by_zero;
- b = ib % ia;
- break;
- }
- }
- Release(pTos);
- pTos--;
- Release(pTos);
- pTos->r = b;
- pTos->flags = MEM_Real;
- }
- break;
-
-divide_by_zero:
- Release(pTos);
- pTos--;
- Release(pTos);
- pTos->flags = MEM_Null;
- break;
-}
-
-/* Opcode: Function P1 * P3
-**
-** Invoke a user function (P3 is a pointer to a Function structure that
-** defines the function) with P1 string arguments taken from the stack.
-** Pop all arguments from the stack and push back the result.
-**
-** See also: AggFunc
-*/
-case OP_Function: {
- int n, i;
- Mem *pArg;
- char **azArgv;
- sqlite_func ctx;
-
- n = pOp->p1;
- pArg = &pTos[1-n];
- azArgv = p->zArgv;
- for(i=0; i<n; i++, pArg++){
- if( pArg->flags & MEM_Null ){
- azArgv[i] = 0;
- }else{
- Stringify(pArg);
- azArgv[i] = pArg->z;
- }
- }
- ctx.pFunc = (FuncDef*)pOp->p3;
- ctx.s.flags = MEM_Null;
- ctx.s.z = 0;
- ctx.isError = 0;
- ctx.isStep = 0;
- if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
- (*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv);
- if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
- popStack(&pTos, n);
- pTos++;
- *pTos = ctx.s;
- if( pTos->flags & MEM_Short ){
- pTos->z = pTos->zShort;
- }
- if( ctx.isError ){
- sqliteSetString(&p->zErrMsg,
- (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0);
- rc = STQLITE_ERROR;
- }
- break;
-}
-
-/* Opcode: BitAnd * * *
-**
-** Pop the top two elements from the stack. Convert both elements
-** to integers. Push back onto the stack the bit-wise AND of the
-** two elements.
-** If either operand is NULL, the result is NULL.
-*/
-/* Opcode: BitOr * * *
-**
-** Pop the top two elements from the stack. Convert both elements
-** to integers. Push back onto the stack the bit-wise OR of the
-** two elements.
-** If either operand is NULL, the result is NULL.
-*/
-/* Opcode: ShiftLeft * * *
-**
-** Pop the top two elements from the stack. Convert both elements
-** to integers. Push back onto the stack the top element shifted
-** left by N bits where N is the second element on the stack.
-** If either operand is NULL, the result is NULL.
-*/
-/* Opcode: ShiftRight * * *
-**
-** Pop the top two elements from the stack. Convert both elements
-** to integers. Push back onto the stack the top element shifted
-** right by N bits where N is the second element on the stack.
-** If either operand is NULL, the result is NULL.
-*/
-case OP_BitAnd:
-case OP_BitOr:
-case OP_ShiftLeft:
-case OP_ShiftRight: {
- Mem *pNos = &pTos[-1];
- int a, b;
-
- assert( pNos>=p->aStack );
- if( (pTos->flags | pNos->flags) & MEM_Null ){
- popStack(&pTos, 2);
- pTos++;
- pTos->flags = MEM_Null;
- break;
- }
- Integerify(pTos);
- Integerify(pNos);
- a = pTos->i;
- b = pNos->i;
- switch( pOp->opcode ){
- case OP_BitAnd: a &= b; break;
- case OP_BitOr: a |= b; break;
- case OP_ShiftLeft: a <<= b; break;
- case OP_ShiftRight: a >>= b; break;
- default: /* CANT HAPPEN */ break;
- }
- assert( (pTos->flags & MEM_Dyn)==0 );
- assert( (pNos->flags & MEM_Dyn)==0 );
- pTos--;
- Release(pTos);
- pTos->i = a;
- pTos->flags = MEM_Int;
- break;
-}
-
-/* Opcode: AddImm P1 * *
-**
-** Add the value P1 to whatever is on top of the stack. The result
-** is always an integer.
-**
-** To force the top of the stack to be an integer, just add 0.
-*/
-case OP_AddImm: {
- assert( pTos>=p->aStack );
- Integerify(pTos);
- pTos->i += pOp->p1;
- break;
-}
-
-/* Opcode: ForceInt P1 P2 *
-**
-** Convert the top of the stack into an integer. If the current top of
-** the stack is not numeric (meaning that is is a NULL or a string that
-** does not look like an integer or floating point number) then pop the
-** stack and jump to P2. If the top of the stack is numeric then
-** convert it into the least integer that is greater than or equal to its
-** current value if P1==0, or to the least integer that is strictly
-** greater than its current value if P1==1.
-*/
-case OP_ForceInt: {
- int v;
- assert( pTos>=p->aStack );
- if( (pTos->flags & (MEM_Int|MEM_Real))==0
- && ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){
- Release(pTos);
- pTos--;
- pc = pOp->p2 - 1;
- break;
- }
- if( pTos->flags & MEM_Int ){
- v = pTos->i + (pOp->p1!=0);
- }else{
- Realify(pTos);
- v = (int)pTos->r;
- if( pTos->r>(double)v ) v++;
- if( pOp->p1 && pTos->r==(double)v ) v++;
- }
- Release(pTos);
- pTos->i = v;
- pTos->flags = MEM_Int;
- break;
-}
-
-/* Opcode: MustBeInt P1 P2 *
-**
-** Force the top of the stack to be an integer. If the top of the
-** stack is not an integer and cannot be converted into an integer
-** with out data loss, then jump immediately to P2, or if P2==0
-** raise an STQLITE_MISMATCH exception.
-**
-** If the top of the stack is not an integer and P2 is not zero and
-** P1 is 1, then the stack is popped. In all other cases, the depth
-** of the stack is unchanged.
-*/
-case OP_MustBeInt: {
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Int ){
- /* Do nothing */
- }else if( pTos->flags & MEM_Real ){
- int i = (int)pTos->r;
- double r = (double)i;
- if( r!=pTos->r ){
- goto mismatch;
- }
- pTos->i = i;
- }else if( pTos->flags & MEM_Str ){
- int v;
- if( !toInt(pTos->z, &v) ){
- double r;
- if( !sqliteIsNumber(pTos->z) ){
- goto mismatch;
- }
- Realify(pTos);
- v = (int)pTos->r;
- r = (double)v;
- if( r!=pTos->r ){
- goto mismatch;
- }
- }
- pTos->i = v;
- }else{
- goto mismatch;
- }
- Release(pTos);
- pTos->flags = MEM_Int;
- break;
-
-mismatch:
- if( pOp->p2==0 ){
- rc = STQLITE_MISMATCH;
- goto abort_due_to_error;
- }else{
- if( pOp->p1 ) popStack(&pTos, 1);
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: Eq P1 P2 *
-**
-** Pop the top two elements from the stack. If they are equal, then
-** jump to instruction P2. Otherwise, continue to the next instruction.
-**
-** If either operand is NULL (and thus if the result is unknown) then
-** take the jump if P1 is true.
-**
-** If both values are numeric, they are converted to doubles using atof()
-** and compared for equality that way. Otherwise the strcmp() library
-** routine is used for the comparison. For a pure text comparison
-** use OP_StrEq.
-**
-** If P2 is zero, do not jump. Instead, push an integer 1 onto the
-** stack if the jump would have been taken, or a 0 if not. Push a
-** NULL if either operand was NULL.
-*/
-/* Opcode: Ne P1 P2 *
-**
-** Pop the top two elements from the stack. If they are not equal, then
-** jump to instruction P2. Otherwise, continue to the next instruction.
-**
-** If either operand is NULL (and thus if the result is unknown) then
-** take the jump if P1 is true.
-**
-** If both values are numeric, they are converted to doubles using atof()
-** and compared in that format. Otherwise the strcmp() library
-** routine is used for the comparison. For a pure text comparison
-** use OP_StrNe.
-**
-** If P2 is zero, do not jump. Instead, push an integer 1 onto the
-** stack if the jump would have been taken, or a 0 if not. Push a
-** NULL if either operand was NULL.
-*/
-/* Opcode: Lt P1 P2 *
-**
-** Pop the top two elements from the stack. If second element (the
-** next on stack) is less than the first (the top of stack), then
-** jump to instruction P2. Otherwise, continue to the next instruction.
-** In other words, jump if NOS<TOS.
-**
-** If either operand is NULL (and thus if the result is unknown) then
-** take the jump if P1 is true.
-**
-** If both values are numeric, they are converted to doubles using atof()
-** and compared in that format. Numeric values are always less than
-** non-numeric values. If both operands are non-numeric, the strcmp() library
-** routine is used for the comparison. For a pure text comparison
-** use OP_StrLt.
-**
-** If P2 is zero, do not jump. Instead, push an integer 1 onto the
-** stack if the jump would have been taken, or a 0 if not. Push a
-** NULL if either operand was NULL.
-*/
-/* Opcode: Le P1 P2 *
-**
-** Pop the top two elements from the stack. If second element (the
-** next on stack) is less than or equal to the first (the top of stack),
-** then jump to instruction P2. In other words, jump if NOS<=TOS.
-**
-** If either operand is NULL (and thus if the result is unknown) then
-** take the jump if P1 is true.
-**
-** If both values are numeric, they are converted to doubles using atof()
-** and compared in that format. Numeric values are always less than
-** non-numeric values. If both operands are non-numeric, the strcmp() library
-** routine is used for the comparison. For a pure text comparison
-** use OP_StrLe.
-**
-** If P2 is zero, do not jump. Instead, push an integer 1 onto the
-** stack if the jump would have been taken, or a 0 if not. Push a
-** NULL if either operand was NULL.
-*/
-/* Opcode: Gt P1 P2 *
-**
-** Pop the top two elements from the stack. If second element (the
-** next on stack) is greater than the first (the top of stack),
-** then jump to instruction P2. In other words, jump if NOS>TOS.
-**
-** If either operand is NULL (and thus if the result is unknown) then
-** take the jump if P1 is true.
-**
-** If both values are numeric, they are converted to doubles using atof()
-** and compared in that format. Numeric values are always less than
-** non-numeric values. If both operands are non-numeric, the strcmp() library
-** routine is used for the comparison. For a pure text comparison
-** use OP_StrGt.
-**
-** If P2 is zero, do not jump. Instead, push an integer 1 onto the
-** stack if the jump would have been taken, or a 0 if not. Push a
-** NULL if either operand was NULL.
-*/
-/* Opcode: Ge P1 P2 *
-**
-** Pop the top two elements from the stack. If second element (the next
-** on stack) is greater than or equal to the first (the top of stack),
-** then jump to instruction P2. In other words, jump if NOS>=TOS.
-**
-** If either operand is NULL (and thus if the result is unknown) then
-** take the jump if P1 is true.
-**
-** If both values are numeric, they are converted to doubles using atof()
-** and compared in that format. Numeric values are always less than
-** non-numeric values. If both operands are non-numeric, the strcmp() library
-** routine is used for the comparison. For a pure text comparison
-** use OP_StrGe.
-**
-** If P2 is zero, do not jump. Instead, push an integer 1 onto the
-** stack if the jump would have been taken, or a 0 if not. Push a
-** NULL if either operand was NULL.
-*/
-case OP_Eq:
-case OP_Ne:
-case OP_Lt:
-case OP_Le:
-case OP_Gt:
-case OP_Ge: {
- Mem *pNos = &pTos[-1];
- int c, v;
- int ft, fn;
- assert( pNos>=p->aStack );
- ft = pTos->flags;
- fn = pNos->flags;
- if( (ft | fn) & MEM_Null ){
- popStack(&pTos, 2);
- if( pOp->p2 ){
- if( pOp->p1 ) pc = pOp->p2-1;
- }else{
- pTos++;
- pTos->flags = MEM_Null;
- }
- break;
- }else if( (ft & fn & MEM_Int)==MEM_Int ){
- c = pNos->i - pTos->i;
- }else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){
- c = v - pTos->i;
- }else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){
- c = pNos->i - v;
- }else{
- Stringify(pTos);
- Stringify(pNos);
- c = sqliteCompare(pNos->z, pTos->z);
- }
- switch( pOp->opcode ){
- case OP_Eq: c = c==0; break;
- case OP_Ne: c = c!=0; break;
- case OP_Lt: c = c<0; break;
- case OP_Le: c = c<=0; break;
- case OP_Gt: c = c>0; break;
- default: c = c>=0; break;
- }
- popStack(&pTos, 2);
- if( pOp->p2 ){
- if( c ) pc = pOp->p2-1;
- }else{
- pTos++;
- pTos->i = c;
- pTos->flags = MEM_Int;
- }
- break;
-}
-/* INSERT NO CODE HERE!
-**
-** The opcode numbers are extracted from this source file by doing
-**
-** grep '^case OP_' vdbe.c | ... >opcodes.h
-**
-** The opcodes are numbered in the order that they appear in this file.
-** But in order for the expression generating code to work right, the
-** string comparison operators that follow must be numbered exactly 6
-** greater than the numeric comparison opcodes above. So no other
-** cases can appear between the two.
-*/
-/* Opcode: StrEq P1 P2 *
-**
-** Pop the top two elements from the stack. If they are equal, then
-** jump to instruction P2. Otherwise, continue to the next instruction.
-**
-** If either operand is NULL (and thus if the result is unknown) then
-** take the jump if P1 is true.
-**
-** The strcmp() library routine is used for the comparison. For a
-** numeric comparison, use OP_Eq.
-**
-** If P2 is zero, do not jump. Instead, push an integer 1 onto the
-** stack if the jump would have been taken, or a 0 if not. Push a
-** NULL if either operand was NULL.
-*/
-/* Opcode: StrNe P1 P2 *
-**
-** Pop the top two elements from the stack. If they are not equal, then
-** jump to instruction P2. Otherwise, continue to the next instruction.
-**
-** If either operand is NULL (and thus if the result is unknown) then
-** take the jump if P1 is true.
-**
-** The strcmp() library routine is used for the comparison. For a
-** numeric comparison, use OP_Ne.
-**
-** If P2 is zero, do not jump. Instead, push an integer 1 onto the
-** stack if the jump would have been taken, or a 0 if not. Push a
-** NULL if either operand was NULL.
-*/
-/* Opcode: StrLt P1 P2 *
-**
-** Pop the top two elements from the stack. If second element (the
-** next on stack) is less than the first (the top of stack), then
-** jump to instruction P2. Otherwise, continue to the next instruction.
-** In other words, jump if NOS<TOS.
-**
-** If either operand is NULL (and thus if the result is unknown) then
-** take the jump if P1 is true.
-**
-** The strcmp() library routine is used for the comparison. For a
-** numeric comparison, use OP_Lt.
-**
-** If P2 is zero, do not jump. Instead, push an integer 1 onto the
-** stack if the jump would have been taken, or a 0 if not. Push a
-** NULL if either operand was NULL.
-*/
-/* Opcode: StrLe P1 P2 *
-**
-** Pop the top two elements from the stack. If second element (the
-** next on stack) is less than or equal to the first (the top of stack),
-** then jump to instruction P2. In other words, jump if NOS<=TOS.
-**
-** If either operand is NULL (and thus if the result is unknown) then
-** take the jump if P1 is true.
-**
-** The strcmp() library routine is used for the comparison. For a
-** numeric comparison, use OP_Le.
-**
-** If P2 is zero, do not jump. Instead, push an integer 1 onto the
-** stack if the jump would have been taken, or a 0 if not. Push a
-** NULL if either operand was NULL.
-*/
-/* Opcode: StrGt P1 P2 *
-**
-** Pop the top two elements from the stack. If second element (the
-** next on stack) is greater than the first (the top of stack),
-** then jump to instruction P2. In other words, jump if NOS>TOS.
-**
-** If either operand is NULL (and thus if the result is unknown) then
-** take the jump if P1 is true.
-**
-** The strcmp() library routine is used for the comparison. For a
-** numeric comparison, use OP_Gt.
-**
-** If P2 is zero, do not jump. Instead, push an integer 1 onto the
-** stack if the jump would have been taken, or a 0 if not. Push a
-** NULL if either operand was NULL.
-*/
-/* Opcode: StrGe P1 P2 *
-**
-** Pop the top two elements from the stack. If second element (the next
-** on stack) is greater than or equal to the first (the top of stack),
-** then jump to instruction P2. In other words, jump if NOS>=TOS.
-**
-** If either operand is NULL (and thus if the result is unknown) then
-** take the jump if P1 is true.
-**
-** The strcmp() library routine is used for the comparison. For a
-** numeric comparison, use OP_Ge.
-**
-** If P2 is zero, do not jump. Instead, push an integer 1 onto the
-** stack if the jump would have been taken, or a 0 if not. Push a
-** NULL if either operand was NULL.
-*/
-case OP_StrEq:
-case OP_StrNe:
-case OP_StrLt:
-case OP_StrLe:
-case OP_StrGt:
-case OP_StrGe: {
- Mem *pNos = &pTos[-1];
- int c;
- assert( pNos>=p->aStack );
- if( (pNos->flags | pTos->flags) & MEM_Null ){
- popStack(&pTos, 2);
- if( pOp->p2 ){
- if( pOp->p1 ) pc = pOp->p2-1;
- }else{
- pTos++;
- pTos->flags = MEM_Null;
- }
- break;
- }else{
- Stringify(pTos);
- Stringify(pNos);
- c = strcmp(pNos->z, pTos->z);
- }
- /* The asserts on each case of the following switch are there to verify
- ** that string comparison opcodes are always exactly 6 greater than the
- ** corresponding numeric comparison opcodes. The code generator depends
- ** on this fact.
- */
- switch( pOp->opcode ){
- case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break;
- case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break;
- case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break;
- case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break;
- case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break;
- default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break;
- }
- popStack(&pTos, 2);
- if( pOp->p2 ){
- if( c ) pc = pOp->p2-1;
- }else{
- pTos++;
- pTos->flags = MEM_Int;
- pTos->i = c;
- }
- break;
-}
-
-/* Opcode: And * * *
-**
-** Pop two values off the stack. Take the logical AND of the
-** two values and push the resulting boolean value back onto the
-** stack.
-*/
-/* Opcode: Or * * *
-**
-** Pop two values off the stack. Take the logical OR of the
-** two values and push the resulting boolean value back onto the
-** stack.
-*/
-case OP_And:
-case OP_Or: {
- Mem *pNos = &pTos[-1];
- int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
-
- assert( pNos>=p->aStack );
- if( pTos->flags & MEM_Null ){
- v1 = 2;
- }else{
- Integerify(pTos);
- v1 = pTos->i==0;
- }
- if( pNos->flags & MEM_Null ){
- v2 = 2;
- }else{
- Integerify(pNos);
- v2 = pNos->i==0;
- }
- if( pOp->opcode==OP_And ){
- static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
- v1 = and_logic[v1*3+v2];
- }else{
- static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
- v1 = or_logic[v1*3+v2];
- }
- popStack(&pTos, 2);
- pTos++;
- if( v1==2 ){
- pTos->flags = MEM_Null;
- }else{
- pTos->i = v1==0;
- pTos->flags = MEM_Int;
- }
- break;
-}
-
-/* Opcode: Negative * * *
-**
-** Treat the top of the stack as a numeric quantity. Replace it
-** with its additive inverse. If the top of the stack is NULL
-** its value is unchanged.
-*/
-/* Opcode: AbsValue * * *
-**
-** Treat the top of the stack as a numeric quantity. Replace it
-** with its absolute value. If the top of the stack is NULL
-** its value is unchanged.
-*/
-case OP_Negative:
-case OP_AbsValue: {
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Real ){
- Release(pTos);
- if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
- pTos->r = -pTos->r;
- }
- pTos->flags = MEM_Real;
- }else if( pTos->flags & MEM_Int ){
- Release(pTos);
- if( pOp->opcode==OP_Negative || pTos->i<0 ){
- pTos->i = -pTos->i;
- }
- pTos->flags = MEM_Int;
- }else if( pTos->flags & MEM_Null ){
- /* Do nothing */
- }else{
- Realify(pTos);
- Release(pTos);
- if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
- pTos->r = -pTos->r;
- }
- pTos->flags = MEM_Real;
- }
- break;
-}
-
-/* Opcode: Not * * *
-**
-** Interpret the top of the stack as a boolean value. Replace it
-** with its complement. If the top of the stack is NULL its value
-** is unchanged.
-*/
-case OP_Not: {
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
- Integerify(pTos);
- Release(pTos);
- pTos->i = !pTos->i;
- pTos->flags = MEM_Int;
- break;
-}
-
-/* Opcode: BitNot * * *
-**
-** Interpret the top of the stack as an value. Replace it
-** with its ones-complement. If the top of the stack is NULL its
-** value is unchanged.
-*/
-case OP_BitNot: {
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
- Integerify(pTos);
- Release(pTos);
- pTos->i = ~pTos->i;
- pTos->flags = MEM_Int;
- break;
-}
-
-/* Opcode: Noop * * *
-**
-** Do nothing. This instruction is often useful as a jump
-** destination.
-*/
-case OP_Noop: {
- break;
-}
-
-/* Opcode: If P1 P2 *
-**
-** Pop a single boolean from the stack. If the boolean popped is
-** true, then jump to p2. Otherwise continue to the next instruction.
-** An integer is false if zero and true otherwise. A string is
-** false if it has zero length and true otherwise.
-**
-** If the value popped of the stack is NULL, then take the jump if P1
-** is true and fall through if P1 is false.
-*/
-/* Opcode: IfNot P1 P2 *
-**
-** Pop a single boolean from the stack. If the boolean popped is
-** false, then jump to p2. Otherwise continue to the next instruction.
-** An integer is false if zero and true otherwise. A string is
-** false if it has zero length and true otherwise.
-**
-** If the value popped of the stack is NULL, then take the jump if P1
-** is true and fall through if P1 is false.
-*/
-case OP_If:
-case OP_IfNot: {
- int c;
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Null ){
- c = pOp->p1;
- }else{
- Integerify(pTos);
- c = pTos->i;
- if( pOp->opcode==OP_IfNot ) c = !c;
- }
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos--;
- if( c ) pc = pOp->p2-1;
- break;
-}
-
-/* Opcode: IsNull P1 P2 *
-**
-** If any of the top abs(P1) values on the stack are NULL, then jump
-** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack
-** unchanged.
-*/
-case OP_IsNull: {
- int i, cnt;
- Mem *pTerm;
- cnt = pOp->p1;
- if( cnt<0 ) cnt = -cnt;
- pTerm = &pTos[1-cnt];
- assert( pTerm>=p->aStack );
- for(i=0; i<cnt; i++, pTerm++){
- if( pTerm->flags & MEM_Null ){
- pc = pOp->p2-1;
- break;
- }
- }
- if( pOp->p1>0 ) popStack(&pTos, cnt);
- break;
-}
-
-/* Opcode: NotNull P1 P2 *
-**
-** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the
-** stack if P1 times if P1 is greater than zero. If P1 is less than
-** zero then leave the stack unchanged.
-*/
-case OP_NotNull: {
- int i, cnt;
- cnt = pOp->p1;
- if( cnt<0 ) cnt = -cnt;
- assert( &pTos[1-cnt] >= p->aStack );
- for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
- if( i>=cnt ) pc = pOp->p2-1;
- if( pOp->p1>0 ) popStack(&pTos, cnt);
- break;
-}
-
-/* Opcode: MakeRecord P1 P2 *
-**
-** Convert the top P1 entries of the stack into a single entry
-** suitable for use as a data record in a database table. The
-** details of the format are irrelavant as long as the OP_Column
-** opcode can decode the record later. Refer to source code
-** comments for the details of the record format.
-**
-** If P2 is true (non-zero) and one or more of the P1 entries
-** that go into building the record is NULL, then add some extra
-** bytes to the record to make it distinct for other entries created
-** during the same run of the VDBE. The extra bytes added are a
-** counter that is reset with each run of the VDBE, so records
-** created this way will not necessarily be distinct across runs.
-** But they should be distinct for transient tables (created using
-** OP_OpenTemp) which is what they are intended for.
-**
-** (Later:) The P2==1 option was intended to make NULLs distinct
-** for the UNION operator. But I have since discovered that NULLs
-** are indistinct for UNION. So this option is never used.
-*/
-case OP_MakeRecord: {
- char *zNewRecord;
- int nByte;
- int nField;
- int i, j;
- int idxWidth;
- u32 addr;
- Mem *pRec;
- int addUnique = 0; /* True to cause bytes to be added to make the
- ** generated record distinct */
- char zTemp[NBFS]; /* Temp space for small records */
-
- /* Assuming the record contains N fields, the record format looks
- ** like this:
- **
- ** -------------------------------------------------------------------
- ** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) |
- ** -------------------------------------------------------------------
- **
- ** All data fields are converted to strings before being stored and
- ** are stored with their null terminators. NULL entries omit the
- ** null terminator. Thus an empty string uses 1 byte and a NULL uses
- ** zero bytes. Data(0) is taken from the lowest element of the stack
- ** and data(N-1) is the top of the stack.
- **
- ** Each of the idx() entries is either 1, 2, or 3 bytes depending on
- ** how big the total record is. Idx(0) contains the offset to the start
- ** of data(0). Idx(k) contains the offset to the start of data(k).
- ** Idx(N) contains the total number of bytes in the record.
- */
- nField = pOp->p1;
- pRec = &pTos[1-nField];
- assert( pRec>=p->aStack );
- nByte = 0;
- for(i=0; i<nField; i++, pRec++){
- if( pRec->flags & MEM_Null ){
- addUnique = pOp->p2;
- }else{
- Stringify(pRec);
- nByte += pRec->n;
- }
- }
- if( addUnique ) nByte += sizeof(p->uniqueCnt);
- if( nByte + nField + 1 < 256 ){
- idxWidth = 1;
- }else if( nByte + 2*nField + 2 < 65536 ){
- idxWidth = 2;
- }else{
- idxWidth = 3;
- }
- nByte += idxWidth*(nField + 1);
- if( nByte>MAX_BYTES_PER_ROW ){
- rc = STQLITE_TOOBIG;
- goto abort_due_to_error;
- }
- if( nByte<=NBFS ){
- zNewRecord = zTemp;
- }else{
- zNewRecord = sqliteMallocRaw( nByte );
- if( zNewRecord==0 ) goto no_mem;
- }
- j = 0;
- addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt);
- for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
- zNewRecord[j++] = addr & 0xff;
- if( idxWidth>1 ){
- zNewRecord[j++] = (addr>>8)&0xff;
- if( idxWidth>2 ){
- zNewRecord[j++] = (addr>>16)&0xff;
- }
- }
- if( (pRec->flags & MEM_Null)==0 ){
- addr += pRec->n;
- }
- }
- zNewRecord[j++] = addr & 0xff;
- if( idxWidth>1 ){
- zNewRecord[j++] = (addr>>8)&0xff;
- if( idxWidth>2 ){
- zNewRecord[j++] = (addr>>16)&0xff;
- }
- }
- if( addUnique ){
- memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt));
- p->uniqueCnt++;
- j += sizeof(p->uniqueCnt);
- }
- for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
- if( (pRec->flags & MEM_Null)==0 ){
- memcpy(&zNewRecord[j], pRec->z, pRec->n);
- j += pRec->n;
- }
- }
- popStack(&pTos, nField);
- pTos++;
- pTos->n = nByte;
- if( nByte<=NBFS ){
- assert( zNewRecord==zTemp );
- memcpy(pTos->zShort, zTemp, nByte);
- pTos->z = pTos->zShort;
- pTos->flags = MEM_Str | MEM_Short;
- }else{
- assert( zNewRecord!=zTemp );
- pTos->z = zNewRecord;
- pTos->flags = MEM_Str | MEM_Dyn;
- }
- break;
-}
-
-/* Opcode: MakeKey P1 P2 P3
-**
-** Convert the top P1 entries of the stack into a single entry suitable
-** for use as the key in an index. The top P1 records are
-** converted to strings and merged. The null-terminators
-** are retained and used as separators.
-** The lowest entry in the stack is the first field and the top of the
-** stack becomes the last.
-**
-** If P2 is not zero, then the original entries remain on the stack
-** and the new key is pushed on top. If P2 is zero, the original
-** data is popped off the stack first then the new key is pushed
-** back in its place.
-**
-** P3 is a string that is P1 characters long. Each character is either
-** an 'n' or a 't' to indicates if the argument should be intepreted as
-** numeric or text type. The first character of P3 corresponds to the
-** lowest element on the stack. If P3 is NULL then all arguments are
-** assumed to be of the numeric type.
-**
-** The type makes a difference in that text-type fields may not be
-** introduced by 'b' (as described in the next paragraph). The
-** first character of a text-type field must be either 'a' (if it is NULL)
-** or 'c'. Numeric fields will be introduced by 'b' if their content
-** looks like a well-formed number. Otherwise the 'a' or 'c' will be
-** used.
-**
-** The key is a concatenation of fields. Each field is terminated by
-** a single 0x00 character. A NULL field is introduced by an 'a' and
-** is followed immediately by its 0x00 terminator. A numeric field is
-** introduced by a single character 'b' and is followed by a sequence
-** of characters that represent the number such that a comparison of
-** the character string using memcpy() sorts the numbers in numerical
-** order. The character strings for numbers are generated using the
-** sqliteRealToSortable() function. A text field is introduced by a
-** 'c' character and is followed by the exact text of the field. The
-** use of an 'a', 'b', or 'c' character at the beginning of each field
-** guarantees that NULLs sort before numbers and that numbers sort
-** before text. 0x00 characters do not occur except as separators
-** between fields.
-**
-** See also: MakeIdxKey, SortMakeKey
-*/
-/* Opcode: MakeIdxKey P1 P2 P3
-**
-** Convert the top P1 entries of the stack into a single entry suitable
-** for use as the key in an index. In addition, take one additional integer
-** off of the stack, treat that integer as a four-byte record number, and
-** append the four bytes to the key. Thus a total of P1+1 entries are
-** popped from the stack for this instruction and a single entry is pushed
-** back. The first P1 entries that are popped are strings and the last
-** entry (the lowest on the stack) is an integer record number.
-**
-** The converstion of the first P1 string entries occurs just like in
-** MakeKey. Each entry is separated from the others by a null.
-** The entire concatenation is null-terminated. The lowest entry
-** in the stack is the first field and the top of the stack becomes the
-** last.
-**
-** If P2 is not zero and one or more of the P1 entries that go into the
-** generated key is NULL, then jump to P2 after the new key has been
-** pushed on the stack. In other words, jump to P2 if the key is
-** guaranteed to be unique. This jump can be used to skip a subsequent
-** uniqueness test.
-**
-** P3 is a string that is P1 characters long. Each character is either
-** an 'n' or a 't' to indicates if the argument should be numeric or
-** text. The first character corresponds to the lowest element on the
-** stack. If P3 is null then all arguments are assumed to be numeric.
-**
-** See also: MakeKey, SortMakeKey
-*/
-case OP_MakeIdxKey:
-case OP_MakeKey: {
- char *zNewKey;
- int nByte;
- int nField;
- int addRowid;
- int i, j;
- int containsNull = 0;
- Mem *pRec;
- char zTemp[NBFS];
-
- addRowid = pOp->opcode==OP_MakeIdxKey;
- nField = pOp->p1;
- pRec = &pTos[1-nField];
- assert( pRec>=p->aStack );
- nByte = 0;
- for(j=0, i=0; i<nField; i++, j++, pRec++){
- int flags = pRec->flags;
- int len;
- char *z;
- if( flags & MEM_Null ){
- nByte += 2;
- containsNull = 1;
- }else if( pOp->p3 && pOp->p3[j]=='t' ){
- Stringify(pRec);
- pRec->flags &= ~(MEM_Int|MEM_Real);
- nByte += pRec->n+1;
- }else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){
- if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){
- pRec->r = pRec->i;
- }else if( (flags & (MEM_Real|MEM_Int))==0 ){
- pRec->r = sqliteAtoF(pRec->z, 0);
- }
- Release(pRec);
- z = pRec->zShort;
- sqliteRealToSortable(pRec->r, z);
- len = strlen(z);
- pRec->z = 0;
- pRec->flags = MEM_Real;
- pRec->n = len+1;
- nByte += pRec->n+1;
- }else{
- nByte += pRec->n+1;
- }
- }
- if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
- rc = STQLITE_TOOBIG;
- goto abort_due_to_error;
- }
- if( addRowid ) nByte += sizeof(u32);
- if( nByte<=NBFS ){
- zNewKey = zTemp;
- }else{
- zNewKey = sqliteMallocRaw( nByte );
- if( zNewKey==0 ) goto no_mem;
- }
- j = 0;
- pRec = &pTos[1-nField];
- for(i=0; i<nField; i++, pRec++){
- if( pRec->flags & MEM_Null ){
- zNewKey[j++] = 'a';
- zNewKey[j++] = 0;
- }else if( pRec->flags==MEM_Real ){
- zNewKey[j++] = 'b';
- memcpy(&zNewKey[j], pRec->zShort, pRec->n);
- j += pRec->n;
- }else{
- assert( pRec->flags & MEM_Str );
- zNewKey[j++] = 'c';
- memcpy(&zNewKey[j], pRec->z, pRec->n);
- j += pRec->n;
- }
- }
- if( addRowid ){
- u32 iKey;
- pRec = &pTos[-nField];
- assert( pRec>=p->aStack );
- Integerify(pRec);
- iKey = intToKey(pRec->i);
- memcpy(&zNewKey[j], &iKey, sizeof(u32));
- popStack(&pTos, nField+1);
- if( pOp->p2 && containsNull ) pc = pOp->p2 - 1;
- }else{
- if( pOp->p2==0 ) popStack(&pTos, nField);
- }
- pTos++;
- pTos->n = nByte;
- if( nByte<=NBFS ){
- assert( zNewKey==zTemp );
- pTos->z = pTos->zShort;
- memcpy(pTos->zShort, zTemp, nByte);
- pTos->flags = MEM_Str | MEM_Short;
- }else{
- pTos->z = zNewKey;
- pTos->flags = MEM_Str | MEM_Dyn;
- }
- break;
-}
-
-/* Opcode: IncrKey * * *
-**
-** The top of the stack should contain an index key generated by
-** The MakeKey opcode. This routine increases the least significant
-** byte of that key by one. This is used so that the MoveTo opcode
-** will move to the first entry greater than the key rather than to
-** the key itself.
-*/
-case OP_IncrKey: {
- assert( pTos>=p->aStack );
- /* The IncrKey opcode is only applied to keys generated by
- ** MakeKey or MakeIdxKey and the results of those operands
- ** are always dynamic strings or zShort[] strings. So we
- ** are always free to modify the string in place.
- */
- assert( pTos->flags & (MEM_Dyn|MEM_Short) );
- pTos->z[pTos->n-1]++;
- break;
-}
-
-/* Opcode: Checkpoint P1 * *
-**
-** Begin a checkpoint. A checkpoint is the beginning of a operation that
-** is part of a larger transaction but which might need to be rolled back
-** itself without effecting the containing transaction. A checkpoint will
-** be automatically committed or rollback when the VDBE halts.
-**
-** The checkpoint is begun on the database file with index P1. The main
-** database file has an index of 0 and the file used for temporary tables
-** has an index of 1.
-*/
-case OP_Checkpoint: {
- int i = pOp->p1;
- if( i>=0 && i<db->nDb && db->aDb[i].pBt && db->aDb[i].inTrans==1 ){
- rc = sqliteBtreeBeginCkpt(db->aDb[i].pBt);
- if( rc==STQLITE_OK ) db->aDb[i].inTrans = 2;
- }
- break;
-}
-
-/* Opcode: Transaction P1 * *
-**
-** Begin a transaction. The transaction ends when a Commit or Rollback
-** opcode is encountered. Depending on the ON CONFLICT setting, the
-** transaction might also be rolled back if an error is encountered.
-**
-** P1 is the index of the database file on which the transaction is
-** started. Index 0 is the main database file and index 1 is the
-** file used for temporary tables.
-**
-** A write lock is obtained on the database file when a transaction is
-** started. No other process can read or write the file while the
-** transaction is underway. Starting a transaction also creates a
-** rollback journal. A transaction must be started before any changes
-** can be made to the database.
-*/
-case OP_Transaction: {
- int busy = 1;
- int i = pOp->p1;
- assert( i>=0 && i<db->nDb );
- if( db->aDb[i].inTrans ) break;
- while( db->aDb[i].pBt!=0 && busy ){
- rc = sqliteBtreeBeginTrans(db->aDb[i].pBt);
- switch( rc ){
- case STQLITE_BUSY: {
- if( db->xBusyCallback==0 ){
- p->pc = pc;
- p->undoTransOnError = 1;
- p->rc = STQLITE_BUSY;
- p->pTos = pTos;
- return STQLITE_BUSY;
- }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){
- sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
- busy = 0;
- }
- break;
- }
- case STQLITE_READONLY: {
- rc = STQLITE_OK;
- /* Fall thru into the next case */
- }
- case STQLITE_OK: {
- p->inTempTrans = 0;
- busy = 0;
- break;
- }
- default: {
- goto abort_due_to_error;
- }
- }
- }
- db->aDb[i].inTrans = 1;
- p->undoTransOnError = 1;
- break;
-}
-
-/* Opcode: Commit * * *
-**
-** Cause all modifications to the database that have been made since the
-** last Transaction to actually take effect. No additional modifications
-** are allowed until another transaction is started. The Commit instruction
-** deletes the journal file and releases the write lock on the database.
-** A read lock continues to be held if there are still cursors open.
-*/
-case OP_Commit: {
- int i;
- if( db->xCommitCallback!=0 ){
- if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
- if( db->xCommitCallback(db->pCommitArg)!=0 ){
- rc = STQLITE_CONSTRAINT;
- }
- if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
- }
- for(i=0; rc==STQLITE_OK && i<db->nDb; i++){
- if( db->aDb[i].inTrans ){
- rc = sqliteBtreeCommit(db->aDb[i].pBt);
- db->aDb[i].inTrans = 0;
- }
- }
- if( rc==STQLITE_OK ){
- sqliteCommitInternalChanges(db);
- }else{
- sqliteRollbackAll(db);
- }
- break;
-}
-
-/* Opcode: Rollback P1 * *
-**
-** Cause all modifications to the database that have been made since the
-** last Transaction to be undone. The database is restored to its state
-** before the Transaction opcode was executed. No additional modifications
-** are allowed until another transaction is started.
-**
-** P1 is the index of the database file that is committed. An index of 0
-** is used for the main database and an index of 1 is used for the file used
-** to hold temporary tables.
-**
-** This instruction automatically closes all cursors and releases both
-** the read and write locks on the indicated database.
-*/
-case OP_Rollback: {
- sqliteRollbackAll(db);
- break;
-}
-
-/* Opcode: ReadCookie P1 P2 *
-**
-** Read cookie number P2 from database P1 and push it onto the stack.
-** P2==0 is the schema version. P2==1 is the database format.
-** P2==2 is the recommended pager cache size, and so forth. P1==0 is
-** the main database file and P1==1 is the database file used to store
-** temporary tables.
-**
-** There must be a read-lock on the database (either a transaction
-** must be started or there must be an open cursor) before
-** executing this instruction.
-*/
-case OP_ReadCookie: {
- int aMeta[STQLITE_N_BTREE_META];
- assert( pOp->p2<STQLITE_N_BTREE_META );
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( db->aDb[pOp->p1].pBt!=0 );
- rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
- pTos++;
- pTos->i = aMeta[1+pOp->p2];
- pTos->flags = MEM_Int;
- break;
-}
-
-/* Opcode: SetCookie P1 P2 *
-**
-** Write the top of the stack into cookie number P2 of database P1.
-** P2==0 is the schema version. P2==1 is the database format.
-** P2==2 is the recommended pager cache size, and so forth. P1==0 is
-** the main database file and P1==1 is the database file used to store
-** temporary tables.
-**
-** A transaction must be started before executing this opcode.
-*/
-case OP_SetCookie: {
- int aMeta[STQLITE_N_BTREE_META];
- assert( pOp->p2<STQLITE_N_BTREE_META );
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( db->aDb[pOp->p1].pBt!=0 );
- assert( pTos>=p->aStack );
- Integerify(pTos)
- rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
- if( rc==STQLITE_OK ){
- aMeta[1+pOp->p2] = pTos->i;
- rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta);
- }
- Release(pTos);
- pTos--;
- break;
-}
-
-/* Opcode: VerifyCookie P1 P2 *
-**
-** Check the value of global database parameter number 0 (the
-** schema version) and make sure it is equal to P2.
-** P1 is the database number which is 0 for the main database file
-** and 1 for the file holding temporary tables and some higher number
-** for auxiliary databases.
-**
-** The cookie changes its value whenever the database schema changes.
-** This operation is used to detect when that the cookie has changed
-** and that the current process needs to reread the schema.
-**
-** Either a transaction needs to have been started or an OP_Open needs
-** to be executed (to establish a read lock) before this opcode is
-** invoked.
-*/
-case OP_VerifyCookie: {
- int aMeta[STQLITE_N_BTREE_META];
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
- if( rc==STQLITE_OK && aMeta[1]!=pOp->p2 ){
- sqliteSetString(&p->zErrMsg, "database schema has changed", (char*)0);
- rc = STQLITE_SCHEMA;
- }
- break;
-}
-
-/* Opcode: OpenRead P1 P2 P3
-**
-** Open a read-only cursor for the database table whose root page is
-** P2 in a database file. The database file is determined by an
-** integer from the top of the stack. 0 means the main database and
-** 1 means the database used for temporary tables. Give the new
-** cursor an identifier of P1. The P1 values need not be contiguous
-** but all P1 values should be small integers. It is an error for
-** P1 to be negative.
-**
-** If P2==0 then take the root page number from the next of the stack.
-**
-** There will be a read lock on the database whenever there is an
-** open cursor. If the database was unlocked prior to this instruction
-** then a read lock is acquired as part of this instruction. A read
-** lock allows other processes to read the database but prohibits
-** any other process from modifying the database. The read lock is
-** released when all cursors are closed. If this instruction attempts
-** to get a read lock but fails, the script terminates with an
-** STQLITE_BUSY error code.
-**
-** The P3 value is the name of the table or index being opened.
-** The P3 value is not actually used by this opcode and may be
-** omitted. But the code generator usually inserts the index or
-** table name into P3 to make the code easier to read.
-**
-** See also OpenWrite.
-*/
-/* Opcode: OpenWrite P1 P2 P3
-**
-** Open a read/write cursor named P1 on the table or index whose root
-** page is P2. If P2==0 then take the root page number from the stack.
-**
-** The P3 value is the name of the table or index being opened.
-** The P3 value is not actually used by this opcode and may be
-** omitted. But the code generator usually inserts the index or
-** table name into P3 to make the code easier to read.
-**
-** This instruction works just like OpenRead except that it opens the cursor
-** in read/write mode. For a given table, there can be one or more read-only
-** cursors or a single read/write cursor but not both.
-**
-** See also OpenRead.
-*/
-case OP_OpenRead:
-case OP_OpenWrite: {
- int busy = 0;
- int i = pOp->p1;
- int p2 = pOp->p2;
- int wrFlag;
- Btree *pX;
- int iDb;
-
- assert( pTos>=p->aStack );
- Integerify(pTos);
- iDb = pTos->i;
- pTos--;
- assert( iDb>=0 && iDb<db->nDb );
- pX = db->aDb[iDb].pBt;
- assert( pX!=0 );
- wrFlag = pOp->opcode==OP_OpenWrite;
- if( p2<=0 ){
- assert( pTos>=p->aStack );
- Integerify(pTos);
- p2 = pTos->i;
- pTos--;
- if( p2<2 ){
- sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0);
- rc = STQLITE_INTERNAL;
- break;
- }
- }
- assert( i>=0 );
- if( expandCursorArraySize(p, i) ) goto no_mem;
- sqliteVdbeCleanupCursor(&p->aCsr[i]);
- memset(&p->aCsr[i], 0, sizeof(Cursor));
- p->aCsr[i].nullRow = 1;
- if( pX==0 ) break;
- do{
- rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor);
- switch( rc ){
- case STQLITE_BUSY: {
- if( db->xBusyCallback==0 ){
- p->pc = pc;
- p->rc = STQLITE_BUSY;
- p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
- return STQLITE_BUSY;
- }else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){
- sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
- busy = 0;
- }
- break;
- }
- case STQLITE_OK: {
- busy = 0;
- break;
- }
- default: {
- goto abort_due_to_error;
- }
- }
- }while( busy );
- break;
-}
-
-/* Opcode: OpenTemp P1 P2 *
-**
-** Open a new cursor to a transient table.
-** The transient cursor is always opened read/write even if
-** the main database is read-only. The transient table is deleted
-** automatically when the cursor is closed.
-**
-** The cursor points to a BTree table if P2==0 and to a BTree index
-** if P2==1. A BTree table must have an integer key and can have arbitrary
-** data. A BTree index has no data but can have an arbitrary key.
-**
-** This opcode is used for tables that exist for the duration of a single
-** SQL statement only. Tables created using CREATE TEMPORARY TABLE
-** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the
-** context of this opcode means for the duration of a single SQL statement
-** whereas "Temporary" in the context of CREATE TABLE means for the duration
-** of the connection to the database. Same word; different meanings.
-*/
-case OP_OpenTemp: {
- int i = pOp->p1;
- Cursor *pCx;
- assert( i>=0 );
- if( expandCursorArraySize(p, i) ) goto no_mem;
- pCx = &p->aCsr[i];
- sqliteVdbeCleanupCursor(pCx);
- memset(pCx, 0, sizeof(*pCx));
- pCx->nullRow = 1;
- rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);
-
- if( rc==STQLITE_OK ){
- rc = sqliteBtreeBeginTrans(pCx->pBt);
- }
- if( rc==STQLITE_OK ){
- if( pOp->p2 ){
- int pgno;
- rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno);
- if( rc==STQLITE_OK ){
- rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor);
- }
- }else{
- rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor);
- }
- }
- break;
-}
-
-/* Opcode: OpenPseudo P1 * *
-**
-** Open a new cursor that points to a fake table that contains a single
-** row of data. Any attempt to write a second row of data causes the
-** first row to be deleted. All data is deleted when the cursor is
-** closed.
-**
-** A pseudo-table created by this opcode is useful for holding the
-** NEW or OLD tables in a trigger.
-*/
-case OP_OpenPseudo: {
- int i = pOp->p1;
- Cursor *pCx;
- assert( i>=0 );
- if( expandCursorArraySize(p, i) ) goto no_mem;
- pCx = &p->aCsr[i];
- sqliteVdbeCleanupCursor(pCx);
- memset(pCx, 0, sizeof(*pCx));
- pCx->nullRow = 1;
- pCx->pseudoTable = 1;
- break;
-}
-
-/* Opcode: Close P1 * *
-**
-** Close a cursor previously opened as P1. If P1 is not
-** currently open, this instruction is a no-op.
-*/
-case OP_Close: {
- int i = pOp->p1;
- if( i>=0 && i<p->nCursor ){
- sqliteVdbeCleanupCursor(&p->aCsr[i]);
- }
- break;
-}
-
-/* Opcode: MoveTo P1 P2 *
-**
-** Pop the top of the stack and use its value as a key. Reposition
-** cursor P1 so that it points to an entry with a matching key. If
-** the table contains no record with a matching key, then the cursor
-** is left pointing at the first record that is greater than the key.
-** If there are no records greater than the key and P2 is not zero,
-** then an immediate jump to P2 is made.
-**
-** See also: Found, NotFound, Distinct, MoveLt
-*/
-/* Opcode: MoveLt P1 P2 *
-**
-** Pop the top of the stack and use its value as a key. Reposition
-** cursor P1 so that it points to the entry with the largest key that is
-** less than the key popped from the stack.
-** If there are no records less than than the key and P2
-** is not zero then an immediate jump to P2 is made.
-**
-** See also: MoveTo
-*/
-case OP_MoveLt:
-case OP_MoveTo: {
- int i = pOp->p1;
- Cursor *pC;
-
- assert( pTos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- pC = &p->aCsr[i];
- if( pC->pCursor!=0 ){
- int res, oc;
- pC->nullRow = 0;
- if( pTos->flags & MEM_Int ){
- int iKey = intToKey(pTos->i);
- if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){
- pC->movetoTarget = iKey;
- pC->deferredMoveto = 1;
- Release(pTos);
- pTos--;
- break;
- }
- sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res);
- pC->lastRecno = pTos->i;
- pC->recnoIsValid = res==0;
- }else{
- Stringify(pTos);
- sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
- pC->recnoIsValid = 0;
- }
- pC->deferredMoveto = 0;
- sqlite_search_count++;
- oc = pOp->opcode;
- if( oc==OP_MoveTo && res<0 ){
- sqliteBtreeNext(pC->pCursor, &res);
- pC->recnoIsValid = 0;
- if( res && pOp->p2>0 ){
- pc = pOp->p2 - 1;
- }
- }else if( oc==OP_MoveLt ){
- if( res>=0 ){
- sqliteBtreePrevious(pC->pCursor, &res);
- pC->recnoIsValid = 0;
- }else{
- /* res might be negative because the table is empty. Check to
- ** see if this is the case.
- */
- int keysize;
- res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0;
- }
- if( res && pOp->p2>0 ){
- pc = pOp->p2 - 1;
- }
- }
- }
- Release(pTos);
- pTos--;
- break;
-}
-
-/* Opcode: Distinct P1 P2 *
-**
-** Use the top of the stack as a string key. If a record with that key does
-** not exist in the table of cursor P1, then jump to P2. If the record
-** does already exist, then fall thru. The cursor is left pointing
-** at the record if it exists. The key is not popped from the stack.
-**
-** This operation is similar to NotFound except that this operation
-** does not pop the key from the stack.
-**
-** See also: Found, NotFound, MoveTo, IsUnique, NotExists
-*/
-/* Opcode: Found P1 P2 *
-**
-** Use the top of the stack as a string key. If a record with that key
-** does exist in table of P1, then jump to P2. If the record
-** does not exist, then fall thru. The cursor is left pointing
-** to the record if it exists. The key is popped from the stack.
-**
-** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
-*/
-/* Opcode: NotFound P1 P2 *
-**
-** Use the top of the stack as a string key. If a record with that key
-** does not exist in table of P1, then jump to P2. If the record
-** does exist, then fall thru. The cursor is left pointing to the
-** record if it exists. The key is popped from the stack.
-**
-** The difference between this operation and Distinct is that
-** Distinct does not pop the key from the stack.
-**
-** See also: Distinct, Found, MoveTo, NotExists, IsUnique
-*/
-case OP_Distinct:
-case OP_NotFound:
-case OP_Found: {
- int i = pOp->p1;
- int alreadyExists = 0;
- Cursor *pC;
- assert( pTos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- if( (pC = &p->aCsr[i])->pCursor!=0 ){
- int res, rx;
- Stringify(pTos);
- rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
- alreadyExists = rx==STQLITE_OK && res==0;
- pC->deferredMoveto = 0;
- }
- if( pOp->opcode==OP_Found ){
- if( alreadyExists ) pc = pOp->p2 - 1;
- }else{
- if( !alreadyExists ) pc = pOp->p2 - 1;
- }
- if( pOp->opcode!=OP_Distinct ){
- Release(pTos);
- pTos--;
- }
- break;
-}
-
-/* Opcode: IsUnique P1 P2 *
-**
-** The top of the stack is an integer record number. Call this
-** record number R. The next on the stack is an index key created
-** using MakeIdxKey. Call it K. This instruction pops R from the
-** stack but it leaves K unchanged.
-**
-** P1 is an index. So all but the last four bytes of K are an
-** index string. The last four bytes of K are a record number.
-**
-** This instruction asks if there is an entry in P1 where the
-** index string matches K but the record number is different
-** from R. If there is no such entry, then there is an immediate
-** jump to P2. If any entry does exist where the index string
-** matches K but the record number is not R, then the record
-** number for that entry is pushed onto the stack and control
-** falls through to the next instruction.
-**
-** See also: Distinct, NotFound, NotExists, Found
-*/
-case OP_IsUnique: {
- int i = pOp->p1;
- Mem *pNos = &pTos[-1];
- BtCursor *pCrsr;
- int R;
-
- /* Pop the value R off the top of the stack
- */
- assert( pNos>=p->aStack );
- Integerify(pTos);
- R = pTos->i;
- pTos--;
- assert( i>=0 && i<=p->nCursor );
- if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
- int res, rc;
- int v; /* The record number on the P1 entry that matches K */
- char *zKey; /* The value of K */
- int nKey; /* Number of bytes in K */
-
- /* Make sure K is a string and make zKey point to K
- */
- Stringify(pNos);
- zKey = pNos->z;
- nKey = pNos->n;
- assert( nKey >= 4 );
-
- /* Search for an entry in P1 where all but the last four bytes match K.
- ** If there is no such entry, jump immediately to P2.
- */
- assert( p->aCsr[i].deferredMoveto==0 );
- rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
- if( rc!=STQLITE_OK ) goto abort_due_to_error;
- if( res<0 ){
- rc = sqliteBtreeNext(pCrsr, &res);
- if( res ){
- pc = pOp->p2 - 1;
- break;
- }
- }
- rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res);
- if( rc!=STQLITE_OK ) goto abort_due_to_error;
- if( res>0 ){
- pc = pOp->p2 - 1;
- break;
- }
-
- /* At this point, pCrsr is pointing to an entry in P1 where all but
- ** the last for bytes of the key match K. Check to see if the last
- ** four bytes of the key are different from R. If the last four
- ** bytes equal R then jump immediately to P2.
- */
- sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v);
- v = keyToInt(v);
- if( v==R ){
- pc = pOp->p2 - 1;
- break;
- }
-
- /* The last four bytes of the key are different from R. Convert the
- ** last four bytes of the key into an integer and push it onto the
- ** stack. (These bytes are the record number of an entry that
- ** violates a UNITQUE constraint.)
- */
- pTos++;
- pTos->i = v;
- pTos->flags = MEM_Int;
- }
- break;
-}
-
-/* Opcode: NotExists P1 P2 *
-**
-** Use the top of the stack as a integer key. If a record with that key
-** does not exist in table of P1, then jump to P2. If the record
-** does exist, then fall thru. The cursor is left pointing to the
-** record if it exists. The integer key is popped from the stack.
-**
-** The difference between this operation and NotFound is that this
-** operation assumes the key is an integer and NotFound assumes it
-** is a string.
-**
-** See also: Distinct, Found, MoveTo, NotFound, IsUnique
-*/
-case OP_NotExists: {
- int i = pOp->p1;
- BtCursor *pCrsr;
- assert( pTos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
- int res, rx, iKey;
- assert( pTos->flags & MEM_Int );
- iKey = intToKey(pTos->i);
- rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res);
- p->aCsr[i].lastRecno = pTos->i;
- p->aCsr[i].recnoIsValid = res==0;
- p->aCsr[i].nullRow = 0;
- if( rx!=STQLITE_OK || res!=0 ){
- pc = pOp->p2 - 1;
- p->aCsr[i].recnoIsValid = 0;
- }
- }
- Release(pTos);
- pTos--;
- break;
-}
-
-/* Opcode: NewRecno P1 * *
-**
-** Get a new integer record number used as the key to a table.
-** The record number is not previously used as a key in the database
-** table that cursor P1 points to. The new record number is pushed
-** onto the stack.
-*/
-case OP_NewRecno: {
- int i = pOp->p1;
- int v = 0;
- Cursor *pC;
- assert( i>=0 && i<p->nCursor );
- if( (pC = &p->aCsr[i])->pCursor==0 ){
- v = 0;
- }else{
- /* The next rowid or record number (different terms for the same
- ** thing) is obtained in a two-step algorithm.
- **
- ** First we attempt to find the largest existing rowid and add one
- ** to that. But if the largest existing rowid is already the maximum
- ** positive integer, we have to fall through to the second
- ** probabilistic algorithm
- **
- ** The second algorithm is to select a rowid at random and see if
- ** it already exists in the table. If it does not exist, we have
- ** succeeded. If the random rowid does exist, we select a new one
- ** and try again, up to 1000 times.
- **
- ** For a table with less than 2 billion entries, the probability
- ** of not finding a unused rowid is about 1.0e-300. This is a
- ** non-zero probability, but it is still vanishingly small and should
- ** never cause a problem. You are much, much more likely to have a
- ** hardware failure than for this algorithm to fail.
- **
- ** The analysis in the previous paragraph assumes that you have a good
- ** source of random numbers. Is a library function like lrand48()
- ** good enough? Maybe. Maybe not. It's hard to know whether there
- ** might be subtle bugs is some implementations of lrand48() that
- ** could cause problems. To avoid uncertainty, STQLite uses its own
- ** random number generator based on the RC4 algorithm.
- **
- ** To promote locality of reference for repetitive inserts, the
- ** first few attempts at chosing a random rowid pick values just a little
- ** larger than the previous rowid. This has been shown experimentally
- ** to double the speed of the COPY operation.
- */
- int res, rx, cnt, x;
- cnt = 0;
- if( !pC->useRandomRowid ){
- if( pC->nextRowidValid ){
- v = pC->nextRowid;
- }else{
- rx = sqliteBtreeLast(pC->pCursor, &res);
- if( res ){
- v = 1;
- }else{
- sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v);
- v = keyToInt(v);
- if( v==0x7fffffff ){
- pC->useRandomRowid = 1;
- }else{
- v++;
- }
- }
- }
- if( v<0x7fffffff ){
- pC->nextRowidValid = 1;
- pC->nextRowid = v+1;
- }else{
- pC->nextRowidValid = 0;
- }
- }
- if( pC->useRandomRowid ){
- v = db->priorNewRowid;
- cnt = 0;
- do{
- if( v==0 || cnt>2 ){
- sqliteRandomness(sizeof(v), &v);
- if( cnt<5 ) v &= 0xffffff;
- }else{
- unsigned char r;
- sqliteRandomness(1, &r);
- v += r + 1;
- }
- if( v==0 ) continue;
- x = intToKey(v);
- rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res);
- cnt++;
- }while( cnt<1000 && rx==STQLITE_OK && res==0 );
- db->priorNewRowid = v;
- if( rx==STQLITE_OK && res==0 ){
- rc = STQLITE_FULL;
- goto abort_due_to_error;
- }
- }
- pC->recnoIsValid = 0;
- pC->deferredMoveto = 0;
- }
- pTos++;
- pTos->i = v;
- pTos->flags = MEM_Int;
- break;
-}
-
-/* Opcode: PutIntKey P1 P2 *
-**
-** Write an entry into the table of cursor P1. A new entry is
-** created if it doesn't already exist or the data for an existing
-** entry is overwritten. The data is the value on the top of the
-** stack. The key is the next value down on the stack. The key must
-** be an integer. The stack is popped twice by this instruction.
-**
-** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
-** incremented (otherwise not). If the OPFLAG_CSCHANGE flag is set,
-** then the current statement change count is incremented (otherwise not).
-** If the OPFLAG_LASTROWID flag of P2 is set, then rowid is
-** stored for subsequent return by the sqlite_last_insert_rowid() function
-** (otherwise it's unmodified).
-*/
-/* Opcode: PutStrKey P1 * *
-**
-** Write an entry into the table of cursor P1. A new entry is
-** created if it doesn't already exist or the data for an existing
-** entry is overwritten. The data is the value on the top of the
-** stack. The key is the next value down on the stack. The key must
-** be a string. The stack is popped twice by this instruction.
-**
-** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
-*/
-case OP_PutIntKey:
-case OP_PutStrKey: {
- Mem *pNos = &pTos[-1];
- int i = pOp->p1;
- Cursor *pC;
- assert( pNos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){
- char *zKey;
- int nKey, iKey;
- if( pOp->opcode==OP_PutStrKey ){
- Stringify(pNos);
- nKey = pNos->n;
- zKey = pNos->z;
- }else{
- assert( pNos->flags & MEM_Int );
- nKey = sizeof(int);
- iKey = intToKey(pNos->i);
- zKey = (char*)&iKey;
- if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
- if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i;
- if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
- if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){
- pC->nextRowidValid = 0;
- }
- }
- if( pTos->flags & MEM_Null ){
- pTos->z = 0;
- pTos->n = 0;
- }else{
- assert( pTos->flags & MEM_Str );
- }
- if( pC->pseudoTable ){
- /* PutStrKey does not work for pseudo-tables.
- ** The following assert makes sure we are not trying to use
- ** PutStrKey on a pseudo-table
- */
- assert( pOp->opcode==OP_PutIntKey );
- sqliteFree(pC->pData);
- pC->iKey = iKey;
- pC->nData = pTos->n;
- if( pTos->flags & MEM_Dyn ){
- pC->pData = pTos->z;
- pTos->flags = MEM_Null;
- }else{
- pC->pData = sqliteMallocRaw( pC->nData );
- if( pC->pData ){
- memcpy(pC->pData, pTos->z, pC->nData);
- }
- }
- pC->nullRow = 0;
- }else{
- rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n);
- }
- pC->recnoIsValid = 0;
- pC->deferredMoveto = 0;
- }
- popStack(&pTos, 2);
- break;
-}
-
-/* Opcode: Delete P1 P2 *
-**
-** Delete the record at which the P1 cursor is currently pointing.
-**
-** The cursor will be left pointing at either the next or the previous
-** record in the table. If it is left pointing at the next record, then
-** the next Next instruction will be a no-op. Hence it is OK to delete
-** a record from within an Next loop.
-**
-** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
-** incremented (otherwise not). If OPFLAG_CSCHANGE flag is set,
-** then the current statement change count is incremented (otherwise not).
-**
-** If P1 is a pseudo-table, then this instruction is a no-op.
-*/
-case OP_Delete: {
- int i = pOp->p1;
- Cursor *pC;
- assert( i>=0 && i<p->nCursor );
- pC = &p->aCsr[i];
- if( pC->pCursor!=0 ){
- sqliteVdbeCursorMoveto(pC);
- rc = sqliteBtreeDelete(pC->pCursor);
- pC->nextRowidValid = 0;
- }
- if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
- if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
- break;
-}
-
-/* Opcode: SetCounts * * *
-**
-** Called at end of statement. Updates lsChange (last statement change count)
-** and resets csChange (current statement change count) to 0.
-*/
-case OP_SetCounts: {
- db->lsChange=db->csChange;
- db->csChange=0;
- break;
-}
-
-/* Opcode: KeyAsData P1 P2 *
-**
-** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
-** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls
-** data off of the key rather than the data. This is used for
-** processing compound selects.
-*/
-case OP_KeyAsData: {
- int i = pOp->p1;
- assert( i>=0 && i<p->nCursor );
- p->aCsr[i].keyAsData = pOp->p2;
- break;
-}
-
-/* Opcode: RowData P1 * *
-**
-** Push onto the stack the complete row data for cursor P1.
-** There is no interpretation of the data. It is just copied
-** onto the stack exactly as it is found in the database file.
-**
-** If the cursor is not pointing to a valid row, a NULL is pushed
-** onto the stack.
-*/
-/* Opcode: RowKey P1 * *
-**
-** Push onto the stack the complete row key for cursor P1.
-** There is no interpretation of the key. It is just copied
-** onto the stack exactly as it is found in the database file.
-**
-** If the cursor is not pointing to a valid row, a NULL is pushed
-** onto the stack.
-*/
-case OP_RowKey:
-case OP_RowData: {
- int i = pOp->p1;
- Cursor *pC;
- int n;
-
- pTos++;
- assert( i>=0 && i<p->nCursor );
- pC = &p->aCsr[i];
- if( pC->nullRow ){
- pTos->flags = MEM_Null;
- }else if( pC->pCursor!=0 ){
- BtCursor *pCrsr = pC->pCursor;
- sqliteVdbeCursorMoveto(pC);
- if( pC->nullRow ){
- pTos->flags = MEM_Null;
- break;
- }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){
- sqliteBtreeKeySize(pCrsr, &n);
- }else{
- sqliteBtreeDataSize(pCrsr, &n);
- }
- pTos->n = n;
- if( n<=NBFS ){
- pTos->flags = MEM_Str | MEM_Short;
- pTos->z = pTos->zShort;
- }else{
- char *z = sqliteMallocRaw( n );
- if( z==0 ) goto no_mem;
- pTos->flags = MEM_Str | MEM_Dyn;
- pTos->z = z;
- }
- if( pC->keyAsData || pOp->opcode==OP_RowKey ){
- sqliteBtreeKey(pCrsr, 0, n, pTos->z);
- }else{
- sqliteBtreeData(pCrsr, 0, n, pTos->z);
- }
- }else if( pC->pseudoTable ){
- pTos->n = pC->nData;
- pTos->z = pC->pData;
- pTos->flags = MEM_Str|MEM_Ephem;
- }else{
- pTos->flags = MEM_Null;
- }
- break;
-}
-
-/* Opcode: Column P1 P2 *
-**
-** Interpret the data that cursor P1 points to as
-** a structure built using the MakeRecord instruction.
-** (See the MakeRecord opcode for additional information about
-** the format of the data.)
-** Push onto the stack the value of the P2-th column contained
-** in the data.
-**
-** If the KeyAsData opcode has previously executed on this cursor,
-** then the field might be extracted from the key rather than the
-** data.
-**
-** If P1 is negative, then the record is stored on the stack rather
-** than in a table. For P1==-1, the top of the stack is used.
-** For P1==-2, the next on the stack is used. And so forth. The
-** value pushed is always just a pointer into the record which is
-** stored further down on the stack. The column value is not copied.
-*/
-case OP_Column: {
- int amt, offset, end, payloadSize;
- int i = pOp->p1;
- int p2 = pOp->p2;
- Cursor *pC;
- char *zRec;
- BtCursor *pCrsr;
- int idxWidth;
- unsigned char aHdr[10];
-
- assert( i<p->nCursor );
- pTos++;
- if( i<0 ){
- assert( &pTos[i]>=p->aStack );
- assert( pTos[i].flags & MEM_Str );
- zRec = pTos[i].z;
- payloadSize = pTos[i].n;
- }else if( (pC = &p->aCsr[i])->pCursor!=0 ){
- sqliteVdbeCursorMoveto(pC);
- zRec = 0;
- pCrsr = pC->pCursor;
- if( pC->nullRow ){
- payloadSize = 0;
- }else if( pC->keyAsData ){
- sqliteBtreeKeySize(pCrsr, &payloadSize);
- }else{
- sqliteBtreeDataSize(pCrsr, &payloadSize);
- }
- }else if( pC->pseudoTable ){
- payloadSize = pC->nData;
- zRec = pC->pData;
- assert( payloadSize==0 || zRec!=0 );
- }else{
- payloadSize = 0;
- }
-
- /* Figure out how many bytes in the column data and where the column
- ** data begins.
- */
- if( payloadSize==0 ){
- pTos->flags = MEM_Null;
- break;
- }else if( payloadSize<256 ){
- idxWidth = 1;
- }else if( payloadSize<65536 ){
- idxWidth = 2;
- }else{
- idxWidth = 3;
- }
-
- /* Figure out where the requested column is stored and how big it is.
- */
- if( payloadSize < idxWidth*(p2+1) ){
- rc = STQLITE_CORRUPT;
- goto abort_due_to_error;
- }
- if( zRec ){
- memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2);
- }else if( pC->keyAsData ){
- sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
- }else{
- sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
- }
- offset = aHdr[0];
- end = aHdr[idxWidth];
- if( idxWidth>1 ){
- offset |= aHdr[1]<<8;
- end |= aHdr[idxWidth+1]<<8;
- if( idxWidth>2 ){
- offset |= aHdr[2]<<16;
- end |= aHdr[idxWidth+2]<<16;
- }
- }
- amt = end - offset;
- if( amt<0 || offset<0 || end>payloadSize ){
- rc = STQLITE_CORRUPT;
- goto abort_due_to_error;
- }
-
- /* amt and offset now hold the offset to the start of data and the
- ** amount of data. Go get the data and put it on the stack.
- */
- pTos->n = amt;
- if( amt==0 ){
- pTos->flags = MEM_Null;
- }else if( zRec ){
- pTos->flags = MEM_Str | MEM_Ephem;
- pTos->z = &zRec[offset];
- }else{
- if( amt<=NBFS ){
- pTos->flags = MEM_Str | MEM_Short;
- pTos->z = pTos->zShort;
- }else{
- char *z = sqliteMallocRaw( amt );
- if( z==0 ) goto no_mem;
- pTos->flags = MEM_Str | MEM_Dyn;
- pTos->z = z;
- }
- if( pC->keyAsData ){
- sqliteBtreeKey(pCrsr, offset, amt, pTos->z);
- }else{
- sqliteBtreeData(pCrsr, offset, amt, pTos->z);
- }
- }
- break;
-}
-
-/* Opcode: Recno P1 * *
-**
-** Push onto the stack an integer which is the first 4 bytes of the
-** the key to the current entry in a sequential scan of the database
-** file P1. The sequential scan should have been started using the
-** Next opcode.
-*/
-case OP_Recno: {
- int i = pOp->p1;
- Cursor *pC;
- int v;
-
- assert( i>=0 && i<p->nCursor );
- pC = &p->aCsr[i];
- sqliteVdbeCursorMoveto(pC);
- pTos++;
- if( pC->recnoIsValid ){
- v = pC->lastRecno;
- }else if( pC->pseudoTable ){
- v = keyToInt(pC->iKey);
- }else if( pC->nullRow || pC->pCursor==0 ){
- pTos->flags = MEM_Null;
- break;
- }else{
- assert( pC->pCursor!=0 );
- sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v);
- v = keyToInt(v);
- }
- pTos->i = v;
- pTos->flags = MEM_Int;
- break;
-}
-
-/* Opcode: FullKey P1 * *
-**
-** Extract the complete key from the record that cursor P1 is currently
-** pointing to and push the key onto the stack as a string.
-**
-** Compare this opcode to Recno. The Recno opcode extracts the first
-** 4 bytes of the key and pushes those bytes onto the stack as an
-** integer. This instruction pushes the entire key as a string.
-**
-** This opcode may not be used on a pseudo-table.
-*/
-case OP_FullKey: {
- int i = pOp->p1;
- BtCursor *pCrsr;
-
- assert( p->aCsr[i].keyAsData );
- assert( !p->aCsr[i].pseudoTable );
- assert( i>=0 && i<p->nCursor );
- pTos++;
- if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
- int amt;
- char *z;
-
- sqliteVdbeCursorMoveto(&p->aCsr[i]);
- sqliteBtreeKeySize(pCrsr, &amt);
- if( amt<=0 ){
- rc = STQLITE_CORRUPT;
- goto abort_due_to_error;
- }
- if( amt>NBFS ){
- z = sqliteMallocRaw( amt );
- if( z==0 ) goto no_mem;
- pTos->flags = MEM_Str | MEM_Dyn;
- }else{
- z = pTos->zShort;
- pTos->flags = MEM_Str | MEM_Short;
- }
- sqliteBtreeKey(pCrsr, 0, amt, z);
- pTos->z = z;
- pTos->n = amt;
- }
- break;
-}
-
-/* Opcode: NullRow P1 * *
-**
-** Move the cursor P1 to a null row. Any OP_Column operations
-** that occur while the cursor is on the null row will always push
-** a NULL onto the stack.
-*/
-case OP_NullRow: {
- int i = pOp->p1;
-
- assert( i>=0 && i<p->nCursor );
- p->aCsr[i].nullRow = 1;
- p->aCsr[i].recnoIsValid = 0;
- break;
-}
-
-/* Opcode: Last P1 P2 *
-**
-** The next use of the Recno or Column or Next instruction for P1
-** will refer to the last entry in the database table or index.
-** If the table or index is empty and P2>0, then jump immediately to P2.
-** If P2 is 0 or if the table or index is not empty, fall through
-** to the following instruction.
-*/
-case OP_Last: {
- int i = pOp->p1;
- Cursor *pC;
- BtCursor *pCrsr;
-
- assert( i>=0 && i<p->nCursor );
- pC = &p->aCsr[i];
- if( (pCrsr = pC->pCursor)!=0 ){
- int res;
- rc = sqliteBtreeLast(pCrsr, &res);
- pC->nullRow = res;
- pC->deferredMoveto = 0;
- if( res && pOp->p2>0 ){
- pc = pOp->p2 - 1;
- }
- }else{
- pC->nullRow = 0;
- }
- break;
-}
-
-/* Opcode: Rewind P1 P2 *
-**
-** The next use of the Recno or Column or Next instruction for P1
-** will refer to the first entry in the database table or index.
-** If the table or index is empty and P2>0, then jump immediately to P2.
-** If P2 is 0 or if the table or index is not empty, fall through
-** to the following instruction.
-*/
-case OP_Rewind: {
- int i = pOp->p1;
- Cursor *pC;
- BtCursor *pCrsr;
-
- assert( i>=0 && i<p->nCursor );
- pC = &p->aCsr[i];
- if( (pCrsr = pC->pCursor)!=0 ){
- int res;
- rc = sqliteBtreeFirst(pCrsr, &res);
- pC->atFirst = res==0;
- pC->nullRow = res;
- pC->deferredMoveto = 0;
- if( res && pOp->p2>0 ){
- pc = pOp->p2 - 1;
- }
- }else{
- pC->nullRow = 0;
- }
- break;
-}
-
-/* Opcode: Next P1 P2 *
-**
-** Advance cursor P1 so that it points to the next key/data pair in its
-** table or index. If there are no more key/value pairs then fall through
-** to the following instruction. But if the cursor advance was successful,
-** jump immediately to P2.
-**
-** See also: Prev
-*/
-/* Opcode: Prev P1 P2 *
-**
-** Back up cursor P1 so that it points to the previous key/data pair in its
-** table or index. If there is no previous key/value pairs then fall through
-** to the following instruction. But if the cursor backup was successful,
-** jump immediately to P2.
-*/
-case OP_Prev:
-case OP_Next: {
- Cursor *pC;
- BtCursor *pCrsr;
-
- CHECK_FOR_INTERRUPT;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = &p->aCsr[pOp->p1];
- if( (pCrsr = pC->pCursor)!=0 ){
- int res;
- if( pC->nullRow ){
- res = 1;
- }else{
- assert( pC->deferredMoveto==0 );
- rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) :
- sqliteBtreePrevious(pCrsr, &res);
- pC->nullRow = res;
- }
- if( res==0 ){
- pc = pOp->p2 - 1;
- sqlite_search_count++;
- }
- }else{
- pC->nullRow = 1;
- }
- pC->recnoIsValid = 0;
- break;
-}
-
-/* Opcode: IdxPut P1 P2 P3
-**
-** The top of the stack holds a SQL index key made using the
-** MakeIdxKey instruction. This opcode writes that key into the
-** index P1. Data for the entry is nil.
-**
-** If P2==1, then the key must be unique. If the key is not unique,
-** the program aborts with a STQLITE_CONSTRAINT error and the database
-** is rolled back. If P3 is not null, then it becomes part of the
-** error message returned with the STQLITE_CONSTRAINT.
-*/
-case OP_IdxPut: {
- int i = pOp->p1;
- BtCursor *pCrsr;
- assert( pTos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- assert( pTos->flags & MEM_Str );
- if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
- int nKey = pTos->n;
- const char *zKey = pTos->z;
- if( pOp->p2 ){
- int res, n;
- assert( nKey >= 4 );
- rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
- if( rc!=STQLITE_OK ) goto abort_due_to_error;
- while( res!=0 ){
- int c;
- sqliteBtreeKeySize(pCrsr, &n);
- if( n==nKey
- && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==STQLITE_OK
- && c==0
- ){
- rc = STQLITE_CONSTRAINT;
- if( pOp->p3 && pOp->p3[0] ){
- sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
- }
- goto abort_due_to_error;
- }
- if( res<0 ){
- sqliteBtreeNext(pCrsr, &res);
- res = +1;
- }else{
- break;
- }
- }
- }
- rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0);
- assert( p->aCsr[i].deferredMoveto==0 );
- }
- Release(pTos);
- pTos--;
- break;
-}
-
-/* Opcode: IdxDelete P1 * *
-**
-** The top of the stack is an index key built using the MakeIdxKey opcode.
-** This opcode removes that entry from the index.
-*/
-case OP_IdxDelete: {
- int i = pOp->p1;
- BtCursor *pCrsr;
- assert( pTos>=p->aStack );
- assert( pTos->flags & MEM_Str );
- assert( i>=0 && i<p->nCursor );
- if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
- int rx, res;
- rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res);
- if( rx==STQLITE_OK && res==0 ){
- rc = sqliteBtreeDelete(pCrsr);
- }
- assert( p->aCsr[i].deferredMoveto==0 );
- }
- Release(pTos);
- pTos--;
- break;
-}
-
-/* Opcode: IdxRecno P1 * *
-**
-** Push onto the stack an integer which is the last 4 bytes of the
-** the key to the current entry in index P1. These 4 bytes should
-** be the record number of the table entry to which this index entry
-** points.
-**
-** See also: Recno, MakeIdxKey.
-*/
-case OP_IdxRecno: {
- int i = pOp->p1;
- BtCursor *pCrsr;
-
- assert( i>=0 && i<p->nCursor );
- pTos++;
- if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
- int v;
- int sz;
- assert( p->aCsr[i].deferredMoveto==0 );
- sqliteBtreeKeySize(pCrsr, &sz);
- if( sz<sizeof(u32) ){
- pTos->flags = MEM_Null;
- }else{
- sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v);
- v = keyToInt(v);
- pTos->i = v;
- pTos->flags = MEM_Int;
- }
- }else{
- pTos->flags = MEM_Null;
- }
- break;
-}
-
-/* Opcode: IdxGT P1 P2 *
-**
-** Compare the top of the stack against the key on the index entry that
-** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
-** index entry. If the index entry is greater than the top of the stack
-** then jump to P2. Otherwise fall through to the next instruction.
-** In either case, the stack is popped once.
-*/
-/* Opcode: IdxGE P1 P2 *
-**
-** Compare the top of the stack against the key on the index entry that
-** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
-** index entry. If the index entry is greater than or equal to
-** the top of the stack
-** then jump to P2. Otherwise fall through to the next instruction.
-** In either case, the stack is popped once.
-*/
-/* Opcode: IdxLT P1 P2 *
-**
-** Compare the top of the stack against the key on the index entry that
-** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
-** index entry. If the index entry is less than the top of the stack
-** then jump to P2. Otherwise fall through to the next instruction.
-** In either case, the stack is popped once.
-*/
-case OP_IdxLT:
-case OP_IdxGT:
-case OP_IdxGE: {
- int i= pOp->p1;
- BtCursor *pCrsr;
-
- assert( i>=0 && i<p->nCursor );
- assert( pTos>=p->aStack );
- if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
- int res, rc;
-
- Stringify(pTos);
- assert( p->aCsr[i].deferredMoveto==0 );
- rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res);
- if( rc!=STQLITE_OK ){
- break;
- }
- if( pOp->opcode==OP_IdxLT ){
- res = -res;
- }else if( pOp->opcode==OP_IdxGE ){
- res++;
- }
- if( res>0 ){
- pc = pOp->p2 - 1 ;
- }
- }
- Release(pTos);
- pTos--;
- break;
-}
-
-/* Opcode: IdxIsNull P1 P2 *
-**
-** The top of the stack contains an index entry such as might be generated
-** by the MakeIdxKey opcode. This routine looks at the first P1 fields of
-** that key. If any of the first P1 fields are NULL, then a jump is made
-** to address P2. Otherwise we fall straight through.
-**
-** The index entry is always popped from the stack.
-*/
-case OP_IdxIsNull: {
- int i = pOp->p1;
- int k, n;
- const char *z;
-
- assert( pTos>=p->aStack );
- assert( pTos->flags & MEM_Str );
- z = pTos->z;
- n = pTos->n;
- for(k=0; k<n && i>0; i--){
- if( z[k]=='a' ){
- pc = pOp->p2-1;
- break;
- }
- while( k<n && z[k] ){ k++; }
- k++;
- }
- Release(pTos);
- pTos--;
- break;
-}
-
-/* Opcode: Destroy P1 P2 *
-**
-** Delete an entire database table or index whose root page in the database
-** file is given by P1.
-**
-** The table being destroyed is in the main database file if P2==0. If
-** P2==1 then the table to be clear is in the auxiliary database file
-** that is used to store tables create using CREATE TEMPORARY TABLE.
-**
-** See also: Clear
-*/
-case OP_Destroy: {
- rc = sqliteBtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1);
- break;
-}
-
-/* Opcode: Clear P1 P2 *
-**
-** Delete all contents of the database table or index whose root page
-** in the database file is given by P1. But, unlike Destroy, do not
-** remove the table or index from the database file.
-**
-** The table being clear is in the main database file if P2==0. If
-** P2==1 then the table to be clear is in the auxiliary database file
-** that is used to store tables create using CREATE TEMPORARY TABLE.
-**
-** See also: Destroy
-*/
-case OP_Clear: {
- rc = sqliteBtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
- break;
-}
-
-/* Opcode: CreateTable * P2 P3
-**
-** Allocate a new table in the main database file if P2==0 or in the
-** auxiliary database file if P2==1. Push the page number
-** for the root page of the new table onto the stack.
-**
-** The root page number is also written to a memory location that P3
-** points to. This is the mechanism is used to write the root page
-** number into the parser's internal data structures that describe the
-** new table.
-**
-** The difference between a table and an index is this: A table must
-** have a 4-byte integer key and can have arbitrary data. An index
-** has an arbitrary key but no data.
-**
-** See also: CreateIndex
-*/
-/* Opcode: CreateIndex * P2 P3
-**
-** Allocate a new index in the main database file if P2==0 or in the
-** auxiliary database file if P2==1. Push the page number of the
-** root page of the new index onto the stack.
-**
-** See documentation on OP_CreateTable for additional information.
-*/
-case OP_CreateIndex:
-case OP_CreateTable: {
- int pgno;
- assert( pOp->p3!=0 && pOp->p3type==P3_POINTER );
- assert( pOp->p2>=0 && pOp->p2<db->nDb );
- assert( db->aDb[pOp->p2].pBt!=0 );
- if( pOp->opcode==OP_CreateTable ){
- rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno);
- }else{
- rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno);
- }
- pTos++;
- if( rc==STQLITE_OK ){
- pTos->i = pgno;
- pTos->flags = MEM_Int;
- *(u32*)pOp->p3 = pgno;
- pOp->p3 = 0;
- }else{
- pTos->flags = MEM_Null;
- }
- break;
-}
-
-/* Opcode: IntegrityCk P1 P2 *
-**
-** Do an analysis of the currently open database. Push onto the
-** stack the text of an error message describing any problems.
-** If there are no errors, push a "ok" onto the stack.
-**
-** P1 is the index of a set that contains the root page numbers
-** for all tables and indices in the main database file. The set
-** is cleared by this opcode. In other words, after this opcode
-** has executed, the set will be empty.
-**
-** If P2 is not zero, the check is done on the auxiliary database
-** file, not the main database file.
-**
-** This opcode is used for testing purposes only.
-*/
-case OP_IntegrityCk: {
- int nRoot;
- int *aRoot;
- int iSet = pOp->p1;
- Set *pSet;
- int j;
- HashElem *i;
- char *z;
-
- assert( iSet>=0 && iSet<p->nSet );
- pTos++;
- pSet = &p->aSet[iSet];
- nRoot = sqliteHashCount(&pSet->hash);
- aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) );
- if( aRoot==0 ) goto no_mem;
- for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){
- toInt((char*)sqliteHashKey(i), &aRoot[j]);
- }
- aRoot[j] = 0;
- sqliteHashClear(&pSet->hash);
- pSet->prev = 0;
- z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
- if( z==0 || z[0]==0 ){
- if( z ) sqliteFree(z);
- pTos->z = "ok";
- pTos->n = 3;
- pTos->flags = MEM_Str | MEM_Static;
- }else{
- pTos->z = z;
- pTos->n = strlen(z) + 1;
- pTos->flags = MEM_Str | MEM_Dyn;
- }
- sqliteFree(aRoot);
- break;
-}
-
-/* Opcode: ListWrite * * *
-**
-** Write the integer on the top of the stack
-** into the temporary storage list.
-*/
-case OP_ListWrite: {
- Keylist *pKeylist;
- assert( pTos>=p->aStack );
- pKeylist = p->pList;
- if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
- pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
- if( pKeylist==0 ) goto no_mem;
- pKeylist->nKey = 1000;
- pKeylist->nRead = 0;
- pKeylist->nUsed = 0;
- pKeylist->pNext = p->pList;
- p->pList = pKeylist;
- }
- Integerify(pTos);
- pKeylist->aKey[pKeylist->nUsed++] = pTos->i;
- Release(pTos);
- pTos--;
- break;
-}
-
-/* Opcode: ListRewind * * *
-**
-** Rewind the temporary buffer back to the beginning.
-*/
-case OP_ListRewind: {
- /* What this opcode codes, really, is reverse the order of the
- ** linked list of Keylist structures so that they are read out
- ** in the same order that they were read in. */
- Keylist *pRev, *pTop;
- pRev = 0;
- while( p->pList ){
- pTop = p->pList;
- p->pList = pTop->pNext;
- pTop->pNext = pRev;
- pRev = pTop;
- }
- p->pList = pRev;
- break;
-}
-
-/* Opcode: ListRead * P2 *
-**
-** Attempt to read an integer from the temporary storage buffer
-** and push it onto the stack. If the storage buffer is empty,
-** push nothing but instead jump to P2.
-*/
-case OP_ListRead: {
- Keylist *pKeylist;
- CHECK_FOR_INTERRUPT;
- pKeylist = p->pList;
- if( pKeylist!=0 ){
- assert( pKeylist->nRead>=0 );
- assert( pKeylist->nRead<pKeylist->nUsed );
- assert( pKeylist->nRead<pKeylist->nKey );
- pTos++;
- pTos->i = pKeylist->aKey[pKeylist->nRead++];
- pTos->flags = MEM_Int;
- if( pKeylist->nRead>=pKeylist->nUsed ){
- p->pList = pKeylist->pNext;
- sqliteFree(pKeylist);
- }
- }else{
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: ListReset * * *
-**
-** Reset the temporary storage buffer so that it holds nothing.
-*/
-case OP_ListReset: {
- if( p->pList ){
- sqliteVdbeKeylistFree(p->pList);
- p->pList = 0;
- }
- break;
-}
-
-/* Opcode: ListPush * * *
-**
-** Save the current Vdbe list such that it can be restored by a ListPop
-** opcode. The list is empty after this is executed.
-*/
-case OP_ListPush: {
- p->keylistStackDepth++;
- assert(p->keylistStackDepth > 0);
- p->keylistStack = sqliteRealloc(p->keylistStack,
- sizeof(Keylist *) * p->keylistStackDepth);
- if( p->keylistStack==0 ) goto no_mem;
- p->keylistStack[p->keylistStackDepth - 1] = p->pList;
- p->pList = 0;
- break;
-}
-
-/* Opcode: ListPop * * *
-**
-** Restore the Vdbe list to the state it was in when ListPush was last
-** executed.
-*/
-case OP_ListPop: {
- assert(p->keylistStackDepth > 0);
- p->keylistStackDepth--;
- sqliteVdbeKeylistFree(p->pList);
- p->pList = p->keylistStack[p->keylistStackDepth];
- p->keylistStack[p->keylistStackDepth] = 0;
- if( p->keylistStackDepth == 0 ){
- sqliteFree(p->keylistStack);
- p->keylistStack = 0;
- }
- break;
-}
-
-/* Opcode: ContextPush * * *
-**
-** Save the current Vdbe context such that it can be restored by a ContextPop
-** opcode. The context stores the last insert row id, the last statement change
-** count, and the current statement change count.
-*/
-case OP_ContextPush: {
- p->contextStackDepth++;
- assert(p->contextStackDepth > 0);
- p->contextStack = sqliteRealloc(p->contextStack,
- sizeof(Context) * p->contextStackDepth);
- if( p->contextStack==0 ) goto no_mem;
- p->contextStack[p->contextStackDepth - 1].lastRowid = p->db->lastRowid;
- p->contextStack[p->contextStackDepth - 1].lsChange = p->db->lsChange;
- p->contextStack[p->contextStackDepth - 1].csChange = p->db->csChange;
- break;
-}
-
-/* Opcode: ContextPop * * *
-**
-** Restore the Vdbe context to the state it was in when contextPush was last
-** executed. The context stores the last insert row id, the last statement
-** change count, and the current statement change count.
-*/
-case OP_ContextPop: {
- assert(p->contextStackDepth > 0);
- p->contextStackDepth--;
- p->db->lastRowid = p->contextStack[p->contextStackDepth].lastRowid;
- p->db->lsChange = p->contextStack[p->contextStackDepth].lsChange;
- p->db->csChange = p->contextStack[p->contextStackDepth].csChange;
- if( p->contextStackDepth == 0 ){
- sqliteFree(p->contextStack);
- p->contextStack = 0;
- }
- break;
-}
-
-/* Opcode: SortPut * * *
-**
-** The TOS is the key and the NOS is the data. Pop both from the stack
-** and put them on the sorter. The key and data should have been
-** made using SortMakeKey and SortMakeRec, respectively.
-*/
-case OP_SortPut: {
- Mem *pNos = &pTos[-1];
- Sorter *pSorter;
- assert( pNos>=p->aStack );
- if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem;
- pSorter = sqliteMallocRaw( sizeof(Sorter) );
- if( pSorter==0 ) goto no_mem;
- pSorter->pNext = p->pSort;
- p->pSort = pSorter;
- assert( pTos->flags & MEM_Dyn );
- pSorter->nKey = pTos->n;
- pSorter->zKey = pTos->z;
- assert( pNos->flags & MEM_Dyn );
- pSorter->nData = pNos->n;
- pSorter->pData = pNos->z;
- pTos -= 2;
- break;
-}
-
-/* Opcode: SortMakeRec P1 * *
-**
-** The top P1 elements are the arguments to a callback. Form these
-** elements into a single data entry that can be stored on a sorter
-** using SortPut and later fed to a callback using SortCallback.
-*/
-case OP_SortMakeRec: {
- char *z;
- char **azArg;
- int nByte;
- int nField;
- int i;
- Mem *pRec;
-
- nField = pOp->p1;
- pRec = &pTos[1-nField];
- assert( pRec>=p->aStack );
- nByte = 0;
- for(i=0; i<nField; i++, pRec++){
- if( (pRec->flags & MEM_Null)==0 ){
- Stringify(pRec);
- nByte += pRec->n;
- }
- }
- nByte += sizeof(char*)*(nField+1);
- azArg = sqliteMallocRaw( nByte );
- if( azArg==0 ) goto no_mem;
- z = (char*)&azArg[nField+1];
- for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
- if( pRec->flags & MEM_Null ){
- azArg[i] = 0;
- }else{
- azArg[i] = z;
- memcpy(z, pRec->z, pRec->n);
- z += pRec->n;
- }
- }
- popStack(&pTos, nField);
- pTos++;
- pTos->n = nByte;
- pTos->z = (char*)azArg;
- pTos->flags = MEM_Str | MEM_Dyn;
- break;
-}
-
-/* Opcode: SortMakeKey * * P3
-**
-** Convert the top few entries of the stack into a sort key. The
-** number of stack entries consumed is the number of characters in
-** the string P3. One character from P3 is prepended to each entry.
-** The first character of P3 is prepended to the element lowest in
-** the stack and the last character of P3 is prepended to the top of
-** the stack. All stack entries are separated by a \000 character
-** in the result. The whole key is terminated by two \000 characters
-** in a row.
-**
-** "N" is substituted in place of the P3 character for NULL values.
-**
-** See also the MakeKey and MakeIdxKey opcodes.
-*/
-case OP_SortMakeKey: {
- char *zNewKey;
- int nByte;
- int nField;
- int i, j, k;
- Mem *pRec;
-
- nField = strlen(pOp->p3);
- pRec = &pTos[1-nField];
- nByte = 1;
- for(i=0; i<nField; i++, pRec++){
- if( pRec->flags & MEM_Null ){
- nByte += 2;
- }else{
- Stringify(pRec);
- nByte += pRec->n+2;
- }
- }
- zNewKey = sqliteMallocRaw( nByte );
- if( zNewKey==0 ) goto no_mem;
- j = 0;
- k = 0;
- for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
- if( pRec->flags & MEM_Null ){
- zNewKey[j++] = 'N';
- zNewKey[j++] = 0;
- k++;
- }else{
- zNewKey[j++] = pOp->p3[k++];
- memcpy(&zNewKey[j], pRec->z, pRec->n-1);
- j += pRec->n-1;
- zNewKey[j++] = 0;
- }
- }
- zNewKey[j] = 0;
- assert( j<nByte );
- popStack(&pTos, nField);
- pTos++;
- pTos->n = nByte;
- pTos->flags = MEM_Str|MEM_Dyn;
- pTos->z = zNewKey;
- break;
-}
-
-/* Opcode: Sort * * *
-**
-** Sort all elements on the sorter. The algorithm is a
-** mergesort.
-*/
-case OP_Sort: {
- int i;
- Sorter *pElem;
- Sorter *apSorter[NSORT];
- for(i=0; i<NSORT; i++){
- apSorter[i] = 0;
- }
- while( p->pSort ){
- pElem = p->pSort;
- p->pSort = pElem->pNext;
- pElem->pNext = 0;
- for(i=0; i<NSORT-1; i++){
- if( apSorter[i]==0 ){
- apSorter[i] = pElem;
- break;
- }else{
- pElem = Merge(apSorter[i], pElem);
- apSorter[i] = 0;
- }
- }
- if( i>=NSORT-1 ){
- apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem);
- }
- }
- pElem = 0;
- for(i=0; i<NSORT; i++){
- pElem = Merge(apSorter[i], pElem);
- }
- p->pSort = pElem;
- break;
-}
-
-/* Opcode: SortNext * P2 *
-**
-** Push the data for the topmost element in the sorter onto the
-** stack, then remove the element from the sorter. If the sorter
-** is empty, push nothing on the stack and instead jump immediately
-** to instruction P2.
-*/
-case OP_SortNext: {
- Sorter *pSorter = p->pSort;
- CHECK_FOR_INTERRUPT;
- if( pSorter!=0 ){
- p->pSort = pSorter->pNext;
- pTos++;
- pTos->z = pSorter->pData;
- pTos->n = pSorter->nData;
- pTos->flags = MEM_Str|MEM_Dyn;
- sqliteFree(pSorter->zKey);
- sqliteFree(pSorter);
- }else{
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: SortCallback P1 * *
-**
-** The top of the stack contains a callback record built using
-** the SortMakeRec operation with the same P1 value as this
-** instruction. Pop this record from the stack and invoke the
-** callback on it.
-*/
-case OP_SortCallback: {
- assert( pTos>=p->aStack );
- assert( pTos->flags & MEM_Str );
- p->nCallback++;
- p->pc = pc+1;
- p->azResColumn = (char**)pTos->z;
- assert( p->nResColumn==pOp->p1 );
- p->popStack = 1;
- p->pTos = pTos;
- return STQLITE_ROW;
-}
-
-/* Opcode: SortReset * * *
-**
-** Remove any elements that remain on the sorter.
-*/
-case OP_SortReset: {
- sqliteVdbeSorterReset(p);
- break;
-}
-
-/* Opcode: FileOpen * * P3
-**
-** Open the file named by P3 for reading using the FileRead opcode.
-** If P3 is "stdin" then open standard input for reading.
-*/
-case OP_FileOpen: {
- assert( pOp->p3!=0 );
- if( p->pFile ){
- if( p->pFile!=stdin ) fclose(p->pFile);
- p->pFile = 0;
- }
- if( sqliteStrICmp(pOp->p3,"stdin")==0 ){
- p->pFile = stdin;
- }else{
- p->pFile = fopen(pOp->p3, "r");
- }
- if( p->pFile==0 ){
- sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, (char*)0);
- rc = STQLITE_ERROR;
- }
- break;
-}
-
-/* Opcode: FileRead P1 P2 P3
-**
-** Read a single line of input from the open file (the file opened using
-** FileOpen). If we reach end-of-file, jump immediately to P2. If
-** we are able to get another line, split the line apart using P3 as
-** a delimiter. There should be P1 fields. If the input line contains
-** more than P1 fields, ignore the excess. If the input line contains
-** fewer than P1 fields, assume the remaining fields contain NULLs.
-**
-** Input ends if a line consists of just "\.". A field containing only
-** "\N" is a null field. The backslash \ character can be used be used
-** to escape newlines or the delimiter.
-*/
-case OP_FileRead: {
- int n, eol, nField, i, c, nDelim;
- char *zDelim, *z;
- CHECK_FOR_INTERRUPT;
- if( p->pFile==0 ) goto fileread_jump;
- nField = pOp->p1;
- if( nField<=0 ) goto fileread_jump;
- if( nField!=p->nField || p->azField==0 ){
- char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1);
- if( azField==0 ){ goto no_mem; }
- p->azField = azField;
- p->nField = nField;
- }
- n = 0;
- eol = 0;
- while( eol==0 ){
- if( p->zLine==0 || n+200>p->nLineAlloc ){
- char *zLine;
- p->nLineAlloc = p->nLineAlloc*2 + 300;
- zLine = sqliteRealloc(p->zLine, p->nLineAlloc);
- if( zLine==0 ){
- p->nLineAlloc = 0;
- sqliteFree(p->zLine);
- p->zLine = 0;
- goto no_mem;
- }
- p->zLine = zLine;
- }
- if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){
- eol = 1;
- p->zLine[n] = 0;
- }else{
- int c;
- while( (c = p->zLine[n])!=0 ){
- if( c=='\\' ){
- if( p->zLine[n+1]==0 ) break;
- n += 2;
- }else if( c=='\n' ){
- p->zLine[n] = 0;
- eol = 1;
- break;
- }else{
- n++;
- }
- }
- }
- }
- if( n==0 ) goto fileread_jump;
- z = p->zLine;
- if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){
- goto fileread_jump;
- }
- zDelim = pOp->p3;
- if( zDelim==0 ) zDelim = "\t";
- c = zDelim[0];
- nDelim = strlen(zDelim);
- p->azField[0] = z;
- for(i=1; *z!=0 && i<=nField; i++){
- int from, to;
- from = to = 0;
- if( z[0]=='\\' && z[1]=='N'
- && (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){
- if( i<=nField ) p->azField[i-1] = 0;
- z += 2 + nDelim;
- if( i<nField ) p->azField[i] = z;
- continue;
- }
- while( z[from] ){
- if( z[from]=='\\' && z[from+1]!=0 ){
- int tx = z[from+1];
- switch( tx ){
- case 'b': tx = '\b'; break;
- case 'f': tx = '\f'; break;
- case 'n': tx = '\n'; break;
- case 'r': tx = '\r'; break;
- case 't': tx = '\t'; break;
- case 'v': tx = '\v'; break;
- default: break;
- }
- z[to++] = tx;
- from += 2;
- continue;
- }
- if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break;
- z[to++] = z[from++];
- }
- if( z[from] ){
- z[to] = 0;
- z += from + nDelim;
- if( i<nField ) p->azField[i] = z;
- }else{
- z[to] = 0;
- z = "";
- }
- }
- while( i<nField ){
- p->azField[i++] = 0;
- }
- break;
-
- /* If we reach end-of-file, or if anything goes wrong, jump here.
- ** This code will cause a jump to P2 */
-fileread_jump:
- pc = pOp->p2 - 1;
- break;
-}
-
-/* Opcode: FileColumn P1 * *
-**
-** Push onto the stack the P1-th column of the most recently read line
-** from the input file.
-*/
-case OP_FileColumn: {
- int i = pOp->p1;
- char *z;
- assert( i>=0 && i<p->nField );
- if( p->azField ){
- z = p->azField[i];
- }else{
- z = 0;
- }
- pTos++;
- if( z ){
- pTos->n = strlen(z) + 1;
- pTos->z = z;
- pTos->flags = MEM_Str | MEM_Ephem;
- }else{
- pTos->flags = MEM_Null;
- }
- break;
-}
-
-/* Opcode: MemStore P1 P2 *
-**
-** Write the top of the stack into memory location P1.
-** P1 should be a small integer since space is allocated
-** for all memory locations between 0 and P1 inclusive.
-**
-** After the data is stored in the memory location, the
-** stack is popped once if P2 is 1. If P2 is zero, then
-** the original data remains on the stack.
-*/
-case OP_MemStore: {
- int i = pOp->p1;
- Mem *pMem;
- assert( pTos>=p->aStack );
- if( i>=p->nMem ){
- int nOld = p->nMem;
- Mem *aMem;
- p->nMem = i + 5;
- aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
- if( aMem==0 ) goto no_mem;
- if( aMem!=p->aMem ){
- int j;
- for(j=0; j<nOld; j++){
- if( aMem[j].flags & MEM_Short ){
- aMem[j].z = aMem[j].zShort;
- }
- }
- }
- p->aMem = aMem;
- if( nOld<p->nMem ){
- memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
- }
- }
- Deephemeralize(pTos);
- pMem = &p->aMem[i];
- Release(pMem);
- *pMem = *pTos;
- if( pMem->flags & MEM_Dyn ){
- if( pOp->p2 ){
- pTos->flags = MEM_Null;
- }else{
- pMem->z = sqliteMallocRaw( pMem->n );
- if( pMem->z==0 ) goto no_mem;
- memcpy(pMem->z, pTos->z, pMem->n);
- }
- }else if( pMem->flags & MEM_Short ){
- pMem->z = pMem->zShort;
- }
- if( pOp->p2 ){
- Release(pTos);
- pTos--;
- }
- break;
-}
-
-/* Opcode: MemLoad P1 * *
-**
-** Push a copy of the value in memory location P1 onto the stack.
-**
-** If the value is a string, then the value pushed is a pointer to
-** the string that is stored in the memory location. If the memory
-** location is subsequently changed (using OP_MemStore) then the
-** value pushed onto the stack will change too.
-*/
-case OP_MemLoad: {
- int i = pOp->p1;
- assert( i>=0 && i<p->nMem );
- pTos++;
- memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);;
- if( pTos->flags & MEM_Str ){
- pTos->flags |= MEM_Ephem;
- pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
- }
- break;
-}
-
-/* Opcode: MemIncr P1 P2 *
-**
-** Increment the integer valued memory cell P1 by 1. If P2 is not zero
-** and the result after the increment is greater than zero, then jump
-** to P2.
-**
-** This instruction throws an error if the memory cell is not initially
-** an integer.
-*/
-case OP_MemIncr: {
- int i = pOp->p1;
- Mem *pMem;
- assert( i>=0 && i<p->nMem );
- pMem = &p->aMem[i];
- assert( pMem->flags==MEM_Int );
- pMem->i++;
- if( pOp->p2>0 && pMem->i>0 ){
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: AggReset * P2 *
-**
-** Reset the aggregator so that it no longer contains any data.
-** Future aggregator elements will contain P2 values each.
-*/
-case OP_AggReset: {
- sqliteVdbeAggReset(&p->agg);
- p->agg.nMem = pOp->p2;
- p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) );
- if( p->agg.apFunc==0 ) goto no_mem;
- break;
-}
-
-/* Opcode: AggInit * P2 P3
-**
-** Initialize the function parameters for an aggregate function.
-** The aggregate will operate out of aggregate column P2.
-** P3 is a pointer to the FuncDef structure for the function.
-*/
-case OP_AggInit: {
- int i = pOp->p2;
- assert( i>=0 && i<p->agg.nMem );
- p->agg.apFunc[i] = (FuncDef*)pOp->p3;
- break;
-}
-
-/* Opcode: AggFunc * P2 P3
-**
-** Execute the step function for an aggregate. The
-** function has P2 arguments. P3 is a pointer to the FuncDef
-** structure that specifies the function.
-**
-** The top of the stack must be an integer which is the index of
-** the aggregate column that corresponds to this aggregate function.
-** Ideally, this index would be another parameter, but there are
-** no free parameters left. The integer is popped from the stack.
-*/
-case OP_AggFunc: {
- int n = pOp->p2;
- int i;
- Mem *pMem, *pRec;
- char **azArgv = p->zArgv;
- sqlite_func ctx;
-
- assert( n>=0 );
- assert( pTos->flags==MEM_Int );
- pRec = &pTos[-n];
- assert( pRec>=p->aStack );
- for(i=0; i<n; i++, pRec++){
- if( pRec->flags & MEM_Null ){
- azArgv[i] = 0;
- }else{
- Stringify(pRec);
- azArgv[i] = pRec->z;
- }
- }
- i = pTos->i;
- assert( i>=0 && i<p->agg.nMem );
- ctx.pFunc = (FuncDef*)pOp->p3;
- pMem = &p->agg.pCurrent->aMem[i];
- ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */
- ctx.pAgg = pMem->z;
- ctx.cnt = ++pMem->i;
- ctx.isError = 0;
- ctx.isStep = 1;
- (ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv);
- pMem->z = ctx.pAgg;
- pMem->flags = MEM_AggCtx;
- popStack(&pTos, n+1);
- if( ctx.isError ){
- rc = STQLITE_ERROR;
- }
- break;
-}
-
-/* Opcode: AggFocus * P2 *
-**
-** Pop the top of the stack and use that as an aggregator key. If
-** an aggregator with that same key already exists, then make the
-** aggregator the current aggregator and jump to P2. If no aggregator
-** with the given key exists, create one and make it current but
-** do not jump.
-**
-** The order of aggregator opcodes is important. The order is:
-** AggReset AggFocus AggNext. In other words, you must execute
-** AggReset first, then zero or more AggFocus operations, then
-** zero or more AggNext operations. You must not execute an AggFocus
-** in between an AggNext and an AggReset.
-*/
-case OP_AggFocus: {
- AggElem *pElem;
- char *zKey;
- int nKey;
-
- assert( pTos>=p->aStack );
- Stringify(pTos);
- zKey = pTos->z;
- nKey = pTos->n;
- pElem = sqliteHashFind(&p->agg.hash, zKey, nKey);
- if( pElem ){
- p->agg.pCurrent = pElem;
- pc = pOp->p2 - 1;
- }else{
- AggInsert(&p->agg, zKey, nKey);
- if( sqlite_malloc_failed ) goto no_mem;
- }
- Release(pTos);
- pTos--;
- break;
-}
-
-/* Opcode: AggSet * P2 *
-**
-** Move the top of the stack into the P2-th field of the current
-** aggregate. String values are duplicated into new memory.
-*/
-case OP_AggSet: {
- AggElem *pFocus = AggInFocus(p->agg);
- Mem *pMem;
- int i = pOp->p2;
- assert( pTos>=p->aStack );
- if( pFocus==0 ) goto no_mem;
- assert( i>=0 && i<p->agg.nMem );
- Deephemeralize(pTos);
- pMem = &pFocus->aMem[i];
- Release(pMem);
- *pMem = *pTos;
- if( pMem->flags & MEM_Dyn ){
- pTos->flags = MEM_Null;
- }else if( pMem->flags & MEM_Short ){
- pMem->z = pMem->zShort;
- }
- Release(pTos);
- pTos--;
- break;
-}
-
-/* Opcode: AggGet * P2 *
-**
-** Push a new entry onto the stack which is a copy of the P2-th field
-** of the current aggregate. Strings are not duplicated so
-** string values will be ephemeral.
-*/
-case OP_AggGet: {
- AggElem *pFocus = AggInFocus(p->agg);
- Mem *pMem;
- int i = pOp->p2;
- if( pFocus==0 ) goto no_mem;
- assert( i>=0 && i<p->agg.nMem );
- pTos++;
- pMem = &pFocus->aMem[i];
- *pTos = *pMem;
- if( pTos->flags & MEM_Str ){
- pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
- pTos->flags |= MEM_Ephem;
- }
- break;
-}
-
-/* Opcode: AggNext * P2 *
-**
-** Make the next aggregate value the current aggregate. The prior
-** aggregate is deleted. If all aggregate values have been consumed,
-** jump to P2.
-**
-** The order of aggregator opcodes is important. The order is:
-** AggReset AggFocus AggNext. In other words, you must execute
-** AggReset first, then zero or more AggFocus operations, then
-** zero or more AggNext operations. You must not execute an AggFocus
-** in between an AggNext and an AggReset.
-*/
-case OP_AggNext: {
- CHECK_FOR_INTERRUPT;
- if( p->agg.pSearch==0 ){
- p->agg.pSearch = sqliteHashFirst(&p->agg.hash);
- }else{
- p->agg.pSearch = sqliteHashNext(p->agg.pSearch);
- }
- if( p->agg.pSearch==0 ){
- pc = pOp->p2 - 1;
- } else {
- int i;
- sqlite_func ctx;
- Mem *aMem;
- p->agg.pCurrent = sqliteHashData(p->agg.pSearch);
- aMem = p->agg.pCurrent->aMem;
- for(i=0; i<p->agg.nMem; i++){
- int freeCtx;
- if( p->agg.apFunc[i]==0 ) continue;
- if( p->agg.apFunc[i]->xFinalize==0 ) continue;
- ctx.s.flags = MEM_Null;
- ctx.s.z = aMem[i].zShort;
- ctx.pAgg = (void*)aMem[i].z;
- freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort;
- ctx.cnt = aMem[i].i;
- ctx.isStep = 0;
- ctx.pFunc = p->agg.apFunc[i];
- (*p->agg.apFunc[i]->xFinalize)(&ctx);
- if( freeCtx ){
- sqliteFree( aMem[i].z );
- }
- aMem[i] = ctx.s;
- if( aMem[i].flags & MEM_Short ){
- aMem[i].z = aMem[i].zShort;
- }
- }
- }
- break;
-}
-
-/* Opcode: SetInsert P1 * P3
-**
-** If Set P1 does not exist then create it. Then insert value
-** P3 into that set. If P3 is NULL, then insert the top of the
-** stack into the set.
-*/
-case OP_SetInsert: {
- int i = pOp->p1;
- if( p->nSet<=i ){
- int k;
- Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) );
- if( aSet==0 ) goto no_mem;
- p->aSet = aSet;
- for(k=p->nSet; k<=i; k++){
- sqliteHashInit(&p->aSet[k].hash, STQLITE_HASH_BINARY, 1);
- }
- p->nSet = i+1;
- }
- if( pOp->p3 ){
- sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p);
- }else{
- assert( pTos>=p->aStack );
- Stringify(pTos);
- sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p);
- Release(pTos);
- pTos--;
- }
- if( sqlite_malloc_failed ) goto no_mem;
- break;
-}
-
-/* Opcode: SetFound P1 P2 *
-**
-** Pop the stack once and compare the value popped off with the
-** contents of set P1. If the element popped exists in set P1,
-** then jump to P2. Otherwise fall through.
-*/
-case OP_SetFound: {
- int i = pOp->p1;
- assert( pTos>=p->aStack );
- Stringify(pTos);
- if( i>=0 && i<p->nSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){
- pc = pOp->p2 - 1;
- }
- Release(pTos);
- pTos--;
- break;
-}
-
-/* Opcode: SetNotFound P1 P2 *
-**
-** Pop the stack once and compare the value popped off with the
-** contents of set P1. If the element popped does not exists in
-** set P1, then jump to P2. Otherwise fall through.
-*/
-case OP_SetNotFound: {
- int i = pOp->p1;
- assert( pTos>=p->aStack );
- Stringify(pTos);
- if( i<0 || i>=p->nSet ||
- sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){
- pc = pOp->p2 - 1;
- }
- Release(pTos);
- pTos--;
- break;
-}
-
-/* Opcode: SetFirst P1 P2 *
-**
-** Read the first element from set P1 and push it onto the stack. If the
-** set is empty, push nothing and jump immediately to P2. This opcode is
-** used in combination with OP_SetNext to loop over all elements of a set.
-*/
-/* Opcode: SetNext P1 P2 *
-**
-** Read the next element from set P1 and push it onto the stack. If there
-** are no more elements in the set, do not do the push and fall through.
-** Otherwise, jump to P2 after pushing the next set element.
-*/
-case OP_SetFirst:
-case OP_SetNext: {
- Set *pSet;
- CHECK_FOR_INTERRUPT;
- if( pOp->p1<0 || pOp->p1>=p->nSet ){
- if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1;
- break;
- }
- pSet = &p->aSet[pOp->p1];
- if( pOp->opcode==OP_SetFirst ){
- pSet->prev = sqliteHashFirst(&pSet->hash);
- if( pSet->prev==0 ){
- pc = pOp->p2 - 1;
- break;
- }
- }else{
- assert( pSet->prev );
- pSet->prev = sqliteHashNext(pSet->prev);
- if( pSet->prev==0 ){
- break;
- }else{
- pc = pOp->p2 - 1;
- }
- }
- pTos++;
- pTos->z = sqliteHashKey(pSet->prev);
- pTos->n = sqliteHashKeysize(pSet->prev);
- pTos->flags = MEM_Str | MEM_Ephem;
- break;
-}
-
-/* Opcode: Vacuum * * *
-**
-** Vacuum the entire database. This opcode will cause other virtual
-** machines to be created and run. It may not be called from within
-** a transaction.
-*/
-case OP_Vacuum: {
- if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
- rc = sqliteRunVacuum(&p->zErrMsg, db);
- if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
- break;
-}
-
-/* An other opcode is illegal...
-*/
-default: {
- sqlite_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode);
- sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0);
- rc = STQLITE_INTERNAL;
- break;
-}
-
-/*****************************************************************************
-** The cases of the switch statement above this line should all be indented
-** by 6 spaces. But the left-most 6 spaces have been removed to improve the
-** readability. From this point on down, the normal indentation rules are
-** restored.
-*****************************************************************************/
- }
-
-#ifdef VDBE_PROFILE
- {
- long long elapse = hwtime() - start;
- pOp->cycles += elapse;
- pOp->cnt++;
-#if 0
- fprintf(stdout, "%10lld ", elapse);
- sqliteVdbePrintOp(stdout, origPc, &p->aOp[origPc]);
-#endif
- }
-#endif
-
- /* The following code adds nothing to the actual functionality
- ** of the program. It is only here for testing and debugging.
- ** On the other hand, it does burn CPU cycles every time through
- ** the evaluator loop. So we can leave it out when NDEBUG is defined.
- */
-#ifndef NDEBUG
- /* Sanity checking on the top element of the stack */
- if( pTos>=p->aStack ){
- assert( pTos->flags!=0 ); /* Must define some type */
- if( pTos->flags & MEM_Str ){
- int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
- assert( x!=0 ); /* Strings must define a string subtype */
- assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
- assert( pTos->z!=0 ); /* Strings must have a value */
- /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
- assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort );
- assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort );
- }else{
- /* Cannot define a string subtype for non-string objects */
- assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
- }
- /* MEM_Null excludes all other types */
- assert( pTos->flags==MEM_Null || (pTos->flags&MEM_Null)==0 );
- }
- if( pc<-1 || pc>=p->nOp ){
- sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0);
- rc = STQLITE_INTERNAL;
- }
- if( p->trace && pTos>=p->aStack ){
- int i;
- fprintf(p->trace, "Stack:");
- for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
- if( pTos[i].flags & MEM_Null ){
- fprintf(p->trace, " NULL");
- }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
- fprintf(p->trace, " si:%d", pTos[i].i);
- }else if( pTos[i].flags & MEM_Int ){
- fprintf(p->trace, " i:%d", pTos[i].i);
- }else if( pTos[i].flags & MEM_Real ){
- fprintf(p->trace, " r:%g", pTos[i].r);
- }else if( pTos[i].flags & MEM_Str ){
- int j, k;
- char zBuf[100];
- zBuf[0] = ' ';
- if( pTos[i].flags & MEM_Dyn ){
- zBuf[1] = 'z';
- assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 );
- }else if( pTos[i].flags & MEM_Static ){
- zBuf[1] = 't';
- assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 );
- }else if( pTos[i].flags & MEM_Ephem ){
- zBuf[1] = 'e';
- assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 );
- }else{
- zBuf[1] = 's';
- }
- zBuf[2] = '[';
- k = 3;
- for(j=0; j<20 && j<pTos[i].n; j++){
- int c = pTos[i].z[j];
- if( c==0 && j==pTos[i].n-1 ) break;
- if( isprint(c) && !isspace(c) ){
- zBuf[k++] = c;
- }else{
- zBuf[k++] = '.';
- }
- }
- zBuf[k++] = ']';
- zBuf[k++] = 0;
- fprintf(p->trace, "%s", zBuf);
- }else{
- fprintf(p->trace, " ???");
- }
- }
- if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
- fprintf(p->trace,"\n");
- }
-#endif
- } /* The end of the for(;;) loop the loops through opcodes */
-
- /* If we reach this point, it means that execution is finished.
- */
-vdbe_halt:
- if( rc ){
- p->rc = rc;
- rc = STQLITE_ERROR;
- }else{
- rc = STQLITE_DONE;
- }
- p->magic = VDBE_MAGIC_HALT;
- p->pTos = pTos;
- return rc;
-
- /* Jump to here if a malloc() fails. It's hard to get a malloc()
- ** to fail on a modern VM computer, so this code is untested.
- */
-no_mem:
- sqliteSetString(&p->zErrMsg, "out of memory", (char*)0);
- rc = STQLITE_NOMEM;
- goto vdbe_halt;
-
- /* Jump to here for an STQLITE_MISUSE error.
- */
-abort_due_to_misuse:
- rc = STQLITE_MISUSE;
- /* Fall thru into abort_due_to_error */
-
- /* Jump to here for any other kind of fatal error. The "rc" variable
- ** should hold the error number.
- */
-abort_due_to_error:
- if( p->zErrMsg==0 ){
- if( sqlite_malloc_failed ) rc = STQLITE_NOMEM;
- sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
- }
- goto vdbe_halt;
-
- /* Jump to here if the sqlite_interrupt() API sets the interrupt
- ** flag.
- */
-abort_due_to_interrupt:
- assert( db->flags & STQLITE_Interrupt );
- db->flags &= ~STQLITE_Interrupt;
- if( db->magic!=STQLITE_MAGIC_BUSY ){
- rc = STQLITE_MISUSE;
- }else{
- rc = STQLITE_INTERRUPT;
- }
- sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
- goto vdbe_halt;
-}