diff options
author | Michele Calgaro <[email protected]> | 2019-04-21 23:22:20 +0900 |
---|---|---|
committer | Michele Calgaro <[email protected]> | 2019-04-21 23:22:20 +0900 |
commit | dba036816b279bc1539a9f3894fbc414665d2bce (patch) | |
tree | 29e4bf00bafe515e7afdd02168d65a47a3f9fbc0 /tqtinterface/qt4/src/3rdparty/sqlite/where.c | |
parent | 6f1b4f0c7505a049d992a33f6e409b7c75732d4b (diff) | |
download | experimental-dba036816b279bc1539a9f3894fbc414665d2bce.tar.gz experimental-dba036816b279bc1539a9f3894fbc414665d2bce.zip |
Removed unnecessary and/or TDE-unrelated code.
Signed-off-by: Michele Calgaro <[email protected]>
Signed-off-by: Slávek Banko <[email protected]>
Diffstat (limited to 'tqtinterface/qt4/src/3rdparty/sqlite/where.c')
-rw-r--r-- | tqtinterface/qt4/src/3rdparty/sqlite/where.c | 1204 |
1 files changed, 0 insertions, 1204 deletions
diff --git a/tqtinterface/qt4/src/3rdparty/sqlite/where.c b/tqtinterface/qt4/src/3rdparty/sqlite/where.c deleted file mode 100644 index c849d1c..0000000 --- a/tqtinterface/qt4/src/3rdparty/sqlite/where.c +++ /dev/null @@ -1,1204 +0,0 @@ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This module contains C code that generates VDBE code used to process -** the WHERE clause of SQL statements. -** -** $Id: where.c,v 1.89 2004/02/22 20:05:02 drh Exp $ -*/ -#include "sqliteInt.h" - -/* -** The query generator uses an array of instances of this structure to -** help it analyze the subexpressions of the WHERE clause. Each WHERE -** clause subexpression is separated from the others by an AND operator. -*/ -typedef struct ExprInfo ExprInfo; -struct ExprInfo { - Expr *p; /* Pointer to the subexpression */ - u8 indexable; /* True if this subexprssion is usable by an index */ - short int idxLeft; /* p->pLeft is a column in this table number. -1 if - ** p->pLeft is not the column of any table */ - short int idxRight; /* p->pRight is a column in this table number. -1 if - ** p->pRight is not the column of any table */ - unsigned prereqLeft; /* Bitmask of tables referenced by p->pLeft */ - unsigned prereqRight; /* Bitmask of tables referenced by p->pRight */ - unsigned prereqAll; /* Bitmask of tables referenced by p */ -}; - -/* -** An instance of the following structure keeps track of a mapping -** between VDBE cursor numbers and bitmasks. The VDBE cursor numbers -** are small integers contained in SrcList_item.iCursor and Expr.iTable -** fields. For any given WHERE clause, we want to track which cursors -** are being used, so we assign a single bit in a 32-bit word to track -** that cursor. Then a 32-bit integer is able to show the set of all -** cursors being used. -*/ -typedef struct ExprMaskSet ExprMaskSet; -struct ExprMaskSet { - int n; /* Number of assigned cursor values */ - int ix[32]; /* Cursor assigned to each bit */ -}; - -/* -** Determine the number of elements in an array. -*/ -#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0])) - -/* -** This routine is used to divide the WHERE expression into subexpressions -** separated by the AND operator. -** -** aSlot[] is an array of subexpressions structures. -** There are nSlot spaces left in this array. This routine attempts to -** split pExpr into subexpressions and fills aSlot[] with those subexpressions. -** The return value is the number of Q_SLOTS filled. -*/ -static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){ - int cnt = 0; - if( pExpr==0 || nSlot<1 ) return 0; - if( nSlot==1 || pExpr->op!=TK_AND ){ - aSlot[0].p = pExpr; - return 1; - } - if( pExpr->pLeft->op!=TK_AND ){ - aSlot[0].p = pExpr->pLeft; - cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight); - }else{ - cnt = exprSplit(nSlot, aSlot, pExpr->pLeft); - cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight); - } - return cnt; -} - -/* -** Initialize an expression mask set -*/ -#define initMaskSet(P) memset(P, 0, sizeof(*P)) - -/* -** Return the bitmask for the given cursor. Assign a new bitmask -** if this is the first time the cursor has been seen. -*/ -static int getMask(ExprMaskSet *pMaskSet, int iCursor){ - int i; - for(i=0; i<pMaskSet->n; i++){ - if( pMaskSet->ix[i]==iCursor ) return 1<<i; - } - if( i==pMaskSet->n && i<ARRAYSIZE(pMaskSet->ix) ){ - pMaskSet->n++; - pMaskSet->ix[i] = iCursor; - return 1<<i; - } - return 0; -} - -/* -** Destroy an expression mask set -*/ -#define freeMaskSet(P) /* NO-OP */ - -/* -** This routine walks (recursively) an expression tree and generates -** a bitmask indicating which tables are used in that expression -** tree. -** -** In order for this routine to work, the calling function must have -** previously invoked sqliteExprResolveIds() on the expression. See -** the header comment on that routine for additional information. -** The sqliteExprResolveIds() routines looks for column names and -** sets their opcodes to TK_COLUMN and their Expr.iTable fields to -** the VDBE cursor number of the table. -*/ -static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ - unsigned int mask = 0; - if( p==0 ) return 0; - if( p->op==TK_COLUMN ){ - return getMask(pMaskSet, p->iTable); - } - if( p->pRight ){ - mask = exprTableUsage(pMaskSet, p->pRight); - } - if( p->pLeft ){ - mask |= exprTableUsage(pMaskSet, p->pLeft); - } - if( p->pList ){ - int i; - for(i=0; i<p->pList->nExpr; i++){ - mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr); - } - } - return mask; -} - -/* -** Return TRUE if the given operator is one of the operators that is -** allowed for an indexable WHERE clause. The allowed operators are -** "=", "<", ">", "<=", ">=", and "IN". -*/ -static int allowedOp(int op){ - switch( op ){ - case TK_LT: - case TK_LE: - case TK_GT: - case TK_GE: - case TK_EQ: - case TK_IN: - return 1; - default: - return 0; - } -} - -/* -** The input to this routine is an ExprInfo structure with only the -** "p" field filled in. The job of this routine is to analyze the -** subexpression and populate all the other fields of the ExprInfo -** structure. -*/ -static void exprAnalyze(ExprMaskSet *pMaskSet, ExprInfo *pInfo){ - Expr *pExpr = pInfo->p; - pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); - pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); - pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr); - pInfo->indexable = 0; - pInfo->idxLeft = -1; - pInfo->idxRight = -1; - if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){ - if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){ - pInfo->idxRight = pExpr->pRight->iTable; - pInfo->indexable = 1; - } - if( pExpr->pLeft->op==TK_COLUMN ){ - pInfo->idxLeft = pExpr->pLeft->iTable; - pInfo->indexable = 1; - } - } -} - -/* -** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the -** left-most table in the FROM clause of that same SELECT statement and -** the table has a cursor number of "base". -** -** This routine attempts to find an index for pTab that generates the -** correct record sequence for the given ORDER BY clause. The return value -** is a pointer to an index that does the job. NULL is returned if the -** table has no index that will generate the correct sort order. -** -** If there are two or more indices that generate the correct sort order -** and pPreferredIdx is one of those indices, then return pPreferredIdx. -** -** nEqCol is the number of columns of pPreferredIdx that are used as -** equality constraints. Any index returned must have exactly this same -** set of columns. The ORDER BY clause only matches index columns beyond the -** the first nEqCol columns. -** -** All terms of the ORDER BY clause must be either ASC or DESC. The -** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is -** set to 0 if the ORDER BY clause is all ASC. -*/ -static Index *findSortingIndex( - Table *pTab, /* The table to be sorted */ - int base, /* Cursor number for pTab */ - ExprList *pOrderBy, /* The ORDER BY clause */ - Index *pPreferredIdx, /* Use this index, if possible and not NULL */ - int nEqCol, /* Number of index columns used with == constraints */ - int *pbRev /* Set to 1 if ORDER BY is DESC */ -){ - int i, j; - Index *pMatch; - Index *pIdx; - int sortOrder; - - assert( pOrderBy!=0 ); - assert( pOrderBy->nExpr>0 ); - sortOrder = pOrderBy->a[0].sortOrder & STQLITE_SO_DIRMASK; - for(i=0; i<pOrderBy->nExpr; i++){ - Expr *p; - if( (pOrderBy->a[i].sortOrder & STQLITE_SO_DIRMASK)!=sortOrder ){ - /* Indices can only be used if all ORDER BY terms are either - ** DESC or ASC. Indices cannot be used on a mixture. */ - return 0; - } - if( (pOrderBy->a[i].sortOrder & STQLITE_SO_TYPEMASK)!=STQLITE_SO_UNK ){ - /* Do not sort by index if there is a COLLATE clause */ - return 0; - } - p = pOrderBy->a[i].pExpr; - if( p->op!=TK_COLUMN || p->iTable!=base ){ - /* Can not use an index sort on anything that is not a column in the - ** left-most table of the FROM clause */ - return 0; - } - } - - /* If we get this far, it means the ORDER BY clause consists only of - ** ascending columns in the left-most table of the FROM clause. Now - ** check for a matching index. - */ - pMatch = 0; - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ - int nExpr = pOrderBy->nExpr; - if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue; - for(i=j=0; i<nEqCol; i++){ - if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break; - if( j<nExpr && pOrderBy->a[j].pExpr->iColumn==pIdx->aiColumn[i] ){ j++; } - } - if( i<nEqCol ) continue; - for(i=0; i+j<nExpr; i++){ - if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ) break; - } - if( i+j>=nExpr ){ - pMatch = pIdx; - if( pIdx==pPreferredIdx ) break; - } - } - if( pMatch && pbRev ){ - *pbRev = sortOrder==STQLITE_SO_DESC; - } - return pMatch; -} - -/* -** Generate the beginning of the loop used for WHERE clause processing. -** The return value is a pointer to an (opaque) structure that contains -** information needed to terminate the loop. Later, the calling routine -** should invoke sqliteWhereEnd() with the return value of this function -** in order to complete the WHERE clause processing. -** -** If an error occurs, this routine returns NULL. -** -** The basic idea is to do a nested loop, one loop for each table in -** the FROM clause of a select. (INSERT and UPDATE statements are the -** same as a SELECT with only a single table in the FROM clause.) For -** example, if the SQL is this: -** -** SELECT * FROM t1, t2, t3 WHERE ...; -** -** Then the code generated is conceptually like the following: -** -** foreach row1 in t1 do \ Code generated -** foreach row2 in t2 do |-- by sqliteWhereBegin() -** foreach row3 in t3 do / -** ... -** end \ Code generated -** end |-- by sqliteWhereEnd() -** end / -** -** There are Btree cursors associated with each table. t1 uses cursor -** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. -** And so forth. This routine generates code to open those VDBE cursors -** and sqliteWhereEnd() generates the code to close them. -** -** If the WHERE clause is empty, the foreach loops must each scan their -** entire tables. Thus a three-way join is an O(N^3) operation. But if -** the tables have indices and there are terms in the WHERE clause that -** refer to those indices, a complete table scan can be avoided and the -** code will run much faster. Most of the work of this routine is checking -** to see if there are indices that can be used to speed up the loop. -** -** Terms of the WHERE clause are also used to limit which rows actually -** make it to the "..." in the middle of the loop. After each "foreach", -** terms of the WHERE clause that use only terms in that loop and outer -** loops are evaluated and if false a jump is made around all subsequent -** inner loops (or around the "..." if the test occurs within the inner- -** most loop) -** -** OUTER JOINS -** -** An outer join of tables t1 and t2 is conceptally coded as follows: -** -** foreach row1 in t1 do -** flag = 0 -** foreach row2 in t2 do -** start: -** ... -** flag = 1 -** end -** if flag==0 then -** move the row2 cursor to a null row -** goto start -** fi -** end -** -** ORDER BY CLAUSE PROCESSING -** -** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, -** if there is one. If there is no ORDER BY clause or if this routine -** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. -** -** If an index can be used so that the natural output order of the table -** scan is correct for the ORDER BY clause, then that index is used and -** *ppOrderBy is set to NULL. This is an optimization that prevents an -** unnecessary sort of the result set if an index appropriate for the -** ORDER BY clause already exists. -** -** If the where clause loops cannot be arranged to provide the correct -** output order, then the *ppOrderBy is unchanged. -*/ -WhereInfo *sqliteWhereBegin( - Parse *pParse, /* The parser context */ - SrcList *pTabList, /* A list of all tables to be scanned */ - Expr *pWhere, /* The WHERE clause */ - int pushKey, /* If TRUE, leave the table key on the stack */ - ExprList **ppOrderBy /* An ORDER BY clause, or NULL */ -){ - int i; /* Loop counter */ - WhereInfo *pWInfo; /* Will become the return value of this function */ - Vdbe *v = pParse->pVdbe; /* The virtual database engine */ - int brk, cont = 0; /* Addresses used during code generation */ - int nExpr; /* Number of subexpressions in the WHERE clause */ - int loopMask; /* One bit set for each outer loop */ - int haveKey; /* True if KEY is on the stack */ - ExprMaskSet maskSet; /* The expression mask set */ - int iDirectEq[32]; /* Term of the form ROWID==X for the N-th table */ - int iDirectLt[32]; /* Term of the form ROWID<X or ROWID<=X */ - int iDirectGt[32]; /* Term of the form ROWID>X or ROWID>=X */ - ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */ - - /* pushKey is only allowed if there is a single table (as in an INSERT or - ** UPDATE statement) - */ - assert( pushKey==0 || pTabList->nSrc==1 ); - - /* Split the WHERE clause into separate subexpressions where each - ** subexpression is separated by an AND operator. If the aExpr[] - ** array fills up, the last entry might point to an expression which - ** contains additional unfactored AND operators. - */ - initMaskSet(&maskSet); - memset(aExpr, 0, sizeof(aExpr)); - nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere); - if( nExpr==ARRAYSIZE(aExpr) ){ - sqliteErrorMsg(pParse, "WHERE clause too complex - no more " - "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1); - return 0; - } - - /* Allocate and initialize the WhereInfo structure that will become the - ** return value. - */ - pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); - if( sqlite_malloc_failed ){ - sqliteFree(pWInfo); - return 0; - } - pWInfo->pParse = pParse; - pWInfo->pTabList = pTabList; - pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab; - pWInfo->iBreak = sqliteVdbeMakeLabel(v); - - /* Special case: a WHERE clause that is constant. Evaluate the - ** expression and either jump over all of the code or fall thru. - */ - if( pWhere && (pTabList->nSrc==0 || sqliteExprIsConstant(pWhere)) ){ - sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); - pWhere = 0; - } - - /* Analyze all of the subexpressions. - */ - for(i=0; i<nExpr; i++){ - exprAnalyze(&maskSet, &aExpr[i]); - - /* If we are executing a trigger body, remove all references to - ** new.* and old.* tables from the prerequisite masks. - */ - if( pParse->trigStack ){ - int x; - if( (x = pParse->trigStack->newIdx) >= 0 ){ - int mask = ~getMask(&maskSet, x); - aExpr[i].prereqRight &= mask; - aExpr[i].prereqLeft &= mask; - aExpr[i].prereqAll &= mask; - } - if( (x = pParse->trigStack->oldIdx) >= 0 ){ - int mask = ~getMask(&maskSet, x); - aExpr[i].prereqRight &= mask; - aExpr[i].prereqLeft &= mask; - aExpr[i].prereqAll &= mask; - } - } - } - - /* Figure out what index to use (if any) for each nested loop. - ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested - ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner - ** loop. - ** - ** If terms exist that use the ROWID of any table, then set the - ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table - ** to the index of the term containing the ROWID. We always prefer - ** to use a ROWID which can directly access a table rather than an - ** index which requires reading an index first to get the rowid then - ** doing a second read of the actual database table. - ** - ** Actually, if there are more than 32 tables in the join, only the - ** first 32 tables are candidates for indices. This is (again) due - ** to the limit of 32 bits in an integer bitmask. - */ - loopMask = 0; - for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){ - int j; - int iCur = pTabList->a[i].iCursor; /* The cursor for this table */ - int mask = getMask(&maskSet, iCur); /* Cursor mask for this table */ - Table *pTab = pTabList->a[i].pTab; - Index *pIdx; - Index *pBestIdx = 0; - int bestScore = 0; - - /* Check to see if there is an expression that uses only the - ** ROWID field of this table. For terms of the form ROWID==expr - ** set iDirectEq[i] to the index of the term. For terms of the - ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index. - ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i]. - ** - ** (Added:) Treat ROWID IN expr like ROWID=expr. - */ - pWInfo->a[i].iCur = -1; - iDirectEq[i] = -1; - iDirectLt[i] = -1; - iDirectGt[i] = -1; - for(j=0; j<nExpr; j++){ - if( aExpr[j].idxLeft==iCur && aExpr[j].p->pLeft->iColumn<0 - && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){ - switch( aExpr[j].p->op ){ - case TK_IN: - case TK_EQ: iDirectEq[i] = j; break; - case TK_LE: - case TK_LT: iDirectLt[i] = j; break; - case TK_GE: - case TK_GT: iDirectGt[i] = j; break; - } - } - if( aExpr[j].idxRight==iCur && aExpr[j].p->pRight->iColumn<0 - && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){ - switch( aExpr[j].p->op ){ - case TK_EQ: iDirectEq[i] = j; break; - case TK_LE: - case TK_LT: iDirectGt[i] = j; break; - case TK_GE: - case TK_GT: iDirectLt[i] = j; break; - } - } - } - if( iDirectEq[i]>=0 ){ - loopMask |= mask; - pWInfo->a[i].pIdx = 0; - continue; - } - - /* Do a search for usable indices. Leave pBestIdx pointing to - ** the "best" index. pBestIdx is left set to NULL if no indices - ** are usable. - ** - ** The best index is determined as follows. For each of the - ** left-most terms that is fixed by an equality operator, add - ** 8 to the score. The right-most term of the index may be - ** constrained by an inequality. Add 1 if for an "x<..." constraint - ** and add 2 for an "x>..." constraint. Chose the index that - ** gives the best score. - ** - ** This scoring system is designed so that the score can later be - ** used to determine how the index is used. If the score&7 is 0 - ** then all constraints are equalities. If score&1 is not 0 then - ** there is an inequality used as a termination key. (ex: "x<...") - ** If score&2 is not 0 then there is an inequality used as the - ** start key. (ex: "x>..."). A score or 4 is the special case - ** of an IN operator constraint. (ex: "x IN ..."). - ** - ** The IN operator (as in "<expr> IN (...)") is treated the same as - ** an equality comparison except that it can only be used on the - ** left-most column of an index and other terms of the WHERE clause - ** cannot be used in conjunction with the IN operator to help satisfy - ** other columns of the index. - */ - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ - int eqMask = 0; /* Index columns covered by an x=... term */ - int ltMask = 0; /* Index columns covered by an x<... term */ - int gtMask = 0; /* Index columns covered by an x>... term */ - int inMask = 0; /* Index columns covered by an x IN .. term */ - int nEq, m, score; - - if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */ - for(j=0; j<nExpr; j++){ - if( aExpr[j].idxLeft==iCur - && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){ - int iColumn = aExpr[j].p->pLeft->iColumn; - int k; - for(k=0; k<pIdx->nColumn; k++){ - if( pIdx->aiColumn[k]==iColumn ){ - switch( aExpr[j].p->op ){ - case TK_IN: { - if( k==0 ) inMask |= 1; - break; - } - case TK_EQ: { - eqMask |= 1<<k; - break; - } - case TK_LE: - case TK_LT: { - ltMask |= 1<<k; - break; - } - case TK_GE: - case TK_GT: { - gtMask |= 1<<k; - break; - } - default: { - /* CANT_HAPPEN */ - assert( 0 ); - break; - } - } - break; - } - } - } - if( aExpr[j].idxRight==iCur - && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){ - int iColumn = aExpr[j].p->pRight->iColumn; - int k; - for(k=0; k<pIdx->nColumn; k++){ - if( pIdx->aiColumn[k]==iColumn ){ - switch( aExpr[j].p->op ){ - case TK_EQ: { - eqMask |= 1<<k; - break; - } - case TK_LE: - case TK_LT: { - gtMask |= 1<<k; - break; - } - case TK_GE: - case TK_GT: { - ltMask |= 1<<k; - break; - } - default: { - /* CANT_HAPPEN */ - assert( 0 ); - break; - } - } - break; - } - } - } - } - - /* The following loop ends with nEq set to the number of columns - ** on the left of the index with == constraints. - */ - for(nEq=0; nEq<pIdx->nColumn; nEq++){ - m = (1<<(nEq+1))-1; - if( (m & eqMask)!=m ) break; - } - score = nEq*8; /* Base score is 8 times number of == constraints */ - m = 1<<nEq; - if( m & ltMask ) score++; /* Increase score for a < constraint */ - if( m & gtMask ) score+=2; /* Increase score for a > constraint */ - if( score==0 && inMask ) score = 4; /* Default score for IN constraint */ - if( score>bestScore ){ - pBestIdx = pIdx; - bestScore = score; - } - } - pWInfo->a[i].pIdx = pBestIdx; - pWInfo->a[i].score = bestScore; - pWInfo->a[i].bRev = 0; - loopMask |= mask; - if( pBestIdx ){ - pWInfo->a[i].iCur = pParse->nTab++; - pWInfo->peakNTab = pParse->nTab; - } - } - - /* Check to see if the ORDER BY clause is or can be satisfied by the - ** use of an index on the first table. - */ - if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){ - Index *pSortIdx; - Index *pIdx; - Table *pTab; - int bRev = 0; - - pTab = pTabList->a[0].pTab; - pIdx = pWInfo->a[0].pIdx; - if( pIdx && pWInfo->a[0].score==4 ){ - /* If there is already an IN index on the left-most table, - ** it will not give the correct sort order. - ** So, pretend that no suitable index is found. - */ - pSortIdx = 0; - }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){ - /* If the left-most column is accessed using its ROWID, then do - ** not try to sort by index. - */ - pSortIdx = 0; - }else{ - int nEqCol = (pWInfo->a[0].score+4)/8; - pSortIdx = findSortingIndex(pTab, pTabList->a[0].iCursor, - *ppOrderBy, pIdx, nEqCol, &bRev); - } - if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){ - if( pIdx==0 ){ - pWInfo->a[0].pIdx = pSortIdx; - pWInfo->a[0].iCur = pParse->nTab++; - pWInfo->peakNTab = pParse->nTab; - } - pWInfo->a[0].bRev = bRev; - *ppOrderBy = 0; - } - } - - /* Open all tables in the pTabList and all indices used by those tables. - */ - for(i=0; i<pTabList->nSrc; i++){ - Table *pTab; - Index *pIx; - - pTab = pTabList->a[i].pTab; - if( pTab->isTransient || pTab->pSelect ) continue; - sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0); - sqliteVdbeOp3(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum, - pTab->zName, P3_STATIC); - sqliteCodeVerifySchema(pParse, pTab->iDb); - if( (pIx = pWInfo->a[i].pIdx)!=0 ){ - sqliteVdbeAddOp(v, OP_Integer, pIx->iDb, 0); - sqliteVdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum, pIx->zName,0); - } - } - - /* Generate the code to do the search - */ - loopMask = 0; - for(i=0; i<pTabList->nSrc; i++){ - int j, k; - int iCur = pTabList->a[i].iCursor; - Index *pIdx; - WhereLevel *pLevel = &pWInfo->a[i]; - - /* If this is the right table of a LEFT OUTER JOIN, allocate and - ** initialize a memory cell that records if this table matches any - ** row of the left table of the join. - */ - if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){ - if( !pParse->nMem ) pParse->nMem++; - pLevel->iLeftJoin = pParse->nMem++; - sqliteVdbeAddOp(v, OP_String, 0, 0); - sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); - } - - pIdx = pLevel->pIdx; - pLevel->inOp = OP_Noop; - if( i<ARRAYSIZE(iDirectEq) && iDirectEq[i]>=0 ){ - /* Case 1: We can directly reference a single row using an - ** equality comparison against the ROWID field. Or - ** we reference multiple rows using a "rowid IN (...)" - ** construct. - */ - k = iDirectEq[i]; - assert( k<nExpr ); - assert( aExpr[k].p!=0 ); - assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur ); - brk = pLevel->brk = sqliteVdbeMakeLabel(v); - if( aExpr[k].idxLeft==iCur ){ - Expr *pX = aExpr[k].p; - if( pX->op!=TK_IN ){ - sqliteExprCode(pParse, aExpr[k].p->pRight); - }else if( pX->pList ){ - sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk); - pLevel->inOp = OP_SetNext; - pLevel->inP1 = pX->iTable; - pLevel->inP2 = sqliteVdbeCurrentAddr(v); - }else{ - assert( pX->pSelect ); - sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk); - sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1); - pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0); - pLevel->inOp = OP_Next; - pLevel->inP1 = pX->iTable; - } - }else{ - sqliteExprCode(pParse, aExpr[k].p->pLeft); - } - aExpr[k].p = 0; - cont = pLevel->cont = sqliteVdbeMakeLabel(v); - sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk); - haveKey = 0; - sqliteVdbeAddOp(v, OP_NotExists, iCur, brk); - pLevel->op = OP_Noop; - }else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){ - /* Case 2: There is an index and all terms of the WHERE clause that - ** refer to the index use the "==" or "IN" operators. - */ - int start; - int testOp; - int nColumn = (pLevel->score+4)/8; - brk = pLevel->brk = sqliteVdbeMakeLabel(v); - for(j=0; j<nColumn; j++){ - for(k=0; k<nExpr; k++){ - Expr *pX = aExpr[k].p; - if( pX==0 ) continue; - if( aExpr[k].idxLeft==iCur - && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight - && pX->pLeft->iColumn==pIdx->aiColumn[j] - ){ - if( pX->op==TK_EQ ){ - sqliteExprCode(pParse, pX->pRight); - aExpr[k].p = 0; - break; - } - if( pX->op==TK_IN && nColumn==1 ){ - if( pX->pList ){ - sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk); - pLevel->inOp = OP_SetNext; - pLevel->inP1 = pX->iTable; - pLevel->inP2 = sqliteVdbeCurrentAddr(v); - }else{ - assert( pX->pSelect ); - sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk); - sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1); - pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0); - pLevel->inOp = OP_Next; - pLevel->inP1 = pX->iTable; - } - aExpr[k].p = 0; - break; - } - } - if( aExpr[k].idxRight==iCur - && aExpr[k].p->op==TK_EQ - && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft - && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j] - ){ - sqliteExprCode(pParse, aExpr[k].p->pLeft); - aExpr[k].p = 0; - break; - } - } - } - pLevel->iMem = pParse->nMem++; - cont = pLevel->cont = sqliteVdbeMakeLabel(v); - sqliteVdbeAddOp(v, OP_NotNull, -nColumn, sqliteVdbeCurrentAddr(v)+3); - sqliteVdbeAddOp(v, OP_Pop, nColumn, 0); - sqliteVdbeAddOp(v, OP_Goto, 0, brk); - sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0); - sqliteAddIdxKeyType(v, pIdx); - if( nColumn==pIdx->nColumn || pLevel->bRev ){ - sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); - testOp = OP_IdxGT; - }else{ - sqliteVdbeAddOp(v, OP_Dup, 0, 0); - sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); - sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); - testOp = OP_IdxGE; - } - if( pLevel->bRev ){ - /* Scan in reverse order */ - sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); - sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk); - start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); - sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk); - pLevel->op = OP_Prev; - }else{ - /* Scan in the forward order */ - sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk); - start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); - sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk); - pLevel->op = OP_Next; - } - sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0); - sqliteVdbeAddOp(v, OP_IdxIsNull, nColumn, cont); - sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0); - if( i==pTabList->nSrc-1 && pushKey ){ - haveKey = 1; - }else{ - sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); - haveKey = 0; - } - pLevel->p1 = pLevel->iCur; - pLevel->p2 = start; - }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){ - /* Case 3: We have an inequality comparison against the ROWID field. - */ - int testOp = OP_Noop; - int start; - - brk = pLevel->brk = sqliteVdbeMakeLabel(v); - cont = pLevel->cont = sqliteVdbeMakeLabel(v); - if( iDirectGt[i]>=0 ){ - k = iDirectGt[i]; - assert( k<nExpr ); - assert( aExpr[k].p!=0 ); - assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur ); - if( aExpr[k].idxLeft==iCur ){ - sqliteExprCode(pParse, aExpr[k].p->pRight); - }else{ - sqliteExprCode(pParse, aExpr[k].p->pLeft); - } - sqliteVdbeAddOp(v, OP_ForceInt, - aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT, brk); - sqliteVdbeAddOp(v, OP_MoveTo, iCur, brk); - aExpr[k].p = 0; - }else{ - sqliteVdbeAddOp(v, OP_Rewind, iCur, brk); - } - if( iDirectLt[i]>=0 ){ - k = iDirectLt[i]; - assert( k<nExpr ); - assert( aExpr[k].p!=0 ); - assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur ); - if( aExpr[k].idxLeft==iCur ){ - sqliteExprCode(pParse, aExpr[k].p->pRight); - }else{ - sqliteExprCode(pParse, aExpr[k].p->pLeft); - } - /* sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1); */ - pLevel->iMem = pParse->nMem++; - sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); - if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){ - testOp = OP_Ge; - }else{ - testOp = OP_Gt; - } - aExpr[k].p = 0; - } - start = sqliteVdbeCurrentAddr(v); - pLevel->op = OP_Next; - pLevel->p1 = iCur; - pLevel->p2 = start; - if( testOp!=OP_Noop ){ - sqliteVdbeAddOp(v, OP_Recno, iCur, 0); - sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); - sqliteVdbeAddOp(v, testOp, 0, brk); - } - haveKey = 0; - }else if( pIdx==0 ){ - /* Case 4: There is no usable index. We must do a complete - ** scan of the entire database table. - */ - int start; - - brk = pLevel->brk = sqliteVdbeMakeLabel(v); - cont = pLevel->cont = sqliteVdbeMakeLabel(v); - sqliteVdbeAddOp(v, OP_Rewind, iCur, brk); - start = sqliteVdbeCurrentAddr(v); - pLevel->op = OP_Next; - pLevel->p1 = iCur; - pLevel->p2 = start; - haveKey = 0; - }else{ - /* Case 5: The WHERE clause term that refers to the right-most - ** column of the index is an inequality. For example, if - ** the index is on (x,y,z) and the WHERE clause is of the - ** form "x=5 AND y<10" then this case is used. Only the - ** right-most column can be an inequality - the rest must - ** use the "==" operator. - ** - ** This case is also used when there are no WHERE clause - ** constraints but an index is selected anyway, in order - ** to force the output order to conform to an ORDER BY. - */ - int score = pLevel->score; - int nEqColumn = score/8; - int start; - int leFlag, geFlag; - int testOp; - - /* Evaluate the equality constraints - */ - for(j=0; j<nEqColumn; j++){ - for(k=0; k<nExpr; k++){ - if( aExpr[k].p==0 ) continue; - if( aExpr[k].idxLeft==iCur - && aExpr[k].p->op==TK_EQ - && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight - && aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j] - ){ - sqliteExprCode(pParse, aExpr[k].p->pRight); - aExpr[k].p = 0; - break; - } - if( aExpr[k].idxRight==iCur - && aExpr[k].p->op==TK_EQ - && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft - && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j] - ){ - sqliteExprCode(pParse, aExpr[k].p->pLeft); - aExpr[k].p = 0; - break; - } - } - } - - /* Duplicate the equality term values because they will all be - ** used twice: once to make the termination key and once to make the - ** start key. - */ - for(j=0; j<nEqColumn; j++){ - sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0); - } - - /* Labels for the beginning and end of the loop - */ - cont = pLevel->cont = sqliteVdbeMakeLabel(v); - brk = pLevel->brk = sqliteVdbeMakeLabel(v); - - /* Generate the termination key. This is the key value that - ** will end the search. There is no termination key if there - ** are no equality terms and no "X<..." term. - ** - ** 2002-Dec-04: On a reverse-order scan, the so-called "termination" - ** key computed here really ends up being the start key. - */ - if( (score & 1)!=0 ){ - for(k=0; k<nExpr; k++){ - Expr *pExpr = aExpr[k].p; - if( pExpr==0 ) continue; - if( aExpr[k].idxLeft==iCur - && (pExpr->op==TK_LT || pExpr->op==TK_LE) - && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight - && pExpr->pLeft->iColumn==pIdx->aiColumn[j] - ){ - sqliteExprCode(pParse, pExpr->pRight); - leFlag = pExpr->op==TK_LE; - aExpr[k].p = 0; - break; - } - if( aExpr[k].idxRight==iCur - && (pExpr->op==TK_GT || pExpr->op==TK_GE) - && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft - && pExpr->pRight->iColumn==pIdx->aiColumn[j] - ){ - sqliteExprCode(pParse, pExpr->pLeft); - leFlag = pExpr->op==TK_GE; - aExpr[k].p = 0; - break; - } - } - testOp = OP_IdxGE; - }else{ - testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop; - leFlag = 1; - } - if( testOp!=OP_Noop ){ - int nCol = nEqColumn + (score & 1); - pLevel->iMem = pParse->nMem++; - sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3); - sqliteVdbeAddOp(v, OP_Pop, nCol, 0); - sqliteVdbeAddOp(v, OP_Goto, 0, brk); - sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0); - sqliteAddIdxKeyType(v, pIdx); - if( leFlag ){ - sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); - } - if( pLevel->bRev ){ - sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk); - }else{ - sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); - } - }else if( pLevel->bRev ){ - sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk); - } - - /* Generate the start key. This is the key that defines the lower - ** bound on the search. There is no start key if there are no - ** equality terms and if there is no "X>..." term. In - ** that case, generate a "Rewind" instruction in place of the - ** start key search. - ** - ** 2002-Dec-04: In the case of a reverse-order search, the so-called - ** "start" key really ends up being used as the termination key. - */ - if( (score & 2)!=0 ){ - for(k=0; k<nExpr; k++){ - Expr *pExpr = aExpr[k].p; - if( pExpr==0 ) continue; - if( aExpr[k].idxLeft==iCur - && (pExpr->op==TK_GT || pExpr->op==TK_GE) - && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight - && pExpr->pLeft->iColumn==pIdx->aiColumn[j] - ){ - sqliteExprCode(pParse, pExpr->pRight); - geFlag = pExpr->op==TK_GE; - aExpr[k].p = 0; - break; - } - if( aExpr[k].idxRight==iCur - && (pExpr->op==TK_LT || pExpr->op==TK_LE) - && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft - && pExpr->pRight->iColumn==pIdx->aiColumn[j] - ){ - sqliteExprCode(pParse, pExpr->pLeft); - geFlag = pExpr->op==TK_LE; - aExpr[k].p = 0; - break; - } - } - }else{ - geFlag = 1; - } - if( nEqColumn>0 || (score&2)!=0 ){ - int nCol = nEqColumn + ((score&2)!=0); - sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3); - sqliteVdbeAddOp(v, OP_Pop, nCol, 0); - sqliteVdbeAddOp(v, OP_Goto, 0, brk); - sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0); - sqliteAddIdxKeyType(v, pIdx); - if( !geFlag ){ - sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); - } - if( pLevel->bRev ){ - pLevel->iMem = pParse->nMem++; - sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); - testOp = OP_IdxLT; - }else{ - sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk); - } - }else if( pLevel->bRev ){ - testOp = OP_Noop; - }else{ - sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk); - } - - /* Generate the the top of the loop. If there is a termination - ** key we have to test for that key and abort at the top of the - ** loop. - */ - start = sqliteVdbeCurrentAddr(v); - if( testOp!=OP_Noop ){ - sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); - sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk); - } - sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0); - sqliteVdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont); - sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0); - if( i==pTabList->nSrc-1 && pushKey ){ - haveKey = 1; - }else{ - sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); - haveKey = 0; - } - - /* Record the instruction used to terminate the loop. - */ - pLevel->op = pLevel->bRev ? OP_Prev : OP_Next; - pLevel->p1 = pLevel->iCur; - pLevel->p2 = start; - } - loopMask |= getMask(&maskSet, iCur); - - /* Insert code to test every subexpression that can be completely - ** computed using the current set of tables. - */ - for(j=0; j<nExpr; j++){ - if( aExpr[j].p==0 ) continue; - if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue; - if( pLevel->iLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){ - continue; - } - if( haveKey ){ - haveKey = 0; - sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); - } - sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1); - aExpr[j].p = 0; - } - brk = cont; - - /* For a LEFT OUTER JOIN, generate code that will record the fact that - ** at least one row of the right table has matched the left table. - */ - if( pLevel->iLeftJoin ){ - pLevel->top = sqliteVdbeCurrentAddr(v); - sqliteVdbeAddOp(v, OP_Integer, 1, 0); - sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); - for(j=0; j<nExpr; j++){ - if( aExpr[j].p==0 ) continue; - if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue; - if( haveKey ){ - /* Cannot happen. "haveKey" can only be true if pushKey is true - ** an pushKey can only be true for DELETE and UPDATE and there are - ** no outer joins with DELETE and UPDATE. - */ - haveKey = 0; - sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); - } - sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1); - aExpr[j].p = 0; - } - } - } - pWInfo->iContinue = cont; - if( pushKey && !haveKey ){ - sqliteVdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0); - } - freeMaskSet(&maskSet); - return pWInfo; -} - -/* -** Generate the end of the WHERE loop. See comments on -** sqliteWhereBegin() for additional information. -*/ -void sqliteWhereEnd(WhereInfo *pWInfo){ - Vdbe *v = pWInfo->pParse->pVdbe; - int i; - WhereLevel *pLevel; - SrcList *pTabList = pWInfo->pTabList; - - for(i=pTabList->nSrc-1; i>=0; i--){ - pLevel = &pWInfo->a[i]; - sqliteVdbeResolveLabel(v, pLevel->cont); - if( pLevel->op!=OP_Noop ){ - sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); - } - sqliteVdbeResolveLabel(v, pLevel->brk); - if( pLevel->inOp!=OP_Noop ){ - sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2); - } - if( pLevel->iLeftJoin ){ - int addr; - addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0); - sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0)); - sqliteVdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); - if( pLevel->iCur>=0 ){ - sqliteVdbeAddOp(v, OP_NullRow, pLevel->iCur, 0); - } - sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top); - } - } - sqliteVdbeResolveLabel(v, pWInfo->iBreak); - for(i=0; i<pTabList->nSrc; i++){ - Table *pTab = pTabList->a[i].pTab; - assert( pTab!=0 ); - if( pTab->isTransient || pTab->pSelect ) continue; - pLevel = &pWInfo->a[i]; - sqliteVdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0); - if( pLevel->pIdx!=0 ){ - sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0); - } - } -#if 0 /* Never reuse a cursor */ - if( pWInfo->pParse->nTab==pWInfo->peakNTab ){ - pWInfo->pParse->nTab = pWInfo->savedNTab; - } -#endif - sqliteFree(pWInfo); - return; -} |