summaryrefslogtreecommitdiffstats
path: root/debian/fireflies/fireflies-2.08/libgfx/include/gfx/vec4.h
blob: 8875074e782089db31ade2b59173bbbfd7c80ae8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#ifndef GFXVEC4_INCLUDED // -*- C++ -*-
#define GFXVEC4_INCLUDED
#if !defined(__GNUC__)
#  pragma once
#endif

/************************************************************************

  4D Vector class
  
  $Id: vec4.h 427 2004-09-27 04:45:31Z garland $

 ************************************************************************/

#include "vec3.h"

namespace gfx
{

template<class T>
class TVec4 {
private:
    T elt[4];

public:
    // Standard constructors
    //
    TVec4(T s=0) { *this = s; }
    TVec4(T x, T y, T z, T w) { elt[0]=x; elt[1]=y; elt[2]=z; elt[3]=w; }

    // Copy constructors & assignment operators
    template<class U> TVec4(const TVec4<U>& v) { *this = v; }
    template<class U> TVec4(const TVec3<U>& v,T w)
    	{ elt[0]=v[0];  elt[1]=v[1];  elt[2]=v[2];  elt[3]=w; }
    template<class U> TVec4(const U v[4])
    	{ elt[0]=v[0]; elt[1]=v[1]; elt[2]=v[2]; elt[3]=v[3]; }
    template<class U> TVec4& operator=(const TVec4<U>& v)
	{ elt[0]=v[0];  elt[1]=v[1];  elt[2]=v[2]; elt[3]=v[3]; return *this; }
    TVec4& operator=(T s) { elt[0]=elt[1]=elt[2]=elt[3]=s; return *this; }


    // Descriptive interface
    //
    typedef T value_type;
    static int dim() { return 4; }


    // Access methods
    //
    operator       T*()       { return elt; }
    operator const T*() const { return elt; }

#ifndef HAVE_CASTING_LIMITS
    T& operator[](int i)       { return elt[i]; }
    T  operator[](int i) const { return elt[i]; }
    operator const T*()       { return elt; }
#endif

    // Assignment and in-place arithmetic methods
    //
    inline TVec4& operator+=(const TVec4& v);
    inline TVec4& operator-=(const TVec4& v);
    inline TVec4& operator*=(T s);
    inline TVec4& operator/=(T s);
};

////////////////////////////////////////////////////////////////////////
//
// Method definitions
//

template<class T> inline TVec4<T>& TVec4<T>::operator+=(const TVec4<T>& v)
    { elt[0]+=v[0];  elt[1]+=v[1];  elt[2]+=v[2];  elt[3]+=v[3]; return *this;}

template<class T> inline TVec4<T>& TVec4<T>::operator-=(const TVec4<T>& v)
    { elt[0]-=v[0];  elt[1]-=v[1];  elt[2]-=v[2];  elt[3]-=v[3]; return *this;}

template<class T> inline TVec4<T>& TVec4<T>::operator*=(T s)
    { elt[0] *= s;   elt[1] *= s;   elt[2] *= s;  elt[3] *= s; return *this; }

template<class T> inline TVec4<T>& TVec4<T>::operator/=(T s)
    { elt[0] /= s;   elt[1] /= s;   elt[2] /= s;  elt[3] /= s; return *this; }


////////////////////////////////////////////////////////////////////////
//
// Operator definitions
//

template<class T>
inline TVec4<T> operator+(const TVec4<T> &u, const TVec4<T> &v)
	{ return TVec4<T>(u[0]+v[0], u[1]+v[1], u[2]+v[2], u[3]+v[3]); }

template<class T>
inline TVec4<T> operator-(const TVec4<T> &u, const TVec4<T>& v)
	{ return TVec4<T>(u[0]-v[0], u[1]-v[1], u[2]-v[2], u[3]-v[3]); }

template<class T> inline TVec4<T> operator-(const TVec4<T> &u)
	{ return TVec4<T>(-u[0], -u[1], -u[2], -u[3]); }

#if _MSC_VER>=1200
// Normally, we use the <class T, class N> construct below to allow the scalar
// argument to be different than the template type.  This, for example, allows
// the user to write things like v/2.  Unfortunately, Microsoft VC6.0 (aka
// v1200) gets confused by this.  We used to include explicit versions for the
// case of int's, but this was causing silent (and incorrect) coercion of
// floats to ints.
//
  template<class T> inline TVec4<T> operator*(T s, const TVec4<T> &v)
	{ return TVec4<T>(v[0]*s, v[1]*s, v[2]*s, v[3]*s); }
  template<class T> inline TVec4<T> operator*(const TVec4<T> &v, T s)
	{ return s*v; }

  template<class T> inline TVec4<T> operator/(const TVec4<T> &v, T s)
	{ return TVec4<T>(v[0]/s, v[1]/s, v[2]/s, v[3]/s); }
#else
  template<class T, class N> inline TVec4<T> operator*(N s, const TVec4<T> &v)
	{ return TVec4<T>(v[0]*s, v[1]*s, v[2]*s, v[3]*s); }
  template<class T, class N> inline TVec4<T> operator*(const TVec4<T> &v, N s)
	{ return s*v; }

  template<class T, class N> inline TVec4<T> operator/(const TVec4<T> &v, N s)
	{ return TVec4<T>(v[0]/s, v[1]/s, v[2]/s, v[3]/s); }
#endif

template<class T> inline T operator*(const TVec4<T> &u, const TVec4<T> &v)
	{ return u[0]*v[0] + u[1]*v[1] + u[2]*v[2] + u[3]*v[3]; }

template<class T>
inline std::ostream &operator<<(std::ostream &out, const TVec4<T>& v)
	{ return out <<v[0] <<" " <<v[1] <<" " <<v[2] <<" " <<v[3]; }

template<class T>
inline std::istream &operator>>(std::istream &in, TVec4<T>& v)
	{ return in >> v[0] >> v[1] >> v[2] >> v[3]; }

////////////////////////////////////////////////////////////////////////
//
// Misc. function definitions
//

template<class T>
inline TVec4<T> cross(const TVec4<T>& a, const TVec4<T>& b, const TVec4<T>& c)
{
    // Code adapted from VecLib4d.c in Graphics Gems V

    T d1 = (b[2] * c[3]) - (b[3] * c[2]);
    T d2 = (b[1] * c[3]) - (b[3] * c[1]);
    T d3 = (b[1] * c[2]) - (b[2] * c[1]);
    T d4 = (b[0] * c[3]) - (b[3] * c[0]);
    T d5 = (b[0] * c[2]) - (b[2] * c[0]);
    T d6 = (b[0] * c[1]) - (b[1] * c[0]);

    return TVec4<T>(- a[1] * d1 + a[2] * d2 - a[3] * d3,
		      a[0] * d1 - a[2] * d4 + a[3] * d5,
		    - a[0] * d2 + a[1] * d4 - a[3] * d6,
		      a[0] * d3 - a[1] * d5 + a[2] * d6);
}

template<class T> inline T norm2(const TVec4<T>& v) { return v*v; }
template<class T> inline T norm(const TVec4<T>& v)  { return sqrt(norm2(v)); }

template<class T> inline void unitize(TVec4<T>& v)
{
    T l = norm2(v);
    if( l!=1.0 && l!=0.0 )  v /= sqrt(l);
}

template<class T> inline TVec3<T> proj(const TVec4<T>& v)
{
    TVec3<T> u(v[0], v[1], v[2]);
    if( v[3]!=1.0 && v[3]!=0.0 )
	u /= v[3];
    return u;
}

typedef TVec4<double> Vec4;
typedef TVec4<float>  Vec4f;

} // namespace gfx

// GFXVEC4_INCLUDED
#endif