summaryrefslogtreecommitdiffstats
path: root/src/sqlite/vdbeaux.c
diff options
context:
space:
mode:
authorMavridis Philippe <[email protected]>2021-01-13 19:26:24 +0200
committerMavridis Philippe <[email protected]>2021-01-13 19:26:24 +0200
commit8c20dc919f7d54eb48fb60f39ba5e1d466a70763 (patch)
tree44d89f278d5dd066603e5ab9c0b270bc8eb4ad51 /src/sqlite/vdbeaux.c
downloadklamav-8c20dc919f7d54eb48fb60f39ba5e1d466a70763.tar.gz
klamav-8c20dc919f7d54eb48fb60f39ba5e1d466a70763.zip
Initial commit
Signed-off-by: Mavridis Philippe <[email protected]>
Diffstat (limited to 'src/sqlite/vdbeaux.c')
-rw-r--r--src/sqlite/vdbeaux.c1997
1 files changed, 1997 insertions, 0 deletions
diff --git a/src/sqlite/vdbeaux.c b/src/sqlite/vdbeaux.c
new file mode 100644
index 0000000..e64831e
--- /dev/null
+++ b/src/sqlite/vdbeaux.c
@@ -0,0 +1,1997 @@
+/*
+** 2003 September 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used for creating, destroying, and populating
+** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
+** to version 2.8.7, all this code was combined into the vdbe.c source file.
+** But that file was getting too big so this subroutines were split out.
+*/
+#include "sqliteInt.h"
+#include "os.h"
+#include <ctype.h>
+#include "vdbeInt.h"
+
+
+/*
+** When debugging the code generator in a symbolic debugger, one can
+** set the sqlite3_vdbe_addop_trace to 1 and all opcodes will be printed
+** as they are added to the instruction stream.
+*/
+#ifndef NDEBUG
+int sqlite3_vdbe_addop_trace = 0;
+#endif
+
+
+/*
+** Create a new virtual database engine.
+*/
+Vdbe *sqlite3VdbeCreate(sqlite3 *db){
+ Vdbe *p;
+ p = sqliteMalloc( sizeof(Vdbe) );
+ if( p==0 ) return 0;
+ p->db = db;
+ if( db->pVdbe ){
+ db->pVdbe->pPrev = p;
+ }
+ p->pNext = db->pVdbe;
+ p->pPrev = 0;
+ db->pVdbe = p;
+ p->magic = VDBE_MAGIC_INIT;
+ return p;
+}
+
+/*
+** Turn tracing on or off
+*/
+void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
+ p->trace = trace;
+}
+
+/*
+** Resize the Vdbe.aOp array so that it contains at least N
+** elements. If the Vdbe is in VDBE_MAGIC_RUN state, then
+** the Vdbe.aOp array will be sized to contain exactly N
+** elements.
+*/
+static void resizeOpArray(Vdbe *p, int N){
+ if( p->magic==VDBE_MAGIC_RUN ){
+ assert( N==p->nOp );
+ p->nOpAlloc = N;
+ p->aOp = sqliteRealloc(p->aOp, N*sizeof(Op));
+ }else if( p->nOpAlloc<N ){
+ int oldSize = p->nOpAlloc;
+ p->nOpAlloc = N+100;
+ p->aOp = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
+ if( p->aOp ){
+ memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
+ }
+ }
+}
+
+/*
+** Add a new instruction to the list of instructions current in the
+** VDBE. Return the address of the new instruction.
+**
+** Parameters:
+**
+** p Pointer to the VDBE
+**
+** op The opcode for this instruction
+**
+** p1, p2 First two of the three possible operands.
+**
+** Use the sqlite3VdbeResolveLabel() function to fix an address and
+** the sqlite3VdbeChangeP3() function to change the value of the P3
+** operand.
+*/
+int sqlite3VdbeAddOp(Vdbe *p, int op, int p1, int p2){
+ int i;
+ VdbeOp *pOp;
+
+ i = p->nOp;
+ p->nOp++;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ resizeOpArray(p, i+1);
+ if( p->aOp==0 ){
+ return 0;
+ }
+ pOp = &p->aOp[i];
+ pOp->opcode = op;
+ pOp->p1 = p1;
+ pOp->p2 = p2;
+ pOp->p3 = 0;
+ pOp->p3type = P3_NOTUSED;
+#ifdef SQLITE_DEBUG
+ if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
+#endif
+ return i;
+}
+
+/*
+** Add an opcode that includes the p3 value.
+*/
+int sqlite3VdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3,int p3type){
+ int addr = sqlite3VdbeAddOp(p, op, p1, p2);
+ sqlite3VdbeChangeP3(p, addr, zP3, p3type);
+ return addr;
+}
+
+/*
+** Create a new symbolic label for an instruction that has yet to be
+** coded. The symbolic label is really just a negative number. The
+** label can be used as the P2 value of an operation. Later, when
+** the label is resolved to a specific address, the VDBE will scan
+** through its operation list and change all values of P2 which match
+** the label into the resolved address.
+**
+** The VDBE knows that a P2 value is a label because labels are
+** always negative and P2 values are suppose to be non-negative.
+** Hence, a negative P2 value is a label that has yet to be resolved.
+**
+** Zero is returned if a malloc() fails.
+*/
+int sqlite3VdbeMakeLabel(Vdbe *p){
+ int i;
+ i = p->nLabel++;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( i>=p->nLabelAlloc ){
+ p->nLabelAlloc = p->nLabelAlloc*2 + 10;
+ p->aLabel = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0]));
+ }
+ if( p->aLabel ){
+ p->aLabel[i] = -1;
+ }
+ return -1-i;
+}
+
+/*
+** Resolve label "x" to be the address of the next instruction to
+** be inserted. The parameter "x" must have been obtained from
+** a prior call to sqlite3VdbeMakeLabel().
+*/
+void sqlite3VdbeResolveLabel(Vdbe *p, int x){
+ int j = -1-x;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ assert( j>=0 && j<p->nLabel );
+ if( p->aLabel ){
+ p->aLabel[j] = p->nOp;
+ }
+}
+
+/*
+** Return non-zero if opcode 'op' is guarenteed not to push more values
+** onto the VDBE stack than it pops off.
+*/
+static int opcodeNoPush(u8 op){
+ /* The 10 NOPUSH_MASK_n constants are defined in the automatically
+ ** generated header file opcodes.h. Each is a 16-bit bitmask, one
+ ** bit corresponding to each opcode implemented by the virtual
+ ** machine in vdbe.c. The bit is true if the word "no-push" appears
+ ** in a comment on the same line as the "case OP_XXX:" in
+ ** sqlite3VdbeExec() in vdbe.c.
+ **
+ ** If the bit is true, then the corresponding opcode is guarenteed not
+ ** to grow the stack when it is executed. Otherwise, it may grow the
+ ** stack by at most one entry.
+ **
+ ** NOPUSH_MASK_0 corresponds to opcodes 0 to 15. NOPUSH_MASK_1 contains
+ ** one bit for opcodes 16 to 31, and so on.
+ **
+ ** 16-bit bitmasks (rather than 32-bit) are specified in opcodes.h
+ ** because the file is generated by an awk program. Awk manipulates
+ ** all numbers as floating-point and we don't want to risk a rounding
+ ** error if someone builds with an awk that uses (for example) 32-bit
+ ** IEEE floats.
+ */
+ static const u32 masks[5] = {
+ NOPUSH_MASK_0 + (NOPUSH_MASK_1<<16),
+ NOPUSH_MASK_2 + (NOPUSH_MASK_3<<16),
+ NOPUSH_MASK_4 + (NOPUSH_MASK_5<<16),
+ NOPUSH_MASK_6 + (NOPUSH_MASK_7<<16),
+ NOPUSH_MASK_8 + (NOPUSH_MASK_9<<16)
+ };
+ return (masks[op>>5] & (1<<(op&0x1F)));
+}
+
+#ifndef NDEBUG
+int sqlite3VdbeOpcodeNoPush(u8 op){
+ return opcodeNoPush(op);
+}
+#endif
+
+/*
+** Loop through the program looking for P2 values that are negative.
+** Each such value is a label. Resolve the label by setting the P2
+** value to its correct non-zero value.
+**
+** This routine is called once after all opcodes have been inserted.
+**
+** Variable *pMaxFuncArgs is set to the maximum value of any P1 argument
+** to an OP_Function or P2 to an OP_AggFunc opcode. This is used by
+** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
+**
+** The integer *pMaxStack is set to the maximum number of vdbe stack
+** entries that static analysis reveals this program might need.
+**
+** This routine also does the following optimization: It scans for
+** Halt instructions where P1==SQLITE_CONSTRAINT or P2==OE_Abort or for
+** IdxInsert instructions where P2!=0. If no such instruction is
+** found, then every Statement instruction is changed to a Noop. In
+** this way, we avoid creating the statement journal file unnecessarily.
+*/
+static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs, int *pMaxStack){
+ int i;
+ int nMaxArgs = 0;
+ int nMaxStack = p->nOp;
+ Op *pOp;
+ int *aLabel = p->aLabel;
+ int doesStatementRollback = 0;
+ int hasStatementBegin = 0;
+ for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
+ u8 opcode = pOp->opcode;
+
+ /* Todo: Maybe OP_AggFunc should change to use P1 in the same
+ * way as OP_Function.
+ */
+ if( opcode==OP_Function ){
+ if( pOp->p1>nMaxArgs ) nMaxArgs = pOp->p1;
+ }else if( opcode==OP_AggFunc ){
+ if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
+ }else if( opcode==OP_Halt ){
+ if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
+ doesStatementRollback = 1;
+ }
+ }else if( opcode==OP_IdxInsert ){
+ if( pOp->p2 ){
+ doesStatementRollback = 1;
+ }
+ }else if( opcode==OP_Statement ){
+ hasStatementBegin = 1;
+ }
+
+ if( opcodeNoPush(opcode) ){
+ nMaxStack--;
+ }
+
+ if( pOp->p2>=0 ) continue;
+ assert( -1-pOp->p2<p->nLabel );
+ pOp->p2 = aLabel[-1-pOp->p2];
+ }
+ sqliteFree(p->aLabel);
+ p->aLabel = 0;
+
+ *pMaxFuncArgs = nMaxArgs;
+ *pMaxStack = nMaxStack;
+
+ /* If we never rollback a statement transaction, then statement
+ ** transactions are not needed. So change every OP_Statement
+ ** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive()
+ ** which can be expensive on some platforms.
+ */
+ if( hasStatementBegin && !doesStatementRollback ){
+ for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
+ if( pOp->opcode==OP_Statement ){
+ pOp->opcode = OP_Noop;
+ }
+ }
+ }
+}
+
+/*
+** Return the address of the next instruction to be inserted.
+*/
+int sqlite3VdbeCurrentAddr(Vdbe *p){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ return p->nOp;
+}
+
+/*
+** Add a whole list of operations to the operation stack. Return the
+** address of the first operation added.
+*/
+int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
+ int addr;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ resizeOpArray(p, p->nOp + nOp);
+ if( p->aOp==0 ){
+ return 0;
+ }
+ addr = p->nOp;
+ if( nOp>0 ){
+ int i;
+ VdbeOpList const *pIn = aOp;
+ for(i=0; i<nOp; i++, pIn++){
+ int p2 = pIn->p2;
+ VdbeOp *pOut = &p->aOp[i+addr];
+ pOut->opcode = pIn->opcode;
+ pOut->p1 = pIn->p1;
+ pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
+ pOut->p3 = pIn->p3;
+ pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
+#ifdef SQLITE_DEBUG
+ if( sqlite3_vdbe_addop_trace ){
+ sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
+ }
+#endif
+ }
+ p->nOp += nOp;
+ }
+ return addr;
+}
+
+/*
+** Change the value of the P1 operand for a specific instruction.
+** This routine is useful when a large program is loaded from a
+** static array using sqlite3VdbeAddOpList but we want to make a
+** few minor changes to the program.
+*/
+void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
+ p->aOp[addr].p1 = val;
+ }
+}
+
+/*
+** Change the value of the P2 operand for a specific instruction.
+** This routine is useful for setting a jump destination.
+*/
+void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
+ assert( val>=0 );
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
+ p->aOp[addr].p2 = val;
+ }
+}
+
+/*
+** Change the value of the P3 operand for a specific instruction.
+** This routine is useful when a large program is loaded from a
+** static array using sqlite3VdbeAddOpList but we want to make a
+** few minor changes to the program.
+**
+** If n>=0 then the P3 operand is dynamic, meaning that a copy of
+** the string is made into memory obtained from sqliteMalloc().
+** A value of n==0 means copy bytes of zP3 up to and including the
+** first null byte. If n>0 then copy n+1 bytes of zP3.
+**
+** If n==P3_KEYINFO it means that zP3 is a pointer to a KeyInfo structure.
+** A copy is made of the KeyInfo structure into memory obtained from
+** sqliteMalloc, to be freed when the Vdbe is finalized.
+** n==P3_KEYINFO_HANDOFF indicates that zP3 points to a KeyInfo structure
+** stored in memory that the caller has obtained from sqliteMalloc. The
+** caller should not free the allocation, it will be freed when the Vdbe is
+** finalized.
+**
+** Other values of n (P3_STATIC, P3_COLLSEQ etc.) indicate that zP3 points
+** to a string or structure that is guaranteed to exist for the lifetime of
+** the Vdbe. In these cases we can just copy the pointer.
+**
+** If addr<0 then change P3 on the most recently inserted instruction.
+*/
+void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
+ Op *pOp;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p==0 || p->aOp==0 ){
+ if( n==P3_DYNAMIC || n==P3_KEYINFO_HANDOFF ){
+ sqliteFree((void*)zP3);
+ }
+ if( n==P3_MEM ){
+ sqlite3ValueFree((sqlite3_value *)zP3);
+ }
+ return;
+ }
+ if( addr<0 || addr>=p->nOp ){
+ addr = p->nOp - 1;
+ if( addr<0 ) return;
+ }
+ pOp = &p->aOp[addr];
+ if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){
+ sqliteFree(pOp->p3);
+ pOp->p3 = 0;
+ }
+ if( zP3==0 ){
+ pOp->p3 = 0;
+ pOp->p3type = P3_NOTUSED;
+ }else if( n==P3_KEYINFO ){
+ KeyInfo *pKeyInfo;
+ int nField, nByte;
+ nField = ((KeyInfo*)zP3)->nField;
+ nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]);
+ pKeyInfo = sqliteMallocRaw( nByte );
+ pOp->p3 = (char*)pKeyInfo;
+ if( pKeyInfo ){
+ memcpy(pKeyInfo, zP3, nByte);
+ pOp->p3type = P3_KEYINFO;
+ }else{
+ pOp->p3type = P3_NOTUSED;
+ }
+ }else if( n==P3_KEYINFO_HANDOFF ){
+ pOp->p3 = (char*)zP3;
+ pOp->p3type = P3_KEYINFO;
+ }else if( n<0 ){
+ pOp->p3 = (char*)zP3;
+ pOp->p3type = n;
+ }else{
+ if( n==0 ) n = strlen(zP3);
+ pOp->p3 = sqliteStrNDup(zP3, n);
+ pOp->p3type = P3_DYNAMIC;
+ }
+}
+
+#ifndef NDEBUG
+/*
+** Replace the P3 field of the most recently coded instruction with
+** comment text.
+*/
+void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
+ va_list ap;
+ assert( p->nOp>0 );
+ assert( p->aOp==0 || p->aOp[p->nOp-1].p3==0 );
+ va_start(ap, zFormat);
+ sqlite3VdbeChangeP3(p, -1, sqlite3VMPrintf(zFormat, ap), P3_DYNAMIC);
+ va_end(ap);
+}
+#endif
+
+/*
+** If the P3 operand to the specified instruction appears
+** to be a quoted string token, then this procedure removes
+** the quotes.
+**
+** The quoting operator can be either a grave ascent (ASCII 0x27)
+** or a double quote character (ASCII 0x22). Two quotes in a row
+** resolve to be a single actual quote character within the string.
+*/
+void sqlite3VdbeDequoteP3(Vdbe *p, int addr){
+ Op *pOp;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->aOp==0 ) return;
+ if( addr<0 || addr>=p->nOp ){
+ addr = p->nOp - 1;
+ if( addr<0 ) return;
+ }
+ pOp = &p->aOp[addr];
+ if( pOp->p3==0 || pOp->p3[0]==0 ) return;
+ if( pOp->p3type==P3_STATIC ){
+ pOp->p3 = sqliteStrDup(pOp->p3);
+ pOp->p3type = P3_DYNAMIC;
+ }
+ assert( pOp->p3type==P3_DYNAMIC );
+ sqlite3Dequote(pOp->p3);
+}
+
+/*
+** Search the current program starting at instruction addr for the given
+** opcode and P2 value. Return the address plus 1 if found and 0 if not
+** found.
+*/
+int sqlite3VdbeFindOp(Vdbe *p, int addr, int op, int p2){
+ int i;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ for(i=addr; i<p->nOp; i++){
+ if( p->aOp[i].opcode==op && p->aOp[i].p2==p2 ) return i+1;
+ }
+ return 0;
+}
+
+/*
+** Return the opcode for a given address.
+*/
+VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ assert( addr>=0 && addr<p->nOp );
+ return &p->aOp[addr];
+}
+
+#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
+ || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
+/*
+** Compute a string that describes the P3 parameter for an opcode.
+** Use zTemp for any required temporary buffer space.
+*/
+static char *displayP3(Op *pOp, char *zTemp, int nTemp){
+ char *zP3;
+ assert( nTemp>=20 );
+ switch( pOp->p3type ){
+ case P3_KEYINFO: {
+ int i, j;
+ KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3;
+ sprintf(zTemp, "keyinfo(%d", pKeyInfo->nField);
+ i = strlen(zTemp);
+ for(j=0; j<pKeyInfo->nField; j++){
+ CollSeq *pColl = pKeyInfo->aColl[j];
+ if( pColl ){
+ int n = strlen(pColl->zName);
+ if( i+n>nTemp-6 ){
+ strcpy(&zTemp[i],",...");
+ break;
+ }
+ zTemp[i++] = ',';
+ if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
+ zTemp[i++] = '-';
+ }
+ strcpy(&zTemp[i], pColl->zName);
+ i += n;
+ }else if( i+4<nTemp-6 ){
+ strcpy(&zTemp[i],",nil");
+ i += 4;
+ }
+ }
+ zTemp[i++] = ')';
+ zTemp[i] = 0;
+ assert( i<nTemp );
+ zP3 = zTemp;
+ break;
+ }
+ case P3_COLLSEQ: {
+ CollSeq *pColl = (CollSeq*)pOp->p3;
+ sprintf(zTemp, "collseq(%.20s)", pColl->zName);
+ zP3 = zTemp;
+ break;
+ }
+ case P3_FUNCDEF: {
+ FuncDef *pDef = (FuncDef*)pOp->p3;
+ char zNum[30];
+ sprintf(zTemp, "%.*s", nTemp, pDef->zName);
+ sprintf(zNum,"(%d)", pDef->nArg);
+ if( strlen(zTemp)+strlen(zNum)+1<=nTemp ){
+ strcat(zTemp, zNum);
+ }
+ zP3 = zTemp;
+ break;
+ }
+ default: {
+ zP3 = pOp->p3;
+ if( zP3==0 || pOp->opcode==OP_Noop ){
+ zP3 = "";
+ }
+ }
+ }
+ return zP3;
+}
+#endif
+
+
+#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
+/*
+** Print a single opcode. This routine is used for debugging only.
+*/
+void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
+ char *zP3;
+ char zPtr[50];
+ static const char *zFormat1 = "%4d %-13s %4d %4d %s\n";
+ if( pOut==0 ) pOut = stdout;
+ zP3 = displayP3(pOp, zPtr, sizeof(zPtr));
+ fprintf(pOut, zFormat1,
+ pc, sqlite3OpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3);
+ fflush(pOut);
+}
+#endif
+
+/*
+** Release an array of N Mem elements
+*/
+static void releaseMemArray(Mem *p, int N){
+ if( p ){
+ while( N-->0 ){
+ sqlite3VdbeMemRelease(p++);
+ }
+ }
+}
+
+#ifndef SQLITE_OMIT_EXPLAIN
+/*
+** Give a listing of the program in the virtual machine.
+**
+** The interface is the same as sqlite3VdbeExec(). But instead of
+** running the code, it invokes the callback once for each instruction.
+** This feature is used to implement "EXPLAIN".
+*/
+int sqlite3VdbeList(
+ Vdbe *p /* The VDBE */
+){
+ sqlite3 *db = p->db;
+ int i;
+ int rc = SQLITE_OK;
+
+ assert( p->explain );
+ if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
+ assert( db->magic==SQLITE_MAGIC_BUSY );
+ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
+
+ /* Even though this opcode does not put dynamic strings onto the
+ ** the stack, they may become dynamic if the user calls
+ ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
+ */
+ if( p->pTos==&p->aStack[4] ){
+ releaseMemArray(p->aStack, 5);
+ }
+ p->resOnStack = 0;
+
+
+ i = p->pc++;
+ if( i>=p->nOp ){
+ p->rc = SQLITE_OK;
+ rc = SQLITE_DONE;
+ }else if( db->flags & SQLITE_Interrupt ){
+ db->flags &= ~SQLITE_Interrupt;
+ p->rc = SQLITE_INTERRUPT;
+ rc = SQLITE_ERROR;
+ sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0);
+ }else{
+ Op *pOp = &p->aOp[i];
+ Mem *pMem = p->aStack;
+ pMem->flags = MEM_Int;
+ pMem->type = SQLITE_INTEGER;
+ pMem->i = i; /* Program counter */
+ pMem++;
+
+ pMem->flags = MEM_Static|MEM_Str|MEM_Term;
+ pMem->z = sqlite3OpcodeNames[pOp->opcode]; /* Opcode */
+ pMem->n = strlen(pMem->z);
+ pMem->type = SQLITE_TEXT;
+ pMem->enc = SQLITE_UTF8;
+ pMem++;
+
+ pMem->flags = MEM_Int;
+ pMem->i = pOp->p1; /* P1 */
+ pMem->type = SQLITE_INTEGER;
+ pMem++;
+
+ pMem->flags = MEM_Int;
+ pMem->i = pOp->p2; /* P2 */
+ pMem->type = SQLITE_INTEGER;
+ pMem++;
+
+ pMem->flags = MEM_Short|MEM_Str|MEM_Term; /* P3 */
+ pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort));
+ pMem->type = SQLITE_TEXT;
+ pMem->enc = SQLITE_UTF8;
+
+ p->nResColumn = 5;
+ p->pTos = pMem;
+ p->rc = SQLITE_OK;
+ p->resOnStack = 1;
+ rc = SQLITE_ROW;
+ }
+ return rc;
+}
+#endif /* SQLITE_OMIT_EXPLAIN */
+
+/*
+** Print the SQL that was used to generate a VDBE program.
+*/
+void sqlite3VdbePrintSql(Vdbe *p){
+#ifdef SQLITE_DEBUG
+ int nOp = p->nOp;
+ VdbeOp *pOp;
+ if( nOp<1 ) return;
+ pOp = &p->aOp[nOp-1];
+ if( pOp->opcode==OP_Noop && pOp->p3!=0 ){
+ const char *z = pOp->p3;
+ while( isspace(*(u8*)z) ) z++;
+ printf("SQL: [%s]\n", z);
+ }
+#endif
+}
+
+/*
+** Prepare a virtual machine for execution. This involves things such
+** as allocating stack space and initializing the program counter.
+** After the VDBE has be prepped, it can be executed by one or more
+** calls to sqlite3VdbeExec().
+**
+** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
+** VDBE_MAGIC_RUN.
+*/
+void sqlite3VdbeMakeReady(
+ Vdbe *p, /* The VDBE */
+ int nVar, /* Number of '?' see in the SQL statement */
+ int nMem, /* Number of memory cells to allocate */
+ int nCursor, /* Number of cursors to allocate */
+ int nAgg, /* Number of aggregate contexts required */
+ int isExplain /* True if the EXPLAIN keywords is present */
+){
+ int n;
+
+ assert( p!=0 );
+ assert( p->magic==VDBE_MAGIC_INIT );
+
+ /* There should be at least one opcode.
+ */
+ assert( p->nOp>0 );
+
+ /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
+ * is because the call to resizeOpArray() below may shrink the
+ * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN
+ * state.
+ */
+ p->magic = VDBE_MAGIC_RUN;
+
+ /* No instruction ever pushes more than a single element onto the
+ ** stack. And the stack never grows on successive executions of the
+ ** same loop. So the total number of instructions is an upper bound
+ ** on the maximum stack depth required. (Added later:) The
+ ** resolveP2Values() call computes a tighter upper bound on the
+ ** stack size.
+ **
+ ** Allocation all the stack space we will ever need.
+ */
+ if( p->aStack==0 ){
+ int nArg; /* Maximum number of args passed to a user function. */
+ int nStack; /* Maximum number of stack entries required */
+ resolveP2Values(p, &nArg, &nStack);
+ resizeOpArray(p, p->nOp);
+ assert( nVar>=0 );
+ assert( nStack<p->nOp );
+ nStack = isExplain ? 10 : nStack;
+ p->aStack = sqliteMalloc(
+ nStack*sizeof(p->aStack[0]) /* aStack */
+ + nArg*sizeof(Mem*) /* apArg */
+ + nVar*sizeof(Mem) /* aVar */
+ + nVar*sizeof(char*) /* azVar */
+ + nMem*sizeof(Mem) /* aMem */
+ + nCursor*sizeof(Cursor*) /* apCsr */
+ + nAgg*sizeof(Agg) /* Aggregate contexts */
+ );
+ if( !sqlite3_malloc_failed ){
+ p->aMem = &p->aStack[nStack];
+ p->nMem = nMem;
+ p->aVar = &p->aMem[nMem];
+ p->nVar = nVar;
+ p->okVar = 0;
+ p->apArg = (Mem**)&p->aVar[nVar];
+ p->azVar = (char**)&p->apArg[nArg];
+ p->apCsr = (Cursor**)&p->azVar[nVar];
+ if( nAgg>0 ){
+ p->nAgg = nAgg;
+ p->apAgg = (Agg*)&p->apCsr[nCursor];
+ }
+ p->nCursor = nCursor;
+ for(n=0; n<nVar; n++){
+ p->aVar[n].flags = MEM_Null;
+ }
+ }
+ }
+ p->pAgg = p->apAgg;
+ for(n=0; n<p->nMem; n++){
+ p->aMem[n].flags = MEM_Null;
+ }
+
+#ifdef SQLITE_DEBUG
+ if( (p->db->flags & SQLITE_VdbeListing)!=0
+ || sqlite3OsFileExists("vdbe_explain")
+ ){
+ int i;
+ printf("VDBE Program Listing:\n");
+ sqlite3VdbePrintSql(p);
+ for(i=0; i<p->nOp; i++){
+ sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
+ }
+ }
+ if( sqlite3OsFileExists("vdbe_trace") ){
+ p->trace = stdout;
+ }
+#endif
+ p->pTos = &p->aStack[-1];
+ p->pc = -1;
+ p->rc = SQLITE_OK;
+ p->uniqueCnt = 0;
+ p->returnDepth = 0;
+ p->errorAction = OE_Abort;
+ p->popStack = 0;
+ p->explain |= isExplain;
+ p->magic = VDBE_MAGIC_RUN;
+ p->nChange = 0;
+#ifdef VDBE_PROFILE
+ {
+ int i;
+ for(i=0; i<p->nOp; i++){
+ p->aOp[i].cnt = 0;
+ p->aOp[i].cycles = 0;
+ }
+ }
+#endif
+}
+
+
+/*
+** Remove any elements that remain on the sorter for the VDBE given.
+*/
+void sqlite3VdbeSorterReset(Vdbe *p){
+ while( p->pSort ){
+ Sorter *pSorter = p->pSort;
+ p->pSort = pSorter->pNext;
+ sqliteFree(pSorter->zKey);
+ sqlite3VdbeMemRelease(&pSorter->data);
+ sqliteFree(pSorter);
+ }
+ p->pSortTail = 0;
+}
+
+/*
+** Free all resources allociated with AggElem pElem, an element of
+** aggregate pAgg.
+*/
+static void freeAggElem(AggElem *pElem, Agg *pAgg){
+ int i;
+ for(i=0; i<pAgg->nMem; i++){
+ Mem *pMem = &pElem->aMem[i];
+ if( pAgg->apFunc && pAgg->apFunc[i] && (pMem->flags & MEM_AggCtx)!=0 ){
+ sqlite3_context ctx;
+ ctx.pFunc = pAgg->apFunc[i];
+ ctx.s.flags = MEM_Null;
+ ctx.pAgg = pMem->z;
+ ctx.cnt = pMem->i;
+ ctx.isError = 0;
+ (*ctx.pFunc->xFinalize)(&ctx);
+ pMem->z = ctx.pAgg;
+ if( pMem->z!=0 && pMem->z!=pMem->zShort ){
+ sqliteFree(pMem->z);
+ }
+ sqlite3VdbeMemRelease(&ctx.s);
+ }else{
+ sqlite3VdbeMemRelease(pMem);
+ }
+ }
+ sqliteFree(pElem);
+}
+
+/*
+** Reset an Agg structure. Delete all its contents.
+**
+** For installable aggregate functions, if the step function has been
+** called, make sure the finalizer function has also been called. The
+** finalizer might need to free memory that was allocated as part of its
+** private context. If the finalizer has not been called yet, call it
+** now.
+**
+** If db is NULL, then this is being called from sqliteVdbeReset(). In
+** this case clean up all references to the temp-table used for
+** aggregates (if it was ever opened).
+**
+** If db is not NULL, then this is being called from with an OP_AggReset
+** opcode. Open the temp-table, if it has not already been opened and
+** delete the contents of the table used for aggregate information, ready
+** for the next round of aggregate processing.
+*/
+int sqlite3VdbeAggReset(sqlite3 *db, Agg *pAgg, KeyInfo *pKeyInfo){
+ int rc = 0;
+ BtCursor *pCsr;
+
+ if( !pAgg ) return SQLITE_OK;
+ pCsr = pAgg->pCsr;
+ assert( (pCsr && pAgg->nTab>0) || (!pCsr && pAgg->nTab==0)
+ || sqlite3_malloc_failed );
+
+ /* If pCsr is not NULL, then the table used for aggregate information
+ ** is open. Loop through it and free the AggElem* structure pointed at
+ ** by each entry. If the finalizer has not been called for an AggElem,
+ ** do that too. Finally, clear the btree table itself.
+ */
+ if( pCsr ){
+ int res;
+ assert( pAgg->pBtree );
+ assert( pAgg->nTab>0 );
+
+ rc=sqlite3BtreeFirst(pCsr, &res);
+ while( res==0 && rc==SQLITE_OK ){
+ AggElem *pElem;
+ rc = sqlite3BtreeData(pCsr, 0, sizeof(AggElem*), (char *)&pElem);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ assert( pAgg->apFunc!=0 );
+ freeAggElem(pElem, pAgg);
+ rc=sqlite3BtreeNext(pCsr, &res);
+ }
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ sqlite3BtreeCloseCursor(pCsr);
+ sqlite3BtreeClearTable(pAgg->pBtree, pAgg->nTab);
+ }else{
+ /* The cursor may not be open because the aggregator was never used,
+ ** or it could be that it was used but there was no GROUP BY clause.
+ */
+ if( pAgg->pCurrent ){
+ freeAggElem(pAgg->pCurrent, pAgg);
+ }
+ }
+
+ /* If db is not NULL and we have not yet and we have not yet opened
+ ** the temporary btree then do so and create the table to store aggregate
+ ** information.
+ **
+ ** If db is NULL, then close the temporary btree if it is open.
+ */
+ if( db ){
+ if( !pAgg->pBtree ){
+ assert( pAgg->nTab==0 );
+#ifndef SQLITE_OMIT_MEMORYDB
+ rc = sqlite3BtreeFactory(db, ":memory:", 0, TEMP_PAGES, &pAgg->pBtree);
+#else
+ rc = sqlite3BtreeFactory(db, 0, 0, TEMP_PAGES, &pAgg->pBtree);
+#endif
+ if( rc!=SQLITE_OK ) return rc;
+ sqlite3BtreeBeginTrans(pAgg->pBtree, 1);
+ rc = sqlite3BtreeCreateTable(pAgg->pBtree, &pAgg->nTab, 0);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ assert( pAgg->nTab!=0 );
+
+ rc = sqlite3BtreeCursor(pAgg->pBtree, pAgg->nTab, 1,
+ sqlite3VdbeRecordCompare, pKeyInfo, &pAgg->pCsr);
+ if( rc!=SQLITE_OK ) return rc;
+ }else{
+ if( pAgg->pBtree ){
+ sqlite3BtreeClose(pAgg->pBtree);
+ pAgg->pBtree = 0;
+ pAgg->nTab = 0;
+ }
+ pAgg->pCsr = 0;
+ }
+
+ if( pAgg->apFunc ){
+ sqliteFree(pAgg->apFunc);
+ pAgg->apFunc = 0;
+ }
+ pAgg->pCurrent = 0;
+ pAgg->nMem = 0;
+ pAgg->searching = 0;
+ return SQLITE_OK;
+}
+
+
+/*
+** Delete a keylist
+*/
+void sqlite3VdbeKeylistFree(Keylist *p){
+ while( p ){
+ Keylist *pNext = p->pNext;
+ sqliteFree(p);
+ p = pNext;
+ }
+}
+
+/*
+** Close a cursor and release all the resources that cursor happens
+** to hold.
+*/
+void sqlite3VdbeFreeCursor(Cursor *pCx){
+ if( pCx==0 ){
+ return;
+ }
+ if( pCx->pCursor ){
+ sqlite3BtreeCloseCursor(pCx->pCursor);
+ }
+ if( pCx->pBt ){
+ sqlite3BtreeClose(pCx->pBt);
+ }
+ sqliteFree(pCx->pData);
+ sqliteFree(pCx->aType);
+ sqliteFree(pCx);
+}
+
+/*
+** Close all cursors
+*/
+static void closeAllCursors(Vdbe *p){
+ int i;
+ if( p->apCsr==0 ) return;
+ for(i=0; i<p->nCursor; i++){
+ sqlite3VdbeFreeCursor(p->apCsr[i]);
+ p->apCsr[i] = 0;
+ }
+}
+
+/*
+** Clean up the VM after execution.
+**
+** This routine will automatically close any cursors, lists, and/or
+** sorters that were left open. It also deletes the values of
+** variables in the aVar[] array.
+*/
+static void Cleanup(Vdbe *p){
+ int i;
+ if( p->aStack ){
+ releaseMemArray(p->aStack, 1 + (p->pTos - p->aStack));
+ p->pTos = &p->aStack[-1];
+ }
+ closeAllCursors(p);
+ releaseMemArray(p->aMem, p->nMem);
+ if( p->pList ){
+ sqlite3VdbeKeylistFree(p->pList);
+ p->pList = 0;
+ }
+ if( p->contextStack ){
+ for(i=0; i<p->contextStackTop; i++){
+ sqlite3VdbeKeylistFree(p->contextStack[i].pList);
+ }
+ sqliteFree(p->contextStack);
+ }
+ sqlite3VdbeSorterReset(p);
+ for(i=0; i<p->nAgg; i++){
+ sqlite3VdbeAggReset(0, &p->apAgg[i], 0);
+ }
+ p->contextStack = 0;
+ p->contextStackDepth = 0;
+ p->contextStackTop = 0;
+ sqliteFree(p->zErrMsg);
+ p->zErrMsg = 0;
+}
+
+/*
+** Set the number of result columns that will be returned by this SQL
+** statement. This is now set at compile time, rather than during
+** execution of the vdbe program so that sqlite3_column_count() can
+** be called on an SQL statement before sqlite3_step().
+*/
+void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
+ Mem *pColName;
+ int n;
+ assert( 0==p->nResColumn );
+ p->nResColumn = nResColumn;
+ n = nResColumn*2;
+ p->aColName = pColName = (Mem*)sqliteMalloc( sizeof(Mem)*n );
+ if( p->aColName==0 ) return;
+ while( n-- > 0 ){
+ (pColName++)->flags = MEM_Null;
+ }
+}
+
+/*
+** Set the name of the idx'th column to be returned by the SQL statement.
+** zName must be a pointer to a nul terminated string.
+**
+** This call must be made after a call to sqlite3VdbeSetNumCols().
+**
+** If N==P3_STATIC it means that zName is a pointer to a constant static
+** string and we can just copy the pointer. If it is P3_DYNAMIC, then
+** the string is freed using sqliteFree() when the vdbe is finished with
+** it. Otherwise, N bytes of zName are copied.
+*/
+int sqlite3VdbeSetColName(Vdbe *p, int idx, const char *zName, int N){
+ int rc;
+ Mem *pColName;
+ assert( idx<(2*p->nResColumn) );
+ if( sqlite3_malloc_failed ) return SQLITE_NOMEM;
+ assert( p->aColName!=0 );
+ pColName = &(p->aColName[idx]);
+ if( N==P3_DYNAMIC || N==P3_STATIC ){
+ rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
+ }else{
+ rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
+ }
+ if( rc==SQLITE_OK && N==P3_DYNAMIC ){
+ pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
+ pColName->xDel = 0;
+ }
+ return rc;
+}
+
+/*
+** A read or write transaction may or may not be active on database handle
+** db. If a transaction is active, commit it. If there is a
+** write-transaction spanning more than one database file, this routine
+** takes care of the master journal trickery.
+*/
+static int vdbeCommit(sqlite3 *db){
+ int i;
+ int nTrans = 0; /* Number of databases with an active write-transaction */
+ int rc = SQLITE_OK;
+ int needXcommit = 0;
+
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt && sqlite3BtreeIsInTrans(pBt) ){
+ needXcommit = 1;
+ if( i!=1 ) nTrans++;
+ }
+ }
+
+ /* If there are any write-transactions at all, invoke the commit hook */
+ if( needXcommit && db->xCommitCallback ){
+ int rc;
+ sqlite3SafetyOff(db);
+ rc = db->xCommitCallback(db->pCommitArg);
+ sqlite3SafetyOn(db);
+ if( rc ){
+ return SQLITE_CONSTRAINT;
+ }
+ }
+
+ /* The simple case - no more than one database file (not counting the
+ ** TEMP database) has a transaction active. There is no need for the
+ ** master-journal.
+ **
+ ** If the return value of sqlite3BtreeGetFilename() is a zero length
+ ** string, it means the main database is :memory:. In that case we do
+ ** not support atomic multi-file commits, so use the simple case then
+ ** too.
+ */
+ if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ rc = sqlite3BtreeSync(pBt, 0);
+ }
+ }
+
+ /* Do the commit only if all databases successfully synced */
+ if( rc==SQLITE_OK ){
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ sqlite3BtreeCommit(pBt);
+ }
+ }
+ }
+ }
+
+ /* The complex case - There is a multi-file write-transaction active.
+ ** This requires a master journal file to ensure the transaction is
+ ** committed atomicly.
+ */
+#ifndef SQLITE_OMIT_DISKIO
+ else{
+ char *zMaster = 0; /* File-name for the master journal */
+ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
+ OsFile master;
+
+ /* Select a master journal file name */
+ do {
+ u32 random;
+ sqliteFree(zMaster);
+ sqlite3Randomness(sizeof(random), &random);
+ zMaster = sqlite3MPrintf("%s-mj%08X", zMainFile, random&0x7fffffff);
+ if( !zMaster ){
+ return SQLITE_NOMEM;
+ }
+ }while( sqlite3OsFileExists(zMaster) );
+
+ /* Open the master journal. */
+ memset(&master, 0, sizeof(master));
+ rc = sqlite3OsOpenExclusive(zMaster, &master, 0);
+ if( rc!=SQLITE_OK ){
+ sqliteFree(zMaster);
+ return rc;
+ }
+
+ /* Write the name of each database file in the transaction into the new
+ ** master journal file. If an error occurs at this point close
+ ** and delete the master journal file. All the individual journal files
+ ** still have 'null' as the master journal pointer, so they will roll
+ ** back independently if a failure occurs.
+ */
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( i==1 ) continue; /* Ignore the TEMP database */
+ if( pBt && sqlite3BtreeIsInTrans(pBt) ){
+ char const *zFile = sqlite3BtreeGetJournalname(pBt);
+ if( zFile[0]==0 ) continue; /* Ignore :memory: databases */
+ rc = sqlite3OsWrite(&master, zFile, strlen(zFile)+1);
+ if( rc!=SQLITE_OK ){
+ sqlite3OsClose(&master);
+ sqlite3OsDelete(zMaster);
+ sqliteFree(zMaster);
+ return rc;
+ }
+ }
+ }
+
+
+ /* Sync the master journal file. Before doing this, open the directory
+ ** the master journal file is store in so that it gets synced too.
+ */
+ zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
+ rc = sqlite3OsOpenDirectory(zMainFile, &master);
+ if( rc!=SQLITE_OK || (rc = sqlite3OsSync(&master))!=SQLITE_OK ){
+ sqlite3OsClose(&master);
+ sqlite3OsDelete(zMaster);
+ sqliteFree(zMaster);
+ return rc;
+ }
+
+ /* Sync all the db files involved in the transaction. The same call
+ ** sets the master journal pointer in each individual journal. If
+ ** an error occurs here, do not delete the master journal file.
+ **
+ ** If the error occurs during the first call to sqlite3BtreeSync(),
+ ** then there is a chance that the master journal file will be
+ ** orphaned. But we cannot delete it, in case the master journal
+ ** file name was written into the journal file before the failure
+ ** occured.
+ */
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt && sqlite3BtreeIsInTrans(pBt) ){
+ rc = sqlite3BtreeSync(pBt, zMaster);
+ if( rc!=SQLITE_OK ){
+ sqlite3OsClose(&master);
+ sqliteFree(zMaster);
+ return rc;
+ }
+ }
+ }
+ sqlite3OsClose(&master);
+
+ /* Delete the master journal file. This commits the transaction. After
+ ** doing this the directory is synced again before any individual
+ ** transaction files are deleted.
+ */
+ rc = sqlite3OsDelete(zMaster);
+ assert( rc==SQLITE_OK );
+ sqliteFree(zMaster);
+ zMaster = 0;
+ rc = sqlite3OsSyncDirectory(zMainFile);
+ if( rc!=SQLITE_OK ){
+ /* This is not good. The master journal file has been deleted, but
+ ** the directory sync failed. There is no completely safe course of
+ ** action from here. The individual journals contain the name of the
+ ** master journal file, but there is no way of knowing if that
+ ** master journal exists now or if it will exist after the operating
+ ** system crash that may follow the fsync() failure.
+ */
+ return rc;
+ }
+
+ /* All files and directories have already been synced, so the following
+ ** calls to sqlite3BtreeCommit() are only closing files and deleting
+ ** journals. If something goes wrong while this is happening we don't
+ ** really care. The integrity of the transaction is already guaranteed,
+ ** but some stray 'cold' journals may be lying around. Returning an
+ ** error code won't help matters.
+ */
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ sqlite3BtreeCommit(pBt);
+ }
+ }
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** Find every active VM other than pVdbe and change its status to
+** aborted. This happens when one VM causes a rollback due to an
+** ON CONFLICT ROLLBACK clause (for example). The other VMs must be
+** aborted so that they do not have data rolled out from underneath
+** them leading to a segfault.
+*/
+static void abortOtherActiveVdbes(Vdbe *pVdbe){
+ Vdbe *pOther;
+ for(pOther=pVdbe->db->pVdbe; pOther; pOther=pOther->pNext){
+ if( pOther==pVdbe ) continue;
+ if( pOther->magic!=VDBE_MAGIC_RUN || pOther->pc<0 ) continue;
+ closeAllCursors(pOther);
+ pOther->aborted = 1;
+ }
+}
+
+/*
+** This routine checks that the sqlite3.activeVdbeCnt count variable
+** matches the number of vdbe's in the list sqlite3.pVdbe that are
+** currently active. An assertion fails if the two counts do not match.
+** This is an internal self-check only - it is not an essential processing
+** step.
+**
+** This is a no-op if NDEBUG is defined.
+*/
+#ifndef NDEBUG
+static void checkActiveVdbeCnt(sqlite3 *db){
+ Vdbe *p;
+ int cnt = 0;
+ p = db->pVdbe;
+ while( p ){
+ if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
+ cnt++;
+ }
+ p = p->pNext;
+ }
+ assert( cnt==db->activeVdbeCnt );
+}
+#else
+#define checkActiveVdbeCnt(x)
+#endif
+
+/*
+** This routine is called the when a VDBE tries to halt. If the VDBE
+** has made changes and is in autocommit mode, then commit those
+** changes. If a rollback is needed, then do the rollback.
+**
+** This routine is the only way to move the state of a VM from
+** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.
+**
+** Return an error code. If the commit could not complete because of
+** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
+** means the close did not happen and needs to be repeated.
+*/
+int sqlite3VdbeHalt(Vdbe *p){
+ sqlite3 *db = p->db;
+ int i;
+ int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */
+
+ if( p->magic!=VDBE_MAGIC_RUN ){
+ /* Already halted. Nothing to do. */
+ assert( p->magic==VDBE_MAGIC_HALT );
+ return SQLITE_OK;
+ }
+ closeAllCursors(p);
+ checkActiveVdbeCnt(db);
+ if( p->pc<0 ){
+ /* No commit or rollback needed if the program never started */
+ }else if( db->autoCommit && db->activeVdbeCnt==1 ){
+ if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
+ /* The auto-commit flag is true, there are no other active queries
+ ** using this handle and the vdbe program was successful or hit an
+ ** 'OR FAIL' constraint. This means a commit is required.
+ */
+ int rc = vdbeCommit(db);
+ if( rc==SQLITE_BUSY ){
+ return SQLITE_BUSY;
+ }else if( rc!=SQLITE_OK ){
+ p->rc = rc;
+ xFunc = sqlite3BtreeRollback;
+ }
+ }else{
+ xFunc = sqlite3BtreeRollback;
+ }
+ }else{
+ if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
+ xFunc = sqlite3BtreeCommitStmt;
+ }else if( p->errorAction==OE_Abort ){
+ xFunc = sqlite3BtreeRollbackStmt;
+ }else{
+ xFunc = sqlite3BtreeRollback;
+ db->autoCommit = 1;
+ abortOtherActiveVdbes(p);
+ }
+ }
+
+ /* If xFunc is not NULL, then it is one of sqlite3BtreeRollback,
+ ** sqlite3BtreeRollbackStmt or sqlite3BtreeCommitStmt. Call it once on
+ ** each backend. If an error occurs and the return code is still
+ ** SQLITE_OK, set the return code to the new error value.
+ */
+ for(i=0; xFunc && i<db->nDb; i++){
+ int rc;
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ rc = xFunc(pBt);
+ if( p->rc==SQLITE_OK ) p->rc = rc;
+ }
+ }
+
+ /* If this was an INSERT, UPDATE or DELETE, set the change counter. */
+ if( p->changeCntOn && p->pc>=0 ){
+ if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
+ sqlite3VdbeSetChanges(db, p->nChange);
+ }else{
+ sqlite3VdbeSetChanges(db, 0);
+ }
+ p->nChange = 0;
+ }
+
+ /* Rollback or commit any schema changes that occurred. */
+ if( p->rc!=SQLITE_OK ){
+ sqlite3RollbackInternalChanges(db);
+ }else if( db->flags & SQLITE_InternChanges ){
+ sqlite3CommitInternalChanges(db);
+ }
+
+ /* We have successfully halted and closed the VM. Record this fact. */
+ if( p->pc>=0 ){
+ db->activeVdbeCnt--;
+ }
+ p->magic = VDBE_MAGIC_HALT;
+ checkActiveVdbeCnt(db);
+
+ return SQLITE_OK;
+}
+
+/*
+** Clean up a VDBE after execution but do not delete the VDBE just yet.
+** Write any error messages into *pzErrMsg. Return the result code.
+**
+** After this routine is run, the VDBE should be ready to be executed
+** again.
+**
+** To look at it another way, this routine resets the state of the
+** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
+** VDBE_MAGIC_INIT.
+*/
+int sqlite3VdbeReset(Vdbe *p){
+ if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
+ sqlite3Error(p->db, SQLITE_MISUSE, 0);
+ return SQLITE_MISUSE;
+ }
+
+ /* If the VM did not run to completion or if it encountered an
+ ** error, then it might not have been halted properly. So halt
+ ** it now.
+ */
+ sqlite3VdbeHalt(p);
+
+ /* If the VDBE has be run even partially, then transfer the error code
+ ** and error message from the VDBE into the main database structure. But
+ ** if the VDBE has just been set to run but has not actually executed any
+ ** instructions yet, leave the main database error information unchanged.
+ */
+ if( p->pc>=0 ){
+ if( p->zErrMsg ){
+ sqlite3Error(p->db, p->rc, "%s", p->zErrMsg);
+ sqliteFree(p->zErrMsg);
+ p->zErrMsg = 0;
+ }else if( p->rc ){
+ sqlite3Error(p->db, p->rc, 0);
+ }else{
+ sqlite3Error(p->db, SQLITE_OK, 0);
+ }
+ }else if( p->rc && p->expired ){
+ /* The expired flag was set on the VDBE before the first call
+ ** to sqlite3_step(). For consistency (since sqlite3_step() was
+ ** called), set the database error in this case as well.
+ */
+ sqlite3Error(p->db, p->rc, 0);
+ }
+
+ /* Reclaim all memory used by the VDBE
+ */
+ Cleanup(p);
+
+ /* Save profiling information from this VDBE run.
+ */
+ assert( p->pTos<&p->aStack[p->pc<0?0:p->pc] || sqlite3_malloc_failed==1 );
+#ifdef VDBE_PROFILE
+ {
+ FILE *out = fopen("vdbe_profile.out", "a");
+ if( out ){
+ int i;
+ fprintf(out, "---- ");
+ for(i=0; i<p->nOp; i++){
+ fprintf(out, "%02x", p->aOp[i].opcode);
+ }
+ fprintf(out, "\n");
+ for(i=0; i<p->nOp; i++){
+ fprintf(out, "%6d %10lld %8lld ",
+ p->aOp[i].cnt,
+ p->aOp[i].cycles,
+ p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
+ );
+ sqlite3VdbePrintOp(out, i, &p->aOp[i]);
+ }
+ fclose(out);
+ }
+ }
+#endif
+ p->magic = VDBE_MAGIC_INIT;
+ p->aborted = 0;
+ if( p->rc==SQLITE_SCHEMA ){
+ sqlite3ResetInternalSchema(p->db, 0);
+ }
+ return p->rc;
+}
+
+/*
+** Clean up and delete a VDBE after execution. Return an integer which is
+** the result code. Write any error message text into *pzErrMsg.
+*/
+int sqlite3VdbeFinalize(Vdbe *p){
+ int rc = SQLITE_OK;
+
+ if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
+ rc = sqlite3VdbeReset(p);
+ }else if( p->magic!=VDBE_MAGIC_INIT ){
+ return SQLITE_MISUSE;
+ }
+ sqlite3VdbeDelete(p);
+ return rc;
+}
+
+/*
+** Call the destructor for each auxdata entry in pVdbeFunc for which
+** the corresponding bit in mask is clear. Auxdata entries beyond 31
+** are always destroyed. To destroy all auxdata entries, call this
+** routine with mask==0.
+*/
+void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
+ int i;
+ for(i=0; i<pVdbeFunc->nAux; i++){
+ struct AuxData *pAux = &pVdbeFunc->apAux[i];
+ if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
+ if( pAux->xDelete ){
+ pAux->xDelete(pAux->pAux);
+ }
+ pAux->pAux = 0;
+ }
+ }
+}
+
+/*
+** Delete an entire VDBE.
+*/
+void sqlite3VdbeDelete(Vdbe *p){
+ int i;
+ if( p==0 ) return;
+ Cleanup(p);
+ if( p->pPrev ){
+ p->pPrev->pNext = p->pNext;
+ }else{
+ assert( p->db->pVdbe==p );
+ p->db->pVdbe = p->pNext;
+ }
+ if( p->pNext ){
+ p->pNext->pPrev = p->pPrev;
+ }
+ if( p->aOp ){
+ for(i=0; i<p->nOp; i++){
+ Op *pOp = &p->aOp[i];
+ if( pOp->p3type==P3_DYNAMIC || pOp->p3type==P3_KEYINFO ){
+ sqliteFree(pOp->p3);
+ }
+ if( pOp->p3type==P3_VDBEFUNC ){
+ VdbeFunc *pVdbeFunc = (VdbeFunc *)pOp->p3;
+ sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
+ sqliteFree(pVdbeFunc);
+ }
+ if( pOp->p3type==P3_MEM ){
+ sqlite3ValueFree((sqlite3_value*)pOp->p3);
+ }
+ }
+ sqliteFree(p->aOp);
+ }
+ releaseMemArray(p->aVar, p->nVar);
+ sqliteFree(p->aLabel);
+ sqliteFree(p->aStack);
+ releaseMemArray(p->aColName, p->nResColumn*2);
+ sqliteFree(p->aColName);
+ p->magic = VDBE_MAGIC_DEAD;
+ sqliteFree(p);
+}
+
+/*
+** If a MoveTo operation is pending on the given cursor, then do that
+** MoveTo now. Return an error code. If no MoveTo is pending, this
+** routine does nothing and returns SQLITE_OK.
+*/
+int sqlite3VdbeCursorMoveto(Cursor *p){
+ if( p->deferredMoveto ){
+ int res, rc;
+ extern int sqlite3_search_count;
+ assert( p->isTable );
+ if( p->isTable ){
+ rc = sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, &res);
+ }else{
+ rc = sqlite3BtreeMoveto(p->pCursor,(char*)&p->movetoTarget,
+ sizeof(i64),&res);
+ }
+ if( rc ) return rc;
+ *p->pIncrKey = 0;
+ p->lastRowid = keyToInt(p->movetoTarget);
+ p->rowidIsValid = res==0;
+ if( res<0 ){
+ rc = sqlite3BtreeNext(p->pCursor, &res);
+ if( rc ) return rc;
+ }
+ sqlite3_search_count++;
+ p->deferredMoveto = 0;
+ p->cacheValid = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** The following functions:
+**
+** sqlite3VdbeSerialType()
+** sqlite3VdbeSerialTypeLen()
+** sqlite3VdbeSerialRead()
+** sqlite3VdbeSerialLen()
+** sqlite3VdbeSerialWrite()
+**
+** encapsulate the code that serializes values for storage in SQLite
+** data and index records. Each serialized value consists of a
+** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
+** integer, stored as a varint.
+**
+** In an SQLite index record, the serial type is stored directly before
+** the blob of data that it corresponds to. In a table record, all serial
+** types are stored at the start of the record, and the blobs of data at
+** the end. Hence these functions allow the caller to handle the
+** serial-type and data blob seperately.
+**
+** The following table describes the various storage classes for data:
+**
+** serial type bytes of data type
+** -------------- --------------- ---------------
+** 0 0 NULL
+** 1 1 signed integer
+** 2 2 signed integer
+** 3 3 signed integer
+** 4 4 signed integer
+** 5 6 signed integer
+** 6 8 signed integer
+** 7 8 IEEE float
+** 8-11 reserved for expansion
+** N>=12 and even (N-12)/2 BLOB
+** N>=13 and odd (N-13)/2 text
+**
+*/
+
+/*
+** Return the serial-type for the value stored in pMem.
+*/
+u32 sqlite3VdbeSerialType(Mem *pMem){
+ int flags = pMem->flags;
+
+ if( flags&MEM_Null ){
+ return 0;
+ }
+ if( flags&MEM_Int ){
+ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
+# define MAX_6BYTE ((((i64)0x00001000)<<32)-1)
+ i64 i = pMem->i;
+ u64 u = i<0 ? -i : i;
+ if( u<=127 ) return 1;
+ if( u<=32767 ) return 2;
+ if( u<=8388607 ) return 3;
+ if( u<=2147483647 ) return 4;
+ if( u<=MAX_6BYTE ) return 5;
+ return 6;
+ }
+ if( flags&MEM_Real ){
+ return 7;
+ }
+ if( flags&MEM_Str ){
+ int n = pMem->n;
+ assert( n>=0 );
+ return ((n*2) + 13);
+ }
+ if( flags&MEM_Blob ){
+ return (pMem->n*2 + 12);
+ }
+ return 0;
+}
+
+/*
+** Return the length of the data corresponding to the supplied serial-type.
+*/
+int sqlite3VdbeSerialTypeLen(u32 serial_type){
+ if( serial_type>=12 ){
+ return (serial_type-12)/2;
+ }else{
+ static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
+ return aSize[serial_type];
+ }
+}
+
+/*
+** Write the serialized data blob for the value stored in pMem into
+** buf. It is assumed that the caller has allocated sufficient space.
+** Return the number of bytes written.
+*/
+int sqlite3VdbeSerialPut(unsigned char *buf, Mem *pMem){
+ u32 serial_type = sqlite3VdbeSerialType(pMem);
+ int len;
+
+ /* NULL */
+ if( serial_type==0 ){
+ return 0;
+ }
+
+ /* Integer and Real */
+ if( serial_type<=7 ){
+ u64 v;
+ int i;
+ if( serial_type==7 ){
+ v = *(u64*)&pMem->r;
+ }else{
+ v = *(u64*)&pMem->i;
+ }
+ len = i = sqlite3VdbeSerialTypeLen(serial_type);
+ while( i-- ){
+ buf[i] = (v&0xFF);
+ v >>= 8;
+ }
+ return len;
+ }
+
+ /* String or blob */
+ assert( serial_type>=12 );
+ len = sqlite3VdbeSerialTypeLen(serial_type);
+ memcpy(buf, pMem->z, len);
+ return len;
+}
+
+/*
+** Deserialize the data blob pointed to by buf as serial type serial_type
+** and store the result in pMem. Return the number of bytes read.
+*/
+int sqlite3VdbeSerialGet(
+ const unsigned char *buf, /* Buffer to deserialize from */
+ u32 serial_type, /* Serial type to deserialize */
+ Mem *pMem /* Memory cell to write value into */
+){
+ switch( serial_type ){
+ case 8: /* Reserved for future use */
+ case 9: /* Reserved for future use */
+ case 10: /* Reserved for future use */
+ case 11: /* Reserved for future use */
+ case 0: { /* NULL */
+ pMem->flags = MEM_Null;
+ break;
+ }
+ case 1: { /* 1-byte signed integer */
+ pMem->i = (signed char)buf[0];
+ pMem->flags = MEM_Int;
+ return 1;
+ }
+ case 2: { /* 2-byte signed integer */
+ pMem->i = (((signed char)buf[0])<<8) | buf[1];
+ pMem->flags = MEM_Int;
+ return 2;
+ }
+ case 3: { /* 3-byte signed integer */
+ pMem->i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
+ pMem->flags = MEM_Int;
+ return 3;
+ }
+ case 4: { /* 4-byte signed integer */
+ pMem->i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
+ pMem->flags = MEM_Int;
+ return 4;
+ }
+ case 5: { /* 6-byte signed integer */
+ u64 x = (((signed char)buf[0])<<8) | buf[1];
+ u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
+ x = (x<<32) | y;
+ pMem->i = *(i64*)&x;
+ pMem->flags = MEM_Int;
+ return 6;
+ }
+ case 6: /* 6-byte signed integer */
+ case 7: { /* IEEE floating point */
+ u64 x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
+ u32 y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
+ x = (x<<32) | y;
+ if( serial_type==6 ){
+ pMem->i = *(i64*)&x;
+ pMem->flags = MEM_Int;
+ }else{
+ pMem->r = *(double*)&x;
+ pMem->flags = MEM_Real;
+ }
+ return 8;
+ }
+ default: {
+ int len = (serial_type-12)/2;
+ pMem->z = (char *)buf;
+ pMem->n = len;
+ pMem->xDel = 0;
+ if( serial_type&0x01 ){
+ pMem->flags = MEM_Str | MEM_Ephem;
+ }else{
+ pMem->flags = MEM_Blob | MEM_Ephem;
+ }
+ return len;
+ }
+ }
+ return 0;
+}
+
+/*
+** This function compares the two table rows or index records specified by
+** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero
+** or positive integer if {nKey1, pKey1} is less than, equal to or
+** greater than {nKey2, pKey2}. Both Key1 and Key2 must be byte strings
+** composed by the OP_MakeRecord opcode of the VDBE.
+*/
+int sqlite3VdbeRecordCompare(
+ void *userData,
+ int nKey1, const void *pKey1,
+ int nKey2, const void *pKey2
+){
+ KeyInfo *pKeyInfo = (KeyInfo*)userData;
+ u32 d1, d2; /* Offset into aKey[] of next data element */
+ u32 idx1, idx2; /* Offset into aKey[] of next header element */
+ u32 szHdr1, szHdr2; /* Number of bytes in header */
+ int i = 0;
+ int nField;
+ int rc = 0;
+ const unsigned char *aKey1 = (const unsigned char *)pKey1;
+ const unsigned char *aKey2 = (const unsigned char *)pKey2;
+
+ Mem mem1;
+ Mem mem2;
+ mem1.enc = pKeyInfo->enc;
+ mem2.enc = pKeyInfo->enc;
+
+ idx1 = sqlite3GetVarint32(pKey1, &szHdr1);
+ d1 = szHdr1;
+ idx2 = sqlite3GetVarint32(pKey2, &szHdr2);
+ d2 = szHdr2;
+ nField = pKeyInfo->nField;
+ while( idx1<szHdr1 && idx2<szHdr2 ){
+ u32 serial_type1;
+ u32 serial_type2;
+
+ /* Read the serial types for the next element in each key. */
+ idx1 += sqlite3GetVarint32(&aKey1[idx1], &serial_type1);
+ if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
+ idx2 += sqlite3GetVarint32(&aKey2[idx2], &serial_type2);
+ if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break;
+
+ /* Assert that there is enough space left in each key for the blob of
+ ** data to go with the serial type just read. This assert may fail if
+ ** the file is corrupted. Then read the value from each key into mem1
+ ** and mem2 respectively.
+ */
+ d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
+ d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2);
+
+ rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0);
+ if( mem1.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem1);
+ if( mem2.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem2);
+ if( rc!=0 ){
+ break;
+ }
+ i++;
+ }
+
+ /* One of the keys ran out of fields, but all the fields up to that point
+ ** were equal. If the incrKey flag is true, then the second key is
+ ** treated as larger.
+ */
+ if( rc==0 ){
+ if( pKeyInfo->incrKey ){
+ rc = -1;
+ }else if( d1<nKey1 ){
+ rc = 1;
+ }else if( d2<nKey2 ){
+ rc = -1;
+ }
+ }
+
+ if( pKeyInfo->aSortOrder && i<pKeyInfo->nField && pKeyInfo->aSortOrder[i] ){
+ rc = -rc;
+ }
+
+ return rc;
+}
+
+/*
+** The argument is an index entry composed using the OP_MakeRecord opcode.
+** The last entry in this record should be an integer (specifically
+** an integer rowid). This routine returns the number of bytes in
+** that integer.
+*/
+int sqlite3VdbeIdxRowidLen(int nKey, const u8 *aKey){
+ u32 szHdr; /* Size of the header */
+ u32 typeRowid; /* Serial type of the rowid */
+
+ sqlite3GetVarint32(aKey, &szHdr);
+ sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid);
+ return sqlite3VdbeSerialTypeLen(typeRowid);
+}
+
+
+/*
+** pCur points at an index entry created using the OP_MakeRecord opcode.
+** Read the rowid (the last field in the record) and store it in *rowid.
+** Return SQLITE_OK if everything works, or an error code otherwise.
+*/
+int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
+ i64 nCellKey;
+ int rc;
+ u32 szHdr; /* Size of the header */
+ u32 typeRowid; /* Serial type of the rowid */
+ u32 lenRowid; /* Size of the rowid */
+ Mem m, v;
+
+ sqlite3BtreeKeySize(pCur, &nCellKey);
+ if( nCellKey<=0 ){
+ return SQLITE_CORRUPT;
+ }
+ rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
+ if( rc ){
+ return rc;
+ }
+ sqlite3GetVarint32(m.z, &szHdr);
+ sqlite3GetVarint32(&m.z[szHdr-1], &typeRowid);
+ lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
+ sqlite3VdbeSerialGet(&m.z[m.n-lenRowid], typeRowid, &v);
+ *rowid = v.i;
+ sqlite3VdbeMemRelease(&m);
+ return SQLITE_OK;
+}
+
+/*
+** Compare the key of the index entry that cursor pC is point to against
+** the key string in pKey (of length nKey). Write into *pRes a number
+** that is negative, zero, or positive if pC is less than, equal to,
+** or greater than pKey. Return SQLITE_OK on success.
+**
+** pKey is either created without a rowid or is truncated so that it
+** omits the rowid at the end. The rowid at the end of the index entry
+** is ignored as well.
+*/
+int sqlite3VdbeIdxKeyCompare(
+ Cursor *pC, /* The cursor to compare against */
+ int nKey, const u8 *pKey, /* The key to compare */
+ int *res /* Write the comparison result here */
+){
+ i64 nCellKey;
+ int rc;
+ BtCursor *pCur = pC->pCursor;
+ int lenRowid;
+ Mem m;
+
+ sqlite3BtreeKeySize(pCur, &nCellKey);
+ if( nCellKey<=0 ){
+ *res = 0;
+ return SQLITE_OK;
+ }
+ rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
+ if( rc ){
+ return rc;
+ }
+ lenRowid = sqlite3VdbeIdxRowidLen(m.n, m.z);
+ *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey);
+ sqlite3VdbeMemRelease(&m);
+ return SQLITE_OK;
+}
+
+/*
+** This routine sets the value to be returned by subsequent calls to
+** sqlite3_changes() on the database handle 'db'.
+*/
+void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
+ db->nChange = nChange;
+ db->nTotalChange += nChange;
+}
+
+/*
+** Set a flag in the vdbe to update the change counter when it is finalised
+** or reset.
+*/
+void sqlite3VdbeCountChanges(Vdbe *v){
+ v->changeCntOn = 1;
+}
+
+/*
+** Mark every prepared statement associated with a database connection
+** as expired.
+**
+** An expired statement means that recompilation of the statement is
+** recommend. Statements expire when things happen that make their
+** programs obsolete. Removing user-defined functions or collating
+** sequences, or changing an authorization function are the types of
+** things that make prepared statements obsolete.
+*/
+void sqlite3ExpirePreparedStatements(sqlite3 *db){
+ Vdbe *p;
+ for(p = db->pVdbe; p; p=p->pNext){
+ p->expired = 1;
+ }
+}
+
+/*
+** Return the database associated with the Vdbe.
+*/
+sqlite3 *sqlite3VdbeDb(Vdbe *v){
+ return v->db;
+}