1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
|
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements. This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows. Indices are selected and used to speed the search when doing
** so is applicable. Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.1.1.1 2006/02/03 20:35:19 hoganrobert Exp $
*/
#include "sqliteInt.h"
/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause. Each WHERE
** clause subexpression is separated from the others by an AND operator.
**
** The idxLeft and idxRight fields are the VDBE cursor numbers for the
** table that contains the column that appears on the left-hand and
** right-hand side of ExprInfo.p. If either side of ExprInfo.p is
** something other than a simple column reference, then idxLeft or
** idxRight are -1.
**
** It is the VDBE cursor number is the value stored in Expr.iTable
** when Expr.op==TK_COLUMN and the value stored in SrcList.a[].iCursor.
**
** prereqLeft, prereqRight, and prereqAll record sets of cursor numbers,
** but they do so indirectly. A single ExprMaskSet structure translates
** cursor number into bits and the translated bit is stored in the prereq
** fields. The translation is used in order to maximize the number of
** bits that will fit in a Bitmask. The VDBE cursor numbers might be
** spread out over the non-negative integers. For example, the cursor
** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet
** translates these sparse cursor numbers into consecutive integers
** beginning with 0 in order to make the best possible use of the available
** bits in the Bitmask. So, in the example above, the cursor numbers
** would be mapped into integers 0 through 7.
**
** prereqLeft tells us every VDBE cursor that is referenced on the
** left-hand side of ExprInfo.p. prereqRight does the same for the
** right-hand side of the expression. The following identity always
** holds:
**
** prereqAll = prereqLeft | prereqRight
**
** The ExprInfo.indexable field is true if the ExprInfo.p expression
** is of a form that might control an index. Indexable expressions
** look like this:
**
** <column> <op> <expr>
**
** Where <column> is a simple column name and <op> is on of the operators
** that allowedOp() recognizes.
*/
typedef struct ExprInfo ExprInfo;
struct ExprInfo {
Expr *p; /* Pointer to the subexpression */
u8 indexable; /* True if this subexprssion is usable by an index */
short int idxLeft; /* p->pLeft is a column in this table number. -1 if
** p->pLeft is not the column of any table */
short int idxRight; /* p->pRight is a column in this table number. -1 if
** p->pRight is not the column of any table */
Bitmask prereqLeft; /* Bitmask of tables referenced by p->pLeft */
Bitmask prereqRight; /* Bitmask of tables referenced by p->pRight */
Bitmask prereqAll; /* Bitmask of tables referenced by p */
};
/*
** An instance of the following structure keeps track of a mapping
** between VDBE cursor numbers and bits of the bitmasks in ExprInfo.
**
** The VDBE cursor numbers are small integers contained in
** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
** clause, the cursor numbers might not begin with 0 and they might
** contain gaps in the numbering sequence. But we want to make maximum
** use of the bits in our bitmasks. This structure provides a mapping
** from the sparse cursor numbers into consecutive integers beginning
** with 0.
**
** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
**
** For example, if the WHERE clause expression used these VDBE
** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure
** would map those cursor numbers into bits 0 through 5.
**
** Note that the mapping is not necessarily ordered. In the example
** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
** 57->5, 73->4. Or one of 719 other combinations might be used. It
** does not really matter. What is important is that sparse cursor
** numbers all get mapped into bit numbers that begin with 0 and contain
** no gaps.
*/
typedef struct ExprMaskSet ExprMaskSet;
struct ExprMaskSet {
int n; /* Number of assigned cursor values */
int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */
};
/*
** Determine the number of elements in an array.
*/
#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
/*
** This routine identifies subexpressions in the WHERE clause where
** each subexpression is separate by the AND operator. aSlot is
** filled with pointers to the subexpressions. For example:
**
** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
** \________/ \_______________/ \________________/
** slot[0] slot[1] slot[2]
**
** The original WHERE clause in pExpr is unaltered. All this routine
** does is make aSlot[] entries point to substructure within pExpr.
**
** aSlot[] is an array of subexpressions structures. There are nSlot
** spaces left in this array. This routine finds as many AND-separated
** subexpressions as it can and puts pointers to those subexpressions
** into aSlot[] entries. The return value is the number of slots filled.
*/
static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
int cnt = 0;
if( pExpr==0 || nSlot<1 ) return 0;
if( nSlot==1 || pExpr->op!=TK_AND ){
aSlot[0].p = pExpr;
return 1;
}
if( pExpr->pLeft->op!=TK_AND ){
aSlot[0].p = pExpr->pLeft;
cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
}else{
cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
}
return cnt;
}
/*
** Initialize an expression mask set
*/
#define initMaskSet(P) memset(P, 0, sizeof(*P))
/*
** Return the bitmask for the given cursor number. Return 0 if
** iCursor is not in the set.
*/
static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
int i;
for(i=0; i<pMaskSet->n; i++){
if( pMaskSet->ix[i]==iCursor ){
return ((Bitmask)1)<<i;
}
}
return 0;
}
/*
** Create a new mask for cursor iCursor.
*/
static void createMask(ExprMaskSet *pMaskSet, int iCursor){
if( pMaskSet->n<ARRAYSIZE(pMaskSet->ix) ){
pMaskSet->ix[pMaskSet->n++] = iCursor;
}
}
/*
** Destroy an expression mask set
*/
#define freeMaskSet(P) /* NO-OP */
/*
** This routine walks (recursively) an expression tree and generates
** a bitmask indicating which tables are used in that expression
** tree.
**
** In order for this routine to work, the calling function must have
** previously invoked sqlite3ExprResolveNames() on the expression. See
** the header comment on that routine for additional information.
** The sqlite3ExprResolveNames() routines looks for column names and
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
** the VDBE cursor number of the table.
*/
static Bitmask exprListTableUsage(ExprMaskSet *, ExprList *);
static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
Bitmask mask = 0;
if( p==0 ) return 0;
if( p->op==TK_COLUMN ){
mask = getMask(pMaskSet, p->iTable);
return mask;
}
mask = exprTableUsage(pMaskSet, p->pRight);
mask |= exprTableUsage(pMaskSet, p->pLeft);
mask |= exprListTableUsage(pMaskSet, p->pList);
if( p->pSelect ){
Select *pS = p->pSelect;
mask |= exprListTableUsage(pMaskSet, pS->pEList);
mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
mask |= exprTableUsage(pMaskSet, pS->pWhere);
mask |= exprTableUsage(pMaskSet, pS->pHaving);
}
return mask;
}
static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
int i;
Bitmask mask = 0;
if( pList ){
for(i=0; i<pList->nExpr; i++){
mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
}
}
return mask;
}
/*
** Return TRUE if the given operator is one of the operators that is
** allowed for an indexable WHERE clause term. The allowed operators are
** "=", "<", ">", "<=", ">=", and "IN".
*/
static int allowedOp(int op){
assert( TK_GT==TK_LE-1 && TK_LE==TK_LT-1 && TK_LT==TK_GE-1 && TK_EQ==TK_GT-1);
return op==TK_IN || (op>=TK_EQ && op<=TK_GE);
}
/*
** Swap two objects of type T.
*/
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
/*
** Return the index in the SrcList that uses cursor iCur. If iCur is
** used by the first entry in SrcList return 0. If iCur is used by
** the second entry return 1. And so forth.
**
** SrcList is the set of tables in the FROM clause in the order that
** they will be processed. The value returned here gives us an index
** of which tables will be processed first.
*/
static int tableOrder(SrcList *pList, int iCur){
int i;
struct SrcList_item *pItem;
for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
if( pItem->iCursor==iCur ) return i;
}
return -1;
}
/*
** The input to this routine is an ExprInfo structure with only the
** "p" field filled in. The job of this routine is to analyze the
** subexpression and populate all the other fields of the ExprInfo
** structure.
*/
static void exprAnalyze(SrcList *pSrc, ExprMaskSet *pMaskSet, ExprInfo *pInfo){
Expr *pExpr = pInfo->p;
pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
pInfo->indexable = 0;
pInfo->idxLeft = -1;
pInfo->idxRight = -1;
if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
pInfo->idxRight = pExpr->pRight->iTable;
pInfo->indexable = 1;
}
if( pExpr->pLeft->op==TK_COLUMN ){
pInfo->idxLeft = pExpr->pLeft->iTable;
pInfo->indexable = 1;
}
}
if( pInfo->indexable ){
assert( pInfo->idxLeft!=pInfo->idxRight );
/* We want the expression to be of the form "X = expr", not "expr = X".
** So flip it over if necessary. If the expression is "X = Y", then
** we want Y to come from an earlier table than X.
**
** The collating sequence rule is to always choose the left expression.
** So if we do a flip, we also have to move the collating sequence.
*/
if( tableOrder(pSrc,pInfo->idxLeft)<tableOrder(pSrc,pInfo->idxRight) ){
assert( pExpr->op!=TK_IN );
SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
if( pExpr->op>=TK_GT ){
assert( TK_LT==TK_GT+2 );
assert( TK_GE==TK_LE+2 );
assert( TK_GT>TK_EQ );
assert( TK_GT<TK_LE );
assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
}
SWAP(unsigned, pInfo->prereqLeft, pInfo->prereqRight);
SWAP(short int, pInfo->idxLeft, pInfo->idxRight);
}
}
}
/*
** This routine decides if pIdx can be used to satisfy the ORDER BY
** clause. If it can, it returns 1. If pIdx cannot satisfy the
** ORDER BY clause, this routine returns 0.
**
** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
** left-most table in the FROM clause of that same SELECT statement and
** the table has a cursor number of "base". pIdx is an index on pTab.
**
** nEqCol is the number of columns of pIdx that are used as equality
** constraints. Any of these columns may be missing from the ORDER BY
** clause and the match can still be a success.
**
** If the index is UNIQUE, then the ORDER BY clause is allowed to have
** additional terms past the end of the index and the match will still
** be a success.
**
** All terms of the ORDER BY that match against the index must be either
** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
** index do not need to satisfy this constraint.) The *pbRev value is
** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
** the ORDER BY clause is all ASC.
*/
static int isSortingIndex(
Parse *pParse, /* Parsing context */
Index *pIdx, /* The index we are testing */
Table *pTab, /* The table to be sorted */
int base, /* Cursor number for pTab */
ExprList *pOrderBy, /* The ORDER BY clause */
int nEqCol, /* Number of index columns with == constraints */
int *pbRev /* Set to 1 if ORDER BY is DESC */
){
int i, j; /* Loop counters */
int sortOrder; /* Which direction we are sorting */
int nTerm; /* Number of ORDER BY terms */
struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
sqlite3 *db = pParse->db;
assert( pOrderBy!=0 );
nTerm = pOrderBy->nExpr;
assert( nTerm>0 );
/* Match terms of the ORDER BY clause against columns of
** the index.
*/
for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<pIdx->nColumn; i++){
Expr *pExpr; /* The expression of the ORDER BY pTerm */
CollSeq *pColl; /* The collating sequence of pExpr */
pExpr = pTerm->pExpr;
if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
/* Can not use an index sort on anything that is not a column in the
** left-most table of the FROM clause */
return 0;
}
pColl = sqlite3ExprCollSeq(pParse, pExpr);
if( !pColl ) pColl = db->pDfltColl;
if( pExpr->iColumn!=pIdx->aiColumn[i] || pColl!=pIdx->keyInfo.aColl[i] ){
/* Term j of the ORDER BY clause does not match column i of the index */
if( i<nEqCol ){
/* If an index column that is constrained by == fails to match an
** ORDER BY term, that is OK. Just ignore that column of the index
*/
continue;
}else{
/* If an index column fails to match and is not constrained by ==
** then the index cannot satisfy the ORDER BY constraint.
*/
return 0;
}
}
if( i>nEqCol ){
if( pTerm->sortOrder!=sortOrder ){
/* Indices can only be used if all ORDER BY terms past the
** equality constraints are all either DESC or ASC. */
return 0;
}
}else{
sortOrder = pTerm->sortOrder;
}
j++;
pTerm++;
}
/* The index can be used for sorting if all terms of the ORDER BY clause
** or covered or if we ran out of index columns and the it is a UNIQUE
** index.
*/
if( j>=nTerm || (i>=pIdx->nColumn && pIdx->onError!=OE_None) ){
*pbRev = sortOrder==SQLITE_SO_DESC;
return 1;
}
return 0;
}
/*
** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
** by sorting in order of ROWID. Return true if so and set *pbRev to be
** true for reverse ROWID and false for forward ROWID order.
*/
static int sortableByRowid(
int base, /* Cursor number for table to be sorted */
ExprList *pOrderBy, /* The ORDER BY clause */
int *pbRev /* Set to 1 if ORDER BY is DESC */
){
Expr *p;
assert( pOrderBy!=0 );
assert( pOrderBy->nExpr>0 );
p = pOrderBy->a[0].pExpr;
if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 ){
*pbRev = pOrderBy->a[0].sortOrder;
return 1;
}
return 0;
}
/*
** Disable a term in the WHERE clause. Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.
**
** Consider the term t2.z='ok' in the following queries:
**
** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
**
** The t2.z='ok' is disabled in the in (2) because it originates
** in the ON clause. The term is disabled in (3) because it is not part
** of a LEFT OUTER JOIN. In (1), the term is not disabled.
**
** Disabling a term causes that term to not be tested in the inner loop
** of the join. Disabling is an optimization. We would get the correct
** results if nothing were ever disabled, but joins might run a little
** slower. The trick is to disable as much as we can without disabling
** too much. If we disabled in (1), we'd get the wrong answer.
** See ticket #813.
*/
static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){
Expr *pExpr = *ppExpr;
if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){
*ppExpr = 0;
}
}
/*
** Generate code that builds a probe for an index. Details:
**
** * Check the top nColumn entries on the stack. If any
** of those entries are NULL, jump immediately to brk,
** which is the loop exit, since no index entry will match
** if any part of the key is NULL.
**
** * Construct a probe entry from the top nColumn entries in
** the stack with affinities appropriate for index pIdx.
*/
static void buildIndexProbe(Vdbe *v, int nColumn, int brk, Index *pIdx){
sqlite3VdbeAddOp(v, OP_NotNull, -nColumn, sqlite3VdbeCurrentAddr(v)+3);
sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
sqlite3VdbeAddOp(v, OP_Goto, 0, brk);
sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
sqlite3IndexAffinityStr(v, pIdx);
}
/*
** Generate code for an equality term of the WHERE clause. An equality
** term can be either X=expr or X IN (...). pTerm is the X.
*/
static void codeEqualityTerm(
Parse *pParse, /* The parsing context */
ExprInfo *pTerm, /* The term of the WHERE clause to be coded */
int brk, /* Jump here to abandon the loop */
WhereLevel *pLevel /* When level of the FROM clause we are working on */
){
Expr *pX = pTerm->p;
if( pX->op!=TK_IN ){
assert( pX->op==TK_EQ );
sqlite3ExprCode(pParse, pX->pRight);
#ifndef SQLITE_OMIT_SUBQUERY
}else{
int iTab;
Vdbe *v = pParse->pVdbe;
sqlite3CodeSubselect(pParse, pX);
iTab = pX->iTable;
sqlite3VdbeAddOp(v, OP_Rewind, iTab, brk);
VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
pLevel->inP2 = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
pLevel->inOp = OP_Next;
pLevel->inP1 = iTab;
#endif
}
disableTerm(pLevel, &pTerm->p);
}
/*
** The number of bits in a Bitmask
*/
#define BMS (sizeof(Bitmask)*8-1)
/*
** Generate the beginning of the loop used for WHERE clause processing.
** The return value is a pointer to an opaque structure that contains
** information needed to terminate the loop. Later, the calling routine
** should invoke sqlite3WhereEnd() with the return value of this function
** in order to complete the WHERE clause processing.
**
** If an error occurs, this routine returns NULL.
**
** The basic idea is to do a nested loop, one loop for each table in
** the FROM clause of a select. (INSERT and UPDATE statements are the
** same as a SELECT with only a single table in the FROM clause.) For
** example, if the SQL is this:
**
** SELECT * FROM t1, t2, t3 WHERE ...;
**
** Then the code generated is conceptually like the following:
**
** foreach row1 in t1 do \ Code generated
** foreach row2 in t2 do |-- by sqlite3WhereBegin()
** foreach row3 in t3 do /
** ...
** end \ Code generated
** end |-- by sqlite3WhereEnd()
** end /
**
** There are Btree cursors associated with each table. t1 uses cursor
** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
** And so forth. This routine generates code to open those VDBE cursors
** and sqlite3WhereEnd() generates the code to close them.
**
** The code that sqlite3WhereBegin() generates leaves the cursors named
** in pTabList pointing at their appropriate entries. The [...] code
** can use OP_Column and OP_Rowid opcodes on these cursors to extract
** data from the various tables of the loop.
**
** If the WHERE clause is empty, the foreach loops must each scan their
** entire tables. Thus a three-way join is an O(N^3) operation. But if
** the tables have indices and there are terms in the WHERE clause that
** refer to those indices, a complete table scan can be avoided and the
** code will run much faster. Most of the work of this routine is checking
** to see if there are indices that can be used to speed up the loop.
**
** Terms of the WHERE clause are also used to limit which rows actually
** make it to the "..." in the middle of the loop. After each "foreach",
** terms of the WHERE clause that use only terms in that loop and outer
** loops are evaluated and if false a jump is made around all subsequent
** inner loops (or around the "..." if the test occurs within the inner-
** most loop)
**
** OUTER JOINS
**
** An outer join of tables t1 and t2 is conceptally coded as follows:
**
** foreach row1 in t1 do
** flag = 0
** foreach row2 in t2 do
** start:
** ...
** flag = 1
** end
** if flag==0 then
** move the row2 cursor to a null row
** goto start
** fi
** end
**
** ORDER BY CLAUSE PROCESSING
**
** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
** if there is one. If there is no ORDER BY clause or if this routine
** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
**
** If an index can be used so that the natural output order of the table
** scan is correct for the ORDER BY clause, then that index is used and
** *ppOrderBy is set to NULL. This is an optimization that prevents an
** unnecessary sort of the result set if an index appropriate for the
** ORDER BY clause already exists.
**
** If the where clause loops cannot be arranged to provide the correct
** output order, then the *ppOrderBy is unchanged.
*/
WhereInfo *sqlite3WhereBegin(
Parse *pParse, /* The parser context */
SrcList *pTabList, /* A list of all tables to be scanned */
Expr *pWhere, /* The WHERE clause */
ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
){
int i; /* Loop counter */
WhereInfo *pWInfo; /* Will become the return value of this function */
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
int brk, cont = 0; /* Addresses used during code generation */
int nExpr; /* Number of subexpressions in the WHERE clause */
Bitmask loopMask; /* One bit set for each outer loop */
ExprInfo *pTerm; /* A single term in the WHERE clause; ptr to aExpr[] */
ExprMaskSet maskSet; /* The expression mask set */
int iDirectEq[BMS]; /* Term of the form ROWID==X for the N-th table */
int iDirectLt[BMS]; /* Term of the form ROWID<X or ROWID<=X */
int iDirectGt[BMS]; /* Term of the form ROWID>X or ROWID>=X */
ExprInfo aExpr[101]; /* The WHERE clause is divided into these terms */
struct SrcList_item *pTabItem; /* A single entry from pTabList */
WhereLevel *pLevel; /* A single level in the pWInfo list */
/* The number of terms in the FROM clause is limited by the number of
** bits in a Bitmask
*/
if( pTabList->nSrc>sizeof(Bitmask)*8 ){
sqlite3ErrorMsg(pParse, "at most %d tables in a join",
sizeof(Bitmask)*8);
return 0;
}
/* Split the WHERE clause into separate subexpressions where each
** subexpression is separated by an AND operator. If the aExpr[]
** array fills up, the last entry might point to an expression which
** contains additional unfactored AND operators.
*/
initMaskSet(&maskSet);
memset(aExpr, 0, sizeof(aExpr));
nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
if( nExpr==ARRAYSIZE(aExpr) ){
sqlite3ErrorMsg(pParse, "WHERE clause too complex - no more "
"than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
return 0;
}
/* Allocate and initialize the WhereInfo structure that will become the
** return value.
*/
pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
if( sqlite3_malloc_failed ){
sqliteFree(pWInfo); /* Avoid leaking memory when malloc fails */
return 0;
}
pWInfo->pParse = pParse;
pWInfo->pTabList = pTabList;
pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
/* Special case: a WHERE clause that is constant. Evaluate the
** expression and either jump over all of the code or fall thru.
*/
if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){
sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
pWhere = 0;
}
/* Analyze all of the subexpressions.
*/
for(i=0; i<pTabList->nSrc; i++){
createMask(&maskSet, pTabList->a[i].iCursor);
}
for(pTerm=aExpr, i=0; i<nExpr; i++, pTerm++){
exprAnalyze(pTabList, &maskSet, pTerm);
}
/* Figure out what index to use (if any) for each nested loop.
** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
** loop.
**
** If terms exist that use the ROWID of any table, then set the
** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
** to the index of the term containing the ROWID. We always prefer
** to use a ROWID which can directly access a table rather than an
** index which requires reading an index first to get the rowid then
** doing a second read of the actual database table.
**
** Actually, if there are more than 32 tables in the join, only the
** first 32 tables are candidates for indices. This is (again) due
** to the limit of 32 bits in an integer bitmask.
*/
loopMask = 0;
pTabItem = pTabList->a;
pLevel = pWInfo->a;
for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++,pTabItem++,pLevel++){
int j;
int iCur = pTabItem->iCursor; /* The cursor for this table */
Bitmask mask = getMask(&maskSet, iCur); /* Cursor mask for this table */
Table *pTab = pTabItem->pTab;
Index *pIdx;
Index *pBestIdx = 0;
int bestScore = 0;
int bestRev = 0;
/* Check to see if there is an expression that uses only the
** ROWID field of this table. For terms of the form ROWID==expr
** set iDirectEq[i] to the index of the term. For terms of the
** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
**
** (Added:) Treat ROWID IN expr like ROWID=expr.
*/
pLevel->iIdxCur = -1;
iDirectEq[i] = -1;
iDirectLt[i] = -1;
iDirectGt[i] = -1;
for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
Expr *pX = pTerm->p;
if( pTerm->idxLeft==iCur && pX->pLeft->iColumn<0
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){
switch( pX->op ){
case TK_IN:
case TK_EQ: iDirectEq[i] = j; break;
case TK_LE:
case TK_LT: iDirectLt[i] = j; break;
case TK_GE:
case TK_GT: iDirectGt[i] = j; break;
}
}
}
/* If we found a term that tests ROWID with == or IN, that term
** will be used to locate the rows in the database table. There
** is not need to continue into the code below that looks for
** an index. We will always use the ROWID over an index.
*/
if( iDirectEq[i]>=0 ){
loopMask |= mask;
pLevel->pIdx = 0;
continue;
}
/* Do a search for usable indices. Leave pBestIdx pointing to
** the "best" index. pBestIdx is left set to NULL if no indices
** are usable.
**
** The best index is the one with the highest score. The score
** for the index is determined as follows. For each of the
** left-most terms that is fixed by an equality operator, add
** 32 to the score. The right-most term of the index may be
** constrained by an inequality. Add 4 if for an "x<..." constraint
** and add 8 for an "x>..." constraint. If both constraints
** are present, add 12.
**
** If the left-most term of the index uses an IN operator
** (ex: "x IN (...)") then add 16 to the score.
**
** If an index can be used for sorting, add 2 to the score.
** If an index contains all the terms of a table that are ever
** used by any expression in the SQL statement, then add 1 to
** the score.
**
** This scoring system is designed so that the score can later be
** used to determine how the index is used. If the score&0x1c is 0
** then all constraints are equalities. If score&0x4 is not 0 then
** there is an inequality used as a termination key. (ex: "x<...")
** If score&0x8 is not 0 then there is an inequality used as the
** start key. (ex: "x>..."). A score or 0x10 is the special case
** of an IN operator constraint. (ex: "x IN ...").
**
** The IN operator (as in "<expr> IN (...)") is treated the same as
** an equality comparison except that it can only be used on the
** left-most column of an index and other terms of the WHERE clause
** cannot be used in conjunction with the IN operator to help satisfy
** other columns of the index.
*/
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
Bitmask eqMask = 0; /* Index columns covered by an x=... term */
Bitmask ltMask = 0; /* Index columns covered by an x<... term */
Bitmask gtMask = 0; /* Index columns covered by an x>... term */
Bitmask inMask = 0; /* Index columns covered by an x IN .. term */
Bitmask m;
int nEq, score, bRev = 0;
if( pIdx->nColumn>sizeof(eqMask)*8 ){
continue; /* Ignore indices with too many columns to analyze */
}
for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
Expr *pX = pTerm->p;
CollSeq *pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
if( !pColl && pX->pRight ){
pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
}
if( !pColl ){
pColl = pParse->db->pDfltColl;
}
if( pTerm->idxLeft==iCur
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){
int iColumn = pX->pLeft->iColumn;
int k;
char idxaff = iColumn>=0 ? pIdx->pTable->aCol[iColumn].affinity : 0;
for(k=0; k<pIdx->nColumn; k++){
/* If the collating sequences or affinities don't match,
** ignore this index. */
if( pColl!=pIdx->keyInfo.aColl[k] ) continue;
if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
if( pIdx->aiColumn[k]==iColumn ){
switch( pX->op ){
case TK_IN: {
if( k==0 ) inMask |= 1;
break;
}
case TK_EQ: {
eqMask |= ((Bitmask)1)<<k;
break;
}
case TK_LE:
case TK_LT: {
ltMask |= ((Bitmask)1)<<k;
break;
}
case TK_GE:
case TK_GT: {
gtMask |= ((Bitmask)1)<<k;
break;
}
default: {
/* CANT_HAPPEN */
assert( 0 );
break;
}
}
break;
}
}
}
}
/* The following loop ends with nEq set to the number of columns
** on the left of the index with == constraints.
*/
for(nEq=0; nEq<pIdx->nColumn; nEq++){
m = (((Bitmask)1)<<(nEq+1))-1;
if( (m & eqMask)!=m ) break;
}
/* Begin assemblying the score
*/
score = nEq*32; /* Base score is 32 times number of == constraints */
m = ((Bitmask)1)<<nEq;
if( m & ltMask ) score+=4; /* Increase score for a < constraint */
if( m & gtMask ) score+=8; /* Increase score for a > constraint */
if( score==0 && inMask ) score = 16; /* Default score for IN constraint */
/* Give bonus points if this index can be used for sorting
*/
if( i==0 && score!=16 && ppOrderBy && *ppOrderBy ){
int base = pTabList->a[0].iCursor;
if( isSortingIndex(pParse, pIdx, pTab, base, *ppOrderBy, nEq, &bRev) ){
score += 2;
}
}
/* Check to see if we can get away with using just the index without
** ever reading the table. If that is the case, then add one bonus
** point to the score.
*/
if( score && pTabItem->colUsed < (((Bitmask)1)<<(BMS-1)) ){
for(m=0, j=0; j<pIdx->nColumn; j++){
int x = pIdx->aiColumn[j];
if( x<BMS-1 ){
m |= ((Bitmask)1)<<x;
}
}
if( (pTabItem->colUsed & m)==pTabItem->colUsed ){
score++;
}
}
/* If the score for this index is the best we have seen so far, then
** save it
*/
if( score>bestScore ){
pBestIdx = pIdx;
bestScore = score;
bestRev = bRev;
}
}
pLevel->pIdx = pBestIdx;
pLevel->score = bestScore;
pLevel->bRev = bestRev;
loopMask |= mask;
if( pBestIdx ){
pLevel->iIdxCur = pParse->nTab++;
}
}
/* Check to see if the ORDER BY clause is or can be satisfied by the
** use of an index on the first table.
*/
if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
Index *pIdx; /* Index derived from the WHERE clause */
Table *pTab; /* Left-most table in the FROM clause */
int bRev = 0; /* True to reverse the output order */
int iCur; /* Btree-cursor that will be used by pTab */
WhereLevel *pLevel0 = &pWInfo->a[0];
pTab = pTabList->a[0].pTab;
pIdx = pLevel0->pIdx;
iCur = pTabList->a[0].iCursor;
if( pIdx==0 && sortableByRowid(iCur, *ppOrderBy, &bRev) ){
/* The ORDER BY clause specifies ROWID order, which is what we
** were going to be doing anyway...
*/
*ppOrderBy = 0;
pLevel0->bRev = bRev;
}else if( pLevel0->score==16 ){
/* If there is already an IN index on the left-most table,
** it will not give the correct sort order.
** So, pretend that no suitable index is found.
*/
}else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
/* If the left-most column is accessed using its ROWID, then do
** not try to sort by index. But do delete the ORDER BY clause
** if it is redundant.
*/
}else if( (pLevel0->score&2)!=0 ){
/* The index that was selected for searching will cause rows to
** appear in sorted order.
*/
*ppOrderBy = 0;
}
}
/* Open all tables in the pTabList and any indices selected for
** searching those tables.
*/
sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
pLevel = pWInfo->a;
for(i=0, pTabItem=pTabList->a; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
Table *pTab;
Index *pIx;
int iIdxCur = pLevel->iIdxCur;
pTab = pTabItem->pTab;
if( pTab->isTransient || pTab->pSelect ) continue;
if( (pLevel->score & 1)==0 ){
sqlite3OpenTableForReading(v, pTabItem->iCursor, pTab);
}
pLevel->iTabCur = pTabItem->iCursor;
if( (pIx = pLevel->pIdx)!=0 ){
sqlite3VdbeAddOp(v, OP_Integer, pIx->iDb, 0);
sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
(char*)&pIx->keyInfo, P3_KEYINFO);
}
if( (pLevel->score & 1)!=0 ){
sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
}
sqlite3CodeVerifySchema(pParse, pTab->iDb);
}
pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
/* Generate the code to do the search
*/
loopMask = 0;
pLevel = pWInfo->a;
pTabItem = pTabList->a;
for(i=0; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
int j, k;
int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */
Index *pIdx; /* The index we will be using */
int iIdxCur; /* The VDBE cursor for the index */
int omitTable; /* True if we use the index only */
pIdx = pLevel->pIdx;
iIdxCur = pLevel->iIdxCur;
pLevel->inOp = OP_Noop;
/* Check to see if it is appropriate to omit the use of the table
** here and use its index instead.
*/
omitTable = (pLevel->score&1)!=0;
/* If this is the right table of a LEFT OUTER JOIN, allocate and
** initialize a memory cell that records if this table matches any
** row of the left table of the join.
*/
if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
if( !pParse->nMem ) pParse->nMem++;
pLevel->iLeftJoin = pParse->nMem++;
sqlite3VdbeAddOp(v, OP_Null, 0, 0);
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
VdbeComment((v, "# init LEFT JOIN no-match flag"));
}
if( i<ARRAYSIZE(iDirectEq) && (k = iDirectEq[i])>=0 ){
/* Case 1: We can directly reference a single row using an
** equality comparison against the ROWID field. Or
** we reference multiple rows using a "rowid IN (...)"
** construct.
*/
assert( k<nExpr );
pTerm = &aExpr[k];
assert( pTerm->p!=0 );
assert( pTerm->idxLeft==iCur );
assert( omitTable==0 );
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
codeEqualityTerm(pParse, pTerm, brk, pLevel);
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk);
sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk);
VdbeComment((v, "pk"));
pLevel->op = OP_Noop;
}else if( pIdx!=0 && pLevel->score>3 && (pLevel->score&0x0c)==0 ){
/* Case 2: There is an index and all terms of the WHERE clause that
** refer to the index using the "==" or "IN" operators.
*/
int start;
int nColumn = (pLevel->score+16)/32;
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
/* For each column of the index, find the term of the WHERE clause that
** constraints that column. If the WHERE clause term is X=expr, then
** evaluation expr and leave the result on the stack */
for(j=0; j<nColumn; j++){
for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
Expr *pX = pTerm->p;
if( pX==0 ) continue;
if( pTerm->idxLeft==iCur
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight
&& pX->pLeft->iColumn==pIdx->aiColumn[j]
&& (pX->op==TK_EQ || pX->op==TK_IN)
){
char idxaff = pIdx->pTable->aCol[pX->pLeft->iColumn].affinity;
if( sqlite3IndexAffinityOk(pX, idxaff) ){
codeEqualityTerm(pParse, pTerm, brk, pLevel);
break;
}
}
}
}
pLevel->iMem = pParse->nMem++;
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
buildIndexProbe(v, nColumn, brk, pIdx);
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
/* Generate code (1) to move to the first matching element of the table.
** Then generate code (2) that jumps to "brk" after the cursor is past
** the last matching element of the table. The code (1) is executed
** once to initialize the search, the code (2) is executed before each
** iteration of the scan to see if the scan has finished. */
if( pLevel->bRev ){
/* Scan in reverse order */
sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk);
start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk);
pLevel->op = OP_Prev;
}else{
/* Scan in the forward order */
sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk);
start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC);
pLevel->op = OP_Next;
}
sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
sqlite3VdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
if( !omitTable ){
sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
}
pLevel->p1 = iIdxCur;
pLevel->p2 = start;
}else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
/* Case 3: We have an inequality comparison against the ROWID field.
*/
int testOp = OP_Noop;
int start;
int bRev = pLevel->bRev;
assert( omitTable==0 );
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
if( bRev ){
int t = iDirectGt[i];
iDirectGt[i] = iDirectLt[i];
iDirectLt[i] = t;
}
if( iDirectGt[i]>=0 ){
Expr *pX;
k = iDirectGt[i];
assert( k<nExpr );
pTerm = &aExpr[k];
pX = pTerm->p;
assert( pX!=0 );
assert( pTerm->idxLeft==iCur );
sqlite3ExprCode(pParse, pX->pRight);
sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
VdbeComment((v, "pk"));
disableTerm(pLevel, &pTerm->p);
}else{
sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
}
if( iDirectLt[i]>=0 ){
Expr *pX;
k = iDirectLt[i];
assert( k<nExpr );
pTerm = &aExpr[k];
pX = pTerm->p;
assert( pX!=0 );
assert( pTerm->idxLeft==iCur );
sqlite3ExprCode(pParse, pX->pRight);
pLevel->iMem = pParse->nMem++;
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
if( pX->op==TK_LT || pX->op==TK_GT ){
testOp = bRev ? OP_Le : OP_Ge;
}else{
testOp = bRev ? OP_Lt : OP_Gt;
}
disableTerm(pLevel, &pTerm->p);
}
start = sqlite3VdbeCurrentAddr(v);
pLevel->op = bRev ? OP_Prev : OP_Next;
pLevel->p1 = iCur;
pLevel->p2 = start;
if( testOp!=OP_Noop ){
sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
sqlite3VdbeAddOp(v, testOp, 'n', brk);
}
}else if( pIdx==0 ){
/* Case 4: There is no usable index. We must do a complete
** scan of the entire database table.
*/
int start;
int opRewind;
assert( omitTable==0 );
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
if( pLevel->bRev ){
opRewind = OP_Last;
pLevel->op = OP_Prev;
}else{
opRewind = OP_Rewind;
pLevel->op = OP_Next;
}
sqlite3VdbeAddOp(v, opRewind, iCur, brk);
start = sqlite3VdbeCurrentAddr(v);
pLevel->p1 = iCur;
pLevel->p2 = start;
}else{
/* Case 5: The WHERE clause term that refers to the right-most
** column of the index is an inequality. For example, if
** the index is on (x,y,z) and the WHERE clause is of the
** form "x=5 AND y<10" then this case is used. Only the
** right-most column can be an inequality - the rest must
** use the "==" operator.
**
** This case is also used when there are no WHERE clause
** constraints but an index is selected anyway, in order
** to force the output order to conform to an ORDER BY.
*/
int score = pLevel->score;
int nEqColumn = score/32;
int start;
int leFlag=0, geFlag=0;
int testOp;
/* Evaluate the equality constraints
*/
for(j=0; j<nEqColumn; j++){
int iIdxCol = pIdx->aiColumn[j];
for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
Expr *pX = pTerm->p;
if( pX==0 ) continue;
if( pTerm->idxLeft==iCur
&& pX->op==TK_EQ
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight
&& pX->pLeft->iColumn==iIdxCol
){
sqlite3ExprCode(pParse, pX->pRight);
disableTerm(pLevel, &pTerm->p);
break;
}
}
}
/* Duplicate the equality term values because they will all be
** used twice: once to make the termination key and once to make the
** start key.
*/
for(j=0; j<nEqColumn; j++){
sqlite3VdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
}
/* Labels for the beginning and end of the loop
*/
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
/* Generate the termination key. This is the key value that
** will end the search. There is no termination key if there
** are no equality terms and no "X<..." term.
**
** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
** key computed here really ends up being the start key.
*/
if( (score & 4)!=0 ){
for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
Expr *pX = pTerm->p;
if( pX==0 ) continue;
if( pTerm->idxLeft==iCur
&& (pX->op==TK_LT || pX->op==TK_LE)
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight
&& pX->pLeft->iColumn==pIdx->aiColumn[j]
){
sqlite3ExprCode(pParse, pX->pRight);
leFlag = pX->op==TK_LE;
disableTerm(pLevel, &pTerm->p);
break;
}
}
testOp = OP_IdxGE;
}else{
testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
leFlag = 1;
}
if( testOp!=OP_Noop ){
int nCol = nEqColumn + ((score & 4)!=0);
pLevel->iMem = pParse->nMem++;
buildIndexProbe(v, nCol, brk, pIdx);
if( pLevel->bRev ){
int op = leFlag ? OP_MoveLe : OP_MoveLt;
sqlite3VdbeAddOp(v, op, iIdxCur, brk);
}else{
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
}
}else if( pLevel->bRev ){
sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
}
/* Generate the start key. This is the key that defines the lower
** bound on the search. There is no start key if there are no
** equality terms and if there is no "X>..." term. In
** that case, generate a "Rewind" instruction in place of the
** start key search.
**
** 2002-Dec-04: In the case of a reverse-order search, the so-called
** "start" key really ends up being used as the termination key.
*/
if( (score & 8)!=0 ){
for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
Expr *pX = pTerm->p;
if( pX==0 ) continue;
if( pTerm->idxLeft==iCur
&& (pX->op==TK_GT || pX->op==TK_GE)
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight
&& pX->pLeft->iColumn==pIdx->aiColumn[j]
){
sqlite3ExprCode(pParse, pX->pRight);
geFlag = pX->op==TK_GE;
disableTerm(pLevel, &pTerm->p);
break;
}
}
}else{
geFlag = 1;
}
if( nEqColumn>0 || (score&8)!=0 ){
int nCol = nEqColumn + ((score&8)!=0);
buildIndexProbe(v, nCol, brk, pIdx);
if( pLevel->bRev ){
pLevel->iMem = pParse->nMem++;
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
testOp = OP_IdxLT;
}else{
int op = geFlag ? OP_MoveGe : OP_MoveGt;
sqlite3VdbeAddOp(v, op, iIdxCur, brk);
}
}else if( pLevel->bRev ){
testOp = OP_Noop;
}else{
sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
}
/* Generate the the top of the loop. If there is a termination
** key we have to test for that key and abort at the top of the
** loop.
*/
start = sqlite3VdbeCurrentAddr(v);
if( testOp!=OP_Noop ){
sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
sqlite3VdbeAddOp(v, testOp, iIdxCur, brk);
if( (leFlag && !pLevel->bRev) || (!geFlag && pLevel->bRev) ){
sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
}
}
sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
sqlite3VdbeAddOp(v, OP_IdxIsNull, nEqColumn + ((score&4)!=0), cont);
if( !omitTable ){
sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
}
/* Record the instruction used to terminate the loop.
*/
pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
pLevel->p1 = iIdxCur;
pLevel->p2 = start;
}
loopMask |= getMask(&maskSet, iCur);
/* Insert code to test every subexpression that can be completely
** computed using the current set of tables.
*/
for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
if( pTerm->p==0 ) continue;
if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
if( pLevel->iLeftJoin && !ExprHasProperty(pTerm->p,EP_FromJoin) ){
continue;
}
sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1);
pTerm->p = 0;
}
brk = cont;
/* For a LEFT OUTER JOIN, generate code that will record the fact that
** at least one row of the right table has matched the left table.
*/
if( pLevel->iLeftJoin ){
pLevel->top = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
VdbeComment((v, "# record LEFT JOIN hit"));
for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
if( pTerm->p==0 ) continue;
if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1);
pTerm->p = 0;
}
}
}
pWInfo->iContinue = cont;
freeMaskSet(&maskSet);
return pWInfo;
}
/*
** Generate the end of the WHERE loop. See comments on
** sqlite3WhereBegin() for additional information.
*/
void sqlite3WhereEnd(WhereInfo *pWInfo){
Vdbe *v = pWInfo->pParse->pVdbe;
int i;
WhereLevel *pLevel;
SrcList *pTabList = pWInfo->pTabList;
struct SrcList_item *pTabItem;
/* Generate loop termination code.
*/
for(i=pTabList->nSrc-1; i>=0; i--){
pLevel = &pWInfo->a[i];
sqlite3VdbeResolveLabel(v, pLevel->cont);
if( pLevel->op!=OP_Noop ){
sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
}
sqlite3VdbeResolveLabel(v, pLevel->brk);
if( pLevel->inOp!=OP_Noop ){
sqlite3VdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
}
if( pLevel->iLeftJoin ){
int addr;
addr = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
sqlite3VdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iIdxCur>=0));
sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
if( pLevel->iIdxCur>=0 ){
sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
}
sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
}
}
/* The "break" point is here, just past the end of the outer loop.
** Set it.
*/
sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
/* Close all of the cursors that were opend by sqlite3WhereBegin.
*/
pLevel = pWInfo->a;
pTabItem = pTabList->a;
for(i=0; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
Table *pTab = pTabItem->pTab;
assert( pTab!=0 );
if( pTab->isTransient || pTab->pSelect ) continue;
if( (pLevel->score & 1)==0 ){
sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
}
if( pLevel->pIdx!=0 ){
sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
}
/* Make cursor substitutions for cases where we want to use
** just the index and never reference the table.
**
** Calls to the code generator in between sqlite3WhereBegin and
** sqlite3WhereEnd will have created code that references the table
** directly. This loop scans all that code looking for opcodes
** that reference the table and converts them into opcodes that
** reference the index.
*/
if( pLevel->score & 1 ){
int i, j, last;
VdbeOp *pOp;
Index *pIdx = pLevel->pIdx;
assert( pIdx!=0 );
pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
last = sqlite3VdbeCurrentAddr(v);
for(i=pWInfo->iTop; i<last; i++, pOp++){
if( pOp->p1!=pLevel->iTabCur ) continue;
if( pOp->opcode==OP_Column ){
pOp->p1 = pLevel->iIdxCur;
for(j=0; j<pIdx->nColumn; j++){
if( pOp->p2==pIdx->aiColumn[j] ){
pOp->p2 = j;
break;
}
}
}else if( pOp->opcode==OP_Rowid ){
pOp->p1 = pLevel->iIdxCur;
pOp->opcode = OP_IdxRowid;
}else if( pOp->opcode==OP_NullRow ){
pOp->opcode = OP_Noop;
}
}
}
}
/* Final cleanup
*/
sqliteFree(pWInfo);
return;
}
|