summaryrefslogtreecommitdiffstats
path: root/lib/kformula/entities.cpp
diff options
context:
space:
mode:
authorMichele Calgaro <[email protected]>2021-05-23 20:48:35 +0900
committerMichele Calgaro <[email protected]>2021-05-29 15:16:28 +0900
commit8b78a8791bc539bcffe7159f9d9714d577cb3d7d (patch)
tree1328291f966f19a22d7b13657d3f01a588eb1083 /lib/kformula/entities.cpp
parent95834e2bdc5e01ae1bd21ac0dfa4fa1d2417fae9 (diff)
downloadkoffice-8b78a8791bc539bcffe7159f9d9714d577cb3d7d.tar.gz
koffice-8b78a8791bc539bcffe7159f9d9714d577cb3d7d.zip
Renaming of files in preparation for code style tools.
Signed-off-by: Michele Calgaro <[email protected]>
Diffstat (limited to 'lib/kformula/entities.cpp')
-rw-r--r--lib/kformula/entities.cpp2037
1 files changed, 2037 insertions, 0 deletions
diff --git a/lib/kformula/entities.cpp b/lib/kformula/entities.cpp
new file mode 100644
index 00000000..c6696e1f
--- /dev/null
+++ b/lib/kformula/entities.cpp
@@ -0,0 +1,2037 @@
+//
+// Created: Tue Aug 29 16:20:33 2006
+// by: bynames.py
+// from: byalpha.html
+//
+// WARNING! All changes made in this file will be lost!
+
+/* This file is part of the KDE project
+ Copyright (C) 2006 Alfredo Beaumont Sainz <[email protected]>
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public
+ License as published by the Free Software Foundation; either
+ version 2 of the License, or (at your option) any later version.
+
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public License
+ along with this library; see the file COPYING.LIB. If not, write to
+ the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+*/
+
+
+#include "entities.h"
+
+KFORMULA_NAMESPACE_BEGIN
+
+const entityMap entities[] = {
+ {"AElig", 0x000C6} ,
+ {"Aacute", 0x000C1} ,
+ {"Abreve", 0x00102} ,
+ {"Acirc", 0x000C2} ,
+ {"Acy", 0x00410} ,
+ {"Afr", 0x1D504} ,
+ {"Agrave", 0x000C0} ,
+ {"Amacr", 0x00100} ,
+ {"And", 0x02A53} ,
+ {"Aogon", 0x00104} ,
+ {"Aopf", 0x1D538} ,
+ {"ApplyFunction", 0x02061} ,
+ {"Aring", 0x000C5} ,
+ {"Ascr", 0x1D49C} ,
+ {"Assign", 0x02254} ,
+ {"Atilde", 0x000C3} ,
+ {"Auml", 0x000C4} ,
+ {"Backslash", 0x02216} ,
+ {"Barv", 0x02AE7} ,
+ {"Barwed", 0x02306} ,
+ {"Bcy", 0x00411} ,
+ {"Because", 0x02235} ,
+ {"Bernoullis", 0x0212C} ,
+ {"Bfr", 0x1D505} ,
+ {"Bopf", 0x1D539} ,
+ {"Breve", 0x002D8} ,
+ {"Bscr", 0x0212C} ,
+ {"Bumpeq", 0x0224E} ,
+ {"CHcy", 0x00427} ,
+ {"Cacute", 0x00106} ,
+ {"Cap", 0x022D2} ,
+ {"CapitalDifferentialD", 0x02145} ,
+ {"Cayleys", 0x0212D} ,
+ {"Ccaron", 0x0010C} ,
+ {"Ccedil", 0x000C7} ,
+ {"Ccirc", 0x00108} ,
+ {"Cconint", 0x02230} ,
+ {"Cdot", 0x0010A} ,
+ {"Cedilla", 0x000B8} ,
+ {"CenterDot", 0x000B7} ,
+ {"Cfr", 0x0212D} ,
+ {"CircleDot", 0x02299} ,
+ {"CircleMinus", 0x02296} ,
+ {"CirclePlus", 0x02295} ,
+ {"CircleTimes", 0x02297} ,
+ {"ClockwiseContourIntegral", 0x02232} ,
+ {"CloseCurlyDoubleQuote", 0x0201D} ,
+ {"CloseCurlyQuote", 0x02019} ,
+ {"Colon", 0x02237} ,
+ {"Colone", 0x02A74} ,
+ {"Congruent", 0x02261} ,
+ {"Conint", 0x0222F} ,
+ {"ContourIntegral", 0x0222E} ,
+ {"Copf", 0x02102} ,
+ {"Coproduct", 0x02210} ,
+ {"CounterClockwiseContourIntegral", 0x02233} ,
+ {"Cross", 0x02A2F} ,
+ {"Cscr", 0x1D49E} ,
+ {"Cup", 0x022D3} ,
+ {"CupCap", 0x0224D} ,
+ {"DD", 0x02145} ,
+ {"DDotrahd", 0x02911} ,
+ {"DJcy", 0x00402} ,
+ {"DScy", 0x00405} ,
+ {"DZcy", 0x0040F} ,
+ {"Dagger", 0x02021} ,
+ {"Dagger", 0x02021} ,
+ {"Darr", 0x021A1} ,
+ {"Dashv", 0x02AE4} ,
+ {"Dcaron", 0x0010E} ,
+ {"Dcy", 0x00414} ,
+ {"Del", 0x02207} ,
+ {"Delta", 0x00394} ,
+ {"Dfr", 0x1D507} ,
+ {"DiacriticalAcute", 0x000B4} ,
+ {"DiacriticalDot", 0x002D9} ,
+ {"DiacriticalDoubleAcute", 0x002DD} ,
+ {"DiacriticalGrave", 0x00060} ,
+ {"DiacriticalTilde", 0x002DC} ,
+ {"Diamond", 0x022C4} ,
+ {"DifferentialD", 0x02146} ,
+ {"Dopf", 0x1D53B} ,
+ {"Dot", 0x000A8} ,
+ {"DotDot", 0x020DC} ,
+ {"DotEqual", 0x02250} ,
+ {"DoubleContourIntegral", 0x0222F} ,
+ {"DoubleDot", 0x000A8} ,
+ {"DoubleDownArrow", 0x021D3} ,
+ {"DoubleLeftArrow", 0x021D0} ,
+ {"DoubleLeftRightArrow", 0x021D4} ,
+ {"DoubleLeftTee", 0x02AE4} ,
+ {"DoubleLongLeftArrow", 0x027F8} ,
+ {"DoubleLongLeftRightArrow", 0x027FA} ,
+ {"DoubleLongRightArrow", 0x027F9} ,
+ {"DoubleRightArrow", 0x021D2} ,
+ {"DoubleRightTee", 0x022A8} ,
+ {"DoubleUpArrow", 0x021D1} ,
+ {"DoubleUpDownArrow", 0x021D5} ,
+ {"DoubleVerticalBar", 0x02225} ,
+ {"DownArrow", 0x02193} ,
+ {"DownArrowBar", 0x02913} ,
+ {"DownArrowUpArrow", 0x021F5} ,
+ {"DownBreve", 0x00311} ,
+ {"DownLeftRightVector", 0x02950} ,
+ {"DownLeftTeeVector", 0x0295E} ,
+ {"DownLeftVector", 0x021BD} ,
+ {"DownLeftVectorBar", 0x02956} ,
+ {"DownRightTeeVector", 0x0295F} ,
+ {"DownRightVector", 0x021C1} ,
+ {"DownRightVectorBar", 0x02957} ,
+ {"DownTee", 0x022A4} ,
+ {"DownTeeArrow", 0x021A7} ,
+ {"Downarrow", 0x021D3} ,
+ {"Dscr", 0x1D49F} ,
+ {"Dstrok", 0x00110} ,
+ {"ENG", 0x0014A} ,
+ {"ETH", 0x000D0} ,
+ {"Eacute", 0x000C9} ,
+ {"Ecaron", 0x0011A} ,
+ {"Ecirc", 0x000CA} ,
+ {"Ecy", 0x0042D} ,
+ {"Edot", 0x00116} ,
+ {"Efr", 0x1D508} ,
+ {"Egrave", 0x000C8} ,
+ {"Element", 0x02208} ,
+ {"Emacr", 0x00112} ,
+ {"EmptySmallSquare", 0x025FB} ,
+ {"EmptyVerySmallSquare", 0x025AB} ,
+ {"Eogon", 0x00118} ,
+ {"Eopf", 0x1D53C} ,
+ {"Equal", 0x02A75} ,
+ {"EqualTilde", 0x02242} ,
+ {"Equilibrium", 0x021CC} ,
+ {"Escr", 0x02130} ,
+ {"Esim", 0x02A73} ,
+ {"Euml", 0x000CB} ,
+ {"Exists", 0x02203} ,
+ {"ExponentialE", 0x02147} ,
+ {"Fcy", 0x00424} ,
+ {"Ffr", 0x1D509} ,
+ {"FilledSmallSquare", 0x025FC} ,
+ {"FilledVerySmallSquare", 0x025AA} ,
+ {"Fopf", 0x1D53D} ,
+ {"ForAll", 0x02200} ,
+ {"Fouriertrf", 0x02131} ,
+ {"Fscr", 0x02131} ,
+ {"GJcy", 0x00403} ,
+ {"Gamma", 0x00393} ,
+ {"Gammad", 0x003DC} ,
+ {"Gbreve", 0x0011E} ,
+ {"Gcedil", 0x00122} ,
+ {"Gcirc", 0x0011C} ,
+ {"Gcy", 0x00413} ,
+ {"Gdot", 0x00120} ,
+ {"Gfr", 0x1D50A} ,
+ {"Gg", 0x022D9} ,
+ {"Gopf", 0x1D53E} ,
+ {"GreaterEqual", 0x02265} ,
+ {"GreaterEqualLess", 0x022DB} ,
+ {"GreaterFullEqual", 0x02267} ,
+ {"GreaterGreater", 0x02AA2} ,
+ {"GreaterLess", 0x02277} ,
+ {"GreaterSlantEqual", 0x02A7E} ,
+ {"GreaterTilde", 0x02273} ,
+ {"Gscr", 0x1D4A2} ,
+ {"Gt", 0x0226B} ,
+ {"HARDcy", 0x0042A} ,
+ {"Hacek", 0x002C7} ,
+ {"Hat", 0x0005E} ,
+ {"Hcirc", 0x00124} ,
+ {"Hfr", 0x0210C} ,
+ {"HilbertSpace", 0x0210B} ,
+ {"Hopf", 0x0210D} ,
+ {"HorizontalLine", 0x02500} ,
+ {"Hscr", 0x0210B} ,
+ {"Hstrok", 0x00126} ,
+ {"HumpDownHump", 0x0224E} ,
+ {"HumpEqual", 0x0224F} ,
+ {"IEcy", 0x00415} ,
+ {"IJlig", 0x00132} ,
+ {"IOcy", 0x00401} ,
+ {"Iacute", 0x000CD} ,
+ {"Icirc", 0x000CE} ,
+ {"Icy", 0x00418} ,
+ {"Idot", 0x00130} ,
+ {"Ifr", 0x02111} ,
+ {"Igrave", 0x000CC} ,
+ {"Im", 0x02111} ,
+ {"Imacr", 0x0012A} ,
+ {"ImaginaryI", 0x02148} ,
+ {"Implies", 0x021D2} ,
+ {"Int", 0x0222C} ,
+ {"Integral", 0x0222B} ,
+ {"Intersection", 0x022C2} ,
+ {"InvisibleComma", 0x02063} ,
+ {"InvisibleTimes", 0x02062} ,
+ {"Iogon", 0x0012E} ,
+ {"Iopf", 0x1D540} ,
+ {"Iscr", 0x02110} ,
+ {"Itilde", 0x00128} ,
+ {"Iukcy", 0x00406} ,
+ {"Iuml", 0x000CF} ,
+ {"Jcirc", 0x00134} ,
+ {"Jcy", 0x00419} ,
+ {"Jfr", 0x1D50D} ,
+ {"Jopf", 0x1D541} ,
+ {"Jscr", 0x1D4A5} ,
+ {"Jsercy", 0x00408} ,
+ {"Jukcy", 0x00404} ,
+ {"KHcy", 0x00425} ,
+ {"KJcy", 0x0040C} ,
+ {"Kcedil", 0x00136} ,
+ {"Kcy", 0x0041A} ,
+ {"Kfr", 0x1D50E} ,
+ {"Kopf", 0x1D542} ,
+ {"Kscr", 0x1D4A6} ,
+ {"LJcy", 0x00409} ,
+ {"Lacute", 0x00139} ,
+ {"Lambda", 0x0039B} ,
+ {"Lang", 0x0300A} ,
+ {"Laplacetrf", 0x02112} ,
+ {"Larr", 0x0219E} ,
+ {"Lcaron", 0x0013D} ,
+ {"Lcedil", 0x0013B} ,
+ {"Lcy", 0x0041B} ,
+ {"LeftAngleBracket", 0x02329} ,
+ {"LeftArrow", 0x02190} ,
+ {"LeftArrowBar", 0x021E4} ,
+ {"LeftArrowRightArrow", 0x021C6} ,
+ {"LeftCeiling", 0x02308} ,
+ {"LeftDoubleBracket", 0x0301A} ,
+ {"LeftDownTeeVector", 0x02961} ,
+ {"LeftDownVector", 0x021C3} ,
+ {"LeftDownVectorBar", 0x02959} ,
+ {"LeftFloor", 0x0230A} ,
+ {"LeftRightArrow", 0x02194} ,
+ {"LeftRightVector", 0x0294E} ,
+ {"LeftTee", 0x022A3} ,
+ {"LeftTeeArrow", 0x021A4} ,
+ {"LeftTeeVector", 0x0295A} ,
+ {"LeftTriangle", 0x022B2} ,
+ {"LeftTriangleBar", 0x029CF} ,
+ {"LeftTriangleEqual", 0x022B4} ,
+ {"LeftUpDownVector", 0x02951} ,
+ {"LeftUpTeeVector", 0x02960} ,
+ {"LeftUpVector", 0x021BF} ,
+ {"LeftUpVectorBar", 0x02958} ,
+ {"LeftVector", 0x021BC} ,
+ {"LeftVectorBar", 0x02952} ,
+ {"Leftarrow", 0x021D0} ,
+ {"Leftrightarrow", 0x021D4} ,
+ {"LessEqualGreater", 0x022DA} ,
+ {"LessFullEqual", 0x02266} ,
+ {"LessGreater", 0x02276} ,
+ {"LessLess", 0x02AA1} ,
+ {"LessSlantEqual", 0x02A7D} ,
+ {"LessTilde", 0x02272} ,
+ {"Lfr", 0x1D50F} ,
+ {"Ll", 0x022D8} ,
+ {"Lleftarrow", 0x021DA} ,
+ {"Lmidot", 0x0013F} ,
+ {"LongLeftArrow", 0x027F5} ,
+ {"LongLeftRightArrow", 0x027F7} ,
+ {"LongRightArrow", 0x027F6} ,
+ {"Longleftarrow", 0x027F8} ,
+ {"Longleftrightarrow", 0x027FA} ,
+ {"Longrightarrow", 0x027F9} ,
+ {"Lopf", 0x1D543} ,
+ {"LowerLeftArrow", 0x02199} ,
+ {"LowerRightArrow", 0x02198} ,
+ {"Lscr", 0x02112} ,
+ {"Lsh", 0x021B0} ,
+ {"Lstrok", 0x00141} ,
+ {"Lt", 0x0226A} ,
+ {"Map", 0x02905} ,
+ {"Mcy", 0x0041C} ,
+ {"MediumSpace", 0x0205F} ,
+ {"Mellintrf", 0x02133} ,
+ {"Mfr", 0x1D510} ,
+ {"MinusPlus", 0x02213} ,
+ {"Mopf", 0x1D544} ,
+ {"Mscr", 0x02133} ,
+ {"NJcy", 0x0040A} ,
+ {"Nacute", 0x00143} ,
+ {"Ncaron", 0x00147} ,
+ {"Ncedil", 0x00145} ,
+ {"Ncy", 0x0041D} ,
+ {"NegativeMediumSpace", 0x0200B} ,
+ {"NegativeThickSpace", 0x0200B} ,
+ {"NegativeThinSpace", 0x0200B} ,
+ {"NegativeVeryThinSpace", 0x0200B} ,
+ {"NestedGreaterGreater", 0x0226B} ,
+ {"NestedLessLess", 0x0226A} ,
+ {"NewLine", 0x0000A} ,
+ {"Nfr", 0x1D511} ,
+ {"NoBreak", 0x02060} ,
+ {"NonBreakingSpace", 0x000A0} ,
+ {"Nopf", 0x02115} ,
+ {"Not", 0x02AEC} ,
+ {"NotCongruent", 0x02262} ,
+ {"NotCupCap", 0x0226D} ,
+ {"NotDoubleVerticalBar", 0x02226} ,
+ {"NotElement", 0x02209} ,
+ {"NotEqual", 0x02260} ,
+ {"NotExists", 0x02204} ,
+ {"NotGreater", 0x0226F} ,
+ {"NotGreaterEqual", 0x02271} ,
+ {"NotGreaterLess", 0x02279} ,
+ {"NotGreaterTilde", 0x02275} ,
+ {"NotLeftTriangle", 0x022EA} ,
+ {"NotLeftTriangleEqual", 0x022EC} ,
+ {"NotLess", 0x0226E} ,
+ {"NotLessEqual", 0x02270} ,
+ {"NotLessGreater", 0x02278} ,
+ {"NotLessTilde", 0x02274} ,
+ {"NotPrecedes", 0x02280} ,
+ {"NotPrecedesSlantEqual", 0x022E0} ,
+ {"NotReverseElement", 0x0220C} ,
+ {"NotRightTriangle", 0x022EB} ,
+ {"NotRightTriangleEqual", 0x022ED} ,
+ {"NotSquareSubsetEqual", 0x022E2} ,
+ {"NotSquareSupersetEqual", 0x022E3} ,
+ {"NotSubsetEqual", 0x02288} ,
+ {"NotSucceeds", 0x02281} ,
+ {"NotSucceedsSlantEqual", 0x022E1} ,
+ {"NotSupersetEqual", 0x02289} ,
+ {"NotTilde", 0x02241} ,
+ {"NotTildeEqual", 0x02244} ,
+ {"NotTildeFullEqual", 0x02247} ,
+ {"NotTildeTilde", 0x02249} ,
+ {"NotVerticalBar", 0x02224} ,
+ {"Nscr", 0x1D4A9} ,
+ {"Ntilde", 0x000D1} ,
+ {"OElig", 0x00152} ,
+ {"Oacute", 0x000D3} ,
+ {"Ocirc", 0x000D4} ,
+ {"Ocy", 0x0041E} ,
+ {"Odblac", 0x00150} ,
+ {"Ofr", 0x1D512} ,
+ {"Ograve", 0x000D2} ,
+ {"Omacr", 0x0014C} ,
+ {"Omega", 0x003A9} ,
+ {"Oopf", 0x1D546} ,
+ {"OpenCurlyDoubleQuote", 0x0201C} ,
+ {"OpenCurlyQuote", 0x02018} ,
+ {"Or", 0x02A54} ,
+ {"Oscr", 0x1D4AA} ,
+ {"Oslash", 0x000D8} ,
+ {"Otilde", 0x000D5} ,
+ {"Otimes", 0x02A37} ,
+ {"Ouml", 0x000D6} ,
+ {"OverBar", 0x000AF} ,
+ {"OverBrace", 0x0FE37} ,
+ {"OverBracket", 0x023B4} ,
+ {"OverParenthesis", 0x0FE35} ,
+ {"PartialD", 0x02202} ,
+ {"Pcy", 0x0041F} ,
+ {"Pfr", 0x1D513} ,
+ {"Phi", 0x003A6} ,
+ {"Pi", 0x003A0} ,
+ {"PlusMinus", 0x000B1} ,
+ {"Poincareplane", 0x0210C} ,
+ {"Popf", 0x02119} ,
+ {"Pr", 0x02ABB} ,
+ {"Precedes", 0x0227A} ,
+ {"PrecedesEqual", 0x02AAF} ,
+ {"PrecedesSlantEqual", 0x0227C} ,
+ {"PrecedesTilde", 0x0227E} ,
+ {"Prime", 0x02033} ,
+ {"Product", 0x0220F} ,
+ {"Proportion", 0x02237} ,
+ {"Proportional", 0x0221D} ,
+ {"Pscr", 0x1D4AB} ,
+ {"Psi", 0x003A8} ,
+ {"Qfr", 0x1D514} ,
+ {"Qopf", 0x0211A} ,
+ {"Qscr", 0x1D4AC} ,
+ {"RBarr", 0x02910} ,
+ {"Racute", 0x00154} ,
+ {"Rang", 0x0300B} ,
+ {"Rarr", 0x021A0} ,
+ {"Rarrtl", 0x02916} ,
+ {"Rcaron", 0x00158} ,
+ {"Rcedil", 0x00156} ,
+ {"Rcy", 0x00420} ,
+ {"Re", 0x0211C} ,
+ {"ReverseElement", 0x0220B} ,
+ {"ReverseEquilibrium", 0x021CB} ,
+ {"ReverseUpEquilibrium", 0x0296F} ,
+ {"Rfr", 0x0211C} ,
+ {"RightAngleBracket", 0x0232A} ,
+ {"RightArrow", 0x02192} ,
+ {"RightArrowBar", 0x021E5} ,
+ {"RightArrowLeftArrow", 0x021C4} ,
+ {"RightCeiling", 0x02309} ,
+ {"RightDoubleBracket", 0x0301B} ,
+ {"RightDownTeeVector", 0x0295D} ,
+ {"RightDownVector", 0x021C2} ,
+ {"RightDownVectorBar", 0x02955} ,
+ {"RightFloor", 0x0230B} ,
+ {"RightTee", 0x022A2} ,
+ {"RightTeeArrow", 0x021A6} ,
+ {"RightTeeVector", 0x0295B} ,
+ {"RightTriangle", 0x022B3} ,
+ {"RightTriangleBar", 0x029D0} ,
+ {"RightTriangleEqual", 0x022B5} ,
+ {"RightUpDownVector", 0x0294F} ,
+ {"RightUpTeeVector", 0x0295C} ,
+ {"RightUpVector", 0x021BE} ,
+ {"RightUpVectorBar", 0x02954} ,
+ {"RightVector", 0x021C0} ,
+ {"RightVectorBar", 0x02953} ,
+ {"Rightarrow", 0x021D2} ,
+ {"Ropf", 0x0211D} ,
+ {"RoundImplies", 0x02970} ,
+ {"Rrightarrow", 0x021DB} ,
+ {"Rscr", 0x0211B} ,
+ {"Rsh", 0x021B1} ,
+ {"RuleDelayed", 0x029F4} ,
+ {"SHCHcy", 0x00429} ,
+ {"SHcy", 0x00428} ,
+ {"SOFTcy", 0x0042C} ,
+ {"Sacute", 0x0015A} ,
+ {"Sc", 0x02ABC} ,
+ {"Scaron", 0x00160} ,
+ {"Scedil", 0x0015E} ,
+ {"Scirc", 0x0015C} ,
+ {"Scy", 0x00421} ,
+ {"Sfr", 0x1D516} ,
+ {"ShortDownArrow", 0x02193} ,
+ {"ShortLeftArrow", 0x02190} ,
+ {"ShortRightArrow", 0x02192} ,
+ {"ShortUpArrow", 0x02191} ,
+ {"Sigma", 0x003A3} ,
+ {"SmallCircle", 0x02218} ,
+ {"Sopf", 0x1D54A} ,
+ {"Sqrt", 0x0221A} ,
+ {"Square", 0x025A1} ,
+ {"SquareIntersection", 0x02293} ,
+ {"SquareSubset", 0x0228F} ,
+ {"SquareSubsetEqual", 0x02291} ,
+ {"SquareSuperset", 0x02290} ,
+ {"SquareSupersetEqual", 0x02292} ,
+ {"SquareUnion", 0x02294} ,
+ {"Sscr", 0x1D4AE} ,
+ {"Star", 0x022C6} ,
+ {"Sub", 0x022D0} ,
+ {"Subset", 0x022D0} ,
+ {"SubsetEqual", 0x02286} ,
+ {"Succeeds", 0x0227B} ,
+ {"SucceedsEqual", 0x02AB0} ,
+ {"SucceedsSlantEqual", 0x0227D} ,
+ {"SucceedsTilde", 0x0227F} ,
+ {"SuchThat", 0x0220B} ,
+ {"Sum", 0x02211} ,
+ {"Sup", 0x022D1} ,
+ {"Superset", 0x02283} ,
+ {"SupersetEqual", 0x02287} ,
+ {"Supset", 0x022D1} ,
+ {"THORN", 0x000DE} ,
+ {"TSHcy", 0x0040B} ,
+ {"TScy", 0x00426} ,
+ {"Tab", 0x00009} ,
+ {"Tcaron", 0x00164} ,
+ {"Tcedil", 0x00162} ,
+ {"Tcy", 0x00422} ,
+ {"Tfr", 0x1D517} ,
+ {"Therefore", 0x02234} ,
+ {"Theta", 0x00398} ,
+ {"ThinSpace", 0x02009} ,
+ {"Tilde", 0x0223C} ,
+ {"TildeEqual", 0x02243} ,
+ {"TildeFullEqual", 0x02245} ,
+ {"TildeTilde", 0x02248} ,
+ {"Topf", 0x1D54B} ,
+ {"TripleDot", 0x020DB} ,
+ {"Tscr", 0x1D4AF} ,
+ {"Tstrok", 0x00166} ,
+ {"Uacute", 0x000DA} ,
+ {"Uarr", 0x0219F} ,
+ {"Uarrocir", 0x02949} ,
+ {"Ubrcy", 0x0040E} ,
+ {"Ubreve", 0x0016C} ,
+ {"Ucirc", 0x000DB} ,
+ {"Ucy", 0x00423} ,
+ {"Udblac", 0x00170} ,
+ {"Ufr", 0x1D518} ,
+ {"Ugrave", 0x000D9} ,
+ {"Umacr", 0x0016A} ,
+ {"UnderBar", 0x00332} ,
+ {"UnderBrace", 0x0FE38} ,
+ {"UnderBracket", 0x023B5} ,
+ {"UnderParenthesis", 0x0FE36} ,
+ {"Union", 0x022C3} ,
+ {"UnionPlus", 0x0228E} ,
+ {"Uogon", 0x00172} ,
+ {"Uopf", 0x1D54C} ,
+ {"UpArrow", 0x02191} ,
+ {"UpArrowBar", 0x02912} ,
+ {"UpArrowDownArrow", 0x021C5} ,
+ {"UpDownArrow", 0x02195} ,
+ {"UpEquilibrium", 0x0296E} ,
+ {"UpTee", 0x022A5} ,
+ {"UpTeeArrow", 0x021A5} ,
+ {"Uparrow", 0x021D1} ,
+ {"Updownarrow", 0x021D5} ,
+ {"UpperLeftArrow", 0x02196} ,
+ {"UpperRightArrow", 0x02197} ,
+ {"Upsi", 0x003D2} ,
+ {"Upsilon", 0x003A5} ,
+ {"Uring", 0x0016E} ,
+ {"Uscr", 0x1D4B0} ,
+ {"Utilde", 0x00168} ,
+ {"Uuml", 0x000DC} ,
+ {"VDash", 0x022AB} ,
+ {"Vbar", 0x02AEB} ,
+ {"Vcy", 0x00412} ,
+ {"Vdash", 0x022A9} ,
+ {"Vdashl", 0x02AE6} ,
+ {"Vee", 0x022C1} ,
+ {"Verbar", 0x02016} ,
+ {"Vert", 0x02016} ,
+ {"VerticalBar", 0x02223} ,
+ {"VerticalLine", 0x0007C} ,
+ {"VerticalSeparator", 0x02758} ,
+ {"VerticalTilde", 0x02240} ,
+ {"VeryThinSpace", 0x0200A} ,
+ {"Vfr", 0x1D519} ,
+ {"Vopf", 0x1D54D} ,
+ {"Vscr", 0x1D4B1} ,
+ {"Vvdash", 0x022AA} ,
+ {"Wcirc", 0x00174} ,
+ {"Wedge", 0x022C0} ,
+ {"Wfr", 0x1D51A} ,
+ {"Wopf", 0x1D54E} ,
+ {"Wscr", 0x1D4B2} ,
+ {"Xfr", 0x1D51B} ,
+ {"Xi", 0x0039E} ,
+ {"Xopf", 0x1D54F} ,
+ {"Xscr", 0x1D4B3} ,
+ {"YAcy", 0x0042F} ,
+ {"YIcy", 0x00407} ,
+ {"YUcy", 0x0042E} ,
+ {"Yacute", 0x000DD} ,
+ {"Ycirc", 0x00176} ,
+ {"Ycy", 0x0042B} ,
+ {"Yfr", 0x1D51C} ,
+ {"Yopf", 0x1D550} ,
+ {"Yscr", 0x1D4B4} ,
+ {"Yuml", 0x00178} ,
+ {"ZHcy", 0x00416} ,
+ {"Zacute", 0x00179} ,
+ {"Zcaron", 0x0017D} ,
+ {"Zcy", 0x00417} ,
+ {"Zdot", 0x0017B} ,
+ {"ZeroWidthSpace", 0x0200B} ,
+ {"Zfr", 0x02128} ,
+ {"Zopf", 0x02124} ,
+ {"Zscr", 0x1D4B5} ,
+ {"aacute", 0x000E1} ,
+ {"abreve", 0x00103} ,
+ {"ac", 0x0223E} ,
+ {"acd", 0x0223F} ,
+ {"acirc", 0x000E2} ,
+ {"acute", 0x000B4} ,
+ {"acy", 0x00430} ,
+ {"aelig", 0x000E6} ,
+ {"af", 0x02061} ,
+ {"afr", 0x1D51E} ,
+ {"agrave", 0x000E0} ,
+ {"aleph", 0x02135} ,
+ {"alpha", 0x003B1} ,
+ {"amacr", 0x00101} ,
+ {"amalg", 0x02A3F} ,
+ {"amp", 0x00026} ,
+ {"and", 0x02227} ,
+ {"andand", 0x02A55} ,
+ {"andd", 0x02A5C} ,
+ {"andslope", 0x02A58} ,
+ {"andv", 0x02A5A} ,
+ {"ang", 0x02220} ,
+ {"ange", 0x029A4} ,
+ {"angle", 0x02220} ,
+ {"angmsd", 0x02221} ,
+ {"angmsdaa", 0x029A8} ,
+ {"angmsdab", 0x029A9} ,
+ {"angmsdac", 0x029AA} ,
+ {"angmsdad", 0x029AB} ,
+ {"angmsdae", 0x029AC} ,
+ {"angmsdaf", 0x029AD} ,
+ {"angmsdag", 0x029AE} ,
+ {"angmsdah", 0x029AF} ,
+ {"angrt", 0x0221F} ,
+ {"angrtvb", 0x022BE} ,
+ {"angrtvbd", 0x0299D} ,
+ {"angsph", 0x02222} ,
+ {"angst", 0x0212B} ,
+ {"angzarr", 0x0237C} ,
+ {"aogon", 0x00105} ,
+ {"aopf", 0x1D552} ,
+ {"ap", 0x02248} ,
+ {"apE", 0x02A70} ,
+ {"apacir", 0x02A6F} ,
+ {"ape", 0x0224A} ,
+ {"apid", 0x0224B} ,
+ {"apos", 0x00027} ,
+ {"approx", 0x02248} ,
+ {"approxeq", 0x0224A} ,
+ {"aring", 0x000E5} ,
+ {"ascr", 0x1D4B6} ,
+ {"ast", 0x0002A} ,
+ {"asymp", 0x02248} ,
+ {"asympeq", 0x0224D} ,
+ {"atilde", 0x000E3} ,
+ {"auml", 0x000E4} ,
+ {"awconint", 0x02233} ,
+ {"awint", 0x02A11} ,
+ {"bNot", 0x02AED} ,
+ {"backcong", 0x0224C} ,
+ {"backepsilon", 0x003F6} ,
+ {"backprime", 0x02035} ,
+ {"backsim", 0x0223D} ,
+ {"backsimeq", 0x022CD} ,
+ {"barvee", 0x022BD} ,
+ {"barwed", 0x02305} ,
+ {"barwedge", 0x02305} ,
+ {"bbrk", 0x023B5} ,
+ {"bbrktbrk", 0x023B6} ,
+ {"bcong", 0x0224C} ,
+ {"bcy", 0x00431} ,
+ {"becaus", 0x02235} ,
+ {"because", 0x02235} ,
+ {"bemptyv", 0x029B0} ,
+ {"bepsi", 0x003F6} ,
+ {"bernou", 0x0212C} ,
+ {"beta", 0x003B2} ,
+ {"beth", 0x02136} ,
+ {"between", 0x0226C} ,
+ {"bfr", 0x1D51F} ,
+ {"bigcap", 0x022C2} ,
+ {"bigcirc", 0x025EF} ,
+ {"bigcup", 0x022C3} ,
+ {"bigodot", 0x02A00} ,
+ {"bigoplus", 0x02A01} ,
+ {"bigotimes", 0x02A02} ,
+ {"bigsqcup", 0x02A06} ,
+ {"bigstar", 0x02605} ,
+ {"bigtriangledown", 0x025BD} ,
+ {"bigtriangleup", 0x025B3} ,
+ {"biguplus", 0x02A04} ,
+ {"bigvee", 0x022C1} ,
+ {"bigwedge", 0x022C0} ,
+ {"bkarow", 0x0290D} ,
+ {"blacklozenge", 0x029EB} ,
+ {"blacksquare", 0x025AA} ,
+ {"blacktriangle", 0x025B4} ,
+ {"blacktriangledown", 0x025BE} ,
+ {"blacktriangleleft", 0x025C2} ,
+ {"blacktriangleright", 0x025B8} ,
+ {"blank", 0x02423} ,
+ {"blk12", 0x02592} ,
+ {"blk14", 0x02591} ,
+ {"blk34", 0x02593} ,
+ {"block", 0x02588} ,
+ {"bnot", 0x02310} ,
+ {"bopf", 0x1D553} ,
+ {"bot", 0x022A5} ,
+ {"bottom", 0x022A5} ,
+ {"bowtie", 0x022C8} ,
+ {"boxDL", 0x02557} ,
+ {"boxDR", 0x02554} ,
+ {"boxDl", 0x02556} ,
+ {"boxDr", 0x02553} ,
+ {"boxH", 0x02550} ,
+ {"boxHD", 0x02566} ,
+ {"boxHU", 0x02569} ,
+ {"boxHd", 0x02564} ,
+ {"boxHu", 0x02567} ,
+ {"boxUL", 0x0255D} ,
+ {"boxUR", 0x0255A} ,
+ {"boxUl", 0x0255C} ,
+ {"boxUr", 0x02559} ,
+ {"boxV", 0x02551} ,
+ {"boxVH", 0x0256C} ,
+ {"boxVL", 0x02563} ,
+ {"boxVR", 0x02560} ,
+ {"boxVh", 0x0256B} ,
+ {"boxVl", 0x02562} ,
+ {"boxVr", 0x0255F} ,
+ {"boxbox", 0x029C9} ,
+ {"boxdL", 0x02555} ,
+ {"boxdR", 0x02552} ,
+ {"boxdl", 0x02510} ,
+ {"boxdr", 0x0250C} ,
+ {"boxh", 0x02500} ,
+ {"boxhD", 0x02565} ,
+ {"boxhU", 0x02568} ,
+ {"boxhd", 0x0252C} ,
+ {"boxhu", 0x02534} ,
+ {"boxminus", 0x0229F} ,
+ {"boxplus", 0x0229E} ,
+ {"boxtimes", 0x022A0} ,
+ {"boxuL", 0x0255B} ,
+ {"boxuR", 0x02558} ,
+ {"boxul", 0x02518} ,
+ {"boxur", 0x02514} ,
+ {"boxv", 0x02502} ,
+ {"boxvH", 0x0256A} ,
+ {"boxvL", 0x02561} ,
+ {"boxvR", 0x0255E} ,
+ {"boxvh", 0x0253C} ,
+ {"boxvl", 0x02524} ,
+ {"boxvr", 0x0251C} ,
+ {"bprime", 0x02035} ,
+ {"breve", 0x002D8} ,
+ {"brvbar", 0x000A6} ,
+ {"bscr", 0x1D4B7} ,
+ {"bsemi", 0x0204F} ,
+ {"bsim", 0x0223D} ,
+ {"bsime", 0x022CD} ,
+ {"bsol", 0x0005C} ,
+ {"bsolb", 0x029C5} ,
+ {"bull", 0x02022} ,
+ {"bullet", 0x02022} ,
+ {"bump", 0x0224E} ,
+ {"bumpE", 0x02AAE} ,
+ {"bumpe", 0x0224F} ,
+ {"bumpeq", 0x0224F} ,
+ {"cacute", 0x00107} ,
+ {"cap", 0x02229} ,
+ {"capand", 0x02A44} ,
+ {"capbrcup", 0x02A49} ,
+ {"capcap", 0x02A4B} ,
+ {"capcup", 0x02A47} ,
+ {"capdot", 0x02A40} ,
+ {"caret", 0x02041} ,
+ {"caron", 0x002C7} ,
+ {"ccaps", 0x02A4D} ,
+ {"ccaron", 0x0010D} ,
+ {"ccedil", 0x000E7} ,
+ {"ccirc", 0x00109} ,
+ {"ccups", 0x02A4C} ,
+ {"ccupssm", 0x02A50} ,
+ {"cdot", 0x0010B} ,
+ {"cedil", 0x000B8} ,
+ {"cemptyv", 0x029B2} ,
+ {"cent", 0x000A2} ,
+ {"centerdot", 0x000B7} ,
+ {"cfr", 0x1D520} ,
+ {"chcy", 0x00447} ,
+ {"check", 0x02713} ,
+ {"checkmark", 0x02713} ,
+ {"chi", 0x003C7} ,
+ {"cir", 0x025CB} ,
+ {"cirE", 0x029C3} ,
+ {"circ", 0x002C6} ,
+ {"circeq", 0x02257} ,
+ {"circlearrowleft", 0x021BA} ,
+ {"circlearrowright", 0x021BB} ,
+ {"circledR", 0x000AE} ,
+ {"circledS", 0x024C8} ,
+ {"circledast", 0x0229B} ,
+ {"circledcirc", 0x0229A} ,
+ {"circleddash", 0x0229D} ,
+ {"cire", 0x02257} ,
+ {"cirfnint", 0x02A10} ,
+ {"cirmid", 0x02AEF} ,
+ {"cirscir", 0x029C2} ,
+ {"clubs", 0x02663} ,
+ {"clubsuit", 0x02663} ,
+ {"colon", 0x0003A} ,
+ {"colone", 0x02254} ,
+ {"coloneq", 0x02254} ,
+ {"comma", 0x0002C} ,
+ {"commat", 0x00040} ,
+ {"comp", 0x02201} ,
+ {"compfn", 0x02218} ,
+ {"complement", 0x02201} ,
+ {"complexes", 0x02102} ,
+ {"cong", 0x02245} ,
+ {"congdot", 0x02A6D} ,
+ {"conint", 0x0222E} ,
+ {"copf", 0x1D554} ,
+ {"coprod", 0x02210} ,
+ {"copy", 0x000A9} ,
+ {"copysr", 0x02117} ,
+ {"cross", 0x02717} ,
+ {"cscr", 0x1D4B8} ,
+ {"csub", 0x02ACF} ,
+ {"csube", 0x02AD1} ,
+ {"csup", 0x02AD0} ,
+ {"csupe", 0x02AD2} ,
+ {"ctdot", 0x022EF} ,
+ {"cudarrl", 0x02938} ,
+ {"cudarrr", 0x02935} ,
+ {"cuepr", 0x022DE} ,
+ {"cuesc", 0x022DF} ,
+ {"cularr", 0x021B6} ,
+ {"cularrp", 0x0293D} ,
+ {"cup", 0x0222A} ,
+ {"cupbrcap", 0x02A48} ,
+ {"cupcap", 0x02A46} ,
+ {"cupcup", 0x02A4A} ,
+ {"cupdot", 0x0228D} ,
+ {"cupor", 0x02A45} ,
+ {"curarr", 0x021B7} ,
+ {"curarrm", 0x0293C} ,
+ {"curlyeqprec", 0x022DE} ,
+ {"curlyeqsucc", 0x022DF} ,
+ {"curlyvee", 0x022CE} ,
+ {"curlywedge", 0x022CF} ,
+ {"curren", 0x000A4} ,
+ {"curvearrowleft", 0x021B6} ,
+ {"curvearrowright", 0x021B7} ,
+ {"cuvee", 0x022CE} ,
+ {"cuwed", 0x022CF} ,
+ {"cwconint", 0x02232} ,
+ {"cwint", 0x02231} ,
+ {"cylcty", 0x0232D} ,
+ {"dArr", 0x021D3} ,
+ {"dHar", 0x02965} ,
+ {"dagger", 0x02020} ,
+ {"dagger", 0x02020} ,
+ {"daleth", 0x02138} ,
+ {"darr", 0x02193} ,
+ {"dash", 0x02010} ,
+ {"dashv", 0x022A3} ,
+ {"dbkarow", 0x0290F} ,
+ {"dblac", 0x002DD} ,
+ {"dcaron", 0x0010F} ,
+ {"dcy", 0x00434} ,
+ {"dd", 0x02146} ,
+ {"ddagger", 0x02021} ,
+ {"ddarr", 0x021CA} ,
+ {"ddotseq", 0x02A77} ,
+ {"deg", 0x000B0} ,
+ {"delta", 0x003B4} ,
+ {"demptyv", 0x029B1} ,
+ {"dfisht", 0x0297F} ,
+ {"dfr", 0x1D521} ,
+ {"dharl", 0x021C3} ,
+ {"dharr", 0x021C2} ,
+ {"diam", 0x022C4} ,
+ {"diamond", 0x022C4} ,
+ {"diamondsuit", 0x02666} ,
+ {"diams", 0x02666} ,
+ {"die", 0x000A8} ,
+ {"digamma", 0x003DD} ,
+ {"disin", 0x022F2} ,
+ {"div", 0x000F7} ,
+ {"divide", 0x000F7} ,
+ {"divideontimes", 0x022C7} ,
+ {"divonx", 0x022C7} ,
+ {"djcy", 0x00452} ,
+ {"dlcorn", 0x0231E} ,
+ {"dlcrop", 0x0230D} ,
+ {"dollar", 0x00024} ,
+ {"dopf", 0x1D555} ,
+ {"dot", 0x002D9} ,
+ {"doteq", 0x02250} ,
+ {"doteqdot", 0x02251} ,
+ {"dotminus", 0x02238} ,
+ {"dotplus", 0x02214} ,
+ {"dotsquare", 0x022A1} ,
+ {"doublebarwedge", 0x02306} ,
+ {"downarrow", 0x02193} ,
+ {"downdownarrows", 0x021CA} ,
+ {"downharpoonleft", 0x021C3} ,
+ {"downharpoonright", 0x021C2} ,
+ {"drbkarow", 0x02910} ,
+ {"drcorn", 0x0231F} ,
+ {"drcrop", 0x0230C} ,
+ {"dscr", 0x1D4B9} ,
+ {"dscy", 0x00455} ,
+ {"dsol", 0x029F6} ,
+ {"dstrok", 0x00111} ,
+ {"dtdot", 0x022F1} ,
+ {"dtri", 0x025BF} ,
+ {"dtrif", 0x025BE} ,
+ {"duarr", 0x021F5} ,
+ {"duhar", 0x0296F} ,
+ {"dwangle", 0x029A6} ,
+ {"dzcy", 0x0045F} ,
+ {"dzigrarr", 0x027FF} ,
+ {"eDDot", 0x02A77} ,
+ {"eDot", 0x02251} ,
+ {"eacute", 0x000E9} ,
+ {"easter", 0x02A6E} ,
+ {"ecaron", 0x0011B} ,
+ {"ecir", 0x02256} ,
+ {"ecirc", 0x000EA} ,
+ {"ecolon", 0x02255} ,
+ {"ecy", 0x0044D} ,
+ {"edot", 0x00117} ,
+ {"ee", 0x02147} ,
+ {"efDot", 0x02252} ,
+ {"efr", 0x1D522} ,
+ {"eg", 0x02A9A} ,
+ {"egrave", 0x000E8} ,
+ {"egs", 0x02A96} ,
+ {"egsdot", 0x02A98} ,
+ {"el", 0x02A99} ,
+ {"elinters", 0x0FFFD} ,
+ {"ell", 0x02113} ,
+ {"els", 0x02A95} ,
+ {"elsdot", 0x02A97} ,
+ {"emacr", 0x00113} ,
+ {"empty", 0x02205} ,
+ {"emptyset", 0x02205} ,
+ {"emptyv", 0x02205} ,
+ {"emsp", 0x02003} ,
+ {"emsp13", 0x02004} ,
+ {"emsp14", 0x02005} ,
+ {"eng", 0x0014B} ,
+ {"ensp", 0x02002} ,
+ {"eogon", 0x00119} ,
+ {"eopf", 0x1D556} ,
+ {"epar", 0x022D5} ,
+ {"eparsl", 0x029E3} ,
+ {"eplus", 0x02A71} ,
+ {"epsi", 0x003F5} ,
+ {"epsiv", 0x003B5} ,
+ {"eqcirc", 0x02256} ,
+ {"eqcolon", 0x02255} ,
+ {"eqsim", 0x02242} ,
+ {"eqslantgtr", 0x02A96} ,
+ {"eqslantless", 0x02A95} ,
+ {"equals", 0x0003D} ,
+ {"equest", 0x0225F} ,
+ {"equiv", 0x02261} ,
+ {"equivDD", 0x02A78} ,
+ {"eqvparsl", 0x029E5} ,
+ {"erDot", 0x02253} ,
+ {"erarr", 0x02971} ,
+ {"escr", 0x0212F} ,
+ {"esdot", 0x02250} ,
+ {"esim", 0x02242} ,
+ {"eta", 0x003B7} ,
+ {"eth", 0x000F0} ,
+ {"euml", 0x000EB} ,
+ {"excl", 0x00021} ,
+ {"exist", 0x02203} ,
+ {"expectation", 0x02130} ,
+ {"exponentiale", 0x02147} ,
+ {"fallingdotseq", 0x02252} ,
+ {"fcy", 0x00444} ,
+ {"female", 0x02640} ,
+ {"ffilig", 0x0FB03} ,
+ {"fflig", 0x0FB00} ,
+ {"ffllig", 0x0FB04} ,
+ {"ffr", 0x1D523} ,
+ {"filig", 0x0FB01} ,
+ {"flat", 0x0266D} ,
+ {"fllig", 0x0FB02} ,
+ {"fltns", 0x025B1} ,
+ {"fnof", 0x00192} ,
+ {"fopf", 0x1D557} ,
+ {"forall", 0x02200} ,
+ {"fork", 0x022D4} ,
+ {"forkv", 0x02AD9} ,
+ {"fpartint", 0x02A0D} ,
+ {"frac12", 0x000BD} ,
+ {"frac13", 0x02153} ,
+ {"frac14", 0x000BC} ,
+ {"frac15", 0x02155} ,
+ {"frac16", 0x02159} ,
+ {"frac18", 0x0215B} ,
+ {"frac23", 0x02154} ,
+ {"frac25", 0x02156} ,
+ {"frac34", 0x000BE} ,
+ {"frac35", 0x02157} ,
+ {"frac38", 0x0215C} ,
+ {"frac45", 0x02158} ,
+ {"frac56", 0x0215A} ,
+ {"frac58", 0x0215D} ,
+ {"frac78", 0x0215E} ,
+ {"frown", 0x02322} ,
+ {"fscr", 0x1D4BB} ,
+ {"gE", 0x02267} ,
+ {"gEl", 0x02A8C} ,
+ {"gacute", 0x001F5} ,
+ {"gamma", 0x003B3} ,
+ {"gammad", 0x003DD} ,
+ {"gap", 0x02A86} ,
+ {"gbreve", 0x0011F} ,
+ {"gcirc", 0x0011D} ,
+ {"gcy", 0x00433} ,
+ {"gdot", 0x00121} ,
+ {"ge", 0x02265} ,
+ {"gel", 0x022DB} ,
+ {"geq", 0x02265} ,
+ {"geqq", 0x02267} ,
+ {"geqslant", 0x02A7E} ,
+ {"ges", 0x02A7E} ,
+ {"gescc", 0x02AA9} ,
+ {"gesdot", 0x02A80} ,
+ {"gesdoto", 0x02A82} ,
+ {"gesdotol", 0x02A84} ,
+ {"gesles", 0x02A94} ,
+ {"gfr", 0x1D524} ,
+ {"gg", 0x0226B} ,
+ {"ggg", 0x022D9} ,
+ {"gimel", 0x02137} ,
+ {"gjcy", 0x00453} ,
+ {"gl", 0x02277} ,
+ {"glE", 0x02A92} ,
+ {"gla", 0x02AA5} ,
+ {"glj", 0x02AA4} ,
+ {"gnE", 0x02269} ,
+ {"gnap", 0x02A8A} ,
+ {"gnapprox", 0x02A8A} ,
+ {"gne", 0x02A88} ,
+ {"gneq", 0x02A88} ,
+ {"gneqq", 0x02269} ,
+ {"gnsim", 0x022E7} ,
+ {"gopf", 0x1D558} ,
+ {"grave", 0x00060} ,
+ {"gscr", 0x0210A} ,
+ {"gsim", 0x02273} ,
+ {"gsime", 0x02A8E} ,
+ {"gsiml", 0x02A90} ,
+ {"gt", 0x0003E} ,
+ {"gtcc", 0x02AA7} ,
+ {"gtcir", 0x02A7A} ,
+ {"gtdot", 0x022D7} ,
+ {"gtlPar", 0x02995} ,
+ {"gtquest", 0x02A7C} ,
+ {"gtrapprox", 0x02A86} ,
+ {"gtrarr", 0x02978} ,
+ {"gtrdot", 0x022D7} ,
+ {"gtreqless", 0x022DB} ,
+ {"gtreqqless", 0x02A8C} ,
+ {"gtrless", 0x02277} ,
+ {"gtrsim", 0x02273} ,
+ {"hArr", 0x021D4} ,
+ {"hairsp", 0x0200A} ,
+ {"half", 0x000BD} ,
+ {"hamilt", 0x0210B} ,
+ {"hardcy", 0x0044A} ,
+ {"harr", 0x02194} ,
+ {"harrcir", 0x02948} ,
+ {"harrw", 0x021AD} ,
+ {"hbar", 0x0210F} ,
+ {"hcirc", 0x00125} ,
+ {"hearts", 0x02665} ,
+ {"heartsuit", 0x02665} ,
+ {"hellip", 0x02026} ,
+ {"hercon", 0x022B9} ,
+ {"hfr", 0x1D525} ,
+ {"hksearow", 0x02925} ,
+ {"hkswarow", 0x02926} ,
+ {"hoarr", 0x021FF} ,
+ {"homtht", 0x0223B} ,
+ {"hookleftarrow", 0x021A9} ,
+ {"hookrightarrow", 0x021AA} ,
+ {"hopf", 0x1D559} ,
+ {"horbar", 0x02015} ,
+ {"hscr", 0x1D4BD} ,
+ {"hslash", 0x0210F} ,
+ {"hstrok", 0x00127} ,
+ {"hybull", 0x02043} ,
+ {"hyphen", 0x02010} ,
+ {"iacute", 0x000ED} ,
+ {"ic", 0x02063} ,
+ {"icirc", 0x000EE} ,
+ {"icy", 0x00438} ,
+ {"iecy", 0x00435} ,
+ {"iexcl", 0x000A1} ,
+ {"iff", 0x021D4} ,
+ {"ifr", 0x1D526} ,
+ {"igrave", 0x000EC} ,
+ {"ii", 0x02148} ,
+ {"iiiint", 0x02A0C} ,
+ {"iiint", 0x0222D} ,
+ {"iinfin", 0x029DC} ,
+ {"iiota", 0x02129} ,
+ {"ijlig", 0x00133} ,
+ {"imacr", 0x0012B} ,
+ {"image", 0x02111} ,
+ {"imagline", 0x02110} ,
+ {"imagpart", 0x02111} ,
+ {"imath", 0x00131} ,
+ {"imof", 0x022B7} ,
+ {"imped", 0x001B5} ,
+ {"in", 0x02208} ,
+ {"incare", 0x02105} ,
+ {"infin", 0x0221E} ,
+ {"infintie", 0x029DD} ,
+ {"inodot", 0x00131} ,
+ {"int", 0x0222B} ,
+ {"intcal", 0x022BA} ,
+ {"integers", 0x02124} ,
+ {"intercal", 0x022BA} ,
+ {"intlarhk", 0x02A17} ,
+ {"intprod", 0x02A3C} ,
+ {"iocy", 0x00451} ,
+ {"iogon", 0x0012F} ,
+ {"iopf", 0x1D55A} ,
+ {"iota", 0x003B9} ,
+ {"iprod", 0x02A3C} ,
+ {"iquest", 0x000BF} ,
+ {"iscr", 0x1D4BE} ,
+ {"isin", 0x02208} ,
+ {"isinE", 0x022F9} ,
+ {"isindot", 0x022F5} ,
+ {"isins", 0x022F4} ,
+ {"isinsv", 0x022F3} ,
+ {"isinv", 0x02208} ,
+ {"it", 0x02062} ,
+ {"itilde", 0x00129} ,
+ {"iukcy", 0x00456} ,
+ {"iuml", 0x000EF} ,
+ {"jcirc", 0x00135} ,
+ {"jcy", 0x00439} ,
+ {"jfr", 0x1D527} ,
+ {"jmath", 0x0006A} ,
+ {"jopf", 0x1D55B} ,
+ {"jscr", 0x1D4BF} ,
+ {"jsercy", 0x00458} ,
+ {"jukcy", 0x00454} ,
+ {"kappa", 0x003BA} ,
+ {"kappav", 0x003F0} ,
+ {"kcedil", 0x00137} ,
+ {"kcy", 0x0043A} ,
+ {"kfr", 0x1D528} ,
+ {"kgreen", 0x00138} ,
+ {"khcy", 0x00445} ,
+ {"kjcy", 0x0045C} ,
+ {"kopf", 0x1D55C} ,
+ {"kscr", 0x1D4C0} ,
+ {"lAarr", 0x021DA} ,
+ {"lArr", 0x021D0} ,
+ {"lAtail", 0x0291B} ,
+ {"lBarr", 0x0290E} ,
+ {"lE", 0x02266} ,
+ {"lEg", 0x02A8B} ,
+ {"lHar", 0x02962} ,
+ {"lacute", 0x0013A} ,
+ {"laemptyv", 0x029B4} ,
+ {"lagran", 0x02112} ,
+ {"lambda", 0x003BB} ,
+ {"lang", 0x02329} ,
+ {"langd", 0x02991} ,
+ {"langle", 0x02329} ,
+ {"lap", 0x02A85} ,
+ {"laquo", 0x000AB} ,
+ {"larr", 0x02190} ,
+ {"larrb", 0x021E4} ,
+ {"larrbfs", 0x0291F} ,
+ {"larrfs", 0x0291D} ,
+ {"larrhk", 0x021A9} ,
+ {"larrlp", 0x021AB} ,
+ {"larrpl", 0x02939} ,
+ {"larrsim", 0x02973} ,
+ {"larrtl", 0x021A2} ,
+ {"lat", 0x02AAB} ,
+ {"latail", 0x02919} ,
+ {"late", 0x02AAD} ,
+ {"lbarr", 0x0290C} ,
+ {"lbbrk", 0x03014} ,
+ {"lbrace", 0x0007B} ,
+ {"lbrack", 0x0005B} ,
+ {"lbrke", 0x0298B} ,
+ {"lbrksld", 0x0298F} ,
+ {"lbrkslu", 0x0298D} ,
+ {"lcaron", 0x0013E} ,
+ {"lcedil", 0x0013C} ,
+ {"lceil", 0x02308} ,
+ {"lcub", 0x0007B} ,
+ {"lcy", 0x0043B} ,
+ {"ldca", 0x02936} ,
+ {"ldquo", 0x0201C} ,
+ {"ldquor", 0x0201E} ,
+ {"ldrdhar", 0x02967} ,
+ {"ldrushar", 0x0294B} ,
+ {"ldsh", 0x021B2} ,
+ {"le", 0x02264} ,
+ {"leftarrow", 0x02190} ,
+ {"leftarrowtail", 0x021A2} ,
+ {"leftharpoondown", 0x021BD} ,
+ {"leftharpoonup", 0x021BC} ,
+ {"leftleftarrows", 0x021C7} ,
+ {"leftrightarrow", 0x02194} ,
+ {"leftrightarrows", 0x021C6} ,
+ {"leftrightharpoons", 0x021CB} ,
+ {"leftrightsquigarrow", 0x021AD} ,
+ {"leftthreetimes", 0x022CB} ,
+ {"leg", 0x022DA} ,
+ {"leq", 0x02264} ,
+ {"leqq", 0x02266} ,
+ {"leqslant", 0x02A7D} ,
+ {"les", 0x02A7D} ,
+ {"lescc", 0x02AA8} ,
+ {"lesdot", 0x02A7F} ,
+ {"lesdoto", 0x02A81} ,
+ {"lesdotor", 0x02A83} ,
+ {"lesges", 0x02A93} ,
+ {"lessapprox", 0x02A85} ,
+ {"lessdot", 0x022D6} ,
+ {"lesseqgtr", 0x022DA} ,
+ {"lesseqqgtr", 0x02A8B} ,
+ {"lessgtr", 0x02276} ,
+ {"lesssim", 0x02272} ,
+ {"lfisht", 0x0297C} ,
+ {"lfloor", 0x0230A} ,
+ {"lfr", 0x1D529} ,
+ {"lg", 0x02276} ,
+ {"lgE", 0x02A91} ,
+ {"lhard", 0x021BD} ,
+ {"lharu", 0x021BC} ,
+ {"lharul", 0x0296A} ,
+ {"lhblk", 0x02584} ,
+ {"ljcy", 0x00459} ,
+ {"ll", 0x0226A} ,
+ {"llarr", 0x021C7} ,
+ {"llcorner", 0x0231E} ,
+ {"llhard", 0x0296B} ,
+ {"lltri", 0x025FA} ,
+ {"lmidot", 0x00140} ,
+ {"lmoust", 0x023B0} ,
+ {"lmoustache", 0x023B0} ,
+ {"lnE", 0x02268} ,
+ {"lnap", 0x02A89} ,
+ {"lnapprox", 0x02A89} ,
+ {"lne", 0x02A87} ,
+ {"lneq", 0x02A87} ,
+ {"lneqq", 0x02268} ,
+ {"lnsim", 0x022E6} ,
+ {"loang", 0x03018} ,
+ {"loarr", 0x021FD} ,
+ {"lobrk", 0x0301A} ,
+ {"longleftarrow", 0x027F5} ,
+ {"longleftrightarrow", 0x027F7} ,
+ {"longmapsto", 0x027FC} ,
+ {"longrightarrow", 0x027F6} ,
+ {"looparrowleft", 0x021AB} ,
+ {"looparrowright", 0x021AC} ,
+ {"lopar", 0x02985} ,
+ {"lopf", 0x1D55D} ,
+ {"loplus", 0x02A2D} ,
+ {"lotimes", 0x02A34} ,
+ {"lowast", 0x02217} ,
+ {"lowbar", 0x0005F} ,
+ {"loz", 0x025CA} ,
+ {"lozenge", 0x025CA} ,
+ {"lozf", 0x029EB} ,
+ {"lpar", 0x00028} ,
+ {"lparlt", 0x02993} ,
+ {"lrarr", 0x021C6} ,
+ {"lrcorner", 0x0231F} ,
+ {"lrhar", 0x021CB} ,
+ {"lrhard", 0x0296D} ,
+ {"lrtri", 0x022BF} ,
+ {"lscr", 0x1D4C1} ,
+ {"lsh", 0x021B0} ,
+ {"lsim", 0x02272} ,
+ {"lsime", 0x02A8D} ,
+ {"lsimg", 0x02A8F} ,
+ {"lsqb", 0x0005B} ,
+ {"lsquo", 0x02018} ,
+ {"lsquor", 0x0201A} ,
+ {"lstrok", 0x00142} ,
+ {"lt", 0x0003C} ,
+ {"ltcc", 0x02AA6} ,
+ {"ltcir", 0x02A79} ,
+ {"ltdot", 0x022D6} ,
+ {"lthree", 0x022CB} ,
+ {"ltimes", 0x022C9} ,
+ {"ltlarr", 0x02976} ,
+ {"ltquest", 0x02A7B} ,
+ {"ltrPar", 0x02996} ,
+ {"ltri", 0x025C3} ,
+ {"ltrie", 0x022B4} ,
+ {"ltrif", 0x025C2} ,
+ {"lurdshar", 0x0294A} ,
+ {"luruhar", 0x02966} ,
+ {"mDDot", 0x0223A} ,
+ {"macr", 0x000AF} ,
+ {"male", 0x02642} ,
+ {"malt", 0x02720} ,
+ {"maltese", 0x02720} ,
+ {"map", 0x021A6} ,
+ {"mapsto", 0x021A6} ,
+ {"mapstodown", 0x021A7} ,
+ {"mapstoleft", 0x021A4} ,
+ {"mapstoup", 0x021A5} ,
+ {"marker", 0x025AE} ,
+ {"mcomma", 0x02A29} ,
+ {"mcy", 0x0043C} ,
+ {"mdash", 0x02014} ,
+ {"measuredangle", 0x02221} ,
+ {"mfr", 0x1D52A} ,
+ {"mho", 0x02127} ,
+ {"micro", 0x000B5} ,
+ {"mid", 0x02223} ,
+ {"midast", 0x0002A} ,
+ {"midcir", 0x02AF0} ,
+ {"middot", 0x000B7} ,
+ {"minus", 0x02212} ,
+ {"minusb", 0x0229F} ,
+ {"minusd", 0x02238} ,
+ {"minusdu", 0x02A2A} ,
+ {"mlcp", 0x02ADB} ,
+ {"mldr", 0x02026} ,
+ {"mnplus", 0x02213} ,
+ {"models", 0x022A7} ,
+ {"mopf", 0x1D55E} ,
+ {"mp", 0x02213} ,
+ {"mscr", 0x1D4C2} ,
+ {"mstpos", 0x0223E} ,
+ {"mu", 0x003BC} ,
+ {"multimap", 0x022B8} ,
+ {"mumap", 0x022B8} ,
+ {"nLeftarrow", 0x021CD} ,
+ {"nLeftrightarrow", 0x021CE} ,
+ {"nRightarrow", 0x021CF} ,
+ {"nVDash", 0x022AF} ,
+ {"nVdash", 0x022AE} ,
+ {"nabla", 0x02207} ,
+ {"nacute", 0x00144} ,
+ {"nap", 0x02249} ,
+ {"napos", 0x00149} ,
+ {"napprox", 0x02249} ,
+ {"natur", 0x0266E} ,
+ {"natural", 0x0266E} ,
+ {"naturals", 0x02115} ,
+ {"nbsp", 0x000A0} ,
+ {"ncap", 0x02A43} ,
+ {"ncaron", 0x00148} ,
+ {"ncedil", 0x00146} ,
+ {"ncong", 0x02247} ,
+ {"ncup", 0x02A42} ,
+ {"ncy", 0x0043D} ,
+ {"ndash", 0x02013} ,
+ {"ne", 0x02260} ,
+ {"neArr", 0x021D7} ,
+ {"nearhk", 0x02924} ,
+ {"nearr", 0x02197} ,
+ {"nearrow", 0x02197} ,
+ {"nequiv", 0x02262} ,
+ {"nesear", 0x02928} ,
+ {"nexist", 0x02204} ,
+ {"nexists", 0x02204} ,
+ {"nfr", 0x1D52B} ,
+ {"nge", 0x02271} ,
+ {"ngeq", 0x02271} ,
+ {"ngsim", 0x02275} ,
+ {"ngt", 0x0226F} ,
+ {"ngtr", 0x0226F} ,
+ {"nhArr", 0x021CE} ,
+ {"nharr", 0x021AE} ,
+ {"nhpar", 0x02AF2} ,
+ {"ni", 0x0220B} ,
+ {"nis", 0x022FC} ,
+ {"nisd", 0x022FA} ,
+ {"niv", 0x0220B} ,
+ {"njcy", 0x0045A} ,
+ {"nlArr", 0x021CD} ,
+ {"nlarr", 0x0219A} ,
+ {"nldr", 0x02025} ,
+ {"nle", 0x02270} ,
+ {"nleftarrow", 0x0219A} ,
+ {"nleftrightarrow", 0x021AE} ,
+ {"nleq", 0x02270} ,
+ {"nless", 0x0226E} ,
+ {"nlsim", 0x02274} ,
+ {"nlt", 0x0226E} ,
+ {"nltri", 0x022EA} ,
+ {"nltrie", 0x022EC} ,
+ {"nmid", 0x02224} ,
+ {"nopf", 0x1D55F} ,
+ {"not", 0x000AC} ,
+ {"notin", 0x02209} ,
+ {"notinva", 0x02209} ,
+ {"notinvb", 0x022F7} ,
+ {"notinvc", 0x022F6} ,
+ {"notni", 0x0220C} ,
+ {"notniva", 0x0220C} ,
+ {"notnivb", 0x022FE} ,
+ {"notnivc", 0x022FD} ,
+ {"npar", 0x02226} ,
+ {"nparallel", 0x02226} ,
+ {"npolint", 0x02A14} ,
+ {"npr", 0x02280} ,
+ {"nprcue", 0x022E0} ,
+ {"nprec", 0x02280} ,
+ {"nrArr", 0x021CF} ,
+ {"nrarr", 0x0219B} ,
+ {"nrightarrow", 0x0219B} ,
+ {"nrtri", 0x022EB} ,
+ {"nrtrie", 0x022ED} ,
+ {"nsc", 0x02281} ,
+ {"nsccue", 0x022E1} ,
+ {"nscr", 0x1D4C3} ,
+ {"nshortmid", 0x02224} ,
+ {"nshortparallel", 0x02226} ,
+ {"nsim", 0x02241} ,
+ {"nsime", 0x02244} ,
+ {"nsimeq", 0x02244} ,
+ {"nsmid", 0x02224} ,
+ {"nspar", 0x02226} ,
+ {"nsqsube", 0x022E2} ,
+ {"nsqsupe", 0x022E3} ,
+ {"nsub", 0x02284} ,
+ {"nsube", 0x02288} ,
+ {"nsubseteq", 0x02288} ,
+ {"nsucc", 0x02281} ,
+ {"nsup", 0x02285} ,
+ {"nsupe", 0x02289} ,
+ {"nsupseteq", 0x02289} ,
+ {"ntgl", 0x02279} ,
+ {"ntilde", 0x000F1} ,
+ {"ntlg", 0x02278} ,
+ {"ntriangleleft", 0x022EA} ,
+ {"ntrianglelefteq", 0x022EC} ,
+ {"ntriangleright", 0x022EB} ,
+ {"ntrianglerighteq", 0x022ED} ,
+ {"nu", 0x003BD} ,
+ {"num", 0x00023} ,
+ {"numero", 0x02116} ,
+ {"numsp", 0x02007} ,
+ {"nvDash", 0x022AD} ,
+ {"nvHarr", 0x02904} ,
+ {"nvdash", 0x022AC} ,
+ {"nvinfin", 0x029DE} ,
+ {"nvlArr", 0x02902} ,
+ {"nvrArr", 0x02903} ,
+ {"nwArr", 0x021D6} ,
+ {"nwarhk", 0x02923} ,
+ {"nwarr", 0x02196} ,
+ {"nwarrow", 0x02196} ,
+ {"nwnear", 0x02927} ,
+ {"oS", 0x024C8} ,
+ {"oacute", 0x000F3} ,
+ {"oast", 0x0229B} ,
+ {"ocir", 0x0229A} ,
+ {"ocirc", 0x000F4} ,
+ {"ocy", 0x0043E} ,
+ {"odash", 0x0229D} ,
+ {"odblac", 0x00151} ,
+ {"odiv", 0x02A38} ,
+ {"odot", 0x02299} ,
+ {"odsold", 0x029BC} ,
+ {"oelig", 0x00153} ,
+ {"ofcir", 0x029BF} ,
+ {"ofr", 0x1D52C} ,
+ {"ogon", 0x002DB} ,
+ {"ograve", 0x000F2} ,
+ {"ogt", 0x029C1} ,
+ {"ohbar", 0x029B5} ,
+ {"ohm", 0x02126} ,
+ {"oint", 0x0222E} ,
+ {"olarr", 0x021BA} ,
+ {"olcir", 0x029BE} ,
+ {"olcross", 0x029BB} ,
+ {"olt", 0x029C0} ,
+ {"omacr", 0x0014D} ,
+ {"omega", 0x003C9} ,
+ {"omid", 0x029B6} ,
+ {"ominus", 0x02296} ,
+ {"oopf", 0x1D560} ,
+ {"opar", 0x029B7} ,
+ {"operp", 0x029B9} ,
+ {"oplus", 0x02295} ,
+ {"or", 0x02228} ,
+ {"orarr", 0x021BB} ,
+ {"ord", 0x02A5D} ,
+ {"order", 0x02134} ,
+ {"orderof", 0x02134} ,
+ {"ordf", 0x000AA} ,
+ {"ordm", 0x000BA} ,
+ {"origof", 0x022B6} ,
+ {"oror", 0x02A56} ,
+ {"orslope", 0x02A57} ,
+ {"orv", 0x02A5B} ,
+ {"oscr", 0x02134} ,
+ {"oslash", 0x000F8} ,
+ {"osol", 0x02298} ,
+ {"otilde", 0x000F5} ,
+ {"otimes", 0x02297} ,
+ {"otimesas", 0x02A36} ,
+ {"ouml", 0x000F6} ,
+ {"ovbar", 0x0233D} ,
+ {"par", 0x02225} ,
+ {"para", 0x000B6} ,
+ {"parallel", 0x02225} ,
+ {"parsim", 0x02AF3} ,
+ {"parsl", 0x02AFD} ,
+ {"part", 0x02202} ,
+ {"pcy", 0x0043F} ,
+ {"percnt", 0x00025} ,
+ {"period", 0x0002E} ,
+ {"permil", 0x02030} ,
+ {"perp", 0x022A5} ,
+ {"pertenk", 0x02031} ,
+ {"pfr", 0x1D52D} ,
+ {"phi", 0x003D5} ,
+ {"phiv", 0x003C6} ,
+ {"phmmat", 0x02133} ,
+ {"phone", 0x0260E} ,
+ {"pi", 0x003C0} ,
+ {"pitchfork", 0x022D4} ,
+ {"piv", 0x003D6} ,
+ {"planck", 0x0210F} ,
+ {"planckh", 0x0210E} ,
+ {"plankv", 0x0210F} ,
+ {"plus", 0x0002B} ,
+ {"plusacir", 0x02A23} ,
+ {"plusb", 0x0229E} ,
+ {"pluscir", 0x02A22} ,
+ {"plusdo", 0x02214} ,
+ {"plusdu", 0x02A25} ,
+ {"pluse", 0x02A72} ,
+ {"plusmn", 0x000B1} ,
+ {"plussim", 0x02A26} ,
+ {"plustwo", 0x02A27} ,
+ {"pm", 0x000B1} ,
+ {"pointint", 0x02A15} ,
+ {"popf", 0x1D561} ,
+ {"pound", 0x000A3} ,
+ {"pr", 0x0227A} ,
+ {"prE", 0x02AB3} ,
+ {"prap", 0x02AB7} ,
+ {"prcue", 0x0227C} ,
+ {"pre", 0x02AAF} ,
+ {"prec", 0x0227A} ,
+ {"precapprox", 0x02AB7} ,
+ {"preccurlyeq", 0x0227C} ,
+ {"preceq", 0x02AAF} ,
+ {"precnapprox", 0x02AB9} ,
+ {"precneqq", 0x02AB5} ,
+ {"precnsim", 0x022E8} ,
+ {"precsim", 0x0227E} ,
+ {"prime", 0x02032} ,
+ {"primes", 0x02119} ,
+ {"prnE", 0x02AB5} ,
+ {"prnap", 0x02AB9} ,
+ {"prnsim", 0x022E8} ,
+ {"prod", 0x0220F} ,
+ {"profalar", 0x0232E} ,
+ {"profline", 0x02312} ,
+ {"profsurf", 0x02313} ,
+ {"prop", 0x0221D} ,
+ {"propto", 0x0221D} ,
+ {"prsim", 0x0227E} ,
+ {"prurel", 0x022B0} ,
+ {"pscr", 0x1D4C5} ,
+ {"psi", 0x003C8} ,
+ {"puncsp", 0x02008} ,
+ {"qfr", 0x1D52E} ,
+ {"qint", 0x02A0C} ,
+ {"qopf", 0x1D562} ,
+ {"qprime", 0x02057} ,
+ {"qscr", 0x1D4C6} ,
+ {"quaternions", 0x0210D} ,
+ {"quatint", 0x02A16} ,
+ {"quest", 0x0003F} ,
+ {"questeq", 0x0225F} ,
+ {"quot", 0x00022} ,
+ {"rAarr", 0x021DB} ,
+ {"rArr", 0x021D2} ,
+ {"rAtail", 0x0291C} ,
+ {"rBarr", 0x0290F} ,
+ {"rHar", 0x02964} ,
+ {"race", 0x029DA} ,
+ {"racute", 0x00155} ,
+ {"radic", 0x0221A} ,
+ {"raemptyv", 0x029B3} ,
+ {"rang", 0x0232A} ,
+ {"rangd", 0x02992} ,
+ {"range", 0x029A5} ,
+ {"rangle", 0x0232A} ,
+ {"raquo", 0x000BB} ,
+ {"rarr", 0x02192} ,
+ {"rarrap", 0x02975} ,
+ {"rarrb", 0x021E5} ,
+ {"rarrbfs", 0x02920} ,
+ {"rarrc", 0x02933} ,
+ {"rarrfs", 0x0291E} ,
+ {"rarrhk", 0x021AA} ,
+ {"rarrlp", 0x021AC} ,
+ {"rarrpl", 0x02945} ,
+ {"rarrsim", 0x02974} ,
+ {"rarrtl", 0x021A3} ,
+ {"rarrw", 0x0219D} ,
+ {"ratail", 0x0291A} ,
+ {"ratio", 0x02236} ,
+ {"rationals", 0x0211A} ,
+ {"rbarr", 0x0290D} ,
+ {"rbbrk", 0x03015} ,
+ {"rbrace", 0x0007D} ,
+ {"rbrack", 0x0005D} ,
+ {"rbrke", 0x0298C} ,
+ {"rbrksld", 0x0298E} ,
+ {"rbrkslu", 0x02990} ,
+ {"rcaron", 0x00159} ,
+ {"rcedil", 0x00157} ,
+ {"rceil", 0x02309} ,
+ {"rcub", 0x0007D} ,
+ {"rcy", 0x00440} ,
+ {"rdca", 0x02937} ,
+ {"rdldhar", 0x02969} ,
+ {"rdquo", 0x0201D} ,
+ {"rdquor", 0x0201D} ,
+ {"rdsh", 0x021B3} ,
+ {"real", 0x0211C} ,
+ {"realine", 0x0211B} ,
+ {"realpart", 0x0211C} ,
+ {"reals", 0x0211D} ,
+ {"rect", 0x025AD} ,
+ {"reg", 0x000AE} ,
+ {"rfisht", 0x0297D} ,
+ {"rfloor", 0x0230B} ,
+ {"rfr", 0x1D52F} ,
+ {"rhard", 0x021C1} ,
+ {"rharu", 0x021C0} ,
+ {"rharul", 0x0296C} ,
+ {"rho", 0x003C1} ,
+ {"rhov", 0x003F1} ,
+ {"rightarrow", 0x02192} ,
+ {"rightarrowtail", 0x021A3} ,
+ {"rightharpoondown", 0x021C1} ,
+ {"rightharpoonup", 0x021C0} ,
+ {"rightleftarrows", 0x021C4} ,
+ {"rightleftharpoons", 0x021CC} ,
+ {"rightrightarrows", 0x021C9} ,
+ {"rightsquigarrow", 0x0219D} ,
+ {"rightthreetimes", 0x022CC} ,
+ {"ring", 0x002DA} ,
+ {"risingdotseq", 0x02253} ,
+ {"rlarr", 0x021C4} ,
+ {"rlhar", 0x021CC} ,
+ {"rmoust", 0x023B1} ,
+ {"rmoustache", 0x023B1} ,
+ {"rnmid", 0x02AEE} ,
+ {"roang", 0x03019} ,
+ {"roarr", 0x021FE} ,
+ {"robrk", 0x0301B} ,
+ {"ropar", 0x02986} ,
+ {"ropf", 0x1D563} ,
+ {"roplus", 0x02A2E} ,
+ {"rotimes", 0x02A35} ,
+ {"rpar", 0x00029} ,
+ {"rpargt", 0x02994} ,
+ {"rppolint", 0x02A12} ,
+ {"rrarr", 0x021C9} ,
+ {"rscr", 0x1D4C7} ,
+ {"rsh", 0x021B1} ,
+ {"rsqb", 0x0005D} ,
+ {"rsquo", 0x02019} ,
+ {"rsquor", 0x02019} ,
+ {"rthree", 0x022CC} ,
+ {"rtimes", 0x022CA} ,
+ {"rtri", 0x025B9} ,
+ {"rtrie", 0x022B5} ,
+ {"rtrif", 0x025B8} ,
+ {"rtriltri", 0x029CE} ,
+ {"ruluhar", 0x02968} ,
+ {"rx", 0x0211E} ,
+ {"sacute", 0x0015B} ,
+ {"sc", 0x0227B} ,
+ {"scE", 0x02AB4} ,
+ {"scap", 0x02AB8} ,
+ {"scaron", 0x00161} ,
+ {"sccue", 0x0227D} ,
+ {"sce", 0x02AB0} ,
+ {"scedil", 0x0015F} ,
+ {"scirc", 0x0015D} ,
+ {"scnE", 0x02AB6} ,
+ {"scnap", 0x02ABA} ,
+ {"scnsim", 0x022E9} ,
+ {"scpolint", 0x02A13} ,
+ {"scsim", 0x0227F} ,
+ {"scy", 0x00441} ,
+ {"sdot", 0x022C5} ,
+ {"sdotb", 0x022A1} ,
+ {"sdote", 0x02A66} ,
+ {"seArr", 0x021D8} ,
+ {"searhk", 0x02925} ,
+ {"searr", 0x02198} ,
+ {"searrow", 0x02198} ,
+ {"sect", 0x000A7} ,
+ {"semi", 0x0003B} ,
+ {"seswar", 0x02929} ,
+ {"setminus", 0x02216} ,
+ {"setmn", 0x02216} ,
+ {"sext", 0x02736} ,
+ {"sfr", 0x1D530} ,
+ {"sfrown", 0x02322} ,
+ {"sharp", 0x0266F} ,
+ {"shchcy", 0x00449} ,
+ {"shcy", 0x00448} ,
+ {"shortmid", 0x02223} ,
+ {"shortparallel", 0x02225} ,
+ {"shy", 0x000AD} ,
+ {"sigma", 0x003C3} ,
+ {"sigmav", 0x003C2} ,
+ {"sim", 0x0223C} ,
+ {"simdot", 0x02A6A} ,
+ {"sime", 0x02243} ,
+ {"simeq", 0x02243} ,
+ {"simg", 0x02A9E} ,
+ {"simgE", 0x02AA0} ,
+ {"siml", 0x02A9D} ,
+ {"simlE", 0x02A9F} ,
+ {"simne", 0x02246} ,
+ {"simplus", 0x02A24} ,
+ {"simrarr", 0x02972} ,
+ {"slarr", 0x02190} ,
+ {"smallsetminus", 0x02216} ,
+ {"smashp", 0x02A33} ,
+ {"smeparsl", 0x029E4} ,
+ {"smid", 0x02223} ,
+ {"smile", 0x02323} ,
+ {"smt", 0x02AAA} ,
+ {"smte", 0x02AAC} ,
+ {"softcy", 0x0044C} ,
+ {"sol", 0x0002F} ,
+ {"solb", 0x029C4} ,
+ {"solbar", 0x0233F} ,
+ {"sopf", 0x1D564} ,
+ {"spades", 0x02660} ,
+ {"spadesuit", 0x02660} ,
+ {"spar", 0x02225} ,
+ {"sqcap", 0x02293} ,
+ {"sqcup", 0x02294} ,
+ {"sqsub", 0x0228F} ,
+ {"sqsube", 0x02291} ,
+ {"sqsubset", 0x0228F} ,
+ {"sqsubseteq", 0x02291} ,
+ {"sqsup", 0x02290} ,
+ {"sqsupe", 0x02292} ,
+ {"sqsupset", 0x02290} ,
+ {"sqsupseteq", 0x02292} ,
+ {"squ", 0x025A1} ,
+ {"square", 0x025A1} ,
+ {"squarf", 0x025AA} ,
+ {"squf", 0x025AA} ,
+ {"srarr", 0x02192} ,
+ {"sscr", 0x1D4C8} ,
+ {"ssetmn", 0x02216} ,
+ {"ssmile", 0x02323} ,
+ {"sstarf", 0x022C6} ,
+ {"star", 0x02606} ,
+ {"starf", 0x02605} ,
+ {"straightepsilon", 0x003F5} ,
+ {"straightphi", 0x003D5} ,
+ {"strns", 0x000AF} ,
+ {"sub", 0x02282} ,
+ {"subE", 0x02AC5} ,
+ {"subdot", 0x02ABD} ,
+ {"sube", 0x02286} ,
+ {"subedot", 0x02AC3} ,
+ {"submult", 0x02AC1} ,
+ {"subnE", 0x02ACB} ,
+ {"subne", 0x0228A} ,
+ {"subplus", 0x02ABF} ,
+ {"subrarr", 0x02979} ,
+ {"subset", 0x02282} ,
+ {"subseteq", 0x02286} ,
+ {"subseteqq", 0x02AC5} ,
+ {"subsetneq", 0x0228A} ,
+ {"subsetneqq", 0x02ACB} ,
+ {"subsim", 0x02AC7} ,
+ {"subsub", 0x02AD5} ,
+ {"subsup", 0x02AD3} ,
+ {"succ", 0x0227B} ,
+ {"succapprox", 0x02AB8} ,
+ {"succcurlyeq", 0x0227D} ,
+ {"succeq", 0x02AB0} ,
+ {"succnapprox", 0x02ABA} ,
+ {"succneqq", 0x02AB6} ,
+ {"succnsim", 0x022E9} ,
+ {"succsim", 0x0227F} ,
+ {"sum", 0x02211} ,
+ {"sung", 0x0266A} ,
+ {"sup", 0x02283} ,
+ {"sup1", 0x000B9} ,
+ {"sup2", 0x000B2} ,
+ {"sup3", 0x000B3} ,
+ {"supE", 0x02AC6} ,
+ {"supdot", 0x02ABE} ,
+ {"supdsub", 0x02AD8} ,
+ {"supe", 0x02287} ,
+ {"supedot", 0x02AC4} ,
+ {"suphsub", 0x02AD7} ,
+ {"suplarr", 0x0297B} ,
+ {"supmult", 0x02AC2} ,
+ {"supnE", 0x02ACC} ,
+ {"supne", 0x0228B} ,
+ {"supplus", 0x02AC0} ,
+ {"supset", 0x02283} ,
+ {"supseteq", 0x02287} ,
+ {"supseteqq", 0x02AC6} ,
+ {"supsetneq", 0x0228B} ,
+ {"supsetneqq", 0x02ACC} ,
+ {"supsim", 0x02AC8} ,
+ {"supsub", 0x02AD4} ,
+ {"supsup", 0x02AD6} ,
+ {"swArr", 0x021D9} ,
+ {"swarhk", 0x02926} ,
+ {"swarr", 0x02199} ,
+ {"swarrow", 0x02199} ,
+ {"swnwar", 0x0292A} ,
+ {"szlig", 0x000DF} ,
+ {"target", 0x02316} ,
+ {"tau", 0x003C4} ,
+ {"tbrk", 0x023B4} ,
+ {"tcaron", 0x00165} ,
+ {"tcedil", 0x00163} ,
+ {"tcy", 0x00442} ,
+ {"tdot", 0x020DB} ,
+ {"telrec", 0x02315} ,
+ {"tfr", 0x1D531} ,
+ {"there4", 0x02234} ,
+ {"therefore", 0x02234} ,
+ {"theta", 0x003B8} ,
+ {"thetav", 0x003D1} ,
+ {"thickapprox", 0x02248} ,
+ {"thicksim", 0x0223C} ,
+ {"thinsp", 0x02009} ,
+ {"thkap", 0x02248} ,
+ {"thksim", 0x0223C} ,
+ {"thorn", 0x000FE} ,
+ {"tilde", 0x002DC} ,
+ {"times", 0x000D7} ,
+ {"timesb", 0x022A0} ,
+ {"timesbar", 0x02A31} ,
+ {"timesd", 0x02A30} ,
+ {"tint", 0x0222D} ,
+ {"toea", 0x02928} ,
+ {"top", 0x022A4} ,
+ {"topbot", 0x02336} ,
+ {"topcir", 0x02AF1} ,
+ {"topf", 0x1D565} ,
+ {"topfork", 0x02ADA} ,
+ {"tosa", 0x02929} ,
+ {"tprime", 0x02034} ,
+ {"trade", 0x02122} ,
+ {"triangle", 0x025B5} ,
+ {"triangledown", 0x025BF} ,
+ {"triangleleft", 0x025C3} ,
+ {"trianglelefteq", 0x022B4} ,
+ {"triangleq", 0x0225C} ,
+ {"triangleright", 0x025B9} ,
+ {"trianglerighteq", 0x022B5} ,
+ {"tridot", 0x025EC} ,
+ {"trie", 0x0225C} ,
+ {"triminus", 0x02A3A} ,
+ {"triplus", 0x02A39} ,
+ {"trisb", 0x029CD} ,
+ {"tritime", 0x02A3B} ,
+ {"trpezium", 0x0FFFD} ,
+ {"tscr", 0x1D4C9} ,
+ {"tscy", 0x00446} ,
+ {"tshcy", 0x0045B} ,
+ {"tstrok", 0x00167} ,
+ {"twixt", 0x0226C} ,
+ {"twoheadleftarrow", 0x0219E} ,
+ {"twoheadrightarrow", 0x021A0} ,
+ {"uArr", 0x021D1} ,
+ {"uHar", 0x02963} ,
+ {"uacute", 0x000FA} ,
+ {"uarr", 0x02191} ,
+ {"ubrcy", 0x0045E} ,
+ {"ubreve", 0x0016D} ,
+ {"ucirc", 0x000FB} ,
+ {"ucy", 0x00443} ,
+ {"udarr", 0x021C5} ,
+ {"udblac", 0x00171} ,
+ {"udhar", 0x0296E} ,
+ {"ufisht", 0x0297E} ,
+ {"ufr", 0x1D532} ,
+ {"ugrave", 0x000F9} ,
+ {"uharl", 0x021BF} ,
+ {"uharr", 0x021BE} ,
+ {"uhblk", 0x02580} ,
+ {"ulcorn", 0x0231C} ,
+ {"ulcorner", 0x0231C} ,
+ {"ulcrop", 0x0230F} ,
+ {"ultri", 0x025F8} ,
+ {"umacr", 0x0016B} ,
+ {"uml", 0x000A8} ,
+ {"uogon", 0x00173} ,
+ {"uopf", 0x1D566} ,
+ {"uparrow", 0x02191} ,
+ {"updownarrow", 0x02195} ,
+ {"upharpoonleft", 0x021BF} ,
+ {"upharpoonright", 0x021BE} ,
+ {"uplus", 0x0228E} ,
+ {"upsi", 0x003C5} ,
+ {"upsilon", 0x003C5} ,
+ {"upuparrows", 0x021C8} ,
+ {"urcorn", 0x0231D} ,
+ {"urcorner", 0x0231D} ,
+ {"urcrop", 0x0230E} ,
+ {"uring", 0x0016F} ,
+ {"urtri", 0x025F9} ,
+ {"uscr", 0x1D4CA} ,
+ {"utdot", 0x022F0} ,
+ {"utilde", 0x00169} ,
+ {"utri", 0x025B5} ,
+ {"utrif", 0x025B4} ,
+ {"uuarr", 0x021C8} ,
+ {"uuml", 0x000FC} ,
+ {"uwangle", 0x029A7} ,
+ {"vArr", 0x021D5} ,
+ {"vBar", 0x02AE8} ,
+ {"vBarv", 0x02AE9} ,
+ {"vDash", 0x022A8} ,
+ {"vangrt", 0x0299C} ,
+ {"varepsilon", 0x003B5} ,
+ {"varkappa", 0x003F0} ,
+ {"varnothing", 0x02205} ,
+ {"varphi", 0x003C6} ,
+ {"varpi", 0x003D6} ,
+ {"varpropto", 0x0221D} ,
+ {"varr", 0x02195} ,
+ {"varrho", 0x003F1} ,
+ {"varsigma", 0x003C2} ,
+ {"vartheta", 0x003D1} ,
+ {"vartriangleleft", 0x022B2} ,
+ {"vartriangleright", 0x022B3} ,
+ {"vcy", 0x00432} ,
+ {"vdash", 0x022A2} ,
+ {"vee", 0x02228} ,
+ {"veebar", 0x022BB} ,
+ {"veeeq", 0x0225A} ,
+ {"vellip", 0x022EE} ,
+ {"verbar", 0x0007C} ,
+ {"vert", 0x0007C} ,
+ {"vfr", 0x1D533} ,
+ {"vltri", 0x022B2} ,
+ {"vopf", 0x1D567} ,
+ {"vprop", 0x0221D} ,
+ {"vrtri", 0x022B3} ,
+ {"vscr", 0x1D4CB} ,
+ {"vzigzag", 0x0299A} ,
+ {"wcirc", 0x00175} ,
+ {"wedbar", 0x02A5F} ,
+ {"wedge", 0x02227} ,
+ {"wedgeq", 0x02259} ,
+ {"weierp", 0x02118} ,
+ {"wfr", 0x1D534} ,
+ {"wopf", 0x1D568} ,
+ {"wp", 0x02118} ,
+ {"wr", 0x02240} ,
+ {"wreath", 0x02240} ,
+ {"wscr", 0x1D4CC} ,
+ {"xcap", 0x022C2} ,
+ {"xcirc", 0x025EF} ,
+ {"xcup", 0x022C3} ,
+ {"xdtri", 0x025BD} ,
+ {"xfr", 0x1D535} ,
+ {"xhArr", 0x027FA} ,
+ {"xharr", 0x027F7} ,
+ {"xi", 0x003BE} ,
+ {"xlArr", 0x027F8} ,
+ {"xlarr", 0x027F5} ,
+ {"xmap", 0x027FC} ,
+ {"xnis", 0x022FB} ,
+ {"xodot", 0x02A00} ,
+ {"xopf", 0x1D569} ,
+ {"xoplus", 0x02A01} ,
+ {"xotime", 0x02A02} ,
+ {"xrArr", 0x027F9} ,
+ {"xrarr", 0x027F6} ,
+ {"xscr", 0x1D4CD} ,
+ {"xsqcup", 0x02A06} ,
+ {"xuplus", 0x02A04} ,
+ {"xutri", 0x025B3} ,
+ {"xvee", 0x022C1} ,
+ {"xwedge", 0x022C0} ,
+ {"yacute", 0x000FD} ,
+ {"yacy", 0x0044F} ,
+ {"ycirc", 0x00177} ,
+ {"ycy", 0x0044B} ,
+ {"yen", 0x000A5} ,
+ {"yfr", 0x1D536} ,
+ {"yicy", 0x00457} ,
+ {"yopf", 0x1D56A} ,
+ {"yscr", 0x1D4CE} ,
+ {"yucy", 0x0044E} ,
+ {"yuml", 0x000FF} ,
+ {"zacute", 0x0017A} ,
+ {"zcaron", 0x0017E} ,
+ {"zcy", 0x00437} ,
+ {"zdot", 0x0017C} ,
+ {"zeetrf", 0x02128} ,
+ {"zeta", 0x003B6} ,
+ {"zfr", 0x1D537} ,
+ {"zhcy", 0x00436} ,
+ {"zigrarr", 0x021DD} ,
+ {"zopf", 0x1D56B} ,
+ {"zscr", 0x1D4CF}
+};
+
+// Needed since sizeof is a macro and we cannot be used until size is known
+int entityMap::size()
+{
+ return sizeof( entities ) / sizeof( entityMap );
+}
+
+KFORMULA_NAMESPACE_END
+