diff options
Diffstat (limited to 'kexi/3rdparty/kexisql3/src/vdbe.c')
-rw-r--r-- | kexi/3rdparty/kexisql3/src/vdbe.c | 4432 |
1 files changed, 4432 insertions, 0 deletions
diff --git a/kexi/3rdparty/kexisql3/src/vdbe.c b/kexi/3rdparty/kexisql3/src/vdbe.c new file mode 100644 index 00000000..abb68aec --- /dev/null +++ b/kexi/3rdparty/kexisql3/src/vdbe.c @@ -0,0 +1,4432 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** The code in this file implements execution method of the +** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") +** handles housekeeping details such as creating and deleting +** VDBE instances. This file is solely interested in executing +** the VDBE program. +** +** In the external interface, an "sqlite3_stmt*" is an opaque pointer +** to a VDBE. +** +** The SQL parser generates a program which is then executed by +** the VDBE to do the work of the SQL statement. VDBE programs are +** similar in form to assembly language. The program consists of +** a linear sequence of operations. Each operation has an opcode +** and 3 operands. Operands P1 and P2 are integers. Operand P3 +** is a null-terminated string. The P2 operand must be non-negative. +** Opcodes will typically ignore one or more operands. Many opcodes +** ignore all three operands. +** +** Computation results are stored on a stack. Each entry on the +** stack is either an integer, a null-terminated string, a floating point +** number, or the SQL "NULL" value. An inplicit conversion from one +** type to the other occurs as necessary. +** +** Most of the code in this file is taken up by the sqlite3VdbeExec() +** function which does the work of interpreting a VDBE program. +** But other routines are also provided to help in building up +** a program instruction by instruction. +** +** Various scripts scan this source file in order to generate HTML +** documentation, headers files, or other derived files. The formatting +** of the code in this file is, therefore, important. See other comments +** in this file for details. If in doubt, do not deviate from existing +** commenting and indentation practices when changing or adding code. +** +** $Id: vdbe.c 653457 2007-04-13 11:18:02Z scripty $ +*/ +#include "sqliteInt.h" +#include "os.h" +#include <ctype.h> +#include "vdbeInt.h" + +/* +** The following global variable is incremented every time a cursor +** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test +** procedures use this information to make sure that indices are +** working correctly. This variable has no function other than to +** help verify the correct operation of the library. +*/ +int sqlite3_search_count = 0; + +/* +** When this global variable is positive, it gets decremented once before +** each instruction in the VDBE. When reaches zero, the SQLITE_Interrupt +** of the db.flags field is set in order to simulate and interrupt. +** +** This facility is used for testing purposes only. It does not function +** in an ordinary build. +*/ +int sqlite3_interrupt_count = 0; + +/* +** The next global variable is incremented each type the OP_Sort opcode +** is executed. The test procedures use this information to make sure that +** sorting is occurring or not occuring at appropriate times. This variable +** has no function other than to help verify the correct operation of the +** library. +*/ +int sqlite3_sort_count = 0; + +/* +** Release the memory associated with the given stack level. This +** leaves the Mem.flags field in an inconsistent state. +*/ +#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); } + +/* +** Convert the given stack entity into a string if it isn't one +** already. Return non-zero if a malloc() fails. +*/ +#define Stringify(P, enc) \ + if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ + { goto no_mem; } + +/* +** Convert the given stack entity into a string that has been obtained +** from sqliteMalloc(). This is different from Stringify() above in that +** Stringify() will use the NBFS bytes of static string space if the string +** will fit but this routine always mallocs for space. +** Return non-zero if we run out of memory. +*/ +#define Dynamicify(P,enc) sqlite3VdbeMemDynamicify(P) + + +/* +** An ephemeral string value (signified by the MEM_Ephem flag) contains +** a pointer to a dynamically allocated string where some other entity +** is responsible for deallocating that string. Because the stack entry +** does not control the string, it might be deleted without the stack +** entry knowing it. +** +** This routine converts an ephemeral string into a dynamically allocated +** string that the stack entry itself controls. In other words, it +** converts an MEM_Ephem string into an MEM_Dyn string. +*/ +#define Deephemeralize(P) \ + if( ((P)->flags&MEM_Ephem)!=0 \ + && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} + +/* +** Convert the given stack entity into a integer if it isn't one +** already. +** +** Any prior string or real representation is invalidated. +** NULLs are converted into 0. +*/ +#define Integerify(P) sqlite3VdbeMemIntegerify(P) + +/* +** Convert P so that it has type MEM_Real. +** +** Any prior string or integer representation is invalidated. +** NULLs are converted into 0.0. +*/ +#define Realify(P) sqlite3VdbeMemRealify(P) + +/* +** Argument pMem points at a memory cell that will be passed to a +** user-defined function or returned to the user as the result of a query. +** The second argument, 'db_enc' is the text encoding used by the vdbe for +** stack variables. This routine sets the pMem->enc and pMem->type +** variables used by the sqlite3_value_*() routines. +*/ +#define storeTypeInfo(A,B) _storeTypeInfo(A) +static void _storeTypeInfo(Mem *pMem){ + int flags = pMem->flags; + if( flags & MEM_Null ){ + pMem->type = SQLITE_NULL; + } + else if( flags & MEM_Int ){ + pMem->type = SQLITE_INTEGER; + } + else if( flags & MEM_Real ){ + pMem->type = SQLITE_FLOAT; + } + else if( flags & MEM_Str ){ + pMem->type = SQLITE_TEXT; + }else{ + pMem->type = SQLITE_BLOB; + } +} + +/* +** Pop the stack N times. +*/ +static void popStack(Mem **ppTos, int N){ + Mem *pTos = *ppTos; + while( N>0 ){ + N--; + Release(pTos); + pTos--; + } + *ppTos = pTos; +} + +/* +** Allocate cursor number iCur. Return a pointer to it. Return NULL +** if we run out of memory. +*/ +static Cursor *allocateCursor(Vdbe *p, int iCur){ + Cursor *pCx; + assert( iCur<p->nCursor ); + if( p->apCsr[iCur] ){ + sqlite3VdbeFreeCursor(p->apCsr[iCur]); + } + p->apCsr[iCur] = pCx = sqliteMalloc( sizeof(Cursor) ); + return pCx; +} + +/* +** Apply any conversion required by the supplied column affinity to +** memory cell pRec. affinity may be one of: +** +** SQLITE_AFF_NUMERIC +** SQLITE_AFF_TEXT +** SQLITE_AFF_NONE +** SQLITE_AFF_INTEGER +** +*/ +static void applyAffinity(Mem *pRec, char affinity, u8 enc){ + if( affinity==SQLITE_AFF_NONE ){ + /* do nothing */ + }else if( affinity==SQLITE_AFF_TEXT ){ + /* Only attempt the conversion to TEXT if there is an integer or real + ** representation (blob and NULL do not get converted) but no string + ** representation. + */ + if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ + sqlite3VdbeMemStringify(pRec, enc); + } + pRec->flags &= ~(MEM_Real|MEM_Int); + }else{ + if( 0==(pRec->flags&(MEM_Real|MEM_Int)) ){ + /* pRec does not have a valid integer or real representation. + ** Attempt a conversion if pRec has a string representation and + ** it looks like a number. + */ + int realnum; + sqlite3VdbeMemNulTerminate(pRec); + if( pRec->flags&MEM_Str && sqlite3IsNumber(pRec->z, &realnum, enc) ){ + if( realnum ){ + Realify(pRec); + }else{ + Integerify(pRec); + } + } + } + + if( affinity==SQLITE_AFF_INTEGER ){ + /* For INTEGER affinity, try to convert a real value to an int */ + if( (pRec->flags&MEM_Real) && !(pRec->flags&MEM_Int) ){ + pRec->i = pRec->r; + if( ((double)pRec->i)==pRec->r ){ + pRec->flags |= MEM_Int; + } + } + } + } +} + +/* +** Exported version of applyAffinity(). This one works on sqlite3_value*, +** not the internal Mem* type. +*/ +void sqlite3ValueApplyAffinity(sqlite3_value *pVal, u8 affinity, u8 enc){ + applyAffinity((Mem *)pVal, affinity, enc); +} + +#ifdef SQLITE_DEBUG +/* +** Write a nice string representation of the contents of cell pMem +** into buffer zBuf, length nBuf. +*/ +void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf, int nBuf){ + char *zCsr = zBuf; + int f = pMem->flags; + + static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; + + if( f&MEM_Blob ){ + int i; + char c; + if( f & MEM_Dyn ){ + c = 'z'; + assert( (f & (MEM_Static|MEM_Ephem))==0 ); + }else if( f & MEM_Static ){ + c = 't'; + assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); + }else if( f & MEM_Ephem ){ + c = 'e'; + assert( (f & (MEM_Static|MEM_Dyn))==0 ); + }else{ + c = 's'; + } + + zCsr += sprintf(zCsr, "%c", c); + zCsr += sprintf(zCsr, "%d[", pMem->n); + for(i=0; i<16 && i<pMem->n; i++){ + zCsr += sprintf(zCsr, "%02X ", ((int)pMem->z[i] & 0xFF)); + } + for(i=0; i<16 && i<pMem->n; i++){ + char z = pMem->z[i]; + if( z<32 || z>126 ) *zCsr++ = '.'; + else *zCsr++ = z; + } + + zCsr += sprintf(zCsr, "]"); + *zCsr = '\0'; + }else if( f & MEM_Str ){ + int j, k; + zBuf[0] = ' '; + if( f & MEM_Dyn ){ + zBuf[1] = 'z'; + assert( (f & (MEM_Static|MEM_Ephem))==0 ); + }else if( f & MEM_Static ){ + zBuf[1] = 't'; + assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); + }else if( f & MEM_Ephem ){ + zBuf[1] = 'e'; + assert( (f & (MEM_Static|MEM_Dyn))==0 ); + }else{ + zBuf[1] = 's'; + } + k = 2; + k += sprintf(&zBuf[k], "%d", pMem->n); + zBuf[k++] = '['; + for(j=0; j<15 && j<pMem->n; j++){ + u8 c = pMem->z[j]; + if( c>=0x20 && c<0x7f ){ + zBuf[k++] = c; + }else{ + zBuf[k++] = '.'; + } + } + zBuf[k++] = ']'; + k += sprintf(&zBuf[k], encnames[pMem->enc]); + zBuf[k++] = 0; + } +} +#endif + + +#ifdef VDBE_PROFILE +/* +** The following routine only works on pentium-class processors. +** It uses the RDTSC opcode to read the cycle count value out of the +** processor and returns that value. This can be used for high-res +** profiling. +*/ +__inline__ unsigned long long int hwtime(void){ + unsigned long long int x; + __asm__("rdtsc\n\t" + "mov %%edx, %%ecx\n\t" + :"=A" (x)); + return x; +} +#endif + +/* +** The CHECK_FOR_INTERRUPT macro defined here looks to see if the +** sqlite3_interrupt() routine has been called. If it has been, then +** processing of the VDBE program is interrupted. +** +** This macro added to every instruction that does a jump in order to +** implement a loop. This test used to be on every single instruction, +** but that meant we more testing that we needed. By only testing the +** flag on jump instructions, we get a (small) speed improvement. +*/ +#define CHECK_FOR_INTERRUPT \ + if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt; + + +/* +** Execute as much of a VDBE program as we can then return. +** +** sqlite3VdbeMakeReady() must be called before this routine in order to +** close the program with a final OP_Halt and to set up the callbacks +** and the error message pointer. +** +** Whenever a row or result data is available, this routine will either +** invoke the result callback (if there is one) or return with +** SQLITE_ROW. +** +** If an attempt is made to open a locked database, then this routine +** will either invoke the busy callback (if there is one) or it will +** return SQLITE_BUSY. +** +** If an error occurs, an error message is written to memory obtained +** from sqliteMalloc() and p->zErrMsg is made to point to that memory. +** The error code is stored in p->rc and this routine returns SQLITE_ERROR. +** +** If the callback ever returns non-zero, then the program exits +** immediately. There will be no error message but the p->rc field is +** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. +** +** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this +** routine to return SQLITE_ERROR. +** +** Other fatal errors return SQLITE_ERROR. +** +** After this routine has finished, sqlite3VdbeFinalize() should be +** used to clean up the mess that was left behind. +*/ +int sqlite3VdbeExec( + Vdbe *p /* The VDBE */ +){ + int pc; /* The program counter */ + Op *pOp; /* Current operation */ + int rc = SQLITE_OK; /* Value to return */ + sqlite3 *db = p->db; /* The database */ + Mem *pTos; /* Top entry in the operand stack */ +#ifdef VDBE_PROFILE + unsigned long long start; /* CPU clock count at start of opcode */ + int origPc; /* Program counter at start of opcode */ +#endif +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK + int nProgressOps = 0; /* Opcodes executed since progress callback. */ +#endif +#ifndef NDEBUG + Mem *pStackLimit; +#endif + + if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE; + assert( db->magic==SQLITE_MAGIC_BUSY ); + assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); + p->rc = SQLITE_OK; + assert( p->explain==0 ); + pTos = p->pTos; + if( sqlite3_malloc_failed ) goto no_mem; + if( p->popStack ){ + popStack(&pTos, p->popStack); + p->popStack = 0; + } + p->resOnStack = 0; + db->busyHandler.nBusy = 0; + CHECK_FOR_INTERRUPT; + for(pc=p->pc; rc==SQLITE_OK; pc++){ + assert( pc>=0 && pc<p->nOp ); + assert( pTos<=&p->aStack[pc] ); + if( sqlite3_malloc_failed ) goto no_mem; +#ifdef VDBE_PROFILE + origPc = pc; + start = hwtime(); +#endif + pOp = &p->aOp[pc]; + + /* Only allow tracing if SQLITE_DEBUG is defined. + */ +#ifdef SQLITE_DEBUG + if( p->trace ){ + if( pc==0 ){ + printf("VDBE Execution Trace:\n"); + sqlite3VdbePrintSql(p); + } + sqlite3VdbePrintOp(p->trace, pc, pOp); + } + if( p->trace==0 && pc==0 && sqlite3OsFileExists("vdbe_sqltrace") ){ + sqlite3VdbePrintSql(p); + } +#endif + + + /* Check to see if we need to simulate an interrupt. This only happens + ** if we have a special test build. + */ +#ifdef SQLITE_TEST + if( sqlite3_interrupt_count>0 ){ + sqlite3_interrupt_count--; + if( sqlite3_interrupt_count==0 ){ + sqlite3_interrupt(db); + } + } +#endif + +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK + /* Call the progress callback if it is configured and the required number + ** of VDBE ops have been executed (either since this invocation of + ** sqlite3VdbeExec() or since last time the progress callback was called). + ** If the progress callback returns non-zero, exit the virtual machine with + ** a return code SQLITE_ABORT. + */ + if( db->xProgress ){ + if( db->nProgressOps==nProgressOps ){ + if( db->xProgress(db->pProgressArg)!=0 ){ + rc = SQLITE_ABORT; + continue; /* skip to the next iteration of the for loop */ + } + nProgressOps = 0; + } + nProgressOps++; + } +#endif + +#ifndef NDEBUG + /* This is to check that the return value of static function + ** opcodeNoPush() (see vdbeaux.c) returns values that match the + ** implementation of the virtual machine in this file. If + ** opcodeNoPush() returns non-zero, then the stack is guarenteed + ** not to grow when the opcode is executed. If it returns zero, then + ** the stack may grow by at most 1. + ** + ** The global wrapper function sqlite3VdbeOpcodeUsesStack() is not + ** available if NDEBUG is defined at build time. + */ + pStackLimit = pTos; + if( !sqlite3VdbeOpcodeNoPush(pOp->opcode) ){ + pStackLimit++; + } +#endif + + switch( pOp->opcode ){ + +/***************************************************************************** +** What follows is a massive switch statement where each case implements a +** separate instruction in the virtual machine. If we follow the usual +** indentation conventions, each case should be indented by 6 spaces. But +** that is a lot of wasted space on the left margin. So the code within +** the switch statement will break with convention and be flush-left. Another +** big comment (similar to this one) will mark the point in the code where +** we transition back to normal indentation. +** +** The formatting of each case is important. The makefile for SQLite +** generates two C files "opcodes.h" and "opcodes.c" by scanning this +** file looking for lines that begin with "case OP_". The opcodes.h files +** will be filled with #defines that give unique integer values to each +** opcode and the opcodes.c file is filled with an array of strings where +** each string is the symbolic name for the corresponding opcode. If the +** case statement is followed by a comment of the form "/# same as ... #/" +** that comment is used to determine the particular value of the opcode. +** +** If a comment on the same line as the "case OP_" construction contains +** the word "no-push", then the opcode is guarenteed not to grow the +** vdbe stack when it is executed. See function opcode() in +** vdbeaux.c for details. +** +** Documentation about VDBE opcodes is generated by scanning this file +** for lines of that contain "Opcode:". That line and all subsequent +** comment lines are used in the generation of the opcode.html documentation +** file. +** +** SUMMARY: +** +** Formatting is important to scripts that scan this file. +** Do not deviate from the formatting style currently in use. +** +*****************************************************************************/ + +/* Opcode: Goto * P2 * +** +** An unconditional jump to address P2. +** The next instruction executed will be +** the one at index P2 from the beginning of +** the program. +*/ +case OP_Goto: { /* no-push */ + CHECK_FOR_INTERRUPT; + pc = pOp->p2 - 1; + break; +} + +/* Opcode: Gosub * P2 * +** +** Push the current address plus 1 onto the return address stack +** and then jump to address P2. +** +** The return address stack is of limited depth. If too many +** OP_Gosub operations occur without intervening OP_Returns, then +** the return address stack will fill up and processing will abort +** with a fatal error. +*/ +case OP_Gosub: { /* no-push */ + assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) ); + p->returnStack[p->returnDepth++] = pc+1; + pc = pOp->p2 - 1; + break; +} + +/* Opcode: Return * * * +** +** Jump immediately to the next instruction after the last unreturned +** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then +** processing aborts with a fatal error. +*/ +case OP_Return: { /* no-push */ + assert( p->returnDepth>0 ); + p->returnDepth--; + pc = p->returnStack[p->returnDepth] - 1; + break; +} + +/* Opcode: Halt P1 P2 P3 +** +** Exit immediately. All open cursors, Fifos, etc are closed +** automatically. +** +** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), +** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). +** For errors, it can be some other value. If P1!=0 then P2 will determine +** whether or not to rollback the current transaction. Do not rollback +** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, +** then back out all changes that have occurred during this execution of the +** VDBE, but do not rollback the transaction. +** +** If P3 is not null then it is an error message string. +** +** There is an implied "Halt 0 0 0" instruction inserted at the very end of +** every program. So a jump past the last instruction of the program +** is the same as executing Halt. +*/ +case OP_Halt: { /* no-push */ + p->pTos = pTos; + p->rc = pOp->p1; + p->pc = pc; + p->errorAction = pOp->p2; + if( pOp->p3 ){ + sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0); + } + rc = sqlite3VdbeHalt(p); + assert( rc==SQLITE_BUSY || rc==SQLITE_OK ); + if( rc==SQLITE_BUSY ){ + p->rc = SQLITE_BUSY; + return SQLITE_BUSY; + } + return p->rc ? SQLITE_ERROR : SQLITE_DONE; +} + +/* Opcode: Integer P1 * * +** +** The 32-bit integer value P1 is pushed onto the stack. +*/ +case OP_Integer: { + pTos++; + pTos->flags = MEM_Int; + pTos->i = pOp->p1; + break; +} + +/* Opcode: Int64 * * P3 +** +** P3 is a string representation of an integer. Convert that integer +** to a 64-bit value and push it onto the stack. +*/ +case OP_Int64: { + pTos++; + assert( pOp->p3!=0 ); + pTos->flags = MEM_Str|MEM_Static|MEM_Term; + pTos->z = pOp->p3; + pTos->n = strlen(pTos->z); + pTos->enc = SQLITE_UTF8; + pTos->i = sqlite3VdbeIntValue(pTos); + pTos->flags |= MEM_Int; + break; +} + +/* Opcode: Real * * P3 +** +** The string value P3 is converted to a real and pushed on to the stack. +*/ +case OP_Real: { /* same as TK_FLOAT, */ + pTos++; + pTos->flags = MEM_Str|MEM_Static|MEM_Term; + pTos->z = pOp->p3; + pTos->n = strlen(pTos->z); + pTos->enc = SQLITE_UTF8; + pTos->r = sqlite3VdbeRealValue(pTos); + pTos->flags |= MEM_Real; + sqlite3VdbeChangeEncoding(pTos, db->enc); + break; +} + +/* Opcode: String8 * * P3 +** +** P3 points to a nul terminated UTF-8 string. This opcode is transformed +** into an OP_String before it is executed for the first time. +*/ +case OP_String8: { /* same as TK_STRING */ +#ifndef SQLITE_OMIT_UTF16 + pOp->opcode = OP_String; + + assert( pOp->p3!=0 ); + if( db->enc!=SQLITE_UTF8 ){ + pTos++; + sqlite3VdbeMemSetStr(pTos, pOp->p3, -1, SQLITE_UTF8, SQLITE_STATIC); + if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, db->enc) ) goto no_mem; + if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem; + pTos->flags &= ~(MEM_Dyn); + pTos->flags |= MEM_Static; + if( pOp->p3type==P3_DYNAMIC ){ + sqliteFree(pOp->p3); + } + pOp->p3type = P3_DYNAMIC; + pOp->p3 = pTos->z; + break; + } +#endif + /* Otherwise fall through to the next case, OP_String */ +} + +/* Opcode: String * * P3 +** +** The string value P3 is pushed onto the stack. If P3==0 then a +** NULL is pushed onto the stack. P3 is assumed to be a nul terminated +** string encoded with the database native encoding. +*/ +case OP_String: { + pTos++; + assert( pOp->p3!=0 ); + pTos->flags = MEM_Str|MEM_Static|MEM_Term; + pTos->z = pOp->p3; +#ifndef SQLITE_OMIT_UTF16 + if( db->enc==SQLITE_UTF8 ){ + pTos->n = strlen(pTos->z); + }else{ + pTos->n = sqlite3utf16ByteLen(pTos->z, -1); + } +#else + assert( db->enc==SQLITE_UTF8 ); + pTos->n = strlen(pTos->z); +#endif + pTos->enc = db->enc; + break; +} + +/* Opcode: Null * * * +** +** Push a NULL onto the stack. +*/ +case OP_Null: { + pTos++; + pTos->flags = MEM_Null; + pTos->n = 0; + break; +} + + +#ifndef SQLITE_OMIT_BLOB_LITERAL +/* Opcode: HexBlob * * P3 +** +** P3 is an UTF-8 SQL hex encoding of a blob. The blob is pushed onto the +** vdbe stack. +** +** The first time this instruction executes, in transforms itself into a +** 'Blob' opcode with a binary blob as P3. +*/ +case OP_HexBlob: { /* same as TK_BLOB */ + pOp->opcode = OP_Blob; + pOp->p1 = strlen(pOp->p3)/2; + if( pOp->p1 ){ + char *zBlob = sqlite3HexToBlob(pOp->p3); + if( !zBlob ) goto no_mem; + if( pOp->p3type==P3_DYNAMIC ){ + sqliteFree(pOp->p3); + } + pOp->p3 = zBlob; + pOp->p3type = P3_DYNAMIC; + }else{ + if( pOp->p3type==P3_DYNAMIC ){ + sqliteFree(pOp->p3); + } + pOp->p3type = P3_STATIC; + pOp->p3 = ""; + } + + /* Fall through to the next case, OP_Blob. */ +} + +/* Opcode: Blob P1 * P3 +** +** P3 points to a blob of data P1 bytes long. Push this +** value onto the stack. This instruction is not coded directly +** by the compiler. Instead, the compiler layer specifies +** an OP_HexBlob opcode, with the hex string representation of +** the blob as P3. This opcode is transformed to an OP_Blob +** the first time it is executed. +*/ +case OP_Blob: { + pTos++; + sqlite3VdbeMemSetStr(pTos, pOp->p3, pOp->p1, 0, 0); + break; +} +#endif /* SQLITE_OMIT_BLOB_LITERAL */ + +/* Opcode: Variable P1 * * +** +** Push the value of variable P1 onto the stack. A variable is +** an unknown in the original SQL string as handed to sqlite3_compile(). +** Any occurance of the '?' character in the original SQL is considered +** a variable. Variables in the SQL string are number from left to +** right beginning with 1. The values of variables are set using the +** sqlite3_bind() API. +*/ +case OP_Variable: { + int j = pOp->p1 - 1; + assert( j>=0 && j<p->nVar ); + + pTos++; + sqlite3VdbeMemShallowCopy(pTos, &p->aVar[j], MEM_Static); + break; +} + +/* Opcode: Pop P1 * * +** +** P1 elements are popped off of the top of stack and discarded. +*/ +case OP_Pop: { /* no-push */ + assert( pOp->p1>=0 ); + popStack(&pTos, pOp->p1); + assert( pTos>=&p->aStack[-1] ); + break; +} + +/* Opcode: Dup P1 P2 * +** +** A copy of the P1-th element of the stack +** is made and pushed onto the top of the stack. +** The top of the stack is element 0. So the +** instruction "Dup 0 0 0" will make a copy of the +** top of the stack. +** +** If the content of the P1-th element is a dynamically +** allocated string, then a new copy of that string +** is made if P2==0. If P2!=0, then just a pointer +** to the string is copied. +** +** Also see the Pull instruction. +*/ +case OP_Dup: { + Mem *pFrom = &pTos[-pOp->p1]; + assert( pFrom<=pTos && pFrom>=p->aStack ); + pTos++; + sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem); + if( pOp->p2 ){ + Deephemeralize(pTos); + } + break; +} + +/* Opcode: Pull P1 * * +** +** The P1-th element is removed from its current location on +** the stack and pushed back on top of the stack. The +** top of the stack is element 0, so "Pull 0 0 0" is +** a no-op. "Pull 1 0 0" swaps the top two elements of +** the stack. +** +** See also the Dup instruction. +*/ +case OP_Pull: { /* no-push */ + Mem *pFrom = &pTos[-pOp->p1]; + int i; + Mem ts; + + ts = *pFrom; + Deephemeralize(pTos); + for(i=0; i<pOp->p1; i++, pFrom++){ + Deephemeralize(&pFrom[1]); + assert( (pFrom->flags & MEM_Ephem)==0 ); + *pFrom = pFrom[1]; + if( pFrom->flags & MEM_Short ){ + assert( pFrom->flags & (MEM_Str|MEM_Blob) ); + assert( pFrom->z==pFrom[1].zShort ); + pFrom->z = pFrom->zShort; + } + } + *pTos = ts; + if( pTos->flags & MEM_Short ){ + assert( pTos->flags & (MEM_Str|MEM_Blob) ); + assert( pTos->z==pTos[-pOp->p1].zShort ); + pTos->z = pTos->zShort; + } + break; +} + +/* Opcode: Push P1 * * +** +** Overwrite the value of the P1-th element down on the +** stack (P1==0 is the top of the stack) with the value +** of the top of the stack. Then pop the top of the stack. +*/ +case OP_Push: { /* no-push */ + Mem *pTo = &pTos[-pOp->p1]; + + assert( pTo>=p->aStack ); + sqlite3VdbeMemMove(pTo, pTos); + pTos--; + break; +} + +/* Opcode: Callback P1 * * +** +** Pop P1 values off the stack and form them into an array. Then +** invoke the callback function using the newly formed array as the +** 3rd parameter. +*/ +case OP_Callback: { /* no-push */ + int i; + assert( p->nResColumn==pOp->p1 ); + + for(i=0; i<pOp->p1; i++){ + Mem *pVal = &pTos[0-i]; + sqlite3VdbeMemNulTerminate(pVal); + storeTypeInfo(pVal, db->enc); + } + + p->resOnStack = 1; + p->nCallback++; + p->popStack = pOp->p1; + p->pc = pc + 1; + p->pTos = pTos; + return SQLITE_ROW; +} + +/* Opcode: Concat P1 P2 * +** +** Look at the first P1+2 elements of the stack. Append them all +** together with the lowest element first. The original P1+2 elements +** are popped from the stack if P2==0 and retained if P2==1. If +** any element of the stack is NULL, then the result is NULL. +** +** When P1==1, this routine makes a copy of the top stack element +** into memory obtained from sqliteMalloc(). +*/ +case OP_Concat: { /* same as TK_CONCAT */ + char *zNew; + int nByte; + int nField; + int i, j; + Mem *pTerm; + + /* Loop through the stack elements to see how long the result will be. */ + nField = pOp->p1 + 2; + pTerm = &pTos[1-nField]; + nByte = 0; + for(i=0; i<nField; i++, pTerm++){ + assert( pOp->p2==0 || (pTerm->flags&MEM_Str) ); + if( pTerm->flags&MEM_Null ){ + nByte = -1; + break; + } + Stringify(pTerm, db->enc); + nByte += pTerm->n; + } + + if( nByte<0 ){ + /* If nByte is less than zero, then there is a NULL value on the stack. + ** In this case just pop the values off the stack (if required) and + ** push on a NULL. + */ + if( pOp->p2==0 ){ + popStack(&pTos, nField); + } + pTos++; + pTos->flags = MEM_Null; + }else{ + /* Otherwise malloc() space for the result and concatenate all the + ** stack values. + */ + zNew = sqliteMallocRaw( nByte+2 ); + if( zNew==0 ) goto no_mem; + j = 0; + pTerm = &pTos[1-nField]; + for(i=j=0; i<nField; i++, pTerm++){ + int n = pTerm->n; + assert( pTerm->flags & (MEM_Str|MEM_Blob) ); + memcpy(&zNew[j], pTerm->z, n); + j += n; + } + zNew[j] = 0; + zNew[j+1] = 0; + assert( j==nByte ); + + if( pOp->p2==0 ){ + popStack(&pTos, nField); + } + pTos++; + pTos->n = j; + pTos->flags = MEM_Str|MEM_Dyn|MEM_Term; + pTos->xDel = 0; + pTos->enc = db->enc; + pTos->z = zNew; + } + break; +} + +/* Opcode: Add * * * +** +** Pop the top two elements from the stack, add them together, +** and push the result back onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the addition. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: Multiply * * * +** +** Pop the top two elements from the stack, multiply them together, +** and push the result back onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the multiplication. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: Subtract * * * +** +** Pop the top two elements from the stack, subtract the +** first (what was on top of the stack) from the second (the +** next on stack) +** and push the result back onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the subtraction. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: Divide * * * +** +** Pop the top two elements from the stack, divide the +** first (what was on top of the stack) from the second (the +** next on stack) +** and push the result back onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the division. Division by zero returns NULL. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: Remainder * * * +** +** Pop the top two elements from the stack, divide the +** first (what was on top of the stack) from the second (the +** next on stack) +** and push the remainder after division onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the division. Division by zero returns NULL. +** If either operand is NULL, the result is NULL. +*/ +case OP_Add: /* same as TK_PLUS, no-push */ +case OP_Subtract: /* same as TK_MINUS, no-push */ +case OP_Multiply: /* same as TK_STAR, no-push */ +case OP_Divide: /* same as TK_SLASH, no-push */ +case OP_Remainder: { /* same as TK_REM, no-push */ + Mem *pNos = &pTos[-1]; + assert( pNos>=p->aStack ); + if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){ + Release(pTos); + pTos--; + Release(pTos); + pTos->flags = MEM_Null; + }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){ + i64 a, b; + a = pTos->i; + b = pNos->i; + switch( pOp->opcode ){ + case OP_Add: b += a; break; + case OP_Subtract: b -= a; break; + case OP_Multiply: b *= a; break; + case OP_Divide: { + if( a==0 ) goto divide_by_zero; + b /= a; + break; + } + default: { + if( a==0 ) goto divide_by_zero; + b %= a; + break; + } + } + Release(pTos); + pTos--; + Release(pTos); + pTos->i = b; + pTos->flags = MEM_Int; + }else{ + double a, b; + a = sqlite3VdbeRealValue(pTos); + b = sqlite3VdbeRealValue(pNos); + switch( pOp->opcode ){ + case OP_Add: b += a; break; + case OP_Subtract: b -= a; break; + case OP_Multiply: b *= a; break; + case OP_Divide: { + if( a==0.0 ) goto divide_by_zero; + b /= a; + break; + } + default: { + int ia = (int)a; + int ib = (int)b; + if( ia==0.0 ) goto divide_by_zero; + b = ib % ia; + break; + } + } + Release(pTos); + pTos--; + Release(pTos); + pTos->r = b; + pTos->flags = MEM_Real; + } + break; + +divide_by_zero: + Release(pTos); + pTos--; + Release(pTos); + pTos->flags = MEM_Null; + break; +} + +/* Opcode: CollSeq * * P3 +** +** P3 is a pointer to a CollSeq struct. If the next call to a user function +** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will +** be returned. This is used by the built-in min(), max() and nullif() +** functions. +** +** The interface used by the implementation of the aforementioned functions +** to retrieve the collation sequence set by this opcode is not available +** publicly, only to user functions defined in func.c. +*/ +case OP_CollSeq: { /* no-push */ + assert( pOp->p3type==P3_COLLSEQ ); + break; +} + +/* Opcode: Function P1 P2 P3 +** +** Invoke a user function (P3 is a pointer to a Function structure that +** defines the function) with P2 arguments taken from the stack. Pop all +** arguments from the stack and push back the result. +** +** P1 is a 32-bit bitmask indicating whether or not each argument to the +** function was determined to be constant at compile time. If the first +** argument was constant then bit 0 of P1 is set. This is used to determine +** whether meta data associated with a user function argument using the +** sqlite3_set_auxdata() API may be safely retained until the next +** invocation of this opcode. +** +** See also: AggStep and AggFinal +*/ +case OP_Function: { + int i; + Mem *pArg; + sqlite3_context ctx; + sqlite3_value **apVal; + int n = pOp->p2; + + apVal = p->apArg; + assert( apVal || n==0 ); + + pArg = &pTos[1-n]; + for(i=0; i<n; i++, pArg++){ + apVal[i] = pArg; + storeTypeInfo(pArg, db->enc); + } + + assert( pOp->p3type==P3_FUNCDEF || pOp->p3type==P3_VDBEFUNC ); + if( pOp->p3type==P3_FUNCDEF ){ + ctx.pFunc = (FuncDef*)pOp->p3; + ctx.pVdbeFunc = 0; + }else{ + ctx.pVdbeFunc = (VdbeFunc*)pOp->p3; + ctx.pFunc = ctx.pVdbeFunc->pFunc; + } + + ctx.s.flags = MEM_Null; + ctx.s.z = 0; + ctx.s.xDel = 0; + ctx.isError = 0; + if( ctx.pFunc->needCollSeq ){ + assert( pOp>p->aOp ); + assert( pOp[-1].p3type==P3_COLLSEQ ); + assert( pOp[-1].opcode==OP_CollSeq ); + ctx.pColl = (CollSeq *)pOp[-1].p3; + } + if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; + (*ctx.pFunc->xFunc)(&ctx, n, apVal); + if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; + if( sqlite3_malloc_failed ) goto no_mem; + popStack(&pTos, n); + + /* If any auxilary data functions have been called by this user function, + ** immediately call the destructor for any non-static values. + */ + if( ctx.pVdbeFunc ){ + sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1); + pOp->p3 = (char *)ctx.pVdbeFunc; + pOp->p3type = P3_VDBEFUNC; + } + + /* Copy the result of the function to the top of the stack */ + sqlite3VdbeChangeEncoding(&ctx.s, db->enc); + pTos++; + pTos->flags = 0; + sqlite3VdbeMemMove(pTos, &ctx.s); + + /* If the function returned an error, throw an exception */ + if( ctx.isError ){ + if( !(pTos->flags&MEM_Str) ){ + sqlite3SetString(&p->zErrMsg, "user function error", (char*)0); + }else{ + sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pTos), (char*)0); + sqlite3VdbeChangeEncoding(pTos, db->enc); + } + rc = SQLITE_ERROR; + } + break; +} + +/* Opcode: BitAnd * * * +** +** Pop the top two elements from the stack. Convert both elements +** to integers. Push back onto the stack the bit-wise AND of the +** two elements. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: BitOr * * * +** +** Pop the top two elements from the stack. Convert both elements +** to integers. Push back onto the stack the bit-wise OR of the +** two elements. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: ShiftLeft * * * +** +** Pop the top two elements from the stack. Convert both elements +** to integers. Push back onto the stack the second element shifted +** left by N bits where N is the top element on the stack. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: ShiftRight * * * +** +** Pop the top two elements from the stack. Convert both elements +** to integers. Push back onto the stack the second element shifted +** right by N bits where N is the top element on the stack. +** If either operand is NULL, the result is NULL. +*/ +case OP_BitAnd: /* same as TK_BITAND, no-push */ +case OP_BitOr: /* same as TK_BITOR, no-push */ +case OP_ShiftLeft: /* same as TK_LSHIFT, no-push */ +case OP_ShiftRight: { /* same as TK_RSHIFT, no-push */ + Mem *pNos = &pTos[-1]; + int a, b; + + assert( pNos>=p->aStack ); + if( (pTos->flags | pNos->flags) & MEM_Null ){ + popStack(&pTos, 2); + pTos++; + pTos->flags = MEM_Null; + break; + } + a = sqlite3VdbeIntValue(pNos); + b = sqlite3VdbeIntValue(pTos); + switch( pOp->opcode ){ + case OP_BitAnd: a &= b; break; + case OP_BitOr: a |= b; break; + case OP_ShiftLeft: a <<= b; break; + case OP_ShiftRight: a >>= b; break; + default: /* CANT HAPPEN */ break; + } + Release(pTos); + pTos--; + Release(pTos); + pTos->i = a; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: AddImm P1 * * +** +** Add the value P1 to whatever is on top of the stack. The result +** is always an integer. +** +** To force the top of the stack to be an integer, just add 0. +*/ +case OP_AddImm: { /* no-push */ + assert( pTos>=p->aStack ); + Integerify(pTos); + pTos->i += pOp->p1; + break; +} + +/* Opcode: ForceInt P1 P2 * +** +** Convert the top of the stack into an integer. If the current top of +** the stack is not numeric (meaning that is is a NULL or a string that +** does not look like an integer or floating point number) then pop the +** stack and jump to P2. If the top of the stack is numeric then +** convert it into the least integer that is greater than or equal to its +** current value if P1==0, or to the least integer that is strictly +** greater than its current value if P1==1. +*/ +case OP_ForceInt: { /* no-push */ + i64 v; + assert( pTos>=p->aStack ); + applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc); + if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){ + Release(pTos); + pTos--; + pc = pOp->p2 - 1; + break; + } + if( pTos->flags & MEM_Int ){ + v = pTos->i + (pOp->p1!=0); + }else{ + Realify(pTos); + v = (int)pTos->r; + if( pTos->r>(double)v ) v++; + if( pOp->p1 && pTos->r==(double)v ) v++; + } + Release(pTos); + pTos->i = v; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: MustBeInt P1 P2 * +** +** Force the top of the stack to be an integer. If the top of the +** stack is not an integer and cannot be converted into an integer +** with out data loss, then jump immediately to P2, or if P2==0 +** raise an SQLITE_MISMATCH exception. +** +** If the top of the stack is not an integer and P2 is not zero and +** P1 is 1, then the stack is popped. In all other cases, the depth +** of the stack is unchanged. +*/ +case OP_MustBeInt: { /* no-push */ + assert( pTos>=p->aStack ); + applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc); + if( (pTos->flags & MEM_Int)==0 ){ + if( pOp->p2==0 ){ + rc = SQLITE_MISMATCH; + goto abort_due_to_error; + }else{ + if( pOp->p1 ) popStack(&pTos, 1); + pc = pOp->p2 - 1; + } + }else{ + Release(pTos); + pTos->flags = MEM_Int; + } + break; +} + +#ifndef SQLITE_OMIT_CAST +/* Opcode: ToInt * * * +** +** Force the value on the top of the stack to be an integer. If +** The value is currently a real number, drop its fractional part. +** If the value is text or blob, try to convert it to an integer using the +** equivalent of atoi() and store 0 if no such conversion is possible. +** +** A NULL value is not changed by this routine. It remains NULL. +*/ +case OP_ToInt: { /* no-push */ + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Null ) break; + assert( MEM_Str==(MEM_Blob>>3) ); + pTos->flags |= (pTos->flags&MEM_Blob)>>3; + applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc); + sqlite3VdbeMemIntegerify(pTos); + break; +} + +/* Opcode: ToNumeric * * * +** +** Force the value on the top of the stack to be numeric (either an +** integer or a floating-point number. +** If the value is text or blob, try to convert it to an using the +** equivalent of atoi() or atof() and store 0 if no such conversion +** is possible. +** +** A NULL value is not changed by this routine. It remains NULL. +*/ +case OP_ToNumeric: { /* no-push */ + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Null ) break; + assert( MEM_Str==(MEM_Blob>>3) ); + pTos->flags |= (pTos->flags&MEM_Blob)>>3; + applyAffinity(pTos, SQLITE_AFF_NUMERIC, db->enc); + if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){ + sqlite3VdbeMemRealify(pTos); + }else{ + sqlite3VdbeMemRelease(pTos); + } + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos->flags &= (MEM_Int|MEM_Real); + break; +} + +/* Opcode: ToText * * * +** +** Force the value on the top of the stack to be text. +** If the value is numeric, convert it to an using the +** equivalent of printf(). Blob values are unchanged and +** are afterwards simply interpreted as text. +** +** A NULL value is not changed by this routine. It remains NULL. +*/ +case OP_ToText: { /* no-push */ + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Null ) break; + assert( MEM_Str==(MEM_Blob>>3) ); + pTos->flags |= (pTos->flags&MEM_Blob)>>3; + applyAffinity(pTos, SQLITE_AFF_TEXT, db->enc); + assert( pTos->flags & MEM_Str ); + pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Blob); + break; +} + +/* Opcode: ToBlob * * * +** +** Force the value on the top of the stack to be a BLOB. +** If the value is numeric, convert it to a string first. +** Strings are simply reinterpreted as blobs with no change +** to the underlying data. +** +** A NULL value is not changed by this routine. It remains NULL. +*/ +case OP_ToBlob: { /* no-push */ + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Null ) break; + if( (pTos->flags & MEM_Blob)==0 ){ + applyAffinity(pTos, SQLITE_AFF_TEXT, db->enc); + assert( pTos->flags & MEM_Str ); + pTos->flags |= MEM_Blob; + } + pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Str); + break; +} +#endif /* SQLITE_OMIT_CAST */ + +/* Opcode: Eq P1 P2 P3 +** +** Pop the top two elements from the stack. If they are equal, then +** jump to instruction P2. Otherwise, continue to the next instruction. +** +** If the 0x100 bit of P1 is true and either operand is NULL then take the +** jump. If the 0x100 bit of P1 is clear then fall thru if either operand +** is NULL. +** +** If the 0x200 bit of P1 is set and either operand is NULL then +** both operands are converted to integers prior to comparison. +** NULL operands are converted to zero and non-NULL operands are +** converted to 1. Thus, for example, with 0x200 set, NULL==NULL is true +** whereas it would normally be NULL. Similarly, NULL==123 is false when +** 0x200 is set but is NULL when the 0x200 bit of P1 is clear. +** +** The least significant byte of P1 (mask 0xff) must be an affinity character - +** 'n', 't', 'i' or 'o' - or 0x00. An attempt is made to coerce both values +** according to the affinity before the comparison is made. If the byte is +** 0x00, then numeric affinity is used. +** +** Once any conversions have taken place, and neither value is NULL, +** the values are compared. If both values are blobs, or both are text, +** then memcmp() is used to determine the results of the comparison. If +** both values are numeric, then a numeric comparison is used. If the +** two values are of different types, then they are inequal. +** +** If P2 is zero, do not jump. Instead, push an integer 1 onto the +** stack if the jump would have been taken, or a 0 if not. Push a +** NULL if either operand was NULL. +** +** If P3 is not NULL it is a pointer to a collating sequence (a CollSeq +** structure) that defines how to compare text. +*/ +/* Opcode: Ne P1 P2 P3 +** +** This works just like the Eq opcode except that the jump is taken if +** the operands from the stack are not equal. See the Eq opcode for +** additional information. +*/ +/* Opcode: Lt P1 P2 P3 +** +** This works just like the Eq opcode except that the jump is taken if +** the 2nd element down on the stack is less than the top of the stack. +** See the Eq opcode for additional information. +*/ +/* Opcode: Le P1 P2 P3 +** +** This works just like the Eq opcode except that the jump is taken if +** the 2nd element down on the stack is less than or equal to the +** top of the stack. See the Eq opcode for additional information. +*/ +/* Opcode: Gt P1 P2 P3 +** +** This works just like the Eq opcode except that the jump is taken if +** the 2nd element down on the stack is greater than the top of the stack. +** See the Eq opcode for additional information. +*/ +/* Opcode: Ge P1 P2 P3 +** +** This works just like the Eq opcode except that the jump is taken if +** the 2nd element down on the stack is greater than or equal to the +** top of the stack. See the Eq opcode for additional information. +*/ +case OP_Eq: /* same as TK_EQ, no-push */ +case OP_Ne: /* same as TK_NE, no-push */ +case OP_Lt: /* same as TK_LT, no-push */ +case OP_Le: /* same as TK_LE, no-push */ +case OP_Gt: /* same as TK_GT, no-push */ +case OP_Ge: { /* same as TK_GE, no-push */ + Mem *pNos; + int flags; + int res; + char affinity; + + pNos = &pTos[-1]; + flags = pTos->flags|pNos->flags; + + /* If either value is a NULL P2 is not zero, take the jump if the least + ** significant byte of P1 is true. If P2 is zero, then push a NULL onto + ** the stack. + */ + if( flags&MEM_Null ){ + if( (pOp->p1 & 0x200)!=0 ){ + /* The 0x200 bit of P1 means, roughly "do not treat NULL as the + ** magic SQL value it normally is - treat it as if it were another + ** integer". + ** + ** With 0x200 set, if either operand is NULL then both operands + ** are converted to integers prior to being passed down into the + ** normal comparison logic below. NULL operands are converted to + ** zero and non-NULL operands are converted to 1. Thus, for example, + ** with 0x200 set, NULL==NULL is true whereas it would normally + ** be NULL. Similarly, NULL!=123 is true. + */ + sqlite3VdbeMemSetInt64(pTos, (pTos->flags & MEM_Null)==0); + sqlite3VdbeMemSetInt64(pNos, (pNos->flags & MEM_Null)==0); + }else{ + /* If the 0x200 bit of P1 is clear and either operand is NULL then + ** the result is always NULL. The jump is taken if the 0x100 bit + ** of P1 is set. + */ + popStack(&pTos, 2); + if( pOp->p2 ){ + if( pOp->p1 & 0x100 ){ + pc = pOp->p2-1; + } + }else{ + pTos++; + pTos->flags = MEM_Null; + } + break; + } + } + + affinity = pOp->p1 & 0xFF; + if( affinity ){ + applyAffinity(pNos, affinity, db->enc); + applyAffinity(pTos, affinity, db->enc); + } + + assert( pOp->p3type==P3_COLLSEQ || pOp->p3==0 ); + res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3); + switch( pOp->opcode ){ + case OP_Eq: res = res==0; break; + case OP_Ne: res = res!=0; break; + case OP_Lt: res = res<0; break; + case OP_Le: res = res<=0; break; + case OP_Gt: res = res>0; break; + default: res = res>=0; break; + } + + popStack(&pTos, 2); + if( pOp->p2 ){ + if( res ){ + pc = pOp->p2-1; + } + }else{ + pTos++; + pTos->flags = MEM_Int; + pTos->i = res; + } + break; +} + +/* Opcode: And * * * +** +** Pop two values off the stack. Take the logical AND of the +** two values and push the resulting boolean value back onto the +** stack. +*/ +/* Opcode: Or * * * +** +** Pop two values off the stack. Take the logical OR of the +** two values and push the resulting boolean value back onto the +** stack. +*/ +case OP_And: /* same as TK_AND, no-push */ +case OP_Or: { /* same as TK_OR, no-push */ + Mem *pNos = &pTos[-1]; + int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */ + + assert( pNos>=p->aStack ); + if( pTos->flags & MEM_Null ){ + v1 = 2; + }else{ + Integerify(pTos); + v1 = pTos->i==0; + } + if( pNos->flags & MEM_Null ){ + v2 = 2; + }else{ + Integerify(pNos); + v2 = pNos->i==0; + } + if( pOp->opcode==OP_And ){ + static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; + v1 = and_logic[v1*3+v2]; + }else{ + static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; + v1 = or_logic[v1*3+v2]; + } + popStack(&pTos, 2); + pTos++; + if( v1==2 ){ + pTos->flags = MEM_Null; + }else{ + pTos->i = v1==0; + pTos->flags = MEM_Int; + } + break; +} + +/* Opcode: Negative * * * +** +** Treat the top of the stack as a numeric quantity. Replace it +** with its additive inverse. If the top of the stack is NULL +** its value is unchanged. +*/ +/* Opcode: AbsValue * * * +** +** Treat the top of the stack as a numeric quantity. Replace it +** with its absolute value. If the top of the stack is NULL +** its value is unchanged. +*/ +case OP_Negative: /* same as TK_UMINUS, no-push */ +case OP_AbsValue: { + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Real ){ + Release(pTos); + if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ + pTos->r = -pTos->r; + } + pTos->flags = MEM_Real; + }else if( pTos->flags & MEM_Int ){ + Release(pTos); + if( pOp->opcode==OP_Negative || pTos->i<0 ){ + pTos->i = -pTos->i; + } + pTos->flags = MEM_Int; + }else if( pTos->flags & MEM_Null ){ + /* Do nothing */ + }else{ + Realify(pTos); + if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ + pTos->r = -pTos->r; + } + pTos->flags = MEM_Real; + } + break; +} + +/* Opcode: Not * * * +** +** Interpret the top of the stack as a boolean value. Replace it +** with its complement. If the top of the stack is NULL its value +** is unchanged. +*/ +case OP_Not: { /* same as TK_NOT, no-push */ + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ + Integerify(pTos); + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos->i = !pTos->i; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: BitNot * * * +** +** Interpret the top of the stack as an value. Replace it +** with its ones-complement. If the top of the stack is NULL its +** value is unchanged. +*/ +case OP_BitNot: { /* same as TK_BITNOT, no-push */ + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ + Integerify(pTos); + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos->i = ~pTos->i; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: Noop * * * +** +** Do nothing. This instruction is often useful as a jump +** destination. +*/ +/* +** The magic Explain opcode are only inserted when explain==2 (which +** is to say when the EXPLAIN QUERY PLAN syntax is used.) +** This opcode records information from the optimizer. It is the +** the same as a no-op. This opcodesnever appears in a real VM program. +*/ +case OP_Explain: +case OP_Noop: { /* no-push */ + break; +} + +/* Opcode: If P1 P2 * +** +** Pop a single boolean from the stack. If the boolean popped is +** true, then jump to p2. Otherwise continue to the next instruction. +** An integer is false if zero and true otherwise. A string is +** false if it has zero length and true otherwise. +** +** If the value popped of the stack is NULL, then take the jump if P1 +** is true and fall through if P1 is false. +*/ +/* Opcode: IfNot P1 P2 * +** +** Pop a single boolean from the stack. If the boolean popped is +** false, then jump to p2. Otherwise continue to the next instruction. +** An integer is false if zero and true otherwise. A string is +** false if it has zero length and true otherwise. +** +** If the value popped of the stack is NULL, then take the jump if P1 +** is true and fall through if P1 is false. +*/ +case OP_If: /* no-push */ +case OP_IfNot: { /* no-push */ + int c; + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Null ){ + c = pOp->p1; + }else{ +#ifdef SQLITE_OMIT_FLOATING_POINT + c = sqlite3VdbeIntValue(pTos); +#else + c = sqlite3VdbeRealValue(pTos)!=0.0; +#endif + if( pOp->opcode==OP_IfNot ) c = !c; + } + Release(pTos); + pTos--; + if( c ) pc = pOp->p2-1; + break; +} + +/* Opcode: IsNull P1 P2 * +** +** If any of the top abs(P1) values on the stack are NULL, then jump +** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack +** unchanged. +*/ +case OP_IsNull: { /* same as TK_ISNULL, no-push */ + int i, cnt; + Mem *pTerm; + cnt = pOp->p1; + if( cnt<0 ) cnt = -cnt; + pTerm = &pTos[1-cnt]; + assert( pTerm>=p->aStack ); + for(i=0; i<cnt; i++, pTerm++){ + if( pTerm->flags & MEM_Null ){ + pc = pOp->p2-1; + break; + } + } + if( pOp->p1>0 ) popStack(&pTos, cnt); + break; +} + +/* Opcode: NotNull P1 P2 * +** +** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the +** stack if P1 times if P1 is greater than zero. If P1 is less than +** zero then leave the stack unchanged. +*/ +case OP_NotNull: { /* same as TK_NOTNULL, no-push */ + int i, cnt; + cnt = pOp->p1; + if( cnt<0 ) cnt = -cnt; + assert( &pTos[1-cnt] >= p->aStack ); + for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){} + if( i>=cnt ) pc = pOp->p2-1; + if( pOp->p1>0 ) popStack(&pTos, cnt); + break; +} + +/* Opcode: SetNumColumns P1 P2 * +** +** Before the OP_Column opcode can be executed on a cursor, this +** opcode must be called to set the number of fields in the table. +** +** This opcode sets the number of columns for cursor P1 to P2. +** +** If OP_KeyAsData is to be applied to cursor P1, it must be executed +** before this op-code. +*/ +case OP_SetNumColumns: { /* no-push */ + Cursor *pC; + assert( (pOp->p1)<p->nCursor ); + assert( p->apCsr[pOp->p1]!=0 ); + pC = p->apCsr[pOp->p1]; + pC->nField = pOp->p2; + break; +} + +/* Opcode: Column P1 P2 P3 +** +** Interpret the data that cursor P1 points to as a structure built using +** the MakeRecord instruction. (See the MakeRecord opcode for additional +** information about the format of the data.) Push onto the stack the value +** of the P2-th column contained in the data. If there are less that (P2+1) +** values in the record, push a NULL onto the stack. +** +** If the KeyAsData opcode has previously executed on this cursor, then the +** field might be extracted from the key rather than the data. +** +** If P1 is negative, then the record is stored on the stack rather than in +** a table. For P1==-1, the top of the stack is used. For P1==-2, the +** next on the stack is used. And so forth. The value pushed is always +** just a pointer into the record which is stored further down on the +** stack. The column value is not copied. The number of columns in the +** record is stored on the stack just above the record itself. +** +** If the column contains fewer than P2 fields, then push a NULL. Or +** if P3 is of type P3_MEM, then push the P3 value. The P3 value will +** be default value for a column that has been added using the ALTER TABLE +** ADD COLUMN command. If P3 is an ordinary string, just push a NULL. +** When P3 is a string it is really just a comment describing the value +** to be pushed, not a default value. +*/ +case OP_Column: { + u32 payloadSize; /* Number of bytes in the record */ + int p1 = pOp->p1; /* P1 value of the opcode */ + int p2 = pOp->p2; /* column number to retrieve */ + Cursor *pC = 0; /* The VDBE cursor */ + char *zRec; /* Pointer to complete record-data */ + BtCursor *pCrsr; /* The BTree cursor */ + u32 *aType; /* aType[i] holds the numeric type of the i-th column */ + u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ + u32 nField; /* number of fields in the record */ + u32 szHdr; /* Number of bytes in the record header */ + int len; /* The length of the serialized data for the column */ + int offset = 0; /* Offset into the data */ + int idx; /* Index into the header */ + int i; /* Loop counter */ + char *zData; /* Part of the record being decoded */ + Mem sMem; /* For storing the record being decoded */ + + sMem.flags = 0; + assert( p1<p->nCursor ); + pTos++; + pTos->flags = MEM_Null; + + /* This block sets the variable payloadSize to be the total number of + ** bytes in the record. + ** + ** zRec is set to be the complete text of the record if it is available. + ** The complete record text is always available for pseudo-tables and + ** when we are decoded a record from the stack. If the record is stored + ** in a cursor, the complete record text might be available in the + ** pC->aRow cache. Or it might not be. If the data is unavailable, + ** zRec is set to NULL. + ** + ** We also compute the number of columns in the record. For cursors, + ** the number of columns is stored in the Cursor.nField element. For + ** records on the stack, the next entry down on the stack is an integer + ** which is the number of records. + */ + assert( p1<0 || p->apCsr[p1]!=0 ); + if( p1<0 ){ + /* Take the record off of the stack */ + Mem *pRec = &pTos[p1]; + Mem *pCnt = &pRec[-1]; + assert( pRec>=p->aStack ); + assert( pRec->flags & MEM_Blob ); + payloadSize = pRec->n; + zRec = pRec->z; + assert( pCnt>=p->aStack ); + assert( pCnt->flags & MEM_Int ); + nField = pCnt->i; + pCrsr = 0; + }else if( (pC = p->apCsr[p1])->pCursor!=0 ){ + /* The record is stored in a B-Tree */ + rc = sqlite3VdbeCursorMoveto(pC); + if( rc ) goto abort_due_to_error; + zRec = 0; + pCrsr = pC->pCursor; + if( pC->nullRow ){ + payloadSize = 0; + }else if( pC->cacheValid ){ + payloadSize = pC->payloadSize; + zRec = pC->aRow; + }else if( pC->isIndex ){ + i64 payloadSize64; + sqlite3BtreeKeySize(pCrsr, &payloadSize64); + payloadSize = payloadSize64; + }else{ + sqlite3BtreeDataSize(pCrsr, &payloadSize); + } + nField = pC->nField; +#ifndef SQLITE_OMIT_TRIGGER + }else if( pC->pseudoTable ){ + /* The record is the sole entry of a pseudo-table */ + payloadSize = pC->nData; + zRec = pC->pData; + pC->cacheValid = 0; + assert( payloadSize==0 || zRec!=0 ); + nField = pC->nField; + pCrsr = 0; +#endif + }else{ + zRec = 0; + payloadSize = 0; + pCrsr = 0; + nField = 0; + } + + /* If payloadSize is 0, then just push a NULL onto the stack. */ + if( payloadSize==0 ){ + pTos->flags = MEM_Null; + break; + } + + assert( p2<nField ); + + /* Read and parse the table header. Store the results of the parse + ** into the record header cache fields of the cursor. + */ + if( pC && pC->cacheValid ){ + aType = pC->aType; + aOffset = pC->aOffset; + }else{ + int avail; /* Number of bytes of available data */ + if( pC && pC->aType ){ + aType = pC->aType; + }else{ + aType = sqliteMallocRaw( 2*nField*sizeof(aType) ); + } + aOffset = &aType[nField]; + if( aType==0 ){ + goto no_mem; + } + + /* Figure out how many bytes are in the header */ + if( zRec ){ + zData = zRec; + }else{ + if( pC->isIndex ){ + zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail); + }else{ + zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail); + } + /* If KeyFetch()/DataFetch() managed to get the entire payload, + ** save the payload in the pC->aRow cache. That will save us from + ** having to make additional calls to fetch the content portion of + ** the record. + */ + if( avail>=payloadSize ){ + zRec = pC->aRow = zData; + }else{ + pC->aRow = 0; + } + } + idx = sqlite3GetVarint32(zData, &szHdr); + + + /* The KeyFetch() or DataFetch() above are fast and will get the entire + ** record header in most cases. But they will fail to get the complete + ** record header if the record header does not fit on a single page + ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to + ** acquire the complete header text. + */ + if( !zRec && avail<szHdr ){ + rc = sqlite3VdbeMemFromBtree(pCrsr, 0, szHdr, pC->isIndex, &sMem); + if( rc!=SQLITE_OK ){ + goto op_column_out; + } + zData = sMem.z; + } + + /* Scan the header and use it to fill in the aType[] and aOffset[] + ** arrays. aType[i] will contain the type integer for the i-th + ** column and aOffset[i] will contain the offset from the beginning + ** of the record to the start of the data for the i-th column + */ + offset = szHdr; + assert( offset>0 ); + i = 0; + while( idx<szHdr && i<nField && offset<=payloadSize ){ + aOffset[i] = offset; + idx += sqlite3GetVarint32(&zData[idx], &aType[i]); + offset += sqlite3VdbeSerialTypeLen(aType[i]); + i++; + } + Release(&sMem); + sMem.flags = MEM_Null; + + /* If i is less that nField, then there are less fields in this + ** record than SetNumColumns indicated there are columns in the + ** table. Set the offset for any extra columns not present in + ** the record to 0. This tells code below to push a NULL onto the + ** stack instead of deserializing a value from the record. + */ + while( i<nField ){ + aOffset[i++] = 0; + } + + /* The header should end at the start of data and the data should + ** end at last byte of the record. If this is not the case then + ** we are dealing with a malformed record. + */ + if( idx!=szHdr || offset!=payloadSize ){ + rc = SQLITE_CORRUPT_BKPT; + goto op_column_out; + } + + /* Remember all aType and aColumn information if we have a cursor + ** to remember it in. */ + if( pC ){ + pC->payloadSize = payloadSize; + pC->aType = aType; + pC->aOffset = aOffset; + pC->cacheValid = 1; + } + } + + /* Get the column information. If aOffset[p2] is non-zero, then + ** deserialize the value from the record. If aOffset[p2] is zero, + ** then there are not enough fields in the record to satisfy the + ** request. In this case, set the value NULL or to P3 if P3 is + ** a pointer to a Mem object. + */ + if( aOffset[p2] ){ + assert( rc==SQLITE_OK ); + if( zRec ){ + zData = &zRec[aOffset[p2]]; + }else{ + len = sqlite3VdbeSerialTypeLen(aType[p2]); + rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex,&sMem); + if( rc!=SQLITE_OK ){ + goto op_column_out; + } + zData = sMem.z; + } + sqlite3VdbeSerialGet(zData, aType[p2], pTos); + pTos->enc = db->enc; + }else{ + if( pOp->p3type==P3_MEM ){ + sqlite3VdbeMemShallowCopy(pTos, (Mem *)(pOp->p3), MEM_Static); + }else{ + pTos->flags = MEM_Null; + } + } + + /* If we dynamically allocated space to hold the data (in the + ** sqlite3VdbeMemFromBtree() call above) then transfer control of that + ** dynamically allocated space over to the pTos structure rather. + ** This prevents a memory copy. + */ + if( (sMem.flags & MEM_Dyn)!=0 ){ + assert( pTos->flags & MEM_Ephem ); + assert( pTos->flags & (MEM_Str|MEM_Blob) ); + assert( pTos->z==sMem.z ); + assert( sMem.flags & MEM_Term ); + pTos->flags &= ~MEM_Ephem; + pTos->flags |= MEM_Dyn|MEM_Term; + } + + /* pTos->z might be pointing to sMem.zShort[]. Fix that so that we + ** can abandon sMem */ + rc = sqlite3VdbeMemMakeWriteable(pTos); + +op_column_out: + /* Release the aType[] memory if we are not dealing with cursor */ + if( !pC || !pC->aType ){ + sqliteFree(aType); + } + break; +} + +/* Opcode: MakeRecord P1 P2 P3 +** +** Convert the top abs(P1) entries of the stack into a single entry +** suitable for use as a data record in a database table or as a key +** in an index. The details of the format are irrelavant as long as +** the OP_Column opcode can decode the record later and as long as the +** sqlite3VdbeRecordCompare function will correctly compare two encoded +** records. Refer to source code comments for the details of the record +** format. +** +** The original stack entries are popped from the stack if P1>0 but +** remain on the stack if P1<0. +** +** If P2 is not zero and one or more of the entries are NULL, then jump +** to the address given by P2. This feature can be used to skip a +** uniqueness test on indices. +** +** P3 may be a string that is P1 characters long. The nth character of the +** string indicates the column affinity that should be used for the nth +** field of the index key (i.e. the first character of P3 corresponds to the +** lowest element on the stack). +** +** The mapping from character to affinity is as follows: +** 'n' = NUMERIC. +** 'i' = INTEGER. +** 't' = TEXT. +** 'o' = NONE. +** +** If P3 is NULL then all index fields have the affinity NONE. +** +** See also OP_MakeIdxRec +*/ +/* Opcode: MakeRecordI P1 P2 P3 +** +** This opcode works just OP_MakeRecord except that it reads an extra +** integer from the stack (thus reading a total of abs(P1+1) entries) +** and appends that extra integer to the end of the record as a varint. +** This results in an index key. +*/ +case OP_MakeIdxRec: +case OP_MakeRecord: { + /* Assuming the record contains N fields, the record format looks + ** like this: + ** + ** ------------------------------------------------------------------------ + ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | + ** ------------------------------------------------------------------------ + ** + ** Data(0) is taken from the lowest element of the stack and data(N-1) is + ** the top of the stack. + ** + ** Each type field is a varint representing the serial type of the + ** corresponding data element (see sqlite3VdbeSerialType()). The + ** hdr-size field is also a varint which is the offset from the beginning + ** of the record to data0. + */ + unsigned char *zNewRecord; + unsigned char *zCsr; + Mem *pRec; + Mem *pRowid = 0; + int nData = 0; /* Number of bytes of data space */ + int nHdr = 0; /* Number of bytes of header space */ + int nByte = 0; /* Space required for this record */ + int nVarint; /* Number of bytes in a varint */ + u32 serial_type; /* Type field */ + int containsNull = 0; /* True if any of the data fields are NULL */ + char zTemp[NBFS]; /* Space to hold small records */ + Mem *pData0; + + int leaveOnStack; /* If true, leave the entries on the stack */ + int nField; /* Number of fields in the record */ + int jumpIfNull; /* Jump here if non-zero and any entries are NULL. */ + int addRowid; /* True to append a rowid column at the end */ + char *zAffinity; /* The affinity string for the record */ + + leaveOnStack = ((pOp->p1<0)?1:0); + nField = pOp->p1 * (leaveOnStack?-1:1); + jumpIfNull = pOp->p2; + addRowid = pOp->opcode==OP_MakeIdxRec; + zAffinity = pOp->p3; + + pData0 = &pTos[1-nField]; + assert( pData0>=p->aStack ); + containsNull = 0; + + /* Loop through the elements that will make up the record to figure + ** out how much space is required for the new record. + */ + for(pRec=pData0; pRec<=pTos; pRec++){ + if( zAffinity ){ + applyAffinity(pRec, zAffinity[pRec-pData0], db->enc); + } + if( pRec->flags&MEM_Null ){ + containsNull = 1; + } + serial_type = sqlite3VdbeSerialType(pRec); + nData += sqlite3VdbeSerialTypeLen(serial_type); + nHdr += sqlite3VarintLen(serial_type); + } + + /* If we have to append a varint rowid to this record, set 'rowid' + ** to the value of the rowid and increase nByte by the amount of space + ** required to store it and the 0x00 seperator byte. + */ + if( addRowid ){ + pRowid = &pTos[0-nField]; + assert( pRowid>=p->aStack ); + Integerify(pRowid); + serial_type = sqlite3VdbeSerialType(pRowid); + nData += sqlite3VdbeSerialTypeLen(serial_type); + nHdr += sqlite3VarintLen(serial_type); + } + + /* Add the initial header varint and total the size */ + nHdr += nVarint = sqlite3VarintLen(nHdr); + if( nVarint<sqlite3VarintLen(nHdr) ){ + nHdr++; + } + nByte = nHdr+nData; + + /* Allocate space for the new record. */ + if( nByte>sizeof(zTemp) ){ + zNewRecord = sqliteMallocRaw(nByte); + if( !zNewRecord ){ + goto no_mem; + } + }else{ + zNewRecord = zTemp; + } + + /* Write the record */ + zCsr = zNewRecord; + zCsr += sqlite3PutVarint(zCsr, nHdr); + for(pRec=pData0; pRec<=pTos; pRec++){ + serial_type = sqlite3VdbeSerialType(pRec); + zCsr += sqlite3PutVarint(zCsr, serial_type); /* serial type */ + } + if( addRowid ){ + zCsr += sqlite3PutVarint(zCsr, sqlite3VdbeSerialType(pRowid)); + } + for(pRec=pData0; pRec<=pTos; pRec++){ + zCsr += sqlite3VdbeSerialPut(zCsr, pRec); /* serial data */ + } + if( addRowid ){ + zCsr += sqlite3VdbeSerialPut(zCsr, pRowid); + } + assert( zCsr==(zNewRecord+nByte) ); + + /* Pop entries off the stack if required. Push the new record on. */ + if( !leaveOnStack ){ + popStack(&pTos, nField+addRowid); + } + pTos++; + pTos->n = nByte; + if( nByte<=sizeof(zTemp) ){ + assert( zNewRecord==(unsigned char *)zTemp ); + pTos->z = pTos->zShort; + memcpy(pTos->zShort, zTemp, nByte); + pTos->flags = MEM_Blob | MEM_Short; + }else{ + assert( zNewRecord!=(unsigned char *)zTemp ); + pTos->z = zNewRecord; + pTos->flags = MEM_Blob | MEM_Dyn; + pTos->xDel = 0; + } + pTos->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ + + /* If a NULL was encountered and jumpIfNull is non-zero, take the jump. */ + if( jumpIfNull && containsNull ){ + pc = jumpIfNull - 1; + } + break; +} + +/* Opcode: Statement P1 * * +** +** Begin an individual statement transaction which is part of a larger +** BEGIN..COMMIT transaction. This is needed so that the statement +** can be rolled back after an error without having to roll back the +** entire transaction. The statement transaction will automatically +** commit when the VDBE halts. +** +** The statement is begun on the database file with index P1. The main +** database file has an index of 0 and the file used for temporary tables +** has an index of 1. +*/ +case OP_Statement: { /* no-push */ + int i = pOp->p1; + Btree *pBt; + if( i>=0 && i<db->nDb && (pBt = db->aDb[i].pBt) && !(db->autoCommit) ){ + assert( sqlite3BtreeIsInTrans(pBt) ); + if( !sqlite3BtreeIsInStmt(pBt) ){ + rc = sqlite3BtreeBeginStmt(pBt); + } + } + break; +} + +/* Opcode: AutoCommit P1 P2 * +** +** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll +** back any currently active btree transactions. If there are any active +** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails. +** +** This instruction causes the VM to halt. +*/ +case OP_AutoCommit: { /* no-push */ + u8 i = pOp->p1; + u8 rollback = pOp->p2; + + assert( i==1 || i==0 ); + assert( i==1 || rollback==0 ); + + assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */ + + if( db->activeVdbeCnt>1 && i && !db->autoCommit ){ + /* If this instruction implements a COMMIT or ROLLBACK, other VMs are + ** still running, and a transaction is active, return an error indicating + ** that the other VMs must complete first. + */ + sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit", + " transaction - SQL statements in progress", 0); + rc = SQLITE_ERROR; + }else if( i!=db->autoCommit ){ + db->autoCommit = i; + if( pOp->p2 ){ + assert( i==1 ); + sqlite3RollbackAll(db); + }else if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ + p->pTos = pTos; + p->pc = pc; + db->autoCommit = 1-i; + p->rc = SQLITE_BUSY; + return SQLITE_BUSY; + } + return SQLITE_DONE; + }else{ + sqlite3SetString(&p->zErrMsg, + (!i)?"cannot start a transaction within a transaction":( + (rollback)?"cannot rollback - no transaction is active": + "cannot commit - no transaction is active"), 0); + + rc = SQLITE_ERROR; + } + break; +} + +/* Opcode: Transaction P1 P2 * +** +** Begin a transaction. The transaction ends when a Commit or Rollback +** opcode is encountered. Depending on the ON CONFLICT setting, the +** transaction might also be rolled back if an error is encountered. +** +** P1 is the index of the database file on which the transaction is +** started. Index 0 is the main database file and index 1 is the +** file used for temporary tables. +** +** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is +** obtained on the database file when a write-transaction is started. No +** other process can start another write transaction while this transaction is +** underway. Starting a write transaction also creates a rollback journal. A +** write transaction must be started before any changes can be made to the +** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained +** on the file. +** +** If P2 is zero, then a read-lock is obtained on the database file. +*/ +case OP_Transaction: { /* no-push */ + int i = pOp->p1; + Btree *pBt; + + assert( i>=0 && i<db->nDb ); + pBt = db->aDb[i].pBt; + + if( pBt ){ + rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); + if( rc==SQLITE_BUSY ){ + p->pc = pc; + p->rc = SQLITE_BUSY; + p->pTos = pTos; + return SQLITE_BUSY; + } + if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){ + goto abort_due_to_error; + } + } + break; +} + +/* Opcode: ReadCookie P1 P2 * +** +** Read cookie number P2 from database P1 and push it onto the stack. +** P2==0 is the schema version. P2==1 is the database format. +** P2==2 is the recommended pager cache size, and so forth. P1==0 is +** the main database file and P1==1 is the database file used to store +** temporary tables. +** +** There must be a read-lock on the database (either a transaction +** must be started or there must be an open cursor) before +** executing this instruction. +*/ +case OP_ReadCookie: { + int iMeta; + assert( pOp->p2<SQLITE_N_BTREE_META ); + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + assert( db->aDb[pOp->p1].pBt!=0 ); + /* The indexing of meta values at the schema layer is off by one from + ** the indexing in the btree layer. The btree considers meta[0] to + ** be the number of free pages in the database (a read-only value) + ** and meta[1] to be the schema cookie. The schema layer considers + ** meta[1] to be the schema cookie. So we have to shift the index + ** by one in the following statement. + */ + rc = sqlite3BtreeGetMeta(db->aDb[pOp->p1].pBt, 1 + pOp->p2, (u32 *)&iMeta); + pTos++; + pTos->i = iMeta; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: SetCookie P1 P2 * +** +** Write the top of the stack into cookie number P2 of database P1. +** P2==0 is the schema version. P2==1 is the database format. +** P2==2 is the recommended pager cache size, and so forth. P1==0 is +** the main database file and P1==1 is the database file used to store +** temporary tables. +** +** A transaction must be started before executing this opcode. +*/ +case OP_SetCookie: { /* no-push */ + Db *pDb; + assert( pOp->p2<SQLITE_N_BTREE_META ); + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + pDb = &db->aDb[pOp->p1]; + assert( pDb->pBt!=0 ); + assert( pTos>=p->aStack ); + Integerify(pTos); + /* See note about index shifting on OP_ReadCookie */ + rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->i); + if( pOp->p2==0 ){ + /* When the schema cookie changes, record the new cookie internally */ + pDb->schema_cookie = pTos->i; + db->flags |= SQLITE_InternChanges; + } + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + break; +} + +/* Opcode: VerifyCookie P1 P2 * +** +** Check the value of global database parameter number 0 (the +** schema version) and make sure it is equal to P2. +** P1 is the database number which is 0 for the main database file +** and 1 for the file holding temporary tables and some higher number +** for auxiliary databases. +** +** The cookie changes its value whenever the database schema changes. +** This operation is used to detect when that the cookie has changed +** and that the current process needs to reread the schema. +** +** Either a transaction needs to have been started or an OP_Open needs +** to be executed (to establish a read lock) before this opcode is +** invoked. +*/ +case OP_VerifyCookie: { /* no-push */ + int iMeta; + Btree *pBt; + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + pBt = db->aDb[pOp->p1].pBt; + if( pBt ){ + rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta); + }else{ + rc = SQLITE_OK; + iMeta = 0; + } + if( rc==SQLITE_OK && iMeta!=pOp->p2 ){ + sqlite3SetString(&p->zErrMsg, "database schema has changed", (char*)0); + rc = SQLITE_SCHEMA; + } + break; +} + +/* Opcode: OpenRead P1 P2 P3 +** +** Open a read-only cursor for the database table whose root page is +** P2 in a database file. The database file is determined by an +** integer from the top of the stack. 0 means the main database and +** 1 means the database used for temporary tables. Give the new +** cursor an identifier of P1. The P1 values need not be contiguous +** but all P1 values should be small integers. It is an error for +** P1 to be negative. +** +** If P2==0 then take the root page number from the next of the stack. +** +** There will be a read lock on the database whenever there is an +** open cursor. If the database was unlocked prior to this instruction +** then a read lock is acquired as part of this instruction. A read +** lock allows other processes to read the database but prohibits +** any other process from modifying the database. The read lock is +** released when all cursors are closed. If this instruction attempts +** to get a read lock but fails, the script terminates with an +** SQLITE_BUSY error code. +** +** The P3 value is a pointer to a KeyInfo structure that defines the +** content and collating sequence of indices. P3 is NULL for cursors +** that are not pointing to indices. +** +** See also OpenWrite. +*/ +/* Opcode: OpenWrite P1 P2 P3 +** +** Open a read/write cursor named P1 on the table or index whose root +** page is P2. If P2==0 then take the root page number from the stack. +** +** The P3 value is a pointer to a KeyInfo structure that defines the +** content and collating sequence of indices. P3 is NULL for cursors +** that are not pointing to indices. +** +** This instruction works just like OpenRead except that it opens the cursor +** in read/write mode. For a given table, there can be one or more read-only +** cursors or a single read/write cursor but not both. +** +** See also OpenRead. +*/ +case OP_OpenRead: /* no-push */ +case OP_OpenWrite: { /* no-push */ + int i = pOp->p1; + int p2 = pOp->p2; + int wrFlag; + Btree *pX; + int iDb; + Cursor *pCur; + + assert( pTos>=p->aStack ); + Integerify(pTos); + iDb = pTos->i; + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + assert( iDb>=0 && iDb<db->nDb ); + pX = db->aDb[iDb].pBt; + assert( pX!=0 ); + wrFlag = pOp->opcode==OP_OpenWrite; + if( p2<=0 ){ + assert( pTos>=p->aStack ); + Integerify(pTos); + p2 = pTos->i; + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + assert( p2>=2 ); + } + assert( i>=0 ); + pCur = allocateCursor(p, i); + if( pCur==0 ) goto no_mem; + pCur->nullRow = 1; + if( pX==0 ) break; + /* We always provide a key comparison function. If the table being + ** opened is of type INTKEY, the comparision function will be ignored. */ + rc = sqlite3BtreeCursor(pX, p2, wrFlag, + sqlite3VdbeRecordCompare, pOp->p3, + &pCur->pCursor); + if( pOp->p3type==P3_KEYINFO ){ + pCur->pKeyInfo = (KeyInfo*)pOp->p3; + pCur->pIncrKey = &pCur->pKeyInfo->incrKey; + pCur->pKeyInfo->enc = p->db->enc; + }else{ + pCur->pKeyInfo = 0; + pCur->pIncrKey = &pCur->bogusIncrKey; + } + switch( rc ){ + case SQLITE_BUSY: { + p->pc = pc; + p->rc = SQLITE_BUSY; + p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */ + return SQLITE_BUSY; + } + case SQLITE_OK: { + int flags = sqlite3BtreeFlags(pCur->pCursor); + /* Sanity checking. Only the lower four bits of the flags byte should + ** be used. Bit 3 (mask 0x08) is unpreditable. The lower 3 bits + ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or + ** 2 (zerodata for indices). If these conditions are not met it can + ** only mean that we are dealing with a corrupt database file + */ + if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){ + rc = SQLITE_CORRUPT_BKPT; + goto abort_due_to_error; + } + pCur->isTable = (flags & BTREE_INTKEY)!=0; + pCur->isIndex = (flags & BTREE_ZERODATA)!=0; + /* If P3==0 it means we are expected to open a table. If P3!=0 then + ** we expect to be opening an index. If this is not what happened, + ** then the database is corrupt + */ + if( (pCur->isTable && pOp->p3type==P3_KEYINFO) + || (pCur->isIndex && pOp->p3type!=P3_KEYINFO) ){ + rc = SQLITE_CORRUPT_BKPT; + goto abort_due_to_error; + } + break; + } + case SQLITE_EMPTY: { + pCur->isTable = pOp->p3type!=P3_KEYINFO; + pCur->isIndex = !pCur->isTable; + rc = SQLITE_OK; + break; + } + default: { + goto abort_due_to_error; + } + } + break; +} + +/* Opcode: OpenVirtual P1 P2 P3 +** +** Open a new cursor P1 to a transient or virtual table. +** The cursor is always opened read/write even if +** the main database is read-only. The transient or virtual +** table is deleted automatically when the cursor is closed. +** +** P2 is the number of columns in the virtual table. +** The cursor points to a BTree table if P3==0 and to a BTree index +** if P3 is not 0. If P3 is not NULL, it points to a KeyInfo structure +** that defines the format of keys in the index. +*/ +case OP_OpenVirtual: { /* no-push */ + int i = pOp->p1; + Cursor *pCx; + assert( i>=0 ); + pCx = allocateCursor(p, i); + if( pCx==0 ) goto no_mem; + pCx->nullRow = 1; + rc = sqlite3BtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt, 0 /*!exclusive*/, 1/*allowReadonly*/); + if( rc==SQLITE_OK ){ + rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); + } + if( rc==SQLITE_OK ){ + /* If a transient index is required, create it by calling + ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before + ** opening it. If a transient table is required, just use the + ** automatically created table with root-page 1 (an INTKEY table). + */ + if( pOp->p3 ){ + int pgno; + assert( pOp->p3type==P3_KEYINFO ); + rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); + if( rc==SQLITE_OK ){ + assert( pgno==MASTER_ROOT+1 ); + rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare, + pOp->p3, &pCx->pCursor); + pCx->pKeyInfo = (KeyInfo*)pOp->p3; + pCx->pKeyInfo->enc = p->db->enc; + pCx->pIncrKey = &pCx->pKeyInfo->incrKey; + } + pCx->isTable = 0; + }else{ + rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor); + pCx->isTable = 1; + pCx->pIncrKey = &pCx->bogusIncrKey; + } + } + pCx->nField = pOp->p2; + pCx->isIndex = !pCx->isTable; + break; +} + +#ifndef SQLITE_OMIT_TRIGGER +/* Opcode: OpenPseudo P1 * * +** +** Open a new cursor that points to a fake table that contains a single +** row of data. Any attempt to write a second row of data causes the +** first row to be deleted. All data is deleted when the cursor is +** closed. +** +** A pseudo-table created by this opcode is useful for holding the +** NEW or OLD tables in a trigger. +*/ +case OP_OpenPseudo: { /* no-push */ + int i = pOp->p1; + Cursor *pCx; + assert( i>=0 ); + pCx = allocateCursor(p, i); + if( pCx==0 ) goto no_mem; + pCx->nullRow = 1; + pCx->pseudoTable = 1; + pCx->pIncrKey = &pCx->bogusIncrKey; + pCx->isTable = 1; + pCx->isIndex = 0; + break; +} +#endif + +/* Opcode: Close P1 * * +** +** Close a cursor previously opened as P1. If P1 is not +** currently open, this instruction is a no-op. +*/ +case OP_Close: { /* no-push */ + int i = pOp->p1; + if( i>=0 && i<p->nCursor ){ + sqlite3VdbeFreeCursor(p->apCsr[i]); + p->apCsr[i] = 0; + } + break; +} + +/* Opcode: MoveGe P1 P2 * +** +** Pop the top of the stack and use its value as a key. Reposition +** cursor P1 so that it points to the smallest entry that is greater +** than or equal to the key that was popped ffrom the stack. +** If there are no records greater than or equal to the key and P2 +** is not zero, then jump to P2. +** +** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe +*/ +/* Opcode: MoveGt P1 P2 * +** +** Pop the top of the stack and use its value as a key. Reposition +** cursor P1 so that it points to the smallest entry that is greater +** than the key from the stack. +** If there are no records greater than the key and P2 is not zero, +** then jump to P2. +** +** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe +*/ +/* Opcode: MoveLt P1 P2 * +** +** Pop the top of the stack and use its value as a key. Reposition +** cursor P1 so that it points to the largest entry that is less +** than the key from the stack. +** If there are no records less than the key and P2 is not zero, +** then jump to P2. +** +** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe +*/ +/* Opcode: MoveLe P1 P2 * +** +** Pop the top of the stack and use its value as a key. Reposition +** cursor P1 so that it points to the largest entry that is less than +** or equal to the key that was popped from the stack. +** If there are no records less than or eqal to the key and P2 is not zero, +** then jump to P2. +** +** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt +*/ +case OP_MoveLt: /* no-push */ +case OP_MoveLe: /* no-push */ +case OP_MoveGe: /* no-push */ +case OP_MoveGt: { /* no-push */ + int i = pOp->p1; + Cursor *pC; + + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + if( pC->pCursor!=0 ){ + int res, oc; + oc = pOp->opcode; + pC->nullRow = 0; + *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe; + if( pC->isTable ){ + i64 iKey; + Integerify(pTos); + iKey = intToKey(pTos->i); + if( pOp->p2==0 && pOp->opcode==OP_MoveGe ){ + pC->movetoTarget = iKey; + pC->deferredMoveto = 1; + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + break; + } + rc = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, &res); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + pC->lastRowid = pTos->i; + pC->rowidIsValid = res==0; + }else{ + Stringify(pTos, db->enc); + rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + pC->rowidIsValid = 0; + } + pC->deferredMoveto = 0; + pC->cacheValid = 0; + *pC->pIncrKey = 0; + sqlite3_search_count++; + if( oc==OP_MoveGe || oc==OP_MoveGt ){ + if( res<0 ){ + rc = sqlite3BtreeNext(pC->pCursor, &res); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + pC->rowidIsValid = 0; + }else{ + res = 0; + } + }else{ + assert( oc==OP_MoveLt || oc==OP_MoveLe ); + if( res>=0 ){ + rc = sqlite3BtreePrevious(pC->pCursor, &res); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + pC->rowidIsValid = 0; + }else{ + /* res might be negative because the table is empty. Check to + ** see if this is the case. + */ + res = sqlite3BtreeEof(pC->pCursor); + } + } + if( res ){ + if( pOp->p2>0 ){ + pc = pOp->p2 - 1; + }else{ + pC->nullRow = 1; + } + } + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: Distinct P1 P2 * +** +** Use the top of the stack as a record created using MakeRecord. P1 is a +** cursor on a table that declared as an index. If that table contains an +** entry that matches the top of the stack fall thru. If the top of the stack +** matches no entry in P1 then jump to P2. +** +** The cursor is left pointing at the matching entry if it exists. The +** record on the top of the stack is not popped. +** +** This instruction is similar to NotFound except that this operation +** does not pop the key from the stack. +** +** The instruction is used to implement the DISTINCT operator on SELECT +** statements. The P1 table is not a true index but rather a record of +** all results that have produced so far. +** +** See also: Found, NotFound, MoveTo, IsUnique, NotExists +*/ +/* Opcode: Found P1 P2 * +** +** Top of the stack holds a blob constructed by MakeRecord. P1 is an index. +** If an entry that matches the top of the stack exists in P1 then +** jump to P2. If the top of the stack does not match any entry in P1 +** then fall thru. The P1 cursor is left pointing at the matching entry +** if it exists. The blob is popped off the top of the stack. +** +** This instruction is used to implement the IN operator where the +** left-hand side is a SELECT statement. P1 is not a true index but +** is instead a temporary index that holds the results of the SELECT +** statement. This instruction just checks to see if the left-hand side +** of the IN operator (stored on the top of the stack) exists in the +** result of the SELECT statement. +** +** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists +*/ +/* Opcode: NotFound P1 P2 * +** +** The top of the stack holds a blob constructed by MakeRecord. P1 is +** an index. If no entry exists in P1 that matches the blob then jump +** to P1. If an entry does existing, fall through. The cursor is left +** pointing to the entry that matches. The blob is popped from the stack. +** +** The difference between this operation and Distinct is that +** Distinct does not pop the key from the stack. +** +** See also: Distinct, Found, MoveTo, NotExists, IsUnique +*/ +case OP_Distinct: /* no-push */ +case OP_NotFound: /* no-push */ +case OP_Found: { /* no-push */ + int i = pOp->p1; + int alreadyExists = 0; + Cursor *pC; + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pC = p->apCsr[i])->pCursor!=0 ){ + int res, rx; + assert( pC->isTable==0 ); + Stringify(pTos, db->enc); + rx = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); + alreadyExists = rx==SQLITE_OK && res==0; + pC->deferredMoveto = 0; + pC->cacheValid = 0; + } + if( pOp->opcode==OP_Found ){ + if( alreadyExists ) pc = pOp->p2 - 1; + }else{ + if( !alreadyExists ) pc = pOp->p2 - 1; + } + if( pOp->opcode!=OP_Distinct ){ + Release(pTos); + pTos--; + } + break; +} + +/* Opcode: IsUnique P1 P2 * +** +** The top of the stack is an integer record number. Call this +** record number R. The next on the stack is an index key created +** using MakeIdxKey. Call it K. This instruction pops R from the +** stack but it leaves K unchanged. +** +** P1 is an index. So it has no data and its key consists of a +** record generated by OP_MakeRecord where the last field is the +** rowid of the entry that the index refers to. +** +** This instruction asks if there is an entry in P1 where the +** fields matches K but the rowid is different from R. +** If there is no such entry, then there is an immediate +** jump to P2. If any entry does exist where the index string +** matches K but the record number is not R, then the record +** number for that entry is pushed onto the stack and control +** falls through to the next instruction. +** +** See also: Distinct, NotFound, NotExists, Found +*/ +case OP_IsUnique: { /* no-push */ + int i = pOp->p1; + Mem *pNos = &pTos[-1]; + Cursor *pCx; + BtCursor *pCrsr; + i64 R; + + /* Pop the value R off the top of the stack + */ + assert( pNos>=p->aStack ); + Integerify(pTos); + R = pTos->i; + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + assert( i>=0 && i<=p->nCursor ); + pCx = p->apCsr[i]; + assert( pCx!=0 ); + pCrsr = pCx->pCursor; + if( pCrsr!=0 ){ + int res, rc; + i64 v; /* The record number on the P1 entry that matches K */ + char *zKey; /* The value of K */ + int nKey; /* Number of bytes in K */ + int len; /* Number of bytes in K without the rowid at the end */ + int szRowid; /* Size of the rowid column at the end of zKey */ + + /* Make sure K is a string and make zKey point to K + */ + Stringify(pNos, db->enc); + zKey = pNos->z; + nKey = pNos->n; + + szRowid = sqlite3VdbeIdxRowidLen(nKey, zKey); + len = nKey-szRowid; + + /* Search for an entry in P1 where all but the last four bytes match K. + ** If there is no such entry, jump immediately to P2. + */ + assert( pCx->deferredMoveto==0 ); + pCx->cacheValid = 0; + rc = sqlite3BtreeMoveto(pCrsr, zKey, len, &res); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + if( res<0 ){ + rc = sqlite3BtreeNext(pCrsr, &res); + if( res ){ + pc = pOp->p2 - 1; + break; + } + } + rc = sqlite3VdbeIdxKeyCompare(pCx, len, zKey, &res); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + if( res>0 ){ + pc = pOp->p2 - 1; + break; + } + + /* At this point, pCrsr is pointing to an entry in P1 where all but + ** the final entry (the rowid) matches K. Check to see if the + ** final rowid column is different from R. If it equals R then jump + ** immediately to P2. + */ + rc = sqlite3VdbeIdxRowid(pCrsr, &v); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + if( v==R ){ + pc = pOp->p2 - 1; + break; + } + + /* The final varint of the key is different from R. Push it onto + ** the stack. (The record number of an entry that violates a UNIQUE + ** constraint.) + */ + pTos++; + pTos->i = v; + pTos->flags = MEM_Int; + } + break; +} + +/* Opcode: NotExists P1 P2 * +** +** Use the top of the stack as a integer key. If a record with that key +** does not exist in table of P1, then jump to P2. If the record +** does exist, then fall thru. The cursor is left pointing to the +** record if it exists. The integer key is popped from the stack. +** +** The difference between this operation and NotFound is that this +** operation assumes the key is an integer and that P1 is a table whereas +** NotFound assumes key is a blob constructed from MakeRecord and +** P1 is an index. +** +** See also: Distinct, Found, MoveTo, NotFound, IsUnique +*/ +case OP_NotExists: { /* no-push */ + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + int res; + u64 iKey; + assert( pTos->flags & MEM_Int ); + assert( p->apCsr[i]->isTable ); + iKey = intToKey(pTos->i); + rc = sqlite3BtreeMoveto(pCrsr, 0, iKey, &res); + pC->lastRowid = pTos->i; + pC->rowidIsValid = res==0; + pC->nullRow = 0; + pC->cacheValid = 0; + if( res!=0 ){ + pc = pOp->p2 - 1; + pC->rowidIsValid = 0; + } + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: Sequence P1 * * +** +** Push an integer onto the stack which is the next available +** sequence number for cursor P1. The sequence number on the +** cursor is incremented after the push. +*/ +case OP_Sequence: { + int i = pOp->p1; + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + pTos++; + pTos->i = p->apCsr[i]->seqCount++; + pTos->flags = MEM_Int; + break; +} + + +/* Opcode: NewRowid P1 P2 * +** +** Get a new integer record number (a.k.a "rowid") used as the key to a table. +** The record number is not previously used as a key in the database +** table that cursor P1 points to. The new record number is pushed +** onto the stack. +** +** If P2>0 then P2 is a memory cell that holds the largest previously +** generated record number. No new record numbers are allowed to be less +** than this value. When this value reaches its maximum, a SQLITE_FULL +** error is generated. The P2 memory cell is updated with the generated +** record number. This P2 mechanism is used to help implement the +** AUTOINCREMENT feature. +*/ +case OP_NewRowid: { + int i = pOp->p1; + i64 v = 0; + Cursor *pC; + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pC = p->apCsr[i])->pCursor==0 ){ + /* The zero initialization above is all that is needed */ + }else{ + /* The next rowid or record number (different terms for the same + ** thing) is obtained in a two-step algorithm. + ** + ** First we attempt to find the largest existing rowid and add one + ** to that. But if the largest existing rowid is already the maximum + ** positive integer, we have to fall through to the second + ** probabilistic algorithm + ** + ** The second algorithm is to select a rowid at random and see if + ** it already exists in the table. If it does not exist, we have + ** succeeded. If the random rowid does exist, we select a new one + ** and try again, up to 1000 times. + ** + ** For a table with less than 2 billion entries, the probability + ** of not finding a unused rowid is about 1.0e-300. This is a + ** non-zero probability, but it is still vanishingly small and should + ** never cause a problem. You are much, much more likely to have a + ** hardware failure than for this algorithm to fail. + ** + ** The analysis in the previous paragraph assumes that you have a good + ** source of random numbers. Is a library function like lrand48() + ** good enough? Maybe. Maybe not. It's hard to know whether there + ** might be subtle bugs is some implementations of lrand48() that + ** could cause problems. To avoid uncertainty, SQLite uses its own + ** random number generator based on the RC4 algorithm. + ** + ** To promote locality of reference for repetitive inserts, the + ** first few attempts at chosing a random rowid pick values just a little + ** larger than the previous rowid. This has been shown experimentally + ** to double the speed of the COPY operation. + */ + int res, rx=SQLITE_OK, cnt; + i64 x; + cnt = 0; + if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) != + BTREE_INTKEY ){ + rc = SQLITE_CORRUPT_BKPT; + goto abort_due_to_error; + } + assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 ); + assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 ); + +#ifdef SQLITE_32BIT_ROWID +# define MAX_ROWID 0x7fffffff +#else + /* Some compilers complain about constants of the form 0x7fffffffffffffff. + ** Others complain about 0x7ffffffffffffffffLL. The following macro seems + ** to provide the constant while making all compilers happy. + */ +# define MAX_ROWID ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) +#endif + + if( !pC->useRandomRowid ){ + if( pC->nextRowidValid ){ + v = pC->nextRowid; + }else{ + rx = sqlite3BtreeLast(pC->pCursor, &res); + if( res ){ + v = 1; + }else{ + sqlite3BtreeKeySize(pC->pCursor, &v); + v = keyToInt(v); + if( v==MAX_ROWID ){ + pC->useRandomRowid = 1; + }else{ + v++; + } + } + } + +#ifndef SQLITE_OMIT_AUTOINCREMENT + if( pOp->p2 ){ + Mem *pMem; + assert( pOp->p2>0 && pOp->p2<p->nMem ); /* P2 is a valid memory cell */ + pMem = &p->aMem[pOp->p2]; + Integerify(pMem); + assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P2) holds an integer */ + if( pMem->i==MAX_ROWID || pC->useRandomRowid ){ + rc = SQLITE_FULL; + goto abort_due_to_error; + } + if( v<pMem->i+1 ){ + v = pMem->i + 1; + } + pMem->i = v; + } +#endif + + if( v<MAX_ROWID ){ + pC->nextRowidValid = 1; + pC->nextRowid = v+1; + }else{ + pC->nextRowidValid = 0; + } + } + if( pC->useRandomRowid ){ + assert( pOp->p2==0 ); /* SQLITE_FULL must have occurred prior to this */ + v = db->priorNewRowid; + cnt = 0; + do{ + if( v==0 || cnt>2 ){ + sqlite3Randomness(sizeof(v), &v); + if( cnt<5 ) v &= 0xffffff; + }else{ + unsigned char r; + sqlite3Randomness(1, &r); + v += r + 1; + } + if( v==0 ) continue; + x = intToKey(v); + rx = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)x, &res); + cnt++; + }while( cnt<1000 && rx==SQLITE_OK && res==0 ); + db->priorNewRowid = v; + if( rx==SQLITE_OK && res==0 ){ + rc = SQLITE_FULL; + goto abort_due_to_error; + } + } + pC->rowidIsValid = 0; + pC->deferredMoveto = 0; + pC->cacheValid = 0; + } + pTos++; + pTos->i = v; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: Insert P1 P2 * +** +** Write an entry into the table of cursor P1. A new entry is +** created if it doesn't already exist or the data for an existing +** entry is overwritten. The data is the value on the top of the +** stack. The key is the next value down on the stack. The key must +** be an integer. The stack is popped twice by this instruction. +** +** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is +** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P2 is set, +** then rowid is stored for subsequent return by the +** sqlite3_last_insert_rowid() function (otherwise it's unmodified). +** +** This instruction only works on tables. The equivalent instruction +** for indices is OP_IdxInsert. +*/ +case OP_Insert: { /* no-push */ + Mem *pNos = &pTos[-1]; + int i = pOp->p1; + Cursor *pC; + assert( pNos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( ((pC = p->apCsr[i])->pCursor!=0 || pC->pseudoTable) ){ + i64 iKey; /* The integer ROWID or key for the record to be inserted */ + + assert( pNos->flags & MEM_Int ); + assert( pC->isTable ); + iKey = intToKey(pNos->i); + + if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; + if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i; + if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){ + pC->nextRowidValid = 0; + } + if( pTos->flags & MEM_Null ){ + pTos->z = 0; + pTos->n = 0; + }else{ + assert( pTos->flags & (MEM_Blob|MEM_Str) ); + } +#ifndef SQLITE_OMIT_TRIGGER + if( pC->pseudoTable ){ + sqliteFree(pC->pData); + pC->iKey = iKey; + pC->nData = pTos->n; + if( pTos->flags & MEM_Dyn ){ + pC->pData = pTos->z; + pTos->flags = MEM_Null; + }else{ + pC->pData = sqliteMallocRaw( pC->nData+2 ); + if( !pC->pData ) goto no_mem; + memcpy(pC->pData, pTos->z, pC->nData); + pC->pData[pC->nData] = 0; + pC->pData[pC->nData+1] = 0; + } + pC->nullRow = 0; + }else{ +#endif + rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, pTos->z, pTos->n); +#ifndef SQLITE_OMIT_TRIGGER + } +#endif + + pC->rowidIsValid = 0; + pC->deferredMoveto = 0; + pC->cacheValid = 0; + } + popStack(&pTos, 2); + break; +} + +/* Opcode: Delete P1 P2 * +** +** Delete the record at which the P1 cursor is currently pointing. +** +** The cursor will be left pointing at either the next or the previous +** record in the table. If it is left pointing at the next record, then +** the next Next instruction will be a no-op. Hence it is OK to delete +** a record from within an Next loop. +** +** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is +** incremented (otherwise not). +** +** If P1 is a pseudo-table, then this instruction is a no-op. +*/ +case OP_Delete: { /* no-push */ + int i = pOp->p1; + Cursor *pC; + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + if( pC->pCursor!=0 ){ + rc = sqlite3VdbeCursorMoveto(pC); + if( rc ) goto abort_due_to_error; + rc = sqlite3BtreeDelete(pC->pCursor); + pC->nextRowidValid = 0; + pC->cacheValid = 0; + } + if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; + break; +} + +/* Opcode: ResetCount P1 * * +** +** This opcode resets the VMs internal change counter to 0. If P1 is true, +** then the value of the change counter is copied to the database handle +** change counter (returned by subsequent calls to sqlite3_changes()) +** before it is reset. This is used by trigger programs. +*/ +case OP_ResetCount: { /* no-push */ + if( pOp->p1 ){ + sqlite3VdbeSetChanges(db, p->nChange); + } + p->nChange = 0; + break; +} + +/* Opcode: RowData P1 * * +** +** Push onto the stack the complete row data for cursor P1. +** There is no interpretation of the data. It is just copied +** onto the stack exactly as it is found in the database file. +** +** If the cursor is not pointing to a valid row, a NULL is pushed +** onto the stack. +*/ +/* Opcode: RowKey P1 * * +** +** Push onto the stack the complete row key for cursor P1. +** There is no interpretation of the key. It is just copied +** onto the stack exactly as it is found in the database file. +** +** If the cursor is not pointing to a valid row, a NULL is pushed +** onto the stack. +*/ +case OP_RowKey: +case OP_RowData: { + int i = pOp->p1; + Cursor *pC; + u32 n; + + /* Note that RowKey and RowData are really exactly the same instruction */ + pTos++; + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC->isTable || pOp->opcode==OP_RowKey ); + assert( pC->isIndex || pOp->opcode==OP_RowData ); + assert( pC!=0 ); + if( pC->nullRow ){ + pTos->flags = MEM_Null; + }else if( pC->pCursor!=0 ){ + BtCursor *pCrsr = pC->pCursor; + rc = sqlite3VdbeCursorMoveto(pC); + if( rc ) goto abort_due_to_error; + if( pC->nullRow ){ + pTos->flags = MEM_Null; + break; + }else if( pC->isIndex ){ + i64 n64; + assert( !pC->isTable ); + sqlite3BtreeKeySize(pCrsr, &n64); + n = n64; + }else{ + sqlite3BtreeDataSize(pCrsr, &n); + } + pTos->n = n; + if( n<=NBFS ){ + pTos->flags = MEM_Blob | MEM_Short; + pTos->z = pTos->zShort; + }else{ + char *z = sqliteMallocRaw( n ); + if( z==0 ) goto no_mem; + pTos->flags = MEM_Blob | MEM_Dyn; + pTos->xDel = 0; + pTos->z = z; + } + if( pC->isIndex ){ + sqlite3BtreeKey(pCrsr, 0, n, pTos->z); + }else{ + sqlite3BtreeData(pCrsr, 0, n, pTos->z); + } +#ifndef SQLITE_OMIT_TRIGGER + }else if( pC->pseudoTable ){ + pTos->n = pC->nData; + pTos->z = pC->pData; + pTos->flags = MEM_Blob|MEM_Ephem; +#endif + }else{ + pTos->flags = MEM_Null; + } + pTos->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ + break; +} + +/* Opcode: Rowid P1 * * +** +** Push onto the stack an integer which is the key of the table entry that +** P1 is currently point to. +*/ +case OP_Rowid: { + int i = pOp->p1; + Cursor *pC; + i64 v; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + rc = sqlite3VdbeCursorMoveto(pC); + if( rc ) goto abort_due_to_error; + pTos++; + if( pC->rowidIsValid ){ + v = pC->lastRowid; + }else if( pC->pseudoTable ){ + v = keyToInt(pC->iKey); + }else if( pC->nullRow || pC->pCursor==0 ){ + pTos->flags = MEM_Null; + break; + }else{ + assert( pC->pCursor!=0 ); + sqlite3BtreeKeySize(pC->pCursor, &v); + v = keyToInt(v); + } + pTos->i = v; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: NullRow P1 * * +** +** Move the cursor P1 to a null row. Any OP_Column operations +** that occur while the cursor is on the null row will always push +** a NULL onto the stack. +*/ +case OP_NullRow: { /* no-push */ + int i = pOp->p1; + Cursor *pC; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + pC->nullRow = 1; + pC->rowidIsValid = 0; + break; +} + +/* Opcode: Last P1 P2 * +** +** The next use of the Rowid or Column or Next instruction for P1 +** will refer to the last entry in the database table or index. +** If the table or index is empty and P2>0, then jump immediately to P2. +** If P2 is 0 or if the table or index is not empty, fall through +** to the following instruction. +*/ +case OP_Last: { /* no-push */ + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + if( (pCrsr = pC->pCursor)!=0 ){ + int res; + rc = sqlite3BtreeLast(pCrsr, &res); + pC->nullRow = res; + pC->deferredMoveto = 0; + pC->cacheValid = 0; + if( res && pOp->p2>0 ){ + pc = pOp->p2 - 1; + } + }else{ + pC->nullRow = 0; + } + break; +} + + +/* Opcode: Sort P1 P2 * +** +** This opcode does exactly the same thing as OP_Rewind except that +** it increments an undocumented global variable used for testing. +** +** Sorting is accomplished by writing records into a sorting index, +** then rewinding that index and playing it back from beginning to +** end. We use the OP_Sort opcode instead of OP_Rewind to do the +** rewinding so that the global variable will be incremented and +** regression tests can determine whether or not the optimizer is +** correctly optimizing out sorts. +*/ +case OP_Sort: { /* no-push */ + sqlite3_sort_count++; + sqlite3_search_count--; + /* Fall through into OP_Rewind */ +} +/* Opcode: Rewind P1 P2 * +** +** The next use of the Rowid or Column or Next instruction for P1 +** will refer to the first entry in the database table or index. +** If the table or index is empty and P2>0, then jump immediately to P2. +** If P2 is 0 or if the table or index is not empty, fall through +** to the following instruction. +*/ +case OP_Rewind: { /* no-push */ + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + int res; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + if( (pCrsr = pC->pCursor)!=0 ){ + rc = sqlite3BtreeFirst(pCrsr, &res); + pC->atFirst = res==0; + pC->deferredMoveto = 0; + pC->cacheValid = 0; + }else{ + res = 1; + } + pC->nullRow = res; + if( res && pOp->p2>0 ){ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: Next P1 P2 * +** +** Advance cursor P1 so that it points to the next key/data pair in its +** table or index. If there are no more key/value pairs then fall through +** to the following instruction. But if the cursor advance was successful, +** jump immediately to P2. +** +** See also: Prev +*/ +/* Opcode: Prev P1 P2 * +** +** Back up cursor P1 so that it points to the previous key/data pair in its +** table or index. If there is no previous key/value pairs then fall through +** to the following instruction. But if the cursor backup was successful, +** jump immediately to P2. +*/ +case OP_Prev: /* no-push */ +case OP_Next: { /* no-push */ + Cursor *pC; + BtCursor *pCrsr; + + CHECK_FOR_INTERRUPT; + assert( pOp->p1>=0 && pOp->p1<p->nCursor ); + pC = p->apCsr[pOp->p1]; + assert( pC!=0 ); + if( (pCrsr = pC->pCursor)!=0 ){ + int res; + if( pC->nullRow ){ + res = 1; + }else{ + assert( pC->deferredMoveto==0 ); + rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) : + sqlite3BtreePrevious(pCrsr, &res); + pC->nullRow = res; + pC->cacheValid = 0; + } + if( res==0 ){ + pc = pOp->p2 - 1; + sqlite3_search_count++; + } + }else{ + pC->nullRow = 1; + } + pC->rowidIsValid = 0; + break; +} + +/* Opcode: IdxInsert P1 * * +** +** The top of the stack holds a SQL index key made using the +** MakeIdxKey instruction. This opcode writes that key into the +** index P1. Data for the entry is nil. +** +** This instruction only works for indices. The equivalent instruction +** for tables is OP_Insert. +*/ +case OP_IdxInsert: { /* no-push */ + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + assert( pTos->flags & MEM_Blob ); + assert( pOp->p2==0 ); + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + int nKey = pTos->n; + const char *zKey = pTos->z; + assert( pC->isTable==0 ); + rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0); + assert( pC->deferredMoveto==0 ); + pC->cacheValid = 0; + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: IdxDelete P1 * * +** +** The top of the stack is an index key built using the MakeIdxKey opcode. +** This opcode removes that entry from the index. +*/ +case OP_IdxDelete: { /* no-push */ + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + assert( pTos>=p->aStack ); + assert( pTos->flags & MEM_Blob ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + int rx, res; + rx = sqlite3BtreeMoveto(pCrsr, pTos->z, pTos->n, &res); + if( rx==SQLITE_OK && res==0 ){ + rc = sqlite3BtreeDelete(pCrsr); + } + assert( pC->deferredMoveto==0 ); + pC->cacheValid = 0; + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: IdxRowid P1 * * +** +** Push onto the stack an integer which is the last entry in the record at +** the end of the index key pointed to by cursor P1. This integer should be +** the rowid of the table entry to which this index entry points. +** +** See also: Rowid, MakeIdxKey. +*/ +case OP_IdxRowid: { + int i = pOp->p1; + BtCursor *pCrsr; + Cursor *pC; + + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + pTos++; + pTos->flags = MEM_Null; + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + i64 rowid; + + assert( pC->deferredMoveto==0 ); + assert( pC->isTable==0 ); + if( pC->nullRow ){ + pTos->flags = MEM_Null; + }else{ + rc = sqlite3VdbeIdxRowid(pCrsr, &rowid); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + pTos->flags = MEM_Int; + pTos->i = rowid; + } + } + break; +} + +/* Opcode: IdxGT P1 P2 * +** +** The top of the stack is an index entry that omits the ROWID. Compare +** the top of stack against the index that P1 is currently pointing to. +** Ignore the ROWID on the P1 index. +** +** The top of the stack might have fewer columns that P1. +** +** If the P1 index entry is greater than the top of the stack +** then jump to P2. Otherwise fall through to the next instruction. +** In either case, the stack is popped once. +*/ +/* Opcode: IdxGE P1 P2 P3 +** +** The top of the stack is an index entry that omits the ROWID. Compare +** the top of stack against the index that P1 is currently pointing to. +** Ignore the ROWID on the P1 index. +** +** If the P1 index entry is greater than or equal to the top of the stack +** then jump to P2. Otherwise fall through to the next instruction. +** In either case, the stack is popped once. +** +** If P3 is the "+" string (or any other non-NULL string) then the +** index taken from the top of the stack is temporarily increased by +** an epsilon prior to the comparison. This make the opcode work +** like IdxGT except that if the key from the stack is a prefix of +** the key in the cursor, the result is false whereas it would be +** true with IdxGT. +*/ +/* Opcode: IdxLT P1 P2 P3 +** +** The top of the stack is an index entry that omits the ROWID. Compare +** the top of stack against the index that P1 is currently pointing to. +** Ignore the ROWID on the P1 index. +** +** If the P1 index entry is less than the top of the stack +** then jump to P2. Otherwise fall through to the next instruction. +** In either case, the stack is popped once. +** +** If P3 is the "+" string (or any other non-NULL string) then the +** index taken from the top of the stack is temporarily increased by +** an epsilon prior to the comparison. This makes the opcode work +** like IdxLE. +*/ +case OP_IdxLT: /* no-push */ +case OP_IdxGT: /* no-push */ +case OP_IdxGE: { /* no-push */ + int i= pOp->p1; + Cursor *pC; + + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + assert( pTos>=p->aStack ); + if( (pC = p->apCsr[i])->pCursor!=0 ){ + int res, rc; + + assert( pTos->flags & MEM_Blob ); /* Created using OP_Make*Key */ + Stringify(pTos, db->enc); + assert( pC->deferredMoveto==0 ); + *pC->pIncrKey = pOp->p3!=0; + assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT ); + rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, pTos->z, &res); + *pC->pIncrKey = 0; + if( rc!=SQLITE_OK ){ + break; + } + if( pOp->opcode==OP_IdxLT ){ + res = -res; + }else if( pOp->opcode==OP_IdxGE ){ + res++; + } + if( res>0 ){ + pc = pOp->p2 - 1 ; + } + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: IdxIsNull P1 P2 * +** +** The top of the stack contains an index entry such as might be generated +** by the MakeIdxKey opcode. This routine looks at the first P1 fields of +** that key. If any of the first P1 fields are NULL, then a jump is made +** to address P2. Otherwise we fall straight through. +** +** The index entry is always popped from the stack. +*/ +case OP_IdxIsNull: { /* no-push */ + int i = pOp->p1; + int k, n; + const char *z; + u32 serial_type; + + assert( pTos>=p->aStack ); + assert( pTos->flags & MEM_Blob ); + z = pTos->z; + n = pTos->n; + k = sqlite3GetVarint32(z, &serial_type); + for(; k<n && i>0; i--){ + k += sqlite3GetVarint32(&z[k], &serial_type); + if( serial_type==0 ){ /* Serial type 0 is a NULL */ + pc = pOp->p2-1; + break; + } + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: Destroy P1 P2 * +** +** Delete an entire database table or index whose root page in the database +** file is given by P1. +** +** The table being destroyed is in the main database file if P2==0. If +** P2==1 then the table to be clear is in the auxiliary database file +** that is used to store tables create using CREATE TEMPORARY TABLE. +** +** If AUTOVACUUM is enabled then it is possible that another root page +** might be moved into the newly deleted root page in order to keep all +** root pages contiguous at the beginning of the database. The former +** value of the root page that moved - its value before the move occurred - +** is pushed onto the stack. If no page movement was required (because +** the table being dropped was already the last one in the database) then +** a zero is pushed onto the stack. If AUTOVACUUM is disabled +** then a zero is pushed onto the stack. +** +** See also: Clear +*/ +case OP_Destroy: { + int iMoved; + if( db->activeVdbeCnt>1 ){ + rc = SQLITE_LOCKED; + }else{ + assert( db->activeVdbeCnt==1 ); + rc = sqlite3BtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1, &iMoved); + pTos++; + pTos->flags = MEM_Int; + pTos->i = iMoved; + #ifndef SQLITE_OMIT_AUTOVACUUM + if( rc==SQLITE_OK && iMoved!=0 ){ + sqlite3RootPageMoved(&db->aDb[pOp->p2], iMoved, pOp->p1); + } + #endif + } + break; +} + +/* Opcode: Clear P1 P2 * +** +** Delete all contents of the database table or index whose root page +** in the database file is given by P1. But, unlike Destroy, do not +** remove the table or index from the database file. +** +** The table being clear is in the main database file if P2==0. If +** P2==1 then the table to be clear is in the auxiliary database file +** that is used to store tables create using CREATE TEMPORARY TABLE. +** +** See also: Destroy +*/ +case OP_Clear: { /* no-push */ + rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1); + break; +} + +/* Opcode: CreateTable P1 * * +** +** Allocate a new table in the main database file if P2==0 or in the +** auxiliary database file if P2==1. Push the page number +** for the root page of the new table onto the stack. +** +** The difference between a table and an index is this: A table must +** have a 4-byte integer key and can have arbitrary data. An index +** has an arbitrary key but no data. +** +** See also: CreateIndex +*/ +/* Opcode: CreateIndex P1 * * +** +** Allocate a new index in the main database file if P2==0 or in the +** auxiliary database file if P2==1. Push the page number of the +** root page of the new index onto the stack. +** +** See documentation on OP_CreateTable for additional information. +*/ +case OP_CreateIndex: +case OP_CreateTable: { + int pgno; + int flags; + Db *pDb; + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + pDb = &db->aDb[pOp->p1]; + assert( pDb->pBt!=0 ); + if( pOp->opcode==OP_CreateTable ){ + /* flags = BTREE_INTKEY; */ + flags = BTREE_LEAFDATA|BTREE_INTKEY; + }else{ + flags = BTREE_ZERODATA; + } + rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); + pTos++; + if( rc==SQLITE_OK ){ + pTos->i = pgno; + pTos->flags = MEM_Int; + }else{ + pTos->flags = MEM_Null; + } + break; +} + +/* Opcode: ParseSchema P1 * P3 +** +** Read and parse all entries from the SQLITE_MASTER table of database P1 +** that match the WHERE clause P3. +** +** This opcode invokes the parser to create a new virtual machine, +** then runs the new virtual machine. It is thus a reentrant opcode. +*/ +case OP_ParseSchema: { /* no-push */ + char *zSql; + int iDb = pOp->p1; + const char *zMaster; + InitData initData; + + assert( iDb>=0 && iDb<db->nDb ); + if( !DbHasProperty(db, iDb, DB_SchemaLoaded) ) break; + zMaster = SCHEMA_TABLE(iDb); + initData.db = db; + initData.pzErrMsg = &p->zErrMsg; + zSql = sqlite3MPrintf( + "SELECT name, rootpage, sql, %d FROM '%q'.%s WHERE %s", + pOp->p1, db->aDb[iDb].zName, zMaster, pOp->p3); + if( zSql==0 ) goto no_mem; + sqlite3SafetyOff(db); + assert( db->init.busy==0 ); + db->init.busy = 1; + rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); + db->init.busy = 0; + sqlite3SafetyOn(db); + sqliteFree(zSql); + break; +} + +#ifndef SQLITE_OMIT_ANALYZE +/* Opcode: LoadAnalysis P1 * * +** +** Read the sqlite_stat1 table for database P1 and load the content +** of that table into the internal index hash table. This will cause +** the analysis to be used when preparing all subsequent queries. +*/ +case OP_LoadAnalysis: { /* no-push */ + int iDb = pOp->p1; + assert( iDb>=0 && iDb<db->nDb ); + sqlite3AnalysisLoad(db, iDb); + break; +} +#endif /* SQLITE_OMIT_ANALYZE */ + +/* Opcode: DropTable P1 * P3 +** +** Remove the internal (in-memory) data structures that describe +** the table named P3 in database P1. This is called after a table +** is dropped in order to keep the internal representation of the +** schema consistent with what is on disk. +*/ +case OP_DropTable: { /* no-push */ + sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3); + break; +} + +/* Opcode: DropIndex P1 * P3 +** +** Remove the internal (in-memory) data structures that describe +** the index named P3 in database P1. This is called after an index +** is dropped in order to keep the internal representation of the +** schema consistent with what is on disk. +*/ +case OP_DropIndex: { /* no-push */ + sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3); + break; +} + +/* Opcode: DropTrigger P1 * P3 +** +** Remove the internal (in-memory) data structures that describe +** the trigger named P3 in database P1. This is called after a trigger +** is dropped in order to keep the internal representation of the +** schema consistent with what is on disk. +*/ +case OP_DropTrigger: { /* no-push */ + sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3); + break; +} + + +#ifndef SQLITE_OMIT_INTEGRITY_CHECK +/* Opcode: IntegrityCk * P2 * +** +** Do an analysis of the currently open database. Push onto the +** stack the text of an error message describing any problems. +** If there are no errors, push a "ok" onto the stack. +** +** The root page numbers of all tables in the database are integer +** values on the stack. This opcode pulls as many integers as it +** can off of the stack and uses those numbers as the root pages. +** +** If P2 is not zero, the check is done on the auxiliary database +** file, not the main database file. +** +** This opcode is used for testing purposes only. +*/ +case OP_IntegrityCk: { + int nRoot; + int *aRoot; + int j; + char *z; + + for(nRoot=0; &pTos[-nRoot]>=p->aStack; nRoot++){ + if( (pTos[-nRoot].flags & MEM_Int)==0 ) break; + } + assert( nRoot>0 ); + aRoot = sqliteMallocRaw( sizeof(int*)*(nRoot+1) ); + if( aRoot==0 ) goto no_mem; + for(j=0; j<nRoot; j++){ + Mem *pMem = &pTos[-j]; + aRoot[j] = pMem->i; + } + aRoot[j] = 0; + popStack(&pTos, nRoot); + pTos++; + z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot); + if( z==0 || z[0]==0 ){ + if( z ) sqliteFree(z); + pTos->z = "ok"; + pTos->n = 2; + pTos->flags = MEM_Str | MEM_Static | MEM_Term; + }else{ + pTos->z = z; + pTos->n = strlen(z); + pTos->flags = MEM_Str | MEM_Dyn | MEM_Term; + pTos->xDel = 0; + } + pTos->enc = SQLITE_UTF8; + sqlite3VdbeChangeEncoding(pTos, db->enc); + sqliteFree(aRoot); + break; +} +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ + +/* Opcode: FifoWrite * * * +** +** Write the integer on the top of the stack +** into the Fifo. +*/ +case OP_FifoWrite: { /* no-push */ + assert( pTos>=p->aStack ); + Integerify(pTos); + sqlite3VdbeFifoPush(&p->sFifo, pTos->i); + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + break; +} + +/* Opcode: FifoRead * P2 * +** +** Attempt to read a single integer from the Fifo +** and push it onto the stack. If the Fifo is empty +** push nothing but instead jump to P2. +*/ +case OP_FifoRead: { + i64 v; + CHECK_FOR_INTERRUPT; + if( sqlite3VdbeFifoPop(&p->sFifo, &v)==SQLITE_DONE ){ + pc = pOp->p2 - 1; + }else{ + pTos++; + pTos->i = v; + pTos->flags = MEM_Int; + } + break; +} + +#ifndef SQLITE_OMIT_TRIGGER +/* Opcode: ContextPush * * * +** +** Save the current Vdbe context such that it can be restored by a ContextPop +** opcode. The context stores the last insert row id, the last statement change +** count, and the current statement change count. +*/ +case OP_ContextPush: { /* no-push */ + int i = p->contextStackTop++; + Context *pContext; + + assert( i>=0 ); + /* FIX ME: This should be allocated as part of the vdbe at compile-time */ + if( i>=p->contextStackDepth ){ + p->contextStackDepth = i+1; + sqlite3ReallocOrFree((void**)&p->contextStack, sizeof(Context)*(i+1)); + if( p->contextStack==0 ) goto no_mem; + } + pContext = &p->contextStack[i]; + pContext->lastRowid = db->lastRowid; + pContext->nChange = p->nChange; + pContext->sFifo = p->sFifo; + sqlite3VdbeFifoInit(&p->sFifo); + break; +} + +/* Opcode: ContextPop * * * +** +** Restore the Vdbe context to the state it was in when contextPush was last +** executed. The context stores the last insert row id, the last statement +** change count, and the current statement change count. +*/ +case OP_ContextPop: { /* no-push */ + Context *pContext = &p->contextStack[--p->contextStackTop]; + assert( p->contextStackTop>=0 ); + db->lastRowid = pContext->lastRowid; + p->nChange = pContext->nChange; + sqlite3VdbeFifoClear(&p->sFifo); + p->sFifo = pContext->sFifo; + break; +} +#endif /* #ifndef SQLITE_OMIT_TRIGGER */ + +/* Opcode: MemStore P1 P2 * +** +** Write the top of the stack into memory location P1. +** P1 should be a small integer since space is allocated +** for all memory locations between 0 and P1 inclusive. +** +** After the data is stored in the memory location, the +** stack is popped once if P2 is 1. If P2 is zero, then +** the original data remains on the stack. +*/ +case OP_MemStore: { /* no-push */ + assert( pTos>=p->aStack ); + assert( pOp->p1>=0 && pOp->p1<p->nMem ); + rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos); + pTos--; + + /* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will + ** restore the top of the stack to its original value. + */ + if( pOp->p2 ){ + break; + } +} +/* Opcode: MemLoad P1 * * +** +** Push a copy of the value in memory location P1 onto the stack. +** +** If the value is a string, then the value pushed is a pointer to +** the string that is stored in the memory location. If the memory +** location is subsequently changed (using OP_MemStore) then the +** value pushed onto the stack will change too. +*/ +case OP_MemLoad: { + int i = pOp->p1; + assert( i>=0 && i<p->nMem ); + pTos++; + sqlite3VdbeMemShallowCopy(pTos, &p->aMem[i], MEM_Ephem); + break; +} + +#ifndef SQLITE_OMIT_AUTOINCREMENT +/* Opcode: MemMax P1 * * +** +** Set the value of memory cell P1 to the maximum of its current value +** and the value on the top of the stack. The stack is unchanged. +** +** This instruction throws an error if the memory cell is not initially +** an integer. +*/ +case OP_MemMax: { /* no-push */ + int i = pOp->p1; + Mem *pMem; + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nMem ); + pMem = &p->aMem[i]; + Integerify(pMem); + Integerify(pTos); + if( pMem->i<pTos->i){ + pMem->i = pTos->i; + } + break; +} +#endif /* SQLITE_OMIT_AUTOINCREMENT */ + +/* Opcode: MemIncr P1 P2 * +** +** Increment the integer valued memory cell P1 by 1. If P2 is not zero +** and the result after the increment is exactly 1, then jump +** to P2. +** +** This instruction throws an error if the memory cell is not initially +** an integer. +*/ +case OP_MemIncr: { /* no-push */ + int i = pOp->p1; + Mem *pMem; + assert( i>=0 && i<p->nMem ); + pMem = &p->aMem[i]; + assert( pMem->flags==MEM_Int ); + pMem->i++; + if( pOp->p2>0 && pMem->i==1 ){ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: IfMemPos P1 P2 * +** +** If the value of memory cell P1 is 1 or greater, jump to P2. This +** opcode assumes that memory cell P1 holds an integer value. +*/ +case OP_IfMemPos: { /* no-push */ + int i = pOp->p1; + Mem *pMem; + assert( i>=0 && i<p->nMem ); + pMem = &p->aMem[i]; + assert( pMem->flags==MEM_Int ); + if( pMem->i>0 ){ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: MemNull P1 * * +** +** Store a NULL in memory cell P1 +*/ +case OP_MemNull: { + assert( pOp->p1>=0 && pOp->p1<p->nMem ); + sqlite3VdbeMemSetNull(&p->aMem[pOp->p1]); + break; +} + +/* Opcode: MemInt P1 P2 * +** +** Store the integer value P1 in memory cell P2. +*/ +case OP_MemInt: { + assert( pOp->p2>=0 && pOp->p2<p->nMem ); + sqlite3VdbeMemSetInt64(&p->aMem[pOp->p2], pOp->p1); + break; +} + +/* Opcode: MemMove P1 P2 * +** +** Move the content of memory cell P2 over to memory cell P1. +** Any prior content of P1 is erased. Memory cell P2 is left +** containing a NULL. +*/ +case OP_MemMove: { + assert( pOp->p1>=0 && pOp->p1<p->nMem ); + assert( pOp->p2>=0 && pOp->p2<p->nMem ); + rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], &p->aMem[pOp->p2]); + break; +} + +/* Opcode: AggStep P1 P2 P3 +** +** Execute the step function for an aggregate. The +** function has P2 arguments. P3 is a pointer to the FuncDef +** structure that specifies the function. Use memory location +** P1 as the accumulator. +** +** The P2 arguments are popped from the stack. +*/ +case OP_AggStep: { /* no-push */ + int n = pOp->p2; + int i; + Mem *pMem, *pRec; + sqlite3_context ctx; + sqlite3_value **apVal; + + assert( n>=0 ); + pRec = &pTos[1-n]; + assert( pRec>=p->aStack ); + apVal = p->apArg; + assert( apVal || n==0 ); + for(i=0; i<n; i++, pRec++){ + apVal[i] = pRec; + storeTypeInfo(pRec, db->enc); + } + ctx.pFunc = (FuncDef*)pOp->p3; + assert( pOp->p1>=0 && pOp->p1<p->nMem ); + ctx.pMem = pMem = &p->aMem[pOp->p1]; + pMem->n++; + ctx.isError = 0; + ctx.pColl = 0; + if( ctx.pFunc->needCollSeq ){ + assert( pOp>p->aOp ); + assert( pOp[-1].p3type==P3_COLLSEQ ); + assert( pOp[-1].opcode==OP_CollSeq ); + ctx.pColl = (CollSeq *)pOp[-1].p3; + } + (ctx.pFunc->xStep)(&ctx, n, apVal); + popStack(&pTos, n); + if( ctx.isError ){ + rc = SQLITE_ERROR; + } + break; +} + +/* Opcode: AggFinal P1 P2 P3 +** +** Execute the finalizer function for an aggregate. P1 is +** the memory location that is the accumulator for the aggregate. +** +** P2 is the number of arguments that the step function takes and +** P3 is a pointer to the FuncDef for this function. The P2 +** argument is not used by this opcode. It is only there to disambiguate +** functions that can take varying numbers of arguments. The +** P3 argument is only needed for the degenerate case where +** the step function was not previously called. +*/ +case OP_AggFinal: { /* no-push */ + Mem *pMem; + assert( pOp->p1>=0 && pOp->p1<p->nMem ); + pMem = &p->aMem[pOp->p1]; + assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); + sqlite3VdbeMemFinalize(pMem, (FuncDef*)pOp->p3); + break; +} + + +/* Opcode: Vacuum * * * +** +** Vacuum the entire database. This opcode will cause other virtual +** machines to be created and run. It may not be called from within +** a transaction. +*/ +case OP_Vacuum: { /* no-push */ + if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; + rc = sqlite3RunVacuum(&p->zErrMsg, db); + if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; + break; +} + +/* Opcode: Expire P1 * * +** +** Cause precompiled statements to become expired. An expired statement +** fails with an error code of SQLITE_SCHEMA if it is ever executed +** (via sqlite3_step()). +** +** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, +** then only the currently executing statement is affected. +*/ +case OP_Expire: { /* no-push */ + if( !pOp->p1 ){ + sqlite3ExpirePreparedStatements(db); + }else{ + p->expired = 1; + } + break; +} + + +/* An other opcode is illegal... +*/ +default: { + assert( 0 ); + break; +} + +/***************************************************************************** +** The cases of the switch statement above this line should all be indented +** by 6 spaces. But the left-most 6 spaces have been removed to improve the +** readability. From this point on down, the normal indentation rules are +** restored. +*****************************************************************************/ + } + + /* Make sure the stack limit was not exceeded */ + assert( pTos<=pStackLimit ); + +#ifdef VDBE_PROFILE + { + long long elapse = hwtime() - start; + pOp->cycles += elapse; + pOp->cnt++; +#if 0 + fprintf(stdout, "%10lld ", elapse); + sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]); +#endif + } +#endif + + /* The following code adds nothing to the actual functionality + ** of the program. It is only here for testing and debugging. + ** On the other hand, it does burn CPU cycles every time through + ** the evaluator loop. So we can leave it out when NDEBUG is defined. + */ +#ifndef NDEBUG + /* Sanity checking on the top element of the stack */ + if( pTos>=p->aStack ){ + sqlite3VdbeMemSanity(pTos, db->enc); + } + assert( pc>=-1 && pc<p->nOp ); +#ifdef SQLITE_DEBUG + /* Code for tracing the vdbe stack. */ + if( p->trace && pTos>=p->aStack ){ + int i; + fprintf(p->trace, "Stack:"); + for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){ + if( pTos[i].flags & MEM_Null ){ + fprintf(p->trace, " NULL"); + }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ + fprintf(p->trace, " si:%lld", pTos[i].i); + }else if( pTos[i].flags & MEM_Int ){ + fprintf(p->trace, " i:%lld", pTos[i].i); + }else if( pTos[i].flags & MEM_Real ){ + fprintf(p->trace, " r:%g", pTos[i].r); + }else{ + char zBuf[100]; + sqlite3VdbeMemPrettyPrint(&pTos[i], zBuf, 100); + fprintf(p->trace, " "); + fprintf(p->trace, "%s", zBuf); + } + } + if( rc!=0 ) fprintf(p->trace," rc=%d",rc); + fprintf(p->trace,"\n"); + } +#endif /* SQLITE_DEBUG */ +#endif /* NDEBUG */ + } /* The end of the for(;;) loop the loops through opcodes */ + + /* If we reach this point, it means that execution is finished. + */ +vdbe_halt: + if( rc ){ + p->rc = rc; + rc = SQLITE_ERROR; + }else{ + rc = SQLITE_DONE; + } + sqlite3VdbeHalt(p); + p->pTos = pTos; + return rc; + + /* Jump to here if a malloc() fails. It's hard to get a malloc() + ** to fail on a modern VM computer, so this code is untested. + */ +no_mem: + sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0); + rc = SQLITE_NOMEM; + goto vdbe_halt; + + /* Jump to here for an SQLITE_MISUSE error. + */ +abort_due_to_misuse: + rc = SQLITE_MISUSE; + /* Fall thru into abort_due_to_error */ + + /* Jump to here for any other kind of fatal error. The "rc" variable + ** should hold the error number. + */ +abort_due_to_error: + if( p->zErrMsg==0 ){ + if( sqlite3_malloc_failed ) rc = SQLITE_NOMEM; + sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0); + } + goto vdbe_halt; + + /* Jump to here if the sqlite3_interrupt() API sets the interrupt + ** flag. + */ +abort_due_to_interrupt: + assert( db->flags & SQLITE_Interrupt ); + db->flags &= ~SQLITE_Interrupt; + if( db->magic!=SQLITE_MAGIC_BUSY ){ + rc = SQLITE_MISUSE; + }else{ + rc = SQLITE_INTERRUPT; + } + p->rc = rc; + sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0); + goto vdbe_halt; +} |