summaryrefslogtreecommitdiffstats
path: root/kexi/3rdparty/kexisql3/src/vdbemem.c
blob: a7ecce53fb1b1eeb1c5e93031a77e49cdd6ce7ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
/*
** 2004 May 26
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code use to manipulate "Mem" structure.  A "Mem"
** stores a single value in the VDBE.  Mem is an opaque structure visible
** only within the VDBE.  Interface routines refer to a Mem using the
** name sqlite_value
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
** If pMem is an object with a valid string representation, this routine
** ensures the internal encoding for the string representation is
** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
**
** If pMem is not a string object, or the encoding of the string
** representation is already stored using the requested encoding, then this
** routine is a no-op.
**
** SQLITE_OK is returned if the conversion is successful (or not required).
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
** between formats.
*/
int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
  int rc;
  if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
    return SQLITE_OK;
  }
#ifdef SQLITE_OMIT_UTF16
  return SQLITE_ERROR;
#else
  rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);
  if( rc==SQLITE_NOMEM ){
    sqlite3VdbeMemRelease(pMem);
    pMem->flags = MEM_Null;
    pMem->z = 0;
  }
  return rc;
#endif
}

/*
** Make the given Mem object MEM_Dyn.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemDynamicify(Mem *pMem){
  int n = pMem->n;
  u8 *z;
  if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){
    return SQLITE_OK;
  }
  assert( (pMem->flags & MEM_Dyn)==0 );
  assert( pMem->flags & (MEM_Str|MEM_Blob) );
  z = sqliteMallocRaw( n+2 );
  if( z==0 ){
    return SQLITE_NOMEM;
  }
  pMem->flags |= MEM_Dyn|MEM_Term;
  pMem->xDel = 0;
  memcpy(z, pMem->z, n );
  z[n] = 0;
  z[n+1] = 0;
  pMem->z = z;
  pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short);
  return SQLITE_OK;
}

/*
** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
** of the Mem.z[] array can be modified.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemMakeWriteable(Mem *pMem){
  int n;
  u8 *z;
  if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){
    return SQLITE_OK;
  }
  assert( (pMem->flags & MEM_Dyn)==0 );
  assert( pMem->flags & (MEM_Str|MEM_Blob) );
  if( (n = pMem->n)+2<sizeof(pMem->zShort) ){
    z = pMem->zShort;
    pMem->flags |= MEM_Short|MEM_Term;
  }else{
    z = sqliteMallocRaw( n+2 );
    if( z==0 ){
      return SQLITE_NOMEM;
    }
    pMem->flags |= MEM_Dyn|MEM_Term;
    pMem->xDel = 0;
  }
  memcpy(z, pMem->z, n );
  z[n] = 0;
  z[n+1] = 0;
  pMem->z = z;
  pMem->flags &= ~(MEM_Ephem|MEM_Static);
  return SQLITE_OK;
}

/*
** Make sure the given Mem is \u0000 terminated.
*/
int sqlite3VdbeMemNulTerminate(Mem *pMem){
  /* In SQLite, a string without a nul terminator occurs when a string
  ** is loaded from disk (in this case the memory management is ephemeral),
  ** or when it is supplied by the user as a bound variable or function
  ** return value. Therefore, the memory management of the string must be
  ** either ephemeral, static or controlled by a user-supplied destructor.
  */
  assert(                         
    !(pMem->flags&MEM_Str) ||                /* it's not a string, or      */
    (pMem->flags&MEM_Term) ||                /* it's nul term. already, or */
    (pMem->flags&(MEM_Ephem|MEM_Static)) ||  /* it's static or ephem, or   */
    (pMem->flags&MEM_Dyn && pMem->xDel)      /* external management        */
  );
  if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
    return SQLITE_OK;   /* Nothing to do */
  }

  if( pMem->flags & (MEM_Static|MEM_Ephem) ){
    return sqlite3VdbeMemMakeWriteable(pMem);
  }else{
    char *z = sqliteMalloc(pMem->n+2);
    if( !z ) return SQLITE_NOMEM;
    memcpy(z, pMem->z, pMem->n);
    z[pMem->n] = 0;
    z[pMem->n+1] = 0;
    pMem->xDel(pMem->z);
    pMem->xDel = 0;
    pMem->z = z;
  }
  return SQLITE_OK;
}

/*
** Add MEM_Str to the set of representations for the given Mem.  Numbers
** are converted using sqlite3_snprintf().  Converting a BLOB to a string
** is a no-op.
**
** Existing representations MEM_Int and MEM_Real are *not* tqinvalidated.
**
** A MEM_Null value will never be passed to this function. This function is
** used for converting values to text for returning to the user (i.e. via
** sqlite3_value_text()), or for ensuring that values to be used as btree
** keys are strings. In the former case a NULL pointer is returned the
** user and the later is an internal programming error.
*/
int sqlite3VdbeMemStringify(Mem *pMem, int enc){
  int rc = SQLITE_OK;
  int fg = pMem->flags;
  u8 *z = pMem->zShort;

  assert( !(fg&(MEM_Str|MEM_Blob)) );
  assert( fg&(MEM_Int|MEM_Real) );

  /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
  ** string representation of the value. Then, if the required encoding
  ** is UTF-16le or UTF-16be do a translation.
  ** 
  ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
  */
  if( fg & MEM_Real ){
    sqlite3_snprintf(NBFS, z, "%!.15g", pMem->r);
  }else{
    assert( fg & MEM_Int );
    sqlite3_snprintf(NBFS, z, "%lld", pMem->i);
  }
  pMem->n = strlen(z);
  pMem->z = z;
  pMem->enc = SQLITE_UTF8;
  pMem->flags |= MEM_Str | MEM_Short | MEM_Term;
  sqlite3VdbeChangeEncoding(pMem, enc);
  return rc;
}

/*
** Memory cell pMem contains the context of an aggregate function.
** This routine calls the finalize method for that function.  The
** result of the aggregate is stored back into pMem.
*/
void sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
  if( pFunc && pFunc->xFinalize ){
    sqlite3_context ctx;
    assert( (pMem->flags & MEM_Null)!=0 || pFunc==*(FuncDef**)&pMem->i );
    ctx.s.flags = MEM_Null;
    ctx.s.z = pMem->zShort;
    ctx.pMem = pMem;
    ctx.pFunc = pFunc;
    pFunc->xFinalize(&ctx);
    if( pMem->z && pMem->z!=pMem->zShort ){
      sqliteFree( pMem->z );
    }
    *pMem = ctx.s;
    if( pMem->flags & MEM_Short ){
      pMem->z = pMem->zShort;
    }
  }
}

/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and
** (Mem.type==SQLITE_TEXT).
*/
void sqlite3VdbeMemRelease(Mem *p){
  if( p->flags & (MEM_Dyn|MEM_Agg) ){
    if( p->xDel ){
      if( p->flags & MEM_Agg ){
        sqlite3VdbeMemFinalize(p, *(FuncDef**)&p->i);
        assert( (p->flags & MEM_Agg)==0 );
        sqlite3VdbeMemRelease(p);
      }else{
        p->xDel((void *)p->z);
      }
    }else{
      sqliteFree(p->z);
    }
    p->z = 0;
    p->xDel = 0;
  }
}

/*
** Return some kind of integer value which is the best we can do
** at representing the value that *pMem describes as an integer.
** If pMem is an integer, then the value is exact.  If pMem is
** a floating-point then the value returned is the integer part.
** If pMem is a string or blob, then we make an attempt to convert
** it into a integer and return that.  If pMem is NULL, return 0.
**
** If pMem is a string, its encoding might be changed.
*/
i64 sqlite3VdbeIntValue(Mem *pMem){
  int flags = pMem->flags;
  if( flags & MEM_Int ){
    return pMem->i;
  }else if( flags & MEM_Real ){
    return (i64)pMem->r;
  }else if( flags & (MEM_Str|MEM_Blob) ){
    i64 value;
    if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
       || sqlite3VdbeMemNulTerminate(pMem) ){
      return SQLITE_NOMEM;
    }
    assert( pMem->z );
    sqlite3atoi64(pMem->z, &value);
    return value;
  }else{
    return 0;
  }
}

/*
** Convert pMem to type integer.  Invalidate any prior representations.
*/
int sqlite3VdbeMemIntegerify(Mem *pMem){
  pMem->i = sqlite3VdbeIntValue(pMem);
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Int;
  return SQLITE_OK;
}

/*
** Return the best representation of pMem that we can get into a
** double.  If pMem is already a double or an integer, return its
** value.  If it is a string or blob, try to convert it to a double.
** If it is a NULL, return 0.0.
*/
double sqlite3VdbeRealValue(Mem *pMem){
  if( pMem->flags & MEM_Real ){
    return pMem->r;
  }else if( pMem->flags & MEM_Int ){
    return (double)pMem->i;
  }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
    double val = 0.0;
    if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
       || sqlite3VdbeMemNulTerminate(pMem) ){
      return SQLITE_NOMEM;
    }
    assert( pMem->z );
    sqlite3AtoF(pMem->z, &val);
    return val;
  }else{
    return 0.0;
  }
}

/*
** Convert pMem so that it is of type MEM_Real.  Invalidate any
** prior representations.
*/
int sqlite3VdbeMemRealify(Mem *pMem){
  pMem->r = sqlite3VdbeRealValue(pMem);
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Real;
  return SQLITE_OK;
}

/*
** Delete any previous value and set the value stored in *pMem to NULL.
*/
void sqlite3VdbeMemSetNull(Mem *pMem){
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Null;
  pMem->type = SQLITE_NULL;
  pMem->n = 0;
}

/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type INTEGER.
*/
void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
  sqlite3VdbeMemRelease(pMem);
  pMem->i = val;
  pMem->flags = MEM_Int;
  pMem->type = SQLITE_INTEGER;
}

/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type REAL.
*/
void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
  sqlite3VdbeMemRelease(pMem);
  pMem->r = val;
  pMem->flags = MEM_Real;
  pMem->type = SQLITE_FLOAT;
}

/*
** Make an shallow copy of pFrom into pTo.  Prior contents of
** pTo are overwritten.  The pFrom->z field is not duplicated.  If
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
** and flags gets srcType (either MEM_Ephem or MEM_Static).
*/
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
  memcpy(pTo, pFrom, sizeof(*pFrom)-sizeof(pFrom->zShort));
  pTo->xDel = 0;
  if( pTo->flags & (MEM_Str|MEM_Blob) ){
    pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short|MEM_Ephem);
    assert( srcType==MEM_Ephem || srcType==MEM_Static );
    pTo->flags |= srcType;
  }
}

/*
** Make a full copy of pFrom into pTo.  Prior contents of pTo are
** freed before the copy is made.
*/
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
  int rc;
  if( pTo->flags & MEM_Dyn ){
    sqlite3VdbeMemRelease(pTo);
  }
  sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem);
  if( pTo->flags & MEM_Ephem ){
    rc = sqlite3VdbeMemMakeWriteable(pTo);
  }else{
    rc = SQLITE_OK;
  }
  return rc;
}

/*
** Transfer the contents of pFrom to pTo. Any existing value in pTo is
** freed. If pFrom contains ephemeral data, a copy is made.
**
** pFrom contains an SQL NULL when this routine returns.  SQLITE_NOMEM
** might be returned if pFrom held ephemeral data and we were unable
** to allocate enough space to make a copy.
*/
int sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
  int rc;
  if( pTo->flags & MEM_Dyn ){
    sqlite3VdbeMemRelease(pTo);
  }
  memcpy(pTo, pFrom, sizeof(Mem));
  if( pFrom->flags & MEM_Short ){
    pTo->z = pTo->zShort;
  }
  pFrom->flags = MEM_Null;
  pFrom->xDel = 0;
  if( pTo->flags & MEM_Ephem ){
    rc = sqlite3VdbeMemMakeWriteable(pTo);
  }else{
    rc = SQLITE_OK;
  }
  return rc;
}

/*
** Change the value of a Mem to be a string or a BLOB.
*/
int sqlite3VdbeMemSetStr(
  Mem *pMem,          /* Memory cell to set to string value */
  const char *z,      /* String pointer */
  int n,              /* Bytes in string, or negative */
  u8 enc,             /* Encoding of z.  0 for BLOBs */
  void (*xDel)(void*) /* Destructor function */
){
  sqlite3VdbeMemRelease(pMem);
  if( !z ){
    pMem->flags = MEM_Null;
    pMem->type = SQLITE_NULL;
    return SQLITE_OK;
  }

  pMem->z = (char *)z;
  if( xDel==SQLITE_STATIC ){
    pMem->flags = MEM_Static;
  }else if( xDel==SQLITE_TRANSIENT ){
    pMem->flags = MEM_Ephem;
  }else{
    pMem->flags = MEM_Dyn;
    pMem->xDel = xDel;
  }

  pMem->enc = enc;
  pMem->type = enc==0 ? SQLITE_BLOB : SQLITE_TEXT;
  pMem->n = n;

  assert( enc==0 || enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE 
      || enc==SQLITE_UTF16BE );
  switch( enc ){
    case 0:
      pMem->flags |= MEM_Blob;
      pMem->enc = SQLITE_UTF8;
      break;

    case SQLITE_UTF8:
      pMem->flags |= MEM_Str;
      if( n<0 ){
        pMem->n = strlen(z);
        pMem->flags |= MEM_Term;
      }
      break;

#ifndef SQLITE_OMIT_UTF16
    case SQLITE_UTF16LE:
    case SQLITE_UTF16BE:
      pMem->flags |= MEM_Str;
      if( pMem->n<0 ){
        pMem->n = sqlite3utf16ByteLen(pMem->z,-1);
        pMem->flags |= MEM_Term;
      }
      if( sqlite3VdbeMemHandleBom(pMem) ){
        return SQLITE_NOMEM;
      }
#endif /* SQLITE_OMIT_UTF16 */
  }
  if( pMem->flags&MEM_Ephem ){
    return sqlite3VdbeMemMakeWriteable(pMem);
  }
  return SQLITE_OK;
}

/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by the collating
** sequence pColl and finally blob's ordered by memcmp().
**
** Two NULL values are considered equal by this function.
*/
int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
  int rc;
  int f1, f2;
  int combined_flags;

  /* Interchange pMem1 and pMem2 if the collating sequence specifies
  ** DESC order.
  */
  f1 = pMem1->flags;
  f2 = pMem2->flags;
  combined_flags = f1|f2;
 
  /* If one value is NULL, it is less than the other. If both values
  ** are NULL, return 0.
  */
  if( combined_flags&MEM_Null ){
    return (f2&MEM_Null) - (f1&MEM_Null);
  }

  /* If one value is a number and the other is not, the number is less.
  ** If both are numbers, compare as reals if one is a real, or as integers
  ** if both values are integers.
  */
  if( combined_flags&(MEM_Int|MEM_Real) ){
    if( !(f1&(MEM_Int|MEM_Real)) ){
      return 1;
    }
    if( !(f2&(MEM_Int|MEM_Real)) ){
      return -1;
    }
    if( (f1 & f2 & MEM_Int)==0 ){
      double r1, r2;
      if( (f1&MEM_Real)==0 ){
        r1 = pMem1->i;
      }else{
        r1 = pMem1->r;
      }
      if( (f2&MEM_Real)==0 ){
        r2 = pMem2->i;
      }else{
        r2 = pMem2->r;
      }
      if( r1<r2 ) return -1;
      if( r1>r2 ) return 1;
      return 0;
    }else{
      assert( f1&MEM_Int );
      assert( f2&MEM_Int );
      if( pMem1->i < pMem2->i ) return -1;
      if( pMem1->i > pMem2->i ) return 1;
      return 0;
    }
  }

  /* If one value is a string and the other is a blob, the string is less.
  ** If both are strings, compare using the collating functions.
  */
  if( combined_flags&MEM_Str ){
    if( (f1 & MEM_Str)==0 ){
      return 1;
    }
    if( (f2 & MEM_Str)==0 ){
      return -1;
    }

    assert( pMem1->enc==pMem2->enc );
    assert( pMem1->enc==SQLITE_UTF8 || 
            pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );

    /* This assert may fail if the collation sequence is deleted after this
    ** vdbe program is compiled. The documentation defines this as an
    ** undefined condition. A crash is usual result.
    */
    assert( !pColl || pColl->xCmp );

    if( pColl ){
      if( pMem1->enc==pColl->enc ){
        return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
      }else{
        u8 origEnc = pMem1->enc;
        rc = pColl->xCmp(
          pColl->pUser,
          sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc),
          sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc),
          sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc),
          sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc)
        );
        sqlite3ValueBytes((sqlite3_value*)pMem1, origEnc);
        sqlite3ValueText((sqlite3_value*)pMem1, origEnc);
        sqlite3ValueBytes((sqlite3_value*)pMem2, origEnc);
        sqlite3ValueText((sqlite3_value*)pMem2, origEnc);
        return rc;
      }
    }
    /* If a NULL pointer was passed as the collate function, fall through
    ** to the blob case and use memcmp().  */
  }
 
  /* Both values must be blobs.  Compare using memcmp().  */
  rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
  if( rc==0 ){
    rc = pMem1->n - pMem2->n;
  }
  return rc;
}

/*
** Move data out of a btree key or data field and into a Mem structure.
** The data or key is taken from the entry that pCur is currently pointing
** to.  offset and amt determine what portion of the data or key to retrieve.
** key is true to get the key or false to get data.  The result is written
** into the pMem element.
**
** The pMem structure is assumed to be uninitialized.  Any prior content
** is overwritten without being freed.
**
** If this routine fails for any reason (malloc returns NULL or unable
** to read from the disk) then the pMem is left in an inconsistent state.
*/
int sqlite3VdbeMemFromBtree(
  BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
  int offset,       /* Offset from the start of data to return bytes from. */
  int amt,          /* Number of bytes to return. */
  int key,          /* If true, retrieve from the btree key, not data. */
  Mem *pMem         /* OUT: Return data in this Mem structure. */
){
  char *zData;      /* Data from the btree layer */
  int available;    /* Number of bytes available on the local btree page */

  if( key ){
    zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
  }else{
    zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
  }

  pMem->n = amt;
  if( offset+amt<=available ){
    pMem->z = &zData[offset];
    pMem->flags = MEM_Blob|MEM_Ephem;
  }else{
    int rc;
    if( amt>NBFS-2 ){
      zData = (char *)sqliteMallocRaw(amt+2);
      if( !zData ){
        return SQLITE_NOMEM;
      }
      pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
      pMem->xDel = 0;
    }else{
      zData = &(pMem->zShort[0]);
      pMem->flags = MEM_Blob|MEM_Short|MEM_Term;
    }
    pMem->z = zData;
    pMem->enc = 0;
    pMem->type = SQLITE_BLOB;

    if( key ){
      rc = sqlite3BtreeKey(pCur, offset, amt, zData);
    }else{
      rc = sqlite3BtreeData(pCur, offset, amt, zData);
    }
    zData[amt] = 0;
    zData[amt+1] = 0;
    if( rc!=SQLITE_OK ){
      if( amt>NBFS-2 ){
        assert( zData!=pMem->zShort );
        assert( pMem->flags & MEM_Dyn );
        sqliteFree(zData);
      } else {
        assert( zData==pMem->zShort );
        assert( pMem->flags & MEM_Short );
      }
      return rc;
    }
  }

  return SQLITE_OK;
}

#ifndef NDEBUG
/*
** Perform various checks on the memory cell pMem. An assert() will
** fail if pMem is internally inconsistent.
*/
void sqlite3VdbeMemSanity(Mem *pMem, u8 db_enc){
  int flags = pMem->flags;
  assert( flags!=0 );  /* Must define some type */
  if( pMem->flags & (MEM_Str|MEM_Blob) ){
    int x = pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
    assert( x!=0 );            /* Strings must define a string subtype */
    assert( (x & (x-1))==0 );  /* Only one string subtype can be defined */
    assert( pMem->z!=0 );      /* Strings must have a value */
    /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
    assert( (pMem->flags & MEM_Short)==0 || pMem->z==pMem->zShort );
    assert( (pMem->flags & MEM_Short)!=0 || pMem->z!=pMem->zShort );
    /* No destructor unless there is MEM_Dyn */
    assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 );

    if( (flags & MEM_Str) ){
      assert( pMem->enc==SQLITE_UTF8 || 
              pMem->enc==SQLITE_UTF16BE ||
              pMem->enc==SQLITE_UTF16LE 
      );
      /* If the string is UTF-8 encoded and nul terminated, then pMem->n
      ** must be the length of the string.  (Later:)  If the database file
      ** has been corrupted, '\000' characters might have been inserted
      ** into the middle of the string.  In that case, the strlen() might
      ** be less.
      */
      if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){ 
        assert( strlen(pMem->z)<=pMem->n );
        assert( pMem->z[pMem->n]==0 );
      }
    }
  }else{
    /* Cannot define a string subtype for non-string objects */
    assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
    assert( pMem->xDel==0 );
  }
  /* MEM_Null excludes all other types */
  assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0
          || (pMem->flags&MEM_Null)==0 );
  /* If the MEM is both real and integer, the values are equal */
  assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) 
          || pMem->r==pMem->i );
}
#endif

/* This function is only available internally, it is not part of the
** external API. It works in a similar way to sqlite3_value_text(),
** except the data returned is in the encoding specified by the second
** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
** SQLITE_UTF8.
*/
const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
  if( !pVal ) return 0;
  assert( enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE || enc==SQLITE_UTF8);

  if( pVal->flags&MEM_Null ){
    return 0;
  }
  if( pVal->flags&MEM_Str ){
    sqlite3VdbeChangeEncoding(pVal, enc);
  }else if( !(pVal->flags&MEM_Blob) ){
    sqlite3VdbeMemStringify(pVal, enc);
  }
  return (const void *)(pVal->z);
}

/*
** Create a new sqlite3_value object.
*/
sqlite3_value* sqlite3ValueNew(void){
  Mem *p = sqliteMalloc(sizeof(*p));
  if( p ){
    p->flags = MEM_Null;
    p->type = SQLITE_NULL;
  }
  return p;
}

/*
** Create a new sqlite3_value object, containing the value of pExpr.
**
** This only works for very simple expressions that consist of one constant
** token (i.e. "5", "5.1", "NULL", "'a string'"). If the expression can
** be converted directly into a value, then the value is allocated and
** a pointer written to *ppVal. The caller is responsible for deallocating
** the value by passing it to sqlite3ValueFree() later on. If the expression
** cannot be converted to a value, then *ppVal is set to NULL.
*/
int sqlite3ValueFromExpr(
  Expr *pExpr, 
  u8 enc, 
  u8 affinity,
  sqlite3_value **ppVal
){
  int op;
  char *zVal = 0;
  sqlite3_value *pVal = 0;

  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  op = pExpr->op;

  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    zVal = sqliteStrNDup(pExpr->token.z, pExpr->token.n);
    pVal = sqlite3ValueNew();
    if( !zVal || !pVal ) goto no_mem;
    sqlite3Dequote(zVal);
    sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3FreeX);
    if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
      sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
    }else{
      sqlite3ValueApplyAffinity(pVal, affinity, enc);
    }
  }else if( op==TK_UMINUS ) {
    if( SQLITE_OK==sqlite3ValueFromExpr(pExpr->pLeft, enc, affinity, &pVal) ){
      pVal->i = -1 * pVal->i;
      pVal->r = -1.0 * pVal->r;
    }
  }
#ifndef SQLITE_OMIT_BLOB_LITERAL
  else if( op==TK_BLOB ){
    int nVal;
    pVal = sqlite3ValueNew();
    zVal = sqliteStrNDup(pExpr->token.z+1, pExpr->token.n-1);
    if( !zVal || !pVal ) goto no_mem;
    sqlite3Dequote(zVal);
    nVal = strlen(zVal)/2;
    sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(zVal), nVal, 0, sqlite3FreeX);
    sqliteFree(zVal);
  }
#endif

  *ppVal = pVal;
  return SQLITE_OK;

no_mem:
  sqliteFree(zVal);
  sqlite3ValueFree(pVal);
  *ppVal = 0;
  return SQLITE_NOMEM;
}

/*
** Change the string value of an sqlite3_value object
*/
void sqlite3ValueSetStr(
  sqlite3_value *v, 
  int n, 
  const void *z, 
  u8 enc,
  void (*xDel)(void*)
){
  if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
}

/*
** Free an sqlite3_value object
*/
void sqlite3ValueFree(sqlite3_value *v){
  if( !v ) return;
  sqlite3ValueSetStr(v, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
  sqliteFree(v);
}

/*
** Return the number of bytes in the sqlite3_value object assuming
** that it uses the encoding "enc"
*/
int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
  Mem *p = (Mem*)pVal;
  if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
    return p->n;
  }
  return 0;
}