1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
// -*- Mode: c++; c-basic-offset: 4; indent-tabs-mode: nil; tab-width: 4; -*-
/* This file is part of the KDE project
Copyright (C) 2001 Laurent MONTEL <[email protected]>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "KoPointArray.h"
#include <KoRect.h>
#include <stdarg.h>
#include <KoZoomHandler.h>
void KoPointArray::translate( double dx, double dy )
{
register KoPoint *p = data();
register int i = size();
KoPoint pt( dx, dy );
while ( i-- ) {
*p += pt;
p++;
}
}
void KoPointArray::point( uint index, double *x, double *y ) const
{
KoPoint p = QMemArray<KoPoint>::at( index );
if ( x )
*x = (double)p.x();
if ( y )
*y = (double)p.y();
}
KoPoint KoPointArray::point( uint index ) const
{ // #### index out of bounds
return QMemArray<KoPoint>::at( index );
}
void KoPointArray::setPoint( uint index, double x, double y )
{ // #### index out of bounds
QMemArray<KoPoint>::at( index ) = KoPoint( x, y );
}
bool KoPointArray::putPoints( int index, int nPoints, double firstx, double firsty,
... )
{
va_list ap;
if ( index + nPoints > (int)size() ) { // extend array
if ( !resize(index + nPoints) )
return FALSE;
}
if ( nPoints <= 0 )
return TRUE;
setPoint( index, firstx, firsty ); // set first point
int i = index + 1;
double x, y;
nPoints--;
va_start( ap, firsty );
while ( nPoints-- ) {
x = va_arg( ap, double );
y = va_arg( ap, double );
setPoint( i++, x, y );
}
va_end( ap );
return TRUE;
}
void split(const double *p, double *l, double *r)
{
double tmpx;
double tmpy;
l[0] = p[0];
l[1] = p[1];
r[6] = p[6];
r[7] = p[7];
l[2] = (p[0]+ p[2])/2;
l[3] = (p[1]+ p[3])/2;
tmpx = (p[2]+ p[4])/2;
tmpy = (p[3]+ p[5])/2;
r[4] = (p[4]+ p[6])/2;
r[5] = (p[5]+ p[7])/2;
l[4] = (l[2]+ tmpx)/2;
l[5] = (l[3]+ tmpy)/2;
r[2] = (tmpx + r[4])/2;
r[3] = (tmpy + r[5])/2;
l[6] = (l[4]+ r[2])/2;
l[7] = (l[5]+ r[3])/2;
r[0] = l[6];
r[1] = l[7];
}
// Based on:
//
// A Fast 2D Point-On-Line Test
// by Alan Paeth
// from "Graphics Gems", Academic Press, 1990
static
int pnt_on_line( const int* p, const int* q, const int* t )
{
/*
* given a line through P:(px,py) Q:(qx,qy) and T:(tx,ty)
* return 0 if T is not on the line through <--P--Q-->
* 1 if T is on the open ray ending at P: <--P
* 2 if T is on the closed interior along: P--Q
* 3 if T is on the open ray beginning at Q: Q-->
*
* Example: consider the line P = (3,2), Q = (17,7). A plot
* of the test points T(x,y) (with 0 mapped onto '.') yields:
*
* 8| . . . . . . . . . . . . . . . . . 3 3
* Y 7| . . . . . . . . . . . . . . 2 2 Q 3 3 Q = 2
* 6| . . . . . . . . . . . 2 2 2 2 2 . . .
* a 5| . . . . . . . . 2 2 2 2 2 2 . . . . .
* x 4| . . . . . 2 2 2 2 2 2 . . . . . . . .
* i 3| . . . 2 2 2 2 2 . . . . . . . . . . .
* s 2| 1 1 P 2 2 . . . . . . . . . . . . . . P = 2
* 1| 1 1 . . . . . . . . . . . . . . . . .
* +--------------------------------------
* 1 2 3 4 5 X-axis 10 15 19
*
* Point-Line distance is normalized with the Infinity Norm
* avoiding square-root code and tightening the test vs the
* Manhattan Norm. All math is done on the field of integers.
* The latter replaces the initial ">= MAX(...)" test with
* "> (ABS(qx-px) + ABS(qy-py))" loosening both inequality
* and norm, yielding a broader target line for selection.
* The tightest test is employed here for best discrimination
* in merging collinear (to grid coordinates) vertex chains
* into a larger, spanning vectors within the Lemming editor.
*/
// if all points are coincident, return condition 2 (on line)
if(q[0]==p[0] && q[1]==p[1] && q[0]==t[0] && q[1]==t[1]) {
return 2;
}
if ( QABS((q[1]-p[1])*(t[0]-p[0])-(t[1]-p[1])*(q[0]-p[0])) >=
(QMAX(QABS(q[0]-p[0]), QABS(q[1]-p[1])))) return 0;
if (((q[0]<p[0])&&(p[0]<t[0])) || ((q[1]<p[1])&&(p[1]<t[1])))
return 1 ;
if (((t[0]<p[0])&&(p[0]<q[0])) || ((t[1]<p[1])&&(p[1]<q[1])))
return 1 ;
if (((p[0]<q[0])&&(q[0]<t[0])) || ((p[1]<q[1])&&(q[1]<t[1])))
return 3 ;
if (((t[0]<q[0])&&(q[0]<p[0])) || ((t[1]<q[1])&&(q[1]<p[1])))
return 3 ;
return 2 ;
}
static
void polygonizeQBezier( double* acc, int& accsize, const double ctrl[],
int maxsize )
{
if ( accsize > maxsize / 2 )
{
// This never happens in practice.
if ( accsize >= maxsize-4 )
return;
// Running out of space - approximate by a line.
acc[accsize++] = ctrl[0];
acc[accsize++] = ctrl[1];
acc[accsize++] = ctrl[6];
acc[accsize++] = ctrl[7];
return;
}
//intersects:
double l[8];
double r[8];
split( ctrl, l, r);
// convert to integers for line condition check
int c0[2]; c0[0] = int(ctrl[0]); c0[1] = int(ctrl[1]);
int c1[2]; c1[0] = int(ctrl[2]); c1[1] = int(ctrl[3]);
int c2[2]; c2[0] = int(ctrl[4]); c2[1] = int(ctrl[5]);
int c3[2]; c3[0] = int(ctrl[6]); c3[1] = int(ctrl[7]);
// #### Duplication needed?
if ( QABS(c1[0]-c0[0]) <= 1 && QABS(c1[1]-c0[1]) <= 1
&& QABS(c2[0]-c0[0]) <= 1 && QABS(c2[1]-c0[1]) <= 1
&& QABS(c3[0]-c1[0]) <= 1 && QABS(c3[1]-c0[1]) <= 1 )
{
// Approximate by one line.
// Dont need to write last pt as it is the same as first pt
// on the next segment
acc[accsize++] = l[0];
acc[accsize++] = l[1];
return;
}
if ( ( pnt_on_line( c0, c3, c1 ) == 2 && pnt_on_line( c0, c3, c2 ) == 2 )
|| ( QABS(c1[0]-c0[0]) <= 1 && QABS(c1[1]-c0[1]) <= 1
&& QABS(c2[0]-c0[0]) <= 1 && QABS(c2[1]-c0[1]) <= 1
&& QABS(c3[0]-c1[0]) <= 1 && QABS(c3[1]-c0[1]) <= 1 ) )
{
// Approximate by one line.
// Dont need to write last pt as it is the same as first pt
// on the next segment
acc[accsize++] = l[0];
acc[accsize++] = l[1];
return;
}
// Too big and too curved - recusively subdivide.
polygonizeQBezier( acc, accsize, l, maxsize );
polygonizeQBezier( acc, accsize, r, maxsize );
}
KoRect KoPointArray::boundingRect() const
{
if ( isEmpty() )
return KoRect( 0, 0, 0, 0 ); // null rectangle
register KoPoint *pd = data();
double minx, maxx, miny, maxy;
minx = maxx = pd->x();
miny = maxy = pd->y();
pd++;
for ( int i=1; i<(int)size(); i++ ) { // find min+max x and y
if ( pd->x() < minx )
minx = pd->x();
else if ( pd->x() > maxx )
maxx = pd->x();
if ( pd->y() < miny )
miny = pd->y();
else if ( pd->y() > maxy )
maxy = pd->y();
pd++;
}
return KoRect( KoPoint(minx,miny), KoPoint(maxx,maxy) );
}
KoPointArray KoPointArray::cubicBezier() const
{
if ( size() != 4 ) {
#if defined(QT_CHECK_RANGE)
qWarning( "QPointArray::bezier: The array must have 4 control points" );
#endif
KoPointArray pa;
return pa;
} else {
KoRect r = boundingRect();
int m = (int)(4+2*QMAX(r.width(),r.height()));
double *p = new double[m];
double ctrl[8];
int i;
for (i=0; i<4; i++) {
ctrl[i*2] = at(i).x();
ctrl[i*2+1] = at(i).y();
}
int len=0;
polygonizeQBezier( p, len, ctrl, m );
KoPointArray pa((len/2)+1); // one extra point for last point on line
int j=0;
for (i=0; j<len; i++) {
double x = qRound(p[j++]);
double y = qRound(p[j++]);
pa[i] = KoPoint(x,y);
}
// add last pt on the line, which will be at the last control pt
pa[(int)pa.size()-1] = at(3);
delete[] p;
return pa;
}
}
QPointArray KoPointArray::zoomPointArray( const KoZoomHandler* zoomHandler ) const
{
QPointArray tmpPoints(size());
for ( uint i= 0; i<size();i++ ) {
KoPoint p = at( i );
tmpPoints.putPoints( i, 1, zoomHandler->zoomItX(p.x()),zoomHandler->zoomItY(p.y()) );
}
return tmpPoints;
}
QPointArray KoPointArray::zoomPointArray( const KoZoomHandler* zoomHandler, int penWidth ) const
{
double fx;
double fy;
KoSize ext = boundingRect().size();
int pw = zoomHandler->zoomItX( penWidth ) / 2;
fx = (double)( zoomHandler->zoomItX(ext.width()) - 2 * pw ) / ext.width();
fy = (double)( zoomHandler->zoomItY(ext.height()) - 2 * pw ) / ext.height();
unsigned int index = 0;
QPointArray tmpPoints;
KoPointArray::ConstIterator it;
for ( it = begin(); it != end(); ++it, ++index ) {
int tmpX = qRound((*it).x() * fx + pw);
int tmpY = qRound((*it).y() * fy + pw);
tmpPoints.putPoints( index, 1, tmpX, tmpY );
}
return tmpPoints;
}
|