summaryrefslogtreecommitdiffstats
path: root/microbe/expression.cpp
blob: 629a4f28a31290404f27d8ed439fcb5e95049f2e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
/***************************************************************************
 *   Copyright (C) 2004-2005 by Daniel Clarke                              *
 *   [email protected]                                                   *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program; if not, write to the                         *
 *   Free Software Foundation, Inc.,                                       *
 *   51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.             *
 ***************************************************************************/
 
#include "btreebase.h"
#include "btreenode.h"
#include "expression.h"
#include "traverser.h"
#include "parser.h"
#include "pic14.h"

#include <kdebug.h>
#include <klocale.h>
#include <tqregexp.h>

Expression::Expression( PIC14 *pic, Microbe *master, SourceLine sourceLine, bool suppressNumberTooBig )
	: m_sourceLine(sourceLine)
{
	m_pic = pic;
	mb = master;
	m_bSupressNumberTooBig = suppressNumberTooBig;
}

Expression::~Expression()
{
}

void Expression::traverseTree( BTreeNode *root, bool conditionalRoot )
{
	Traverser t(root);
	t.start();
	
	// special case: if we are starting at the root node then
	// we are dealing with something of the form variable = 6
	// or variable = portb
	///TODO reimplement assignments as two branched trees?
	if ( t.current() == root &&
			!root->hasChildren() &&
			t.current()->childOp() != pin &&
			t.current()->childOp() != notpin &&
			t.current()->childOp() != function &&
			t.current()->childOp() != read_keypad )
	{
		switch(root->type())
		{
			case number: m_pic->assignNum(root->value()); break;
			case variable: m_pic->assignVar(root->value()); break;
			default: break; // Should never get here
		}
		// no need to traverse the tree as there is none.
		return;
	}
	
	t.setCurrent(root);
	
	if(t.current()->hasChildren())
	{
		// Here we work out what needs evaulating, and in which order.
		// To minimize register usage, if only one branch needs traversing,
		// then that branch should be done first.
		bool evaluateLeft = t.current()->left()->needsEvaluating();
	
		BTreeNode *evaluateFirst;
		BTreeNode *evaluateSecond;
	
		// If both need doing, then it really doesn't matter which we do
		// first (unless we are looking to do really complex optimizations...
	
		// Cases: 
		// - Both need evaluating,
		// - or left needs doing first,
		// in both cases we evaluate left, then right.
		if( evaluateLeft )
		{
			evaluateFirst = t.current()->left();
			evaluateSecond = t.current()->right();
		}
		// Otherwise it is best to evaluate right first for reasons given above.
		else
		{
			evaluateFirst = t.current()->right();
			evaluateSecond = t.current()->left();
		}
		
		TQString dest1 = mb->dest();
		mb->incDest();
		TQString dest2 = mb->dest();
		mb->decDest();
	
		bool evaluated = false;
		if( evaluateFirst->hasChildren() )
		{	
			traverseTree(evaluateFirst);
			evaluated = true;
		}
		else if( isUnaryOp(evaluateFirst->childOp()) )
		{
			doUnaryOp( evaluateFirst->childOp(), evaluateFirst );
			evaluated = true;
		}
		if ( evaluated )
		{
			// We need to save the result if we are going tro traverse the other
			// branch, or if we are performing a subtraction in which case the
			// value wanted in working is not the current value.
			// But as the optimizer will deal with unnecessary variables anyway,
			// always save to a register
			
			evaluateFirst->setReg( dest1 );
			evaluateFirst->setType( variable );
			m_pic->saveToReg( dest1 );
		}
	
		evaluated = false;
		if( evaluateSecond->hasChildren() )
		{
			mb->incDest();
			mb->incDest();
			traverseTree(evaluateSecond);
			evaluated = true;
			mb->decDest();
			mb->decDest();
		}
		else if( isUnaryOp(evaluateSecond->childOp()) )
		{
			doUnaryOp( evaluateSecond->childOp(), evaluateSecond );
			evaluated = true;
		}
		if ( evaluated )
		{
			evaluateSecond->setReg( dest2 );
			evaluateSecond->setType( variable );
			m_pic->saveToReg( dest2 );
		}
	}
	
	if(t.current()->childOp()==divbyzero)
	{
		mistake( Microbe::DivisionByZero );
	}
	
	// If we are at the top level of something like 'if a == 3 then', then we are ready to put
	// in the if code, else the expression just evaluates to 0 or 1
	if(conditionalRoot && t.current() == root)
		m_pic->setConditionalCode(m_ifCode, m_elseCode);

	// Handle operations
	// (functions are not actually supported)
	if(isUnaryOp(t.current()->childOp()))
		doUnaryOp( t.current()->childOp(), t.current() );
	else
		doOp( t.current()->childOp(), t.current()->left(), t.current()->right() );

}

void Expression::doOp( Operation op, BTreeNode *left, BTreeNode *right )
{
	TQString lvalue;
	if(left->reg().isEmpty())
		lvalue = left->value();
	else
		lvalue = left->reg();
	
	TQString rvalue;
	if(right->reg().isEmpty())
		rvalue = right->value();
	else
		rvalue = right->reg();
	
	// Handle if stuff
	PIC14::LocationType leftType;
	switch ( left->type() )
	{
		case number:
			leftType = PIC14::num;
			break;
			
		case variable:
			leftType = PIC14::var;
			break;
			
		case working:
			leftType = PIC14::work;
			break;
			
		case unset:
		case extpin:
		case keypad:
			kdError() << k_funcinfo << "Bad left->type(): " << left->type() << endl;
	};
	
	PIC14::LocationType rightType;
	switch ( right->type() )
	{
		case number:
			rightType = PIC14::num;
			break;
			
		case variable:
			rightType = PIC14::var;
			break;
			
		case working:
			rightType = PIC14::work;
			break;
			
		case unset:
		case extpin:
		case keypad:
			kdError() << k_funcinfo << "Bad right->type(): " << right->type() << endl;
	};
	
	switch(op)
	{
		case equals:	m_pic->equal( lvalue, rvalue, leftType, rightType ); break;
		case notequals:	m_pic->notEqual( lvalue, rvalue, leftType, rightType ); break;
		case lt:		m_pic->lessThan( lvalue, rvalue, leftType, rightType ); break;
		case gt:		m_pic->greaterThan( lvalue, rvalue, leftType, rightType ); break;
		case le:		m_pic->lessOrEqual( lvalue, rvalue, leftType, rightType ); break;
		case ge:		m_pic->greaterOrEqual( lvalue, rvalue, leftType, rightType ); break;
		
		case addition:		m_pic->add( lvalue, rvalue, leftType, rightType ); break;
		case subtraction:	m_pic->subtract( lvalue, rvalue, leftType, rightType ); break;
		case multiplication:	m_pic->mul( lvalue, rvalue, leftType, rightType ); break;
		case division:		m_pic->div( lvalue, rvalue, leftType, rightType ); break;
		
		case bwand:	m_pic->bitwise( bwand, lvalue, rvalue, leftType, rightType ); break;
		case bwor:	m_pic->bitwise( bwor, lvalue, rvalue, leftType, rightType ); break;
		case bwxor:	m_pic->bitwise( bwxor, lvalue, rvalue, leftType, rightType ); break;
		case bwnot:	m_pic->bitwise( bwnot, lvalue, rvalue, leftType, rightType ); break;
		
		default: break;
	}
}

void Expression::buildTree( const TQString & unstrippedExpression, BTreeBase *tree, BTreeNode *node, int level )
{
	int firstEnd = 0;
	int secondStart = 0;
	bool unary = false;
	Operation op;
	TQString expression = stripBrackets( unstrippedExpression );
	switch(level)
	{
		// ==, !=
		case 0:
		{
		int equpos = findSkipBrackets(expression, "==");
		int neqpos = findSkipBrackets(expression, "!=");
		if( equpos != -1 )
		{
			op = equals;
			firstEnd = equpos;
			secondStart = equpos + 2;
		}
		else if( neqpos != -1 )
		{
			op = notequals;
			firstEnd = neqpos;
			secondStart = neqpos + 2;
		}
		else op = noop;
		break;
		}

		// <, <=, >=, >
		case 1:
		{
		int ltpos = findSkipBrackets(expression, "<");
		int lepos = findSkipBrackets(expression, "<=");
		int gepos = findSkipBrackets(expression, ">=");
		int gtpos = findSkipBrackets(expression, ">");
		// Note: if (for example) "<=" is present, "<" will also be present. This
		// means that we have to check for "<=" before "<", etc.
		if( lepos != -1 )
		{
			op = le;
			firstEnd = lepos;
			secondStart = lepos + 2;
		}
		else if( gepos != -1 )
		{
			op = ge;
			firstEnd = gepos;
			secondStart = gepos + 2;
		}
		else if( ltpos != -1 )
		{
			op = lt;
			firstEnd = ltpos;
			secondStart = ltpos + 1;
		}
		else if( gtpos != -1 )
		{
			op = gt;
			firstEnd = gtpos;
			secondStart = gtpos + 1;
		}
		else op = noop;
		break;
		}

		// +,-
		case 2:
		{
		int addpos = findSkipBrackets(expression, '+');
		int subpos = findSkipBrackets(expression, '-');
		if( subpos != -1 )
		{
			op = subtraction;
			firstEnd = subpos;
			secondStart = subpos + 1;
		}
		else if( addpos != -1 )
		{
			op = addition;
			firstEnd = addpos;
			secondStart = addpos + 1;
		}
		else op = noop;
		break;
		}
		
		// *,/
		case 3:
		{
		int mulpos = findSkipBrackets(expression, '*');
		int divpos = findSkipBrackets(expression, '/');
		if( divpos != -1 )
		{
			op = division;
			firstEnd = divpos;
			secondStart = divpos + 1;
		}
		else if( mulpos != -1 )
		{
			op = multiplication;
			firstEnd = mulpos;
			secondStart = mulpos + 1;
		}
		else op = noop;
		break;
		}
		
		// ^
		case 4:
		{
		int exppos = findSkipBrackets(expression, '^');
		if( exppos != -1 )
		{
			op = exponent;
			firstEnd = exppos;
			secondStart = exppos + 1;
		}
		else op = noop;
		break;
		}
		
		// AND, OR, XOR
		case 5:
		{
		int bwAndPos = findSkipBrackets(expression, " AND ");
		int bwOrPos = findSkipBrackets(expression, " OR ");
		int bwXorPos = findSkipBrackets(expression, " XOR ");
		if( bwAndPos != -1 )
		{
			op = bwand;
			firstEnd = bwAndPos;
			secondStart = bwAndPos + 5;
		}
		else if( bwOrPos != -1 )
		{
			op = bwor;
			firstEnd = bwOrPos;
			secondStart = bwOrPos + 4;
		}
		else if( bwXorPos != -1 )
		{
			op = bwxor;
			firstEnd = bwXorPos;
			secondStart = bwXorPos + 5;
		}
		else op = noop;
		break;
		}
		
		// NOT
		case 6:
		{
		int bwNotPos = findSkipBrackets(expression, " NOT ");
		if( bwNotPos != -1 )
		{
			op = bwnot;
			unary = true;
			firstEnd = bwNotPos; // this line is not needed for unary things/
			secondStart = bwNotPos + 5;
		}
		else op = noop;
		break;
		}
	}
	
	node->setChildOp(op);
	
	TQString tokens[2];
	tokens[0] = expression.left(firstEnd).stripWhiteSpace();
	tokens[1] = expression.mid(secondStart).stripWhiteSpace();
	
	if( op != noop )
	{	
		for( int j = 0; j < 2; j++ )
		{
			
			BTreeNode *newNode = new BTreeNode();
			tree->addNode( node, newNode, (j == 0) );
			// we need to strip any brackets from the sub-expression
			
			// try each token again at the same level, if they 
			// don't have any of this level's operators, then the function
			// will go to the next level as below.
			
			// For unary opertaions, e.g NOT, we have no special 
			// code for nodes with only one child, so we leave the left
			// hand child blank and put the rest in the right hand node.
			if( unary && j == 0 )
			{
				newNode->setValue("");
				newNode->setType(number);
			}
			else buildTree(tokens[j], tree, newNode, 0 );
		}
	}
	else
	{
		// if there was no relevant operation i.e. " 3*4 / 6" as opposed to " 3*4 + 6"
		// then just pass the node onto the next parsing level.
		// unless we are at the lowest level, in which case we have reached a final value.
		if( level == 6 ) expressionValue(expression,tree,node);
		else 
		{
			buildTree(expression,tree,node,level + 1);
		}
	}
}

void Expression::doUnaryOp(Operation op, BTreeNode *node)
{
	/* Note that this isn't for unary operations as such,
	 rather for things that are operations that have no direct children,
	 e.g. portx.n is high, and functionname(args)*/
	
	if ( op == pin || op == notpin )
		m_pic->Spin( m_pic->toPortPin( node->value() ), (op==notpin) );
	
	else if ( op == read_keypad )
		m_pic->Skeypad( mb->variable( node->value() ) );
}

void Expression::compileExpression( const TQString & expression )
{
	// Make a tree to put the expression in.
	BTreeBase *tree = new BTreeBase();
	BTreeNode *root = new BTreeNode();

	// parse the expression into the tree
	buildTree(expression,tree,root,0);
	// compile the tree into assembly code
	tree->setRoot(root);
	tree->pruneTree(tree->root());
	traverseTree(tree->root());
	
	// Note deleting the tree deletes all nodes, so the root
	// doesn't need deleting separately.
	delete tree;
	return;
}

void Expression::compileConditional( const TQString & expression, Code * ifCode, Code * elseCode )
{
	if( expression.contains(TQRegExp("=>|=<|=!")) )
	{
		mistake( Microbe::InvalidComparison, expression );
		return;
	}
	if( expression.contains(TQRegExp("[^=><!][=][^=]")))
	{
		mistake( Microbe::InvalidEquals );
		return;
	}
	// Make a tree to put the expression in.
	BTreeBase *tree = new BTreeBase();
	BTreeNode *root = new BTreeNode();

	// parse the expression into the tree
	buildTree(expression,tree,root,0);
	
	// Modify the tree so it is always at the top level of the form (kwoerpkwoep) == (qwopekqpowekp)
	if ( root->childOp() != equals &&
			root->childOp() != notequals &&
			root->childOp() != gt &&
			root->childOp() != lt &&
			root->childOp() != ge &&
			root->childOp() != le &&
			root->childOp() != pin &&
			root->childOp() != notpin &&
			root->childOp() != read_keypad )
	{
		BTreeNode *newRoot = new BTreeNode();
		
		BTreeNode *oneNode = new BTreeNode();
		oneNode->setChildOp(noop);
		oneNode->setType(number);
		oneNode->setValue("1");
		
		newRoot->setLeft(root);
		newRoot->setRight(oneNode);
		newRoot->setType(unset);
		newRoot->setChildOp(ge);
		
		tree->setRoot(newRoot);
		root = newRoot;
	}
	// compile the tree into assembly code
	tree->setRoot(root);
	tree->pruneTree(tree->root(),true);
	
	// We might have just a constant expression, in which case we can just always do if or else depending
	// on whether it is true or false.
	if( root->childOp() == noop )
	{
		if( root->value().toInt() == 0 )
			m_pic->mergeCode( elseCode );
		else
			m_pic->mergeCode( ifCode );
		return;
	}
	
	// traverse tree with argument conditionalRoot true
	// so that 3 == x gets integrated with code for if, repeat until etc...
	m_ifCode = ifCode;
	m_elseCode = elseCode;
	traverseTree(tree->root(),true);
	
	// Note deleting the tree deletes all nodes, so the root
	// doesn't need deleting separately.
	delete tree;
}

bool Expression::isUnaryOp(Operation op)
{
	return op == pin || op == notpin || op == function || op == read_keypad;
}


void Expression::mistake( Microbe::MistakeType type, const TQString & context )
{
	mb->compileError( type, context, m_sourceLine );
}

int Expression::findSkipBrackets( const TQString & expr, char ch, int startPos)
{
	bool found = false;
	int i = startPos;
	int bracketLevel = 0;
	while(!found)
	{
		if(expr[i].latin1() == '\'')
		{
			if( i + 2 < int(expr.length()) )
			{
				if( expr[i+2].latin1() == '\'' )
				{
				 i = i + 2;
				 found = true;
				}
			}
		}
		
		if(expr[i].latin1() == '(') bracketLevel++;
		else if(expr[i].latin1() == ')') bracketLevel--;
		
		if( bracketLevel == 0 )
		{
			if(expr[i].latin1() == ch) found = true;
			else i++;
		}
		else i++;
		
		if( i >= int(expr.length()) )
		{
			found = true;
			i = -1;
		}
	}
	return i;
}

int Expression::findSkipBrackets( const TQString & expr, TQString phrase, int startPos)
{
	bool found = false;
	int i = startPos;
	int bracketLevel = 0;
	while(!found)
	{	
		if(expr[i].latin1() == '\'')
		{
			if( i + 2 < int(expr.length()) )
			{
				if( expr[i+2].latin1() == '\'' )
				{
				 i = i + 2;
				 found = true;
				}
			}
		}
		
		if(expr[i].latin1() == '(') bracketLevel++;
		else if(expr[i].latin1() == ')') bracketLevel--;
		
		if( bracketLevel == 0 )
		{
			if(expr.mid(i,phrase.length()) == phrase) found = true;
			else i++;
		}
		else i++;
		
		if( i >= int(expr.length()) )
		{
			found = true;
			i = -1;
		}
	}
	return i;
}

TQString Expression::stripBrackets( TQString expression )
{
	bool stripping = true;
	int bracketLevel = 0;
	int i = 0;
	expression = expression.stripWhiteSpace();
	while(stripping)
	{
		if( expression.at(i) == '(' ) bracketLevel++;
		else if( expression.at(i) == ')' )
		{
			if( i == int(expression.length() - 1) && bracketLevel == 1)
			{
				expression = expression.mid(1,expression.length() - 2).stripWhiteSpace();
			}
			bracketLevel--;	
		}
		if( i == int(expression.length() - 1) && bracketLevel > 0 )
		{
			mistake( Microbe::MismatchedBrackets, expression );
			// Stray brackets might cause the expressionession parser some problems,
			// so we just avoid parsing anything altogether
			expression = "";
			stripping = false;
		}
		i++;
		if( bracketLevel == 0 ) stripping = false;
	}
	return expression;
}

void Expression::expressionValue( TQString expr, BTreeBase */*tree*/, BTreeNode *node)
{
	/* The "end of the line" for the expression parsing, the
	expression has been broken down into the fundamental elements of expr.value()=="to"||
	variable, number, special etc... so we now just set value and type */
	
	
	
	/* Alternatively we might have a function call
	e.g. somefunction(3,potatoes,hairstyle + 6)
	In which case we need to call back to parseExpr to process the arguments,
	saving them on the basic stack then  making the function call.
	Of course we also need to mark the terminal node type as a function.
	*/
	expr = expr.stripWhiteSpace();
	
	// My intention is so that these error checks are ordered
	// so that e.g. for x = 3 it picks up the = rather than the spaces first.
	
	
	expr = mb->alias(expr);
	ExprType t = expressionType(expr);

	
	// See if it is a single qouted character, e.g. 'A'
	if( expr.left(1) == "\'" && expr.right(1) == "\'" ) 
	{
		if( expr.length() == 3 ) // fall through to report as unknown variable if not of form 'x'
		{
			// If so, turn it into a number, and use the ASCII code as the value
			t = number;
			expr =  TQString::number(expr[1].latin1());
		}
	}
	
	// Check for the most common mistake ever!
	if(expr.contains("="))
		mistake( Microbe::InvalidEquals );
	// Check for reserved keywords
	if(expr=="to"||expr=="step"||expr=="then")
		mistake( Microbe::ReservedKeyword, expr );

	// Check for empty expressions, or expressions contating spaces
	// both indicating a Mistake.
	if(expr.isEmpty())
		mistake( Microbe::ConsecutiveOperators );
	else if(expr.contains(TQRegExp("\\s")) && t!= extpin)
		mistake( Microbe::MissingOperator );
	
	if( t == variable && !mb->isVariableKnown(expr) && !m_pic->isValidPort( expr ) && !m_pic->isValidTris( expr ) )
		mistake( Microbe::UnknownVariable, expr );
	
	if ( mb->isVariableKnown(expr) && !mb->variable(expr).isReadable() )
		mistake( Microbe::WriteOnlyVariable, expr );
	
	node->setType(t);
	
	// Since we currently only implement 8 bit unsigned integers, we should disallow
	// anything outside the range [0-255].
	if( t == number && !m_bSupressNumberTooBig && (expr.toInt() > 255) )
	{
		mistake( Microbe::NumberTooBig );
	}
	
	// if there was a pin, we need to decocde it.
	// For now and sacrificing syntax error checking
	// we just look for the word "is" then "high" or "low".
	if( t == extpin )
	{
		bool NOT;
		int i = expr.find("is");
		if(i > 0)
		{
			NOT = expr.contains("low");
			if(!expr.contains("high") && !expr.contains("low"))
				mistake( Microbe::HighLowExpected, expr );
			expr = expr.left(i-1);
		}
		else NOT = false;
		node->setChildOp(NOT?notpin:pin);
	}
	
	else if ( t == keypad )
		node->setChildOp( read_keypad );
	
	node->setValue(expr);
}

ExprType Expression::expressionType( const TQString & expression )
{
	// So we can't handle complex expressions yet anyway,
	// let's just decide whether it is a variable or number.
	
	// Thanks to the convention that variable names must not
	// begin with a number this is extremely simple to do!

	/* But now there is a catch, because there can also be
	things that have a first character alpha, but are of the form
	"portb.3 is high", general syntax: portx.n is <high|low>
	additionally, there can be things that are just porta.6, which just return the truth of that port.
	In reality it is just:
	portx.n is high === portx.n
	portx.n is low === !(portx.n)
	These types of expression can be identified by the fact 
	that they should be the only things that contain a '.'
	*/
	
	/* Note that at the moment, literalToInt returns -1 if it is
	not literal so isLiteral is redundant, but this may change if say
	negative numbers are implemented
	*/
	
	int value = Parser::literalToInt(expression);
	if ( value != -1 )
		return number;
	
	if( expression.contains('.') )
		return extpin;
	
	if ( mb->variable( expression ).type() == Variable::keypadType )
		return keypad;
	
	return variable;
}

TQString Expression::processConstant( const TQString & expr, bool * isConstant )
{
	bool temp;
	if (!isConstant)
		isConstant = &temp;
	
	TQString code;
	
	// Make a tree to put the expression in.
	BTreeBase *tree = new BTreeBase();
	BTreeNode *root = new BTreeNode();

	// parse the expression into the tree
	buildTree(expr,tree,root,0);
	// compile the tree into assembly code
	tree->setRoot(root);
	tree->pruneTree(tree->root());
	//code = traverseTree(tree->root());
	// Look to see if it is a number
	if( root->type() == number )
	{
		code = root->value();
		*isConstant = true;
	}
	else
	{
		code = "";
		*isConstant = false;
	}
	
	// Note deleting the tree deletes all nodes, so the root
	// doesn't need deleting separately.
	delete tree;
	return code;
}