1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
//
// File : kvi_md5.cpp
// Creation date : Wed Sep 4 22:16:45 2002 GMT by Szymon Stefanek
//
// This file is part of the KVirc irc client distribution
// Copyright (C) 2002 Szymon Stefanek (pragma at kvirc dot net)
//
// This program is FREE software. You can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your opinion) any later version.
//
// This program is distributed in the HOPE that it will be USEFUL,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, write to the Free Software Foundation,
// Inc. ,51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
#define __KVILIB__
/*
######################################################################
MD5Sum - MD5 Message Digest Algorithm.
This code implements the MD5 message-digest algorithm. The algorithm is
due to Ron Rivest. This code was written by Colin Plumb in 1993, no
copyright is claimed. This code is in the public domain; do with it what
you wish.
Equivalent code is available from RSA Data Security, Inc. This code has
been tested against that, and is equivalent, except that you don't need to
include two pages of legalese with every copy.
To compute the message digest of a chunk of bytes, instantiate the class,
and repeatedly call one of the Add() members. When finished the Result
method will return the Hash and finalize the value.
Changed so as no longer to depend on Colin Plumb's `usual.h' header
definitions; now uses stuff from dpkg's config.h.
- Ian Jackson <[email protected]>.
Changed into a C++ interface and made work with APT's config.h.
- Jason Gunthorpe <[email protected]>
Interface adapted to the KVIrc irc client
- Szymon Stefanek <pragma at kvirc dot net>
The classes use arrays of char that are a specific size. We cast those
arrays to uint8_t's and go from there. This allows us to advoid using
the uncommon inttypes.h in a public header or internally newing memory.
In theory if C9x becomes nicely accepted
##################################################################### */
#include "kvi_md5.h"
#include "kvi_settings.h"
#include "kvi_bswap.h"
#include "kvi_memmove.h"
/* Swap n 32 bit longs in given buffer */
#ifdef BIG_ENDIAN_MACHINE_BYTE_ORDER
static void byteSwap(kvi_u32_t *buf,unsigned int words)
{
// kvi_u8_t *p = (kvi_u8_t *)buf;
// do
// {
// *buf++ = (kvi_u32_t)((unsigned)p[3] << 8 | p[2]) << 16 | ((unsigned)p[1] << 8 | p[0]);
// p += 4;
// } while (--words);
do {
*buf = kvi_swap32(*buf);
buf++;
} while(--words);
}
#else
#define byteSwap(buf,words)
#endif
/* The core of the MD5 algorithm, this alters an existing MD5 hash to
reflect the addition of 16 longwords of new data. Add blocks
the data and converts bytes into longwords for this routine. */
// The four core functions - F1 is optimized somewhat
// #define F1(x, y, z) (x & y | ~x & z)
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
// This is the central step in the MD5 algorithm.
#define MD5STEP(f,w,x,y,z,in,s) \
(w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)
static void MD5Transform(kvi_u32_t buf[4],const kvi_u32_t in[16])
{
kvi_u32_t a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
KviMd5::KviMd5()
{
kvi_u32_t *buf = (kvi_u32_t *)m_pBuf;
kvi_u32_t *bytes = (kvi_u32_t *)m_pBytes;
buf[0] = 0x67452301;
buf[1] = 0xefcdab89;
buf[2] = 0x98badcfe;
buf[3] = 0x10325476;
bytes[0] = 0;
bytes[1] = 0;
m_bDone = false;
}
KviMd5::~KviMd5()
{
}
bool KviMd5::add(const unsigned char *data,unsigned long len)
{
if(m_bDone)return false;
kvi_u32_t *buf = (kvi_u32_t *)m_pBuf;
kvi_u32_t *bytes = (kvi_u32_t *)m_pBytes;
kvi_u32_t *in = (kvi_u32_t *)m_pIn;
// Update byte count and carry (this could be done with a long long?)
kvi_u32_t t = bytes[0];
if ((bytes[0] = t + len) < t)bytes[1]++;
// Space available (at least 1)
t = 64 - (t & 0x3f);
if (t > len)
{
kvi_fastmove((unsigned char *)in + 64 - t,data,len);
return true;
}
// First chunk is an odd size
kvi_fastmove((unsigned char *)in + 64 - t,data,t);
byteSwap(in, 16);
MD5Transform(buf,in);
data += t;
len -= t;
// Process data in 64-byte chunks
while (len >= 64)
{
kvi_fastmove(in,data,64);
byteSwap(in,16);
MD5Transform(buf,in);
data += 64;
len -= 64;
}
// Handle any remaining bytes of data.
kvi_memmove(in,data,len);
return true;
}
// ---------------------------------------------------------------------
/* Because this must add in the last bytes of the series it prevents anyone
from calling add after. */
KviStr KviMd5::result()
{
kvi_u32_t *buf = (kvi_u32_t *)m_pBuf;
kvi_u32_t *bytes = (kvi_u32_t *)m_pBytes;
kvi_u32_t *in = (kvi_u32_t *)m_pIn;
if(!m_bDone)
{
// Number of bytes in In
int count = bytes[0] & 0x3f;
unsigned char *p = (unsigned char *)in + count;
// Set the first char of padding to 0x80. There is always room.
*p++ = 0x80;
// Bytes of padding needed to make 56 bytes (-8..55)
count = 56 - 1 - count;
// Padding forces an extra block
if (count < 0)
{
kvi_memset(p,0,count + 8);
byteSwap(in, 16);
MD5Transform(buf,in);
p = (unsigned char *)in;
count = 56;
}
kvi_memset(p, 0, count);
byteSwap(in, 14);
// Append length in bits and transform
in[14] = bytes[0] << 3;
in[15] = bytes[1] << 3 | bytes[0] >> 29;
MD5Transform(buf,in);
byteSwap(buf,4);
m_bDone = true;
}
// m_pBuf now contains the md5 sum
KviStr ret;
ret.bufferToHex((char *)m_pBuf,16);
return ret;
}
|