1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
|
/* Libart_LGPL - library of basic graphic primitives
* Copyright (C) 1998-2000 Raph Levien
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include "config.h"
#include "art_svp_vpath_stroke.h"
#include <stdlib.h>
#include <math.h>
#include "art_misc.h"
#include "art_vpath.h"
#include "art_svp.h"
#ifdef ART_USE_NEW_INTERSECTOR
#include "art_svp_intersect.h"
#else
#include "art_svp_wind.h"
#endif
#include "art_svp_vpath.h"
#define EPSILON 1e-6
#define EPSILON_2 1e-12
#define yes_OPTIMIZE_INNER
/* Render an arc segment starting at (xc + x0, yc + y0) to (xc + x1,
yc + y1), centered at (xc, yc), and with given radius. Both x0^2 +
y0^2 and x1^2 + y1^2 should be equal to radius^2.
A positive value of radius means curve to the left, negative means
curve to the right.
*/
static void
art_svp_vpath_stroke_arc (ArtVpath **p_vpath, int *pn, int *pn_max,
double xc, double yc,
double x0, double y0,
double x1, double y1,
double radius,
double flatness)
{
double theta;
double th_0, th_1;
int n_pts;
int i;
double aradius;
aradius = fabs (radius);
theta = 2 * M_SQRT2 * sqrt (flatness / aradius);
th_0 = atan2 (y0, x0);
th_1 = atan2 (y1, x1);
if (radius > 0)
{
/* curve to the left */
if (th_0 < th_1) th_0 += M_PI * 2;
n_pts = ceil ((th_0 - th_1) / theta);
}
else
{
/* curve to the right */
if (th_1 < th_0) th_1 += M_PI * 2;
n_pts = ceil ((th_1 - th_0) / theta);
}
#ifdef VERBOSE
printf ("start %f %f; th_0 = %f, th_1 = %f, r = %f, theta = %f\n", x0, y0, th_0, th_1, radius, theta);
#endif
art_vpath_add_point (p_vpath, pn, pn_max,
ART_LINETO, xc + x0, yc + y0);
for (i = 1; i < n_pts; i++)
{
theta = th_0 + (th_1 - th_0) * i / n_pts;
art_vpath_add_point (p_vpath, pn, pn_max,
ART_LINETO, xc + cos (theta) * aradius,
yc + sin (theta) * aradius);
#ifdef VERBOSE
printf ("mid %f %f\n", cos (theta) * radius, sin (theta) * radius);
#endif
}
art_vpath_add_point (p_vpath, pn, pn_max,
ART_LINETO, xc + x1, yc + y1);
#ifdef VERBOSE
printf ("end %f %f\n", x1, y1);
#endif
}
/* Assume that forw and rev are at point i0. Bring them to i1,
joining with the vector i1 - i2.
This used to be true, but isn't now that the stroke_raw code is
filtering out (near)zero length vectors: {It so happens that all
invocations of this function maintain the precondition i1 = i0 + 1,
so we could decrease the number of arguments by one. We haven't
done that here, though.}
forw is to the line's right and rev is to its left.
Precondition: no zero-length vectors, otherwise a divide by
zero will happen. */
static void
render_seg (ArtVpath **p_forw, int *pn_forw, int *pn_forw_max,
ArtVpath **p_rev, int *pn_rev, int *pn_rev_max,
ArtVpath *vpath, int i0, int i1, int i2,
ArtPathStrokeJoinType join,
double line_width, double miter_limit, double flatness)
{
double dx0, dy0;
double dx1, dy1;
double dlx0, dly0;
double dlx1, dly1;
double dmx, dmy;
double dmr2;
double scale;
double cross;
#ifdef VERBOSE
printf ("join style = %d\n", join);
#endif
/* The vectors of the lines from i0 to i1 and i1 to i2. */
dx0 = vpath[i1].x - vpath[i0].x;
dy0 = vpath[i1].y - vpath[i0].y;
dx1 = vpath[i2].x - vpath[i1].x;
dy1 = vpath[i2].y - vpath[i1].y;
/* Set dl[xy]0 to the vector from i0 to i1, rotated counterclockwise
90 degrees, and scaled to the length of line_width. */
scale = line_width / sqrt (dx0 * dx0 + dy0 * dy0);
dlx0 = dy0 * scale;
dly0 = -dx0 * scale;
/* Set dl[xy]1 to the vector from i1 to i2, rotated counterclockwise
90 degrees, and scaled to the length of line_width. */
scale = line_width / sqrt (dx1 * dx1 + dy1 * dy1);
dlx1 = dy1 * scale;
dly1 = -dx1 * scale;
#ifdef VERBOSE
printf ("%% render_seg: (%g, %g) - (%g, %g) - (%g, %g)\n",
vpath[i0].x, vpath[i0].y,
vpath[i1].x, vpath[i1].y,
vpath[i2].x, vpath[i2].y);
printf ("%% render_seg: d[xy]0 = (%g, %g), dl[xy]0 = (%g, %g)\n",
dx0, dy0, dlx0, dly0);
printf ("%% render_seg: d[xy]1 = (%g, %g), dl[xy]1 = (%g, %g)\n",
dx1, dy1, dlx1, dly1);
#endif
/* now, forw's last point is expected to be colinear along d[xy]0
to point i0 - dl[xy]0, and rev with i0 + dl[xy]0. */
/* positive for positive area (i.e. left turn) */
cross = dx1 * dy0 - dx0 * dy1;
dmx = (dlx0 + dlx1) * 0.5;
dmy = (dly0 + dly1) * 0.5;
dmr2 = dmx * dmx + dmy * dmy;
if (join == ART_PATH_STROKE_JOIN_MITER &&
dmr2 * miter_limit * miter_limit < line_width * line_width)
join = ART_PATH_STROKE_JOIN_BEVEL;
/* the case when dmr2 is zero or very small bothers me
(i.e. near a 180 degree angle)
ALEX: So, we avoid the optimization when dmr2 is very small. This should
be safe since dmx/y is only used in optimization and in MITER case, and MITER
should be converted to BEVEL when dmr2 is very small. */
if (dmr2 > EPSILON_2)
{
scale = line_width * line_width / dmr2;
dmx *= scale;
dmy *= scale;
}
if (cross * cross < EPSILON_2 && dx0 * dx1 + dy0 * dy1 >= 0)
{
/* going straight */
#ifdef VERBOSE
printf ("%% render_seg: straight\n");
#endif
art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
}
else if (cross > 0)
{
/* left turn, forw is outside and rev is inside */
#ifdef VERBOSE
printf ("%% render_seg: left\n");
#endif
if (
#ifdef NO_OPTIMIZE_INNER
0 &&
#endif
(dmr2 > EPSILON_2) &&
/* check that i1 + dm[xy] is inside i0-i1 rectangle */
(dx0 + dmx) * dx0 + (dy0 + dmy) * dy0 > 0 &&
/* and that i1 + dm[xy] is inside i1-i2 rectangle */
((dx1 - dmx) * dx1 + (dy1 - dmy) * dy1 > 0)
#ifdef PEDANTIC_INNER
&&
/* check that i1 + dl[xy]1 is inside i0-i1 rectangle */
(dx0 + dlx1) * dx0 + (dy0 + dly1) * dy0 > 0 &&
/* and that i1 + dl[xy]0 is inside i1-i2 rectangle */
((dx1 - dlx0) * dx1 + (dy1 - dly0) * dy1 > 0)
#endif
)
{
/* can safely add single intersection point */
art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
ART_LINETO, vpath[i1].x + dmx, vpath[i1].y + dmy);
}
else
{
/* need to loop-de-loop the inside */
art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
ART_LINETO, vpath[i1].x, vpath[i1].y);
art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
ART_LINETO, vpath[i1].x + dlx1, vpath[i1].y + dly1);
}
if (join == ART_PATH_STROKE_JOIN_BEVEL)
{
/* bevel */
art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
ART_LINETO, vpath[i1].x - dlx1, vpath[i1].y - dly1);
}
else if (join == ART_PATH_STROKE_JOIN_MITER)
{
art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
ART_LINETO, vpath[i1].x - dmx, vpath[i1].y - dmy);
}
else if (join == ART_PATH_STROKE_JOIN_ROUND)
art_svp_vpath_stroke_arc (p_forw, pn_forw, pn_forw_max,
vpath[i1].x, vpath[i1].y,
-dlx0, -dly0,
-dlx1, -dly1,
line_width,
flatness);
}
else
{
/* right turn, rev is outside and forw is inside */
#ifdef VERBOSE
printf ("%% render_seg: right\n");
#endif
if (
#ifdef NO_OPTIMIZE_INNER
0 &&
#endif
(dmr2 > EPSILON_2) &&
/* check that i1 - dm[xy] is inside i0-i1 rectangle */
(dx0 - dmx) * dx0 + (dy0 - dmy) * dy0 > 0 &&
/* and that i1 - dm[xy] is inside i1-i2 rectangle */
((dx1 + dmx) * dx1 + (dy1 + dmy) * dy1 > 0)
#ifdef PEDANTIC_INNER
&&
/* check that i1 - dl[xy]1 is inside i0-i1 rectangle */
(dx0 - dlx1) * dx0 + (dy0 - dly1) * dy0 > 0 &&
/* and that i1 - dl[xy]0 is inside i1-i2 rectangle */
((dx1 + dlx0) * dx1 + (dy1 + dly0) * dy1 > 0)
#endif
)
{
/* can safely add single intersection point */
art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
ART_LINETO, vpath[i1].x - dmx, vpath[i1].y - dmy);
}
else
{
/* need to loop-de-loop the inside */
art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
ART_LINETO, vpath[i1].x, vpath[i1].y);
art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
ART_LINETO, vpath[i1].x - dlx1, vpath[i1].y - dly1);
}
if (join == ART_PATH_STROKE_JOIN_BEVEL)
{
/* bevel */
art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
ART_LINETO, vpath[i1].x + dlx1, vpath[i1].y + dly1);
}
else if (join == ART_PATH_STROKE_JOIN_MITER)
{
art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
ART_LINETO, vpath[i1].x + dmx, vpath[i1].y + dmy);
}
else if (join == ART_PATH_STROKE_JOIN_ROUND)
art_svp_vpath_stroke_arc (p_rev, pn_rev, pn_rev_max,
vpath[i1].x, vpath[i1].y,
dlx0, dly0,
dlx1, dly1,
-line_width,
flatness);
}
}
/* caps i1, under the assumption of a vector from i0 */
static void
render_cap (ArtVpath **p_result, int *pn_result, int *pn_result_max,
ArtVpath *vpath, int i0, int i1,
ArtPathStrokeCapType cap, double line_width, double flatness)
{
double dx0, dy0;
double dlx0, dly0;
double scale;
int n_pts;
int i;
dx0 = vpath[i1].x - vpath[i0].x;
dy0 = vpath[i1].y - vpath[i0].y;
/* Set dl[xy]0 to the vector from i0 to i1, rotated counterclockwise
90 degrees, and scaled to the length of line_width. */
scale = line_width / sqrt (dx0 * dx0 + dy0 * dy0);
dlx0 = dy0 * scale;
dly0 = -dx0 * scale;
#ifdef VERBOSE
printf ("cap style = %d\n", cap);
#endif
switch (cap)
{
case ART_PATH_STROKE_CAP_BUTT:
art_vpath_add_point (p_result, pn_result, pn_result_max,
ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
art_vpath_add_point (p_result, pn_result, pn_result_max,
ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
break;
case ART_PATH_STROKE_CAP_ROUND:
n_pts = ceil (M_PI / (2.0 * M_SQRT2 * sqrt (flatness / line_width)));
art_vpath_add_point (p_result, pn_result, pn_result_max,
ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
for (i = 1; i < n_pts; i++)
{
double theta, c_th, s_th;
theta = M_PI * i / n_pts;
c_th = cos (theta);
s_th = sin (theta);
art_vpath_add_point (p_result, pn_result, pn_result_max,
ART_LINETO,
vpath[i1].x - dlx0 * c_th - dly0 * s_th,
vpath[i1].y - dly0 * c_th + dlx0 * s_th);
}
art_vpath_add_point (p_result, pn_result, pn_result_max,
ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
break;
case ART_PATH_STROKE_CAP_SQUARE:
art_vpath_add_point (p_result, pn_result, pn_result_max,
ART_LINETO,
vpath[i1].x - dlx0 - dly0,
vpath[i1].y - dly0 + dlx0);
art_vpath_add_point (p_result, pn_result, pn_result_max,
ART_LINETO,
vpath[i1].x + dlx0 - dly0,
vpath[i1].y + dly0 + dlx0);
break;
}
}
/**
* art_svp_from_vpath_raw: Stroke a vector path, raw version
* @vpath: #ArtVPath to stroke.
* @join: Join style.
* @cap: Cap style.
* @line_width: Width of stroke.
* @miter_limit: Miter limit.
* @flatness: Flatness.
*
* Exactly the same as art_svp_vpath_stroke(), except that the resulting
* stroke outline may self-intersect and have regions of winding number
* greater than 1.
*
* Return value: Resulting raw stroked outline in svp format.
**/
ArtVpath *
art_svp_vpath_stroke_raw (ArtVpath *vpath,
ArtPathStrokeJoinType join,
ArtPathStrokeCapType cap,
double line_width,
double miter_limit,
double flatness)
{
int begin_idx, end_idx;
int i;
ArtVpath *forw, *rev;
int n_forw, n_rev;
int n_forw_max, n_rev_max;
ArtVpath *result;
int n_result, n_result_max;
double half_lw = 0.5 * line_width;
int closed;
int last, this, next, second;
double dx, dy;
n_forw_max = 16;
forw = art_new (ArtVpath, n_forw_max);
n_rev_max = 16;
rev = art_new (ArtVpath, n_rev_max);
n_result = 0;
n_result_max = 16;
result = art_new (ArtVpath, n_result_max);
for (begin_idx = 0; vpath[begin_idx].code != ART_END; begin_idx = end_idx)
{
n_forw = 0;
n_rev = 0;
closed = (vpath[begin_idx].code == ART_MOVETO);
/* we don't know what the first point joins with until we get to the
last point and see if it's closed. So we start with the second
line in the path.
Note: this is not strictly true (we now know it's closed from
the opening pathcode), but why fix code that isn't broken?
*/
this = begin_idx;
/* skip over identical points at the beginning of the subpath */
for (i = this + 1; vpath[i].code == ART_LINETO; i++)
{
dx = vpath[i].x - vpath[this].x;
dy = vpath[i].y - vpath[this].y;
if (dx * dx + dy * dy > EPSILON_2)
break;
}
next = i;
second = next;
/* invariant: this doesn't coincide with next */
while (vpath[next].code == ART_LINETO)
{
last = this;
this = next;
/* skip over identical points after the beginning of the subpath */
for (i = this + 1; vpath[i].code == ART_LINETO; i++)
{
dx = vpath[i].x - vpath[this].x;
dy = vpath[i].y - vpath[this].y;
if (dx * dx + dy * dy > EPSILON_2)
break;
}
next = i;
if (vpath[next].code != ART_LINETO)
{
/* reached end of path */
/* make "closed" detection conform to PostScript
semantics (i.e. explicit closepath code rather than
just the fact that end of the path is the beginning) */
if (closed &&
vpath[this].x == vpath[begin_idx].x &&
vpath[this].y == vpath[begin_idx].y)
{
int j;
/* path is closed, render join to beginning */
render_seg (&forw, &n_forw, &n_forw_max,
&rev, &n_rev, &n_rev_max,
vpath, last, this, second,
join, half_lw, miter_limit, flatness);
#ifdef VERBOSE
printf ("%% forw %d, rev %d\n", n_forw, n_rev);
#endif
/* do forward path */
art_vpath_add_point (&result, &n_result, &n_result_max,
ART_MOVETO, forw[n_forw - 1].x,
forw[n_forw - 1].y);
for (j = 0; j < n_forw; j++)
art_vpath_add_point (&result, &n_result, &n_result_max,
ART_LINETO, forw[j].x,
forw[j].y);
/* do reverse path, reversed */
art_vpath_add_point (&result, &n_result, &n_result_max,
ART_MOVETO, rev[0].x,
rev[0].y);
for (j = n_rev - 1; j >= 0; j--)
art_vpath_add_point (&result, &n_result, &n_result_max,
ART_LINETO, rev[j].x,
rev[j].y);
}
else
{
/* path is open */
int j;
/* add to forw rather than result to ensure that
forw has at least one point. */
render_cap (&forw, &n_forw, &n_forw_max,
vpath, last, this,
cap, half_lw, flatness);
art_vpath_add_point (&result, &n_result, &n_result_max,
ART_MOVETO, forw[0].x,
forw[0].y);
for (j = 1; j < n_forw; j++)
art_vpath_add_point (&result, &n_result, &n_result_max,
ART_LINETO, forw[j].x,
forw[j].y);
for (j = n_rev - 1; j >= 0; j--)
art_vpath_add_point (&result, &n_result, &n_result_max,
ART_LINETO, rev[j].x,
rev[j].y);
render_cap (&result, &n_result, &n_result_max,
vpath, second, begin_idx,
cap, half_lw, flatness);
art_vpath_add_point (&result, &n_result, &n_result_max,
ART_LINETO, forw[0].x,
forw[0].y);
}
}
else
render_seg (&forw, &n_forw, &n_forw_max,
&rev, &n_rev, &n_rev_max,
vpath, last, this, next,
join, half_lw, miter_limit, flatness);
}
end_idx = next;
}
art_free (forw);
art_free (rev);
#ifdef VERBOSE
printf ("%% n_result = %d\n", n_result);
#endif
art_vpath_add_point (&result, &n_result, &n_result_max, ART_END, 0, 0);
return result;
}
#define noVERBOSE
#ifdef VERBOSE
#define XOFF 50
#define YOFF 700
static void
print_ps_vpath (ArtVpath *vpath)
{
int i;
for (i = 0; vpath[i].code != ART_END; i++)
{
switch (vpath[i].code)
{
case ART_MOVETO:
printf ("%g %g moveto\n", XOFF + vpath[i].x, YOFF - vpath[i].y);
break;
case ART_LINETO:
printf ("%g %g lineto\n", XOFF + vpath[i].x, YOFF - vpath[i].y);
break;
default:
break;
}
}
printf ("stroke showpage\n");
}
static void
print_ps_svp (ArtSVP *vpath)
{
int i, j;
printf ("%% begin\n");
for (i = 0; i < vpath->n_segs; i++)
{
printf ("%g setgray\n", vpath->segs[i].dir ? 0.7 : 0);
for (j = 0; j < vpath->segs[i].n_points; j++)
{
printf ("%g %g %s\n",
XOFF + vpath->segs[i].points[j].x,
YOFF - vpath->segs[i].points[j].y,
j ? "lineto" : "moveto");
}
printf ("stroke\n");
}
printf ("showpage\n");
}
#endif
/* Render a vector path into a stroked outline.
Status of this routine:
Basic correctness: Only miter and bevel line joins are implemented,
and only butt line caps. Otherwise, seems to be fine.
Numerical stability: We cheat (adding random perturbation). Thus,
it seems very likely that no numerical stability problems will be
seen in practice.
Speed: Should be pretty good.
Precision: The perturbation fuzzes the coordinates slightly,
but not enough to be visible. */
/**
* art_svp_vpath_stroke: Stroke a vector path.
* @vpath: #ArtVPath to stroke.
* @join: Join style.
* @cap: Cap style.
* @line_width: Width of stroke.
* @miter_limit: Miter limit.
* @flatness: Flatness.
*
* Computes an svp representing the stroked outline of @vpath. The
* width of the stroked line is @line_width.
*
* Lines are joined according to the @join rule. Possible values are
* ART_PATH_STROKE_JOIN_MITER (for mitered joins),
* ART_PATH_STROKE_JOIN_ROUND (for round joins), and
* ART_PATH_STROKE_JOIN_BEVEL (for bevelled joins). The mitered join
* is converted to a bevelled join if the miter would extend to a
* distance of more than @miter_limit * @line_width from the actual
* join point.
*
* If there are open subpaths, the ends of these subpaths are capped
* according to the @cap rule. Possible values are
* ART_PATH_STROKE_CAP_BUTT (squared cap, extends exactly to end
* point), ART_PATH_STROKE_CAP_ROUND (rounded half-circle centered at
* the end point), and ART_PATH_STROKE_CAP_SQUARE (squared cap,
* extending half @line_width past the end point).
*
* The @flatness parameter controls the accuracy of the rendering. It
* is most important for determining the number of points to use to
* approximate circular arcs for round lines and joins. In general, the
* resulting vector path will be within @flatness pixels of the "ideal"
* path containing actual circular arcs. I reserve the right to use
* the @flatness parameter to convert bevelled joins to miters for very
* small turn angles, as this would reduce the number of points in the
* resulting outline path.
*
* The resulting path is "clean" with respect to self-intersections, i.e.
* the winding number is 0 or 1 at each point.
*
* Return value: Resulting stroked outline in svp format.
**/
ArtSVP *
art_svp_vpath_stroke (ArtVpath *vpath,
ArtPathStrokeJoinType join,
ArtPathStrokeCapType cap,
double line_width,
double miter_limit,
double flatness)
{
#ifdef ART_USE_NEW_INTERSECTOR
ArtVpath *vpath_stroke;
ArtSVP *svp, *svp2;
ArtSvpWriter *swr;
vpath_stroke = art_svp_vpath_stroke_raw (vpath, join, cap,
line_width, miter_limit, flatness);
#ifdef VERBOSE
print_ps_vpath (vpath_stroke);
#endif
svp = art_svp_from_vpath (vpath_stroke);
#ifdef VERBOSE
print_ps_svp (svp);
#endif
art_free (vpath_stroke);
swr = art_svp_writer_rewind_new (ART_WIND_RULE_NONZERO);
art_svp_intersector (svp, swr);
svp2 = art_svp_writer_rewind_reap (swr);
#ifdef VERBOSE
print_ps_svp (svp2);
#endif
art_svp_free (svp);
return svp2;
#else
ArtVpath *vpath_stroke, *vpath2;
ArtSVP *svp, *svp2, *svp3;
vpath_stroke = art_svp_vpath_stroke_raw (vpath, join, cap,
line_width, miter_limit, flatness);
#ifdef VERBOSE
print_ps_vpath (vpath_stroke);
#endif
vpath2 = art_vpath_perturb (vpath_stroke);
#ifdef VERBOSE
print_ps_vpath (vpath2);
#endif
art_free (vpath_stroke);
svp = art_svp_from_vpath (vpath2);
#ifdef VERBOSE
print_ps_svp (svp);
#endif
art_free (vpath2);
svp2 = art_svp_uncross (svp);
#ifdef VERBOSE
print_ps_svp (svp2);
#endif
art_svp_free (svp);
svp3 = art_svp_rewind_uncrossed (svp2, ART_WIND_RULE_NONZERO);
#ifdef VERBOSE
print_ps_svp (svp3);
#endif
art_svp_free (svp2);
return svp3;
#endif
}
|