summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/sqlite
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/sqlite')
-rw-r--r--src/3rdparty/sqlite/attach.c308
-rw-r--r--src/3rdparty/sqlite/auth.c219
-rw-r--r--src/3rdparty/sqlite/btree.c3579
-rw-r--r--src/3rdparty/sqlite/btree.h156
-rw-r--r--src/3rdparty/sqlite/btree_rb.c1488
-rw-r--r--src/3rdparty/sqlite/build.c2157
-rw-r--r--src/3rdparty/sqlite/config.h23
-rw-r--r--src/3rdparty/sqlite/copy.c110
-rw-r--r--src/3rdparty/sqlite/date.c873
-rw-r--r--src/3rdparty/sqlite/delete.c393
-rw-r--r--src/3rdparty/sqlite/expr.c1656
-rw-r--r--src/3rdparty/sqlite/func.c646
-rw-r--r--src/3rdparty/sqlite/hash.c356
-rw-r--r--src/3rdparty/sqlite/hash.h109
-rw-r--r--src/3rdparty/sqlite/insert.c919
-rw-r--r--src/3rdparty/sqlite/main.c1136
-rw-r--r--src/3rdparty/sqlite/opcodes.c138
-rw-r--r--src/3rdparty/sqlite/opcodes.h136
-rw-r--r--src/3rdparty/sqlite/os.c1818
-rw-r--r--src/3rdparty/sqlite/os.h192
-rw-r--r--src/3rdparty/sqlite/pager.c2220
-rw-r--r--src/3rdparty/sqlite/pager.h107
-rw-r--r--src/3rdparty/sqlite/parse.c4035
-rw-r--r--src/3rdparty/sqlite/parse.h130
-rw-r--r--src/3rdparty/sqlite/pragma.c699
-rw-r--r--src/3rdparty/sqlite/printf.c855
-rw-r--r--src/3rdparty/sqlite/random.c97
-rw-r--r--src/3rdparty/sqlite/select.c2404
-rw-r--r--src/3rdparty/sqlite/shell.c1350
-rw-r--r--src/3rdparty/sqlite/sqlite.h834
-rw-r--r--src/3rdparty/sqlite/sqliteInt.h1266
-rw-r--r--src/3rdparty/sqlite/table.c203
-rw-r--r--src/3rdparty/sqlite/tokenize.c679
-rw-r--r--src/3rdparty/sqlite/trigger.c764
-rw-r--r--src/3rdparty/sqlite/trolltech.patch39
-rw-r--r--src/3rdparty/sqlite/update.c452
-rw-r--r--src/3rdparty/sqlite/util.c1135
-rw-r--r--src/3rdparty/sqlite/vacuum.c320
-rw-r--r--src/3rdparty/sqlite/vdbe.c4885
-rw-r--r--src/3rdparty/sqlite/vdbe.h112
-rw-r--r--src/3rdparty/sqlite/vdbeInt.h303
-rw-r--r--src/3rdparty/sqlite/vdbeaux.c1061
-rw-r--r--src/3rdparty/sqlite/where.c1204
43 files changed, 41566 insertions, 0 deletions
diff --git a/src/3rdparty/sqlite/attach.c b/src/3rdparty/sqlite/attach.c
new file mode 100644
index 0000000..b333496
--- /dev/null
+++ b/src/3rdparty/sqlite/attach.c
@@ -0,0 +1,308 @@
+/*
+** 2003 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the ATTACH and DETACH commands.
+**
+** $Id: attach.c,v 1.10 2004/02/12 18:46:39 drh Exp $
+*/
+#include "sqliteInt.h"
+
+/*
+** This routine is called by the parser to process an ATTACH statement:
+**
+** ATTACH DATABASE filename AS dbname
+**
+** The pFilename and pDbname arguments are the tokens that define the
+** filename and dbname in the ATTACH statement.
+*/
+void sqliteAttach(Parse *pParse, Token *pFilename, Token *pDbname, Token *pKey){
+ Db *aNew;
+ int rc, i;
+ char *zFile, *zName;
+ sqlite *db;
+ Vdbe *v;
+
+ v = sqliteGetVdbe(pParse);
+ sqliteVdbeAddOp(v, OP_Halt, 0, 0);
+ if( pParse->explain ) return;
+ db = pParse->db;
+ if( db->file_format<4 ){
+ sqliteErrorMsg(pParse, "cannot attach auxiliary databases to an "
+ "older format master database", 0);
+ pParse->rc = SQLITE_ERROR;
+ return;
+ }
+ if( db->nDb>=MAX_ATTACHED+2 ){
+ sqliteErrorMsg(pParse, "too many attached databases - max %d",
+ MAX_ATTACHED);
+ pParse->rc = SQLITE_ERROR;
+ return;
+ }
+
+ zFile = 0;
+ sqliteSetNString(&zFile, pFilename->z, pFilename->n, 0);
+ if( zFile==0 ) return;
+ sqliteDequote(zFile);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( sqliteAuthCheck(pParse, SQLITE_ATTACH, zFile, 0, 0)!=SQLITE_OK ){
+ sqliteFree(zFile);
+ return;
+ }
+#endif /* SQLITE_OMIT_AUTHORIZATION */
+
+ zName = 0;
+ sqliteSetNString(&zName, pDbname->z, pDbname->n, 0);
+ if( zName==0 ) return;
+ sqliteDequote(zName);
+ for(i=0; i<db->nDb; i++){
+ if( db->aDb[i].zName && sqliteStrICmp(db->aDb[i].zName, zName)==0 ){
+ sqliteErrorMsg(pParse, "database %z is already in use", zName);
+ pParse->rc = SQLITE_ERROR;
+ sqliteFree(zFile);
+ return;
+ }
+ }
+
+ if( db->aDb==db->aDbStatic ){
+ aNew = sqliteMalloc( sizeof(db->aDb[0])*3 );
+ if( aNew==0 ) return;
+ memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
+ }else{
+ aNew = sqliteRealloc(db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
+ if( aNew==0 ) return;
+ }
+ db->aDb = aNew;
+ aNew = &db->aDb[db->nDb++];
+ memset(aNew, 0, sizeof(*aNew));
+ sqliteHashInit(&aNew->tblHash, SQLITE_HASH_STRING, 0);
+ sqliteHashInit(&aNew->idxHash, SQLITE_HASH_STRING, 0);
+ sqliteHashInit(&aNew->trigHash, SQLITE_HASH_STRING, 0);
+ sqliteHashInit(&aNew->aFKey, SQLITE_HASH_STRING, 1);
+ aNew->zName = zName;
+ rc = sqliteBtreeFactory(db, zFile, 0, MAX_PAGES, &aNew->pBt);
+ if( rc ){
+ sqliteErrorMsg(pParse, "unable to open database: %s", zFile);
+ }
+#if SQLITE_HAS_CODEC
+ {
+ extern int sqliteCodecAttach(sqlite*, int, void*, int);
+ char *zKey = 0;
+ int nKey;
+ if( pKey && pKey->z && pKey->n ){
+ sqliteSetNString(&zKey, pKey->z, pKey->n, 0);
+ sqliteDequote(zKey);
+ nKey = strlen(zKey);
+ }else{
+ zKey = 0;
+ nKey = 0;
+ }
+ sqliteCodecAttach(db, db->nDb-1, zKey, nKey);
+ }
+#endif
+ sqliteFree(zFile);
+ db->flags &= ~SQLITE_Initialized;
+ if( pParse->nErr ) return;
+ if( rc==SQLITE_OK ){
+ rc = sqliteInit(pParse->db, &pParse->zErrMsg);
+ }
+ if( rc ){
+ int i = db->nDb - 1;
+ assert( i>=2 );
+ if( db->aDb[i].pBt ){
+ sqliteBtreeClose(db->aDb[i].pBt);
+ db->aDb[i].pBt = 0;
+ }
+ sqliteResetInternalSchema(db, 0);
+ pParse->nErr++;
+ pParse->rc = SQLITE_ERROR;
+ }
+}
+
+/*
+** This routine is called by the parser to process a DETACH statement:
+**
+** DETACH DATABASE dbname
+**
+** The pDbname argument is the name of the database in the DETACH statement.
+*/
+void sqliteDetach(Parse *pParse, Token *pDbname){
+ int i;
+ sqlite *db;
+ Vdbe *v;
+
+ v = sqliteGetVdbe(pParse);
+ sqliteVdbeAddOp(v, OP_Halt, 0, 0);
+ if( pParse->explain ) return;
+ db = pParse->db;
+ for(i=0; i<db->nDb; i++){
+ if( db->aDb[i].pBt==0 || db->aDb[i].zName==0 ) continue;
+ if( strlen(db->aDb[i].zName)!=pDbname->n ) continue;
+ if( sqliteStrNICmp(db->aDb[i].zName, pDbname->z, pDbname->n)==0 ) break;
+ }
+ if( i>=db->nDb ){
+ sqliteErrorMsg(pParse, "no such database: %T", pDbname);
+ return;
+ }
+ if( i<2 ){
+ sqliteErrorMsg(pParse, "cannot detach database %T", pDbname);
+ return;
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( sqliteAuthCheck(pParse,SQLITE_DETACH,db->aDb[i].zName,0,0)!=SQLITE_OK ){
+ return;
+ }
+#endif /* SQLITE_OMIT_AUTHORIZATION */
+ sqliteBtreeClose(db->aDb[i].pBt);
+ db->aDb[i].pBt = 0;
+ sqliteFree(db->aDb[i].zName);
+ sqliteResetInternalSchema(db, i);
+ db->nDb--;
+ if( i<db->nDb ){
+ db->aDb[i] = db->aDb[db->nDb];
+ memset(&db->aDb[db->nDb], 0, sizeof(db->aDb[0]));
+ sqliteResetInternalSchema(db, i);
+ }
+}
+
+/*
+** Initialize a DbFixer structure. This routine must be called prior
+** to passing the structure to one of the sqliteFixAAAA() routines below.
+**
+** The return value indicates whether or not fixation is required. TRUE
+** means we do need to fix the database references, FALSE means we do not.
+*/
+int sqliteFixInit(
+ DbFixer *pFix, /* The fixer to be initialized */
+ Parse *pParse, /* Error messages will be written here */
+ int iDb, /* This is the database that must must be used */
+ const char *zType, /* "view", "trigger", or "index" */
+ const Token *pName /* Name of the view, trigger, or index */
+){
+ sqlite *db;
+
+ if( iDb<0 || iDb==1 ) return 0;
+ db = pParse->db;
+ assert( db->nDb>iDb );
+ pFix->pParse = pParse;
+ pFix->zDb = db->aDb[iDb].zName;
+ pFix->zType = zType;
+ pFix->pName = pName;
+ return 1;
+}
+
+/*
+** The following set of routines walk through the parse tree and assign
+** a specific database to all table references where the database name
+** was left unspecified in the original SQL statement. The pFix structure
+** must have been initialized by a prior call to sqliteFixInit().
+**
+** These routines are used to make sure that an index, trigger, or
+** view in one database does not refer to objects in a different database.
+** (Exception: indices, triggers, and views in the TEMP database are
+** allowed to refer to anything.) If a reference is explicitly made
+** to an object in a different database, an error message is added to
+** pParse->zErrMsg and these routines return non-zero. If everything
+** checks out, these routines return 0.
+*/
+int sqliteFixSrcList(
+ DbFixer *pFix, /* Context of the fixation */
+ SrcList *pList /* The Source list to check and modify */
+){
+ int i;
+ const char *zDb;
+
+ if( pList==0 ) return 0;
+ zDb = pFix->zDb;
+ for(i=0; i<pList->nSrc; i++){
+ if( pList->a[i].zDatabase==0 ){
+ pList->a[i].zDatabase = sqliteStrDup(zDb);
+ }else if( sqliteStrICmp(pList->a[i].zDatabase,zDb)!=0 ){
+ sqliteErrorMsg(pFix->pParse,
+ "%s %z cannot reference objects in database %s",
+ pFix->zType, sqliteStrNDup(pFix->pName->z, pFix->pName->n),
+ pList->a[i].zDatabase);
+ return 1;
+ }
+ if( sqliteFixSelect(pFix, pList->a[i].pSelect) ) return 1;
+ if( sqliteFixExpr(pFix, pList->a[i].pOn) ) return 1;
+ }
+ return 0;
+}
+int sqliteFixSelect(
+ DbFixer *pFix, /* Context of the fixation */
+ Select *pSelect /* The SELECT statement to be fixed to one database */
+){
+ while( pSelect ){
+ if( sqliteFixExprList(pFix, pSelect->pEList) ){
+ return 1;
+ }
+ if( sqliteFixSrcList(pFix, pSelect->pSrc) ){
+ return 1;
+ }
+ if( sqliteFixExpr(pFix, pSelect->pWhere) ){
+ return 1;
+ }
+ if( sqliteFixExpr(pFix, pSelect->pHaving) ){
+ return 1;
+ }
+ pSelect = pSelect->pPrior;
+ }
+ return 0;
+}
+int sqliteFixExpr(
+ DbFixer *pFix, /* Context of the fixation */
+ Expr *pExpr /* The expression to be fixed to one database */
+){
+ while( pExpr ){
+ if( sqliteFixSelect(pFix, pExpr->pSelect) ){
+ return 1;
+ }
+ if( sqliteFixExprList(pFix, pExpr->pList) ){
+ return 1;
+ }
+ if( sqliteFixExpr(pFix, pExpr->pRight) ){
+ return 1;
+ }
+ pExpr = pExpr->pLeft;
+ }
+ return 0;
+}
+int sqliteFixExprList(
+ DbFixer *pFix, /* Context of the fixation */
+ ExprList *pList /* The expression to be fixed to one database */
+){
+ int i;
+ if( pList==0 ) return 0;
+ for(i=0; i<pList->nExpr; i++){
+ if( sqliteFixExpr(pFix, pList->a[i].pExpr) ){
+ return 1;
+ }
+ }
+ return 0;
+}
+int sqliteFixTriggerStep(
+ DbFixer *pFix, /* Context of the fixation */
+ TriggerStep *pStep /* The trigger step be fixed to one database */
+){
+ while( pStep ){
+ if( sqliteFixSelect(pFix, pStep->pSelect) ){
+ return 1;
+ }
+ if( sqliteFixExpr(pFix, pStep->pWhere) ){
+ return 1;
+ }
+ if( sqliteFixExprList(pFix, pStep->pExprList) ){
+ return 1;
+ }
+ pStep = pStep->pNext;
+ }
+ return 0;
+}
diff --git a/src/3rdparty/sqlite/auth.c b/src/3rdparty/sqlite/auth.c
new file mode 100644
index 0000000..8f8077d
--- /dev/null
+++ b/src/3rdparty/sqlite/auth.c
@@ -0,0 +1,219 @@
+/*
+** 2003 January 11
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the sqlite_set_authorizer()
+** API. This facility is an optional feature of the library. Embedded
+** systems that do not need this facility may omit it by recompiling
+** the library with -DSQLITE_OMIT_AUTHORIZATION=1
+**
+** $Id: auth.c,v 1.12 2004/02/22 18:40:57 drh Exp $
+*/
+#include "sqliteInt.h"
+
+/*
+** All of the code in this file may be omitted by defining a single
+** macro.
+*/
+#ifndef SQLITE_OMIT_AUTHORIZATION
+
+/*
+** Set or clear the access authorization function.
+**
+** The access authorization function is be called during the compilation
+** phase to verify that the user has read and/or write access permission on
+** various fields of the database. The first argument to the auth function
+** is a copy of the 3rd argument to this routine. The second argument
+** to the auth function is one of these constants:
+**
+** SQLITE_COPY
+** SQLITE_CREATE_INDEX
+** SQLITE_CREATE_TABLE
+** SQLITE_CREATE_TEMP_INDEX
+** SQLITE_CREATE_TEMP_TABLE
+** SQLITE_CREATE_TEMP_TRIGGER
+** SQLITE_CREATE_TEMP_VIEW
+** SQLITE_CREATE_TRIGGER
+** SQLITE_CREATE_VIEW
+** SQLITE_DELETE
+** SQLITE_DROP_INDEX
+** SQLITE_DROP_TABLE
+** SQLITE_DROP_TEMP_INDEX
+** SQLITE_DROP_TEMP_TABLE
+** SQLITE_DROP_TEMP_TRIGGER
+** SQLITE_DROP_TEMP_VIEW
+** SQLITE_DROP_TRIGGER
+** SQLITE_DROP_VIEW
+** SQLITE_INSERT
+** SQLITE_PRAGMA
+** SQLITE_READ
+** SQLITE_SELECT
+** SQLITE_TRANSACTION
+** SQLITE_UPDATE
+**
+** The third and fourth arguments to the auth function are the name of
+** the table and the column that are being accessed. The auth function
+** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If
+** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY
+** means that the SQL statement will never-run - the sqlite_exec() call
+** will return with an error. SQLITE_IGNORE means that the SQL statement
+** should run but attempts to read the specified column will return NULL
+** and attempts to write the column will be ignored.
+**
+** Setting the auth function to NULL disables this hook. The default
+** setting of the auth function is NULL.
+*/
+int sqlite_set_authorizer(
+ sqlite *db,
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
+ void *pArg
+){
+ db->xAuth = xAuth;
+ db->pAuthArg = pArg;
+ return SQLITE_OK;
+}
+
+/*
+** Write an error message into pParse->zErrMsg that explains that the
+** user-supplied authorization function returned an illegal value.
+*/
+static void sqliteAuthBadReturnCode(Parse *pParse, int rc){
+ sqliteErrorMsg(pParse, "illegal return value (%d) from the "
+ "authorization function - should be SQLITE_OK, SQLITE_IGNORE, "
+ "or SQLITE_DENY", rc);
+ pParse->rc = SQLITE_MISUSE;
+}
+
+/*
+** The pExpr should be a TK_COLUMN expression. The table referred to
+** is in pTabList or else it is the NEW or OLD table of a trigger.
+** Check to see if it is OK to read this particular column.
+**
+** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN
+** instruction into a TK_NULL. If the auth function returns SQLITE_DENY,
+** then generate an error.
+*/
+void sqliteAuthRead(
+ Parse *pParse, /* The parser context */
+ Expr *pExpr, /* The expression to check authorization on */
+ SrcList *pTabList /* All table that pExpr might refer to */
+){
+ sqlite *db = pParse->db;
+ int rc;
+ Table *pTab; /* The table being read */
+ const char *zCol; /* Name of the column of the table */
+ int iSrc; /* Index in pTabList->a[] of table being read */
+ const char *zDBase; /* Name of database being accessed */
+
+ if( db->xAuth==0 ) return;
+ assert( pExpr->op==TK_COLUMN );
+ for(iSrc=0; iSrc<pTabList->nSrc; iSrc++){
+ if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break;
+ }
+ if( iSrc>=0 && iSrc<pTabList->nSrc ){
+ pTab = pTabList->a[iSrc].pTab;
+ }else{
+ /* This must be an attempt to read the NEW or OLD pseudo-tables
+ ** of a trigger.
+ */
+ TriggerStack *pStack; /* The stack of current triggers */
+ pStack = pParse->trigStack;
+ assert( pStack!=0 );
+ assert( pExpr->iTable==pStack->newIdx || pExpr->iTable==pStack->oldIdx );
+ pTab = pStack->pTab;
+ }
+ if( pTab==0 ) return;
+ if( pExpr->iColumn>=0 ){
+ assert( pExpr->iColumn<pTab->nCol );
+ zCol = pTab->aCol[pExpr->iColumn].zName;
+ }else if( pTab->iPKey>=0 ){
+ assert( pTab->iPKey<pTab->nCol );
+ zCol = pTab->aCol[pTab->iPKey].zName;
+ }else{
+ zCol = "ROWID";
+ }
+ assert( pExpr->iDb<db->nDb );
+ zDBase = db->aDb[pExpr->iDb].zName;
+ rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase,
+ pParse->zAuthContext);
+ if( rc==SQLITE_IGNORE ){
+ pExpr->op = TK_NULL;
+ }else if( rc==SQLITE_DENY ){
+ if( db->nDb>2 || pExpr->iDb!=0 ){
+ sqliteErrorMsg(pParse, "access to %s.%s.%s is prohibited",
+ zDBase, pTab->zName, zCol);
+ }else{
+ sqliteErrorMsg(pParse, "access to %s.%s is prohibited", pTab->zName,zCol);
+ }
+ pParse->rc = SQLITE_AUTH;
+ }else if( rc!=SQLITE_OK ){
+ sqliteAuthBadReturnCode(pParse, rc);
+ }
+}
+
+/*
+** Do an authorization check using the code and arguments given. Return
+** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY
+** is returned, then the error count and error message in pParse are
+** modified appropriately.
+*/
+int sqliteAuthCheck(
+ Parse *pParse,
+ int code,
+ const char *zArg1,
+ const char *zArg2,
+ const char *zArg3
+){
+ sqlite *db = pParse->db;
+ int rc;
+
+ if( db->xAuth==0 ){
+ return SQLITE_OK;
+ }
+ rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);
+ if( rc==SQLITE_DENY ){
+ sqliteErrorMsg(pParse, "not authorized");
+ pParse->rc = SQLITE_AUTH;
+ }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
+ rc = SQLITE_DENY;
+ sqliteAuthBadReturnCode(pParse, rc);
+ }
+ return rc;
+}
+
+/*
+** Push an authorization context. After this routine is called, the
+** zArg3 argument to authorization callbacks will be zContext until
+** popped. Or if pParse==0, this routine is a no-op.
+*/
+void sqliteAuthContextPush(
+ Parse *pParse,
+ AuthContext *pContext,
+ const char *zContext
+){
+ pContext->pParse = pParse;
+ if( pParse ){
+ pContext->zAuthContext = pParse->zAuthContext;
+ pParse->zAuthContext = zContext;
+ }
+}
+
+/*
+** Pop an authorization context that was previously pushed
+** by sqliteAuthContextPush
+*/
+void sqliteAuthContextPop(AuthContext *pContext){
+ if( pContext->pParse ){
+ pContext->pParse->zAuthContext = pContext->zAuthContext;
+ pContext->pParse = 0;
+ }
+}
+
+#endif /* SQLITE_OMIT_AUTHORIZATION */
diff --git a/src/3rdparty/sqlite/btree.c b/src/3rdparty/sqlite/btree.c
new file mode 100644
index 0000000..6b9c6b0
--- /dev/null
+++ b/src/3rdparty/sqlite/btree.c
@@ -0,0 +1,3579 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** $Id: btree.c,v 1.102 2004/02/14 17:35:07 drh Exp $
+**
+** This file implements a external (disk-based) database using BTrees.
+** For a detailed discussion of BTrees, refer to
+**
+** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
+** "Sorting And Searching", pages 473-480. Addison-Wesley
+** Publishing Company, Reading, Massachusetts.
+**
+** The basic idea is that each page of the file contains N database
+** entries and N+1 pointers to subpages.
+**
+** ----------------------------------------------------------------
+** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
+** ----------------------------------------------------------------
+**
+** All of the keys on the page that Ptr(0) points to have values less
+** than Key(0). All of the keys on page Ptr(1) and its subpages have
+** values greater than Key(0) and less than Key(1). All of the keys
+** on Ptr(N+1) and its subpages have values greater than Key(N). And
+** so forth.
+**
+** Finding a particular key requires reading O(log(M)) pages from the
+** disk where M is the number of entries in the tree.
+**
+** In this implementation, a single file can hold one or more separate
+** BTrees. Each BTree is identified by the index of its root page. The
+** key and data for any entry are combined to form the "payload". Up to
+** MX_LOCAL_PAYLOAD bytes of payload can be carried directly on the
+** database page. If the payload is larger than MX_LOCAL_PAYLOAD bytes
+** then surplus bytes are stored on overflow pages. The payload for an
+** entry and the preceding pointer are combined to form a "Cell". Each
+** page has a small header which contains the Ptr(N+1) pointer.
+**
+** The first page of the file contains a magic string used to verify that
+** the file really is a valid BTree database, a pointer to a list of unused
+** pages in the file, and some meta information. The root of the first
+** BTree begins on page 2 of the file. (Pages are numbered beginning with
+** 1, not 0.) Thus a minimum database contains 2 pages.
+*/
+#include "sqliteInt.h"
+#include "pager.h"
+#include "btree.h"
+#include <assert.h>
+
+/* Forward declarations */
+static BtOps sqliteBtreeOps;
+static BtCursorOps sqliteBtreeCursorOps;
+
+/*
+** Macros used for byteswapping. B is a pointer to the Btree
+** structure. This is needed to access the Btree.needSwab boolean
+** in order to tell if byte swapping is needed or not.
+** X is an unsigned integer. SWAB16 byte swaps a 16-bit integer.
+** SWAB32 byteswaps a 32-bit integer.
+*/
+#define SWAB16(B,X) ((B)->needSwab? swab16((u16)X) : ((u16)X))
+#define SWAB32(B,X) ((B)->needSwab? swab32(X) : (X))
+#define SWAB_ADD(B,X,A) \
+ if((B)->needSwab){ X=swab32(swab32(X)+A); }else{ X += (A); }
+
+/*
+** The following global variable - available only if SQLITE_TEST is
+** defined - is used to determine whether new databases are created in
+** native byte order or in non-native byte order. Non-native byte order
+** databases are created for testing purposes only. Under normal operation,
+** only native byte-order databases should be created, but we should be
+** able to read or write existing databases regardless of the byteorder.
+*/
+#ifdef SQLITE_TEST
+int btree_native_byte_order = 1;
+#else
+# define btree_native_byte_order 1
+#endif
+
+/*
+** Forward declarations of structures used only in this file.
+*/
+typedef struct PageOne PageOne;
+typedef struct MemPage MemPage;
+typedef struct PageHdr PageHdr;
+typedef struct Cell Cell;
+typedef struct CellHdr CellHdr;
+typedef struct FreeBlk FreeBlk;
+typedef struct OverflowPage OverflowPage;
+typedef struct FreelistInfo FreelistInfo;
+
+/*
+** All structures on a database page are aligned to 4-byte boundries.
+** This routine rounds up a number of bytes to the next multiple of 4.
+**
+** This might need to change for computer architectures that require
+** and 8-byte alignment boundry for structures.
+*/
+#define ROUNDUP(X) ((X+3) & ~3)
+
+/*
+** This is a magic string that appears at the beginning of every
+** SQLite database in order to identify the file as a real database.
+*/
+static const char zMagicHeader[] =
+ "** This file contains an SQLite 2.1 database **";
+#define MAGIC_SIZE (sizeof(zMagicHeader))
+
+/*
+** This is a magic integer also used to test the integrity of the database
+** file. This integer is used in addition to the string above so that
+** if the file is written on a little-endian architecture and read
+** on a big-endian architectures (or vice versa) we can detect the
+** problem.
+**
+** The number used was obtained at random and has no special
+** significance other than the fact that it represents a different
+** integer on little-endian and big-endian machines.
+*/
+#define MAGIC 0xdae37528
+
+/*
+** The first page of the database file contains a magic header string
+** to identify the file as an SQLite database file. It also contains
+** a pointer to the first free page of the file. Page 2 contains the
+** root of the principle BTree. The file might contain other BTrees
+** rooted on pages above 2.
+**
+** The first page also contains SQLITE_N_BTREE_META integers that
+** can be used by higher-level routines.
+**
+** Remember that pages are numbered beginning with 1. (See pager.c
+** for additional information.) Page 0 does not exist and a page
+** number of 0 is used to mean "no such page".
+*/
+struct PageOne {
+ char zMagic[MAGIC_SIZE]; /* String that identifies the file as a database */
+ int iMagic; /* Integer to verify correct byte order */
+ Pgno freeList; /* First free page in a list of all free pages */
+ int nFree; /* Number of pages on the free list */
+ int aMeta[SQLITE_N_BTREE_META-1]; /* User defined integers */
+};
+
+/*
+** Each database page has a header that is an instance of this
+** structure.
+**
+** PageHdr.firstFree is 0 if there is no free space on this page.
+** Otherwise, PageHdr.firstFree is the index in MemPage.u.aDisk[] of a
+** FreeBlk structure that describes the first block of free space.
+** All free space is defined by a linked list of FreeBlk structures.
+**
+** Data is stored in a linked list of Cell structures. PageHdr.firstCell
+** is the index into MemPage.u.aDisk[] of the first cell on the page. The
+** Cells are kept in sorted order.
+**
+** A Cell contains all information about a database entry and a pointer
+** to a child page that contains other entries less than itself. In
+** other words, the i-th Cell contains both Ptr(i) and Key(i). The
+** right-most pointer of the page is contained in PageHdr.rightChild.
+*/
+struct PageHdr {
+ Pgno rightChild; /* Child page that comes after all cells on this page */
+ u16 firstCell; /* Index in MemPage.u.aDisk[] of the first cell */
+ u16 firstFree; /* Index in MemPage.u.aDisk[] of the first free block */
+};
+
+/*
+** Entries on a page of the database are called "Cells". Each Cell
+** has a header and data. This structure defines the header. The
+** key and data (collectively the "payload") follow this header on
+** the database page.
+**
+** A definition of the complete Cell structure is given below. The
+** header for the cell must be defined first in order to do some
+** of the sizing #defines that follow.
+*/
+struct CellHdr {
+ Pgno leftChild; /* Child page that comes before this cell */
+ u16 nKey; /* Number of bytes in the key */
+ u16 iNext; /* Index in MemPage.u.aDisk[] of next cell in sorted order */
+ u8 nKeyHi; /* Upper 8 bits of key size for keys larger than 64K bytes */
+ u8 nDataHi; /* Upper 8 bits of data size when the size is more than 64K */
+ u16 nData; /* Number of bytes of data */
+};
+
+/*
+** The key and data size are split into a lower 16-bit segment and an
+** upper 8-bit segment in order to pack them together into a smaller
+** space. The following macros reassembly a key or data size back
+** into an integer.
+*/
+#define NKEY(b,h) (SWAB16(b,h.nKey) + h.nKeyHi*65536)
+#define NDATA(b,h) (SWAB16(b,h.nData) + h.nDataHi*65536)
+
+/*
+** The minimum size of a complete Cell. The Cell must contain a header
+** and at least 4 bytes of payload.
+*/
+#define MIN_CELL_SIZE (sizeof(CellHdr)+4)
+
+/*
+** The maximum number of database entries that can be held in a single
+** page of the database.
+*/
+#define MX_CELL ((SQLITE_USABLE_SIZE-sizeof(PageHdr))/MIN_CELL_SIZE)
+
+/*
+** The amount of usable space on a single page of the BTree. This is the
+** page size minus the overhead of the page header.
+*/
+#define USABLE_SPACE (SQLITE_USABLE_SIZE - sizeof(PageHdr))
+
+/*
+** The maximum amount of payload (in bytes) that can be stored locally for
+** a database entry. If the entry contains more data than this, the
+** extra goes onto overflow pages.
+**
+** This number is chosen so that at least 4 cells will fit on every page.
+*/
+#define MX_LOCAL_PAYLOAD ((USABLE_SPACE/4-(sizeof(CellHdr)+sizeof(Pgno)))&~3)
+
+/*
+** Data on a database page is stored as a linked list of Cell structures.
+** Both the key and the data are stored in aPayload[]. The key always comes
+** first. The aPayload[] field grows as necessary to hold the key and data,
+** up to a maximum of MX_LOCAL_PAYLOAD bytes. If the size of the key and
+** data combined exceeds MX_LOCAL_PAYLOAD bytes, then Cell.ovfl is the
+** page number of the first overflow page.
+**
+** Though this structure is fixed in size, the Cell on the database
+** page varies in size. Every cell has a CellHdr and at least 4 bytes
+** of payload space. Additional payload bytes (up to the maximum of
+** MX_LOCAL_PAYLOAD) and the Cell.ovfl value are allocated only as
+** needed.
+*/
+struct Cell {
+ CellHdr h; /* The cell header */
+ char aPayload[MX_LOCAL_PAYLOAD]; /* Key and data */
+ Pgno ovfl; /* The first overflow page */
+};
+
+/*
+** Free space on a page is remembered using a linked list of the FreeBlk
+** structures. Space on a database page is allocated in increments of
+** at least 4 bytes and is always aligned to a 4-byte boundry. The
+** linked list of FreeBlks is always kept in order by address.
+*/
+struct FreeBlk {
+ u16 iSize; /* Number of bytes in this block of free space */
+ u16 iNext; /* Index in MemPage.u.aDisk[] of the next free block */
+};
+
+/*
+** The number of bytes of payload that will fit on a single overflow page.
+*/
+#define OVERFLOW_SIZE (SQLITE_USABLE_SIZE-sizeof(Pgno))
+
+/*
+** When the key and data for a single entry in the BTree will not fit in
+** the MX_LOCAL_PAYLOAD bytes of space available on the database page,
+** then all extra bytes are written to a linked list of overflow pages.
+** Each overflow page is an instance of the following structure.
+**
+** Unused pages in the database are also represented by instances of
+** the OverflowPage structure. The PageOne.freeList field is the
+** page number of the first page in a linked list of unused database
+** pages.
+*/
+struct OverflowPage {
+ Pgno iNext;
+ char aPayload[OVERFLOW_SIZE];
+};
+
+/*
+** The PageOne.freeList field points to a linked list of overflow pages
+** hold information about free pages. The aPayload section of each
+** overflow page contains an instance of the following structure. The
+** aFree[] array holds the page number of nFree unused pages in the disk
+** file.
+*/
+struct FreelistInfo {
+ int nFree;
+ Pgno aFree[(OVERFLOW_SIZE-sizeof(int))/sizeof(Pgno)];
+};
+
+/*
+** For every page in the database file, an instance of the following structure
+** is stored in memory. The u.aDisk[] array contains the raw bits read from
+** the disk. The rest is auxiliary information held in memory only. The
+** auxiliary info is only valid for regular database pages - it is not
+** used for overflow pages and pages on the freelist.
+**
+** Of particular interest in the auxiliary info is the apCell[] entry. Each
+** apCell[] entry is a pointer to a Cell structure in u.aDisk[]. The cells are
+** put in this array so that they can be accessed in constant time, rather
+** than in linear time which would be needed if we had to walk the linked
+** list on every access.
+**
+** Note that apCell[] contains enough space to hold up to two more Cells
+** than can possibly fit on one page. In the steady state, every apCell[]
+** points to memory inside u.aDisk[]. But in the middle of an insert
+** operation, some apCell[] entries may temporarily point to data space
+** outside of u.aDisk[]. This is a transient situation that is quickly
+** resolved. But while it is happening, it is possible for a database
+** page to hold as many as two more cells than it might otherwise hold.
+** The extra two entries in apCell[] are an allowance for this situation.
+**
+** The pParent field points back to the parent page. This allows us to
+** walk up the BTree from any leaf to the root. Care must be taken to
+** unref() the parent page pointer when this page is no longer referenced.
+** The pageDestructor() routine handles that chore.
+*/
+struct MemPage {
+ union u_page_data {
+ char aDisk[SQLITE_PAGE_SIZE]; /* Page data stored on disk */
+ PageHdr hdr; /* Overlay page header */
+ } u;
+ u8 isInit; /* True if auxiliary data is initialized */
+ u8 idxShift; /* True if apCell[] indices have changed */
+ u8 isOverfull; /* Some apCell[] points outside u.aDisk[] */
+ MemPage *pParent; /* The parent of this page. NULL for root */
+ int idxParent; /* Index in pParent->apCell[] of this node */
+ int nFree; /* Number of free bytes in u.aDisk[] */
+ int nCell; /* Number of entries on this page */
+ Cell *apCell[MX_CELL+2]; /* All data entires in sorted order */
+};
+
+/*
+** The in-memory image of a disk page has the auxiliary information appended
+** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
+** that extra information.
+*/
+#define EXTRA_SIZE (sizeof(MemPage)-sizeof(union u_page_data))
+
+/*
+** Everything we need to know about an open database
+*/
+struct Btree {
+ BtOps *pOps; /* Function table */
+ Pager *pPager; /* The page cache */
+ BtCursor *pCursor; /* A list of all open cursors */
+ PageOne *page1; /* First page of the database */
+ u8 inTrans; /* True if a transaction is in progress */
+ u8 inCkpt; /* True if there is a checkpoint on the transaction */
+ u8 readOnly; /* True if the underlying file is readonly */
+ u8 needSwab; /* Need to byte-swapping */
+};
+typedef Btree Bt;
+
+/*
+** A cursor is a pointer to a particular entry in the BTree.
+** The entry is identified by its MemPage and the index in
+** MemPage.apCell[] of the entry.
+*/
+struct BtCursor {
+ BtCursorOps *pOps; /* Function table */
+ Btree *pBt; /* The Btree to which this cursor belongs */
+ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
+ BtCursor *pShared; /* Loop of cursors with the same root page */
+ Pgno pgnoRoot; /* The root page of this tree */
+ MemPage *pPage; /* Page that contains the entry */
+ int idx; /* Index of the entry in pPage->apCell[] */
+ u8 wrFlag; /* True if writable */
+ u8 eSkip; /* Determines if next step operation is a no-op */
+ u8 iMatch; /* compare result from last sqliteBtreeMoveto() */
+};
+
+/*
+** Legal values for BtCursor.eSkip.
+*/
+#define SKIP_NONE 0 /* Always step the cursor */
+#define SKIP_NEXT 1 /* The next sqliteBtreeNext() is a no-op */
+#define SKIP_PREV 2 /* The next sqliteBtreePrevious() is a no-op */
+#define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */
+
+/* Forward declarations */
+static int fileBtreeCloseCursor(BtCursor *pCur);
+
+/*
+** Routines for byte swapping.
+*/
+u16 swab16(u16 x){
+ return ((x & 0xff)<<8) | ((x>>8)&0xff);
+}
+u32 swab32(u32 x){
+ return ((x & 0xff)<<24) | ((x & 0xff00)<<8) |
+ ((x>>8) & 0xff00) | ((x>>24)&0xff);
+}
+
+/*
+** Compute the total number of bytes that a Cell needs on the main
+** database page. The number returned includes the Cell header,
+** local payload storage, and the pointer to overflow pages (if
+** applicable). Additional space allocated on overflow pages
+** is NOT included in the value returned from this routine.
+*/
+static int cellSize(Btree *pBt, Cell *pCell){
+ int n = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
+ if( n>MX_LOCAL_PAYLOAD ){
+ n = MX_LOCAL_PAYLOAD + sizeof(Pgno);
+ }else{
+ n = ROUNDUP(n);
+ }
+ n += sizeof(CellHdr);
+ return n;
+}
+
+/*
+** Defragment the page given. All Cells are moved to the
+** beginning of the page and all free space is collected
+** into one big FreeBlk at the end of the page.
+*/
+static void defragmentPage(Btree *pBt, MemPage *pPage){
+ int pc, i, n;
+ FreeBlk *pFBlk;
+ char newPage[SQLITE_USABLE_SIZE];
+
+ assert( sqlitepager_iswriteable(pPage) );
+ assert( pPage->isInit );
+ pc = sizeof(PageHdr);
+ pPage->u.hdr.firstCell = SWAB16(pBt, pc);
+ memcpy(newPage, pPage->u.aDisk, pc);
+ for(i=0; i<pPage->nCell; i++){
+ Cell *pCell = pPage->apCell[i];
+
+ /* This routine should never be called on an overfull page. The
+ ** following asserts verify that constraint. */
+ assert( Addr(pCell) > Addr(pPage) );
+ assert( Addr(pCell) < Addr(pPage) + SQLITE_USABLE_SIZE );
+
+ n = cellSize(pBt, pCell);
+ pCell->h.iNext = SWAB16(pBt, pc + n);
+ memcpy(&newPage[pc], pCell, n);
+ pPage->apCell[i] = (Cell*)&pPage->u.aDisk[pc];
+ pc += n;
+ }
+ assert( pPage->nFree==SQLITE_USABLE_SIZE-pc );
+ memcpy(pPage->u.aDisk, newPage, pc);
+ if( pPage->nCell>0 ){
+ pPage->apCell[pPage->nCell-1]->h.iNext = 0;
+ }
+ pFBlk = (FreeBlk*)&pPage->u.aDisk[pc];
+ pFBlk->iSize = SWAB16(pBt, SQLITE_USABLE_SIZE - pc);
+ pFBlk->iNext = 0;
+ pPage->u.hdr.firstFree = SWAB16(pBt, pc);
+ memset(&pFBlk[1], 0, SQLITE_USABLE_SIZE - pc - sizeof(FreeBlk));
+}
+
+/*
+** Allocate nByte bytes of space on a page. nByte must be a
+** multiple of 4.
+**
+** Return the index into pPage->u.aDisk[] of the first byte of
+** the new allocation. Or return 0 if there is not enough free
+** space on the page to satisfy the allocation request.
+**
+** If the page contains nBytes of free space but does not contain
+** nBytes of contiguous free space, then this routine automatically
+** calls defragementPage() to consolidate all free space before
+** allocating the new chunk.
+*/
+static int allocateSpace(Btree *pBt, MemPage *pPage, int nByte){
+ FreeBlk *p;
+ u16 *pIdx;
+ int start;
+ int iSize;
+#ifndef NDEBUG
+ int cnt = 0;
+#endif
+
+ assert( sqlitepager_iswriteable(pPage) );
+ assert( nByte==ROUNDUP(nByte) );
+ assert( pPage->isInit );
+ if( pPage->nFree<nByte || pPage->isOverfull ) return 0;
+ pIdx = &pPage->u.hdr.firstFree;
+ p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
+ while( (iSize = SWAB16(pBt, p->iSize))<nByte ){
+ assert( cnt++ < SQLITE_USABLE_SIZE/4 );
+ if( p->iNext==0 ){
+ defragmentPage(pBt, pPage);
+ pIdx = &pPage->u.hdr.firstFree;
+ }else{
+ pIdx = &p->iNext;
+ }
+ p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
+ }
+ if( iSize==nByte ){
+ start = SWAB16(pBt, *pIdx);
+ *pIdx = p->iNext;
+ }else{
+ FreeBlk *pNew;
+ start = SWAB16(pBt, *pIdx);
+ pNew = (FreeBlk*)&pPage->u.aDisk[start + nByte];
+ pNew->iNext = p->iNext;
+ pNew->iSize = SWAB16(pBt, iSize - nByte);
+ *pIdx = SWAB16(pBt, start + nByte);
+ }
+ pPage->nFree -= nByte;
+ return start;
+}
+
+/*
+** Return a section of the MemPage.u.aDisk[] to the freelist.
+** The first byte of the new free block is pPage->u.aDisk[start]
+** and the size of the block is "size" bytes. Size must be
+** a multiple of 4.
+**
+** Most of the effort here is involved in coalesing adjacent
+** free blocks into a single big free block.
+*/
+static void freeSpace(Btree *pBt, MemPage *pPage, int start, int size){
+ int end = start + size;
+ u16 *pIdx, idx;
+ FreeBlk *pFBlk;
+ FreeBlk *pNew;
+ FreeBlk *pNext;
+ int iSize;
+
+ assert( sqlitepager_iswriteable(pPage) );
+ assert( size == ROUNDUP(size) );
+ assert( start == ROUNDUP(start) );
+ assert( pPage->isInit );
+ pIdx = &pPage->u.hdr.firstFree;
+ idx = SWAB16(pBt, *pIdx);
+ while( idx!=0 && idx<start ){
+ pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
+ iSize = SWAB16(pBt, pFBlk->iSize);
+ if( idx + iSize == start ){
+ pFBlk->iSize = SWAB16(pBt, iSize + size);
+ if( idx + iSize + size == SWAB16(pBt, pFBlk->iNext) ){
+ pNext = (FreeBlk*)&pPage->u.aDisk[idx + iSize + size];
+ if( pBt->needSwab ){
+ pFBlk->iSize = swab16((u16)swab16(pNext->iSize)+iSize+size);
+ }else{
+ pFBlk->iSize += pNext->iSize;
+ }
+ pFBlk->iNext = pNext->iNext;
+ }
+ pPage->nFree += size;
+ return;
+ }
+ pIdx = &pFBlk->iNext;
+ idx = SWAB16(pBt, *pIdx);
+ }
+ pNew = (FreeBlk*)&pPage->u.aDisk[start];
+ if( idx != end ){
+ pNew->iSize = SWAB16(pBt, size);
+ pNew->iNext = SWAB16(pBt, idx);
+ }else{
+ pNext = (FreeBlk*)&pPage->u.aDisk[idx];
+ pNew->iSize = SWAB16(pBt, size + SWAB16(pBt, pNext->iSize));
+ pNew->iNext = pNext->iNext;
+ }
+ *pIdx = SWAB16(pBt, start);
+ pPage->nFree += size;
+}
+
+/*
+** Initialize the auxiliary information for a disk block.
+**
+** The pParent parameter must be a pointer to the MemPage which
+** is the parent of the page being initialized. The root of the
+** BTree (usually page 2) has no parent and so for that page,
+** pParent==NULL.
+**
+** Return SQLITE_OK on success. If we see that the page does
+** not contain a well-formed database page, then return
+** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
+** guarantee that the page is well-formed. It only shows that
+** we failed to detect any corruption.
+*/
+static int initPage(Bt *pBt, MemPage *pPage, Pgno pgnoThis, MemPage *pParent){
+ int idx; /* An index into pPage->u.aDisk[] */
+ Cell *pCell; /* A pointer to a Cell in pPage->u.aDisk[] */
+ FreeBlk *pFBlk; /* A pointer to a free block in pPage->u.aDisk[] */
+ int sz; /* The size of a Cell in bytes */
+ int freeSpace; /* Amount of free space on the page */
+
+ if( pPage->pParent ){
+ assert( pPage->pParent==pParent );
+ return SQLITE_OK;
+ }
+ if( pParent ){
+ pPage->pParent = pParent;
+ sqlitepager_ref(pParent);
+ }
+ if( pPage->isInit ) return SQLITE_OK;
+ pPage->isInit = 1;
+ pPage->nCell = 0;
+ freeSpace = USABLE_SPACE;
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
+ while( idx!=0 ){
+ if( idx>SQLITE_USABLE_SIZE-MIN_CELL_SIZE ) goto page_format_error;
+ if( idx<sizeof(PageHdr) ) goto page_format_error;
+ if( idx!=ROUNDUP(idx) ) goto page_format_error;
+ pCell = (Cell*)&pPage->u.aDisk[idx];
+ sz = cellSize(pBt, pCell);
+ if( idx+sz > SQLITE_USABLE_SIZE ) goto page_format_error;
+ freeSpace -= sz;
+ pPage->apCell[pPage->nCell++] = pCell;
+ idx = SWAB16(pBt, pCell->h.iNext);
+ }
+ pPage->nFree = 0;
+ idx = SWAB16(pBt, pPage->u.hdr.firstFree);
+ while( idx!=0 ){
+ int iNext;
+ if( idx>SQLITE_USABLE_SIZE-sizeof(FreeBlk) ) goto page_format_error;
+ if( idx<sizeof(PageHdr) ) goto page_format_error;
+ pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
+ pPage->nFree += SWAB16(pBt, pFBlk->iSize);
+ iNext = SWAB16(pBt, pFBlk->iNext);
+ if( iNext>0 && iNext <= idx ) goto page_format_error;
+ idx = iNext;
+ }
+ if( pPage->nCell==0 && pPage->nFree==0 ){
+ /* As a special case, an uninitialized root page appears to be
+ ** an empty database */
+ return SQLITE_OK;
+ }
+ if( pPage->nFree!=freeSpace ) goto page_format_error;
+ return SQLITE_OK;
+
+page_format_error:
+ return SQLITE_CORRUPT;
+}
+
+/*
+** Set up a raw page so that it looks like a database page holding
+** no entries.
+*/
+static void zeroPage(Btree *pBt, MemPage *pPage){
+ PageHdr *pHdr;
+ FreeBlk *pFBlk;
+ assert( sqlitepager_iswriteable(pPage) );
+ memset(pPage, 0, SQLITE_USABLE_SIZE);
+ pHdr = &pPage->u.hdr;
+ pHdr->firstCell = 0;
+ pHdr->firstFree = SWAB16(pBt, sizeof(*pHdr));
+ pFBlk = (FreeBlk*)&pHdr[1];
+ pFBlk->iNext = 0;
+ pPage->nFree = SQLITE_USABLE_SIZE - sizeof(*pHdr);
+ pFBlk->iSize = SWAB16(pBt, pPage->nFree);
+ pPage->nCell = 0;
+ pPage->isOverfull = 0;
+}
+
+/*
+** This routine is called when the reference count for a page
+** reaches zero. We need to unref the pParent pointer when that
+** happens.
+*/
+static void pageDestructor(void *pData){
+ MemPage *pPage = (MemPage*)pData;
+ if( pPage->pParent ){
+ MemPage *pParent = pPage->pParent;
+ pPage->pParent = 0;
+ sqlitepager_unref(pParent);
+ }
+}
+
+/*
+** Open a new database.
+**
+** Actually, this routine just sets up the internal data structures
+** for accessing the database. We do not open the database file
+** until the first page is loaded.
+**
+** zFilename is the name of the database file. If zFilename is NULL
+** a new database with a random name is created. This randomly named
+** database file will be deleted when sqliteBtreeClose() is called.
+*/
+int sqliteBtreeOpen(
+ const char *zFilename, /* Name of the file containing the BTree database */
+ int omitJournal, /* if TRUE then do not journal this file */
+ int nCache, /* How many pages in the page cache */
+ Btree **ppBtree /* Pointer to new Btree object written here */
+){
+ Btree *pBt;
+ int rc;
+
+ /*
+ ** The following asserts make sure that structures used by the btree are
+ ** the right size. This is to guard against size changes that result
+ ** when compiling on a different architecture.
+ */
+ assert( sizeof(u32)==4 );
+ assert( sizeof(u16)==2 );
+ assert( sizeof(Pgno)==4 );
+ assert( sizeof(PageHdr)==8 );
+ assert( sizeof(CellHdr)==12 );
+ assert( sizeof(FreeBlk)==4 );
+ assert( sizeof(OverflowPage)==SQLITE_USABLE_SIZE );
+ assert( sizeof(FreelistInfo)==OVERFLOW_SIZE );
+ assert( sizeof(ptr)==sizeof(char*) );
+ assert( sizeof(uptr)==sizeof(ptr) );
+
+ pBt = sqliteMalloc( sizeof(*pBt) );
+ if( pBt==0 ){
+ *ppBtree = 0;
+ return SQLITE_NOMEM;
+ }
+ if( nCache<10 ) nCache = 10;
+ rc = sqlitepager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE,
+ !omitJournal);
+ if( rc!=SQLITE_OK ){
+ if( pBt->pPager ) sqlitepager_close(pBt->pPager);
+ sqliteFree(pBt);
+ *ppBtree = 0;
+ return rc;
+ }
+ sqlitepager_set_destructor(pBt->pPager, pageDestructor);
+ pBt->pCursor = 0;
+ pBt->page1 = 0;
+ pBt->readOnly = sqlitepager_isreadonly(pBt->pPager);
+ pBt->pOps = &sqliteBtreeOps;
+ *ppBtree = pBt;
+ return SQLITE_OK;
+}
+
+/*
+** Close an open database and invalidate all cursors.
+*/
+static int fileBtreeClose(Btree *pBt){
+ while( pBt->pCursor ){
+ fileBtreeCloseCursor(pBt->pCursor);
+ }
+ sqlitepager_close(pBt->pPager);
+ sqliteFree(pBt);
+ return SQLITE_OK;
+}
+
+/*
+** Change the limit on the number of pages allowed in the cache.
+**
+** The maximum number of cache pages is set to the absolute
+** value of mxPage. If mxPage is negative, the pager will
+** operate asynchronously - it will not stop to do fsync()s
+** to insure data is written to the disk surface before
+** continuing. Transactions still work if synchronous is off,
+** and the database cannot be corrupted if this program
+** crashes. But if the operating system crashes or there is
+** an abrupt power failure when synchronous is off, the database
+** could be left in an inconsistent and unrecoverable state.
+** Synchronous is on by default so database corruption is not
+** normally a worry.
+*/
+static int fileBtreeSetCacheSize(Btree *pBt, int mxPage){
+ sqlitepager_set_cachesize(pBt->pPager, mxPage);
+ return SQLITE_OK;
+}
+
+/*
+** Change the way data is synced to disk in order to increase or decrease
+** how well the database resists damage due to OS crashes and power
+** failures. Level 1 is the same as asynchronous (no syncs() occur and
+** there is a high probability of damage) Level 2 is the default. There
+** is a very low but non-zero probability of damage. Level 3 reduces the
+** probability of damage to near zero but with a write performance reduction.
+*/
+static int fileBtreeSetSafetyLevel(Btree *pBt, int level){
+ sqlitepager_set_safety_level(pBt->pPager, level);
+ return SQLITE_OK;
+}
+
+/*
+** Get a reference to page1 of the database file. This will
+** also acquire a readlock on that file.
+**
+** SQLITE_OK is returned on success. If the file is not a
+** well-formed database file, then SQLITE_CORRUPT is returned.
+** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
+** is returned if we run out of memory. SQLITE_PROTOCOL is returned
+** if there is a locking protocol violation.
+*/
+static int lockBtree(Btree *pBt){
+ int rc;
+ if( pBt->page1 ) return SQLITE_OK;
+ rc = sqlitepager_get(pBt->pPager, 1, (void**)&pBt->page1);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Do some checking to help insure the file we opened really is
+ ** a valid database file.
+ */
+ if( sqlitepager_pagecount(pBt->pPager)>0 ){
+ PageOne *pP1 = pBt->page1;
+ if( strcmp(pP1->zMagic,zMagicHeader)!=0 ||
+ (pP1->iMagic!=MAGIC && swab32(pP1->iMagic)!=MAGIC) ){
+ rc = SQLITE_NOTADB;
+ goto page1_init_failed;
+ }
+ pBt->needSwab = pP1->iMagic!=MAGIC;
+ }
+ return rc;
+
+page1_init_failed:
+ sqlitepager_unref(pBt->page1);
+ pBt->page1 = 0;
+ return rc;
+}
+
+/*
+** If there are no outstanding cursors and we are not in the middle
+** of a transaction but there is a read lock on the database, then
+** this routine unrefs the first page of the database file which
+** has the effect of releasing the read lock.
+**
+** If there are any outstanding cursors, this routine is a no-op.
+**
+** If there is a transaction in progress, this routine is a no-op.
+*/
+static void unlockBtreeIfUnused(Btree *pBt){
+ if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->page1!=0 ){
+ sqlitepager_unref(pBt->page1);
+ pBt->page1 = 0;
+ pBt->inTrans = 0;
+ pBt->inCkpt = 0;
+ }
+}
+
+/*
+** Create a new database by initializing the first two pages of the
+** file.
+*/
+static int newDatabase(Btree *pBt){
+ MemPage *pRoot;
+ PageOne *pP1;
+ int rc;
+ if( sqlitepager_pagecount(pBt->pPager)>1 ) return SQLITE_OK;
+ pP1 = pBt->page1;
+ rc = sqlitepager_write(pBt->page1);
+ if( rc ) return rc;
+ rc = sqlitepager_get(pBt->pPager, 2, (void**)&pRoot);
+ if( rc ) return rc;
+ rc = sqlitepager_write(pRoot);
+ if( rc ){
+ sqlitepager_unref(pRoot);
+ return rc;
+ }
+ strcpy(pP1->zMagic, zMagicHeader);
+ if( btree_native_byte_order ){
+ pP1->iMagic = MAGIC;
+ pBt->needSwab = 0;
+ }else{
+ pP1->iMagic = swab32(MAGIC);
+ pBt->needSwab = 1;
+ }
+ zeroPage(pBt, pRoot);
+ sqlitepager_unref(pRoot);
+ return SQLITE_OK;
+}
+
+/*
+** Attempt to start a new transaction.
+**
+** A transaction must be started before attempting any changes
+** to the database. None of the following routines will work
+** unless a transaction is started first:
+**
+** sqliteBtreeCreateTable()
+** sqliteBtreeCreateIndex()
+** sqliteBtreeClearTable()
+** sqliteBtreeDropTable()
+** sqliteBtreeInsert()
+** sqliteBtreeDelete()
+** sqliteBtreeUpdateMeta()
+*/
+static int fileBtreeBeginTrans(Btree *pBt){
+ int rc;
+ if( pBt->inTrans ) return SQLITE_ERROR;
+ if( pBt->readOnly ) return SQLITE_READONLY;
+ if( pBt->page1==0 ){
+ rc = lockBtree(pBt);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+ rc = sqlitepager_begin(pBt->page1);
+ if( rc==SQLITE_OK ){
+ rc = newDatabase(pBt);
+ }
+ if( rc==SQLITE_OK ){
+ pBt->inTrans = 1;
+ pBt->inCkpt = 0;
+ }else{
+ unlockBtreeIfUnused(pBt);
+ }
+ return rc;
+}
+
+/*
+** Commit the transaction currently in progress.
+**
+** This will release the write lock on the database file. If there
+** are no active cursors, it also releases the read lock.
+*/
+static int fileBtreeCommit(Btree *pBt){
+ int rc;
+ rc = pBt->readOnly ? SQLITE_OK : sqlitepager_commit(pBt->pPager);
+ pBt->inTrans = 0;
+ pBt->inCkpt = 0;
+ unlockBtreeIfUnused(pBt);
+ return rc;
+}
+
+/*
+** Rollback the transaction in progress. All cursors will be
+** invalided by this operation. Any attempt to use a cursor
+** that was open at the beginning of this operation will result
+** in an error.
+**
+** This will release the write lock on the database file. If there
+** are no active cursors, it also releases the read lock.
+*/
+static int fileBtreeRollback(Btree *pBt){
+ int rc;
+ BtCursor *pCur;
+ if( pBt->inTrans==0 ) return SQLITE_OK;
+ pBt->inTrans = 0;
+ pBt->inCkpt = 0;
+ rc = pBt->readOnly ? SQLITE_OK : sqlitepager_rollback(pBt->pPager);
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
+ if( pCur->pPage && pCur->pPage->isInit==0 ){
+ sqlitepager_unref(pCur->pPage);
+ pCur->pPage = 0;
+ }
+ }
+ unlockBtreeIfUnused(pBt);
+ return rc;
+}
+
+/*
+** Set the checkpoint for the current transaction. The checkpoint serves
+** as a sub-transaction that can be rolled back independently of the
+** main transaction. You must start a transaction before starting a
+** checkpoint. The checkpoint is ended automatically if the transaction
+** commits or rolls back.
+**
+** Only one checkpoint may be active at a time. It is an error to try
+** to start a new checkpoint if another checkpoint is already active.
+*/
+static int fileBtreeBeginCkpt(Btree *pBt){
+ int rc;
+ if( !pBt->inTrans || pBt->inCkpt ){
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ rc = pBt->readOnly ? SQLITE_OK : sqlitepager_ckpt_begin(pBt->pPager);
+ pBt->inCkpt = 1;
+ return rc;
+}
+
+
+/*
+** Commit a checkpoint to transaction currently in progress. If no
+** checkpoint is active, this is a no-op.
+*/
+static int fileBtreeCommitCkpt(Btree *pBt){
+ int rc;
+ if( pBt->inCkpt && !pBt->readOnly ){
+ rc = sqlitepager_ckpt_commit(pBt->pPager);
+ }else{
+ rc = SQLITE_OK;
+ }
+ pBt->inCkpt = 0;
+ return rc;
+}
+
+/*
+** Rollback the checkpoint to the current transaction. If there
+** is no active checkpoint or transaction, this routine is a no-op.
+**
+** All cursors will be invalided by this operation. Any attempt
+** to use a cursor that was open at the beginning of this operation
+** will result in an error.
+*/
+static int fileBtreeRollbackCkpt(Btree *pBt){
+ int rc;
+ BtCursor *pCur;
+ if( pBt->inCkpt==0 || pBt->readOnly ) return SQLITE_OK;
+ rc = sqlitepager_ckpt_rollback(pBt->pPager);
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
+ if( pCur->pPage && pCur->pPage->isInit==0 ){
+ sqlitepager_unref(pCur->pPage);
+ pCur->pPage = 0;
+ }
+ }
+ pBt->inCkpt = 0;
+ return rc;
+}
+
+/*
+** Create a new cursor for the BTree whose root is on the page
+** iTable. The act of acquiring a cursor gets a read lock on
+** the database file.
+**
+** If wrFlag==0, then the cursor can only be used for reading.
+** If wrFlag==1, then the cursor can be used for reading or for
+** writing if other conditions for writing are also met. These
+** are the conditions that must be met in order for writing to
+** be allowed:
+**
+** 1: The cursor must have been opened with wrFlag==1
+**
+** 2: No other cursors may be open with wrFlag==0 on the same table
+**
+** 3: The database must be writable (not on read-only media)
+**
+** 4: There must be an active transaction.
+**
+** Condition 2 warrants further discussion. If any cursor is opened
+** on a table with wrFlag==0, that prevents all other cursors from
+** writing to that table. This is a kind of "read-lock". When a cursor
+** is opened with wrFlag==0 it is guaranteed that the table will not
+** change as long as the cursor is open. This allows the cursor to
+** do a sequential scan of the table without having to worry about
+** entries being inserted or deleted during the scan. Cursors should
+** be opened with wrFlag==0 only if this read-lock property is needed.
+** That is to say, cursors should be opened with wrFlag==0 only if they
+** intend to use the sqliteBtreeNext() system call. All other cursors
+** should be opened with wrFlag==1 even if they never really intend
+** to write.
+**
+** No checking is done to make sure that page iTable really is the
+** root page of a b-tree. If it is not, then the cursor acquired
+** will not work correctly.
+*/
+static int fileBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur){
+ int rc;
+ BtCursor *pCur, *pRing;
+
+ if( pBt->page1==0 ){
+ rc = lockBtree(pBt);
+ if( rc!=SQLITE_OK ){
+ *ppCur = 0;
+ return rc;
+ }
+ }
+ pCur = sqliteMalloc( sizeof(*pCur) );
+ if( pCur==0 ){
+ rc = SQLITE_NOMEM;
+ goto create_cursor_exception;
+ }
+ pCur->pgnoRoot = (Pgno)iTable;
+ rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pCur->pPage);
+ if( rc!=SQLITE_OK ){
+ goto create_cursor_exception;
+ }
+ rc = initPage(pBt, pCur->pPage, pCur->pgnoRoot, 0);
+ if( rc!=SQLITE_OK ){
+ goto create_cursor_exception;
+ }
+ pCur->pOps = &sqliteBtreeCursorOps;
+ pCur->pBt = pBt;
+ pCur->wrFlag = wrFlag;
+ pCur->idx = 0;
+ pCur->eSkip = SKIP_INVALID;
+ pCur->pNext = pBt->pCursor;
+ if( pCur->pNext ){
+ pCur->pNext->pPrev = pCur;
+ }
+ pCur->pPrev = 0;
+ pRing = pBt->pCursor;
+ while( pRing && pRing->pgnoRoot!=pCur->pgnoRoot ){ pRing = pRing->pNext; }
+ if( pRing ){
+ pCur->pShared = pRing->pShared;
+ pRing->pShared = pCur;
+ }else{
+ pCur->pShared = pCur;
+ }
+ pBt->pCursor = pCur;
+ *ppCur = pCur;
+ return SQLITE_OK;
+
+create_cursor_exception:
+ *ppCur = 0;
+ if( pCur ){
+ if( pCur->pPage ) sqlitepager_unref(pCur->pPage);
+ sqliteFree(pCur);
+ }
+ unlockBtreeIfUnused(pBt);
+ return rc;
+}
+
+/*
+** Close a cursor. The read lock on the database file is released
+** when the last cursor is closed.
+*/
+static int fileBtreeCloseCursor(BtCursor *pCur){
+ Btree *pBt = pCur->pBt;
+ if( pCur->pPrev ){
+ pCur->pPrev->pNext = pCur->pNext;
+ }else{
+ pBt->pCursor = pCur->pNext;
+ }
+ if( pCur->pNext ){
+ pCur->pNext->pPrev = pCur->pPrev;
+ }
+ if( pCur->pPage ){
+ sqlitepager_unref(pCur->pPage);
+ }
+ if( pCur->pShared!=pCur ){
+ BtCursor *pRing = pCur->pShared;
+ while( pRing->pShared!=pCur ){ pRing = pRing->pShared; }
+ pRing->pShared = pCur->pShared;
+ }
+ unlockBtreeIfUnused(pBt);
+ sqliteFree(pCur);
+ return SQLITE_OK;
+}
+
+/*
+** Make a temporary cursor by filling in the fields of pTempCur.
+** The temporary cursor is not on the cursor list for the Btree.
+*/
+static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
+ memcpy(pTempCur, pCur, sizeof(*pCur));
+ pTempCur->pNext = 0;
+ pTempCur->pPrev = 0;
+ if( pTempCur->pPage ){
+ sqlitepager_ref(pTempCur->pPage);
+ }
+}
+
+/*
+** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
+** function above.
+*/
+static void releaseTempCursor(BtCursor *pCur){
+ if( pCur->pPage ){
+ sqlitepager_unref(pCur->pPage);
+ }
+}
+
+/*
+** Set *pSize to the number of bytes of key in the entry the
+** cursor currently points to. Always return SQLITE_OK.
+** Failure is not possible. If the cursor is not currently
+** pointing to an entry (which can happen, for example, if
+** the database is empty) then *pSize is set to 0.
+*/
+static int fileBtreeKeySize(BtCursor *pCur, int *pSize){
+ Cell *pCell;
+ MemPage *pPage;
+
+ pPage = pCur->pPage;
+ assert( pPage!=0 );
+ if( pCur->idx >= pPage->nCell ){
+ *pSize = 0;
+ }else{
+ pCell = pPage->apCell[pCur->idx];
+ *pSize = NKEY(pCur->pBt, pCell->h);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Read payload information from the entry that the pCur cursor is
+** pointing to. Begin reading the payload at "offset" and read
+** a total of "amt" bytes. Put the result in zBuf.
+**
+** This routine does not make a distinction between key and data.
+** It just reads bytes from the payload area.
+*/
+static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
+ char *aPayload;
+ Pgno nextPage;
+ int rc;
+ Btree *pBt = pCur->pBt;
+ assert( pCur!=0 && pCur->pPage!=0 );
+ assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
+ aPayload = pCur->pPage->apCell[pCur->idx]->aPayload;
+ if( offset<MX_LOCAL_PAYLOAD ){
+ int a = amt;
+ if( a+offset>MX_LOCAL_PAYLOAD ){
+ a = MX_LOCAL_PAYLOAD - offset;
+ }
+ memcpy(zBuf, &aPayload[offset], a);
+ if( a==amt ){
+ return SQLITE_OK;
+ }
+ offset = 0;
+ zBuf += a;
+ amt -= a;
+ }else{
+ offset -= MX_LOCAL_PAYLOAD;
+ }
+ if( amt>0 ){
+ nextPage = SWAB32(pBt, pCur->pPage->apCell[pCur->idx]->ovfl);
+ }
+ while( amt>0 && nextPage ){
+ OverflowPage *pOvfl;
+ rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
+ if( rc!=0 ){
+ return rc;
+ }
+ nextPage = SWAB32(pBt, pOvfl->iNext);
+ if( offset<OVERFLOW_SIZE ){
+ int a = amt;
+ if( a + offset > OVERFLOW_SIZE ){
+ a = OVERFLOW_SIZE - offset;
+ }
+ memcpy(zBuf, &pOvfl->aPayload[offset], a);
+ offset = 0;
+ amt -= a;
+ zBuf += a;
+ }else{
+ offset -= OVERFLOW_SIZE;
+ }
+ sqlitepager_unref(pOvfl);
+ }
+ if( amt>0 ){
+ return SQLITE_CORRUPT;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Read part of the key associated with cursor pCur. A maximum
+** of "amt" bytes will be transfered into zBuf[]. The transfer
+** begins at "offset". The number of bytes actually read is
+** returned.
+**
+** Change: It used to be that the amount returned will be smaller
+** than the amount requested if there are not enough bytes in the key
+** to satisfy the request. But now, it must be the case that there
+** is enough data available to satisfy the request. If not, an exception
+** is raised. The change was made in an effort to boost performance
+** by eliminating unneeded tests.
+*/
+static int fileBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
+ MemPage *pPage;
+
+ assert( amt>=0 );
+ assert( offset>=0 );
+ assert( pCur->pPage!=0 );
+ pPage = pCur->pPage;
+ if( pCur->idx >= pPage->nCell ){
+ return 0;
+ }
+ assert( amt+offset <= NKEY(pCur->pBt, pPage->apCell[pCur->idx]->h) );
+ getPayload(pCur, offset, amt, zBuf);
+ return amt;
+}
+
+/*
+** Set *pSize to the number of bytes of data in the entry the
+** cursor currently points to. Always return SQLITE_OK.
+** Failure is not possible. If the cursor is not currently
+** pointing to an entry (which can happen, for example, if
+** the database is empty) then *pSize is set to 0.
+*/
+static int fileBtreeDataSize(BtCursor *pCur, int *pSize){
+ Cell *pCell;
+ MemPage *pPage;
+
+ pPage = pCur->pPage;
+ assert( pPage!=0 );
+ if( pCur->idx >= pPage->nCell ){
+ *pSize = 0;
+ }else{
+ pCell = pPage->apCell[pCur->idx];
+ *pSize = NDATA(pCur->pBt, pCell->h);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Read part of the data associated with cursor pCur. A maximum
+** of "amt" bytes will be transfered into zBuf[]. The transfer
+** begins at "offset". The number of bytes actually read is
+** returned. The amount returned will be smaller than the
+** amount requested if there are not enough bytes in the data
+** to satisfy the request.
+*/
+static int fileBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
+ Cell *pCell;
+ MemPage *pPage;
+
+ assert( amt>=0 );
+ assert( offset>=0 );
+ assert( pCur->pPage!=0 );
+ pPage = pCur->pPage;
+ if( pCur->idx >= pPage->nCell ){
+ return 0;
+ }
+ pCell = pPage->apCell[pCur->idx];
+ assert( amt+offset <= NDATA(pCur->pBt, pCell->h) );
+ getPayload(pCur, offset + NKEY(pCur->pBt, pCell->h), amt, zBuf);
+ return amt;
+}
+
+/*
+** Compare an external key against the key on the entry that pCur points to.
+**
+** The external key is pKey and is nKey bytes long. The last nIgnore bytes
+** of the key associated with pCur are ignored, as if they do not exist.
+** (The normal case is for nIgnore to be zero in which case the entire
+** internal key is used in the comparison.)
+**
+** The comparison result is written to *pRes as follows:
+**
+** *pRes<0 This means pCur<pKey
+**
+** *pRes==0 This means pCur==pKey for all nKey bytes
+**
+** *pRes>0 This means pCur>pKey
+**
+** When one key is an exact prefix of the other, the shorter key is
+** considered less than the longer one. In order to be equal the
+** keys must be exactly the same length. (The length of the pCur key
+** is the actual key length minus nIgnore bytes.)
+*/
+static int fileBtreeKeyCompare(
+ BtCursor *pCur, /* Pointer to entry to compare against */
+ const void *pKey, /* Key to compare against entry that pCur points to */
+ int nKey, /* Number of bytes in pKey */
+ int nIgnore, /* Ignore this many bytes at the end of pCur */
+ int *pResult /* Write the result here */
+){
+ Pgno nextPage;
+ int n, c, rc, nLocal;
+ Cell *pCell;
+ Btree *pBt = pCur->pBt;
+ const char *zKey = (const char*)pKey;
+
+ assert( pCur->pPage );
+ assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
+ pCell = pCur->pPage->apCell[pCur->idx];
+ nLocal = NKEY(pBt, pCell->h) - nIgnore;
+ if( nLocal<0 ) nLocal = 0;
+ n = nKey<nLocal ? nKey : nLocal;
+ if( n>MX_LOCAL_PAYLOAD ){
+ n = MX_LOCAL_PAYLOAD;
+ }
+ c = memcmp(pCell->aPayload, zKey, n);
+ if( c!=0 ){
+ *pResult = c;
+ return SQLITE_OK;
+ }
+ zKey += n;
+ nKey -= n;
+ nLocal -= n;
+ nextPage = SWAB32(pBt, pCell->ovfl);
+ while( nKey>0 && nLocal>0 ){
+ OverflowPage *pOvfl;
+ if( nextPage==0 ){
+ return SQLITE_CORRUPT;
+ }
+ rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
+ if( rc ){
+ return rc;
+ }
+ nextPage = SWAB32(pBt, pOvfl->iNext);
+ n = nKey<nLocal ? nKey : nLocal;
+ if( n>OVERFLOW_SIZE ){
+ n = OVERFLOW_SIZE;
+ }
+ c = memcmp(pOvfl->aPayload, zKey, n);
+ sqlitepager_unref(pOvfl);
+ if( c!=0 ){
+ *pResult = c;
+ return SQLITE_OK;
+ }
+ nKey -= n;
+ nLocal -= n;
+ zKey += n;
+ }
+ if( c==0 ){
+ c = nLocal - nKey;
+ }
+ *pResult = c;
+ return SQLITE_OK;
+}
+
+/*
+** Move the cursor down to a new child page. The newPgno argument is the
+** page number of the child page in the byte order of the disk image.
+*/
+static int moveToChild(BtCursor *pCur, int newPgno){
+ int rc;
+ MemPage *pNewPage;
+ Btree *pBt = pCur->pBt;
+
+ newPgno = SWAB32(pBt, newPgno);
+ rc = sqlitepager_get(pBt->pPager, newPgno, (void**)&pNewPage);
+ if( rc ) return rc;
+ rc = initPage(pBt, pNewPage, newPgno, pCur->pPage);
+ if( rc ) return rc;
+ assert( pCur->idx>=pCur->pPage->nCell
+ || pCur->pPage->apCell[pCur->idx]->h.leftChild==SWAB32(pBt,newPgno) );
+ assert( pCur->idx<pCur->pPage->nCell
+ || pCur->pPage->u.hdr.rightChild==SWAB32(pBt,newPgno) );
+ pNewPage->idxParent = pCur->idx;
+ pCur->pPage->idxShift = 0;
+ sqlitepager_unref(pCur->pPage);
+ pCur->pPage = pNewPage;
+ pCur->idx = 0;
+ if( pNewPage->nCell<1 ){
+ return SQLITE_CORRUPT;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Move the cursor up to the parent page.
+**
+** pCur->idx is set to the cell index that contains the pointer
+** to the page we are coming from. If we are coming from the
+** right-most child page then pCur->idx is set to one more than
+** the largest cell index.
+*/
+static void moveToParent(BtCursor *pCur){
+ Pgno oldPgno;
+ MemPage *pParent;
+ MemPage *pPage;
+ int idxParent;
+ pPage = pCur->pPage;
+ assert( pPage!=0 );
+ pParent = pPage->pParent;
+ assert( pParent!=0 );
+ idxParent = pPage->idxParent;
+ sqlitepager_ref(pParent);
+ sqlitepager_unref(pPage);
+ pCur->pPage = pParent;
+ assert( pParent->idxShift==0 );
+ if( pParent->idxShift==0 ){
+ pCur->idx = idxParent;
+#ifndef NDEBUG
+ /* Verify that pCur->idx is the correct index to point back to the child
+ ** page we just came from
+ */
+ oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
+ if( pCur->idx<pParent->nCell ){
+ assert( pParent->apCell[idxParent]->h.leftChild==oldPgno );
+ }else{
+ assert( pParent->u.hdr.rightChild==oldPgno );
+ }
+#endif
+ }else{
+ /* The MemPage.idxShift flag indicates that cell indices might have
+ ** changed since idxParent was set and hence idxParent might be out
+ ** of date. So recompute the parent cell index by scanning all cells
+ ** and locating the one that points to the child we just came from.
+ */
+ int i;
+ pCur->idx = pParent->nCell;
+ oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
+ for(i=0; i<pParent->nCell; i++){
+ if( pParent->apCell[i]->h.leftChild==oldPgno ){
+ pCur->idx = i;
+ break;
+ }
+ }
+ }
+}
+
+/*
+** Move the cursor to the root page
+*/
+static int moveToRoot(BtCursor *pCur){
+ MemPage *pNew;
+ int rc;
+ Btree *pBt = pCur->pBt;
+
+ rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pNew);
+ if( rc ) return rc;
+ rc = initPage(pBt, pNew, pCur->pgnoRoot, 0);
+ if( rc ) return rc;
+ sqlitepager_unref(pCur->pPage);
+ pCur->pPage = pNew;
+ pCur->idx = 0;
+ return SQLITE_OK;
+}
+
+/*
+** Move the cursor down to the left-most leaf entry beneath the
+** entry to which it is currently pointing.
+*/
+static int moveToLeftmost(BtCursor *pCur){
+ Pgno pgno;
+ int rc;
+
+ while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
+ rc = moveToChild(pCur, pgno);
+ if( rc ) return rc;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Move the cursor down to the right-most leaf entry beneath the
+** page to which it is currently pointing. Notice the difference
+** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
+** finds the left-most entry beneath the *entry* whereas moveToRightmost()
+** finds the right-most entry beneath the *page*.
+*/
+static int moveToRightmost(BtCursor *pCur){
+ Pgno pgno;
+ int rc;
+
+ while( (pgno = pCur->pPage->u.hdr.rightChild)!=0 ){
+ pCur->idx = pCur->pPage->nCell;
+ rc = moveToChild(pCur, pgno);
+ if( rc ) return rc;
+ }
+ pCur->idx = pCur->pPage->nCell - 1;
+ return SQLITE_OK;
+}
+
+/* Move the cursor to the first entry in the table. Return SQLITE_OK
+** on success. Set *pRes to 0 if the cursor actually points to something
+** or set *pRes to 1 if the table is empty.
+*/
+static int fileBtreeFirst(BtCursor *pCur, int *pRes){
+ int rc;
+ if( pCur->pPage==0 ) return SQLITE_ABORT;
+ rc = moveToRoot(pCur);
+ if( rc ) return rc;
+ if( pCur->pPage->nCell==0 ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ *pRes = 0;
+ rc = moveToLeftmost(pCur);
+ pCur->eSkip = SKIP_NONE;
+ return rc;
+}
+
+/* Move the cursor to the last entry in the table. Return SQLITE_OK
+** on success. Set *pRes to 0 if the cursor actually points to something
+** or set *pRes to 1 if the table is empty.
+*/
+static int fileBtreeLast(BtCursor *pCur, int *pRes){
+ int rc;
+ if( pCur->pPage==0 ) return SQLITE_ABORT;
+ rc = moveToRoot(pCur);
+ if( rc ) return rc;
+ assert( pCur->pPage->isInit );
+ if( pCur->pPage->nCell==0 ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ *pRes = 0;
+ rc = moveToRightmost(pCur);
+ pCur->eSkip = SKIP_NONE;
+ return rc;
+}
+
+/* Move the cursor so that it points to an entry near pKey.
+** Return a success code.
+**
+** If an exact match is not found, then the cursor is always
+** left pointing at a leaf page which would hold the entry if it
+** were present. The cursor might point to an entry that comes
+** before or after the key.
+**
+** The result of comparing the key with the entry to which the
+** cursor is left pointing is stored in pCur->iMatch. The same
+** value is also written to *pRes if pRes!=NULL. The meaning of
+** this value is as follows:
+**
+** *pRes<0 The cursor is left pointing at an entry that
+** is smaller than pKey or if the table is empty
+** and the cursor is therefore left point to nothing.
+**
+** *pRes==0 The cursor is left pointing at an entry that
+** exactly matches pKey.
+**
+** *pRes>0 The cursor is left pointing at an entry that
+** is larger than pKey.
+*/
+static
+int fileBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
+ int rc;
+ if( pCur->pPage==0 ) return SQLITE_ABORT;
+ pCur->eSkip = SKIP_NONE;
+ rc = moveToRoot(pCur);
+ if( rc ) return rc;
+ for(;;){
+ int lwr, upr;
+ Pgno chldPg;
+ MemPage *pPage = pCur->pPage;
+ int c = -1; /* pRes return if table is empty must be -1 */
+ lwr = 0;
+ upr = pPage->nCell-1;
+ while( lwr<=upr ){
+ pCur->idx = (lwr+upr)/2;
+ rc = fileBtreeKeyCompare(pCur, pKey, nKey, 0, &c);
+ if( rc ) return rc;
+ if( c==0 ){
+ pCur->iMatch = c;
+ if( pRes ) *pRes = 0;
+ return SQLITE_OK;
+ }
+ if( c<0 ){
+ lwr = pCur->idx+1;
+ }else{
+ upr = pCur->idx-1;
+ }
+ }
+ assert( lwr==upr+1 );
+ assert( pPage->isInit );
+ if( lwr>=pPage->nCell ){
+ chldPg = pPage->u.hdr.rightChild;
+ }else{
+ chldPg = pPage->apCell[lwr]->h.leftChild;
+ }
+ if( chldPg==0 ){
+ pCur->iMatch = c;
+ if( pRes ) *pRes = c;
+ return SQLITE_OK;
+ }
+ pCur->idx = lwr;
+ rc = moveToChild(pCur, chldPg);
+ if( rc ) return rc;
+ }
+ /* NOT REACHED */
+}
+
+/*
+** Advance the cursor to the next entry in the database. If
+** successful then set *pRes=0. If the cursor
+** was already pointing to the last entry in the database before
+** this routine was called, then set *pRes=1.
+*/
+static int fileBtreeNext(BtCursor *pCur, int *pRes){
+ int rc;
+ MemPage *pPage = pCur->pPage;
+ assert( pRes!=0 );
+ if( pPage==0 ){
+ *pRes = 1;
+ return SQLITE_ABORT;
+ }
+ assert( pPage->isInit );
+ assert( pCur->eSkip!=SKIP_INVALID );
+ if( pPage->nCell==0 ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ assert( pCur->idx<pPage->nCell );
+ if( pCur->eSkip==SKIP_NEXT ){
+ pCur->eSkip = SKIP_NONE;
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ pCur->eSkip = SKIP_NONE;
+ pCur->idx++;
+ if( pCur->idx>=pPage->nCell ){
+ if( pPage->u.hdr.rightChild ){
+ rc = moveToChild(pCur, pPage->u.hdr.rightChild);
+ if( rc ) return rc;
+ rc = moveToLeftmost(pCur);
+ *pRes = 0;
+ return rc;
+ }
+ do{
+ if( pPage->pParent==0 ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ moveToParent(pCur);
+ pPage = pCur->pPage;
+ }while( pCur->idx>=pPage->nCell );
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ *pRes = 0;
+ if( pPage->u.hdr.rightChild==0 ){
+ return SQLITE_OK;
+ }
+ rc = moveToLeftmost(pCur);
+ return rc;
+}
+
+/*
+** Step the cursor to the back to the previous entry in the database. If
+** successful then set *pRes=0. If the cursor
+** was already pointing to the first entry in the database before
+** this routine was called, then set *pRes=1.
+*/
+static int fileBtreePrevious(BtCursor *pCur, int *pRes){
+ int rc;
+ Pgno pgno;
+ MemPage *pPage;
+ pPage = pCur->pPage;
+ if( pPage==0 ){
+ *pRes = 1;
+ return SQLITE_ABORT;
+ }
+ assert( pPage->isInit );
+ assert( pCur->eSkip!=SKIP_INVALID );
+ if( pPage->nCell==0 ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ if( pCur->eSkip==SKIP_PREV ){
+ pCur->eSkip = SKIP_NONE;
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ pCur->eSkip = SKIP_NONE;
+ assert( pCur->idx>=0 );
+ if( (pgno = pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
+ rc = moveToChild(pCur, pgno);
+ if( rc ) return rc;
+ rc = moveToRightmost(pCur);
+ }else{
+ while( pCur->idx==0 ){
+ if( pPage->pParent==0 ){
+ if( pRes ) *pRes = 1;
+ return SQLITE_OK;
+ }
+ moveToParent(pCur);
+ pPage = pCur->pPage;
+ }
+ pCur->idx--;
+ rc = SQLITE_OK;
+ }
+ *pRes = 0;
+ return rc;
+}
+
+/*
+** Allocate a new page from the database file.
+**
+** The new page is marked as dirty. (In other words, sqlitepager_write()
+** has already been called on the new page.) The new page has also
+** been referenced and the calling routine is responsible for calling
+** sqlitepager_unref() on the new page when it is done.
+**
+** SQLITE_OK is returned on success. Any other return value indicates
+** an error. *ppPage and *pPgno are undefined in the event of an error.
+** Do not invoke sqlitepager_unref() on *ppPage if an error is returned.
+**
+** If the "nearby" parameter is not 0, then a (feeble) effort is made to
+** locate a page close to the page number "nearby". This can be used in an
+** attempt to keep related pages close to each other in the database file,
+** which in turn can make database access faster.
+*/
+static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){
+ PageOne *pPage1 = pBt->page1;
+ int rc;
+ if( pPage1->freeList ){
+ OverflowPage *pOvfl;
+ FreelistInfo *pInfo;
+
+ rc = sqlitepager_write(pPage1);
+ if( rc ) return rc;
+ SWAB_ADD(pBt, pPage1->nFree, -1);
+ rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
+ (void**)&pOvfl);
+ if( rc ) return rc;
+ rc = sqlitepager_write(pOvfl);
+ if( rc ){
+ sqlitepager_unref(pOvfl);
+ return rc;
+ }
+ pInfo = (FreelistInfo*)pOvfl->aPayload;
+ if( pInfo->nFree==0 ){
+ *pPgno = SWAB32(pBt, pPage1->freeList);
+ pPage1->freeList = pOvfl->iNext;
+ *ppPage = (MemPage*)pOvfl;
+ }else{
+ int closest, n;
+ n = SWAB32(pBt, pInfo->nFree);
+ if( n>1 && nearby>0 ){
+ int i, dist;
+ closest = 0;
+ dist = SWAB32(pBt, pInfo->aFree[0]) - nearby;
+ if( dist<0 ) dist = -dist;
+ for(i=1; i<n; i++){
+ int d2 = SWAB32(pBt, pInfo->aFree[i]) - nearby;
+ if( d2<0 ) d2 = -d2;
+ if( d2<dist ) closest = i;
+ }
+ }else{
+ closest = 0;
+ }
+ SWAB_ADD(pBt, pInfo->nFree, -1);
+ *pPgno = SWAB32(pBt, pInfo->aFree[closest]);
+ pInfo->aFree[closest] = pInfo->aFree[n-1];
+ rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
+ sqlitepager_unref(pOvfl);
+ if( rc==SQLITE_OK ){
+ sqlitepager_dont_rollback(*ppPage);
+ rc = sqlitepager_write(*ppPage);
+ }
+ }
+ }else{
+ *pPgno = sqlitepager_pagecount(pBt->pPager) + 1;
+ rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
+ if( rc ) return rc;
+ rc = sqlitepager_write(*ppPage);
+ }
+ return rc;
+}
+
+/*
+** Add a page of the database file to the freelist. Either pgno or
+** pPage but not both may be 0.
+**
+** sqlitepager_unref() is NOT called for pPage.
+*/
+static int freePage(Btree *pBt, void *pPage, Pgno pgno){
+ PageOne *pPage1 = pBt->page1;
+ OverflowPage *pOvfl = (OverflowPage*)pPage;
+ int rc;
+ int needUnref = 0;
+ MemPage *pMemPage;
+
+ if( pgno==0 ){
+ assert( pOvfl!=0 );
+ pgno = sqlitepager_pagenumber(pOvfl);
+ }
+ assert( pgno>2 );
+ assert( sqlitepager_pagenumber(pOvfl)==pgno );
+ pMemPage = (MemPage*)pPage;
+ pMemPage->isInit = 0;
+ if( pMemPage->pParent ){
+ sqlitepager_unref(pMemPage->pParent);
+ pMemPage->pParent = 0;
+ }
+ rc = sqlitepager_write(pPage1);
+ if( rc ){
+ return rc;
+ }
+ SWAB_ADD(pBt, pPage1->nFree, 1);
+ if( pPage1->nFree!=0 && pPage1->freeList!=0 ){
+ OverflowPage *pFreeIdx;
+ rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
+ (void**)&pFreeIdx);
+ if( rc==SQLITE_OK ){
+ FreelistInfo *pInfo = (FreelistInfo*)pFreeIdx->aPayload;
+ int n = SWAB32(pBt, pInfo->nFree);
+ if( n<(sizeof(pInfo->aFree)/sizeof(pInfo->aFree[0])) ){
+ rc = sqlitepager_write(pFreeIdx);
+ if( rc==SQLITE_OK ){
+ pInfo->aFree[n] = SWAB32(pBt, pgno);
+ SWAB_ADD(pBt, pInfo->nFree, 1);
+ sqlitepager_unref(pFreeIdx);
+ sqlitepager_dont_write(pBt->pPager, pgno);
+ return rc;
+ }
+ }
+ sqlitepager_unref(pFreeIdx);
+ }
+ }
+ if( pOvfl==0 ){
+ assert( pgno>0 );
+ rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pOvfl);
+ if( rc ) return rc;
+ needUnref = 1;
+ }
+ rc = sqlitepager_write(pOvfl);
+ if( rc ){
+ if( needUnref ) sqlitepager_unref(pOvfl);
+ return rc;
+ }
+ pOvfl->iNext = pPage1->freeList;
+ pPage1->freeList = SWAB32(pBt, pgno);
+ memset(pOvfl->aPayload, 0, OVERFLOW_SIZE);
+ if( needUnref ) rc = sqlitepager_unref(pOvfl);
+ return rc;
+}
+
+/*
+** Erase all the data out of a cell. This involves returning overflow
+** pages back the freelist.
+*/
+static int clearCell(Btree *pBt, Cell *pCell){
+ Pager *pPager = pBt->pPager;
+ OverflowPage *pOvfl;
+ Pgno ovfl, nextOvfl;
+ int rc;
+
+ if( NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h) <= MX_LOCAL_PAYLOAD ){
+ return SQLITE_OK;
+ }
+ ovfl = SWAB32(pBt, pCell->ovfl);
+ pCell->ovfl = 0;
+ while( ovfl ){
+ rc = sqlitepager_get(pPager, ovfl, (void**)&pOvfl);
+ if( rc ) return rc;
+ nextOvfl = SWAB32(pBt, pOvfl->iNext);
+ rc = freePage(pBt, pOvfl, ovfl);
+ if( rc ) return rc;
+ sqlitepager_unref(pOvfl);
+ ovfl = nextOvfl;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Create a new cell from key and data. Overflow pages are allocated as
+** necessary and linked to this cell.
+*/
+static int fillInCell(
+ Btree *pBt, /* The whole Btree. Needed to allocate pages */
+ Cell *pCell, /* Populate this Cell structure */
+ const void *pKey, int nKey, /* The key */
+ const void *pData,int nData /* The data */
+){
+ OverflowPage *pOvfl, *pPrior;
+ Pgno *pNext;
+ int spaceLeft;
+ int n, rc;
+ int nPayload;
+ const char *pPayload;
+ char *pSpace;
+ Pgno nearby = 0;
+
+ pCell->h.leftChild = 0;
+ pCell->h.nKey = SWAB16(pBt, nKey & 0xffff);
+ pCell->h.nKeyHi = nKey >> 16;
+ pCell->h.nData = SWAB16(pBt, nData & 0xffff);
+ pCell->h.nDataHi = nData >> 16;
+ pCell->h.iNext = 0;
+
+ pNext = &pCell->ovfl;
+ pSpace = pCell->aPayload;
+ spaceLeft = MX_LOCAL_PAYLOAD;
+ pPayload = pKey;
+ pKey = 0;
+ nPayload = nKey;
+ pPrior = 0;
+ while( nPayload>0 ){
+ if( spaceLeft==0 ){
+ rc = allocatePage(pBt, (MemPage**)&pOvfl, pNext, nearby);
+ if( rc ){
+ *pNext = 0;
+ }else{
+ nearby = *pNext;
+ }
+ if( pPrior ) sqlitepager_unref(pPrior);
+ if( rc ){
+ clearCell(pBt, pCell);
+ return rc;
+ }
+ if( pBt->needSwab ) *pNext = swab32(*pNext);
+ pPrior = pOvfl;
+ spaceLeft = OVERFLOW_SIZE;
+ pSpace = pOvfl->aPayload;
+ pNext = &pOvfl->iNext;
+ }
+ n = nPayload;
+ if( n>spaceLeft ) n = spaceLeft;
+ memcpy(pSpace, pPayload, n);
+ nPayload -= n;
+ if( nPayload==0 && pData ){
+ pPayload = pData;
+ nPayload = nData;
+ pData = 0;
+ }else{
+ pPayload += n;
+ }
+ spaceLeft -= n;
+ pSpace += n;
+ }
+ *pNext = 0;
+ if( pPrior ){
+ sqlitepager_unref(pPrior);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Change the MemPage.pParent pointer on the page whose number is
+** given in the second argument so that MemPage.pParent holds the
+** pointer in the third argument.
+*/
+static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent,int idx){
+ MemPage *pThis;
+
+ if( pgno==0 ) return;
+ assert( pPager!=0 );
+ pThis = sqlitepager_lookup(pPager, pgno);
+ if( pThis && pThis->isInit ){
+ if( pThis->pParent!=pNewParent ){
+ if( pThis->pParent ) sqlitepager_unref(pThis->pParent);
+ pThis->pParent = pNewParent;
+ if( pNewParent ) sqlitepager_ref(pNewParent);
+ }
+ pThis->idxParent = idx;
+ sqlitepager_unref(pThis);
+ }
+}
+
+/*
+** Reparent all children of the given page to be the given page.
+** In other words, for every child of pPage, invoke reparentPage()
+** to make sure that each child knows that pPage is its parent.
+**
+** This routine gets called after you memcpy() one page into
+** another.
+*/
+static void reparentChildPages(Btree *pBt, MemPage *pPage){
+ int i;
+ Pager *pPager = pBt->pPager;
+ for(i=0; i<pPage->nCell; i++){
+ reparentPage(pPager, SWAB32(pBt, pPage->apCell[i]->h.leftChild), pPage, i);
+ }
+ reparentPage(pPager, SWAB32(pBt, pPage->u.hdr.rightChild), pPage, i);
+ pPage->idxShift = 0;
+}
+
+/*
+** Remove the i-th cell from pPage. This routine effects pPage only.
+** The cell content is not freed or deallocated. It is assumed that
+** the cell content has been copied someplace else. This routine just
+** removes the reference to the cell from pPage.
+**
+** "sz" must be the number of bytes in the cell.
+**
+** Do not bother maintaining the integrity of the linked list of Cells.
+** Only the pPage->apCell[] array is important. The relinkCellList()
+** routine will be called soon after this routine in order to rebuild
+** the linked list.
+*/
+static void dropCell(Btree *pBt, MemPage *pPage, int idx, int sz){
+ int j;
+ assert( idx>=0 && idx<pPage->nCell );
+ assert( sz==cellSize(pBt, pPage->apCell[idx]) );
+ assert( sqlitepager_iswriteable(pPage) );
+ freeSpace(pBt, pPage, Addr(pPage->apCell[idx]) - Addr(pPage), sz);
+ for(j=idx; j<pPage->nCell-1; j++){
+ pPage->apCell[j] = pPage->apCell[j+1];
+ }
+ pPage->nCell--;
+ pPage->idxShift = 1;
+}
+
+/*
+** Insert a new cell on pPage at cell index "i". pCell points to the
+** content of the cell.
+**
+** If the cell content will fit on the page, then put it there. If it
+** will not fit, then just make pPage->apCell[i] point to the content
+** and set pPage->isOverfull.
+**
+** Do not bother maintaining the integrity of the linked list of Cells.
+** Only the pPage->apCell[] array is important. The relinkCellList()
+** routine will be called soon after this routine in order to rebuild
+** the linked list.
+*/
+static void insertCell(Btree *pBt, MemPage *pPage, int i, Cell *pCell, int sz){
+ int idx, j;
+ assert( i>=0 && i<=pPage->nCell );
+ assert( sz==cellSize(pBt, pCell) );
+ assert( sqlitepager_iswriteable(pPage) );
+ idx = allocateSpace(pBt, pPage, sz);
+ for(j=pPage->nCell; j>i; j--){
+ pPage->apCell[j] = pPage->apCell[j-1];
+ }
+ pPage->nCell++;
+ if( idx<=0 ){
+ pPage->isOverfull = 1;
+ pPage->apCell[i] = pCell;
+ }else{
+ memcpy(&pPage->u.aDisk[idx], pCell, sz);
+ pPage->apCell[i] = (Cell*)&pPage->u.aDisk[idx];
+ }
+ pPage->idxShift = 1;
+}
+
+/*
+** Rebuild the linked list of cells on a page so that the cells
+** occur in the order specified by the pPage->apCell[] array.
+** Invoke this routine once to repair damage after one or more
+** invocations of either insertCell() or dropCell().
+*/
+static void relinkCellList(Btree *pBt, MemPage *pPage){
+ int i;
+ u16 *pIdx;
+ assert( sqlitepager_iswriteable(pPage) );
+ pIdx = &pPage->u.hdr.firstCell;
+ for(i=0; i<pPage->nCell; i++){
+ int idx = Addr(pPage->apCell[i]) - Addr(pPage);
+ assert( idx>0 && idx<SQLITE_USABLE_SIZE );
+ *pIdx = SWAB16(pBt, idx);
+ pIdx = &pPage->apCell[i]->h.iNext;
+ }
+ *pIdx = 0;
+}
+
+/*
+** Make a copy of the contents of pFrom into pTo. The pFrom->apCell[]
+** pointers that point into pFrom->u.aDisk[] must be adjusted to point
+** into pTo->u.aDisk[] instead. But some pFrom->apCell[] entries might
+** not point to pFrom->u.aDisk[]. Those are unchanged.
+*/
+static void copyPage(MemPage *pTo, MemPage *pFrom){
+ uptr from, to;
+ int i;
+ memcpy(pTo->u.aDisk, pFrom->u.aDisk, SQLITE_USABLE_SIZE);
+ pTo->pParent = 0;
+ pTo->isInit = 1;
+ pTo->nCell = pFrom->nCell;
+ pTo->nFree = pFrom->nFree;
+ pTo->isOverfull = pFrom->isOverfull;
+ to = Addr(pTo);
+ from = Addr(pFrom);
+ for(i=0; i<pTo->nCell; i++){
+ uptr x = Addr(pFrom->apCell[i]);
+ if( x>from && x<from+SQLITE_USABLE_SIZE ){
+ *((uptr*)&pTo->apCell[i]) = x + to - from;
+ }else{
+ pTo->apCell[i] = pFrom->apCell[i];
+ }
+ }
+}
+
+/*
+** The following parameters determine how many adjacent pages get involved
+** in a balancing operation. NN is the number of neighbors on either side
+** of the page that participate in the balancing operation. NB is the
+** total number of pages that participate, including the target page and
+** NN neighbors on either side.
+**
+** The minimum value of NN is 1 (of course). Increasing NN above 1
+** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
+** in exchange for a larger degradation in INSERT and UPDATE performance.
+** The value of NN appears to give the best results overall.
+*/
+#define NN 1 /* Number of neighbors on either side of pPage */
+#define NB (NN*2+1) /* Total pages involved in the balance */
+
+/*
+** This routine redistributes Cells on pPage and up to two siblings
+** of pPage so that all pages have about the same amount of free space.
+** Usually one sibling on either side of pPage is used in the balancing,
+** though both siblings might come from one side if pPage is the first
+** or last child of its parent. If pPage has fewer than two siblings
+** (something which can only happen if pPage is the root page or a
+** child of root) then all available siblings participate in the balancing.
+**
+** The number of siblings of pPage might be increased or decreased by
+** one in an effort to keep pages between 66% and 100% full. The root page
+** is special and is allowed to be less than 66% full. If pPage is
+** the root page, then the depth of the tree might be increased
+** or decreased by one, as necessary, to keep the root page from being
+** overfull or empty.
+**
+** This routine calls relinkCellList() on its input page regardless of
+** whether or not it does any real balancing. Client routines will typically
+** invoke insertCell() or dropCell() before calling this routine, so we
+** need to call relinkCellList() to clean up the mess that those other
+** routines left behind.
+**
+** pCur is left pointing to the same cell as when this routine was called
+** even if that cell gets moved to a different page. pCur may be NULL.
+** Set the pCur parameter to NULL if you do not care about keeping track
+** of a cell as that will save this routine the work of keeping track of it.
+**
+** Note that when this routine is called, some of the Cells on pPage
+** might not actually be stored in pPage->u.aDisk[]. This can happen
+** if the page is overfull. Part of the job of this routine is to
+** make sure all Cells for pPage once again fit in pPage->u.aDisk[].
+**
+** In the course of balancing the siblings of pPage, the parent of pPage
+** might become overfull or underfull. If that happens, then this routine
+** is called recursively on the parent.
+**
+** If this routine fails for any reason, it might leave the database
+** in a corrupted state. So if this routine fails, the database should
+** be rolled back.
+*/
+static int balance(Btree *pBt, MemPage *pPage, BtCursor *pCur){
+ MemPage *pParent; /* The parent of pPage */
+ int nCell; /* Number of cells in apCell[] */
+ int nOld; /* Number of pages in apOld[] */
+ int nNew; /* Number of pages in apNew[] */
+ int nDiv; /* Number of cells in apDiv[] */
+ int i, j, k; /* Loop counters */
+ int idx; /* Index of pPage in pParent->apCell[] */
+ int nxDiv; /* Next divider slot in pParent->apCell[] */
+ int rc; /* The return code */
+ int iCur; /* apCell[iCur] is the cell of the cursor */
+ MemPage *pOldCurPage; /* The cursor originally points to this page */
+ int subtotal; /* Subtotal of bytes in cells on one page */
+ MemPage *extraUnref = 0; /* A page that needs to be unref-ed */
+ MemPage *apOld[NB]; /* pPage and up to two siblings */
+ Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
+ MemPage *apNew[NB+1]; /* pPage and up to NB siblings after balancing */
+ Pgno pgnoNew[NB+1]; /* Page numbers for each page in apNew[] */
+ int idxDiv[NB]; /* Indices of divider cells in pParent */
+ Cell *apDiv[NB]; /* Divider cells in pParent */
+ Cell aTemp[NB]; /* Temporary holding area for apDiv[] */
+ int cntNew[NB+1]; /* Index in apCell[] of cell after i-th page */
+ int szNew[NB+1]; /* Combined size of cells place on i-th page */
+ MemPage aOld[NB]; /* Temporary copies of pPage and its siblings */
+ Cell *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */
+ int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */
+
+ /*
+ ** Return without doing any work if pPage is neither overfull nor
+ ** underfull.
+ */
+ assert( sqlitepager_iswriteable(pPage) );
+ if( !pPage->isOverfull && pPage->nFree<SQLITE_USABLE_SIZE/2
+ && pPage->nCell>=2){
+ relinkCellList(pBt, pPage);
+ return SQLITE_OK;
+ }
+
+ /*
+ ** Find the parent of the page to be balanceed.
+ ** If there is no parent, it means this page is the root page and
+ ** special rules apply.
+ */
+ pParent = pPage->pParent;
+ if( pParent==0 ){
+ Pgno pgnoChild;
+ MemPage *pChild;
+ assert( pPage->isInit );
+ if( pPage->nCell==0 ){
+ if( pPage->u.hdr.rightChild ){
+ /*
+ ** The root page is empty. Copy the one child page
+ ** into the root page and return. This reduces the depth
+ ** of the BTree by one.
+ */
+ pgnoChild = SWAB32(pBt, pPage->u.hdr.rightChild);
+ rc = sqlitepager_get(pBt->pPager, pgnoChild, (void**)&pChild);
+ if( rc ) return rc;
+ memcpy(pPage, pChild, SQLITE_USABLE_SIZE);
+ pPage->isInit = 0;
+ rc = initPage(pBt, pPage, sqlitepager_pagenumber(pPage), 0);
+ assert( rc==SQLITE_OK );
+ reparentChildPages(pBt, pPage);
+ if( pCur && pCur->pPage==pChild ){
+ sqlitepager_unref(pChild);
+ pCur->pPage = pPage;
+ sqlitepager_ref(pPage);
+ }
+ freePage(pBt, pChild, pgnoChild);
+ sqlitepager_unref(pChild);
+ }else{
+ relinkCellList(pBt, pPage);
+ }
+ return SQLITE_OK;
+ }
+ if( !pPage->isOverfull ){
+ /* It is OK for the root page to be less than half full.
+ */
+ relinkCellList(pBt, pPage);
+ return SQLITE_OK;
+ }
+ /*
+ ** If we get to here, it means the root page is overfull.
+ ** When this happens, Create a new child page and copy the
+ ** contents of the root into the child. Then make the root
+ ** page an empty page with rightChild pointing to the new
+ ** child. Then fall thru to the code below which will cause
+ ** the overfull child page to be split.
+ */
+ rc = sqlitepager_write(pPage);
+ if( rc ) return rc;
+ rc = allocatePage(pBt, &pChild, &pgnoChild, sqlitepager_pagenumber(pPage));
+ if( rc ) return rc;
+ assert( sqlitepager_iswriteable(pChild) );
+ copyPage(pChild, pPage);
+ pChild->pParent = pPage;
+ pChild->idxParent = 0;
+ sqlitepager_ref(pPage);
+ pChild->isOverfull = 1;
+ if( pCur && pCur->pPage==pPage ){
+ sqlitepager_unref(pPage);
+ pCur->pPage = pChild;
+ }else{
+ extraUnref = pChild;
+ }
+ zeroPage(pBt, pPage);
+ pPage->u.hdr.rightChild = SWAB32(pBt, pgnoChild);
+ pParent = pPage;
+ pPage = pChild;
+ }
+ rc = sqlitepager_write(pParent);
+ if( rc ) return rc;
+ assert( pParent->isInit );
+
+ /*
+ ** Find the Cell in the parent page whose h.leftChild points back
+ ** to pPage. The "idx" variable is the index of that cell. If pPage
+ ** is the rightmost child of pParent then set idx to pParent->nCell
+ */
+ if( pParent->idxShift ){
+ Pgno pgno, swabPgno;
+ pgno = sqlitepager_pagenumber(pPage);
+ swabPgno = SWAB32(pBt, pgno);
+ for(idx=0; idx<pParent->nCell; idx++){
+ if( pParent->apCell[idx]->h.leftChild==swabPgno ){
+ break;
+ }
+ }
+ assert( idx<pParent->nCell || pParent->u.hdr.rightChild==swabPgno );
+ }else{
+ idx = pPage->idxParent;
+ }
+
+ /*
+ ** Initialize variables so that it will be safe to jump
+ ** directly to balance_cleanup at any moment.
+ */
+ nOld = nNew = 0;
+ sqlitepager_ref(pParent);
+
+ /*
+ ** Find sibling pages to pPage and the Cells in pParent that divide
+ ** the siblings. An attempt is made to find NN siblings on either
+ ** side of pPage. More siblings are taken from one side, however, if
+ ** pPage there are fewer than NN siblings on the other side. If pParent
+ ** has NB or fewer children then all children of pParent are taken.
+ */
+ nxDiv = idx - NN;
+ if( nxDiv + NB > pParent->nCell ){
+ nxDiv = pParent->nCell - NB + 1;
+ }
+ if( nxDiv<0 ){
+ nxDiv = 0;
+ }
+ nDiv = 0;
+ for(i=0, k=nxDiv; i<NB; i++, k++){
+ if( k<pParent->nCell ){
+ idxDiv[i] = k;
+ apDiv[i] = pParent->apCell[k];
+ nDiv++;
+ pgnoOld[i] = SWAB32(pBt, apDiv[i]->h.leftChild);
+ }else if( k==pParent->nCell ){
+ pgnoOld[i] = SWAB32(pBt, pParent->u.hdr.rightChild);
+ }else{
+ break;
+ }
+ rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]);
+ if( rc ) goto balance_cleanup;
+ rc = initPage(pBt, apOld[i], pgnoOld[i], pParent);
+ if( rc ) goto balance_cleanup;
+ apOld[i]->idxParent = k;
+ nOld++;
+ }
+
+ /*
+ ** Set iCur to be the index in apCell[] of the cell that the cursor
+ ** is pointing to. We will need this later on in order to keep the
+ ** cursor pointing at the same cell. If pCur points to a page that
+ ** has no involvement with this rebalancing, then set iCur to a large
+ ** number so that the iCur==j tests always fail in the main cell
+ ** distribution loop below.
+ */
+ if( pCur ){
+ iCur = 0;
+ for(i=0; i<nOld; i++){
+ if( pCur->pPage==apOld[i] ){
+ iCur += pCur->idx;
+ break;
+ }
+ iCur += apOld[i]->nCell;
+ if( i<nOld-1 && pCur->pPage==pParent && pCur->idx==idxDiv[i] ){
+ break;
+ }
+ iCur++;
+ }
+ pOldCurPage = pCur->pPage;
+ }
+
+ /*
+ ** Make copies of the content of pPage and its siblings into aOld[].
+ ** The rest of this function will use data from the copies rather
+ ** that the original pages since the original pages will be in the
+ ** process of being overwritten.
+ */
+ for(i=0; i<nOld; i++){
+ copyPage(&aOld[i], apOld[i]);
+ }
+
+ /*
+ ** Load pointers to all cells on sibling pages and the divider cells
+ ** into the local apCell[] array. Make copies of the divider cells
+ ** into aTemp[] and remove the the divider Cells from pParent.
+ */
+ nCell = 0;
+ for(i=0; i<nOld; i++){
+ MemPage *pOld = &aOld[i];
+ for(j=0; j<pOld->nCell; j++){
+ apCell[nCell] = pOld->apCell[j];
+ szCell[nCell] = cellSize(pBt, apCell[nCell]);
+ nCell++;
+ }
+ if( i<nOld-1 ){
+ szCell[nCell] = cellSize(pBt, apDiv[i]);
+ memcpy(&aTemp[i], apDiv[i], szCell[nCell]);
+ apCell[nCell] = &aTemp[i];
+ dropCell(pBt, pParent, nxDiv, szCell[nCell]);
+ assert( SWAB32(pBt, apCell[nCell]->h.leftChild)==pgnoOld[i] );
+ apCell[nCell]->h.leftChild = pOld->u.hdr.rightChild;
+ nCell++;
+ }
+ }
+
+ /*
+ ** Figure out the number of pages needed to hold all nCell cells.
+ ** Store this number in "k". Also compute szNew[] which is the total
+ ** size of all cells on the i-th page and cntNew[] which is the index
+ ** in apCell[] of the cell that divides path i from path i+1.
+ ** cntNew[k] should equal nCell.
+ **
+ ** This little patch of code is critical for keeping the tree
+ ** balanced.
+ */
+ for(subtotal=k=i=0; i<nCell; i++){
+ subtotal += szCell[i];
+ if( subtotal > USABLE_SPACE ){
+ szNew[k] = subtotal - szCell[i];
+ cntNew[k] = i;
+ subtotal = 0;
+ k++;
+ }
+ }
+ szNew[k] = subtotal;
+ cntNew[k] = nCell;
+ k++;
+ for(i=k-1; i>0; i--){
+ while( szNew[i]<USABLE_SPACE/2 ){
+ cntNew[i-1]--;
+ assert( cntNew[i-1]>0 );
+ szNew[i] += szCell[cntNew[i-1]];
+ szNew[i-1] -= szCell[cntNew[i-1]-1];
+ }
+ }
+ assert( cntNew[0]>0 );
+
+ /*
+ ** Allocate k new pages. Reuse old pages where possible.
+ */
+ for(i=0; i<k; i++){
+ if( i<nOld ){
+ apNew[i] = apOld[i];
+ pgnoNew[i] = pgnoOld[i];
+ apOld[i] = 0;
+ sqlitepager_write(apNew[i]);
+ }else{
+ rc = allocatePage(pBt, &apNew[i], &pgnoNew[i], pgnoNew[i-1]);
+ if( rc ) goto balance_cleanup;
+ }
+ nNew++;
+ zeroPage(pBt, apNew[i]);
+ apNew[i]->isInit = 1;
+ }
+
+ /* Free any old pages that were not reused as new pages.
+ */
+ while( i<nOld ){
+ rc = freePage(pBt, apOld[i], pgnoOld[i]);
+ if( rc ) goto balance_cleanup;
+ sqlitepager_unref(apOld[i]);
+ apOld[i] = 0;
+ i++;
+ }
+
+ /*
+ ** Put the new pages in accending order. This helps to
+ ** keep entries in the disk file in order so that a scan
+ ** of the table is a linear scan through the file. That
+ ** in turn helps the operating system to deliver pages
+ ** from the disk more rapidly.
+ **
+ ** An O(n^2) insertion sort algorithm is used, but since
+ ** n is never more than NB (a small constant), that should
+ ** not be a problem.
+ **
+ ** When NB==3, this one optimization makes the database
+ ** about 25% faster for large insertions and deletions.
+ */
+ for(i=0; i<k-1; i++){
+ int minV = pgnoNew[i];
+ int minI = i;
+ for(j=i+1; j<k; j++){
+ if( pgnoNew[j]<(unsigned)minV ){
+ minI = j;
+ minV = pgnoNew[j];
+ }
+ }
+ if( minI>i ){
+ int t;
+ MemPage *pT;
+ t = pgnoNew[i];
+ pT = apNew[i];
+ pgnoNew[i] = pgnoNew[minI];
+ apNew[i] = apNew[minI];
+ pgnoNew[minI] = t;
+ apNew[minI] = pT;
+ }
+ }
+
+ /*
+ ** Evenly distribute the data in apCell[] across the new pages.
+ ** Insert divider cells into pParent as necessary.
+ */
+ j = 0;
+ for(i=0; i<nNew; i++){
+ MemPage *pNew = apNew[i];
+ while( j<cntNew[i] ){
+ assert( pNew->nFree>=szCell[j] );
+ if( pCur && iCur==j ){ pCur->pPage = pNew; pCur->idx = pNew->nCell; }
+ insertCell(pBt, pNew, pNew->nCell, apCell[j], szCell[j]);
+ j++;
+ }
+ assert( pNew->nCell>0 );
+ assert( !pNew->isOverfull );
+ relinkCellList(pBt, pNew);
+ if( i<nNew-1 && j<nCell ){
+ pNew->u.hdr.rightChild = apCell[j]->h.leftChild;
+ apCell[j]->h.leftChild = SWAB32(pBt, pgnoNew[i]);
+ if( pCur && iCur==j ){ pCur->pPage = pParent; pCur->idx = nxDiv; }
+ insertCell(pBt, pParent, nxDiv, apCell[j], szCell[j]);
+ j++;
+ nxDiv++;
+ }
+ }
+ assert( j==nCell );
+ apNew[nNew-1]->u.hdr.rightChild = aOld[nOld-1].u.hdr.rightChild;
+ if( nxDiv==pParent->nCell ){
+ pParent->u.hdr.rightChild = SWAB32(pBt, pgnoNew[nNew-1]);
+ }else{
+ pParent->apCell[nxDiv]->h.leftChild = SWAB32(pBt, pgnoNew[nNew-1]);
+ }
+ if( pCur ){
+ if( j<=iCur && pCur->pPage==pParent && pCur->idx>idxDiv[nOld-1] ){
+ assert( pCur->pPage==pOldCurPage );
+ pCur->idx += nNew - nOld;
+ }else{
+ assert( pOldCurPage!=0 );
+ sqlitepager_ref(pCur->pPage);
+ sqlitepager_unref(pOldCurPage);
+ }
+ }
+
+ /*
+ ** Reparent children of all cells.
+ */
+ for(i=0; i<nNew; i++){
+ reparentChildPages(pBt, apNew[i]);
+ }
+ reparentChildPages(pBt, pParent);
+
+ /*
+ ** balance the parent page.
+ */
+ rc = balance(pBt, pParent, pCur);
+
+ /*
+ ** Cleanup before returning.
+ */
+balance_cleanup:
+ if( extraUnref ){
+ sqlitepager_unref(extraUnref);
+ }
+ for(i=0; i<nOld; i++){
+ if( apOld[i]!=0 && apOld[i]!=&aOld[i] ) sqlitepager_unref(apOld[i]);
+ }
+ for(i=0; i<nNew; i++){
+ sqlitepager_unref(apNew[i]);
+ }
+ if( pCur && pCur->pPage==0 ){
+ pCur->pPage = pParent;
+ pCur->idx = 0;
+ }else{
+ sqlitepager_unref(pParent);
+ }
+ return rc;
+}
+
+/*
+** This routine checks all cursors that point to the same table
+** as pCur points to. If any of those cursors were opened with
+** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
+** cursors point to the same table were opened with wrFlag==1
+** then this routine returns SQLITE_OK.
+**
+** In addition to checking for read-locks (where a read-lock
+** means a cursor opened with wrFlag==0) this routine also moves
+** all cursors other than pCur so that they are pointing to the
+** first Cell on root page. This is necessary because an insert
+** or delete might change the number of cells on a page or delete
+** a page entirely and we do not want to leave any cursors
+** pointing to non-existant pages or cells.
+*/
+static int checkReadLocks(BtCursor *pCur){
+ BtCursor *p;
+ assert( pCur->wrFlag );
+ for(p=pCur->pShared; p!=pCur; p=p->pShared){
+ assert( p );
+ assert( p->pgnoRoot==pCur->pgnoRoot );
+ if( p->wrFlag==0 ) return SQLITE_LOCKED;
+ if( sqlitepager_pagenumber(p->pPage)!=p->pgnoRoot ){
+ moveToRoot(p);
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Insert a new record into the BTree. The key is given by (pKey,nKey)
+** and the data is given by (pData,nData). The cursor is used only to
+** define what database the record should be inserted into. The cursor
+** is left pointing at the new record.
+*/
+static int fileBtreeInsert(
+ BtCursor *pCur, /* Insert data into the table of this cursor */
+ const void *pKey, int nKey, /* The key of the new record */
+ const void *pData, int nData /* The data of the new record */
+){
+ Cell newCell;
+ int rc;
+ int loc;
+ int szNew;
+ MemPage *pPage;
+ Btree *pBt = pCur->pBt;
+
+ if( pCur->pPage==0 ){
+ return SQLITE_ABORT; /* A rollback destroyed this cursor */
+ }
+ if( !pBt->inTrans || nKey+nData==0 ){
+ /* Must start a transaction before doing an insert */
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ assert( !pBt->readOnly );
+ if( !pCur->wrFlag ){
+ return SQLITE_PERM; /* Cursor not open for writing */
+ }
+ if( checkReadLocks(pCur) ){
+ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
+ }
+ rc = fileBtreeMoveto(pCur, pKey, nKey, &loc);
+ if( rc ) return rc;
+ pPage = pCur->pPage;
+ assert( pPage->isInit );
+ rc = sqlitepager_write(pPage);
+ if( rc ) return rc;
+ rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData);
+ if( rc ) return rc;
+ szNew = cellSize(pBt, &newCell);
+ if( loc==0 ){
+ newCell.h.leftChild = pPage->apCell[pCur->idx]->h.leftChild;
+ rc = clearCell(pBt, pPage->apCell[pCur->idx]);
+ if( rc ) return rc;
+ dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pPage->apCell[pCur->idx]));
+ }else if( loc<0 && pPage->nCell>0 ){
+ assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
+ pCur->idx++;
+ }else{
+ assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
+ }
+ insertCell(pBt, pPage, pCur->idx, &newCell, szNew);
+ rc = balance(pCur->pBt, pPage, pCur);
+ /* sqliteBtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
+ /* fflush(stdout); */
+ pCur->eSkip = SKIP_INVALID;
+ return rc;
+}
+
+/*
+** Delete the entry that the cursor is pointing to.
+**
+** The cursor is left pointing at either the next or the previous
+** entry. If the cursor is left pointing to the next entry, then
+** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to
+** sqliteBtreeNext() to be a no-op. That way, you can always call
+** sqliteBtreeNext() after a delete and the cursor will be left
+** pointing to the first entry after the deleted entry. Similarly,
+** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to
+** the entry prior to the deleted entry so that a subsequent call to
+** sqliteBtreePrevious() will always leave the cursor pointing at the
+** entry immediately before the one that was deleted.
+*/
+static int fileBtreeDelete(BtCursor *pCur){
+ MemPage *pPage = pCur->pPage;
+ Cell *pCell;
+ int rc;
+ Pgno pgnoChild;
+ Btree *pBt = pCur->pBt;
+
+ assert( pPage->isInit );
+ if( pCur->pPage==0 ){
+ return SQLITE_ABORT; /* A rollback destroyed this cursor */
+ }
+ if( !pBt->inTrans ){
+ /* Must start a transaction before doing a delete */
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ assert( !pBt->readOnly );
+ if( pCur->idx >= pPage->nCell ){
+ return SQLITE_ERROR; /* The cursor is not pointing to anything */
+ }
+ if( !pCur->wrFlag ){
+ return SQLITE_PERM; /* Did not open this cursor for writing */
+ }
+ if( checkReadLocks(pCur) ){
+ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
+ }
+ rc = sqlitepager_write(pPage);
+ if( rc ) return rc;
+ pCell = pPage->apCell[pCur->idx];
+ pgnoChild = SWAB32(pBt, pCell->h.leftChild);
+ clearCell(pBt, pCell);
+ if( pgnoChild ){
+ /*
+ ** The entry we are about to delete is not a leaf so if we do not
+ ** do something we will leave a hole on an internal page.
+ ** We have to fill the hole by moving in a cell from a leaf. The
+ ** next Cell after the one to be deleted is guaranteed to exist and
+ ** to be a leaf so we can use it.
+ */
+ BtCursor leafCur;
+ Cell *pNext;
+ int szNext;
+ int notUsed;
+ getTempCursor(pCur, &leafCur);
+ rc = fileBtreeNext(&leafCur, &notUsed);
+ if( rc!=SQLITE_OK ){
+ if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT;
+ return rc;
+ }
+ rc = sqlitepager_write(leafCur.pPage);
+ if( rc ) return rc;
+ dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
+ pNext = leafCur.pPage->apCell[leafCur.idx];
+ szNext = cellSize(pBt, pNext);
+ pNext->h.leftChild = SWAB32(pBt, pgnoChild);
+ insertCell(pBt, pPage, pCur->idx, pNext, szNext);
+ rc = balance(pBt, pPage, pCur);
+ if( rc ) return rc;
+ pCur->eSkip = SKIP_NEXT;
+ dropCell(pBt, leafCur.pPage, leafCur.idx, szNext);
+ rc = balance(pBt, leafCur.pPage, pCur);
+ releaseTempCursor(&leafCur);
+ }else{
+ dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
+ if( pCur->idx>=pPage->nCell ){
+ pCur->idx = pPage->nCell-1;
+ if( pCur->idx<0 ){
+ pCur->idx = 0;
+ pCur->eSkip = SKIP_NEXT;
+ }else{
+ pCur->eSkip = SKIP_PREV;
+ }
+ }else{
+ pCur->eSkip = SKIP_NEXT;
+ }
+ rc = balance(pBt, pPage, pCur);
+ }
+ return rc;
+}
+
+/*
+** Create a new BTree table. Write into *piTable the page
+** number for the root page of the new table.
+**
+** In the current implementation, BTree tables and BTree indices are the
+** the same. In the future, we may change this so that BTree tables
+** are restricted to having a 4-byte integer key and arbitrary data and
+** BTree indices are restricted to having an arbitrary key and no data.
+** But for now, this routine also serves to create indices.
+*/
+static int fileBtreeCreateTable(Btree *pBt, int *piTable){
+ MemPage *pRoot;
+ Pgno pgnoRoot;
+ int rc;
+ if( !pBt->inTrans ){
+ /* Must start a transaction first */
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ if( pBt->readOnly ){
+ return SQLITE_READONLY;
+ }
+ rc = allocatePage(pBt, &pRoot, &pgnoRoot, 0);
+ if( rc ) return rc;
+ assert( sqlitepager_iswriteable(pRoot) );
+ zeroPage(pBt, pRoot);
+ sqlitepager_unref(pRoot);
+ *piTable = (int)pgnoRoot;
+ return SQLITE_OK;
+}
+
+/*
+** Erase the given database page and all its children. Return
+** the page to the freelist.
+*/
+static int clearDatabasePage(Btree *pBt, Pgno pgno, int freePageFlag){
+ MemPage *pPage;
+ int rc;
+ Cell *pCell;
+ int idx;
+
+ rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pPage);
+ if( rc ) return rc;
+ rc = sqlitepager_write(pPage);
+ if( rc ) return rc;
+ rc = initPage(pBt, pPage, pgno, 0);
+ if( rc ) return rc;
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
+ while( idx>0 ){
+ pCell = (Cell*)&pPage->u.aDisk[idx];
+ idx = SWAB16(pBt, pCell->h.iNext);
+ if( pCell->h.leftChild ){
+ rc = clearDatabasePage(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
+ if( rc ) return rc;
+ }
+ rc = clearCell(pBt, pCell);
+ if( rc ) return rc;
+ }
+ if( pPage->u.hdr.rightChild ){
+ rc = clearDatabasePage(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
+ if( rc ) return rc;
+ }
+ if( freePageFlag ){
+ rc = freePage(pBt, pPage, pgno);
+ }else{
+ zeroPage(pBt, pPage);
+ }
+ sqlitepager_unref(pPage);
+ return rc;
+}
+
+/*
+** Delete all information from a single table in the database.
+*/
+static int fileBtreeClearTable(Btree *pBt, int iTable){
+ int rc;
+ BtCursor *pCur;
+ if( !pBt->inTrans ){
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
+ if( pCur->pgnoRoot==(Pgno)iTable ){
+ if( pCur->wrFlag==0 ) return SQLITE_LOCKED;
+ moveToRoot(pCur);
+ }
+ }
+ rc = clearDatabasePage(pBt, (Pgno)iTable, 0);
+ if( rc ){
+ fileBtreeRollback(pBt);
+ }
+ return rc;
+}
+
+/*
+** Erase all information in a table and add the root of the table to
+** the freelist. Except, the root of the principle table (the one on
+** page 2) is never added to the freelist.
+*/
+static int fileBtreeDropTable(Btree *pBt, int iTable){
+ int rc;
+ MemPage *pPage;
+ BtCursor *pCur;
+ if( !pBt->inTrans ){
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
+ if( pCur->pgnoRoot==(Pgno)iTable ){
+ return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */
+ }
+ }
+ rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, (void**)&pPage);
+ if( rc ) return rc;
+ rc = fileBtreeClearTable(pBt, iTable);
+ if( rc ) return rc;
+ if( iTable>2 ){
+ rc = freePage(pBt, pPage, iTable);
+ }else{
+ zeroPage(pBt, pPage);
+ }
+ sqlitepager_unref(pPage);
+ return rc;
+}
+
+#if 0 /* UNTESTED */
+/*
+** Copy all cell data from one database file into another.
+** pages back the freelist.
+*/
+static int copyCell(Btree *pBtFrom, BTree *pBtTo, Cell *pCell){
+ Pager *pFromPager = pBtFrom->pPager;
+ OverflowPage *pOvfl;
+ Pgno ovfl, nextOvfl;
+ Pgno *pPrev;
+ int rc = SQLITE_OK;
+ MemPage *pNew, *pPrevPg;
+ Pgno new;
+
+ if( NKEY(pBtTo, pCell->h) + NDATA(pBtTo, pCell->h) <= MX_LOCAL_PAYLOAD ){
+ return SQLITE_OK;
+ }
+ pPrev = &pCell->ovfl;
+ pPrevPg = 0;
+ ovfl = SWAB32(pBtTo, pCell->ovfl);
+ while( ovfl && rc==SQLITE_OK ){
+ rc = sqlitepager_get(pFromPager, ovfl, (void**)&pOvfl);
+ if( rc ) return rc;
+ nextOvfl = SWAB32(pBtFrom, pOvfl->iNext);
+ rc = allocatePage(pBtTo, &pNew, &new, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlitepager_write(pNew);
+ if( rc==SQLITE_OK ){
+ memcpy(pNew, pOvfl, SQLITE_USABLE_SIZE);
+ *pPrev = SWAB32(pBtTo, new);
+ if( pPrevPg ){
+ sqlitepager_unref(pPrevPg);
+ }
+ pPrev = &pOvfl->iNext;
+ pPrevPg = pNew;
+ }
+ }
+ sqlitepager_unref(pOvfl);
+ ovfl = nextOvfl;
+ }
+ if( pPrevPg ){
+ sqlitepager_unref(pPrevPg);
+ }
+ return rc;
+}
+#endif
+
+
+#if 0 /* UNTESTED */
+/*
+** Copy a page of data from one database over to another.
+*/
+static int copyDatabasePage(
+ Btree *pBtFrom,
+ Pgno pgnoFrom,
+ Btree *pBtTo,
+ Pgno *pTo
+){
+ MemPage *pPageFrom, *pPage;
+ Pgno to;
+ int rc;
+ Cell *pCell;
+ int idx;
+
+ rc = sqlitepager_get(pBtFrom->pPager, pgno, (void**)&pPageFrom);
+ if( rc ) return rc;
+ rc = allocatePage(pBt, &pPage, pTo, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlitepager_write(pPage);
+ }
+ if( rc==SQLITE_OK ){
+ memcpy(pPage, pPageFrom, SQLITE_USABLE_SIZE);
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
+ while( idx>0 ){
+ pCell = (Cell*)&pPage->u.aDisk[idx];
+ idx = SWAB16(pBt, pCell->h.iNext);
+ if( pCell->h.leftChild ){
+ Pgno newChld;
+ rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pCell->h.leftChild),
+ pBtTo, &newChld);
+ if( rc ) return rc;
+ pCell->h.leftChild = SWAB32(pBtFrom, newChld);
+ }
+ rc = copyCell(pBtFrom, pBtTo, pCell);
+ if( rc ) return rc;
+ }
+ if( pPage->u.hdr.rightChild ){
+ Pgno newChld;
+ rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pPage->u.hdr.rightChild),
+ pBtTo, &newChld);
+ if( rc ) return rc;
+ pPage->u.hdr.rightChild = SWAB32(pBtTo, newChild);
+ }
+ }
+ sqlitepager_unref(pPage);
+ return rc;
+}
+#endif
+
+/*
+** Read the meta-information out of a database file.
+*/
+static int fileBtreeGetMeta(Btree *pBt, int *aMeta){
+ PageOne *pP1;
+ int rc;
+ int i;
+
+ rc = sqlitepager_get(pBt->pPager, 1, (void**)&pP1);
+ if( rc ) return rc;
+ aMeta[0] = SWAB32(pBt, pP1->nFree);
+ for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
+ aMeta[i+1] = SWAB32(pBt, pP1->aMeta[i]);
+ }
+ sqlitepager_unref(pP1);
+ return SQLITE_OK;
+}
+
+/*
+** Write meta-information back into the database.
+*/
+static int fileBtreeUpdateMeta(Btree *pBt, int *aMeta){
+ PageOne *pP1;
+ int rc, i;
+ if( !pBt->inTrans ){
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ pP1 = pBt->page1;
+ rc = sqlitepager_write(pP1);
+ if( rc ) return rc;
+ for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
+ pP1->aMeta[i] = SWAB32(pBt, aMeta[i+1]);
+ }
+ return SQLITE_OK;
+}
+
+/******************************************************************************
+** The complete implementation of the BTree subsystem is above this line.
+** All the code the follows is for testing and troubleshooting the BTree
+** subsystem. None of the code that follows is used during normal operation.
+******************************************************************************/
+
+/*
+** Print a disassembly of the given page on standard output. This routine
+** is used for debugging and testing only.
+*/
+#ifdef SQLITE_TEST
+static int fileBtreePageDump(Btree *pBt, int pgno, int recursive){
+ int rc;
+ MemPage *pPage;
+ int i, j;
+ int nFree;
+ u16 idx;
+ char range[20];
+ unsigned char payload[20];
+ rc = sqlitepager_get(pBt->pPager, (Pgno)pgno, (void**)&pPage);
+ if( rc ){
+ return rc;
+ }
+ if( recursive ) printf("PAGE %d:\n", pgno);
+ i = 0;
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
+ while( idx>0 && idx<=SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
+ Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
+ int sz = cellSize(pBt, pCell);
+ sprintf(range,"%d..%d", idx, idx+sz-1);
+ sz = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
+ if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
+ memcpy(payload, pCell->aPayload, sz);
+ for(j=0; j<sz; j++){
+ if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
+ }
+ payload[sz] = 0;
+ printf(
+ "cell %2d: i=%-10s chld=%-4d nk=%-4d nd=%-4d payload=%s\n",
+ i, range, (int)pCell->h.leftChild,
+ NKEY(pBt, pCell->h), NDATA(pBt, pCell->h),
+ payload
+ );
+ if( pPage->isInit && pPage->apCell[i]!=pCell ){
+ printf("**** apCell[%d] does not match on prior entry ****\n", i);
+ }
+ i++;
+ idx = SWAB16(pBt, pCell->h.iNext);
+ }
+ if( idx!=0 ){
+ printf("ERROR: next cell index out of range: %d\n", idx);
+ }
+ printf("right_child: %d\n", SWAB32(pBt, pPage->u.hdr.rightChild));
+ nFree = 0;
+ i = 0;
+ idx = SWAB16(pBt, pPage->u.hdr.firstFree);
+ while( idx>0 && idx<SQLITE_USABLE_SIZE ){
+ FreeBlk *p = (FreeBlk*)&pPage->u.aDisk[idx];
+ sprintf(range,"%d..%d", idx, idx+p->iSize-1);
+ nFree += SWAB16(pBt, p->iSize);
+ printf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
+ i, range, SWAB16(pBt, p->iSize), nFree);
+ idx = SWAB16(pBt, p->iNext);
+ i++;
+ }
+ if( idx!=0 ){
+ printf("ERROR: next freeblock index out of range: %d\n", idx);
+ }
+ if( recursive && pPage->u.hdr.rightChild!=0 ){
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
+ while( idx>0 && idx<SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
+ Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
+ fileBtreePageDump(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
+ idx = SWAB16(pBt, pCell->h.iNext);
+ }
+ fileBtreePageDump(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
+ }
+ sqlitepager_unref(pPage);
+ return SQLITE_OK;
+}
+#endif
+
+#ifdef SQLITE_TEST
+/*
+** Fill aResult[] with information about the entry and page that the
+** cursor is pointing to.
+**
+** aResult[0] = The page number
+** aResult[1] = The entry number
+** aResult[2] = Total number of entries on this page
+** aResult[3] = Size of this entry
+** aResult[4] = Number of free bytes on this page
+** aResult[5] = Number of free blocks on the page
+** aResult[6] = Page number of the left child of this entry
+** aResult[7] = Page number of the right child for the whole page
+**
+** This routine is used for testing and debugging only.
+*/
+static int fileBtreeCursorDump(BtCursor *pCur, int *aResult){
+ int cnt, idx;
+ MemPage *pPage = pCur->pPage;
+ Btree *pBt = pCur->pBt;
+ aResult[0] = sqlitepager_pagenumber(pPage);
+ aResult[1] = pCur->idx;
+ aResult[2] = pPage->nCell;
+ if( pCur->idx>=0 && pCur->idx<pPage->nCell ){
+ aResult[3] = cellSize(pBt, pPage->apCell[pCur->idx]);
+ aResult[6] = SWAB32(pBt, pPage->apCell[pCur->idx]->h.leftChild);
+ }else{
+ aResult[3] = 0;
+ aResult[6] = 0;
+ }
+ aResult[4] = pPage->nFree;
+ cnt = 0;
+ idx = SWAB16(pBt, pPage->u.hdr.firstFree);
+ while( idx>0 && idx<SQLITE_USABLE_SIZE ){
+ cnt++;
+ idx = SWAB16(pBt, ((FreeBlk*)&pPage->u.aDisk[idx])->iNext);
+ }
+ aResult[5] = cnt;
+ aResult[7] = SWAB32(pBt, pPage->u.hdr.rightChild);
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** Return the pager associated with a BTree. This routine is used for
+** testing and debugging only.
+*/
+static Pager *fileBtreePager(Btree *pBt){
+ return pBt->pPager;
+}
+
+/*
+** This structure is passed around through all the sanity checking routines
+** in order to keep track of some global state information.
+*/
+typedef struct IntegrityCk IntegrityCk;
+struct IntegrityCk {
+ Btree *pBt; /* The tree being checked out */
+ Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
+ int nPage; /* Number of pages in the database */
+ int *anRef; /* Number of times each page is referenced */
+ char *zErrMsg; /* An error message. NULL of no errors seen. */
+};
+
+/*
+** Append a message to the error message string.
+*/
+static void checkAppendMsg(IntegrityCk *pCheck, char *zMsg1, char *zMsg2){
+ if( pCheck->zErrMsg ){
+ char *zOld = pCheck->zErrMsg;
+ pCheck->zErrMsg = 0;
+ sqliteSetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
+ sqliteFree(zOld);
+ }else{
+ sqliteSetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
+ }
+}
+
+/*
+** Add 1 to the reference count for page iPage. If this is the second
+** reference to the page, add an error message to pCheck->zErrMsg.
+** Return 1 if there are 2 ore more references to the page and 0 if
+** if this is the first reference to the page.
+**
+** Also check that the page number is in bounds.
+*/
+static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
+ if( iPage==0 ) return 1;
+ if( iPage>pCheck->nPage || iPage<0 ){
+ char zBuf[100];
+ sprintf(zBuf, "invalid page number %d", iPage);
+ checkAppendMsg(pCheck, zContext, zBuf);
+ return 1;
+ }
+ if( pCheck->anRef[iPage]==1 ){
+ char zBuf[100];
+ sprintf(zBuf, "2nd reference to page %d", iPage);
+ checkAppendMsg(pCheck, zContext, zBuf);
+ return 1;
+ }
+ return (pCheck->anRef[iPage]++)>1;
+}
+
+/*
+** Check the integrity of the freelist or of an overflow page list.
+** Verify that the number of pages on the list is N.
+*/
+static void checkList(
+ IntegrityCk *pCheck, /* Integrity checking context */
+ int isFreeList, /* True for a freelist. False for overflow page list */
+ int iPage, /* Page number for first page in the list */
+ int N, /* Expected number of pages in the list */
+ char *zContext /* Context for error messages */
+){
+ int i;
+ char zMsg[100];
+ while( N-- > 0 ){
+ OverflowPage *pOvfl;
+ if( iPage<1 ){
+ sprintf(zMsg, "%d pages missing from overflow list", N+1);
+ checkAppendMsg(pCheck, zContext, zMsg);
+ break;
+ }
+ if( checkRef(pCheck, iPage, zContext) ) break;
+ if( sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
+ sprintf(zMsg, "failed to get page %d", iPage);
+ checkAppendMsg(pCheck, zContext, zMsg);
+ break;
+ }
+ if( isFreeList ){
+ FreelistInfo *pInfo = (FreelistInfo*)pOvfl->aPayload;
+ int n = SWAB32(pCheck->pBt, pInfo->nFree);
+ for(i=0; i<n; i++){
+ checkRef(pCheck, SWAB32(pCheck->pBt, pInfo->aFree[i]), zContext);
+ }
+ N -= n;
+ }
+ iPage = SWAB32(pCheck->pBt, pOvfl->iNext);
+ sqlitepager_unref(pOvfl);
+ }
+}
+
+/*
+** Return negative if zKey1<zKey2.
+** Return zero if zKey1==zKey2.
+** Return positive if zKey1>zKey2.
+*/
+static int keyCompare(
+ const char *zKey1, int nKey1,
+ const char *zKey2, int nKey2
+){
+ int min = nKey1>nKey2 ? nKey2 : nKey1;
+ int c = memcmp(zKey1, zKey2, min);
+ if( c==0 ){
+ c = nKey1 - nKey2;
+ }
+ return c;
+}
+
+/*
+** Do various sanity checks on a single page of a tree. Return
+** the tree depth. Root pages return 0. Parents of root pages
+** return 1, and so forth.
+**
+** These checks are done:
+**
+** 1. Make sure that cells and freeblocks do not overlap
+** but combine to completely cover the page.
+** 2. Make sure cell keys are in order.
+** 3. Make sure no key is less than or equal to zLowerBound.
+** 4. Make sure no key is greater than or equal to zUpperBound.
+** 5. Check the integrity of overflow pages.
+** 6. Recursively call checkTreePage on all children.
+** 7. Verify that the depth of all children is the same.
+** 8. Make sure this page is at least 33% full or else it is
+** the root of the tree.
+*/
+static int checkTreePage(
+ IntegrityCk *pCheck, /* Context for the sanity check */
+ int iPage, /* Page number of the page to check */
+ MemPage *pParent, /* Parent page */
+ char *zParentContext, /* Parent context */
+ char *zLowerBound, /* All keys should be greater than this, if not NULL */
+ int nLower, /* Number of characters in zLowerBound */
+ char *zUpperBound, /* All keys should be less than this, if not NULL */
+ int nUpper /* Number of characters in zUpperBound */
+){
+ MemPage *pPage;
+ int i, rc, depth, d2, pgno;
+ char *zKey1, *zKey2;
+ int nKey1, nKey2;
+ BtCursor cur;
+ Btree *pBt;
+ char zMsg[100];
+ char zContext[100];
+ char hit[SQLITE_USABLE_SIZE];
+
+ /* Check that the page exists
+ */
+ cur.pBt = pBt = pCheck->pBt;
+ if( iPage==0 ) return 0;
+ if( checkRef(pCheck, iPage, zParentContext) ) return 0;
+ sprintf(zContext, "On tree page %d: ", iPage);
+ if( (rc = sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pPage))!=0 ){
+ sprintf(zMsg, "unable to get the page. error code=%d", rc);
+ checkAppendMsg(pCheck, zContext, zMsg);
+ return 0;
+ }
+ if( (rc = initPage(pBt, pPage, (Pgno)iPage, pParent))!=0 ){
+ sprintf(zMsg, "initPage() returns error code %d", rc);
+ checkAppendMsg(pCheck, zContext, zMsg);
+ sqlitepager_unref(pPage);
+ return 0;
+ }
+
+ /* Check out all the cells.
+ */
+ depth = 0;
+ if( zLowerBound ){
+ zKey1 = sqliteMalloc( nLower+1 );
+ memcpy(zKey1, zLowerBound, nLower);
+ zKey1[nLower] = 0;
+ }else{
+ zKey1 = 0;
+ }
+ nKey1 = nLower;
+ cur.pPage = pPage;
+ for(i=0; i<pPage->nCell; i++){
+ Cell *pCell = pPage->apCell[i];
+ int sz;
+
+ /* Check payload overflow pages
+ */
+ nKey2 = NKEY(pBt, pCell->h);
+ sz = nKey2 + NDATA(pBt, pCell->h);
+ sprintf(zContext, "On page %d cell %d: ", iPage, i);
+ if( sz>MX_LOCAL_PAYLOAD ){
+ int nPage = (sz - MX_LOCAL_PAYLOAD + OVERFLOW_SIZE - 1)/OVERFLOW_SIZE;
+ checkList(pCheck, 0, SWAB32(pBt, pCell->ovfl), nPage, zContext);
+ }
+
+ /* Check that keys are in the right order
+ */
+ cur.idx = i;
+ zKey2 = sqliteMallocRaw( nKey2+1 );
+ getPayload(&cur, 0, nKey2, zKey2);
+ if( zKey1 && keyCompare(zKey1, nKey1, zKey2, nKey2)>=0 ){
+ checkAppendMsg(pCheck, zContext, "Key is out of order");
+ }
+
+ /* Check sanity of left child page.
+ */
+ pgno = SWAB32(pBt, pCell->h.leftChild);
+ d2 = checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zKey2,nKey2);
+ if( i>0 && d2!=depth ){
+ checkAppendMsg(pCheck, zContext, "Child page depth differs");
+ }
+ depth = d2;
+ sqliteFree(zKey1);
+ zKey1 = zKey2;
+ nKey1 = nKey2;
+ }
+ pgno = SWAB32(pBt, pPage->u.hdr.rightChild);
+ sprintf(zContext, "On page %d at right child: ", iPage);
+ checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zUpperBound,nUpper);
+ sqliteFree(zKey1);
+
+ /* Check for complete coverage of the page
+ */
+ memset(hit, 0, sizeof(hit));
+ memset(hit, 1, sizeof(PageHdr));
+ for(i=SWAB16(pBt, pPage->u.hdr.firstCell); i>0 && i<SQLITE_USABLE_SIZE; ){
+ Cell *pCell = (Cell*)&pPage->u.aDisk[i];
+ int j;
+ for(j=i+cellSize(pBt, pCell)-1; j>=i; j--) hit[j]++;
+ i = SWAB16(pBt, pCell->h.iNext);
+ }
+ for(i=SWAB16(pBt,pPage->u.hdr.firstFree); i>0 && i<SQLITE_USABLE_SIZE; ){
+ FreeBlk *pFBlk = (FreeBlk*)&pPage->u.aDisk[i];
+ int j;
+ for(j=i+SWAB16(pBt,pFBlk->iSize)-1; j>=i; j--) hit[j]++;
+ i = SWAB16(pBt,pFBlk->iNext);
+ }
+ for(i=0; i<SQLITE_USABLE_SIZE; i++){
+ if( hit[i]==0 ){
+ sprintf(zMsg, "Unused space at byte %d of page %d", i, iPage);
+ checkAppendMsg(pCheck, zMsg, 0);
+ break;
+ }else if( hit[i]>1 ){
+ sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage);
+ checkAppendMsg(pCheck, zMsg, 0);
+ break;
+ }
+ }
+
+ /* Check that free space is kept to a minimum
+ */
+#if 0
+ if( pParent && pParent->nCell>2 && pPage->nFree>3*SQLITE_USABLE_SIZE/4 ){
+ sprintf(zMsg, "free space (%d) greater than max (%d)", pPage->nFree,
+ SQLITE_USABLE_SIZE/3);
+ checkAppendMsg(pCheck, zContext, zMsg);
+ }
+#endif
+
+ sqlitepager_unref(pPage);
+ return depth;
+}
+
+/*
+** This routine does a complete check of the given BTree file. aRoot[] is
+** an array of pages numbers were each page number is the root page of
+** a table. nRoot is the number of entries in aRoot.
+**
+** If everything checks out, this routine returns NULL. If something is
+** amiss, an error message is written into memory obtained from malloc()
+** and a pointer to that error message is returned. The calling function
+** is responsible for freeing the error message when it is done.
+*/
+char *fileBtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
+ int i;
+ int nRef;
+ IntegrityCk sCheck;
+
+ nRef = *sqlitepager_stats(pBt->pPager);
+ if( lockBtree(pBt)!=SQLITE_OK ){
+ return sqliteStrDup("Unable to acquire a read lock on the database");
+ }
+ sCheck.pBt = pBt;
+ sCheck.pPager = pBt->pPager;
+ sCheck.nPage = sqlitepager_pagecount(sCheck.pPager);
+ if( sCheck.nPage==0 ){
+ unlockBtreeIfUnused(pBt);
+ return 0;
+ }
+ sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
+ sCheck.anRef[1] = 1;
+ for(i=2; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
+ sCheck.zErrMsg = 0;
+
+ /* Check the integrity of the freelist
+ */
+ checkList(&sCheck, 1, SWAB32(pBt, pBt->page1->freeList),
+ SWAB32(pBt, pBt->page1->nFree), "Main freelist: ");
+
+ /* Check all the tables.
+ */
+ for(i=0; i<nRoot; i++){
+ if( aRoot[i]==0 ) continue;
+ checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0);
+ }
+
+ /* Make sure every page in the file is referenced
+ */
+ for(i=1; i<=sCheck.nPage; i++){
+ if( sCheck.anRef[i]==0 ){
+ char zBuf[100];
+ sprintf(zBuf, "Page %d is never used", i);
+ checkAppendMsg(&sCheck, zBuf, 0);
+ }
+ }
+
+ /* Make sure this analysis did not leave any unref() pages
+ */
+ unlockBtreeIfUnused(pBt);
+ if( nRef != *sqlitepager_stats(pBt->pPager) ){
+ char zBuf[100];
+ sprintf(zBuf,
+ "Outstanding page count goes from %d to %d during this analysis",
+ nRef, *sqlitepager_stats(pBt->pPager)
+ );
+ checkAppendMsg(&sCheck, zBuf, 0);
+ }
+
+ /* Clean up and report errors.
+ */
+ sqliteFree(sCheck.anRef);
+ return sCheck.zErrMsg;
+}
+
+/*
+** Return the full pathname of the underlying database file.
+*/
+static const char *fileBtreeGetFilename(Btree *pBt){
+ assert( pBt->pPager!=0 );
+ return sqlitepager_filename(pBt->pPager);
+}
+
+/*
+** Copy the complete content of pBtFrom into pBtTo. A transaction
+** must be active for both files.
+**
+** The size of file pBtFrom may be reduced by this operation.
+** If anything goes wrong, the transaction on pBtFrom is rolled back.
+*/
+static int fileBtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){
+ int rc = SQLITE_OK;
+ Pgno i, nPage, nToPage;
+
+ if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR;
+ if( pBtTo->needSwab!=pBtFrom->needSwab ) return SQLITE_ERROR;
+ if( pBtTo->pCursor ) return SQLITE_BUSY;
+ memcpy(pBtTo->page1, pBtFrom->page1, SQLITE_USABLE_SIZE);
+ rc = sqlitepager_overwrite(pBtTo->pPager, 1, pBtFrom->page1);
+ nToPage = sqlitepager_pagecount(pBtTo->pPager);
+ nPage = sqlitepager_pagecount(pBtFrom->pPager);
+ for(i=2; rc==SQLITE_OK && i<=nPage; i++){
+ void *pPage;
+ rc = sqlitepager_get(pBtFrom->pPager, i, &pPage);
+ if( rc ) break;
+ rc = sqlitepager_overwrite(pBtTo->pPager, i, pPage);
+ if( rc ) break;
+ sqlitepager_unref(pPage);
+ }
+ for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
+ void *pPage;
+ rc = sqlitepager_get(pBtTo->pPager, i, &pPage);
+ if( rc ) break;
+ rc = sqlitepager_write(pPage);
+ sqlitepager_unref(pPage);
+ sqlitepager_dont_write(pBtTo->pPager, i);
+ }
+ if( !rc && nPage<nToPage ){
+ rc = sqlitepager_truncate(pBtTo->pPager, nPage);
+ }
+ if( rc ){
+ fileBtreeRollback(pBtTo);
+ }
+ return rc;
+}
+
+/*
+** The following tables contain pointers to all of the interface
+** routines for this implementation of the B*Tree backend. To
+** substitute a different implemention of the backend, one has merely
+** to provide pointers to alternative functions in similar tables.
+*/
+static BtOps sqliteBtreeOps = {
+ fileBtreeClose,
+ fileBtreeSetCacheSize,
+ fileBtreeSetSafetyLevel,
+ fileBtreeBeginTrans,
+ fileBtreeCommit,
+ fileBtreeRollback,
+ fileBtreeBeginCkpt,
+ fileBtreeCommitCkpt,
+ fileBtreeRollbackCkpt,
+ fileBtreeCreateTable,
+ fileBtreeCreateTable, /* Really sqliteBtreeCreateIndex() */
+ fileBtreeDropTable,
+ fileBtreeClearTable,
+ fileBtreeCursor,
+ fileBtreeGetMeta,
+ fileBtreeUpdateMeta,
+ fileBtreeIntegrityCheck,
+ fileBtreeGetFilename,
+ fileBtreeCopyFile,
+ fileBtreePager,
+#ifdef SQLITE_TEST
+ fileBtreePageDump,
+#endif
+};
+static BtCursorOps sqliteBtreeCursorOps = {
+ fileBtreeMoveto,
+ fileBtreeDelete,
+ fileBtreeInsert,
+ fileBtreeFirst,
+ fileBtreeLast,
+ fileBtreeNext,
+ fileBtreePrevious,
+ fileBtreeKeySize,
+ fileBtreeKey,
+ fileBtreeKeyCompare,
+ fileBtreeDataSize,
+ fileBtreeData,
+ fileBtreeCloseCursor,
+#ifdef SQLITE_TEST
+ fileBtreeCursorDump,
+#endif
+};
diff --git a/src/3rdparty/sqlite/btree.h b/src/3rdparty/sqlite/btree.h
new file mode 100644
index 0000000..7b11da6
--- /dev/null
+++ b/src/3rdparty/sqlite/btree.h
@@ -0,0 +1,156 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the sqlite B-Tree file
+** subsystem. See comments in the source code for a detailed description
+** of what each interface routine does.
+**
+** @(#) $Id: btree.h,v 1.36 2004/02/10 02:57:59 drh Exp $
+*/
+#ifndef _BTREE_H_
+#define _BTREE_H_
+
+/*
+** Forward declarations of structure
+*/
+typedef struct Btree Btree;
+typedef struct BtCursor BtCursor;
+typedef struct BtOps BtOps;
+typedef struct BtCursorOps BtCursorOps;
+
+
+/*
+** An instance of the following structure contains pointers to all
+** methods against an open BTree. Alternative BTree implementations
+** (examples: file based versus in-memory) can be created by substituting
+** different methods. Users of the BTree cannot tell the difference.
+**
+** In C++ we could do this by defining a virtual base class and then
+** creating subclasses for each different implementation. But this is
+** C not C++ so we have to be a little more explicit.
+*/
+struct BtOps {
+ int (*Close)(Btree*);
+ int (*SetCacheSize)(Btree*, int);
+ int (*SetSafetyLevel)(Btree*, int);
+ int (*BeginTrans)(Btree*);
+ int (*Commit)(Btree*);
+ int (*Rollback)(Btree*);
+ int (*BeginCkpt)(Btree*);
+ int (*CommitCkpt)(Btree*);
+ int (*RollbackCkpt)(Btree*);
+ int (*CreateTable)(Btree*, int*);
+ int (*CreateIndex)(Btree*, int*);
+ int (*DropTable)(Btree*, int);
+ int (*ClearTable)(Btree*, int);
+ int (*Cursor)(Btree*, int iTable, int wrFlag, BtCursor **ppCur);
+ int (*GetMeta)(Btree*, int*);
+ int (*UpdateMeta)(Btree*, int*);
+ char *(*IntegrityCheck)(Btree*, int*, int);
+ const char *(*GetFilename)(Btree*);
+ int (*Copyfile)(Btree*,Btree*);
+ struct Pager *(*Pager)(Btree*);
+#ifdef SQLITE_TEST
+ int (*PageDump)(Btree*, int, int);
+#endif
+};
+
+/*
+** An instance of this structure defines all of the methods that can
+** be executed against a cursor.
+*/
+struct BtCursorOps {
+ int (*Moveto)(BtCursor*, const void *pKey, int nKey, int *pRes);
+ int (*Delete)(BtCursor*);
+ int (*Insert)(BtCursor*, const void *pKey, int nKey,
+ const void *pData, int nData);
+ int (*First)(BtCursor*, int *pRes);
+ int (*Last)(BtCursor*, int *pRes);
+ int (*Next)(BtCursor*, int *pRes);
+ int (*Previous)(BtCursor*, int *pRes);
+ int (*KeySize)(BtCursor*, int *pSize);
+ int (*Key)(BtCursor*, int offset, int amt, char *zBuf);
+ int (*KeyCompare)(BtCursor*, const void *pKey, int nKey,
+ int nIgnore, int *pRes);
+ int (*DataSize)(BtCursor*, int *pSize);
+ int (*Data)(BtCursor*, int offset, int amt, char *zBuf);
+ int (*CloseCursor)(BtCursor*);
+#ifdef SQLITE_TEST
+ int (*CursorDump)(BtCursor*, int*);
+#endif
+};
+
+/*
+** The number of 4-byte "meta" values contained on the first page of each
+** database file.
+*/
+#define SQLITE_N_BTREE_META 10
+
+int sqliteBtreeOpen(const char *zFilename, int mode, int nPg, Btree **ppBtree);
+int sqliteRbtreeOpen(const char *zFilename, int mode, int nPg, Btree **ppBtree);
+
+#define btOps(pBt) (*((BtOps **)(pBt)))
+#define btCOps(pCur) (*((BtCursorOps **)(pCur)))
+
+#define sqliteBtreeClose(pBt) (btOps(pBt)->Close(pBt))
+#define sqliteBtreeSetCacheSize(pBt, sz) (btOps(pBt)->SetCacheSize(pBt, sz))
+#define sqliteBtreeSetSafetyLevel(pBt, sl) (btOps(pBt)->SetSafetyLevel(pBt, sl))
+#define sqliteBtreeBeginTrans(pBt) (btOps(pBt)->BeginTrans(pBt))
+#define sqliteBtreeCommit(pBt) (btOps(pBt)->Commit(pBt))
+#define sqliteBtreeRollback(pBt) (btOps(pBt)->Rollback(pBt))
+#define sqliteBtreeBeginCkpt(pBt) (btOps(pBt)->BeginCkpt(pBt))
+#define sqliteBtreeCommitCkpt(pBt) (btOps(pBt)->CommitCkpt(pBt))
+#define sqliteBtreeRollbackCkpt(pBt) (btOps(pBt)->RollbackCkpt(pBt))
+#define sqliteBtreeCreateTable(pBt,piTable)\
+ (btOps(pBt)->CreateTable(pBt,piTable))
+#define sqliteBtreeCreateIndex(pBt, piIndex)\
+ (btOps(pBt)->CreateIndex(pBt, piIndex))
+#define sqliteBtreeDropTable(pBt, iTable) (btOps(pBt)->DropTable(pBt, iTable))
+#define sqliteBtreeClearTable(pBt, iTable)\
+ (btOps(pBt)->ClearTable(pBt, iTable))
+#define sqliteBtreeCursor(pBt, iTable, wrFlag, ppCur)\
+ (btOps(pBt)->Cursor(pBt, iTable, wrFlag, ppCur))
+#define sqliteBtreeMoveto(pCur, pKey, nKey, pRes)\
+ (btCOps(pCur)->Moveto(pCur, pKey, nKey, pRes))
+#define sqliteBtreeDelete(pCur) (btCOps(pCur)->Delete(pCur))
+#define sqliteBtreeInsert(pCur, pKey, nKey, pData, nData) \
+ (btCOps(pCur)->Insert(pCur, pKey, nKey, pData, nData))
+#define sqliteBtreeFirst(pCur, pRes) (btCOps(pCur)->First(pCur, pRes))
+#define sqliteBtreeLast(pCur, pRes) (btCOps(pCur)->Last(pCur, pRes))
+#define sqliteBtreeNext(pCur, pRes) (btCOps(pCur)->Next(pCur, pRes))
+#define sqliteBtreePrevious(pCur, pRes) (btCOps(pCur)->Previous(pCur, pRes))
+#define sqliteBtreeKeySize(pCur, pSize) (btCOps(pCur)->KeySize(pCur, pSize) )
+#define sqliteBtreeKey(pCur, offset, amt, zBuf)\
+ (btCOps(pCur)->Key(pCur, offset, amt, zBuf))
+#define sqliteBtreeKeyCompare(pCur, pKey, nKey, nIgnore, pRes)\
+ (btCOps(pCur)->KeyCompare(pCur, pKey, nKey, nIgnore, pRes))
+#define sqliteBtreeDataSize(pCur, pSize) (btCOps(pCur)->DataSize(pCur, pSize))
+#define sqliteBtreeData(pCur, offset, amt, zBuf)\
+ (btCOps(pCur)->Data(pCur, offset, amt, zBuf))
+#define sqliteBtreeCloseCursor(pCur) (btCOps(pCur)->CloseCursor(pCur))
+#define sqliteBtreeGetMeta(pBt, aMeta) (btOps(pBt)->GetMeta(pBt, aMeta))
+#define sqliteBtreeUpdateMeta(pBt, aMeta) (btOps(pBt)->UpdateMeta(pBt, aMeta))
+#define sqliteBtreeIntegrityCheck(pBt, aRoot, nRoot)\
+ (btOps(pBt)->IntegrityCheck(pBt, aRoot, nRoot))
+#define sqliteBtreeGetFilename(pBt) (btOps(pBt)->GetFilename(pBt))
+#define sqliteBtreeCopyFile(pBt1, pBt2) (btOps(pBt1)->Copyfile(pBt1, pBt2))
+#define sqliteBtreePager(pBt) (btOps(pBt)->Pager(pBt))
+
+#ifdef SQLITE_TEST
+#define sqliteBtreePageDump(pBt, pgno, recursive)\
+ (btOps(pBt)->PageDump(pBt, pgno, recursive))
+#define sqliteBtreeCursorDump(pCur, aResult)\
+ (btCOps(pCur)->CursorDump(pCur, aResult))
+int btree_native_byte_order;
+#endif /* SQLITE_TEST */
+
+
+#endif /* _BTREE_H_ */
diff --git a/src/3rdparty/sqlite/btree_rb.c b/src/3rdparty/sqlite/btree_rb.c
new file mode 100644
index 0000000..ea4b3dd
--- /dev/null
+++ b/src/3rdparty/sqlite/btree_rb.c
@@ -0,0 +1,1488 @@
+/*
+** 2003 Feb 4
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** $Id: btree_rb.c,v 1.24 2004/02/29 00:11:31 drh Exp $
+**
+** This file implements an in-core database using Red-Black balanced
+** binary trees.
+**
+** It was contributed to SQLite by anonymous on 2003-Feb-04 23:24:49 UTC.
+*/
+#include "btree.h"
+#include "sqliteInt.h"
+#include <assert.h>
+
+/*
+** Omit this whole file if the SQLITE_OMIT_INMEMORYDB macro is
+** defined. This allows a lot of code to be omitted for installations
+** that do not need it.
+*/
+#ifndef SQLITE_OMIT_INMEMORYDB
+
+
+typedef struct BtRbTree BtRbTree;
+typedef struct BtRbNode BtRbNode;
+typedef struct BtRollbackOp BtRollbackOp;
+typedef struct Rbtree Rbtree;
+typedef struct RbtCursor RbtCursor;
+
+/* Forward declarations */
+static BtOps sqliteRbtreeOps;
+static BtCursorOps sqliteRbtreeCursorOps;
+
+/*
+ * During each transaction (or checkpoint), a linked-list of
+ * "rollback-operations" is accumulated. If the transaction is rolled back,
+ * then the list of operations must be executed (to restore the database to
+ * it's state before the transaction started). If the transaction is to be
+ * committed, just delete the list.
+ *
+ * Each operation is represented as follows, depending on the value of eOp:
+ *
+ * ROLLBACK_INSERT -> Need to insert (pKey, pData) into table iTab.
+ * ROLLBACK_DELETE -> Need to delete the record (pKey) into table iTab.
+ * ROLLBACK_CREATE -> Need to create table iTab.
+ * ROLLBACK_DROP -> Need to drop table iTab.
+ */
+struct BtRollbackOp {
+ u8 eOp;
+ int iTab;
+ int nKey;
+ void *pKey;
+ int nData;
+ void *pData;
+ BtRollbackOp *pNext;
+};
+
+/*
+** Legal values for BtRollbackOp.eOp:
+*/
+#define ROLLBACK_INSERT 1 /* Insert a record */
+#define ROLLBACK_DELETE 2 /* Delete a record */
+#define ROLLBACK_CREATE 3 /* Create a table */
+#define ROLLBACK_DROP 4 /* Drop a table */
+
+struct Rbtree {
+ BtOps *pOps; /* Function table */
+ int aMetaData[SQLITE_N_BTREE_META];
+
+ int next_idx; /* next available table index */
+ Hash tblHash; /* All created tables, by index */
+ u8 isAnonymous; /* True if this Rbtree is to be deleted when closed */
+ u8 eTransState; /* State of this Rbtree wrt transactions */
+
+ BtRollbackOp *pTransRollback;
+ BtRollbackOp *pCheckRollback;
+ BtRollbackOp *pCheckRollbackTail;
+};
+
+/*
+** Legal values for Rbtree.eTransState.
+*/
+#define TRANS_NONE 0 /* No transaction is in progress */
+#define TRANS_INTRANSACTION 1 /* A transaction is in progress */
+#define TRANS_INCHECKPOINT 2 /* A checkpoint is in progress */
+#define TRANS_ROLLBACK 3 /* We are currently rolling back a checkpoint or
+ * transaction. */
+
+struct RbtCursor {
+ BtCursorOps *pOps; /* Function table */
+ Rbtree *pRbtree;
+ BtRbTree *pTree;
+ int iTree; /* Index of pTree in pRbtree */
+ BtRbNode *pNode;
+ RbtCursor *pShared; /* List of all cursors on the same Rbtree */
+ u8 eSkip; /* Determines if next step operation is a no-op */
+ u8 wrFlag; /* True if this cursor is open for writing */
+};
+
+/*
+** Legal values for RbtCursor.eSkip.
+*/
+#define SKIP_NONE 0 /* Always step the cursor */
+#define SKIP_NEXT 1 /* The next sqliteRbtreeNext() is a no-op */
+#define SKIP_PREV 2 /* The next sqliteRbtreePrevious() is a no-op */
+#define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */
+
+struct BtRbTree {
+ RbtCursor *pCursors; /* All cursors pointing to this tree */
+ BtRbNode *pHead; /* Head of the tree, or NULL */
+};
+
+struct BtRbNode {
+ int nKey;
+ void *pKey;
+ int nData;
+ void *pData;
+ u8 isBlack; /* true for a black node, 0 for a red node */
+ BtRbNode *pParent; /* Nodes parent node, NULL for the tree head */
+ BtRbNode *pLeft; /* Nodes left child, or NULL */
+ BtRbNode *pRight; /* Nodes right child, or NULL */
+
+ int nBlackHeight; /* Only used during the red-black integrity check */
+};
+
+/* Forward declarations */
+static int memRbtreeMoveto(
+ RbtCursor* pCur,
+ const void *pKey,
+ int nKey,
+ int *pRes
+);
+static int memRbtreeClearTable(Rbtree* tree, int n);
+static int memRbtreeNext(RbtCursor* pCur, int *pRes);
+static int memRbtreeLast(RbtCursor* pCur, int *pRes);
+static int memRbtreePrevious(RbtCursor* pCur, int *pRes);
+
+
+/*
+** This routine checks all cursors that point to the same table
+** as pCur points to. If any of those cursors were opened with
+** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
+** cursors point to the same table were opened with wrFlag==1
+** then this routine returns SQLITE_OK.
+**
+** In addition to checking for read-locks (where a read-lock
+** means a cursor opened with wrFlag==0) this routine also NULLs
+** out the pNode field of all other cursors.
+** This is necessary because an insert
+** or delete might change erase the node out from under
+** another cursor.
+*/
+static int checkReadLocks(RbtCursor *pCur){
+ RbtCursor *p;
+ assert( pCur->wrFlag );
+ for(p=pCur->pTree->pCursors; p; p=p->pShared){
+ if( p!=pCur ){
+ if( p->wrFlag==0 ) return SQLITE_LOCKED;
+ p->pNode = 0;
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+ * The key-compare function for the red-black trees. Returns as follows:
+ *
+ * (key1 < key2) -1
+ * (key1 == key2) 0
+ * (key1 > key2) 1
+ *
+ * Keys are compared using memcmp(). If one key is an exact prefix of the
+ * other, then the shorter key is less than the longer key.
+ */
+static int key_compare(void const*pKey1, int nKey1, void const*pKey2, int nKey2)
+{
+ int mcmp = memcmp(pKey1, pKey2, (nKey1 <= nKey2)?nKey1:nKey2);
+ if( mcmp == 0){
+ if( nKey1 == nKey2 ) return 0;
+ return ((nKey1 < nKey2)?-1:1);
+ }
+ return ((mcmp>0)?1:-1);
+}
+
+/*
+ * Perform the LEFT-rotate transformation on node X of tree pTree. This
+ * transform is part of the red-black balancing code.
+ *
+ * | |
+ * X Y
+ * / \ / \
+ * a Y X c
+ * / \ / \
+ * b c a b
+ *
+ * BEFORE AFTER
+ */
+static void leftRotate(BtRbTree *pTree, BtRbNode *pX)
+{
+ BtRbNode *pY;
+ BtRbNode *pb;
+ pY = pX->pRight;
+ pb = pY->pLeft;
+
+ pY->pParent = pX->pParent;
+ if( pX->pParent ){
+ if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY;
+ else pX->pParent->pRight = pY;
+ }
+ pY->pLeft = pX;
+ pX->pParent = pY;
+ pX->pRight = pb;
+ if( pb ) pb->pParent = pX;
+ if( pTree->pHead == pX ) pTree->pHead = pY;
+}
+
+/*
+ * Perform the RIGHT-rotate transformation on node X of tree pTree. This
+ * transform is part of the red-black balancing code.
+ *
+ * | |
+ * X Y
+ * / \ / \
+ * Y c a X
+ * / \ / \
+ * a b b c
+ *
+ * BEFORE AFTER
+ */
+static void rightRotate(BtRbTree *pTree, BtRbNode *pX)
+{
+ BtRbNode *pY;
+ BtRbNode *pb;
+ pY = pX->pLeft;
+ pb = pY->pRight;
+
+ pY->pParent = pX->pParent;
+ if( pX->pParent ){
+ if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY;
+ else pX->pParent->pRight = pY;
+ }
+ pY->pRight = pX;
+ pX->pParent = pY;
+ pX->pLeft = pb;
+ if( pb ) pb->pParent = pX;
+ if( pTree->pHead == pX ) pTree->pHead = pY;
+}
+
+/*
+ * A string-manipulation helper function for check_redblack_tree(). If (orig ==
+ * NULL) a copy of val is returned. If (orig != NULL) then a copy of the *
+ * concatenation of orig and val is returned. The original orig is deleted
+ * (using sqliteFree()).
+ */
+static char *append_val(char * orig, char const * val){
+ char *z;
+ if( !orig ){
+ z = sqliteStrDup( val );
+ } else{
+ z = 0;
+ sqliteSetString(&z, orig, val, (char*)0);
+ sqliteFree( orig );
+ }
+ return z;
+}
+
+/*
+ * Append a string representation of the entire node to orig and return it.
+ * This is used to produce debugging information if check_redblack_tree() finds
+ * a problem with a red-black binary tree.
+ */
+static char *append_node(char * orig, BtRbNode *pNode, int indent)
+{
+ char buf[128];
+ int i;
+
+ for( i=0; i<indent; i++ ){
+ orig = append_val(orig, " ");
+ }
+
+ sprintf(buf, "%p", pNode);
+ orig = append_val(orig, buf);
+
+ if( pNode ){
+ indent += 3;
+ if( pNode->isBlack ){
+ orig = append_val(orig, " B \n");
+ }else{
+ orig = append_val(orig, " R \n");
+ }
+ orig = append_node( orig, pNode->pLeft, indent );
+ orig = append_node( orig, pNode->pRight, indent );
+ }else{
+ orig = append_val(orig, "\n");
+ }
+ return orig;
+}
+
+/*
+ * Print a representation of a node to stdout. This function is only included
+ * so you can call it from within a debugger if things get really bad. It
+ * is not called from anyplace in the code.
+ */
+static void print_node(BtRbNode *pNode)
+{
+ char * str = append_node(0, pNode, 0);
+ printf(str);
+
+ /* Suppress a warning message about print_node() being unused */
+ (void)print_node;
+}
+
+/*
+ * Check the following properties of the red-black tree:
+ * (1) - If a node is red, both of it's children are black
+ * (2) - Each path from a given node to a leaf (NULL) node passes thru the
+ * same number of black nodes
+ *
+ * If there is a problem, append a description (using append_val() ) to *msg.
+ */
+static void check_redblack_tree(BtRbTree * tree, char ** msg)
+{
+ BtRbNode *pNode;
+
+ /* 0 -> came from parent
+ * 1 -> came from left
+ * 2 -> came from right */
+ int prev_step = 0;
+
+ pNode = tree->pHead;
+ while( pNode ){
+ switch( prev_step ){
+ case 0:
+ if( pNode->pLeft ){
+ pNode = pNode->pLeft;
+ }else{
+ prev_step = 1;
+ }
+ break;
+ case 1:
+ if( pNode->pRight ){
+ pNode = pNode->pRight;
+ prev_step = 0;
+ }else{
+ prev_step = 2;
+ }
+ break;
+ case 2:
+ /* Check red-black property (1) */
+ if( !pNode->isBlack &&
+ ( (pNode->pLeft && !pNode->pLeft->isBlack) ||
+ (pNode->pRight && !pNode->pRight->isBlack) )
+ ){
+ char buf[128];
+ sprintf(buf, "Red node with red child at %p\n", pNode);
+ *msg = append_val(*msg, buf);
+ *msg = append_node(*msg, tree->pHead, 0);
+ *msg = append_val(*msg, "\n");
+ }
+
+ /* Check red-black property (2) */
+ {
+ int leftHeight = 0;
+ int rightHeight = 0;
+ if( pNode->pLeft ){
+ leftHeight += pNode->pLeft->nBlackHeight;
+ leftHeight += (pNode->pLeft->isBlack?1:0);
+ }
+ if( pNode->pRight ){
+ rightHeight += pNode->pRight->nBlackHeight;
+ rightHeight += (pNode->pRight->isBlack?1:0);
+ }
+ if( leftHeight != rightHeight ){
+ char buf[128];
+ sprintf(buf, "Different black-heights at %p\n", pNode);
+ *msg = append_val(*msg, buf);
+ *msg = append_node(*msg, tree->pHead, 0);
+ *msg = append_val(*msg, "\n");
+ }
+ pNode->nBlackHeight = leftHeight;
+ }
+
+ if( pNode->pParent ){
+ if( pNode == pNode->pParent->pLeft ) prev_step = 1;
+ else prev_step = 2;
+ }
+ pNode = pNode->pParent;
+ break;
+ default: assert(0);
+ }
+ }
+}
+
+/*
+ * Node pX has just been inserted into pTree (by code in sqliteRbtreeInsert()).
+ * It is possible that pX is a red node with a red parent, which is a violation
+ * of the red-black tree properties. This function performs rotations and
+ * color changes to rebalance the tree
+ */
+static void do_insert_balancing(BtRbTree *pTree, BtRbNode *pX)
+{
+ /* In the first iteration of this loop, pX points to the red node just
+ * inserted in the tree. If the parent of pX exists (pX is not the root
+ * node) and is red, then the properties of the red-black tree are
+ * violated.
+ *
+ * At the start of any subsequent iterations, pX points to a red node
+ * with a red parent. In all other respects the tree is a legal red-black
+ * binary tree. */
+ while( pX != pTree->pHead && !pX->pParent->isBlack ){
+ BtRbNode *pUncle;
+ BtRbNode *pGrandparent;
+
+ /* Grandparent of pX must exist and must be black. */
+ pGrandparent = pX->pParent->pParent;
+ assert( pGrandparent );
+ assert( pGrandparent->isBlack );
+
+ /* Uncle of pX may or may not exist. */
+ if( pX->pParent == pGrandparent->pLeft )
+ pUncle = pGrandparent->pRight;
+ else
+ pUncle = pGrandparent->pLeft;
+
+ /* If the uncle of pX exists and is red, we do the following:
+ * | |
+ * G(b) G(r)
+ * / \ / \
+ * U(r) P(r) U(b) P(b)
+ * \ \
+ * X(r) X(r)
+ *
+ * BEFORE AFTER
+ * pX is then set to G. If the parent of G is red, then the while loop
+ * will run again. */
+ if( pUncle && !pUncle->isBlack ){
+ pGrandparent->isBlack = 0;
+ pUncle->isBlack = 1;
+ pX->pParent->isBlack = 1;
+ pX = pGrandparent;
+ }else{
+
+ if( pX->pParent == pGrandparent->pLeft ){
+ if( pX == pX->pParent->pRight ){
+ /* If pX is a right-child, do the following transform, essentially
+ * to change pX into a left-child:
+ * | |
+ * G(b) G(b)
+ * / \ / \
+ * P(r) U(b) X(r) U(b)
+ * \ /
+ * X(r) P(r) <-- new X
+ *
+ * BEFORE AFTER
+ */
+ pX = pX->pParent;
+ leftRotate(pTree, pX);
+ }
+
+ /* Do the following transform, which balances the tree :)
+ * | |
+ * G(b) P(b)
+ * / \ / \
+ * P(r) U(b) X(r) G(r)
+ * / \
+ * X(r) U(b)
+ *
+ * BEFORE AFTER
+ */
+ assert( pGrandparent == pX->pParent->pParent );
+ pGrandparent->isBlack = 0;
+ pX->pParent->isBlack = 1;
+ rightRotate( pTree, pGrandparent );
+
+ }else{
+ /* This code is symetric to the illustrated case above. */
+ if( pX == pX->pParent->pLeft ){
+ pX = pX->pParent;
+ rightRotate(pTree, pX);
+ }
+ assert( pGrandparent == pX->pParent->pParent );
+ pGrandparent->isBlack = 0;
+ pX->pParent->isBlack = 1;
+ leftRotate( pTree, pGrandparent );
+ }
+ }
+ }
+ pTree->pHead->isBlack = 1;
+}
+
+/*
+ * A child of pParent, which in turn had child pX, has just been removed from
+ * pTree (the figure below depicts the operation, Z is being removed). pParent
+ * or pX, or both may be NULL.
+ * | |
+ * P P
+ * / \ / \
+ * Z X
+ * / \
+ * X nil
+ *
+ * This function is only called if Z was black. In this case the red-black tree
+ * properties have been violated, and pX has an "extra black". This function
+ * performs rotations and color-changes to re-balance the tree.
+ */
+static
+void do_delete_balancing(BtRbTree *pTree, BtRbNode *pX, BtRbNode *pParent)
+{
+ BtRbNode *pSib;
+
+ /* TODO: Comment this code! */
+ while( pX != pTree->pHead && (!pX || pX->isBlack) ){
+ if( pX == pParent->pLeft ){
+ pSib = pParent->pRight;
+ if( pSib && !(pSib->isBlack) ){
+ pSib->isBlack = 1;
+ pParent->isBlack = 0;
+ leftRotate(pTree, pParent);
+ pSib = pParent->pRight;
+ }
+ if( !pSib ){
+ pX = pParent;
+ }else if(
+ (!pSib->pLeft || pSib->pLeft->isBlack) &&
+ (!pSib->pRight || pSib->pRight->isBlack) ) {
+ pSib->isBlack = 0;
+ pX = pParent;
+ }else{
+ if( (!pSib->pRight || pSib->pRight->isBlack) ){
+ if( pSib->pLeft ) pSib->pLeft->isBlack = 1;
+ pSib->isBlack = 0;
+ rightRotate( pTree, pSib );
+ pSib = pParent->pRight;
+ }
+ pSib->isBlack = pParent->isBlack;
+ pParent->isBlack = 1;
+ if( pSib->pRight ) pSib->pRight->isBlack = 1;
+ leftRotate(pTree, pParent);
+ pX = pTree->pHead;
+ }
+ }else{
+ pSib = pParent->pLeft;
+ if( pSib && !(pSib->isBlack) ){
+ pSib->isBlack = 1;
+ pParent->isBlack = 0;
+ rightRotate(pTree, pParent);
+ pSib = pParent->pLeft;
+ }
+ if( !pSib ){
+ pX = pParent;
+ }else if(
+ (!pSib->pLeft || pSib->pLeft->isBlack) &&
+ (!pSib->pRight || pSib->pRight->isBlack) ){
+ pSib->isBlack = 0;
+ pX = pParent;
+ }else{
+ if( (!pSib->pLeft || pSib->pLeft->isBlack) ){
+ if( pSib->pRight ) pSib->pRight->isBlack = 1;
+ pSib->isBlack = 0;
+ leftRotate( pTree, pSib );
+ pSib = pParent->pLeft;
+ }
+ pSib->isBlack = pParent->isBlack;
+ pParent->isBlack = 1;
+ if( pSib->pLeft ) pSib->pLeft->isBlack = 1;
+ rightRotate(pTree, pParent);
+ pX = pTree->pHead;
+ }
+ }
+ pParent = pX->pParent;
+ }
+ if( pX ) pX->isBlack = 1;
+}
+
+/*
+ * Create table n in tree pRbtree. Table n must not exist.
+ */
+static void btreeCreateTable(Rbtree* pRbtree, int n)
+{
+ BtRbTree *pNewTbl = sqliteMalloc(sizeof(BtRbTree));
+ sqliteHashInsert(&pRbtree->tblHash, 0, n, pNewTbl);
+}
+
+/*
+ * Log a single "rollback-op" for the given Rbtree. See comments for struct
+ * BtRollbackOp.
+ */
+static void btreeLogRollbackOp(Rbtree* pRbtree, BtRollbackOp *pRollbackOp)
+{
+ assert( pRbtree->eTransState == TRANS_INCHECKPOINT ||
+ pRbtree->eTransState == TRANS_INTRANSACTION );
+ if( pRbtree->eTransState == TRANS_INTRANSACTION ){
+ pRollbackOp->pNext = pRbtree->pTransRollback;
+ pRbtree->pTransRollback = pRollbackOp;
+ }
+ if( pRbtree->eTransState == TRANS_INCHECKPOINT ){
+ if( !pRbtree->pCheckRollback ){
+ pRbtree->pCheckRollbackTail = pRollbackOp;
+ }
+ pRollbackOp->pNext = pRbtree->pCheckRollback;
+ pRbtree->pCheckRollback = pRollbackOp;
+ }
+}
+
+int sqliteRbtreeOpen(
+ const char *zFilename,
+ int mode,
+ int nPg,
+ Btree **ppBtree
+){
+ Rbtree **ppRbtree = (Rbtree**)ppBtree;
+ *ppRbtree = (Rbtree *)sqliteMalloc(sizeof(Rbtree));
+ if( sqlite_malloc_failed ) goto open_no_mem;
+ sqliteHashInit(&(*ppRbtree)->tblHash, SQLITE_HASH_INT, 0);
+
+ /* Create a binary tree for the SQLITE_MASTER table at location 2 */
+ btreeCreateTable(*ppRbtree, 2);
+ if( sqlite_malloc_failed ) goto open_no_mem;
+ (*ppRbtree)->next_idx = 3;
+ (*ppRbtree)->pOps = &sqliteRbtreeOps;
+ /* Set file type to 4; this is so that "attach ':memory:' as ...." does not
+ ** think that the database in uninitialised and refuse to attach
+ */
+ (*ppRbtree)->aMetaData[2] = 4;
+
+ return SQLITE_OK;
+
+open_no_mem:
+ *ppBtree = 0;
+ return SQLITE_NOMEM;
+}
+
+/*
+ * Create a new table in the supplied Rbtree. Set *n to the new table number.
+ * Return SQLITE_OK if the operation is a success.
+ */
+static int memRbtreeCreateTable(Rbtree* tree, int* n)
+{
+ assert( tree->eTransState != TRANS_NONE );
+
+ *n = tree->next_idx++;
+ btreeCreateTable(tree, *n);
+ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
+
+ /* Set up the rollback structure (if we are not doing this as part of a
+ * rollback) */
+ if( tree->eTransState != TRANS_ROLLBACK ){
+ BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp));
+ if( pRollbackOp==0 ) return SQLITE_NOMEM;
+ pRollbackOp->eOp = ROLLBACK_DROP;
+ pRollbackOp->iTab = *n;
+ btreeLogRollbackOp(tree, pRollbackOp);
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+ * Delete table n from the supplied Rbtree.
+ */
+static int memRbtreeDropTable(Rbtree* tree, int n)
+{
+ BtRbTree *pTree;
+ assert( tree->eTransState != TRANS_NONE );
+
+ memRbtreeClearTable(tree, n);
+ pTree = sqliteHashInsert(&tree->tblHash, 0, n, 0);
+ assert(pTree);
+ assert( pTree->pCursors==0 );
+ sqliteFree(pTree);
+
+ if( tree->eTransState != TRANS_ROLLBACK ){
+ BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp));
+ if( pRollbackOp==0 ) return SQLITE_NOMEM;
+ pRollbackOp->eOp = ROLLBACK_CREATE;
+ pRollbackOp->iTab = n;
+ btreeLogRollbackOp(tree, pRollbackOp);
+ }
+
+ return SQLITE_OK;
+}
+
+static int memRbtreeKeyCompare(RbtCursor* pCur, const void *pKey, int nKey,
+ int nIgnore, int *pRes)
+{
+ assert(pCur);
+
+ if( !pCur->pNode ) {
+ *pRes = -1;
+ } else {
+ if( (pCur->pNode->nKey - nIgnore) < 0 ){
+ *pRes = -1;
+ }else{
+ *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey-nIgnore,
+ pKey, nKey);
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+ * Get a new cursor for table iTable of the supplied Rbtree. The wrFlag
+ * parameter indicates that the cursor is open for writing.
+ *
+ * Note that RbtCursor.eSkip and RbtCursor.pNode both initialize to 0.
+ */
+static int memRbtreeCursor(
+ Rbtree* tree,
+ int iTable,
+ int wrFlag,
+ RbtCursor **ppCur
+){
+ RbtCursor *pCur;
+ assert(tree);
+ pCur = *ppCur = sqliteMalloc(sizeof(RbtCursor));
+ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
+ pCur->pTree = sqliteHashFind(&tree->tblHash, 0, iTable);
+ assert( pCur->pTree );
+ pCur->pRbtree = tree;
+ pCur->iTree = iTable;
+ pCur->pOps = &sqliteRbtreeCursorOps;
+ pCur->wrFlag = wrFlag;
+ pCur->pShared = pCur->pTree->pCursors;
+ pCur->pTree->pCursors = pCur;
+
+ assert( (*ppCur)->pTree );
+ return SQLITE_OK;
+}
+
+/*
+ * Insert a new record into the Rbtree. The key is given by (pKey,nKey)
+ * and the data is given by (pData,nData). The cursor is used only to
+ * define what database the record should be inserted into. The cursor
+ * is left pointing at the new record.
+ *
+ * If the key exists already in the tree, just replace the data.
+ */
+static int memRbtreeInsert(
+ RbtCursor* pCur,
+ const void *pKey,
+ int nKey,
+ const void *pDataInput,
+ int nData
+){
+ void * pData;
+ int match;
+
+ /* It is illegal to call sqliteRbtreeInsert() if we are
+ ** not in a transaction */
+ assert( pCur->pRbtree->eTransState != TRANS_NONE );
+
+ /* Make sure some other cursor isn't trying to read this same table */
+ if( checkReadLocks(pCur) ){
+ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
+ }
+
+ /* Take a copy of the input data now, in case we need it for the
+ * replace case */
+ pData = sqliteMallocRaw(nData);
+ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
+ memcpy(pData, pDataInput, nData);
+
+ /* Move the cursor to a node near the key to be inserted. If the key already
+ * exists in the table, then (match == 0). In this case we can just replace
+ * the data associated with the entry, we don't need to manipulate the tree.
+ *
+ * If there is no exact match, then the cursor points at what would be either
+ * the predecessor (match == -1) or successor (match == 1) of the
+ * searched-for key, were it to be inserted. The new node becomes a child of
+ * this node.
+ *
+ * The new node is initially red.
+ */
+ memRbtreeMoveto( pCur, pKey, nKey, &match);
+ if( match ){
+ BtRbNode *pNode = sqliteMalloc(sizeof(BtRbNode));
+ if( pNode==0 ) return SQLITE_NOMEM;
+ pNode->nKey = nKey;
+ pNode->pKey = sqliteMallocRaw(nKey);
+ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
+ memcpy(pNode->pKey, pKey, nKey);
+ pNode->nData = nData;
+ pNode->pData = pData;
+ if( pCur->pNode ){
+ switch( match ){
+ case -1:
+ assert( !pCur->pNode->pRight );
+ pNode->pParent = pCur->pNode;
+ pCur->pNode->pRight = pNode;
+ break;
+ case 1:
+ assert( !pCur->pNode->pLeft );
+ pNode->pParent = pCur->pNode;
+ pCur->pNode->pLeft = pNode;
+ break;
+ default:
+ assert(0);
+ }
+ }else{
+ pCur->pTree->pHead = pNode;
+ }
+
+ /* Point the cursor at the node just inserted, as per SQLite requirements */
+ pCur->pNode = pNode;
+
+ /* A new node has just been inserted, so run the balancing code */
+ do_insert_balancing(pCur->pTree, pNode);
+
+ /* Set up a rollback-op in case we have to roll this operation back */
+ if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
+ BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
+ if( pOp==0 ) return SQLITE_NOMEM;
+ pOp->eOp = ROLLBACK_DELETE;
+ pOp->iTab = pCur->iTree;
+ pOp->nKey = pNode->nKey;
+ pOp->pKey = sqliteMallocRaw( pOp->nKey );
+ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
+ memcpy( pOp->pKey, pNode->pKey, pOp->nKey );
+ btreeLogRollbackOp(pCur->pRbtree, pOp);
+ }
+
+ }else{
+ /* No need to insert a new node in the tree, as the key already exists.
+ * Just clobber the current nodes data. */
+
+ /* Set up a rollback-op in case we have to roll this operation back */
+ if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
+ BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
+ if( pOp==0 ) return SQLITE_NOMEM;
+ pOp->iTab = pCur->iTree;
+ pOp->nKey = pCur->pNode->nKey;
+ pOp->pKey = sqliteMallocRaw( pOp->nKey );
+ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
+ memcpy( pOp->pKey, pCur->pNode->pKey, pOp->nKey );
+ pOp->nData = pCur->pNode->nData;
+ pOp->pData = pCur->pNode->pData;
+ pOp->eOp = ROLLBACK_INSERT;
+ btreeLogRollbackOp(pCur->pRbtree, pOp);
+ }else{
+ sqliteFree( pCur->pNode->pData );
+ }
+
+ /* Actually clobber the nodes data */
+ pCur->pNode->pData = pData;
+ pCur->pNode->nData = nData;
+ }
+
+ return SQLITE_OK;
+}
+
+/* Move the cursor so that it points to an entry near pKey.
+** Return a success code.
+**
+** *pRes<0 The cursor is left pointing at an entry that
+** is smaller than pKey or if the table is empty
+** and the cursor is therefore left point to nothing.
+**
+** *pRes==0 The cursor is left pointing at an entry that
+** exactly matches pKey.
+**
+** *pRes>0 The cursor is left pointing at an entry that
+** is larger than pKey.
+*/
+static int memRbtreeMoveto(
+ RbtCursor* pCur,
+ const void *pKey,
+ int nKey,
+ int *pRes
+){
+ BtRbNode *pTmp = 0;
+
+ pCur->pNode = pCur->pTree->pHead;
+ *pRes = -1;
+ while( pCur->pNode && *pRes ) {
+ *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey, pKey, nKey);
+ pTmp = pCur->pNode;
+ switch( *pRes ){
+ case 1: /* cursor > key */
+ pCur->pNode = pCur->pNode->pLeft;
+ break;
+ case -1: /* cursor < key */
+ pCur->pNode = pCur->pNode->pRight;
+ break;
+ }
+ }
+
+ /* If (pCur->pNode == NULL), then we have failed to find a match. Set
+ * pCur->pNode to pTmp, which is either NULL (if the tree is empty) or the
+ * last node traversed in the search. In either case the relation ship
+ * between pTmp and the searched for key is already stored in *pRes. pTmp is
+ * either the successor or predecessor of the key we tried to move to. */
+ if( !pCur->pNode ) pCur->pNode = pTmp;
+ pCur->eSkip = SKIP_NONE;
+
+ return SQLITE_OK;
+}
+
+
+/*
+** Delete the entry that the cursor is pointing to.
+**
+** The cursor is left pointing at either the next or the previous
+** entry. If the cursor is left pointing to the next entry, then
+** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to
+** sqliteRbtreeNext() to be a no-op. That way, you can always call
+** sqliteRbtreeNext() after a delete and the cursor will be left
+** pointing to the first entry after the deleted entry. Similarly,
+** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to
+** the entry prior to the deleted entry so that a subsequent call to
+** sqliteRbtreePrevious() will always leave the cursor pointing at the
+** entry immediately before the one that was deleted.
+*/
+static int memRbtreeDelete(RbtCursor* pCur)
+{
+ BtRbNode *pZ; /* The one being deleted */
+ BtRbNode *pChild; /* The child of the spliced out node */
+
+ /* It is illegal to call sqliteRbtreeDelete() if we are
+ ** not in a transaction */
+ assert( pCur->pRbtree->eTransState != TRANS_NONE );
+
+ /* Make sure some other cursor isn't trying to read this same table */
+ if( checkReadLocks(pCur) ){
+ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
+ }
+
+ pZ = pCur->pNode;
+ if( !pZ ){
+ return SQLITE_OK;
+ }
+
+ /* If we are not currently doing a rollback, set up a rollback op for this
+ * deletion */
+ if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
+ BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
+ if( pOp==0 ) return SQLITE_NOMEM;
+ pOp->iTab = pCur->iTree;
+ pOp->nKey = pZ->nKey;
+ pOp->pKey = pZ->pKey;
+ pOp->nData = pZ->nData;
+ pOp->pData = pZ->pData;
+ pOp->eOp = ROLLBACK_INSERT;
+ btreeLogRollbackOp(pCur->pRbtree, pOp);
+ }
+
+ /* First do a standard binary-tree delete (node pZ is to be deleted). How
+ * to do this depends on how many children pZ has:
+ *
+ * If pZ has no children or one child, then splice out pZ. If pZ has two
+ * children, splice out the successor of pZ and replace the key and data of
+ * pZ with the key and data of the spliced out successor. */
+ if( pZ->pLeft && pZ->pRight ){
+ BtRbNode *pTmp;
+ int dummy;
+ pCur->eSkip = SKIP_NONE;
+ memRbtreeNext(pCur, &dummy);
+ assert( dummy == 0 );
+ if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){
+ sqliteFree(pZ->pKey);
+ sqliteFree(pZ->pData);
+ }
+ pZ->pData = pCur->pNode->pData;
+ pZ->nData = pCur->pNode->nData;
+ pZ->pKey = pCur->pNode->pKey;
+ pZ->nKey = pCur->pNode->nKey;
+ pTmp = pZ;
+ pZ = pCur->pNode;
+ pCur->pNode = pTmp;
+ pCur->eSkip = SKIP_NEXT;
+ }else{
+ int res;
+ pCur->eSkip = SKIP_NONE;
+ memRbtreeNext(pCur, &res);
+ pCur->eSkip = SKIP_NEXT;
+ if( res ){
+ memRbtreeLast(pCur, &res);
+ memRbtreePrevious(pCur, &res);
+ pCur->eSkip = SKIP_PREV;
+ }
+ if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){
+ sqliteFree(pZ->pKey);
+ sqliteFree(pZ->pData);
+ }
+ }
+
+ /* pZ now points at the node to be spliced out. This block does the
+ * splicing. */
+ {
+ BtRbNode **ppParentSlot = 0;
+ assert( !pZ->pLeft || !pZ->pRight ); /* pZ has at most one child */
+ pChild = ((pZ->pLeft)?pZ->pLeft:pZ->pRight);
+ if( pZ->pParent ){
+ assert( pZ == pZ->pParent->pLeft || pZ == pZ->pParent->pRight );
+ ppParentSlot = ((pZ == pZ->pParent->pLeft)
+ ?&pZ->pParent->pLeft:&pZ->pParent->pRight);
+ *ppParentSlot = pChild;
+ }else{
+ pCur->pTree->pHead = pChild;
+ }
+ if( pChild ) pChild->pParent = pZ->pParent;
+ }
+
+ /* pZ now points at the spliced out node. pChild is the only child of pZ, or
+ * NULL if pZ has no children. If pZ is black, and not the tree root, then we
+ * will have violated the "same number of black nodes in every path to a
+ * leaf" property of the red-black tree. The code in do_delete_balancing()
+ * repairs this. */
+ if( pZ->isBlack ){
+ do_delete_balancing(pCur->pTree, pChild, pZ->pParent);
+ }
+
+ sqliteFree(pZ);
+ return SQLITE_OK;
+}
+
+/*
+ * Empty table n of the Rbtree.
+ */
+static int memRbtreeClearTable(Rbtree* tree, int n)
+{
+ BtRbTree *pTree;
+ BtRbNode *pNode;
+
+ pTree = sqliteHashFind(&tree->tblHash, 0, n);
+ assert(pTree);
+
+ pNode = pTree->pHead;
+ while( pNode ){
+ if( pNode->pLeft ){
+ pNode = pNode->pLeft;
+ }
+ else if( pNode->pRight ){
+ pNode = pNode->pRight;
+ }
+ else {
+ BtRbNode *pTmp = pNode->pParent;
+ if( tree->eTransState == TRANS_ROLLBACK ){
+ sqliteFree( pNode->pKey );
+ sqliteFree( pNode->pData );
+ }else{
+ BtRollbackOp *pRollbackOp = sqliteMallocRaw(sizeof(BtRollbackOp));
+ if( pRollbackOp==0 ) return SQLITE_NOMEM;
+ pRollbackOp->eOp = ROLLBACK_INSERT;
+ pRollbackOp->iTab = n;
+ pRollbackOp->nKey = pNode->nKey;
+ pRollbackOp->pKey = pNode->pKey;
+ pRollbackOp->nData = pNode->nData;
+ pRollbackOp->pData = pNode->pData;
+ btreeLogRollbackOp(tree, pRollbackOp);
+ }
+ sqliteFree( pNode );
+ if( pTmp ){
+ if( pTmp->pLeft == pNode ) pTmp->pLeft = 0;
+ else if( pTmp->pRight == pNode ) pTmp->pRight = 0;
+ }
+ pNode = pTmp;
+ }
+ }
+
+ pTree->pHead = 0;
+ return SQLITE_OK;
+}
+
+static int memRbtreeFirst(RbtCursor* pCur, int *pRes)
+{
+ if( pCur->pTree->pHead ){
+ pCur->pNode = pCur->pTree->pHead;
+ while( pCur->pNode->pLeft ){
+ pCur->pNode = pCur->pNode->pLeft;
+ }
+ }
+ if( pCur->pNode ){
+ *pRes = 0;
+ }else{
+ *pRes = 1;
+ }
+ pCur->eSkip = SKIP_NONE;
+ return SQLITE_OK;
+}
+
+static int memRbtreeLast(RbtCursor* pCur, int *pRes)
+{
+ if( pCur->pTree->pHead ){
+ pCur->pNode = pCur->pTree->pHead;
+ while( pCur->pNode->pRight ){
+ pCur->pNode = pCur->pNode->pRight;
+ }
+ }
+ if( pCur->pNode ){
+ *pRes = 0;
+ }else{
+ *pRes = 1;
+ }
+ pCur->eSkip = SKIP_NONE;
+ return SQLITE_OK;
+}
+
+/*
+** Advance the cursor to the next entry in the database. If
+** successful then set *pRes=0. If the cursor
+** was already pointing to the last entry in the database before
+** this routine was called, then set *pRes=1.
+*/
+static int memRbtreeNext(RbtCursor* pCur, int *pRes)
+{
+ if( pCur->pNode && pCur->eSkip != SKIP_NEXT ){
+ if( pCur->pNode->pRight ){
+ pCur->pNode = pCur->pNode->pRight;
+ while( pCur->pNode->pLeft )
+ pCur->pNode = pCur->pNode->pLeft;
+ }else{
+ BtRbNode * pX = pCur->pNode;
+ pCur->pNode = pX->pParent;
+ while( pCur->pNode && (pCur->pNode->pRight == pX) ){
+ pX = pCur->pNode;
+ pCur->pNode = pX->pParent;
+ }
+ }
+ }
+ pCur->eSkip = SKIP_NONE;
+
+ if( !pCur->pNode ){
+ *pRes = 1;
+ }else{
+ *pRes = 0;
+ }
+
+ return SQLITE_OK;
+}
+
+static int memRbtreePrevious(RbtCursor* pCur, int *pRes)
+{
+ if( pCur->pNode && pCur->eSkip != SKIP_PREV ){
+ if( pCur->pNode->pLeft ){
+ pCur->pNode = pCur->pNode->pLeft;
+ while( pCur->pNode->pRight )
+ pCur->pNode = pCur->pNode->pRight;
+ }else{
+ BtRbNode * pX = pCur->pNode;
+ pCur->pNode = pX->pParent;
+ while( pCur->pNode && (pCur->pNode->pLeft == pX) ){
+ pX = pCur->pNode;
+ pCur->pNode = pX->pParent;
+ }
+ }
+ }
+ pCur->eSkip = SKIP_NONE;
+
+ if( !pCur->pNode ){
+ *pRes = 1;
+ }else{
+ *pRes = 0;
+ }
+
+ return SQLITE_OK;
+}
+
+static int memRbtreeKeySize(RbtCursor* pCur, int *pSize)
+{
+ if( pCur->pNode ){
+ *pSize = pCur->pNode->nKey;
+ }else{
+ *pSize = 0;
+ }
+ return SQLITE_OK;
+}
+
+static int memRbtreeKey(RbtCursor* pCur, int offset, int amt, char *zBuf)
+{
+ if( !pCur->pNode ) return 0;
+ if( !pCur->pNode->pKey || ((amt + offset) <= pCur->pNode->nKey) ){
+ memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, amt);
+ }else{
+ memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, pCur->pNode->nKey-offset);
+ amt = pCur->pNode->nKey-offset;
+ }
+ return amt;
+}
+
+static int memRbtreeDataSize(RbtCursor* pCur, int *pSize)
+{
+ if( pCur->pNode ){
+ *pSize = pCur->pNode->nData;
+ }else{
+ *pSize = 0;
+ }
+ return SQLITE_OK;
+}
+
+static int memRbtreeData(RbtCursor *pCur, int offset, int amt, char *zBuf)
+{
+ if( !pCur->pNode ) return 0;
+ if( (amt + offset) <= pCur->pNode->nData ){
+ memcpy(zBuf, ((char*)pCur->pNode->pData)+offset, amt);
+ }else{
+ memcpy(zBuf, ((char*)pCur->pNode->pData)+offset ,pCur->pNode->nData-offset);
+ amt = pCur->pNode->nData-offset;
+ }
+ return amt;
+}
+
+static int memRbtreeCloseCursor(RbtCursor* pCur)
+{
+ if( pCur->pTree->pCursors==pCur ){
+ pCur->pTree->pCursors = pCur->pShared;
+ }else{
+ RbtCursor *p = pCur->pTree->pCursors;
+ while( p && p->pShared!=pCur ){ p = p->pShared; }
+ assert( p!=0 );
+ if( p ){
+ p->pShared = pCur->pShared;
+ }
+ }
+ sqliteFree(pCur);
+ return SQLITE_OK;
+}
+
+static int memRbtreeGetMeta(Rbtree* tree, int* aMeta)
+{
+ memcpy( aMeta, tree->aMetaData, sizeof(int) * SQLITE_N_BTREE_META );
+ return SQLITE_OK;
+}
+
+static int memRbtreeUpdateMeta(Rbtree* tree, int* aMeta)
+{
+ memcpy( tree->aMetaData, aMeta, sizeof(int) * SQLITE_N_BTREE_META );
+ return SQLITE_OK;
+}
+
+/*
+ * Check that each table in the Rbtree meets the requirements for a red-black
+ * binary tree. If an error is found, return an explanation of the problem in
+ * memory obtained from sqliteMalloc(). Parameters aRoot and nRoot are ignored.
+ */
+static char *memRbtreeIntegrityCheck(Rbtree* tree, int* aRoot, int nRoot)
+{
+ char * msg = 0;
+ HashElem *p;
+
+ for(p=sqliteHashFirst(&tree->tblHash); p; p=sqliteHashNext(p)){
+ BtRbTree *pTree = sqliteHashData(p);
+ check_redblack_tree(pTree, &msg);
+ }
+
+ return msg;
+}
+
+static int memRbtreeSetCacheSize(Rbtree* tree, int sz)
+{
+ return SQLITE_OK;
+}
+
+static int memRbtreeSetSafetyLevel(Rbtree *pBt, int level){
+ return SQLITE_OK;
+}
+
+static int memRbtreeBeginTrans(Rbtree* tree)
+{
+ if( tree->eTransState != TRANS_NONE )
+ return SQLITE_ERROR;
+
+ assert( tree->pTransRollback == 0 );
+ tree->eTransState = TRANS_INTRANSACTION;
+ return SQLITE_OK;
+}
+
+/*
+** Delete a linked list of BtRollbackOp structures.
+*/
+static void deleteRollbackList(BtRollbackOp *pOp){
+ while( pOp ){
+ BtRollbackOp *pTmp = pOp->pNext;
+ sqliteFree(pOp->pData);
+ sqliteFree(pOp->pKey);
+ sqliteFree(pOp);
+ pOp = pTmp;
+ }
+}
+
+static int memRbtreeCommit(Rbtree* tree){
+ /* Just delete pTransRollback and pCheckRollback */
+ deleteRollbackList(tree->pCheckRollback);
+ deleteRollbackList(tree->pTransRollback);
+ tree->pTransRollback = 0;
+ tree->pCheckRollback = 0;
+ tree->pCheckRollbackTail = 0;
+ tree->eTransState = TRANS_NONE;
+ return SQLITE_OK;
+}
+
+/*
+ * Close the supplied Rbtree. Delete everything associated with it.
+ */
+static int memRbtreeClose(Rbtree* tree)
+{
+ HashElem *p;
+ memRbtreeCommit(tree);
+ while( (p=sqliteHashFirst(&tree->tblHash))!=0 ){
+ tree->eTransState = TRANS_ROLLBACK;
+ memRbtreeDropTable(tree, sqliteHashKeysize(p));
+ }
+ sqliteHashClear(&tree->tblHash);
+ sqliteFree(tree);
+ return SQLITE_OK;
+}
+
+/*
+ * Execute and delete the supplied rollback-list on pRbtree.
+ */
+static void execute_rollback_list(Rbtree *pRbtree, BtRollbackOp *pList)
+{
+ BtRollbackOp *pTmp;
+ RbtCursor cur;
+ int res;
+
+ cur.pRbtree = pRbtree;
+ cur.wrFlag = 1;
+ while( pList ){
+ switch( pList->eOp ){
+ case ROLLBACK_INSERT:
+ cur.pTree = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab );
+ assert(cur.pTree);
+ cur.iTree = pList->iTab;
+ cur.eSkip = SKIP_NONE;
+ memRbtreeInsert( &cur, pList->pKey,
+ pList->nKey, pList->pData, pList->nData );
+ break;
+ case ROLLBACK_DELETE:
+ cur.pTree = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab );
+ assert(cur.pTree);
+ cur.iTree = pList->iTab;
+ cur.eSkip = SKIP_NONE;
+ memRbtreeMoveto(&cur, pList->pKey, pList->nKey, &res);
+ assert(res == 0);
+ memRbtreeDelete( &cur );
+ break;
+ case ROLLBACK_CREATE:
+ btreeCreateTable(pRbtree, pList->iTab);
+ break;
+ case ROLLBACK_DROP:
+ memRbtreeDropTable(pRbtree, pList->iTab);
+ break;
+ default:
+ assert(0);
+ }
+ sqliteFree(pList->pKey);
+ sqliteFree(pList->pData);
+ pTmp = pList->pNext;
+ sqliteFree(pList);
+ pList = pTmp;
+ }
+}
+
+static int memRbtreeRollback(Rbtree* tree)
+{
+ tree->eTransState = TRANS_ROLLBACK;
+ execute_rollback_list(tree, tree->pCheckRollback);
+ execute_rollback_list(tree, tree->pTransRollback);
+ tree->pTransRollback = 0;
+ tree->pCheckRollback = 0;
+ tree->pCheckRollbackTail = 0;
+ tree->eTransState = TRANS_NONE;
+ return SQLITE_OK;
+}
+
+static int memRbtreeBeginCkpt(Rbtree* tree)
+{
+ if( tree->eTransState != TRANS_INTRANSACTION )
+ return SQLITE_ERROR;
+
+ assert( tree->pCheckRollback == 0 );
+ assert( tree->pCheckRollbackTail == 0 );
+ tree->eTransState = TRANS_INCHECKPOINT;
+ return SQLITE_OK;
+}
+
+static int memRbtreeCommitCkpt(Rbtree* tree)
+{
+ if( tree->eTransState == TRANS_INCHECKPOINT ){
+ if( tree->pCheckRollback ){
+ tree->pCheckRollbackTail->pNext = tree->pTransRollback;
+ tree->pTransRollback = tree->pCheckRollback;
+ tree->pCheckRollback = 0;
+ tree->pCheckRollbackTail = 0;
+ }
+ tree->eTransState = TRANS_INTRANSACTION;
+ }
+ return SQLITE_OK;
+}
+
+static int memRbtreeRollbackCkpt(Rbtree* tree)
+{
+ if( tree->eTransState != TRANS_INCHECKPOINT ) return SQLITE_OK;
+ tree->eTransState = TRANS_ROLLBACK;
+ execute_rollback_list(tree, tree->pCheckRollback);
+ tree->pCheckRollback = 0;
+ tree->pCheckRollbackTail = 0;
+ tree->eTransState = TRANS_INTRANSACTION;
+ return SQLITE_OK;
+}
+
+#ifdef SQLITE_TEST
+static int memRbtreePageDump(Rbtree* tree, int pgno, int rec)
+{
+ assert(!"Cannot call sqliteRbtreePageDump");
+ return SQLITE_OK;
+}
+
+static int memRbtreeCursorDump(RbtCursor* pCur, int* aRes)
+{
+ assert(!"Cannot call sqliteRbtreeCursorDump");
+ return SQLITE_OK;
+}
+#endif
+
+static struct Pager *memRbtreePager(Rbtree* tree)
+{
+ return 0;
+}
+
+/*
+** Return the full pathname of the underlying database file.
+*/
+static const char *memRbtreeGetFilename(Rbtree *pBt){
+ return 0; /* A NULL return indicates there is no underlying file */
+}
+
+/*
+** The copy file function is not implemented for the in-memory database
+*/
+static int memRbtreeCopyFile(Rbtree *pBt, Rbtree *pBt2){
+ return SQLITE_INTERNAL; /* Not implemented */
+}
+
+static BtOps sqliteRbtreeOps = {
+ (int(*)(Btree*)) memRbtreeClose,
+ (int(*)(Btree*,int)) memRbtreeSetCacheSize,
+ (int(*)(Btree*,int)) memRbtreeSetSafetyLevel,
+ (int(*)(Btree*)) memRbtreeBeginTrans,
+ (int(*)(Btree*)) memRbtreeCommit,
+ (int(*)(Btree*)) memRbtreeRollback,
+ (int(*)(Btree*)) memRbtreeBeginCkpt,
+ (int(*)(Btree*)) memRbtreeCommitCkpt,
+ (int(*)(Btree*)) memRbtreeRollbackCkpt,
+ (int(*)(Btree*,int*)) memRbtreeCreateTable,
+ (int(*)(Btree*,int*)) memRbtreeCreateTable,
+ (int(*)(Btree*,int)) memRbtreeDropTable,
+ (int(*)(Btree*,int)) memRbtreeClearTable,
+ (int(*)(Btree*,int,int,BtCursor**)) memRbtreeCursor,
+ (int(*)(Btree*,int*)) memRbtreeGetMeta,
+ (int(*)(Btree*,int*)) memRbtreeUpdateMeta,
+ (char*(*)(Btree*,int*,int)) memRbtreeIntegrityCheck,
+ (const char*(*)(Btree*)) memRbtreeGetFilename,
+ (int(*)(Btree*,Btree*)) memRbtreeCopyFile,
+ (struct Pager*(*)(Btree*)) memRbtreePager,
+#ifdef SQLITE_TEST
+ (int(*)(Btree*,int,int)) memRbtreePageDump,
+#endif
+};
+
+static BtCursorOps sqliteRbtreeCursorOps = {
+ (int(*)(BtCursor*,const void*,int,int*)) memRbtreeMoveto,
+ (int(*)(BtCursor*)) memRbtreeDelete,
+ (int(*)(BtCursor*,const void*,int,const void*,int)) memRbtreeInsert,
+ (int(*)(BtCursor*,int*)) memRbtreeFirst,
+ (int(*)(BtCursor*,int*)) memRbtreeLast,
+ (int(*)(BtCursor*,int*)) memRbtreeNext,
+ (int(*)(BtCursor*,int*)) memRbtreePrevious,
+ (int(*)(BtCursor*,int*)) memRbtreeKeySize,
+ (int(*)(BtCursor*,int,int,char*)) memRbtreeKey,
+ (int(*)(BtCursor*,const void*,int,int,int*)) memRbtreeKeyCompare,
+ (int(*)(BtCursor*,int*)) memRbtreeDataSize,
+ (int(*)(BtCursor*,int,int,char*)) memRbtreeData,
+ (int(*)(BtCursor*)) memRbtreeCloseCursor,
+#ifdef SQLITE_TEST
+ (int(*)(BtCursor*,int*)) memRbtreeCursorDump,
+#endif
+
+};
+
+#endif /* SQLITE_OMIT_INMEMORYDB */
diff --git a/src/3rdparty/sqlite/build.c b/src/3rdparty/sqlite/build.c
new file mode 100644
index 0000000..87c8834
--- /dev/null
+++ b/src/3rdparty/sqlite/build.c
@@ -0,0 +1,2157 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the SQLite parser
+** when syntax rules are reduced. The routines in this file handle the
+** following kinds of SQL syntax:
+**
+** CREATE TABLE
+** DROP TABLE
+** CREATE INDEX
+** DROP INDEX
+** creating ID lists
+** BEGIN TRANSACTION
+** COMMIT
+** ROLLBACK
+** PRAGMA
+**
+** $Id: build.c,v 1.175 2004/02/24 01:04:12 drh Exp $
+*/
+#include "sqliteInt.h"
+#include <ctype.h>
+
+/*
+** This routine is called when a new SQL statement is beginning to
+** be parsed. Check to see if the schema for the database needs
+** to be read from the SQLITE_MASTER and SQLITE_TEMP_MASTER tables.
+** If it does, then read it.
+*/
+void sqliteBeginParse(Parse *pParse, int explainFlag){
+ sqlite *db = pParse->db;
+ int i;
+ pParse->explain = explainFlag;
+ if((db->flags & SQLITE_Initialized)==0 && db->init.busy==0 ){
+ int rc = sqliteInit(db, &pParse->zErrMsg);
+ if( rc!=SQLITE_OK ){
+ pParse->rc = rc;
+ pParse->nErr++;
+ }
+ }
+ for(i=0; i<db->nDb; i++){
+ DbClearProperty(db, i, DB_Locked);
+ if( !db->aDb[i].inTrans ){
+ DbClearProperty(db, i, DB_Cookie);
+ }
+ }
+ pParse->nVar = 0;
+}
+
+/*
+** This routine is called after a single SQL statement has been
+** parsed and we want to execute the VDBE code to implement
+** that statement. Prior action routines should have already
+** constructed VDBE code to do the work of the SQL statement.
+** This routine just has to execute the VDBE code.
+**
+** Note that if an error occurred, it might be the case that
+** no VDBE code was generated.
+*/
+void sqliteExec(Parse *pParse){
+ sqlite *db = pParse->db;
+ Vdbe *v = pParse->pVdbe;
+
+ if( v==0 && (v = sqliteGetVdbe(pParse))!=0 ){
+ sqliteVdbeAddOp(v, OP_Halt, 0, 0);
+ }
+ if( sqlite_malloc_failed ) return;
+ if( v && pParse->nErr==0 ){
+ FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
+ sqliteVdbeTrace(v, trace);
+ sqliteVdbeMakeReady(v, pParse->nVar, pParse->explain);
+ pParse->rc = pParse->nErr ? SQLITE_ERROR : SQLITE_DONE;
+ pParse->colNamesSet = 0;
+ }else if( pParse->rc==SQLITE_OK ){
+ pParse->rc = SQLITE_ERROR;
+ }
+ pParse->nTab = 0;
+ pParse->nMem = 0;
+ pParse->nSet = 0;
+ pParse->nAgg = 0;
+ pParse->nVar = 0;
+}
+
+/*
+** Locate the in-memory structure that describes
+** a particular database table given the name
+** of that table and (optionally) the name of the database
+** containing the table. Return NULL if not found.
+**
+** If zDatabase is 0, all databases are searched for the
+** table and the first matching table is returned. (No checking
+** for duplicate table names is done.) The search order is
+** TEMP first, then MAIN, then any auxiliary databases added
+** using the ATTACH command.
+**
+** See also sqliteLocateTable().
+*/
+Table *sqliteFindTable(sqlite *db, const char *zName, const char *zDatabase){
+ Table *p = 0;
+ int i;
+ for(i=0; i<db->nDb; i++){
+ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
+ if( zDatabase!=0 && sqliteStrICmp(zDatabase, db->aDb[j].zName) ) continue;
+ p = sqliteHashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1);
+ if( p ) break;
+ }
+ return p;
+}
+
+/*
+** Locate the in-memory structure that describes
+** a particular database table given the name
+** of that table and (optionally) the name of the database
+** containing the table. Return NULL if not found.
+** Also leave an error message in pParse->zErrMsg.
+**
+** The difference between this routine and sqliteFindTable()
+** is that this routine leaves an error message in pParse->zErrMsg
+** where sqliteFindTable() does not.
+*/
+Table *sqliteLocateTable(Parse *pParse, const char *zName, const char *zDbase){
+ Table *p;
+
+ p = sqliteFindTable(pParse->db, zName, zDbase);
+ if( p==0 ){
+ if( zDbase ){
+ sqliteErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
+ }else if( sqliteFindTable(pParse->db, zName, 0)!=0 ){
+ sqliteErrorMsg(pParse, "table \"%s\" is not in database \"%s\"",
+ zName, zDbase);
+ }else{
+ sqliteErrorMsg(pParse, "no such table: %s", zName);
+ }
+ }
+ return p;
+}
+
+/*
+** Locate the in-memory structure that describes
+** a particular index given the name of that index
+** and the name of the database that contains the index.
+** Return NULL if not found.
+**
+** If zDatabase is 0, all databases are searched for the
+** table and the first matching index is returned. (No checking
+** for duplicate index names is done.) The search order is
+** TEMP first, then MAIN, then any auxiliary databases added
+** using the ATTACH command.
+*/
+Index *sqliteFindIndex(sqlite *db, const char *zName, const char *zDb){
+ Index *p = 0;
+ int i;
+ for(i=0; i<db->nDb; i++){
+ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
+ if( zDb && sqliteStrICmp(zDb, db->aDb[j].zName) ) continue;
+ p = sqliteHashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1);
+ if( p ) break;
+ }
+ return p;
+}
+
+/*
+** Remove the given index from the index hash table, and free
+** its memory structures.
+**
+** The index is removed from the database hash tables but
+** it is not unlinked from the Table that it indexes.
+** Unlinking from the Table must be done by the calling function.
+*/
+static void sqliteDeleteIndex(sqlite *db, Index *p){
+ Index *pOld;
+
+ assert( db!=0 && p->zName!=0 );
+ pOld = sqliteHashInsert(&db->aDb[p->iDb].idxHash, p->zName,
+ strlen(p->zName)+1, 0);
+ if( pOld!=0 && pOld!=p ){
+ sqliteHashInsert(&db->aDb[p->iDb].idxHash, pOld->zName,
+ strlen(pOld->zName)+1, pOld);
+ }
+ sqliteFree(p);
+}
+
+/*
+** Unlink the given index from its table, then remove
+** the index from the index hash table and free its memory
+** structures.
+*/
+void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){
+ if( pIndex->pTable->pIndex==pIndex ){
+ pIndex->pTable->pIndex = pIndex->pNext;
+ }else{
+ Index *p;
+ for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
+ if( p && p->pNext==pIndex ){
+ p->pNext = pIndex->pNext;
+ }
+ }
+ sqliteDeleteIndex(db, pIndex);
+}
+
+/*
+** Erase all schema information from the in-memory hash tables of
+** database connection. This routine is called to reclaim memory
+** before the connection closes. It is also called during a rollback
+** if there were schema changes during the transaction.
+**
+** If iDb<=0 then reset the internal schema tables for all database
+** files. If iDb>=2 then reset the internal schema for only the
+** single file indicated.
+*/
+void sqliteResetInternalSchema(sqlite *db, int iDb){
+ HashElem *pElem;
+ Hash temp1;
+ Hash temp2;
+ int i, j;
+
+ assert( iDb>=0 && iDb<db->nDb );
+ db->flags &= ~SQLITE_Initialized;
+ for(i=iDb; i<db->nDb; i++){
+ Db *pDb = &db->aDb[i];
+ temp1 = pDb->tblHash;
+ temp2 = pDb->trigHash;
+ sqliteHashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0);
+ sqliteHashClear(&pDb->aFKey);
+ sqliteHashClear(&pDb->idxHash);
+ for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
+ Trigger *pTrigger = sqliteHashData(pElem);
+ sqliteDeleteTrigger(pTrigger);
+ }
+ sqliteHashClear(&temp2);
+ sqliteHashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0);
+ for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
+ Table *pTab = sqliteHashData(pElem);
+ sqliteDeleteTable(db, pTab);
+ }
+ sqliteHashClear(&temp1);
+ DbClearProperty(db, i, DB_SchemaLoaded);
+ if( iDb>0 ) return;
+ }
+ assert( iDb==0 );
+ db->flags &= ~SQLITE_InternChanges;
+
+ /* If one or more of the auxiliary database files has been closed,
+ ** then remove then from the auxiliary database list. We take the
+ ** opportunity to do this here since we have just deleted all of the
+ ** schema hash tables and therefore do not have to make any changes
+ ** to any of those tables.
+ */
+ for(i=0; i<db->nDb; i++){
+ struct Db *pDb = &db->aDb[i];
+ if( pDb->pBt==0 ){
+ if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
+ pDb->pAux = 0;
+ }
+ }
+ for(i=j=2; i<db->nDb; i++){
+ struct Db *pDb = &db->aDb[i];
+ if( pDb->pBt==0 ){
+ sqliteFree(pDb->zName);
+ pDb->zName = 0;
+ continue;
+ }
+ if( j<i ){
+ db->aDb[j] = db->aDb[i];
+ }
+ j++;
+ }
+ memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
+ db->nDb = j;
+ if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
+ memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
+ sqliteFree(db->aDb);
+ db->aDb = db->aDbStatic;
+ }
+}
+
+/*
+** This routine is called whenever a rollback occurs. If there were
+** schema changes during the transaction, then we have to reset the
+** internal hash tables and reload them from disk.
+*/
+void sqliteRollbackInternalChanges(sqlite *db){
+ if( db->flags & SQLITE_InternChanges ){
+ sqliteResetInternalSchema(db, 0);
+ }
+}
+
+/*
+** This routine is called when a commit occurs.
+*/
+void sqliteCommitInternalChanges(sqlite *db){
+ db->aDb[0].schema_cookie = db->next_cookie;
+ db->flags &= ~SQLITE_InternChanges;
+}
+
+/*
+** Remove the memory data structures associated with the given
+** Table. No changes are made to disk by this routine.
+**
+** This routine just deletes the data structure. It does not unlink
+** the table data structure from the hash table. Nor does it remove
+** foreign keys from the sqlite.aFKey hash table. But it does destroy
+** memory structures of the indices and foreign keys associated with
+** the table.
+**
+** Indices associated with the table are unlinked from the "db"
+** data structure if db!=NULL. If db==NULL, indices attached to
+** the table are deleted, but it is assumed they have already been
+** unlinked.
+*/
+void sqliteDeleteTable(sqlite *db, Table *pTable){
+ int i;
+ Index *pIndex, *pNext;
+ FKey *pFKey, *pNextFKey;
+
+ if( pTable==0 ) return;
+
+ /* Delete all indices associated with this table
+ */
+ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
+ pNext = pIndex->pNext;
+ assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) );
+ sqliteDeleteIndex(db, pIndex);
+ }
+
+ /* Delete all foreign keys associated with this table. The keys
+ ** should have already been unlinked from the db->aFKey hash table
+ */
+ for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
+ pNextFKey = pFKey->pNextFrom;
+ assert( pTable->iDb<db->nDb );
+ assert( sqliteHashFind(&db->aDb[pTable->iDb].aFKey,
+ pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
+ sqliteFree(pFKey);
+ }
+
+ /* Delete the Table structure itself.
+ */
+ for(i=0; i<pTable->nCol; i++){
+ sqliteFree(pTable->aCol[i].zName);
+ sqliteFree(pTable->aCol[i].zDflt);
+ sqliteFree(pTable->aCol[i].zType);
+ }
+ sqliteFree(pTable->zName);
+ sqliteFree(pTable->aCol);
+ sqliteSelectDelete(pTable->pSelect);
+ sqliteFree(pTable);
+}
+
+/*
+** Unlink the given table from the hash tables and the delete the
+** table structure with all its indices and foreign keys.
+*/
+static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *p){
+ Table *pOld;
+ FKey *pF1, *pF2;
+ int i = p->iDb;
+ assert( db!=0 );
+ pOld = sqliteHashInsert(&db->aDb[i].tblHash, p->zName, strlen(p->zName)+1, 0);
+ assert( pOld==0 || pOld==p );
+ for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
+ int nTo = strlen(pF1->zTo) + 1;
+ pF2 = sqliteHashFind(&db->aDb[i].aFKey, pF1->zTo, nTo);
+ if( pF2==pF1 ){
+ sqliteHashInsert(&db->aDb[i].aFKey, pF1->zTo, nTo, pF1->pNextTo);
+ }else{
+ while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
+ if( pF2 ){
+ pF2->pNextTo = pF1->pNextTo;
+ }
+ }
+ }
+ sqliteDeleteTable(db, p);
+}
+
+/*
+** Construct the name of a user table or index from a token.
+**
+** Space to hold the name is obtained from sqliteMalloc() and must
+** be freed by the calling function.
+*/
+char *sqliteTableNameFromToken(Token *pName){
+ char *zName = sqliteStrNDup(pName->z, pName->n);
+ sqliteDequote(zName);
+ return zName;
+}
+
+/*
+** Generate code to open the appropriate master table. The table
+** opened will be SQLITE_MASTER for persistent tables and
+** SQLITE_TEMP_MASTER for temporary tables. The table is opened
+** on cursor 0.
+*/
+void sqliteOpenMasterTable(Vdbe *v, int isTemp){
+ sqliteVdbeAddOp(v, OP_Integer, isTemp, 0);
+ sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2);
+}
+
+/*
+** Begin constructing a new table representation in memory. This is
+** the first of several action routines that get called in response
+** to a CREATE TABLE statement. In particular, this routine is called
+** after seeing tokens "CREATE" and "TABLE" and the table name. The
+** pStart token is the CREATE and pName is the table name. The isTemp
+** flag is true if the table should be stored in the auxiliary database
+** file instead of in the main database file. This is normally the case
+** when the "TEMP" or "TEMPORARY" keyword occurs in between
+** CREATE and TABLE.
+**
+** The new table record is initialized and put in pParse->pNewTable.
+** As more of the CREATE TABLE statement is parsed, additional action
+** routines will be called to add more information to this record.
+** At the end of the CREATE TABLE statement, the sqliteEndTable() routine
+** is called to complete the construction of the new table record.
+*/
+void sqliteStartTable(
+ Parse *pParse, /* Parser context */
+ Token *pStart, /* The "CREATE" token */
+ Token *pName, /* Name of table or view to create */
+ int isTemp, /* True if this is a TEMP table */
+ int isView /* True if this is a VIEW */
+){
+ Table *pTable;
+ Index *pIdx;
+ char *zName;
+ sqlite *db = pParse->db;
+ Vdbe *v;
+ int iDb;
+
+ pParse->sFirstToken = *pStart;
+ zName = sqliteTableNameFromToken(pName);
+ if( zName==0 ) return;
+ if( db->init.iDb==1 ) isTemp = 1;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ assert( (isTemp & 1)==isTemp );
+ {
+ int code;
+ char *zDb = isTemp ? "temp" : "main";
+ if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
+ sqliteFree(zName);
+ return;
+ }
+ if( isView ){
+ if( isTemp ){
+ code = SQLITE_CREATE_TEMP_VIEW;
+ }else{
+ code = SQLITE_CREATE_VIEW;
+ }
+ }else{
+ if( isTemp ){
+ code = SQLITE_CREATE_TEMP_TABLE;
+ }else{
+ code = SQLITE_CREATE_TABLE;
+ }
+ }
+ if( sqliteAuthCheck(pParse, code, zName, 0, zDb) ){
+ sqliteFree(zName);
+ return;
+ }
+ }
+#endif
+
+
+ /* Before trying to create a temporary table, make sure the Btree for
+ ** holding temporary tables is open.
+ */
+ if( isTemp && db->aDb[1].pBt==0 && !pParse->explain ){
+ int rc = sqliteBtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
+ if( rc!=SQLITE_OK ){
+ sqliteErrorMsg(pParse, "unable to open a temporary database "
+ "file for storing temporary tables");
+ pParse->nErr++;
+ return;
+ }
+ if( db->flags & SQLITE_InTrans ){
+ rc = sqliteBtreeBeginTrans(db->aDb[1].pBt);
+ if( rc!=SQLITE_OK ){
+ sqliteErrorMsg(pParse, "unable to get a write lock on "
+ "the temporary database file");
+ pParse->nErr++;
+ return;
+ }
+ }
+ }
+
+ /* Make sure the new table name does not collide with an existing
+ ** index or table name. Issue an error message if it does.
+ **
+ ** If we are re-reading the sqlite_master table because of a schema
+ ** change and a new permanent table is found whose name collides with
+ ** an existing temporary table, that is not an error.
+ */
+ pTable = sqliteFindTable(db, zName, 0);
+ iDb = isTemp ? 1 : db->init.iDb;
+ if( pTable!=0 && (pTable->iDb==iDb || !db->init.busy) ){
+ sqliteErrorMsg(pParse, "table %T already exists", pName);
+ sqliteFree(zName);
+ return;
+ }
+ if( (pIdx = sqliteFindIndex(db, zName, 0))!=0 &&
+ (pIdx->iDb==0 || !db->init.busy) ){
+ sqliteErrorMsg(pParse, "there is already an index named %s", zName);
+ sqliteFree(zName);
+ return;
+ }
+ pTable = sqliteMalloc( sizeof(Table) );
+ if( pTable==0 ){
+ sqliteFree(zName);
+ return;
+ }
+ pTable->zName = zName;
+ pTable->nCol = 0;
+ pTable->aCol = 0;
+ pTable->iPKey = -1;
+ pTable->pIndex = 0;
+ pTable->iDb = iDb;
+ if( pParse->pNewTable ) sqliteDeleteTable(db, pParse->pNewTable);
+ pParse->pNewTable = pTable;
+
+ /* Begin generating the code that will insert the table record into
+ ** the SQLITE_MASTER table. Note in particular that we must go ahead
+ ** and allocate the record number for the table entry now. Before any
+ ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
+ ** indices to be created and the table record must come before the
+ ** indices. Hence, the record number for the table must be allocated
+ ** now.
+ */
+ if( !db->init.busy && (v = sqliteGetVdbe(pParse))!=0 ){
+ sqliteBeginWriteOperation(pParse, 0, isTemp);
+ if( !isTemp ){
+ sqliteVdbeAddOp(v, OP_Integer, db->file_format, 0);
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 1);
+ }
+ sqliteOpenMasterTable(v, isTemp);
+ sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
+ }
+}
+
+/*
+** Add a new column to the table currently being constructed.
+**
+** The parser calls this routine once for each column declaration
+** in a CREATE TABLE statement. sqliteStartTable() gets called
+** first to get things going. Then this routine is called for each
+** column.
+*/
+void sqliteAddColumn(Parse *pParse, Token *pName){
+ Table *p;
+ int i;
+ char *z = 0;
+ Column *pCol;
+ if( (p = pParse->pNewTable)==0 ) return;
+ sqliteSetNString(&z, pName->z, pName->n, 0);
+ if( z==0 ) return;
+ sqliteDequote(z);
+ for(i=0; i<p->nCol; i++){
+ if( sqliteStrICmp(z, p->aCol[i].zName)==0 ){
+ sqliteErrorMsg(pParse, "duplicate column name: %s", z);
+ sqliteFree(z);
+ return;
+ }
+ }
+ if( (p->nCol & 0x7)==0 ){
+ Column *aNew;
+ aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
+ if( aNew==0 ) return;
+ p->aCol = aNew;
+ }
+ pCol = &p->aCol[p->nCol];
+ memset(pCol, 0, sizeof(p->aCol[0]));
+ pCol->zName = z;
+ pCol->sortOrder = SQLITE_SO_NUM;
+ p->nCol++;
+}
+
+/*
+** This routine is called by the parser while in the middle of
+** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
+** been seen on a column. This routine sets the notNull flag on
+** the column currently under construction.
+*/
+void sqliteAddNotNull(Parse *pParse, int onError){
+ Table *p;
+ int i;
+ if( (p = pParse->pNewTable)==0 ) return;
+ i = p->nCol-1;
+ if( i>=0 ) p->aCol[i].notNull = onError;
+}
+
+/*
+** This routine is called by the parser while in the middle of
+** parsing a CREATE TABLE statement. The pFirst token is the first
+** token in the sequence of tokens that describe the type of the
+** column currently under construction. pLast is the last token
+** in the sequence. Use this information to construct a string
+** that contains the typename of the column and store that string
+** in zType.
+*/
+void sqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast){
+ Table *p;
+ int i, j;
+ int n;
+ char *z, **pz;
+ Column *pCol;
+ if( (p = pParse->pNewTable)==0 ) return;
+ i = p->nCol-1;
+ if( i<0 ) return;
+ pCol = &p->aCol[i];
+ pz = &pCol->zType;
+ n = pLast->n + Addr(pLast->z) - Addr(pFirst->z);
+ sqliteSetNString(pz, pFirst->z, n, 0);
+ z = *pz;
+ if( z==0 ) return;
+ for(i=j=0; z[i]; i++){
+ int c = z[i];
+ if( isspace(c) ) continue;
+ z[j++] = c;
+ }
+ z[j] = 0;
+ if( pParse->db->file_format>=4 ){
+ pCol->sortOrder = sqliteCollateType(z, n);
+ }else{
+ pCol->sortOrder = SQLITE_SO_NUM;
+ }
+}
+
+/*
+** The given token is the default value for the last column added to
+** the table currently under construction. If "minusFlag" is true, it
+** means the value token was preceded by a minus sign.
+**
+** This routine is called by the parser while in the middle of
+** parsing a CREATE TABLE statement.
+*/
+void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){
+ Table *p;
+ int i;
+ char **pz;
+ if( (p = pParse->pNewTable)==0 ) return;
+ i = p->nCol-1;
+ if( i<0 ) return;
+ pz = &p->aCol[i].zDflt;
+ if( minusFlag ){
+ sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0);
+ }else{
+ sqliteSetNString(pz, pVal->z, pVal->n, 0);
+ }
+ sqliteDequote(*pz);
+}
+
+/*
+** Designate the PRIMARY KEY for the table. pList is a list of names
+** of columns that form the primary key. If pList is NULL, then the
+** most recently added column of the table is the primary key.
+**
+** A table can have at most one primary key. If the table already has
+** a primary key (and this is the second primary key) then create an
+** error.
+**
+** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
+** then we will try to use that column as the row id. (Exception:
+** For backwards compatibility with older databases, do not do this
+** if the file format version number is less than 1.) Set the Table.iPKey
+** field of the table under construction to be the index of the
+** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
+** no INTEGER PRIMARY KEY.
+**
+** If the key is not an INTEGER PRIMARY KEY, then create a unique
+** index for the key. No index is created for INTEGER PRIMARY KEYs.
+*/
+void sqliteAddPrimaryKey(Parse *pParse, IdList *pList, int onError){
+ Table *pTab = pParse->pNewTable;
+ char *zType = 0;
+ int iCol = -1, i;
+ if( pTab==0 ) goto primary_key_exit;
+ if( pTab->hasPrimKey ){
+ sqliteErrorMsg(pParse,
+ "table \"%s\" has more than one primary key", pTab->zName);
+ goto primary_key_exit;
+ }
+ pTab->hasPrimKey = 1;
+ if( pList==0 ){
+ iCol = pTab->nCol - 1;
+ pTab->aCol[iCol].isPrimKey = 1;
+ }else{
+ for(i=0; i<pList->nId; i++){
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ) break;
+ }
+ if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1;
+ }
+ if( pList->nId>1 ) iCol = -1;
+ }
+ if( iCol>=0 && iCol<pTab->nCol ){
+ zType = pTab->aCol[iCol].zType;
+ }
+ if( pParse->db->file_format>=1 &&
+ zType && sqliteStrICmp(zType, "INTEGER")==0 ){
+ pTab->iPKey = iCol;
+ pTab->keyConf = onError;
+ }else{
+ sqliteCreateIndex(pParse, 0, 0, pList, onError, 0, 0);
+ pList = 0;
+ }
+
+primary_key_exit:
+ sqliteIdListDelete(pList);
+ return;
+}
+
+/*
+** Return the appropriate collating type given a type name.
+**
+** The collation type is text (SQLITE_SO_TEXT) if the type
+** name contains the character stream "text" or "blob" or
+** "clob". Any other type name is collated as numeric
+** (SQLITE_SO_NUM).
+*/
+int sqliteCollateType(const char *zType, int nType){
+ int i;
+ for(i=0; i<nType-3; i++){
+ int c = *(zType++) | 0x60;
+ if( (c=='b' || c=='c') && sqliteStrNICmp(zType, "lob", 3)==0 ){
+ return SQLITE_SO_TEXT;
+ }
+ if( c=='c' && sqliteStrNICmp(zType, "har", 3)==0 ){
+ return SQLITE_SO_TEXT;
+ }
+ if( c=='t' && sqliteStrNICmp(zType, "ext", 3)==0 ){
+ return SQLITE_SO_TEXT;
+ }
+ }
+ return SQLITE_SO_NUM;
+}
+
+/*
+** This routine is called by the parser while in the middle of
+** parsing a CREATE TABLE statement. A "COLLATE" clause has
+** been seen on a column. This routine sets the Column.sortOrder on
+** the column currently under construction.
+*/
+void sqliteAddCollateType(Parse *pParse, int collType){
+ Table *p;
+ int i;
+ if( (p = pParse->pNewTable)==0 ) return;
+ i = p->nCol-1;
+ if( i>=0 ) p->aCol[i].sortOrder = collType;
+}
+
+/*
+** Come up with a new random value for the schema cookie. Make sure
+** the new value is different from the old.
+**
+** The schema cookie is used to determine when the schema for the
+** database changes. After each schema change, the cookie value
+** changes. When a process first reads the schema it records the
+** cookie. Thereafter, whenever it goes to access the database,
+** it checks the cookie to make sure the schema has not changed
+** since it was last read.
+**
+** This plan is not completely bullet-proof. It is possible for
+** the schema to change multiple times and for the cookie to be
+** set back to prior value. But schema changes are infrequent
+** and the probability of hitting the same cookie value is only
+** 1 chance in 2^32. So we're safe enough.
+*/
+void sqliteChangeCookie(sqlite *db, Vdbe *v){
+ if( db->next_cookie==db->aDb[0].schema_cookie ){
+ unsigned char r;
+ sqliteRandomness(1, &r);
+ db->next_cookie = db->aDb[0].schema_cookie + r + 1;
+ db->flags |= SQLITE_InternChanges;
+ sqliteVdbeAddOp(v, OP_Integer, db->next_cookie, 0);
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 0);
+ }
+}
+
+/*
+** Measure the number of characters needed to output the given
+** identifier. The number returned includes any quotes used
+** but does not include the null terminator.
+*/
+static int identLength(const char *z){
+ int n;
+ int needQuote = 0;
+ for(n=0; *z; n++, z++){
+ if( *z=='\'' ){ n++; needQuote=1; }
+ }
+ return n + needQuote*2;
+}
+
+/*
+** Write an identifier onto the end of the given string. Add
+** quote characters as needed.
+*/
+static void identPut(char *z, int *pIdx, char *zIdent){
+ int i, j, needQuote;
+ i = *pIdx;
+ for(j=0; zIdent[j]; j++){
+ if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
+ }
+ needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
+ || sqliteKeywordCode(zIdent, j)!=TK_ID;
+ if( needQuote ) z[i++] = '\'';
+ for(j=0; zIdent[j]; j++){
+ z[i++] = zIdent[j];
+ if( zIdent[j]=='\'' ) z[i++] = '\'';
+ }
+ if( needQuote ) z[i++] = '\'';
+ z[i] = 0;
+ *pIdx = i;
+}
+
+/*
+** Generate a CREATE TABLE statement appropriate for the given
+** table. Memory to hold the text of the statement is obtained
+** from sqliteMalloc() and must be freed by the calling function.
+*/
+static char *createTableStmt(Table *p){
+ int i, k, n;
+ char *zStmt;
+ char *zSep, *zSep2, *zEnd;
+ n = 0;
+ for(i=0; i<p->nCol; i++){
+ n += identLength(p->aCol[i].zName);
+ }
+ n += identLength(p->zName);
+ if( n<40 ){
+ zSep = "";
+ zSep2 = ",";
+ zEnd = ")";
+ }else{
+ zSep = "\n ";
+ zSep2 = ",\n ";
+ zEnd = "\n)";
+ }
+ n += 35 + 6*p->nCol;
+ zStmt = sqliteMallocRaw( n );
+ if( zStmt==0 ) return 0;
+ strcpy(zStmt, p->iDb==1 ? "CREATE TEMP TABLE " : "CREATE TABLE ");
+ k = strlen(zStmt);
+ identPut(zStmt, &k, p->zName);
+ zStmt[k++] = '(';
+ for(i=0; i<p->nCol; i++){
+ strcpy(&zStmt[k], zSep);
+ k += strlen(&zStmt[k]);
+ zSep = zSep2;
+ identPut(zStmt, &k, p->aCol[i].zName);
+ }
+ strcpy(&zStmt[k], zEnd);
+ return zStmt;
+}
+
+/*
+** This routine is called to report the final ")" that terminates
+** a CREATE TABLE statement.
+**
+** The table structure that other action routines have been building
+** is added to the internal hash tables, assuming no errors have
+** occurred.
+**
+** An entry for the table is made in the master table on disk, unless
+** this is a temporary table or db->init.busy==1. When db->init.busy==1
+** it means we are reading the sqlite_master table because we just
+** connected to the database or because the sqlite_master table has
+** recently changes, so the entry for this table already exists in
+** the sqlite_master table. We do not want to create it again.
+**
+** If the pSelect argument is not NULL, it means that this routine
+** was called to create a table generated from a
+** "CREATE TABLE ... AS SELECT ..." statement. The column names of
+** the new table will match the result set of the SELECT.
+*/
+void sqliteEndTable(Parse *pParse, Token *pEnd, Select *pSelect){
+ Table *p;
+ sqlite *db = pParse->db;
+
+ if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite_malloc_failed ) return;
+ p = pParse->pNewTable;
+ if( p==0 ) return;
+
+ /* If the table is generated from a SELECT, then construct the
+ ** list of columns and the text of the table.
+ */
+ if( pSelect ){
+ Table *pSelTab = sqliteResultSetOfSelect(pParse, 0, pSelect);
+ if( pSelTab==0 ) return;
+ assert( p->aCol==0 );
+ p->nCol = pSelTab->nCol;
+ p->aCol = pSelTab->aCol;
+ pSelTab->nCol = 0;
+ pSelTab->aCol = 0;
+ sqliteDeleteTable(0, pSelTab);
+ }
+
+ /* If the db->init.busy is 1 it means we are reading the SQL off the
+ ** "sqlite_master" or "sqlite_temp_master" table on the disk.
+ ** So do not write to the disk again. Extract the root page number
+ ** for the table from the db->init.newTnum field. (The page number
+ ** should have been put there by the sqliteOpenCb routine.)
+ */
+ if( db->init.busy ){
+ p->tnum = db->init.newTnum;
+ }
+
+ /* If not initializing, then create a record for the new table
+ ** in the SQLITE_MASTER table of the database. The record number
+ ** for the new table entry should already be on the stack.
+ **
+ ** If this is a TEMPORARY table, write the entry into the auxiliary
+ ** file instead of into the main database file.
+ */
+ if( !db->init.busy ){
+ int n;
+ Vdbe *v;
+
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) return;
+ if( p->pSelect==0 ){
+ /* A regular table */
+ sqliteVdbeOp3(v, OP_CreateTable, 0, p->iDb, (char*)&p->tnum, P3_POINTER);
+ }else{
+ /* A view */
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
+ }
+ p->tnum = 0;
+ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
+ sqliteVdbeOp3(v, OP_String, 0, 0, p->pSelect==0?"table":"view", P3_STATIC);
+ sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
+ sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
+ sqliteVdbeAddOp(v, OP_Dup, 4, 0);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ if( pSelect ){
+ char *z = createTableStmt(p);
+ n = z ? strlen(z) : 0;
+ sqliteVdbeChangeP3(v, -1, z, n);
+ sqliteFree(z);
+ }else{
+ assert( pEnd!=0 );
+ n = Addr(pEnd->z) - Addr(pParse->sFirstToken.z) + 1;
+ sqliteVdbeChangeP3(v, -1, pParse->sFirstToken.z, n);
+ }
+ sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
+ if( !p->iDb ){
+ sqliteChangeCookie(db, v);
+ }
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
+ if( pSelect ){
+ sqliteVdbeAddOp(v, OP_Integer, p->iDb, 0);
+ sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0);
+ pParse->nTab = 2;
+ sqliteSelect(pParse, pSelect, SRT_Table, 1, 0, 0, 0);
+ }
+ sqliteEndWriteOperation(pParse);
+ }
+
+ /* Add the table to the in-memory representation of the database.
+ */
+ if( pParse->explain==0 && pParse->nErr==0 ){
+ Table *pOld;
+ FKey *pFKey;
+ pOld = sqliteHashInsert(&db->aDb[p->iDb].tblHash,
+ p->zName, strlen(p->zName)+1, p);
+ if( pOld ){
+ assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
+ return;
+ }
+ for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
+ int nTo = strlen(pFKey->zTo) + 1;
+ pFKey->pNextTo = sqliteHashFind(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo);
+ sqliteHashInsert(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo, pFKey);
+ }
+ pParse->pNewTable = 0;
+ db->nTable++;
+ db->flags |= SQLITE_InternChanges;
+ }
+}
+
+/*
+** The parser calls this routine in order to create a new VIEW
+*/
+void sqliteCreateView(
+ Parse *pParse, /* The parsing context */
+ Token *pBegin, /* The CREATE token that begins the statement */
+ Token *pName, /* The token that holds the name of the view */
+ Select *pSelect, /* A SELECT statement that will become the new view */
+ int isTemp /* TRUE for a TEMPORARY view */
+){
+ Table *p;
+ int n;
+ const char *z;
+ Token sEnd;
+ DbFixer sFix;
+
+ sqliteStartTable(pParse, pBegin, pName, isTemp, 1);
+ p = pParse->pNewTable;
+ if( p==0 || pParse->nErr ){
+ sqliteSelectDelete(pSelect);
+ return;
+ }
+ if( sqliteFixInit(&sFix, pParse, p->iDb, "view", pName)
+ && sqliteFixSelect(&sFix, pSelect)
+ ){
+ sqliteSelectDelete(pSelect);
+ return;
+ }
+
+ /* Make a copy of the entire SELECT statement that defines the view.
+ ** This will force all the Expr.token.z values to be dynamically
+ ** allocated rather than point to the input string - which means that
+ ** they will persist after the current sqlite_exec() call returns.
+ */
+ p->pSelect = sqliteSelectDup(pSelect);
+ sqliteSelectDelete(pSelect);
+ if( !pParse->db->init.busy ){
+ sqliteViewGetColumnNames(pParse, p);
+ }
+
+ /* Locate the end of the CREATE VIEW statement. Make sEnd point to
+ ** the end.
+ */
+ sEnd = pParse->sLastToken;
+ if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
+ sEnd.z += sEnd.n;
+ }
+ sEnd.n = 0;
+ n = ((int)sEnd.z) - (int)pBegin->z;
+ z = pBegin->z;
+ while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
+ sEnd.z = &z[n-1];
+ sEnd.n = 1;
+
+ /* Use sqliteEndTable() to add the view to the SQLITE_MASTER table */
+ sqliteEndTable(pParse, &sEnd, 0);
+ return;
+}
+
+/*
+** The Table structure pTable is really a VIEW. Fill in the names of
+** the columns of the view in the pTable structure. Return the number
+** of errors. If an error is seen leave an error message in pParse->zErrMsg.
+*/
+int sqliteViewGetColumnNames(Parse *pParse, Table *pTable){
+ ExprList *pEList;
+ Select *pSel;
+ Table *pSelTab;
+ int nErr = 0;
+
+ assert( pTable );
+
+ /* A positive nCol means the columns names for this view are
+ ** already known.
+ */
+ if( pTable->nCol>0 ) return 0;
+
+ /* A negative nCol is a special marker meaning that we are currently
+ ** trying to compute the column names. If we enter this routine with
+ ** a negative nCol, it means two or more views form a loop, like this:
+ **
+ ** CREATE VIEW one AS SELECT * FROM two;
+ ** CREATE VIEW two AS SELECT * FROM one;
+ **
+ ** Actually, this error is caught previously and so the following test
+ ** should always fail. But we will leave it in place just to be safe.
+ */
+ if( pTable->nCol<0 ){
+ sqliteErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
+ return 1;
+ }
+
+ /* If we get this far, it means we need to compute the table names.
+ */
+ assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */
+ pSel = pTable->pSelect;
+
+ /* Note that the call to sqliteResultSetOfSelect() will expand any
+ ** "*" elements in this list. But we will need to restore the list
+ ** back to its original configuration afterwards, so we save a copy of
+ ** the original in pEList.
+ */
+ pEList = pSel->pEList;
+ pSel->pEList = sqliteExprListDup(pEList);
+ if( pSel->pEList==0 ){
+ pSel->pEList = pEList;
+ return 1; /* Malloc failed */
+ }
+ pTable->nCol = -1;
+ pSelTab = sqliteResultSetOfSelect(pParse, 0, pSel);
+ if( pSelTab ){
+ assert( pTable->aCol==0 );
+ pTable->nCol = pSelTab->nCol;
+ pTable->aCol = pSelTab->aCol;
+ pSelTab->nCol = 0;
+ pSelTab->aCol = 0;
+ sqliteDeleteTable(0, pSelTab);
+ DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews);
+ }else{
+ pTable->nCol = 0;
+ nErr++;
+ }
+ sqliteSelectUnbind(pSel);
+ sqliteExprListDelete(pSel->pEList);
+ pSel->pEList = pEList;
+ return nErr;
+}
+
+/*
+** Clear the column names from the VIEW pTable.
+**
+** This routine is called whenever any other table or view is modified.
+** The view passed into this routine might depend directly or indirectly
+** on the modified or deleted table so we need to clear the old column
+** names so that they will be recomputed.
+*/
+static void sqliteViewResetColumnNames(Table *pTable){
+ int i;
+ Column *pCol;
+ assert( pTable!=0 && pTable->pSelect!=0 );
+ for(i=0, pCol=pTable->aCol; i<pTable->nCol; i++, pCol++){
+ sqliteFree(pCol->zName);
+ sqliteFree(pCol->zDflt);
+ sqliteFree(pCol->zType);
+ }
+ sqliteFree(pTable->aCol);
+ pTable->aCol = 0;
+ pTable->nCol = 0;
+}
+
+/*
+** Clear the column names from every VIEW in database idx.
+*/
+static void sqliteViewResetAll(sqlite *db, int idx){
+ HashElem *i;
+ if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
+ for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){
+ Table *pTab = sqliteHashData(i);
+ if( pTab->pSelect ){
+ sqliteViewResetColumnNames(pTab);
+ }
+ }
+ DbClearProperty(db, idx, DB_UnresetViews);
+}
+
+/*
+** Given a token, look up a table with that name. If not found, leave
+** an error for the parser to find and return NULL.
+*/
+Table *sqliteTableFromToken(Parse *pParse, Token *pTok){
+ char *zName;
+ Table *pTab;
+ zName = sqliteTableNameFromToken(pTok);
+ if( zName==0 ) return 0;
+ pTab = sqliteFindTable(pParse->db, zName, 0);
+ sqliteFree(zName);
+ if( pTab==0 ){
+ sqliteErrorMsg(pParse, "no such table: %T", pTok);
+ }
+ return pTab;
+}
+
+/*
+** This routine is called to do the work of a DROP TABLE statement.
+** pName is the name of the table to be dropped.
+*/
+void sqliteDropTable(Parse *pParse, Token *pName, int isView){
+ Table *pTable;
+ Vdbe *v;
+ int base;
+ sqlite *db = pParse->db;
+ int iDb;
+
+ if( pParse->nErr || sqlite_malloc_failed ) return;
+ pTable = sqliteTableFromToken(pParse, pName);
+ if( pTable==0 ) return;
+ iDb = pTable->iDb;
+ assert( iDb>=0 && iDb<db->nDb );
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int code;
+ const char *zTab = SCHEMA_TABLE(pTable->iDb);
+ const char *zDb = db->aDb[pTable->iDb].zName;
+ if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
+ return;
+ }
+ if( isView ){
+ if( iDb==1 ){
+ code = SQLITE_DROP_TEMP_VIEW;
+ }else{
+ code = SQLITE_DROP_VIEW;
+ }
+ }else{
+ if( iDb==1 ){
+ code = SQLITE_DROP_TEMP_TABLE;
+ }else{
+ code = SQLITE_DROP_TABLE;
+ }
+ }
+ if( sqliteAuthCheck(pParse, code, pTable->zName, 0, zDb) ){
+ return;
+ }
+ if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTable->zName, 0, zDb) ){
+ return;
+ }
+ }
+#endif
+ if( pTable->readOnly ){
+ sqliteErrorMsg(pParse, "table %s may not be dropped", pTable->zName);
+ pParse->nErr++;
+ return;
+ }
+ if( isView && pTable->pSelect==0 ){
+ sqliteErrorMsg(pParse, "use DROP TABLE to delete table %s", pTable->zName);
+ return;
+ }
+ if( !isView && pTable->pSelect ){
+ sqliteErrorMsg(pParse, "use DROP VIEW to delete view %s", pTable->zName);
+ return;
+ }
+
+ /* Generate code to remove the table from the master table
+ ** on disk.
+ */
+ v = sqliteGetVdbe(pParse);
+ if( v ){
+ static VdbeOpList dropTable[] = {
+ { OP_Rewind, 0, ADDR(8), 0},
+ { OP_String, 0, 0, 0}, /* 1 */
+ { OP_MemStore, 1, 1, 0},
+ { OP_MemLoad, 1, 0, 0}, /* 3 */
+ { OP_Column, 0, 2, 0},
+ { OP_Ne, 0, ADDR(7), 0},
+ { OP_Delete, 0, 0, 0},
+ { OP_Next, 0, ADDR(3), 0}, /* 7 */
+ };
+ Index *pIdx;
+ Trigger *pTrigger;
+ sqliteBeginWriteOperation(pParse, 0, pTable->iDb);
+
+ /* Drop all triggers associated with the table being dropped */
+ pTrigger = pTable->pTrigger;
+ while( pTrigger ){
+ assert( pTrigger->iDb==pTable->iDb || pTrigger->iDb==1 );
+ sqliteDropTriggerPtr(pParse, pTrigger, 1);
+ if( pParse->explain ){
+ pTrigger = pTrigger->pNext;
+ }else{
+ pTrigger = pTable->pTrigger;
+ }
+ }
+
+ /* Drop all SQLITE_MASTER entries that refer to the table */
+ sqliteOpenMasterTable(v, pTable->iDb);
+ base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
+ sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
+
+ /* Drop all SQLITE_TEMP_MASTER entries that refer to the table */
+ if( pTable->iDb!=1 ){
+ sqliteOpenMasterTable(v, 1);
+ base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
+ sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
+ }
+
+ if( pTable->iDb==0 ){
+ sqliteChangeCookie(db, v);
+ }
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
+ if( !isView ){
+ sqliteVdbeAddOp(v, OP_Destroy, pTable->tnum, pTable->iDb);
+ for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){
+ sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, pIdx->iDb);
+ }
+ }
+ sqliteEndWriteOperation(pParse);
+ }
+
+ /* Delete the in-memory description of the table.
+ **
+ ** Exception: if the SQL statement began with the EXPLAIN keyword,
+ ** then no changes should be made.
+ */
+ if( !pParse->explain ){
+ sqliteUnlinkAndDeleteTable(db, pTable);
+ db->flags |= SQLITE_InternChanges;
+ }
+ sqliteViewResetAll(db, iDb);
+}
+
+/*
+** This routine constructs a P3 string suitable for an OP_MakeIdxKey
+** opcode and adds that P3 string to the most recently inserted instruction
+** in the virtual machine. The P3 string consists of a single character
+** for each column in the index pIdx of table pTab. If the column uses
+** a numeric sort order, then the P3 string character corresponding to
+** that column is 'n'. If the column uses a text sort order, then the
+** P3 string is 't'. See the OP_MakeIdxKey opcode documentation for
+** additional information. See also the sqliteAddKeyType() routine.
+*/
+void sqliteAddIdxKeyType(Vdbe *v, Index *pIdx){
+ char *zType;
+ Table *pTab;
+ int i, n;
+ assert( pIdx!=0 && pIdx->pTable!=0 );
+ pTab = pIdx->pTable;
+ n = pIdx->nColumn;
+ zType = sqliteMallocRaw( n+1 );
+ if( zType==0 ) return;
+ for(i=0; i<n; i++){
+ int iCol = pIdx->aiColumn[i];
+ assert( iCol>=0 && iCol<pTab->nCol );
+ if( (pTab->aCol[iCol].sortOrder & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
+ zType[i] = 't';
+ }else{
+ zType[i] = 'n';
+ }
+ }
+ zType[n] = 0;
+ sqliteVdbeChangeP3(v, -1, zType, n);
+ sqliteFree(zType);
+}
+
+/*
+** This routine is called to create a new foreign key on the table
+** currently under construction. pFromCol determines which columns
+** in the current table point to the foreign key. If pFromCol==0 then
+** connect the key to the last column inserted. pTo is the name of
+** the table referred to. pToCol is a list of tables in the other
+** pTo table that the foreign key points to. flags contains all
+** information about the conflict resolution algorithms specified
+** in the ON DELETE, ON UPDATE and ON INSERT clauses.
+**
+** An FKey structure is created and added to the table currently
+** under construction in the pParse->pNewTable field. The new FKey
+** is not linked into db->aFKey at this point - that does not happen
+** until sqliteEndTable().
+**
+** The foreign key is set for IMMEDIATE processing. A subsequent call
+** to sqliteDeferForeignKey() might change this to DEFERRED.
+*/
+void sqliteCreateForeignKey(
+ Parse *pParse, /* Parsing context */
+ IdList *pFromCol, /* Columns in this table that point to other table */
+ Token *pTo, /* Name of the other table */
+ IdList *pToCol, /* Columns in the other table */
+ int flags /* Conflict resolution algorithms. */
+){
+ Table *p = pParse->pNewTable;
+ int nByte;
+ int i;
+ int nCol;
+ char *z;
+ FKey *pFKey = 0;
+
+ assert( pTo!=0 );
+ if( p==0 || pParse->nErr ) goto fk_end;
+ if( pFromCol==0 ){
+ int iCol = p->nCol-1;
+ if( iCol<0 ) goto fk_end;
+ if( pToCol && pToCol->nId!=1 ){
+ sqliteErrorMsg(pParse, "foreign key on %s"
+ " should reference only one column of table %T",
+ p->aCol[iCol].zName, pTo);
+ goto fk_end;
+ }
+ nCol = 1;
+ }else if( pToCol && pToCol->nId!=pFromCol->nId ){
+ sqliteErrorMsg(pParse,
+ "number of columns in foreign key does not match the number of "
+ "columns in the referenced table");
+ goto fk_end;
+ }else{
+ nCol = pFromCol->nId;
+ }
+ nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
+ if( pToCol ){
+ for(i=0; i<pToCol->nId; i++){
+ nByte += strlen(pToCol->a[i].zName) + 1;
+ }
+ }
+ pFKey = sqliteMalloc( nByte );
+ if( pFKey==0 ) goto fk_end;
+ pFKey->pFrom = p;
+ pFKey->pNextFrom = p->pFKey;
+ z = (char*)&pFKey[1];
+ pFKey->aCol = (struct sColMap*)z;
+ z += sizeof(struct sColMap)*nCol;
+ pFKey->zTo = z;
+ memcpy(z, pTo->z, pTo->n);
+ z[pTo->n] = 0;
+ z += pTo->n+1;
+ pFKey->pNextTo = 0;
+ pFKey->nCol = nCol;
+ if( pFromCol==0 ){
+ pFKey->aCol[0].iFrom = p->nCol-1;
+ }else{
+ for(i=0; i<nCol; i++){
+ int j;
+ for(j=0; j<p->nCol; j++){
+ if( sqliteStrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
+ pFKey->aCol[i].iFrom = j;
+ break;
+ }
+ }
+ if( j>=p->nCol ){
+ sqliteErrorMsg(pParse,
+ "unknown column \"%s\" in foreign key definition",
+ pFromCol->a[i].zName);
+ goto fk_end;
+ }
+ }
+ }
+ if( pToCol ){
+ for(i=0; i<nCol; i++){
+ int n = strlen(pToCol->a[i].zName);
+ pFKey->aCol[i].zCol = z;
+ memcpy(z, pToCol->a[i].zName, n);
+ z[n] = 0;
+ z += n+1;
+ }
+ }
+ pFKey->isDeferred = 0;
+ pFKey->deleteConf = flags & 0xff;
+ pFKey->updateConf = (flags >> 8 ) & 0xff;
+ pFKey->insertConf = (flags >> 16 ) & 0xff;
+
+ /* Link the foreign key to the table as the last step.
+ */
+ p->pFKey = pFKey;
+ pFKey = 0;
+
+fk_end:
+ sqliteFree(pFKey);
+ sqliteIdListDelete(pFromCol);
+ sqliteIdListDelete(pToCol);
+}
+
+/*
+** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
+** clause is seen as part of a foreign key definition. The isDeferred
+** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
+** The behavior of the most recently created foreign key is adjusted
+** accordingly.
+*/
+void sqliteDeferForeignKey(Parse *pParse, int isDeferred){
+ Table *pTab;
+ FKey *pFKey;
+ if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
+ pFKey->isDeferred = isDeferred;
+}
+
+/*
+** Create a new index for an SQL table. pIndex is the name of the index
+** and pTable is the name of the table that is to be indexed. Both will
+** be NULL for a primary key or an index that is created to satisfy a
+** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
+** as the table to be indexed. pParse->pNewTable is a table that is
+** currently being constructed by a CREATE TABLE statement.
+**
+** pList is a list of columns to be indexed. pList will be NULL if this
+** is a primary key or unique-constraint on the most recent column added
+** to the table currently under construction.
+*/
+void sqliteCreateIndex(
+ Parse *pParse, /* All information about this parse */
+ Token *pName, /* Name of the index. May be NULL */
+ SrcList *pTable, /* Name of the table to index. Use pParse->pNewTable if 0 */
+ IdList *pList, /* A list of columns to be indexed */
+ int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
+ Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */
+ Token *pEnd /* The ")" that closes the CREATE INDEX statement */
+){
+ Table *pTab; /* Table to be indexed */
+ Index *pIndex; /* The index to be created */
+ char *zName = 0;
+ int i, j;
+ Token nullId; /* Fake token for an empty ID list */
+ DbFixer sFix; /* For assigning database names to pTable */
+ int isTemp; /* True for a temporary index */
+ sqlite *db = pParse->db;
+
+ if( pParse->nErr || sqlite_malloc_failed ) goto exit_create_index;
+ if( db->init.busy
+ && sqliteFixInit(&sFix, pParse, db->init.iDb, "index", pName)
+ && sqliteFixSrcList(&sFix, pTable)
+ ){
+ goto exit_create_index;
+ }
+
+ /*
+ ** Find the table that is to be indexed. Return early if not found.
+ */
+ if( pTable!=0 ){
+ assert( pName!=0 );
+ assert( pTable->nSrc==1 );
+ pTab = sqliteSrcListLookup(pParse, pTable);
+ }else{
+ assert( pName==0 );
+ pTab = pParse->pNewTable;
+ }
+ if( pTab==0 || pParse->nErr ) goto exit_create_index;
+ if( pTab->readOnly ){
+ sqliteErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
+ goto exit_create_index;
+ }
+ if( pTab->iDb>=2 && db->init.busy==0 ){
+ sqliteErrorMsg(pParse, "table %s may not have indices added", pTab->zName);
+ goto exit_create_index;
+ }
+ if( pTab->pSelect ){
+ sqliteErrorMsg(pParse, "views may not be indexed");
+ goto exit_create_index;
+ }
+ isTemp = pTab->iDb==1;
+
+ /*
+ ** Find the name of the index. Make sure there is not already another
+ ** index or table with the same name.
+ **
+ ** Exception: If we are reading the names of permanent indices from the
+ ** sqlite_master table (because some other process changed the schema) and
+ ** one of the index names collides with the name of a temporary table or
+ ** index, then we will continue to process this index.
+ **
+ ** If pName==0 it means that we are
+ ** dealing with a primary key or UNIQUE constraint. We have to invent our
+ ** own name.
+ */
+ if( pName && !db->init.busy ){
+ Index *pISameName; /* Another index with the same name */
+ Table *pTSameName; /* A table with same name as the index */
+ zName = sqliteStrNDup(pName->z, pName->n);
+ if( zName==0 ) goto exit_create_index;
+ if( (pISameName = sqliteFindIndex(db, zName, 0))!=0 ){
+ sqliteErrorMsg(pParse, "index %s already exists", zName);
+ goto exit_create_index;
+ }
+ if( (pTSameName = sqliteFindTable(db, zName, 0))!=0 ){
+ sqliteErrorMsg(pParse, "there is already a table named %s", zName);
+ goto exit_create_index;
+ }
+ }else if( pName==0 ){
+ char zBuf[30];
+ int n;
+ Index *pLoop;
+ for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
+ sprintf(zBuf,"%d)",n);
+ zName = 0;
+ sqliteSetString(&zName, "(", pTab->zName, " autoindex ", zBuf, (char*)0);
+ if( zName==0 ) goto exit_create_index;
+ }else{
+ zName = sqliteStrNDup(pName->z, pName->n);
+ }
+
+ /* Check for authorization to create an index.
+ */
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ const char *zDb = db->aDb[pTab->iDb].zName;
+
+ assert( pTab->iDb==db->init.iDb || isTemp );
+ if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
+ goto exit_create_index;
+ }
+ i = SQLITE_CREATE_INDEX;
+ if( isTemp ) i = SQLITE_CREATE_TEMP_INDEX;
+ if( sqliteAuthCheck(pParse, i, zName, pTab->zName, zDb) ){
+ goto exit_create_index;
+ }
+ }
+#endif
+
+ /* If pList==0, it means this routine was called to make a primary
+ ** key out of the last column added to the table under construction.
+ ** So create a fake list to simulate this.
+ */
+ if( pList==0 ){
+ nullId.z = pTab->aCol[pTab->nCol-1].zName;
+ nullId.n = strlen(nullId.z);
+ pList = sqliteIdListAppend(0, &nullId);
+ if( pList==0 ) goto exit_create_index;
+ }
+
+ /*
+ ** Allocate the index structure.
+ */
+ pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 +
+ sizeof(int)*pList->nId );
+ if( pIndex==0 ) goto exit_create_index;
+ pIndex->aiColumn = (int*)&pIndex[1];
+ pIndex->zName = (char*)&pIndex->aiColumn[pList->nId];
+ strcpy(pIndex->zName, zName);
+ pIndex->pTable = pTab;
+ pIndex->nColumn = pList->nId;
+ pIndex->onError = onError;
+ pIndex->autoIndex = pName==0;
+ pIndex->iDb = isTemp ? 1 : db->init.iDb;
+
+ /* Scan the names of the columns of the table to be indexed and
+ ** load the column indices into the Index structure. Report an error
+ ** if any column is not found.
+ */
+ for(i=0; i<pList->nId; i++){
+ for(j=0; j<pTab->nCol; j++){
+ if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break;
+ }
+ if( j>=pTab->nCol ){
+ sqliteErrorMsg(pParse, "table %s has no column named %s",
+ pTab->zName, pList->a[i].zName);
+ sqliteFree(pIndex);
+ goto exit_create_index;
+ }
+ pIndex->aiColumn[i] = j;
+ }
+
+ /* Link the new Index structure to its table and to the other
+ ** in-memory database structures.
+ */
+ if( !pParse->explain ){
+ Index *p;
+ p = sqliteHashInsert(&db->aDb[pIndex->iDb].idxHash,
+ pIndex->zName, strlen(pIndex->zName)+1, pIndex);
+ if( p ){
+ assert( p==pIndex ); /* Malloc must have failed */
+ sqliteFree(pIndex);
+ goto exit_create_index;
+ }
+ db->flags |= SQLITE_InternChanges;
+ }
+
+ /* When adding an index to the list of indices for a table, make
+ ** sure all indices labeled OE_Replace come after all those labeled
+ ** OE_Ignore. This is necessary for the correct operation of UPDATE
+ ** and INSERT.
+ */
+ if( onError!=OE_Replace || pTab->pIndex==0
+ || pTab->pIndex->onError==OE_Replace){
+ pIndex->pNext = pTab->pIndex;
+ pTab->pIndex = pIndex;
+ }else{
+ Index *pOther = pTab->pIndex;
+ while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
+ pOther = pOther->pNext;
+ }
+ pIndex->pNext = pOther->pNext;
+ pOther->pNext = pIndex;
+ }
+
+ /* If the db->init.busy is 1 it means we are reading the SQL off the
+ ** "sqlite_master" table on the disk. So do not write to the disk
+ ** again. Extract the table number from the db->init.newTnum field.
+ */
+ if( db->init.busy && pTable!=0 ){
+ pIndex->tnum = db->init.newTnum;
+ }
+
+ /* If the db->init.busy is 0 then create the index on disk. This
+ ** involves writing the index into the master table and filling in the
+ ** index with the current table contents.
+ **
+ ** The db->init.busy is 0 when the user first enters a CREATE INDEX
+ ** command. db->init.busy is 1 when a database is opened and
+ ** CREATE INDEX statements are read out of the master table. In
+ ** the latter case the index already exists on disk, which is why
+ ** we don't want to recreate it.
+ **
+ ** If pTable==0 it means this index is generated as a primary key
+ ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
+ ** has just been created, it contains no data and the index initialization
+ ** step can be skipped.
+ */
+ else if( db->init.busy==0 ){
+ int n;
+ Vdbe *v;
+ int lbl1, lbl2;
+ int i;
+ int addr;
+
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) goto exit_create_index;
+ if( pTable!=0 ){
+ sqliteBeginWriteOperation(pParse, 0, isTemp);
+ sqliteOpenMasterTable(v, isTemp);
+ }
+ sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
+ sqliteVdbeOp3(v, OP_String, 0, 0, "index", P3_STATIC);
+ sqliteVdbeOp3(v, OP_String, 0, 0, pIndex->zName, 0);
+ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->zName, 0);
+ sqliteVdbeOp3(v, OP_CreateIndex, 0, isTemp,(char*)&pIndex->tnum,P3_POINTER);
+ pIndex->tnum = 0;
+ if( pTable ){
+ sqliteVdbeCode(v,
+ OP_Dup, 0, 0,
+ OP_Integer, isTemp, 0,
+ OP_OpenWrite, 1, 0,
+ 0);
+ }
+ addr = sqliteVdbeAddOp(v, OP_String, 0, 0);
+ if( pStart && pEnd ){
+ n = Addr(pEnd->z) - Addr(pStart->z) + 1;
+ sqliteVdbeChangeP3(v, addr, pStart->z, n);
+ }
+ sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
+ if( pTable ){
+ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
+ sqliteVdbeOp3(v, OP_OpenRead, 2, pTab->tnum, pTab->zName, 0);
+ lbl2 = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_Rewind, 2, lbl2);
+ lbl1 = sqliteVdbeAddOp(v, OP_Recno, 2, 0);
+ for(i=0; i<pIndex->nColumn; i++){
+ int iCol = pIndex->aiColumn[i];
+ if( pTab->iPKey==iCol ){
+ sqliteVdbeAddOp(v, OP_Dup, i, 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_Column, 2, iCol);
+ }
+ }
+ sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0);
+ if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIndex);
+ sqliteVdbeOp3(v, OP_IdxPut, 1, pIndex->onError!=OE_None,
+ "indexed columns are not unique", P3_STATIC);
+ sqliteVdbeAddOp(v, OP_Next, 2, lbl1);
+ sqliteVdbeResolveLabel(v, lbl2);
+ sqliteVdbeAddOp(v, OP_Close, 2, 0);
+ sqliteVdbeAddOp(v, OP_Close, 1, 0);
+ }
+ if( pTable!=0 ){
+ if( !isTemp ){
+ sqliteChangeCookie(db, v);
+ }
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
+ sqliteEndWriteOperation(pParse);
+ }
+ }
+
+ /* Clean up before exiting */
+exit_create_index:
+ sqliteIdListDelete(pList);
+ sqliteSrcListDelete(pTable);
+ sqliteFree(zName);
+ return;
+}
+
+/*
+** This routine will drop an existing named index. This routine
+** implements the DROP INDEX statement.
+*/
+void sqliteDropIndex(Parse *pParse, SrcList *pName){
+ Index *pIndex;
+ Vdbe *v;
+ sqlite *db = pParse->db;
+
+ if( pParse->nErr || sqlite_malloc_failed ) return;
+ assert( pName->nSrc==1 );
+ pIndex = sqliteFindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
+ if( pIndex==0 ){
+ sqliteErrorMsg(pParse, "no such index: %S", pName, 0);
+ goto exit_drop_index;
+ }
+ if( pIndex->autoIndex ){
+ sqliteErrorMsg(pParse, "index associated with UNIQUE "
+ "or PRIMARY KEY constraint cannot be dropped", 0);
+ goto exit_drop_index;
+ }
+ if( pIndex->iDb>1 ){
+ sqliteErrorMsg(pParse, "cannot alter schema of attached "
+ "databases", 0);
+ goto exit_drop_index;
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int code = SQLITE_DROP_INDEX;
+ Table *pTab = pIndex->pTable;
+ const char *zDb = db->aDb[pIndex->iDb].zName;
+ const char *zTab = SCHEMA_TABLE(pIndex->iDb);
+ if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
+ goto exit_drop_index;
+ }
+ if( pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX;
+ if( sqliteAuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
+ goto exit_drop_index;
+ }
+ }
+#endif
+
+ /* Generate code to remove the index and from the master table */
+ v = sqliteGetVdbe(pParse);
+ if( v ){
+ static VdbeOpList dropIndex[] = {
+ { OP_Rewind, 0, ADDR(9), 0},
+ { OP_String, 0, 0, 0}, /* 1 */
+ { OP_MemStore, 1, 1, 0},
+ { OP_MemLoad, 1, 0, 0}, /* 3 */
+ { OP_Column, 0, 1, 0},
+ { OP_Eq, 0, ADDR(8), 0},
+ { OP_Next, 0, ADDR(3), 0},
+ { OP_Goto, 0, ADDR(9), 0},
+ { OP_Delete, 0, 0, 0}, /* 8 */
+ };
+ int base;
+
+ sqliteBeginWriteOperation(pParse, 0, pIndex->iDb);
+ sqliteOpenMasterTable(v, pIndex->iDb);
+ base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex);
+ sqliteVdbeChangeP3(v, base+1, pIndex->zName, 0);
+ if( pIndex->iDb==0 ){
+ sqliteChangeCookie(db, v);
+ }
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
+ sqliteVdbeAddOp(v, OP_Destroy, pIndex->tnum, pIndex->iDb);
+ sqliteEndWriteOperation(pParse);
+ }
+
+ /* Delete the in-memory description of this index.
+ */
+ if( !pParse->explain ){
+ sqliteUnlinkAndDeleteIndex(db, pIndex);
+ db->flags |= SQLITE_InternChanges;
+ }
+
+exit_drop_index:
+ sqliteSrcListDelete(pName);
+}
+
+/*
+** Append a new element to the given IdList. Create a new IdList if
+** need be.
+**
+** A new IdList is returned, or NULL if malloc() fails.
+*/
+IdList *sqliteIdListAppend(IdList *pList, Token *pToken){
+ if( pList==0 ){
+ pList = sqliteMalloc( sizeof(IdList) );
+ if( pList==0 ) return 0;
+ pList->nAlloc = 0;
+ }
+ if( pList->nId>=pList->nAlloc ){
+ struct IdList_item *a;
+ pList->nAlloc = pList->nAlloc*2 + 5;
+ a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]) );
+ if( a==0 ){
+ sqliteIdListDelete(pList);
+ return 0;
+ }
+ pList->a = a;
+ }
+ memset(&pList->a[pList->nId], 0, sizeof(pList->a[0]));
+ if( pToken ){
+ char **pz = &pList->a[pList->nId].zName;
+ sqliteSetNString(pz, pToken->z, pToken->n, 0);
+ if( *pz==0 ){
+ sqliteIdListDelete(pList);
+ return 0;
+ }else{
+ sqliteDequote(*pz);
+ }
+ }
+ pList->nId++;
+ return pList;
+}
+
+/*
+** Append a new table name to the given SrcList. Create a new SrcList if
+** need be. A new entry is created in the SrcList even if pToken is NULL.
+**
+** A new SrcList is returned, or NULL if malloc() fails.
+**
+** If pDatabase is not null, it means that the table has an optional
+** database name prefix. Like this: "database.table". The pDatabase
+** points to the table name and the pTable points to the database name.
+** The SrcList.a[].zName field is filled with the table name which might
+** come from pTable (if pDatabase is NULL) or from pDatabase.
+** SrcList.a[].zDatabase is filled with the database name from pTable,
+** or with NULL if no database is specified.
+**
+** In other words, if call like this:
+**
+** sqliteSrcListAppend(A,B,0);
+**
+** Then B is a table name and the database name is unspecified. If called
+** like this:
+**
+** sqliteSrcListAppend(A,B,C);
+**
+** Then C is the table name and B is the database name.
+*/
+SrcList *sqliteSrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
+ if( pList==0 ){
+ pList = sqliteMalloc( sizeof(SrcList) );
+ if( pList==0 ) return 0;
+ pList->nAlloc = 1;
+ }
+ if( pList->nSrc>=pList->nAlloc ){
+ SrcList *pNew;
+ pList->nAlloc *= 2;
+ pNew = sqliteRealloc(pList,
+ sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
+ if( pNew==0 ){
+ sqliteSrcListDelete(pList);
+ return 0;
+ }
+ pList = pNew;
+ }
+ memset(&pList->a[pList->nSrc], 0, sizeof(pList->a[0]));
+ if( pDatabase && pDatabase->z==0 ){
+ pDatabase = 0;
+ }
+ if( pDatabase && pTable ){
+ Token *pTemp = pDatabase;
+ pDatabase = pTable;
+ pTable = pTemp;
+ }
+ if( pTable ){
+ char **pz = &pList->a[pList->nSrc].zName;
+ sqliteSetNString(pz, pTable->z, pTable->n, 0);
+ if( *pz==0 ){
+ sqliteSrcListDelete(pList);
+ return 0;
+ }else{
+ sqliteDequote(*pz);
+ }
+ }
+ if( pDatabase ){
+ char **pz = &pList->a[pList->nSrc].zDatabase;
+ sqliteSetNString(pz, pDatabase->z, pDatabase->n, 0);
+ if( *pz==0 ){
+ sqliteSrcListDelete(pList);
+ return 0;
+ }else{
+ sqliteDequote(*pz);
+ }
+ }
+ pList->a[pList->nSrc].iCursor = -1;
+ pList->nSrc++;
+ return pList;
+}
+
+/*
+** Assign cursors to all tables in a SrcList
+*/
+void sqliteSrcListAssignCursors(Parse *pParse, SrcList *pList){
+ int i;
+ for(i=0; i<pList->nSrc; i++){
+ if( pList->a[i].iCursor<0 ){
+ pList->a[i].iCursor = pParse->nTab++;
+ }
+ }
+}
+
+/*
+** Add an alias to the last identifier on the given identifier list.
+*/
+void sqliteSrcListAddAlias(SrcList *pList, Token *pToken){
+ if( pList && pList->nSrc>0 ){
+ int i = pList->nSrc - 1;
+ sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0);
+ sqliteDequote(pList->a[i].zAlias);
+ }
+}
+
+/*
+** Delete an IdList.
+*/
+void sqliteIdListDelete(IdList *pList){
+ int i;
+ if( pList==0 ) return;
+ for(i=0; i<pList->nId; i++){
+ sqliteFree(pList->a[i].zName);
+ }
+ sqliteFree(pList->a);
+ sqliteFree(pList);
+}
+
+/*
+** Return the index in pList of the identifier named zId. Return -1
+** if not found.
+*/
+int sqliteIdListIndex(IdList *pList, const char *zName){
+ int i;
+ if( pList==0 ) return -1;
+ for(i=0; i<pList->nId; i++){
+ if( sqliteStrICmp(pList->a[i].zName, zName)==0 ) return i;
+ }
+ return -1;
+}
+
+/*
+** Delete an entire SrcList including all its substructure.
+*/
+void sqliteSrcListDelete(SrcList *pList){
+ int i;
+ if( pList==0 ) return;
+ for(i=0; i<pList->nSrc; i++){
+ sqliteFree(pList->a[i].zDatabase);
+ sqliteFree(pList->a[i].zName);
+ sqliteFree(pList->a[i].zAlias);
+ if( pList->a[i].pTab && pList->a[i].pTab->isTransient ){
+ sqliteDeleteTable(0, pList->a[i].pTab);
+ }
+ sqliteSelectDelete(pList->a[i].pSelect);
+ sqliteExprDelete(pList->a[i].pOn);
+ sqliteIdListDelete(pList->a[i].pUsing);
+ }
+ sqliteFree(pList);
+}
+
+/*
+** Begin a transaction
+*/
+void sqliteBeginTransaction(Parse *pParse, int onError){
+ sqlite *db;
+
+ if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
+ if( pParse->nErr || sqlite_malloc_failed ) return;
+ if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
+ if( db->flags & SQLITE_InTrans ){
+ sqliteErrorMsg(pParse, "cannot start a transaction within a transaction");
+ return;
+ }
+ sqliteBeginWriteOperation(pParse, 0, 0);
+ if( !pParse->explain ){
+ db->flags |= SQLITE_InTrans;
+ db->onError = onError;
+ }
+}
+
+/*
+** Commit a transaction
+*/
+void sqliteCommitTransaction(Parse *pParse){
+ sqlite *db;
+
+ if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
+ if( pParse->nErr || sqlite_malloc_failed ) return;
+ if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
+ if( (db->flags & SQLITE_InTrans)==0 ){
+ sqliteErrorMsg(pParse, "cannot commit - no transaction is active");
+ return;
+ }
+ if( !pParse->explain ){
+ db->flags &= ~SQLITE_InTrans;
+ }
+ sqliteEndWriteOperation(pParse);
+ if( !pParse->explain ){
+ db->onError = OE_Default;
+ }
+}
+
+/*
+** Rollback a transaction
+*/
+void sqliteRollbackTransaction(Parse *pParse){
+ sqlite *db;
+ Vdbe *v;
+
+ if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
+ if( pParse->nErr || sqlite_malloc_failed ) return;
+ if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
+ if( (db->flags & SQLITE_InTrans)==0 ){
+ sqliteErrorMsg(pParse, "cannot rollback - no transaction is active");
+ return;
+ }
+ v = sqliteGetVdbe(pParse);
+ if( v ){
+ sqliteVdbeAddOp(v, OP_Rollback, 0, 0);
+ }
+ if( !pParse->explain ){
+ db->flags &= ~SQLITE_InTrans;
+ db->onError = OE_Default;
+ }
+}
+
+/*
+** Generate VDBE code that will verify the schema cookie for all
+** named database files.
+*/
+void sqliteCodeVerifySchema(Parse *pParse, int iDb){
+ sqlite *db = pParse->db;
+ Vdbe *v = sqliteGetVdbe(pParse);
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( db->aDb[iDb].pBt!=0 );
+ if( iDb!=1 && !DbHasProperty(db, iDb, DB_Cookie) ){
+ sqliteVdbeAddOp(v, OP_VerifyCookie, iDb, db->aDb[iDb].schema_cookie);
+ DbSetProperty(db, iDb, DB_Cookie);
+ }
+}
+
+/*
+** Generate VDBE code that prepares for doing an operation that
+** might change the database.
+**
+** This routine starts a new transaction if we are not already within
+** a transaction. If we are already within a transaction, then a checkpoint
+** is set if the setCheckpoint parameter is true. A checkpoint should
+** be set for operations that might fail (due to a constraint) part of
+** the way through and which will need to undo some writes without having to
+** rollback the whole transaction. For operations where all constraints
+** can be checked before any changes are made to the database, it is never
+** necessary to undo a write and the checkpoint should not be set.
+**
+** Only database iDb and the temp database are made writable by this call.
+** If iDb==0, then the main and temp databases are made writable. If
+** iDb==1 then only the temp database is made writable. If iDb>1 then the
+** specified auxiliary database and the temp database are made writable.
+*/
+void sqliteBeginWriteOperation(Parse *pParse, int setCheckpoint, int iDb){
+ Vdbe *v;
+ sqlite *db = pParse->db;
+ if( DbHasProperty(db, iDb, DB_Locked) ) return;
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) return;
+ if( !db->aDb[iDb].inTrans ){
+ sqliteVdbeAddOp(v, OP_Transaction, iDb, 0);
+ DbSetProperty(db, iDb, DB_Locked);
+ sqliteCodeVerifySchema(pParse, iDb);
+ if( iDb!=1 ){
+ sqliteBeginWriteOperation(pParse, setCheckpoint, 1);
+ }
+ }else if( setCheckpoint ){
+ sqliteVdbeAddOp(v, OP_Checkpoint, iDb, 0);
+ DbSetProperty(db, iDb, DB_Locked);
+ }
+}
+
+/*
+** Generate code that concludes an operation that may have changed
+** the database. If a statement transaction was started, then emit
+** an OP_Commit that will cause the changes to be committed to disk.
+**
+** Note that checkpoints are automatically committed at the end of
+** a statement. Note also that there can be multiple calls to
+** sqliteBeginWriteOperation() but there should only be a single
+** call to sqliteEndWriteOperation() at the conclusion of the statement.
+*/
+void sqliteEndWriteOperation(Parse *pParse){
+ Vdbe *v;
+ sqlite *db = pParse->db;
+ if( pParse->trigStack ) return; /* if this is in a trigger */
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) return;
+ if( db->flags & SQLITE_InTrans ){
+ /* A BEGIN has executed. Do not commit until we see an explicit
+ ** COMMIT statement. */
+ }else{
+ sqliteVdbeAddOp(v, OP_Commit, 0, 0);
+ }
+}
diff --git a/src/3rdparty/sqlite/config.h b/src/3rdparty/sqlite/config.h
new file mode 100644
index 0000000..ae29a57
--- /dev/null
+++ b/src/3rdparty/sqlite/config.h
@@ -0,0 +1,23 @@
+#include <qglobal.h>
+#include <qconfig.h>
+
+#ifndef QT_POINTER_SIZE
+# ifdef Q_OS_WIN32
+# define QT_POINTER_SIZE 4
+# elif Q_OS_WIN64
+# define QT_POINTER_SIZE 8
+# else
+# error This platform is unsupported
+# endif
+#endif /* QT_POINTER_SIZE */
+
+#define SQLITE_PTR_SZ QT_POINTER_SIZE
+
+#ifdef UNICODE
+# undef UNICODE
+#endif
+
+#ifdef Q_CC_MSVC
+# pragma warning(disable: 4018)
+# pragma warning(disable: 4761)
+#endif
diff --git a/src/3rdparty/sqlite/copy.c b/src/3rdparty/sqlite/copy.c
new file mode 100644
index 0000000..b712b5b
--- /dev/null
+++ b/src/3rdparty/sqlite/copy.c
@@ -0,0 +1,110 @@
+/*
+** 2003 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the COPY command.
+**
+** $Id: copy.c,v 1.9 2004/02/25 13:47:31 drh Exp $
+*/
+#include "sqliteInt.h"
+
+/*
+** The COPY command is for compatibility with PostgreSQL and specificially
+** for the ability to read the output of pg_dump. The format is as
+** follows:
+**
+** COPY table FROM file [USING DELIMITERS string]
+**
+** "table" is an existing table name. We will read lines of code from
+** file to fill this table with data. File might be "stdin". The optional
+** delimiter string identifies the field separators. The default is a tab.
+*/
+void sqliteCopy(
+ Parse *pParse, /* The parser context */
+ SrcList *pTableName, /* The name of the table into which we will insert */
+ Token *pFilename, /* The file from which to obtain information */
+ Token *pDelimiter, /* Use this as the field delimiter */
+ int onError /* What to do if a constraint fails */
+){
+ Table *pTab;
+ int i;
+ Vdbe *v;
+ int addr, end;
+ char *zFile = 0;
+ const char *zDb;
+ sqlite *db = pParse->db;
+
+
+ if( sqlite_malloc_failed ) goto copy_cleanup;
+ assert( pTableName->nSrc==1 );
+ pTab = sqliteSrcListLookup(pParse, pTableName);
+ if( pTab==0 || sqliteIsReadOnly(pParse, pTab, 0) ) goto copy_cleanup;
+ zFile = sqliteStrNDup(pFilename->z, pFilename->n);
+ sqliteDequote(zFile);
+ assert( pTab->iDb<db->nDb );
+ zDb = db->aDb[pTab->iDb].zName;
+ if( sqliteAuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb)
+ || sqliteAuthCheck(pParse, SQLITE_COPY, pTab->zName, zFile, zDb) ){
+ goto copy_cleanup;
+ }
+ v = sqliteGetVdbe(pParse);
+ if( v ){
+ sqliteBeginWriteOperation(pParse, 1, pTab->iDb);
+ addr = sqliteVdbeOp3(v, OP_FileOpen, 0, 0, pFilename->z, pFilename->n);
+ sqliteVdbeDequoteP3(v, addr);
+ sqliteOpenTableAndIndices(pParse, pTab, 0);
+ if( db->flags & SQLITE_CountRows ){
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0); /* Initialize the row count */
+ }
+ end = sqliteVdbeMakeLabel(v);
+ addr = sqliteVdbeAddOp(v, OP_FileRead, pTab->nCol, end);
+ if( pDelimiter ){
+ sqliteVdbeChangeP3(v, addr, pDelimiter->z, pDelimiter->n);
+ sqliteVdbeDequoteP3(v, addr);
+ }else{
+ sqliteVdbeChangeP3(v, addr, "\t", 1);
+ }
+ if( pTab->iPKey>=0 ){
+ sqliteVdbeAddOp(v, OP_FileColumn, pTab->iPKey, 0);
+ sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
+ }
+ for(i=0; i<pTab->nCol; i++){
+ if( i==pTab->iPKey ){
+ /* The integer primary key column is filled with NULL since its
+ ** value is always pulled from the record number */
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_FileColumn, i, 0);
+ }
+ }
+ sqliteGenerateConstraintChecks(pParse, pTab, 0, 0, pTab->iPKey>=0,
+ 0, onError, addr);
+ sqliteCompleteInsertion(pParse, pTab, 0, 0, 0, 0, -1);
+ if( (db->flags & SQLITE_CountRows)!=0 ){
+ sqliteVdbeAddOp(v, OP_AddImm, 1, 0); /* Increment row count */
+ }
+ sqliteVdbeAddOp(v, OP_Goto, 0, addr);
+ sqliteVdbeResolveLabel(v, end);
+ sqliteVdbeAddOp(v, OP_Noop, 0, 0);
+ sqliteEndWriteOperation(pParse);
+ if( db->flags & SQLITE_CountRows ){
+ sqliteVdbeAddOp(v, OP_ColumnName, 0, 1);
+ sqliteVdbeChangeP3(v, -1, "rows inserted", P3_STATIC);
+ sqliteVdbeAddOp(v, OP_Callback, 1, 0);
+ }
+ }
+
+copy_cleanup:
+ sqliteSrcListDelete(pTableName);
+ sqliteFree(zFile);
+ return;
+}
diff --git a/src/3rdparty/sqlite/date.c b/src/3rdparty/sqlite/date.c
new file mode 100644
index 0000000..03b66ad
--- /dev/null
+++ b/src/3rdparty/sqlite/date.c
@@ -0,0 +1,873 @@
+/*
+** 2003 October 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement date and time
+** functions for SQLite.
+**
+** There is only one exported symbol in this file - the function
+** sqliteRegisterDateTimeFunctions() found at the bottom of the file.
+** All other code has file scope.
+**
+** $Id: date.c,v 1.16 2004/02/29 01:08:18 drh Exp $
+**
+** NOTES:
+**
+** SQLite processes all times and dates as Julian Day numbers. The
+** dates and times are stored as the number of days since noon
+** in Greenwich on November 24, 4714 B.C. according to the Gregorian
+** calendar system.
+**
+** 1970-01-01 00:00:00 is JD 2440587.5
+** 2000-01-01 00:00:00 is JD 2451544.5
+**
+** This implemention requires years to be expressed as a 4-digit number
+** which means that only dates between 0000-01-01 and 9999-12-31 can
+** be represented, even though julian day numbers allow a much wider
+** range of dates.
+**
+** The Gregorian calendar system is used for all dates and times,
+** even those that predate the Gregorian calendar. Historians usually
+** use the Julian calendar for dates prior to 1582-10-15 and for some
+** dates afterwards, depending on locale. Beware of this difference.
+**
+** The conversion algorithms are implemented based on descriptions
+** in the following text:
+**
+** Jean Meeus
+** Astronomical Algorithms, 2nd Edition, 1998
+** ISBM 0-943396-61-1
+** Willmann-Bell, Inc
+** Richmond, Virginia (USA)
+*/
+#include "os.h"
+#include "sqliteInt.h"
+#include <ctype.h>
+#include <stdlib.h>
+#include <assert.h>
+#include <time.h>
+
+#ifndef SQLITE_OMIT_DATETIME_FUNCS
+
+/*
+** A structure for holding a single date and time.
+*/
+typedef struct DateTime DateTime;
+struct DateTime {
+ double rJD; /* The julian day number */
+ int Y, M, D; /* Year, month, and day */
+ int h, m; /* Hour and minutes */
+ int tz; /* Timezone offset in minutes */
+ double s; /* Seconds */
+ char validYMD; /* True if Y,M,D are valid */
+ char validHMS; /* True if h,m,s are valid */
+ char validJD; /* True if rJD is valid */
+ char validTZ; /* True if tz is valid */
+};
+
+
+/*
+** Convert zDate into one or more integers. Additional arguments
+** come in groups of 5 as follows:
+**
+** N number of digits in the integer
+** min minimum allowed value of the integer
+** max maximum allowed value of the integer
+** nextC first character after the integer
+** pVal where to write the integers value.
+**
+** Conversions continue until one with nextC==0 is encountered.
+** The function returns the number of successful conversions.
+*/
+static int getDigits(const char *zDate, ...){
+ va_list ap;
+ int val;
+ int N;
+ int min;
+ int max;
+ int nextC;
+ int *pVal;
+ int cnt = 0;
+ va_start(ap, zDate);
+ do{
+ N = va_arg(ap, int);
+ min = va_arg(ap, int);
+ max = va_arg(ap, int);
+ nextC = va_arg(ap, int);
+ pVal = va_arg(ap, int*);
+ val = 0;
+ while( N-- ){
+ if( !isdigit(*zDate) ){
+ return cnt;
+ }
+ val = val*10 + *zDate - '0';
+ zDate++;
+ }
+ if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
+ return cnt;
+ }
+ *pVal = val;
+ zDate++;
+ cnt++;
+ }while( nextC );
+ return cnt;
+}
+
+/*
+** Read text from z[] and convert into a floating point number. Return
+** the number of digits converted.
+*/
+static int getValue(const char *z, double *pR){
+ const char *zEnd;
+ *pR = sqliteAtoF(z, &zEnd);
+ return zEnd - z;
+}
+
+/*
+** Parse a timezone extension on the end of a date-time.
+** The extension is of the form:
+**
+** (+/-)HH:MM
+**
+** If the parse is successful, write the number of minutes
+** of change in *pnMin and return 0. If a parser error occurs,
+** return 0.
+**
+** A missing specifier is not considered an error.
+*/
+static int parseTimezone(const char *zDate, DateTime *p){
+ int sgn = 0;
+ int nHr, nMn;
+ while( isspace(*zDate) ){ zDate++; }
+ p->tz = 0;
+ if( *zDate=='-' ){
+ sgn = -1;
+ }else if( *zDate=='+' ){
+ sgn = +1;
+ }else{
+ return *zDate!=0;
+ }
+ zDate++;
+ if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
+ return 1;
+ }
+ zDate += 5;
+ p->tz = sgn*(nMn + nHr*60);
+ while( isspace(*zDate) ){ zDate++; }
+ return *zDate!=0;
+}
+
+/*
+** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
+** The HH, MM, and SS must each be exactly 2 digits. The
+** fractional seconds FFFF can be one or more digits.
+**
+** Return 1 if there is a parsing error and 0 on success.
+*/
+static int parseHhMmSs(const char *zDate, DateTime *p){
+ int h, m, s;
+ double ms = 0.0;
+ if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
+ return 1;
+ }
+ zDate += 5;
+ if( *zDate==':' ){
+ zDate++;
+ if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
+ return 1;
+ }
+ zDate += 2;
+ if( *zDate=='.' && isdigit(zDate[1]) ){
+ double rScale = 1.0;
+ zDate++;
+ while( isdigit(*zDate) ){
+ ms = ms*10.0 + *zDate - '0';
+ rScale *= 10.0;
+ zDate++;
+ }
+ ms /= rScale;
+ }
+ }else{
+ s = 0;
+ }
+ p->validJD = 0;
+ p->validHMS = 1;
+ p->h = h;
+ p->m = m;
+ p->s = s + ms;
+ if( parseTimezone(zDate, p) ) return 1;
+ p->validTZ = p->tz!=0;
+ return 0;
+}
+
+/*
+** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
+** that the YYYY-MM-DD is according to the Gregorian calendar.
+**
+** Reference: Meeus page 61
+*/
+static void computeJD(DateTime *p){
+ int Y, M, D, A, B, X1, X2;
+
+ if( p->validJD ) return;
+ if( p->validYMD ){
+ Y = p->Y;
+ M = p->M;
+ D = p->D;
+ }else{
+ Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
+ M = 1;
+ D = 1;
+ }
+ if( M<=2 ){
+ Y--;
+ M += 12;
+ }
+ A = Y/100;
+ B = 2 - A + (A/4);
+ X1 = 365.25*(Y+4716);
+ X2 = 30.6001*(M+1);
+ p->rJD = X1 + X2 + D + B - 1524.5;
+ p->validJD = 1;
+ p->validYMD = 0;
+ if( p->validHMS ){
+ p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
+ if( p->validTZ ){
+ p->rJD += p->tz*60/86400.0;
+ p->validHMS = 0;
+ p->validTZ = 0;
+ }
+ }
+}
+
+/*
+** Parse dates of the form
+**
+** YYYY-MM-DD HH:MM:SS.FFF
+** YYYY-MM-DD HH:MM:SS
+** YYYY-MM-DD HH:MM
+** YYYY-MM-DD
+**
+** Write the result into the DateTime structure and return 0
+** on success and 1 if the input string is not a well-formed
+** date.
+*/
+static int parseYyyyMmDd(const char *zDate, DateTime *p){
+ int Y, M, D, neg;
+
+ if( zDate[0]=='-' ){
+ zDate++;
+ neg = 1;
+ }else{
+ neg = 0;
+ }
+ if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
+ return 1;
+ }
+ zDate += 10;
+ while( isspace(*zDate) ){ zDate++; }
+ if( parseHhMmSs(zDate, p)==0 ){
+ /* We got the time */
+ }else if( *zDate==0 ){
+ p->validHMS = 0;
+ }else{
+ return 1;
+ }
+ p->validJD = 0;
+ p->validYMD = 1;
+ p->Y = neg ? -Y : Y;
+ p->M = M;
+ p->D = D;
+ if( p->validTZ ){
+ computeJD(p);
+ }
+ return 0;
+}
+
+/*
+** Attempt to parse the given string into a Julian Day Number. Return
+** the number of errors.
+**
+** The following are acceptable forms for the input string:
+**
+** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
+** DDDD.DD
+** now
+**
+** In the first form, the +/-HH:MM is always optional. The fractional
+** seconds extension (the ".FFF") is optional. The seconds portion
+** (":SS.FFF") is option. The year and date can be omitted as long
+** as there is a time string. The time string can be omitted as long
+** as there is a year and date.
+*/
+static int parseDateOrTime(const char *zDate, DateTime *p){
+ memset(p, 0, sizeof(*p));
+ if( parseYyyyMmDd(zDate,p)==0 ){
+ return 0;
+ }else if( parseHhMmSs(zDate, p)==0 ){
+ return 0;
+ }else if( sqliteStrICmp(zDate,"now")==0){
+ double r;
+ if( sqliteOsCurrentTime(&r)==0 ){
+ p->rJD = r;
+ p->validJD = 1;
+ return 0;
+ }
+ return 1;
+ }else if( sqliteIsNumber(zDate) ){
+ p->rJD = sqliteAtoF(zDate, 0);
+ p->validJD = 1;
+ return 0;
+ }
+ return 1;
+}
+
+/*
+** Compute the Year, Month, and Day from the julian day number.
+*/
+static void computeYMD(DateTime *p){
+ int Z, A, B, C, D, E, X1;
+ if( p->validYMD ) return;
+ if( !p->validJD ){
+ p->Y = 2000;
+ p->M = 1;
+ p->D = 1;
+ }else{
+ Z = p->rJD + 0.5;
+ A = (Z - 1867216.25)/36524.25;
+ A = Z + 1 + A - (A/4);
+ B = A + 1524;
+ C = (B - 122.1)/365.25;
+ D = 365.25*C;
+ E = (B-D)/30.6001;
+ X1 = 30.6001*E;
+ p->D = B - D - X1;
+ p->M = E<14 ? E-1 : E-13;
+ p->Y = p->M>2 ? C - 4716 : C - 4715;
+ }
+ p->validYMD = 1;
+}
+
+/*
+** Compute the Hour, Minute, and Seconds from the julian day number.
+*/
+static void computeHMS(DateTime *p){
+ int Z, s;
+ if( p->validHMS ) return;
+ Z = p->rJD + 0.5;
+ s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
+ p->s = 0.001*s;
+ s = p->s;
+ p->s -= s;
+ p->h = s/3600;
+ s -= p->h*3600;
+ p->m = s/60;
+ p->s += s - p->m*60;
+ p->validHMS = 1;
+}
+
+/*
+** Compute both YMD and HMS
+*/
+static void computeYMD_HMS(DateTime *p){
+ computeYMD(p);
+ computeHMS(p);
+}
+
+/*
+** Clear the YMD and HMS and the TZ
+*/
+static void clearYMD_HMS_TZ(DateTime *p){
+ p->validYMD = 0;
+ p->validHMS = 0;
+ p->validTZ = 0;
+}
+
+/*
+** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
+** for the time value p where p is in UTC.
+*/
+static double localtimeOffset(DateTime *p){
+ DateTime x, y;
+ time_t t;
+ struct tm *pTm;
+ x = *p;
+ computeYMD_HMS(&x);
+ if( x.Y<1971 || x.Y>=2038 ){
+ x.Y = 2000;
+ x.M = 1;
+ x.D = 1;
+ x.h = 0;
+ x.m = 0;
+ x.s = 0.0;
+ } else {
+ int s = x.s + 0.5;
+ x.s = s;
+ }
+ x.tz = 0;
+ x.validJD = 0;
+ computeJD(&x);
+ t = (x.rJD-2440587.5)*86400.0 + 0.5;
+ sqliteOsEnterMutex();
+ pTm = localtime(&t);
+ y.Y = pTm->tm_year + 1900;
+ y.M = pTm->tm_mon + 1;
+ y.D = pTm->tm_mday;
+ y.h = pTm->tm_hour;
+ y.m = pTm->tm_min;
+ y.s = pTm->tm_sec;
+ sqliteOsLeaveMutex();
+ y.validYMD = 1;
+ y.validHMS = 1;
+ y.validJD = 0;
+ y.validTZ = 0;
+ computeJD(&y);
+ return y.rJD - x.rJD;
+}
+
+/*
+** Process a modifier to a date-time stamp. The modifiers are
+** as follows:
+**
+** NNN days
+** NNN hours
+** NNN minutes
+** NNN.NNNN seconds
+** NNN months
+** NNN years
+** start of month
+** start of year
+** start of week
+** start of day
+** weekday N
+** unixepoch
+** localtime
+** utc
+**
+** Return 0 on success and 1 if there is any kind of error.
+*/
+static int parseModifier(const char *zMod, DateTime *p){
+ int rc = 1;
+ int n;
+ double r;
+ char *z, zBuf[30];
+ z = zBuf;
+ for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
+ z[n] = tolower(zMod[n]);
+ }
+ z[n] = 0;
+ switch( z[0] ){
+ case 'l': {
+ /* localtime
+ **
+ ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
+ ** show local time.
+ */
+ if( strcmp(z, "localtime")==0 ){
+ computeJD(p);
+ p->rJD += localtimeOffset(p);
+ clearYMD_HMS_TZ(p);
+ rc = 0;
+ }
+ break;
+ }
+ case 'u': {
+ /*
+ ** unixepoch
+ **
+ ** Treat the current value of p->rJD as the number of
+ ** seconds since 1970. Convert to a real julian day number.
+ */
+ if( strcmp(z, "unixepoch")==0 && p->validJD ){
+ p->rJD = p->rJD/86400.0 + 2440587.5;
+ clearYMD_HMS_TZ(p);
+ rc = 0;
+ }else if( strcmp(z, "utc")==0 ){
+ double c1;
+ computeJD(p);
+ c1 = localtimeOffset(p);
+ p->rJD -= c1;
+ clearYMD_HMS_TZ(p);
+ p->rJD += c1 - localtimeOffset(p);
+ rc = 0;
+ }
+ break;
+ }
+ case 'w': {
+ /*
+ ** weekday N
+ **
+ ** Move the date to the same time on the next occurrance of
+ ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
+ ** date is already on the appropriate weekday, this is a no-op.
+ */
+ if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
+ && (n=r)==r && n>=0 && r<7 ){
+ int Z;
+ computeYMD_HMS(p);
+ p->validTZ = 0;
+ p->validJD = 0;
+ computeJD(p);
+ Z = p->rJD + 1.5;
+ Z %= 7;
+ if( Z>n ) Z -= 7;
+ p->rJD += n - Z;
+ clearYMD_HMS_TZ(p);
+ rc = 0;
+ }
+ break;
+ }
+ case 's': {
+ /*
+ ** start of TTTTT
+ **
+ ** Move the date backwards to the beginning of the current day,
+ ** or month or year.
+ */
+ if( strncmp(z, "start of ", 9)!=0 ) break;
+ z += 9;
+ computeYMD(p);
+ p->validHMS = 1;
+ p->h = p->m = 0;
+ p->s = 0.0;
+ p->validTZ = 0;
+ p->validJD = 0;
+ if( strcmp(z,"month")==0 ){
+ p->D = 1;
+ rc = 0;
+ }else if( strcmp(z,"year")==0 ){
+ computeYMD(p);
+ p->M = 1;
+ p->D = 1;
+ rc = 0;
+ }else if( strcmp(z,"day")==0 ){
+ rc = 0;
+ }
+ break;
+ }
+ case '+':
+ case '-':
+ case '0':
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9': {
+ n = getValue(z, &r);
+ if( n<=0 ) break;
+ if( z[n]==':' ){
+ /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
+ ** specified number of hours, minutes, seconds, and fractional seconds
+ ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
+ ** omitted.
+ */
+ const char *z2 = z;
+ DateTime tx;
+ int day;
+ if( !isdigit(*z2) ) z2++;
+ memset(&tx, 0, sizeof(tx));
+ if( parseHhMmSs(z2, &tx) ) break;
+ computeJD(&tx);
+ tx.rJD -= 0.5;
+ day = (int)tx.rJD;
+ tx.rJD -= day;
+ if( z[0]=='-' ) tx.rJD = -tx.rJD;
+ computeJD(p);
+ clearYMD_HMS_TZ(p);
+ p->rJD += tx.rJD;
+ rc = 0;
+ break;
+ }
+ z += n;
+ while( isspace(z[0]) ) z++;
+ n = strlen(z);
+ if( n>10 || n<3 ) break;
+ if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
+ computeJD(p);
+ rc = 0;
+ if( n==3 && strcmp(z,"day")==0 ){
+ p->rJD += r;
+ }else if( n==4 && strcmp(z,"hour")==0 ){
+ p->rJD += r/24.0;
+ }else if( n==6 && strcmp(z,"minute")==0 ){
+ p->rJD += r/(24.0*60.0);
+ }else if( n==6 && strcmp(z,"second")==0 ){
+ p->rJD += r/(24.0*60.0*60.0);
+ }else if( n==5 && strcmp(z,"month")==0 ){
+ int x, y;
+ computeYMD_HMS(p);
+ p->M += r;
+ x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
+ p->Y += x;
+ p->M -= x*12;
+ p->validJD = 0;
+ computeJD(p);
+ y = r;
+ if( y!=r ){
+ p->rJD += (r - y)*30.0;
+ }
+ }else if( n==4 && strcmp(z,"year")==0 ){
+ computeYMD_HMS(p);
+ p->Y += r;
+ p->validJD = 0;
+ computeJD(p);
+ }else{
+ rc = 1;
+ }
+ clearYMD_HMS_TZ(p);
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+ return rc;
+}
+
+/*
+** Process time function arguments. argv[0] is a date-time stamp.
+** argv[1] and following are modifiers. Parse them all and write
+** the resulting time into the DateTime structure p. Return 0
+** on success and 1 if there are any errors.
+*/
+static int isDate(int argc, const char **argv, DateTime *p){
+ int i;
+ if( argc==0 ) return 1;
+ if( argv[0]==0 || parseDateOrTime(argv[0], p) ) return 1;
+ for(i=1; i<argc; i++){
+ if( argv[i]==0 || parseModifier(argv[i], p) ) return 1;
+ }
+ return 0;
+}
+
+
+/*
+** The following routines implement the various date and time functions
+** of SQLite.
+*/
+
+/*
+** julianday( TIMESTRING, MOD, MOD, ...)
+**
+** Return the julian day number of the date specified in the arguments
+*/
+static void juliandayFunc(sqlite_func *context, int argc, const char **argv){
+ DateTime x;
+ if( isDate(argc, argv, &x)==0 ){
+ computeJD(&x);
+ sqlite_set_result_double(context, x.rJD);
+ }
+}
+
+/*
+** datetime( TIMESTRING, MOD, MOD, ...)
+**
+** Return YYYY-MM-DD HH:MM:SS
+*/
+static void datetimeFunc(sqlite_func *context, int argc, const char **argv){
+ DateTime x;
+ if( isDate(argc, argv, &x)==0 ){
+ char zBuf[100];
+ computeYMD_HMS(&x);
+ sprintf(zBuf, "%04d-%02d-%02d %02d:%02d:%02d",x.Y, x.M, x.D, x.h, x.m,
+ (int)(x.s));
+ sqlite_set_result_string(context, zBuf, -1);
+ }
+}
+
+/*
+** time( TIMESTRING, MOD, MOD, ...)
+**
+** Return HH:MM:SS
+*/
+static void timeFunc(sqlite_func *context, int argc, const char **argv){
+ DateTime x;
+ if( isDate(argc, argv, &x)==0 ){
+ char zBuf[100];
+ computeHMS(&x);
+ sprintf(zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
+ sqlite_set_result_string(context, zBuf, -1);
+ }
+}
+
+/*
+** date( TIMESTRING, MOD, MOD, ...)
+**
+** Return YYYY-MM-DD
+*/
+static void dateFunc(sqlite_func *context, int argc, const char **argv){
+ DateTime x;
+ if( isDate(argc, argv, &x)==0 ){
+ char zBuf[100];
+ computeYMD(&x);
+ sprintf(zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
+ sqlite_set_result_string(context, zBuf, -1);
+ }
+}
+
+/*
+** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
+**
+** Return a string described by FORMAT. Conversions as follows:
+**
+** %d day of month
+** %f ** fractional seconds SS.SSS
+** %H hour 00-24
+** %j day of year 000-366
+** %J ** Julian day number
+** %m month 01-12
+** %M minute 00-59
+** %s seconds since 1970-01-01
+** %S seconds 00-59
+** %w day of week 0-6 sunday==0
+** %W week of year 00-53
+** %Y year 0000-9999
+** %% %
+*/
+static void strftimeFunc(sqlite_func *context, int argc, const char **argv){
+ DateTime x;
+ int n, i, j;
+ char *z;
+ const char *zFmt = argv[0];
+ char zBuf[100];
+ if( argv[0]==0 || isDate(argc-1, argv+1, &x) ) return;
+ for(i=0, n=1; zFmt[i]; i++, n++){
+ if( zFmt[i]=='%' ){
+ switch( zFmt[i+1] ){
+ case 'd':
+ case 'H':
+ case 'm':
+ case 'M':
+ case 'S':
+ case 'W':
+ n++;
+ /* fall thru */
+ case 'w':
+ case '%':
+ break;
+ case 'f':
+ n += 8;
+ break;
+ case 'j':
+ n += 3;
+ break;
+ case 'Y':
+ n += 8;
+ break;
+ case 's':
+ case 'J':
+ n += 50;
+ break;
+ default:
+ return; /* ERROR. return a NULL */
+ }
+ i++;
+ }
+ }
+ if( n<sizeof(zBuf) ){
+ z = zBuf;
+ }else{
+ z = sqliteMalloc( n );
+ if( z==0 ) return;
+ }
+ computeJD(&x);
+ computeYMD_HMS(&x);
+ for(i=j=0; zFmt[i]; i++){
+ if( zFmt[i]!='%' ){
+ z[j++] = zFmt[i];
+ }else{
+ i++;
+ switch( zFmt[i] ){
+ case 'd': sprintf(&z[j],"%02d",x.D); j+=2; break;
+ case 'f': {
+ int s = x.s;
+ int ms = (x.s - s)*1000.0;
+ sprintf(&z[j],"%02d.%03d",s,ms);
+ j += strlen(&z[j]);
+ break;
+ }
+ case 'H': sprintf(&z[j],"%02d",x.h); j+=2; break;
+ case 'W': /* Fall thru */
+ case 'j': {
+ int n;
+ DateTime y = x;
+ y.validJD = 0;
+ y.M = 1;
+ y.D = 1;
+ computeJD(&y);
+ n = x.rJD - y.rJD + 1;
+ if( zFmt[i]=='W' ){
+ sprintf(&z[j],"%02d",(n+6)/7);
+ j += 2;
+ }else{
+ sprintf(&z[j],"%03d",n);
+ j += 3;
+ }
+ break;
+ }
+ case 'J': sprintf(&z[j],"%.16g",x.rJD); j+=strlen(&z[j]); break;
+ case 'm': sprintf(&z[j],"%02d",x.M); j+=2; break;
+ case 'M': sprintf(&z[j],"%02d",x.m); j+=2; break;
+ case 's': {
+ sprintf(&z[j],"%d",(int)((x.rJD-2440587.5)*86400.0 + 0.5));
+ j += strlen(&z[j]);
+ break;
+ }
+ case 'S': sprintf(&z[j],"%02d",(int)(x.s+0.5)); j+=2; break;
+ case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
+ case 'Y': sprintf(&z[j],"%04d",x.Y); j+=strlen(&z[j]); break;
+ case '%': z[j++] = '%'; break;
+ }
+ }
+ }
+ z[j] = 0;
+ sqlite_set_result_string(context, z, -1);
+ if( z!=zBuf ){
+ sqliteFree(z);
+ }
+}
+
+
+#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
+
+/*
+** This function registered all of the above C functions as SQL
+** functions. This should be the only routine in this file with
+** external linkage.
+*/
+void sqliteRegisterDateTimeFunctions(sqlite *db){
+ static struct {
+ char *zName;
+ int nArg;
+ int dataType;
+ void (*xFunc)(sqlite_func*,int,const char**);
+ } aFuncs[] = {
+#ifndef SQLITE_OMIT_DATETIME_FUNCS
+ { "julianday", -1, SQLITE_NUMERIC, juliandayFunc },
+ { "date", -1, SQLITE_TEXT, dateFunc },
+ { "time", -1, SQLITE_TEXT, timeFunc },
+ { "datetime", -1, SQLITE_TEXT, datetimeFunc },
+ { "strftime", -1, SQLITE_TEXT, strftimeFunc },
+#endif
+ };
+ int i;
+
+ for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
+ sqlite_create_function(db, aFuncs[i].zName,
+ aFuncs[i].nArg, aFuncs[i].xFunc, 0);
+ if( aFuncs[i].xFunc ){
+ sqlite_function_type(db, aFuncs[i].zName, aFuncs[i].dataType);
+ }
+ }
+}
diff --git a/src/3rdparty/sqlite/delete.c b/src/3rdparty/sqlite/delete.c
new file mode 100644
index 0000000..381e3de
--- /dev/null
+++ b/src/3rdparty/sqlite/delete.c
@@ -0,0 +1,393 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle DELETE FROM statements.
+**
+** $Id: delete.c,v 1.61 2004/02/24 01:05:32 drh Exp $
+*/
+#include "sqliteInt.h"
+
+/*
+** Look up every table that is named in pSrc. If any table is not found,
+** add an error message to pParse->zErrMsg and return NULL. If all tables
+** are found, return a pointer to the last table.
+*/
+Table *sqliteSrcListLookup(Parse *pParse, SrcList *pSrc){
+ Table *pTab = 0;
+ int i;
+ for(i=0; i<pSrc->nSrc; i++){
+ const char *zTab = pSrc->a[i].zName;
+ const char *zDb = pSrc->a[i].zDatabase;
+ pTab = sqliteLocateTable(pParse, zTab, zDb);
+ pSrc->a[i].pTab = pTab;
+ }
+ return pTab;
+}
+
+/*
+** Check to make sure the given table is writable. If it is not
+** writable, generate an error message and return 1. If it is
+** writable return 0;
+*/
+int sqliteIsReadOnly(Parse *pParse, Table *pTab, int viewOk){
+ if( pTab->readOnly ){
+ sqliteErrorMsg(pParse, "table %s may not be modified", pTab->zName);
+ return 1;
+ }
+ if( !viewOk && pTab->pSelect ){
+ sqliteErrorMsg(pParse, "cannot modify %s because it is a view",pTab->zName);
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Process a DELETE FROM statement.
+*/
+void sqliteDeleteFrom(
+ Parse *pParse, /* The parser context */
+ SrcList *pTabList, /* The table from which we should delete things */
+ Expr *pWhere /* The WHERE clause. May be null */
+){
+ Vdbe *v; /* The virtual database engine */
+ Table *pTab; /* The table from which records will be deleted */
+ const char *zDb; /* Name of database holding pTab */
+ int end, addr; /* A couple addresses of generated code */
+ int i; /* Loop counter */
+ WhereInfo *pWInfo; /* Information about the WHERE clause */
+ Index *pIdx; /* For looping over indices of the table */
+ int iCur; /* VDBE Cursor number for pTab */
+ sqlite *db; /* Main database structure */
+ int isView; /* True if attempting to delete from a view */
+ AuthContext sContext; /* Authorization context */
+
+ int row_triggers_exist = 0; /* True if any triggers exist */
+ int before_triggers; /* True if there are BEFORE triggers */
+ int after_triggers; /* True if there are AFTER triggers */
+ int oldIdx = -1; /* Cursor for the OLD table of AFTER triggers */
+
+ sContext.pParse = 0;
+ if( pParse->nErr || sqlite_malloc_failed ){
+ pTabList = 0;
+ goto delete_from_cleanup;
+ }
+ db = pParse->db;
+ assert( pTabList->nSrc==1 );
+
+ /* Locate the table which we want to delete. This table has to be
+ ** put in an SrcList structure because some of the subroutines we
+ ** will be calling are designed to work with multiple tables and expect
+ ** an SrcList* parameter instead of just a Table* parameter.
+ */
+ pTab = sqliteSrcListLookup(pParse, pTabList);
+ if( pTab==0 ) goto delete_from_cleanup;
+ before_triggers = sqliteTriggersExist(pParse, pTab->pTrigger,
+ TK_DELETE, TK_BEFORE, TK_ROW, 0);
+ after_triggers = sqliteTriggersExist(pParse, pTab->pTrigger,
+ TK_DELETE, TK_AFTER, TK_ROW, 0);
+ row_triggers_exist = before_triggers || after_triggers;
+ isView = pTab->pSelect!=0;
+ if( sqliteIsReadOnly(pParse, pTab, before_triggers) ){
+ goto delete_from_cleanup;
+ }
+ assert( pTab->iDb<db->nDb );
+ zDb = db->aDb[pTab->iDb].zName;
+ if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
+ goto delete_from_cleanup;
+ }
+
+ /* If pTab is really a view, make sure it has been initialized.
+ */
+ if( isView && sqliteViewGetColumnNames(pParse, pTab) ){
+ goto delete_from_cleanup;
+ }
+
+ /* Allocate a cursor used to store the old.* data for a trigger.
+ */
+ if( row_triggers_exist ){
+ oldIdx = pParse->nTab++;
+ }
+
+ /* Resolve the column names in all the expressions.
+ */
+ assert( pTabList->nSrc==1 );
+ iCur = pTabList->a[0].iCursor = pParse->nTab++;
+ if( pWhere ){
+ if( sqliteExprResolveIds(pParse, pTabList, 0, pWhere) ){
+ goto delete_from_cleanup;
+ }
+ if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
+ goto delete_from_cleanup;
+ }
+ }
+
+ /* Start the view context
+ */
+ if( isView ){
+ sqliteAuthContextPush(pParse, &sContext, pTab->zName);
+ }
+
+ /* Begin generating code.
+ */
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ){
+ goto delete_from_cleanup;
+ }
+ sqliteBeginWriteOperation(pParse, row_triggers_exist, pTab->iDb);
+
+ /* If we are trying to delete from a view, construct that view into
+ ** a temporary table.
+ */
+ if( isView ){
+ Select *pView = sqliteSelectDup(pTab->pSelect);
+ sqliteSelect(pParse, pView, SRT_TempTable, iCur, 0, 0, 0);
+ sqliteSelectDelete(pView);
+ }
+
+ /* Initialize the counter of the number of rows deleted, if
+ ** we are counting rows.
+ */
+ if( db->flags & SQLITE_CountRows ){
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
+ }
+
+ /* Special case: A DELETE without a WHERE clause deletes everything.
+ ** It is easier just to erase the whole table. Note, however, that
+ ** this means that the row change count will be incorrect.
+ */
+ if( pWhere==0 && !row_triggers_exist ){
+ if( db->flags & SQLITE_CountRows ){
+ /* If counting rows deleted, just count the total number of
+ ** entries in the table. */
+ int endOfLoop = sqliteVdbeMakeLabel(v);
+ int addr;
+ if( !isView ){
+ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
+ sqliteVdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum);
+ }
+ sqliteVdbeAddOp(v, OP_Rewind, iCur, sqliteVdbeCurrentAddr(v)+2);
+ addr = sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
+ sqliteVdbeAddOp(v, OP_Next, iCur, addr);
+ sqliteVdbeResolveLabel(v, endOfLoop);
+ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
+ }
+ if( !isView ){
+ sqliteVdbeAddOp(v, OP_Clear, pTab->tnum, pTab->iDb);
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ sqliteVdbeAddOp(v, OP_Clear, pIdx->tnum, pIdx->iDb);
+ }
+ }
+ }
+
+ /* The usual case: There is a WHERE clause so we have to scan through
+ ** the table and pick which records to delete.
+ */
+ else{
+ /* Begin the database scan
+ */
+ pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 1, 0);
+ if( pWInfo==0 ) goto delete_from_cleanup;
+
+ /* Remember the key of every item to be deleted.
+ */
+ sqliteVdbeAddOp(v, OP_ListWrite, 0, 0);
+ if( db->flags & SQLITE_CountRows ){
+ sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
+ }
+
+ /* End the database scan loop.
+ */
+ sqliteWhereEnd(pWInfo);
+
+ /* Open the pseudo-table used to store OLD if there are triggers.
+ */
+ if( row_triggers_exist ){
+ sqliteVdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
+ }
+
+ /* Delete every item whose key was written to the list during the
+ ** database scan. We have to delete items after the scan is complete
+ ** because deleting an item can change the scan order.
+ */
+ sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
+ end = sqliteVdbeMakeLabel(v);
+
+ /* This is the beginning of the delete loop when there are
+ ** row triggers.
+ */
+ if( row_triggers_exist ){
+ addr = sqliteVdbeAddOp(v, OP_ListRead, 0, end);
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ if( !isView ){
+ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
+ sqliteVdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum);
+ }
+ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
+
+ sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
+ sqliteVdbeAddOp(v, OP_RowData, iCur, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, oldIdx, 0);
+ if( !isView ){
+ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
+ }
+
+ sqliteCodeRowTrigger(pParse, TK_DELETE, 0, TK_BEFORE, pTab, -1,
+ oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
+ addr);
+ }
+
+ if( !isView ){
+ /* Open cursors for the table we are deleting from and all its
+ ** indices. If there are row triggers, this happens inside the
+ ** OP_ListRead loop because the cursor have to all be closed
+ ** before the trigger fires. If there are no row triggers, the
+ ** cursors are opened only once on the outside the loop.
+ */
+ pParse->nTab = iCur + 1;
+ sqliteOpenTableAndIndices(pParse, pTab, iCur);
+
+ /* This is the beginning of the delete loop when there are no
+ ** row triggers */
+ if( !row_triggers_exist ){
+ addr = sqliteVdbeAddOp(v, OP_ListRead, 0, end);
+ }
+
+ /* Delete the row */
+ sqliteGenerateRowDelete(db, v, pTab, iCur, pParse->trigStack==0);
+ }
+
+ /* If there are row triggers, close all cursors then invoke
+ ** the AFTER triggers
+ */
+ if( row_triggers_exist ){
+ if( !isView ){
+ for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
+ sqliteVdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
+ }
+ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
+ }
+ sqliteCodeRowTrigger(pParse, TK_DELETE, 0, TK_AFTER, pTab, -1,
+ oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
+ addr);
+ }
+
+ /* End of the delete loop */
+ sqliteVdbeAddOp(v, OP_Goto, 0, addr);
+ sqliteVdbeResolveLabel(v, end);
+ sqliteVdbeAddOp(v, OP_ListReset, 0, 0);
+
+ /* Close the cursors after the loop if there are no row triggers */
+ if( !row_triggers_exist ){
+ for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
+ sqliteVdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
+ }
+ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
+ pParse->nTab = iCur;
+ }
+ }
+ sqliteVdbeAddOp(v, OP_SetCounts, 0, 0);
+ sqliteEndWriteOperation(pParse);
+
+ /*
+ ** Return the number of rows that were deleted.
+ */
+ if( db->flags & SQLITE_CountRows ){
+ sqliteVdbeAddOp(v, OP_ColumnName, 0, 1);
+ sqliteVdbeChangeP3(v, -1, "rows deleted", P3_STATIC);
+ sqliteVdbeAddOp(v, OP_Callback, 1, 0);
+ }
+
+delete_from_cleanup:
+ sqliteAuthContextPop(&sContext);
+ sqliteSrcListDelete(pTabList);
+ sqliteExprDelete(pWhere);
+ return;
+}
+
+/*
+** This routine generates VDBE code that causes a single row of a
+** single table to be deleted.
+**
+** The VDBE must be in a particular state when this routine is called.
+** These are the requirements:
+**
+** 1. A read/write cursor pointing to pTab, the table containing the row
+** to be deleted, must be opened as cursor number "base".
+**
+** 2. Read/write cursors for all indices of pTab must be open as
+** cursor number base+i for the i-th index.
+**
+** 3. The record number of the row to be deleted must be on the top
+** of the stack.
+**
+** This routine pops the top of the stack to remove the record number
+** and then generates code to remove both the table record and all index
+** entries that point to that record.
+*/
+void sqliteGenerateRowDelete(
+ sqlite *db, /* The database containing the index */
+ Vdbe *v, /* Generate code into this VDBE */
+ Table *pTab, /* Table containing the row to be deleted */
+ int iCur, /* Cursor number for the table */
+ int count /* Increment the row change counter */
+){
+ int addr;
+ addr = sqliteVdbeAddOp(v, OP_NotExists, iCur, 0);
+ sqliteGenerateRowIndexDelete(db, v, pTab, iCur, 0);
+ sqliteVdbeAddOp(v, OP_Delete, iCur,
+ (count?OPFLAG_NCHANGE:0) | OPFLAG_CSCHANGE);
+ sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
+}
+
+/*
+** This routine generates VDBE code that causes the deletion of all
+** index entries associated with a single row of a single table.
+**
+** The VDBE must be in a particular state when this routine is called.
+** These are the requirements:
+**
+** 1. A read/write cursor pointing to pTab, the table containing the row
+** to be deleted, must be opened as cursor number "iCur".
+**
+** 2. Read/write cursors for all indices of pTab must be open as
+** cursor number iCur+i for the i-th index.
+**
+** 3. The "iCur" cursor must be pointing to the row that is to be
+** deleted.
+*/
+void sqliteGenerateRowIndexDelete(
+ sqlite *db, /* The database containing the index */
+ Vdbe *v, /* Generate code into this VDBE */
+ Table *pTab, /* Table containing the row to be deleted */
+ int iCur, /* Cursor number for the table */
+ char *aIdxUsed /* Only delete if aIdxUsed!=0 && aIdxUsed[i]!=0 */
+){
+ int i;
+ Index *pIdx;
+
+ for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
+ int j;
+ if( aIdxUsed!=0 && aIdxUsed[i-1]==0 ) continue;
+ sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
+ for(j=0; j<pIdx->nColumn; j++){
+ int idx = pIdx->aiColumn[j];
+ if( idx==pTab->iPKey ){
+ sqliteVdbeAddOp(v, OP_Dup, j, 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_Column, iCur, idx);
+ }
+ }
+ sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
+ if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);
+ sqliteVdbeAddOp(v, OP_IdxDelete, iCur+i, 0);
+ }
+}
diff --git a/src/3rdparty/sqlite/expr.c b/src/3rdparty/sqlite/expr.c
new file mode 100644
index 0000000..dca48e3
--- /dev/null
+++ b/src/3rdparty/sqlite/expr.c
@@ -0,0 +1,1656 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains routines used for analyzing expressions and
+** for generating VDBE code that evaluates expressions in SQLite.
+**
+** $Id: expr.c,v 1.112 2004/02/25 13:47:31 drh Exp $
+*/
+#include "sqliteInt.h"
+#include <ctype.h>
+
+/*
+** Construct a new expression node and return a pointer to it. Memory
+** for this node is obtained from sqliteMalloc(). The calling function
+** is responsible for making sure the node eventually gets freed.
+*/
+Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){
+ Expr *pNew;
+ pNew = sqliteMalloc( sizeof(Expr) );
+ if( pNew==0 ){
+ /* When malloc fails, we leak memory from pLeft and pRight */
+ return 0;
+ }
+ pNew->op = op;
+ pNew->pLeft = pLeft;
+ pNew->pRight = pRight;
+ if( pToken ){
+ assert( pToken->dyn==0 );
+ pNew->token = *pToken;
+ pNew->span = *pToken;
+ }else{
+ assert( pNew->token.dyn==0 );
+ assert( pNew->token.z==0 );
+ assert( pNew->token.n==0 );
+ if( pLeft && pRight ){
+ sqliteExprSpan(pNew, &pLeft->span, &pRight->span);
+ }else{
+ pNew->span = pNew->token;
+ }
+ }
+ return pNew;
+}
+
+/*
+** Set the Expr.span field of the given expression to span all
+** text between the two given tokens.
+*/
+void sqliteExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
+ assert( pRight!=0 );
+ assert( pLeft!=0 );
+ /* Note: pExpr might be NULL due to a prior malloc failure */
+ if( pExpr && pRight->z && pLeft->z ){
+ if( pLeft->dyn==0 && pRight->dyn==0 ){
+ pExpr->span.z = pLeft->z;
+ pExpr->span.n = pRight->n + Addr(pRight->z) - Addr(pLeft->z);
+ }else{
+ pExpr->span.z = 0;
+ }
+ }
+}
+
+/*
+** Construct a new expression node for a function with multiple
+** arguments.
+*/
+Expr *sqliteExprFunction(ExprList *pList, Token *pToken){
+ Expr *pNew;
+ pNew = sqliteMalloc( sizeof(Expr) );
+ if( pNew==0 ){
+ /* sqliteExprListDelete(pList); // Leak pList when malloc fails */
+ return 0;
+ }
+ pNew->op = TK_FUNCTION;
+ pNew->pList = pList;
+ if( pToken ){
+ assert( pToken->dyn==0 );
+ pNew->token = *pToken;
+ }else{
+ pNew->token.z = 0;
+ }
+ pNew->span = pNew->token;
+ return pNew;
+}
+
+/*
+** Recursively delete an expression tree.
+*/
+void sqliteExprDelete(Expr *p){
+ if( p==0 ) return;
+ if( p->span.dyn ) sqliteFree((char*)p->span.z);
+ if( p->token.dyn ) sqliteFree((char*)p->token.z);
+ sqliteExprDelete(p->pLeft);
+ sqliteExprDelete(p->pRight);
+ sqliteExprListDelete(p->pList);
+ sqliteSelectDelete(p->pSelect);
+ sqliteFree(p);
+}
+
+
+/*
+** The following group of routines make deep copies of expressions,
+** expression lists, ID lists, and select statements. The copies can
+** be deleted (by being passed to their respective ...Delete() routines)
+** without effecting the originals.
+**
+** The expression list, ID, and source lists return by sqliteExprListDup(),
+** sqliteIdListDup(), and sqliteSrcListDup() can not be further expanded
+** by subsequent calls to sqlite*ListAppend() routines.
+**
+** Any tables that the SrcList might point to are not duplicated.
+*/
+Expr *sqliteExprDup(Expr *p){
+ Expr *pNew;
+ if( p==0 ) return 0;
+ pNew = sqliteMallocRaw( sizeof(*p) );
+ if( pNew==0 ) return 0;
+ memcpy(pNew, p, sizeof(*pNew));
+ if( p->token.z!=0 ){
+ pNew->token.z = sqliteStrDup(p->token.z);
+ pNew->token.dyn = 1;
+ }else{
+ assert( pNew->token.z==0 );
+ }
+ pNew->span.z = 0;
+ pNew->pLeft = sqliteExprDup(p->pLeft);
+ pNew->pRight = sqliteExprDup(p->pRight);
+ pNew->pList = sqliteExprListDup(p->pList);
+ pNew->pSelect = sqliteSelectDup(p->pSelect);
+ return pNew;
+}
+void sqliteTokenCopy(Token *pTo, Token *pFrom){
+ if( pTo->dyn ) sqliteFree((char*)pTo->z);
+ if( pFrom->z ){
+ pTo->n = pFrom->n;
+ pTo->z = sqliteStrNDup(pFrom->z, pFrom->n);
+ pTo->dyn = 1;
+ }else{
+ pTo->z = 0;
+ }
+}
+ExprList *sqliteExprListDup(ExprList *p){
+ ExprList *pNew;
+ struct ExprList_item *pItem;
+ int i;
+ if( p==0 ) return 0;
+ pNew = sqliteMalloc( sizeof(*pNew) );
+ if( pNew==0 ) return 0;
+ pNew->nExpr = pNew->nAlloc = p->nExpr;
+ pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
+ for(i=0; pItem && i<p->nExpr; i++, pItem++){
+ Expr *pNewExpr, *pOldExpr;
+ pItem->pExpr = pNewExpr = sqliteExprDup(pOldExpr = p->a[i].pExpr);
+ if( pOldExpr->span.z!=0 && pNewExpr ){
+ /* Always make a copy of the span for top-level expressions in the
+ ** expression list. The logic in SELECT processing that determines
+ ** the names of columns in the result set needs this information */
+ sqliteTokenCopy(&pNewExpr->span, &pOldExpr->span);
+ }
+ assert( pNewExpr==0 || pNewExpr->span.z!=0
+ || pOldExpr->span.z==0 || sqlite_malloc_failed );
+ pItem->zName = sqliteStrDup(p->a[i].zName);
+ pItem->sortOrder = p->a[i].sortOrder;
+ pItem->isAgg = p->a[i].isAgg;
+ pItem->done = 0;
+ }
+ return pNew;
+}
+SrcList *sqliteSrcListDup(SrcList *p){
+ SrcList *pNew;
+ int i;
+ int nByte;
+ if( p==0 ) return 0;
+ nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
+ pNew = sqliteMallocRaw( nByte );
+ if( pNew==0 ) return 0;
+ pNew->nSrc = pNew->nAlloc = p->nSrc;
+ for(i=0; i<p->nSrc; i++){
+ struct SrcList_item *pNewItem = &pNew->a[i];
+ struct SrcList_item *pOldItem = &p->a[i];
+ pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase);
+ pNewItem->zName = sqliteStrDup(pOldItem->zName);
+ pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias);
+ pNewItem->jointype = pOldItem->jointype;
+ pNewItem->iCursor = pOldItem->iCursor;
+ pNewItem->pTab = 0;
+ pNewItem->pSelect = sqliteSelectDup(pOldItem->pSelect);
+ pNewItem->pOn = sqliteExprDup(pOldItem->pOn);
+ pNewItem->pUsing = sqliteIdListDup(pOldItem->pUsing);
+ }
+ return pNew;
+}
+IdList *sqliteIdListDup(IdList *p){
+ IdList *pNew;
+ int i;
+ if( p==0 ) return 0;
+ pNew = sqliteMallocRaw( sizeof(*pNew) );
+ if( pNew==0 ) return 0;
+ pNew->nId = pNew->nAlloc = p->nId;
+ pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) );
+ if( pNew->a==0 ) return 0;
+ for(i=0; i<p->nId; i++){
+ struct IdList_item *pNewItem = &pNew->a[i];
+ struct IdList_item *pOldItem = &p->a[i];
+ pNewItem->zName = sqliteStrDup(pOldItem->zName);
+ pNewItem->idx = pOldItem->idx;
+ }
+ return pNew;
+}
+Select *sqliteSelectDup(Select *p){
+ Select *pNew;
+ if( p==0 ) return 0;
+ pNew = sqliteMallocRaw( sizeof(*p) );
+ if( pNew==0 ) return 0;
+ pNew->isDistinct = p->isDistinct;
+ pNew->pEList = sqliteExprListDup(p->pEList);
+ pNew->pSrc = sqliteSrcListDup(p->pSrc);
+ pNew->pWhere = sqliteExprDup(p->pWhere);
+ pNew->pGroupBy = sqliteExprListDup(p->pGroupBy);
+ pNew->pHaving = sqliteExprDup(p->pHaving);
+ pNew->pOrderBy = sqliteExprListDup(p->pOrderBy);
+ pNew->op = p->op;
+ pNew->pPrior = sqliteSelectDup(p->pPrior);
+ pNew->nLimit = p->nLimit;
+ pNew->nOffset = p->nOffset;
+ pNew->zSelect = 0;
+ pNew->iLimit = -1;
+ pNew->iOffset = -1;
+ return pNew;
+}
+
+
+/*
+** Add a new element to the end of an expression list. If pList is
+** initially NULL, then create a new expression list.
+*/
+ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
+ if( pList==0 ){
+ pList = sqliteMalloc( sizeof(ExprList) );
+ if( pList==0 ){
+ /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
+ return 0;
+ }
+ assert( pList->nAlloc==0 );
+ }
+ if( pList->nAlloc<=pList->nExpr ){
+ pList->nAlloc = pList->nAlloc*2 + 4;
+ pList->a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]));
+ if( pList->a==0 ){
+ /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
+ pList->nExpr = pList->nAlloc = 0;
+ return pList;
+ }
+ }
+ assert( pList->a!=0 );
+ if( pExpr || pName ){
+ struct ExprList_item *pItem = &pList->a[pList->nExpr++];
+ memset(pItem, 0, sizeof(*pItem));
+ pItem->pExpr = pExpr;
+ if( pName ){
+ sqliteSetNString(&pItem->zName, pName->z, pName->n, 0);
+ sqliteDequote(pItem->zName);
+ }
+ }
+ return pList;
+}
+
+/*
+** Delete an entire expression list.
+*/
+void sqliteExprListDelete(ExprList *pList){
+ int i;
+ if( pList==0 ) return;
+ for(i=0; i<pList->nExpr; i++){
+ sqliteExprDelete(pList->a[i].pExpr);
+ sqliteFree(pList->a[i].zName);
+ }
+ sqliteFree(pList->a);
+ sqliteFree(pList);
+}
+
+/*
+** Walk an expression tree. Return 1 if the expression is constant
+** and 0 if it involves variables.
+**
+** For the purposes of this function, a double-quoted string (ex: "abc")
+** is considered a variable but a single-quoted string (ex: 'abc') is
+** a constant.
+*/
+int sqliteExprIsConstant(Expr *p){
+ switch( p->op ){
+ case TK_ID:
+ case TK_COLUMN:
+ case TK_DOT:
+ case TK_FUNCTION:
+ return 0;
+ case TK_NULL:
+ case TK_STRING:
+ case TK_INTEGER:
+ case TK_FLOAT:
+ case TK_VARIABLE:
+ return 1;
+ default: {
+ if( p->pLeft && !sqliteExprIsConstant(p->pLeft) ) return 0;
+ if( p->pRight && !sqliteExprIsConstant(p->pRight) ) return 0;
+ if( p->pList ){
+ int i;
+ for(i=0; i<p->pList->nExpr; i++){
+ if( !sqliteExprIsConstant(p->pList->a[i].pExpr) ) return 0;
+ }
+ }
+ return p->pLeft!=0 || p->pRight!=0 || (p->pList && p->pList->nExpr>0);
+ }
+ }
+ return 0;
+}
+
+/*
+** If the given expression codes a constant integer that is small enough
+** to fit in a 32-bit integer, return 1 and put the value of the integer
+** in *pValue. If the expression is not an integer or if it is too big
+** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
+*/
+int sqliteExprIsInteger(Expr *p, int *pValue){
+ switch( p->op ){
+ case TK_INTEGER: {
+ if( sqliteFitsIn32Bits(p->token.z) ){
+ *pValue = atoi(p->token.z);
+ return 1;
+ }
+ break;
+ }
+ case TK_STRING: {
+ const char *z = p->token.z;
+ int n = p->token.n;
+ if( n>0 && z[0]=='-' ){ z++; n--; }
+ while( n>0 && *z && isdigit(*z) ){ z++; n--; }
+ if( n==0 && sqliteFitsIn32Bits(p->token.z) ){
+ *pValue = atoi(p->token.z);
+ return 1;
+ }
+ break;
+ }
+ case TK_UPLUS: {
+ return sqliteExprIsInteger(p->pLeft, pValue);
+ }
+ case TK_UMINUS: {
+ int v;
+ if( sqliteExprIsInteger(p->pLeft, &v) ){
+ *pValue = -v;
+ return 1;
+ }
+ break;
+ }
+ default: break;
+ }
+ return 0;
+}
+
+/*
+** Return TRUE if the given string is a row-id column name.
+*/
+int sqliteIsRowid(const char *z){
+ if( sqliteStrICmp(z, "_ROWID_")==0 ) return 1;
+ if( sqliteStrICmp(z, "ROWID")==0 ) return 1;
+ if( sqliteStrICmp(z, "OID")==0 ) return 1;
+ return 0;
+}
+
+/*
+** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
+** that name in the set of source tables in pSrcList and make the pExpr
+** expression node refer back to that source column. The following changes
+** are made to pExpr:
+**
+** pExpr->iDb Set the index in db->aDb[] of the database holding
+** the table.
+** pExpr->iTable Set to the cursor number for the table obtained
+** from pSrcList.
+** pExpr->iColumn Set to the column number within the table.
+** pExpr->dataType Set to the appropriate data type for the column.
+** pExpr->op Set to TK_COLUMN.
+** pExpr->pLeft Any expression this points to is deleted
+** pExpr->pRight Any expression this points to is deleted.
+**
+** The pDbToken is the name of the database (the "X"). This value may be
+** NULL meaning that name is of the form Y.Z or Z. Any available database
+** can be used. The pTableToken is the name of the table (the "Y"). This
+** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it
+** means that the form of the name is Z and that columns from any table
+** can be used.
+**
+** If the name cannot be resolved unambiguously, leave an error message
+** in pParse and return non-zero. Return zero on success.
+*/
+static int lookupName(
+ Parse *pParse, /* The parsing context */
+ Token *pDbToken, /* Name of the database containing table, or NULL */
+ Token *pTableToken, /* Name of table containing column, or NULL */
+ Token *pColumnToken, /* Name of the column. */
+ SrcList *pSrcList, /* List of tables used to resolve column names */
+ ExprList *pEList, /* List of expressions used to resolve "AS" */
+ Expr *pExpr /* Make this EXPR node point to the selected column */
+){
+ char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */
+ char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */
+ char *zCol = 0; /* Name of the column. The "Z" */
+ int i, j; /* Loop counters */
+ int cnt = 0; /* Number of matching column names */
+ int cntTab = 0; /* Number of matching table names */
+ sqlite *db = pParse->db; /* The database */
+
+ assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
+ if( pDbToken && pDbToken->z ){
+ zDb = sqliteStrNDup(pDbToken->z, pDbToken->n);
+ sqliteDequote(zDb);
+ }else{
+ zDb = 0;
+ }
+ if( pTableToken && pTableToken->z ){
+ zTab = sqliteStrNDup(pTableToken->z, pTableToken->n);
+ sqliteDequote(zTab);
+ }else{
+ assert( zDb==0 );
+ zTab = 0;
+ }
+ zCol = sqliteStrNDup(pColumnToken->z, pColumnToken->n);
+ sqliteDequote(zCol);
+ if( sqlite_malloc_failed ){
+ return 1; /* Leak memory (zDb and zTab) if malloc fails */
+ }
+ assert( zTab==0 || pEList==0 );
+
+ pExpr->iTable = -1;
+ for(i=0; i<pSrcList->nSrc; i++){
+ struct SrcList_item *pItem = &pSrcList->a[i];
+ Table *pTab = pItem->pTab;
+ Column *pCol;
+
+ if( pTab==0 ) continue;
+ assert( pTab->nCol>0 );
+ if( zTab ){
+ if( pItem->zAlias ){
+ char *zTabName = pItem->zAlias;
+ if( sqliteStrICmp(zTabName, zTab)!=0 ) continue;
+ }else{
+ char *zTabName = pTab->zName;
+ if( zTabName==0 || sqliteStrICmp(zTabName, zTab)!=0 ) continue;
+ if( zDb!=0 && sqliteStrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){
+ continue;
+ }
+ }
+ }
+ if( 0==(cntTab++) ){
+ pExpr->iTable = pItem->iCursor;
+ pExpr->iDb = pTab->iDb;
+ }
+ for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
+ if( sqliteStrICmp(pCol->zName, zCol)==0 ){
+ cnt++;
+ pExpr->iTable = pItem->iCursor;
+ pExpr->iDb = pTab->iDb;
+ /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
+ pExpr->iColumn = j==pTab->iPKey ? -1 : j;
+ pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
+ break;
+ }
+ }
+ }
+
+ /* If we have not already resolved the name, then maybe
+ ** it is a new.* or old.* trigger argument reference
+ */
+ if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
+ TriggerStack *pTriggerStack = pParse->trigStack;
+ Table *pTab = 0;
+ if( pTriggerStack->newIdx != -1 && sqliteStrICmp("new", zTab) == 0 ){
+ pExpr->iTable = pTriggerStack->newIdx;
+ assert( pTriggerStack->pTab );
+ pTab = pTriggerStack->pTab;
+ }else if( pTriggerStack->oldIdx != -1 && sqliteStrICmp("old", zTab) == 0 ){
+ pExpr->iTable = pTriggerStack->oldIdx;
+ assert( pTriggerStack->pTab );
+ pTab = pTriggerStack->pTab;
+ }
+
+ if( pTab ){
+ int j;
+ Column *pCol = pTab->aCol;
+
+ pExpr->iDb = pTab->iDb;
+ cntTab++;
+ for(j=0; j < pTab->nCol; j++, pCol++) {
+ if( sqliteStrICmp(pCol->zName, zCol)==0 ){
+ cnt++;
+ pExpr->iColumn = j==pTab->iPKey ? -1 : j;
+ pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
+ break;
+ }
+ }
+ }
+ }
+
+ /*
+ ** Perhaps the name is a reference to the ROWID
+ */
+ if( cnt==0 && cntTab==1 && sqliteIsRowid(zCol) ){
+ cnt = 1;
+ pExpr->iColumn = -1;
+ pExpr->dataType = SQLITE_SO_NUM;
+ }
+
+ /*
+ ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
+ ** might refer to an result-set alias. This happens, for example, when
+ ** we are resolving names in the WHERE clause of the following command:
+ **
+ ** SELECT a+b AS x FROM table WHERE x<10;
+ **
+ ** In cases like this, replace pExpr with a copy of the expression that
+ ** forms the result set entry ("a+b" in the example) and return immediately.
+ ** Note that the expression in the result set should have already been
+ ** resolved by the time the WHERE clause is resolved.
+ */
+ if( cnt==0 && pEList!=0 ){
+ for(j=0; j<pEList->nExpr; j++){
+ char *zAs = pEList->a[j].zName;
+ if( zAs!=0 && sqliteStrICmp(zAs, zCol)==0 ){
+ assert( pExpr->pLeft==0 && pExpr->pRight==0 );
+ pExpr->op = TK_AS;
+ pExpr->iColumn = j;
+ pExpr->pLeft = sqliteExprDup(pEList->a[j].pExpr);
+ sqliteFree(zCol);
+ assert( zTab==0 && zDb==0 );
+ return 0;
+ }
+ }
+ }
+
+ /*
+ ** If X and Y are NULL (in other words if only the column name Z is
+ ** supplied) and the value of Z is enclosed in double-quotes, then
+ ** Z is a string literal if it doesn't match any column names. In that
+ ** case, we need to return right away and not make any changes to
+ ** pExpr.
+ */
+ if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
+ sqliteFree(zCol);
+ return 0;
+ }
+
+ /*
+ ** cnt==0 means there was not match. cnt>1 means there were two or
+ ** more matches. Either way, we have an error.
+ */
+ if( cnt!=1 ){
+ char *z = 0;
+ char *zErr;
+ zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
+ if( zDb ){
+ sqliteSetString(&z, zDb, ".", zTab, ".", zCol, 0);
+ }else if( zTab ){
+ sqliteSetString(&z, zTab, ".", zCol, 0);
+ }else{
+ z = sqliteStrDup(zCol);
+ }
+ sqliteErrorMsg(pParse, zErr, z);
+ sqliteFree(z);
+ }
+
+ /* Clean up and return
+ */
+ sqliteFree(zDb);
+ sqliteFree(zTab);
+ sqliteFree(zCol);
+ sqliteExprDelete(pExpr->pLeft);
+ pExpr->pLeft = 0;
+ sqliteExprDelete(pExpr->pRight);
+ pExpr->pRight = 0;
+ pExpr->op = TK_COLUMN;
+ sqliteAuthRead(pParse, pExpr, pSrcList);
+ return cnt!=1;
+}
+
+/*
+** This routine walks an expression tree and resolves references to
+** table columns. Nodes of the form ID.ID or ID resolve into an
+** index to the table in the table list and a column offset. The
+** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable
+** value is changed to the index of the referenced table in pTabList
+** plus the "base" value. The base value will ultimately become the
+** VDBE cursor number for a cursor that is pointing into the referenced
+** table. The Expr.iColumn value is changed to the index of the column
+** of the referenced table. The Expr.iColumn value for the special
+** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an
+** alias for ROWID.
+**
+** We also check for instances of the IN operator. IN comes in two
+** forms:
+**
+** expr IN (exprlist)
+** and
+** expr IN (SELECT ...)
+**
+** The first form is handled by creating a set holding the list
+** of allowed values. The second form causes the SELECT to generate
+** a temporary table.
+**
+** This routine also looks for scalar SELECTs that are part of an expression.
+** If it finds any, it generates code to write the value of that select
+** into a memory cell.
+**
+** Unknown columns or tables provoke an error. The function returns
+** the number of errors seen and leaves an error message on pParse->zErrMsg.
+*/
+int sqliteExprResolveIds(
+ Parse *pParse, /* The parser context */
+ SrcList *pSrcList, /* List of tables used to resolve column names */
+ ExprList *pEList, /* List of expressions used to resolve "AS" */
+ Expr *pExpr /* The expression to be analyzed. */
+){
+ int i;
+
+ if( pExpr==0 || pSrcList==0 ) return 0;
+ for(i=0; i<pSrcList->nSrc; i++){
+ assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab );
+ }
+ switch( pExpr->op ){
+ /* Double-quoted strings (ex: "abc") are used as identifiers if
+ ** possible. Otherwise they remain as strings. Single-quoted
+ ** strings (ex: 'abc') are always string literals.
+ */
+ case TK_STRING: {
+ if( pExpr->token.z[0]=='\'' ) break;
+ /* Fall thru into the TK_ID case if this is a double-quoted string */
+ }
+ /* A lone identifier is the name of a columnd.
+ */
+ case TK_ID: {
+ if( lookupName(pParse, 0, 0, &pExpr->token, pSrcList, pEList, pExpr) ){
+ return 1;
+ }
+ break;
+ }
+
+ /* A table name and column name: ID.ID
+ ** Or a database, table and column: ID.ID.ID
+ */
+ case TK_DOT: {
+ Token *pColumn;
+ Token *pTable;
+ Token *pDb;
+ Expr *pRight;
+
+ pRight = pExpr->pRight;
+ if( pRight->op==TK_ID ){
+ pDb = 0;
+ pTable = &pExpr->pLeft->token;
+ pColumn = &pRight->token;
+ }else{
+ assert( pRight->op==TK_DOT );
+ pDb = &pExpr->pLeft->token;
+ pTable = &pRight->pLeft->token;
+ pColumn = &pRight->pRight->token;
+ }
+ if( lookupName(pParse, pDb, pTable, pColumn, pSrcList, 0, pExpr) ){
+ return 1;
+ }
+ break;
+ }
+
+ case TK_IN: {
+ Vdbe *v = sqliteGetVdbe(pParse);
+ if( v==0 ) return 1;
+ if( sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
+ return 1;
+ }
+ if( pExpr->pSelect ){
+ /* Case 1: expr IN (SELECT ...)
+ **
+ ** Generate code to write the results of the select into a temporary
+ ** table. The cursor number of the temporary table has already
+ ** been put in iTable by sqliteExprResolveInSelect().
+ */
+ pExpr->iTable = pParse->nTab++;
+ sqliteVdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 1);
+ sqliteSelect(pParse, pExpr->pSelect, SRT_Set, pExpr->iTable, 0,0,0);
+ }else if( pExpr->pList ){
+ /* Case 2: expr IN (exprlist)
+ **
+ ** Create a set to put the exprlist values in. The Set id is stored
+ ** in iTable.
+ */
+ int i, iSet;
+ for(i=0; i<pExpr->pList->nExpr; i++){
+ Expr *pE2 = pExpr->pList->a[i].pExpr;
+ if( !sqliteExprIsConstant(pE2) ){
+ sqliteErrorMsg(pParse,
+ "right-hand side of IN operator must be constant");
+ return 1;
+ }
+ if( sqliteExprCheck(pParse, pE2, 0, 0) ){
+ return 1;
+ }
+ }
+ iSet = pExpr->iTable = pParse->nSet++;
+ for(i=0; i<pExpr->pList->nExpr; i++){
+ Expr *pE2 = pExpr->pList->a[i].pExpr;
+ switch( pE2->op ){
+ case TK_FLOAT:
+ case TK_INTEGER:
+ case TK_STRING: {
+ int addr;
+ assert( pE2->token.z );
+ addr = sqliteVdbeOp3(v, OP_SetInsert, iSet, 0,
+ pE2->token.z, pE2->token.n);
+ sqliteVdbeDequoteP3(v, addr);
+ break;
+ }
+ default: {
+ sqliteExprCode(pParse, pE2);
+ sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0);
+ break;
+ }
+ }
+ }
+ }
+ break;
+ }
+
+ case TK_SELECT: {
+ /* This has to be a scalar SELECT. Generate code to put the
+ ** value of this select in a memory cell and record the number
+ ** of the memory cell in iColumn.
+ */
+ pExpr->iColumn = pParse->nMem++;
+ if( sqliteSelect(pParse, pExpr->pSelect, SRT_Mem, pExpr->iColumn,0,0,0) ){
+ return 1;
+ }
+ break;
+ }
+
+ /* For all else, just recursively walk the tree */
+ default: {
+ if( pExpr->pLeft
+ && sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
+ return 1;
+ }
+ if( pExpr->pRight
+ && sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pRight) ){
+ return 1;
+ }
+ if( pExpr->pList ){
+ int i;
+ ExprList *pList = pExpr->pList;
+ for(i=0; i<pList->nExpr; i++){
+ Expr *pArg = pList->a[i].pExpr;
+ if( sqliteExprResolveIds(pParse, pSrcList, pEList, pArg) ){
+ return 1;
+ }
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** pExpr is a node that defines a function of some kind. It might
+** be a syntactic function like "count(x)" or it might be a function
+** that implements an operator, like "a LIKE b".
+**
+** This routine makes *pzName point to the name of the function and
+** *pnName hold the number of characters in the function name.
+*/
+static void getFunctionName(Expr *pExpr, const char **pzName, int *pnName){
+ switch( pExpr->op ){
+ case TK_FUNCTION: {
+ *pzName = pExpr->token.z;
+ *pnName = pExpr->token.n;
+ break;
+ }
+ case TK_LIKE: {
+ *pzName = "like";
+ *pnName = 4;
+ break;
+ }
+ case TK_GLOB: {
+ *pzName = "glob";
+ *pnName = 4;
+ break;
+ }
+ default: {
+ *pzName = "can't happen";
+ *pnName = 12;
+ break;
+ }
+ }
+}
+
+/*
+** Error check the functions in an expression. Make sure all
+** function names are recognized and all functions have the correct
+** number of arguments. Leave an error message in pParse->zErrMsg
+** if anything is amiss. Return the number of errors.
+**
+** if pIsAgg is not null and this expression is an aggregate function
+** (like count(*) or max(value)) then write a 1 into *pIsAgg.
+*/
+int sqliteExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){
+ int nErr = 0;
+ if( pExpr==0 ) return 0;
+ switch( pExpr->op ){
+ case TK_GLOB:
+ case TK_LIKE:
+ case TK_FUNCTION: {
+ int n = pExpr->pList ? pExpr->pList->nExpr : 0; /* Number of arguments */
+ int no_such_func = 0; /* True if no such function exists */
+ int wrong_num_args = 0; /* True if wrong number of arguments */
+ int is_agg = 0; /* True if is an aggregate function */
+ int i;
+ int nId; /* Number of characters in function name */
+ const char *zId; /* The function name. */
+ FuncDef *pDef;
+
+ getFunctionName(pExpr, &zId, &nId);
+ pDef = sqliteFindFunction(pParse->db, zId, nId, n, 0);
+ if( pDef==0 ){
+ pDef = sqliteFindFunction(pParse->db, zId, nId, -1, 0);
+ if( pDef==0 ){
+ no_such_func = 1;
+ }else{
+ wrong_num_args = 1;
+ }
+ }else{
+ is_agg = pDef->xFunc==0;
+ }
+ if( is_agg && !allowAgg ){
+ sqliteErrorMsg(pParse, "misuse of aggregate function %.*s()", nId, zId);
+ nErr++;
+ is_agg = 0;
+ }else if( no_such_func ){
+ sqliteErrorMsg(pParse, "no such function: %.*s", nId, zId);
+ nErr++;
+ }else if( wrong_num_args ){
+ sqliteErrorMsg(pParse,"wrong number of arguments to function %.*s()",
+ nId, zId);
+ nErr++;
+ }
+ if( is_agg ){
+ pExpr->op = TK_AGG_FUNCTION;
+ if( pIsAgg ) *pIsAgg = 1;
+ }
+ for(i=0; nErr==0 && i<n; i++){
+ nErr = sqliteExprCheck(pParse, pExpr->pList->a[i].pExpr,
+ allowAgg && !is_agg, pIsAgg);
+ }
+ if( pDef==0 ){
+ /* Already reported an error */
+ }else if( pDef->dataType>=0 ){
+ if( pDef->dataType<n ){
+ pExpr->dataType =
+ sqliteExprType(pExpr->pList->a[pDef->dataType].pExpr);
+ }else{
+ pExpr->dataType = SQLITE_SO_NUM;
+ }
+ }else if( pDef->dataType==SQLITE_ARGS ){
+ pDef->dataType = SQLITE_SO_TEXT;
+ for(i=0; i<n; i++){
+ if( sqliteExprType(pExpr->pList->a[i].pExpr)==SQLITE_SO_NUM ){
+ pExpr->dataType = SQLITE_SO_NUM;
+ break;
+ }
+ }
+ }else if( pDef->dataType==SQLITE_NUMERIC ){
+ pExpr->dataType = SQLITE_SO_NUM;
+ }else{
+ pExpr->dataType = SQLITE_SO_TEXT;
+ }
+ }
+ default: {
+ if( pExpr->pLeft ){
+ nErr = sqliteExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg);
+ }
+ if( nErr==0 && pExpr->pRight ){
+ nErr = sqliteExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg);
+ }
+ if( nErr==0 && pExpr->pList ){
+ int n = pExpr->pList->nExpr;
+ int i;
+ for(i=0; nErr==0 && i<n; i++){
+ Expr *pE2 = pExpr->pList->a[i].pExpr;
+ nErr = sqliteExprCheck(pParse, pE2, allowAgg, pIsAgg);
+ }
+ }
+ break;
+ }
+ }
+ return nErr;
+}
+
+/*
+** Return either SQLITE_SO_NUM or SQLITE_SO_TEXT to indicate whether the
+** given expression should sort as numeric values or as text.
+**
+** The sqliteExprResolveIds() and sqliteExprCheck() routines must have
+** both been called on the expression before it is passed to this routine.
+*/
+int sqliteExprType(Expr *p){
+ if( p==0 ) return SQLITE_SO_NUM;
+ while( p ) switch( p->op ){
+ case TK_PLUS:
+ case TK_MINUS:
+ case TK_STAR:
+ case TK_SLASH:
+ case TK_AND:
+ case TK_OR:
+ case TK_ISNULL:
+ case TK_NOTNULL:
+ case TK_NOT:
+ case TK_UMINUS:
+ case TK_UPLUS:
+ case TK_BITAND:
+ case TK_BITOR:
+ case TK_BITNOT:
+ case TK_LSHIFT:
+ case TK_RSHIFT:
+ case TK_REM:
+ case TK_INTEGER:
+ case TK_FLOAT:
+ case TK_IN:
+ case TK_BETWEEN:
+ case TK_GLOB:
+ case TK_LIKE:
+ return SQLITE_SO_NUM;
+
+ case TK_STRING:
+ case TK_NULL:
+ case TK_CONCAT:
+ case TK_VARIABLE:
+ return SQLITE_SO_TEXT;
+
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ:
+ if( sqliteExprType(p->pLeft)==SQLITE_SO_NUM ){
+ return SQLITE_SO_NUM;
+ }
+ p = p->pRight;
+ break;
+
+ case TK_AS:
+ p = p->pLeft;
+ break;
+
+ case TK_COLUMN:
+ case TK_FUNCTION:
+ case TK_AGG_FUNCTION:
+ return p->dataType;
+
+ case TK_SELECT:
+ assert( p->pSelect );
+ assert( p->pSelect->pEList );
+ assert( p->pSelect->pEList->nExpr>0 );
+ p = p->pSelect->pEList->a[0].pExpr;
+ break;
+
+ case TK_CASE: {
+ if( p->pRight && sqliteExprType(p->pRight)==SQLITE_SO_NUM ){
+ return SQLITE_SO_NUM;
+ }
+ if( p->pList ){
+ int i;
+ ExprList *pList = p->pList;
+ for(i=1; i<pList->nExpr; i+=2){
+ if( sqliteExprType(pList->a[i].pExpr)==SQLITE_SO_NUM ){
+ return SQLITE_SO_NUM;
+ }
+ }
+ }
+ return SQLITE_SO_TEXT;
+ }
+
+ default:
+ assert( p->op==TK_ABORT ); /* Can't Happen */
+ break;
+ }
+ return SQLITE_SO_NUM;
+}
+
+/*
+** Generate code into the current Vdbe to evaluate the given
+** expression and leave the result on the top of stack.
+*/
+void sqliteExprCode(Parse *pParse, Expr *pExpr){
+ Vdbe *v = pParse->pVdbe;
+ int op;
+ if( v==0 || pExpr==0 ) return;
+ switch( pExpr->op ){
+ case TK_PLUS: op = OP_Add; break;
+ case TK_MINUS: op = OP_Subtract; break;
+ case TK_STAR: op = OP_Multiply; break;
+ case TK_SLASH: op = OP_Divide; break;
+ case TK_AND: op = OP_And; break;
+ case TK_OR: op = OP_Or; break;
+ case TK_LT: op = OP_Lt; break;
+ case TK_LE: op = OP_Le; break;
+ case TK_GT: op = OP_Gt; break;
+ case TK_GE: op = OP_Ge; break;
+ case TK_NE: op = OP_Ne; break;
+ case TK_EQ: op = OP_Eq; break;
+ case TK_ISNULL: op = OP_IsNull; break;
+ case TK_NOTNULL: op = OP_NotNull; break;
+ case TK_NOT: op = OP_Not; break;
+ case TK_UMINUS: op = OP_Negative; break;
+ case TK_BITAND: op = OP_BitAnd; break;
+ case TK_BITOR: op = OP_BitOr; break;
+ case TK_BITNOT: op = OP_BitNot; break;
+ case TK_LSHIFT: op = OP_ShiftLeft; break;
+ case TK_RSHIFT: op = OP_ShiftRight; break;
+ case TK_REM: op = OP_Remainder; break;
+ default: break;
+ }
+ switch( pExpr->op ){
+ case TK_COLUMN: {
+ if( pParse->useAgg ){
+ sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
+ }else if( pExpr->iColumn>=0 ){
+ sqliteVdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn);
+ }else{
+ sqliteVdbeAddOp(v, OP_Recno, pExpr->iTable, 0);
+ }
+ break;
+ }
+ case TK_STRING:
+ case TK_FLOAT:
+ case TK_INTEGER: {
+ if( pExpr->op==TK_INTEGER && sqliteFitsIn32Bits(pExpr->token.z) ){
+ sqliteVdbeAddOp(v, OP_Integer, atoi(pExpr->token.z), 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ }
+ assert( pExpr->token.z );
+ sqliteVdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n);
+ sqliteVdbeDequoteP3(v, -1);
+ break;
+ }
+ case TK_NULL: {
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ break;
+ }
+ case TK_VARIABLE: {
+ sqliteVdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
+ break;
+ }
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ: {
+ if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
+ op += 6; /* Convert numeric opcodes to text opcodes */
+ }
+ /* Fall through into the next case */
+ }
+ case TK_AND:
+ case TK_OR:
+ case TK_PLUS:
+ case TK_STAR:
+ case TK_MINUS:
+ case TK_REM:
+ case TK_BITAND:
+ case TK_BITOR:
+ case TK_SLASH: {
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteExprCode(pParse, pExpr->pRight);
+ sqliteVdbeAddOp(v, op, 0, 0);
+ break;
+ }
+ case TK_LSHIFT:
+ case TK_RSHIFT: {
+ sqliteExprCode(pParse, pExpr->pRight);
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteVdbeAddOp(v, op, 0, 0);
+ break;
+ }
+ case TK_CONCAT: {
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteExprCode(pParse, pExpr->pRight);
+ sqliteVdbeAddOp(v, OP_Concat, 2, 0);
+ break;
+ }
+ case TK_UMINUS: {
+ assert( pExpr->pLeft );
+ if( pExpr->pLeft->op==TK_FLOAT || pExpr->pLeft->op==TK_INTEGER ){
+ Token *p = &pExpr->pLeft->token;
+ char *z = sqliteMalloc( p->n + 2 );
+ sprintf(z, "-%.*s", p->n, p->z);
+ if( pExpr->pLeft->op==TK_INTEGER && sqliteFitsIn32Bits(z) ){
+ sqliteVdbeAddOp(v, OP_Integer, atoi(z), 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ }
+ sqliteVdbeChangeP3(v, -1, z, p->n+1);
+ sqliteFree(z);
+ break;
+ }
+ /* Fall through into TK_NOT */
+ }
+ case TK_BITNOT:
+ case TK_NOT: {
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteVdbeAddOp(v, op, 0, 0);
+ break;
+ }
+ case TK_ISNULL:
+ case TK_NOTNULL: {
+ int dest;
+ sqliteVdbeAddOp(v, OP_Integer, 1, 0);
+ sqliteExprCode(pParse, pExpr->pLeft);
+ dest = sqliteVdbeCurrentAddr(v) + 2;
+ sqliteVdbeAddOp(v, op, 1, dest);
+ sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
+ break;
+ }
+ case TK_AGG_FUNCTION: {
+ sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
+ break;
+ }
+ case TK_GLOB:
+ case TK_LIKE:
+ case TK_FUNCTION: {
+ ExprList *pList = pExpr->pList;
+ int nExpr = pList ? pList->nExpr : 0;
+ FuncDef *pDef;
+ int nId;
+ const char *zId;
+ getFunctionName(pExpr, &zId, &nId);
+ pDef = sqliteFindFunction(pParse->db, zId, nId, nExpr, 0);
+ assert( pDef!=0 );
+ nExpr = sqliteExprCodeExprList(pParse, pList, pDef->includeTypes);
+ sqliteVdbeOp3(v, OP_Function, nExpr, 0, (char*)pDef, P3_POINTER);
+ break;
+ }
+ case TK_SELECT: {
+ sqliteVdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
+ break;
+ }
+ case TK_IN: {
+ int addr;
+ sqliteVdbeAddOp(v, OP_Integer, 1, 0);
+ sqliteExprCode(pParse, pExpr->pLeft);
+ addr = sqliteVdbeCurrentAddr(v);
+ sqliteVdbeAddOp(v, OP_NotNull, -1, addr+4);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, addr+6);
+ if( pExpr->pSelect ){
+ sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, addr+6);
+ }else{
+ sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, addr+6);
+ }
+ sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
+ break;
+ }
+ case TK_BETWEEN: {
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
+ sqliteVdbeAddOp(v, OP_Ge, 0, 0);
+ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
+ sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
+ sqliteVdbeAddOp(v, OP_Le, 0, 0);
+ sqliteVdbeAddOp(v, OP_And, 0, 0);
+ break;
+ }
+ case TK_UPLUS:
+ case TK_AS: {
+ sqliteExprCode(pParse, pExpr->pLeft);
+ break;
+ }
+ case TK_CASE: {
+ int expr_end_label;
+ int jumpInst;
+ int addr;
+ int nExpr;
+ int i;
+
+ assert(pExpr->pList);
+ assert((pExpr->pList->nExpr % 2) == 0);
+ assert(pExpr->pList->nExpr > 0);
+ nExpr = pExpr->pList->nExpr;
+ expr_end_label = sqliteVdbeMakeLabel(v);
+ if( pExpr->pLeft ){
+ sqliteExprCode(pParse, pExpr->pLeft);
+ }
+ for(i=0; i<nExpr; i=i+2){
+ sqliteExprCode(pParse, pExpr->pList->a[i].pExpr);
+ if( pExpr->pLeft ){
+ sqliteVdbeAddOp(v, OP_Dup, 1, 1);
+ jumpInst = sqliteVdbeAddOp(v, OP_Ne, 1, 0);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ }else{
+ jumpInst = sqliteVdbeAddOp(v, OP_IfNot, 1, 0);
+ }
+ sqliteExprCode(pParse, pExpr->pList->a[i+1].pExpr);
+ sqliteVdbeAddOp(v, OP_Goto, 0, expr_end_label);
+ addr = sqliteVdbeCurrentAddr(v);
+ sqliteVdbeChangeP2(v, jumpInst, addr);
+ }
+ if( pExpr->pLeft ){
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ }
+ if( pExpr->pRight ){
+ sqliteExprCode(pParse, pExpr->pRight);
+ }else{
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ }
+ sqliteVdbeResolveLabel(v, expr_end_label);
+ break;
+ }
+ case TK_RAISE: {
+ if( !pParse->trigStack ){
+ sqliteErrorMsg(pParse,
+ "RAISE() may only be used within a trigger-program");
+ pParse->nErr++;
+ return;
+ }
+ if( pExpr->iColumn == OE_Rollback ||
+ pExpr->iColumn == OE_Abort ||
+ pExpr->iColumn == OE_Fail ){
+ sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
+ pExpr->token.z, pExpr->token.n);
+ sqliteVdbeDequoteP3(v, -1);
+ } else {
+ assert( pExpr->iColumn == OE_Ignore );
+ sqliteVdbeOp3(v, OP_Goto, 0, pParse->trigStack->ignoreJump,
+ "(IGNORE jump)", 0);
+ }
+ }
+ break;
+ }
+}
+
+/*
+** Generate code that pushes the value of every element of the given
+** expression list onto the stack. If the includeTypes flag is true,
+** then also push a string that is the datatype of each element onto
+** the stack after the value.
+**
+** Return the number of elements pushed onto the stack.
+*/
+int sqliteExprCodeExprList(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* The expression list to be coded */
+ int includeTypes /* TRUE to put datatypes on the stack too */
+){
+ struct ExprList_item *pItem;
+ int i, n;
+ Vdbe *v;
+ if( pList==0 ) return 0;
+ v = sqliteGetVdbe(pParse);
+ n = pList->nExpr;
+ for(pItem=pList->a, i=0; i<n; i++, pItem++){
+ sqliteExprCode(pParse, pItem->pExpr);
+ if( includeTypes ){
+ sqliteVdbeOp3(v, OP_String, 0, 0,
+ sqliteExprType(pItem->pExpr)==SQLITE_SO_NUM ? "numeric" : "text",
+ P3_STATIC);
+ }
+ }
+ return includeTypes ? n*2 : n;
+}
+
+/*
+** Generate code for a boolean expression such that a jump is made
+** to the label "dest" if the expression is true but execution
+** continues straight thru if the expression is false.
+**
+** If the expression evaluates to NULL (neither true nor false), then
+** take the jump if the jumpIfNull flag is true.
+*/
+void sqliteExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
+ Vdbe *v = pParse->pVdbe;
+ int op = 0;
+ if( v==0 || pExpr==0 ) return;
+ switch( pExpr->op ){
+ case TK_LT: op = OP_Lt; break;
+ case TK_LE: op = OP_Le; break;
+ case TK_GT: op = OP_Gt; break;
+ case TK_GE: op = OP_Ge; break;
+ case TK_NE: op = OP_Ne; break;
+ case TK_EQ: op = OP_Eq; break;
+ case TK_ISNULL: op = OP_IsNull; break;
+ case TK_NOTNULL: op = OP_NotNull; break;
+ default: break;
+ }
+ switch( pExpr->op ){
+ case TK_AND: {
+ int d2 = sqliteVdbeMakeLabel(v);
+ sqliteExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
+ sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
+ sqliteVdbeResolveLabel(v, d2);
+ break;
+ }
+ case TK_OR: {
+ sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
+ sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
+ break;
+ }
+ case TK_NOT: {
+ sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
+ break;
+ }
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ: {
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteExprCode(pParse, pExpr->pRight);
+ if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
+ op += 6; /* Convert numeric opcodes to text opcodes */
+ }
+ sqliteVdbeAddOp(v, op, jumpIfNull, dest);
+ break;
+ }
+ case TK_ISNULL:
+ case TK_NOTNULL: {
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteVdbeAddOp(v, op, 1, dest);
+ break;
+ }
+ case TK_IN: {
+ int addr;
+ sqliteExprCode(pParse, pExpr->pLeft);
+ addr = sqliteVdbeCurrentAddr(v);
+ sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
+ if( pExpr->pSelect ){
+ sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, dest);
+ }else{
+ sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, dest);
+ }
+ break;
+ }
+ case TK_BETWEEN: {
+ int addr;
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
+ addr = sqliteVdbeAddOp(v, OP_Lt, !jumpIfNull, 0);
+ sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
+ sqliteVdbeAddOp(v, OP_Le, jumpIfNull, dest);
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
+ sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ break;
+ }
+ default: {
+ sqliteExprCode(pParse, pExpr);
+ sqliteVdbeAddOp(v, OP_If, jumpIfNull, dest);
+ break;
+ }
+ }
+}
+
+/*
+** Generate code for a boolean expression such that a jump is made
+** to the label "dest" if the expression is false but execution
+** continues straight thru if the expression is true.
+**
+** If the expression evaluates to NULL (neither true nor false) then
+** jump if jumpIfNull is true or fall through if jumpIfNull is false.
+*/
+void sqliteExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
+ Vdbe *v = pParse->pVdbe;
+ int op = 0;
+ if( v==0 || pExpr==0 ) return;
+ switch( pExpr->op ){
+ case TK_LT: op = OP_Ge; break;
+ case TK_LE: op = OP_Gt; break;
+ case TK_GT: op = OP_Le; break;
+ case TK_GE: op = OP_Lt; break;
+ case TK_NE: op = OP_Eq; break;
+ case TK_EQ: op = OP_Ne; break;
+ case TK_ISNULL: op = OP_NotNull; break;
+ case TK_NOTNULL: op = OP_IsNull; break;
+ default: break;
+ }
+ switch( pExpr->op ){
+ case TK_AND: {
+ sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
+ sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
+ break;
+ }
+ case TK_OR: {
+ int d2 = sqliteVdbeMakeLabel(v);
+ sqliteExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
+ sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
+ sqliteVdbeResolveLabel(v, d2);
+ break;
+ }
+ case TK_NOT: {
+ sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
+ break;
+ }
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ: {
+ if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
+ /* Convert numeric comparison opcodes into text comparison opcodes.
+ ** This step depends on the fact that the text comparision opcodes are
+ ** always 6 greater than their corresponding numeric comparison
+ ** opcodes.
+ */
+ assert( OP_Eq+6 == OP_StrEq );
+ op += 6;
+ }
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteExprCode(pParse, pExpr->pRight);
+ sqliteVdbeAddOp(v, op, jumpIfNull, dest);
+ break;
+ }
+ case TK_ISNULL:
+ case TK_NOTNULL: {
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteVdbeAddOp(v, op, 1, dest);
+ break;
+ }
+ case TK_IN: {
+ int addr;
+ sqliteExprCode(pParse, pExpr->pLeft);
+ addr = sqliteVdbeCurrentAddr(v);
+ sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
+ if( pExpr->pSelect ){
+ sqliteVdbeAddOp(v, OP_NotFound, pExpr->iTable, dest);
+ }else{
+ sqliteVdbeAddOp(v, OP_SetNotFound, pExpr->iTable, dest);
+ }
+ break;
+ }
+ case TK_BETWEEN: {
+ int addr;
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
+ addr = sqliteVdbeCurrentAddr(v);
+ sqliteVdbeAddOp(v, OP_Ge, !jumpIfNull, addr+3);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, dest);
+ sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
+ sqliteVdbeAddOp(v, OP_Gt, jumpIfNull, dest);
+ break;
+ }
+ default: {
+ sqliteExprCode(pParse, pExpr);
+ sqliteVdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
+ break;
+ }
+ }
+}
+
+/*
+** Do a deep comparison of two expression trees. Return TRUE (non-zero)
+** if they are identical and return FALSE if they differ in any way.
+*/
+int sqliteExprCompare(Expr *pA, Expr *pB){
+ int i;
+ if( pA==0 ){
+ return pB==0;
+ }else if( pB==0 ){
+ return 0;
+ }
+ if( pA->op!=pB->op ) return 0;
+ if( !sqliteExprCompare(pA->pLeft, pB->pLeft) ) return 0;
+ if( !sqliteExprCompare(pA->pRight, pB->pRight) ) return 0;
+ if( pA->pList ){
+ if( pB->pList==0 ) return 0;
+ if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
+ for(i=0; i<pA->pList->nExpr; i++){
+ if( !sqliteExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
+ return 0;
+ }
+ }
+ }else if( pB->pList ){
+ return 0;
+ }
+ if( pA->pSelect || pB->pSelect ) return 0;
+ if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
+ if( pA->token.z ){
+ if( pB->token.z==0 ) return 0;
+ if( pB->token.n!=pA->token.n ) return 0;
+ if( sqliteStrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0;
+ }
+ return 1;
+}
+
+/*
+** Add a new element to the pParse->aAgg[] array and return its index.
+*/
+static int appendAggInfo(Parse *pParse){
+ if( (pParse->nAgg & 0x7)==0 ){
+ int amt = pParse->nAgg + 8;
+ AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0]));
+ if( aAgg==0 ){
+ return -1;
+ }
+ pParse->aAgg = aAgg;
+ }
+ memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0]));
+ return pParse->nAgg++;
+}
+
+/*
+** Analyze the given expression looking for aggregate functions and
+** for variables that need to be added to the pParse->aAgg[] array.
+** Make additional entries to the pParse->aAgg[] array as necessary.
+**
+** This routine should only be called after the expression has been
+** analyzed by sqliteExprResolveIds() and sqliteExprCheck().
+**
+** If errors are seen, leave an error message in zErrMsg and return
+** the number of errors.
+*/
+int sqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){
+ int i;
+ AggExpr *aAgg;
+ int nErr = 0;
+
+ if( pExpr==0 ) return 0;
+ switch( pExpr->op ){
+ case TK_COLUMN: {
+ aAgg = pParse->aAgg;
+ for(i=0; i<pParse->nAgg; i++){
+ if( aAgg[i].isAgg ) continue;
+ if( aAgg[i].pExpr->iTable==pExpr->iTable
+ && aAgg[i].pExpr->iColumn==pExpr->iColumn ){
+ break;
+ }
+ }
+ if( i>=pParse->nAgg ){
+ i = appendAggInfo(pParse);
+ if( i<0 ) return 1;
+ pParse->aAgg[i].isAgg = 0;
+ pParse->aAgg[i].pExpr = pExpr;
+ }
+ pExpr->iAgg = i;
+ break;
+ }
+ case TK_AGG_FUNCTION: {
+ aAgg = pParse->aAgg;
+ for(i=0; i<pParse->nAgg; i++){
+ if( !aAgg[i].isAgg ) continue;
+ if( sqliteExprCompare(aAgg[i].pExpr, pExpr) ){
+ break;
+ }
+ }
+ if( i>=pParse->nAgg ){
+ i = appendAggInfo(pParse);
+ if( i<0 ) return 1;
+ pParse->aAgg[i].isAgg = 1;
+ pParse->aAgg[i].pExpr = pExpr;
+ pParse->aAgg[i].pFunc = sqliteFindFunction(pParse->db,
+ pExpr->token.z, pExpr->token.n,
+ pExpr->pList ? pExpr->pList->nExpr : 0, 0);
+ }
+ pExpr->iAgg = i;
+ break;
+ }
+ default: {
+ if( pExpr->pLeft ){
+ nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pLeft);
+ }
+ if( nErr==0 && pExpr->pRight ){
+ nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pRight);
+ }
+ if( nErr==0 && pExpr->pList ){
+ int n = pExpr->pList->nExpr;
+ int i;
+ for(i=0; nErr==0 && i<n; i++){
+ nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pList->a[i].pExpr);
+ }
+ }
+ break;
+ }
+ }
+ return nErr;
+}
+
+/*
+** Locate a user function given a name and a number of arguments.
+** Return a pointer to the FuncDef structure that defines that
+** function, or return NULL if the function does not exist.
+**
+** If the createFlag argument is true, then a new (blank) FuncDef
+** structure is created and liked into the "db" structure if a
+** no matching function previously existed. When createFlag is true
+** and the nArg parameter is -1, then only a function that accepts
+** any number of arguments will be returned.
+**
+** If createFlag is false and nArg is -1, then the first valid
+** function found is returned. A function is valid if either xFunc
+** or xStep is non-zero.
+*/
+FuncDef *sqliteFindFunction(
+ sqlite *db, /* An open database */
+ const char *zName, /* Name of the function. Not null-terminated */
+ int nName, /* Number of characters in the name */
+ int nArg, /* Number of arguments. -1 means any number */
+ int createFlag /* Create new entry if true and does not otherwise exist */
+){
+ FuncDef *pFirst, *p, *pMaybe;
+ pFirst = p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, nName);
+ if( p && !createFlag && nArg<0 ){
+ while( p && p->xFunc==0 && p->xStep==0 ){ p = p->pNext; }
+ return p;
+ }
+ pMaybe = 0;
+ while( p && p->nArg!=nArg ){
+ if( p->nArg<0 && !createFlag && (p->xFunc || p->xStep) ) pMaybe = p;
+ p = p->pNext;
+ }
+ if( p && !createFlag && p->xFunc==0 && p->xStep==0 ){
+ return 0;
+ }
+ if( p==0 && pMaybe ){
+ assert( createFlag==0 );
+ return pMaybe;
+ }
+ if( p==0 && createFlag && (p = sqliteMalloc(sizeof(*p)))!=0 ){
+ p->nArg = nArg;
+ p->pNext = pFirst;
+ p->dataType = pFirst ? pFirst->dataType : SQLITE_NUMERIC;
+ sqliteHashInsert(&db->aFunc, zName, nName, (void*)p);
+ }
+ return p;
+}
diff --git a/src/3rdparty/sqlite/func.c b/src/3rdparty/sqlite/func.c
new file mode 100644
index 0000000..e6613c5
--- /dev/null
+++ b/src/3rdparty/sqlite/func.c
@@ -0,0 +1,646 @@
+/*
+** 2002 February 23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement various SQL
+** functions of SQLite.
+**
+** There is only one exported symbol in this file - the function
+** sqliteRegisterBuildinFunctions() found at the bottom of the file.
+** All other code has file scope.
+**
+** $Id: func.c,v 1.43 2004/02/25 22:51:06 rdc Exp $
+*/
+#include <ctype.h>
+#include <math.h>
+#include <stdlib.h>
+#include <assert.h>
+#include "sqliteInt.h"
+#include "os.h"
+
+/*
+** Implementation of the non-aggregate min() and max() functions
+*/
+static void minmaxFunc(sqlite_func *context, int argc, const char **argv){
+ const char *zBest;
+ int i;
+ int (*xCompare)(const char*, const char*);
+ int mask; /* 0 for min() or 0xffffffff for max() */
+
+ if( argc==0 ) return;
+ mask = (int)sqlite_user_data(context);
+ zBest = argv[0];
+ if( zBest==0 ) return;
+ if( argv[1][0]=='n' ){
+ xCompare = sqliteCompare;
+ }else{
+ xCompare = strcmp;
+ }
+ for(i=2; i<argc; i+=2){
+ if( argv[i]==0 ) return;
+ if( (xCompare(argv[i], zBest)^mask)<0 ){
+ zBest = argv[i];
+ }
+ }
+ sqlite_set_result_string(context, zBest, -1);
+}
+
+/*
+** Return the type of the argument.
+*/
+static void typeofFunc(sqlite_func *context, int argc, const char **argv){
+ assert( argc==2 );
+ sqlite_set_result_string(context, argv[1], -1);
+}
+
+/*
+** Implementation of the length() function
+*/
+static void lengthFunc(sqlite_func *context, int argc, const char **argv){
+ const char *z;
+ int len;
+
+ assert( argc==1 );
+ z = argv[0];
+ if( z==0 ) return;
+#ifdef SQLITE_UTF8
+ for(len=0; *z; z++){ if( (0xc0&*z)!=0x80 ) len++; }
+#else
+ len = strlen(z);
+#endif
+ sqlite_set_result_int(context, len);
+}
+
+/*
+** Implementation of the abs() function
+*/
+static void absFunc(sqlite_func *context, int argc, const char **argv){
+ const char *z;
+ assert( argc==1 );
+ z = argv[0];
+ if( z==0 ) return;
+ if( z[0]=='-' && isdigit(z[1]) ) z++;
+ sqlite_set_result_string(context, z, -1);
+}
+
+/*
+** Implementation of the substr() function
+*/
+static void substrFunc(sqlite_func *context, int argc, const char **argv){
+ const char *z;
+#ifdef SQLITE_UTF8
+ const char *z2;
+ int i;
+#endif
+ int p1, p2, len;
+ assert( argc==3 );
+ z = argv[0];
+ if( z==0 ) return;
+ p1 = atoi(argv[1]?argv[1]:0);
+ p2 = atoi(argv[2]?argv[2]:0);
+#ifdef SQLITE_UTF8
+ for(len=0, z2=z; *z2; z2++){ if( (0xc0&*z2)!=0x80 ) len++; }
+#else
+ len = strlen(z);
+#endif
+ if( p1<0 ){
+ p1 += len;
+ if( p1<0 ){
+ p2 += p1;
+ p1 = 0;
+ }
+ }else if( p1>0 ){
+ p1--;
+ }
+ if( p1+p2>len ){
+ p2 = len-p1;
+ }
+#ifdef SQLITE_UTF8
+ for(i=0; i<p1 && z[i]; i++){
+ if( (z[i]&0xc0)==0x80 ) p1++;
+ }
+ while( z[i] && (z[i]&0xc0)==0x80 ){ i++; p1++; }
+ for(; i<p1+p2 && z[i]; i++){
+ if( (z[i]&0xc0)==0x80 ) p2++;
+ }
+ while( z[i] && (z[i]&0xc0)==0x80 ){ i++; p2++; }
+#endif
+ if( p2<0 ) p2 = 0;
+ sqlite_set_result_string(context, &z[p1], p2);
+}
+
+/*
+** Implementation of the round() function
+*/
+static void roundFunc(sqlite_func *context, int argc, const char **argv){
+ int n;
+ double r;
+ char zBuf[100];
+ assert( argc==1 || argc==2 );
+ if( argv[0]==0 || (argc==2 && argv[1]==0) ) return;
+ n = argc==2 ? atoi(argv[1]) : 0;
+ if( n>30 ) n = 30;
+ if( n<0 ) n = 0;
+ r = sqliteAtoF(argv[0], 0);
+ sprintf(zBuf,"%.*f",n,r);
+ sqlite_set_result_string(context, zBuf, -1);
+}
+
+/*
+** Implementation of the upper() and lower() SQL functions.
+*/
+static void upperFunc(sqlite_func *context, int argc, const char **argv){
+ char *z;
+ int i;
+ if( argc<1 || argv[0]==0 ) return;
+ z = sqlite_set_result_string(context, argv[0], -1);
+ if( z==0 ) return;
+ for(i=0; z[i]; i++){
+ if( islower(z[i]) ) z[i] = toupper(z[i]);
+ }
+}
+static void lowerFunc(sqlite_func *context, int argc, const char **argv){
+ char *z;
+ int i;
+ if( argc<1 || argv[0]==0 ) return;
+ z = sqlite_set_result_string(context, argv[0], -1);
+ if( z==0 ) return;
+ for(i=0; z[i]; i++){
+ if( isupper(z[i]) ) z[i] = tolower(z[i]);
+ }
+}
+
+/*
+** Implementation of the IFNULL(), NVL(), and COALESCE() functions.
+** All three do the same thing. They return the first non-NULL
+** argument.
+*/
+static void ifnullFunc(sqlite_func *context, int argc, const char **argv){
+ int i;
+ for(i=0; i<argc; i++){
+ if( argv[i] ){
+ sqlite_set_result_string(context, argv[i], -1);
+ break;
+ }
+ }
+}
+
+/*
+** Implementation of random(). Return a random integer.
+*/
+static void randomFunc(sqlite_func *context, int argc, const char **argv){
+ int r;
+ sqliteRandomness(sizeof(r), &r);
+ sqlite_set_result_int(context, r);
+}
+
+/*
+** Implementation of the last_insert_rowid() SQL function. The return
+** value is the same as the sqlite_last_insert_rowid() API function.
+*/
+static void last_insert_rowid(sqlite_func *context, int arg, const char **argv){
+ sqlite *db = sqlite_user_data(context);
+ sqlite_set_result_int(context, sqlite_last_insert_rowid(db));
+}
+
+/*
+** Implementation of the change_count() SQL function. The return
+** value is the same as the sqlite_changes() API function.
+*/
+static void change_count(sqlite_func *context, int arg, const char **argv){
+ sqlite *db = sqlite_user_data(context);
+ sqlite_set_result_int(context, sqlite_changes(db));
+}
+
+/*
+** Implementation of the last_statement_change_count() SQL function. The
+** return value is the same as the sqlite_last_statement_changes() API function.
+*/
+static void last_statement_change_count(sqlite_func *context, int arg,
+ const char **argv){
+ sqlite *db = sqlite_user_data(context);
+ sqlite_set_result_int(context, sqlite_last_statement_changes(db));
+}
+
+/*
+** Implementation of the like() SQL function. This function implements
+** the build-in LIKE operator. The first argument to the function is the
+** string and the second argument is the pattern. So, the SQL statements:
+**
+** A LIKE B
+**
+** is implemented as like(A,B).
+*/
+static void likeFunc(sqlite_func *context, int arg, const char **argv){
+ if( argv[0]==0 || argv[1]==0 ) return;
+ sqlite_set_result_int(context,
+ sqliteLikeCompare((const unsigned char*)argv[0],
+ (const unsigned char*)argv[1]));
+}
+
+/*
+** Implementation of the glob() SQL function. This function implements
+** the build-in GLOB operator. The first argument to the function is the
+** string and the second argument is the pattern. So, the SQL statements:
+**
+** A GLOB B
+**
+** is implemented as glob(A,B).
+*/
+static void globFunc(sqlite_func *context, int arg, const char **argv){
+ if( argv[0]==0 || argv[1]==0 ) return;
+ sqlite_set_result_int(context,
+ sqliteGlobCompare((const unsigned char*)argv[0],
+ (const unsigned char*)argv[1]));
+}
+
+/*
+** Implementation of the NULLIF(x,y) function. The result is the first
+** argument if the arguments are different. The result is NULL if the
+** arguments are equal to each other.
+*/
+static void nullifFunc(sqlite_func *context, int argc, const char **argv){
+ if( argv[0]!=0 && sqliteCompare(argv[0],argv[1])!=0 ){
+ sqlite_set_result_string(context, argv[0], -1);
+ }
+}
+
+/*
+** Implementation of the VERSION(*) function. The result is the version
+** of the SQLite library that is running.
+*/
+static void versionFunc(sqlite_func *context, int argc, const char **argv){
+ sqlite_set_result_string(context, sqlite_version, -1);
+}
+
+/*
+** EXPERIMENTAL - This is not an official function. The interface may
+** change. This function may disappear. Do not write code that depends
+** on this function.
+**
+** Implementation of the QUOTE() function. This function takes a single
+** argument. If the argument is numeric, the return value is the same as
+** the argument. If the argument is NULL, the return value is the string
+** "NULL". Otherwise, the argument is enclosed in single quotes with
+** single-quote escapes.
+*/
+static void quoteFunc(sqlite_func *context, int argc, const char **argv){
+ if( argc<1 ) return;
+ if( argv[0]==0 ){
+ sqlite_set_result_string(context, "NULL", 4);
+ }else if( sqliteIsNumber(argv[0]) ){
+ sqlite_set_result_string(context, argv[0], -1);
+ }else{
+ int i,j,n;
+ char *z;
+ for(i=n=0; argv[0][i]; i++){ if( argv[0][i]=='\'' ) n++; }
+ z = sqliteMalloc( i+n+3 );
+ if( z==0 ) return;
+ z[0] = '\'';
+ for(i=0, j=1; argv[0][i]; i++){
+ z[j++] = argv[0][i];
+ if( argv[0][i]=='\'' ){
+ z[j++] = '\'';
+ }
+ }
+ z[j++] = '\'';
+ z[j] = 0;
+ sqlite_set_result_string(context, z, j);
+ sqliteFree(z);
+ }
+}
+
+#ifdef SQLITE_SOUNDEX
+/*
+** Compute the soundex encoding of a word.
+*/
+static void soundexFunc(sqlite_func *context, int argc, const char **argv){
+ char zResult[8];
+ const char *zIn;
+ int i, j;
+ static const unsigned char iCode[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
+ 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
+ 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
+ 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
+ };
+ assert( argc==1 );
+ zIn = argv[0];
+ for(i=0; zIn[i] && !isalpha(zIn[i]); i++){}
+ if( zIn[i] ){
+ zResult[0] = toupper(zIn[i]);
+ for(j=1; j<4 && zIn[i]; i++){
+ int code = iCode[zIn[i]&0x7f];
+ if( code>0 ){
+ zResult[j++] = code + '0';
+ }
+ }
+ while( j<4 ){
+ zResult[j++] = '0';
+ }
+ zResult[j] = 0;
+ sqlite_set_result_string(context, zResult, 4);
+ }else{
+ sqlite_set_result_string(context, "?000", 4);
+ }
+}
+#endif
+
+#ifdef SQLITE_TEST
+/*
+** This function generates a string of random characters. Used for
+** generating test data.
+*/
+static void randStr(sqlite_func *context, int argc, const char **argv){
+ static const unsigned char zSrc[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789"
+ ".-!,:*^+=_|?/<> ";
+ int iMin, iMax, n, r, i;
+ unsigned char zBuf[1000];
+ if( argc>=1 ){
+ iMin = atoi(argv[0]);
+ if( iMin<0 ) iMin = 0;
+ if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
+ }else{
+ iMin = 1;
+ }
+ if( argc>=2 ){
+ iMax = atoi(argv[1]);
+ if( iMax<iMin ) iMax = iMin;
+ if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
+ }else{
+ iMax = 50;
+ }
+ n = iMin;
+ if( iMax>iMin ){
+ sqliteRandomness(sizeof(r), &r);
+ r &= 0x7fffffff;
+ n += r%(iMax + 1 - iMin);
+ }
+ assert( n<sizeof(zBuf) );
+ sqliteRandomness(n, zBuf);
+ for(i=0; i<n; i++){
+ zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];
+ }
+ zBuf[n] = 0;
+ sqlite_set_result_string(context, zBuf, n);
+}
+#endif
+
+/*
+** An instance of the following structure holds the context of a
+** sum() or avg() aggregate computation.
+*/
+typedef struct SumCtx SumCtx;
+struct SumCtx {
+ double sum; /* Sum of terms */
+ int cnt; /* Number of elements summed */
+};
+
+/*
+** Routines used to compute the sum or average.
+*/
+static void sumStep(sqlite_func *context, int argc, const char **argv){
+ SumCtx *p;
+ if( argc<1 ) return;
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ if( p && argv[0] ){
+ p->sum += sqliteAtoF(argv[0], 0);
+ p->cnt++;
+ }
+}
+static void sumFinalize(sqlite_func *context){
+ SumCtx *p;
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ sqlite_set_result_double(context, p ? p->sum : 0.0);
+}
+static void avgFinalize(sqlite_func *context){
+ SumCtx *p;
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ if( p && p->cnt>0 ){
+ sqlite_set_result_double(context, p->sum/(double)p->cnt);
+ }
+}
+
+/*
+** An instance of the following structure holds the context of a
+** variance or standard deviation computation.
+*/
+typedef struct StdDevCtx StdDevCtx;
+struct StdDevCtx {
+ double sum; /* Sum of terms */
+ double sum2; /* Sum of the squares of terms */
+ int cnt; /* Number of terms counted */
+};
+
+#if 0 /* Omit because math library is required */
+/*
+** Routines used to compute the standard deviation as an aggregate.
+*/
+static void stdDevStep(sqlite_func *context, int argc, const char **argv){
+ StdDevCtx *p;
+ double x;
+ if( argc<1 ) return;
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ if( p && argv[0] ){
+ x = sqliteAtoF(argv[0], 0);
+ p->sum += x;
+ p->sum2 += x*x;
+ p->cnt++;
+ }
+}
+static void stdDevFinalize(sqlite_func *context){
+ double rN = sqlite_aggregate_count(context);
+ StdDevCtx *p = sqlite_aggregate_context(context, sizeof(*p));
+ if( p && p->cnt>1 ){
+ double rCnt = cnt;
+ sqlite_set_result_double(context,
+ sqrt((p->sum2 - p->sum*p->sum/rCnt)/(rCnt-1.0)));
+ }
+}
+#endif
+
+/*
+** The following structure keeps track of state information for the
+** count() aggregate function.
+*/
+typedef struct CountCtx CountCtx;
+struct CountCtx {
+ int n;
+};
+
+/*
+** Routines to implement the count() aggregate function.
+*/
+static void countStep(sqlite_func *context, int argc, const char **argv){
+ CountCtx *p;
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ if( (argc==0 || argv[0]) && p ){
+ p->n++;
+ }
+}
+static void countFinalize(sqlite_func *context){
+ CountCtx *p;
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ sqlite_set_result_int(context, p ? p->n : 0);
+}
+
+/*
+** This function tracks state information for the min() and max()
+** aggregate functions.
+*/
+typedef struct MinMaxCtx MinMaxCtx;
+struct MinMaxCtx {
+ char *z; /* The best so far */
+ char zBuf[28]; /* Space that can be used for storage */
+};
+
+/*
+** Routines to implement min() and max() aggregate functions.
+*/
+static void minmaxStep(sqlite_func *context, int argc, const char **argv){
+ MinMaxCtx *p;
+ int (*xCompare)(const char*, const char*);
+ int mask; /* 0 for min() or 0xffffffff for max() */
+
+ assert( argc==2 );
+ if( argv[1][0]=='n' ){
+ xCompare = sqliteCompare;
+ }else{
+ xCompare = strcmp;
+ }
+ mask = (int)sqlite_user_data(context);
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ if( p==0 || argc<1 || argv[0]==0 ) return;
+ if( p->z==0 || (xCompare(argv[0],p->z)^mask)<0 ){
+ int len;
+ if( !p->zBuf[0] ){
+ sqliteFree(p->z);
+ }
+ len = strlen(argv[0]);
+ if( len < sizeof(p->zBuf)-1 ){
+ p->z = &p->zBuf[1];
+ p->zBuf[0] = 1;
+ }else{
+ p->z = sqliteMalloc( len+1 );
+ p->zBuf[0] = 0;
+ if( p->z==0 ) return;
+ }
+ strcpy(p->z, argv[0]);
+ }
+}
+static void minMaxFinalize(sqlite_func *context){
+ MinMaxCtx *p;
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ if( p && p->z ){
+ sqlite_set_result_string(context, p->z, strlen(p->z));
+ }
+ if( p && !p->zBuf[0] ){
+ sqliteFree(p->z);
+ }
+}
+
+/*
+** This function registered all of the above C functions as SQL
+** functions. This should be the only routine in this file with
+** external linkage.
+*/
+void sqliteRegisterBuiltinFunctions(sqlite *db){
+ static struct {
+ char *zName;
+ signed char nArg;
+ signed char dataType;
+ u8 argType; /* 0: none. 1: db 2: (-1) */
+ void (*xFunc)(sqlite_func*,int,const char**);
+ } aFuncs[] = {
+ { "min", -1, SQLITE_ARGS, 0, minmaxFunc },
+ { "min", 0, 0, 0, 0 },
+ { "max", -1, SQLITE_ARGS, 2, minmaxFunc },
+ { "max", 0, 0, 2, 0 },
+ { "typeof", 1, SQLITE_TEXT, 0, typeofFunc },
+ { "length", 1, SQLITE_NUMERIC, 0, lengthFunc },
+ { "substr", 3, SQLITE_TEXT, 0, substrFunc },
+ { "abs", 1, SQLITE_NUMERIC, 0, absFunc },
+ { "round", 1, SQLITE_NUMERIC, 0, roundFunc },
+ { "round", 2, SQLITE_NUMERIC, 0, roundFunc },
+ { "upper", 1, SQLITE_TEXT, 0, upperFunc },
+ { "lower", 1, SQLITE_TEXT, 0, lowerFunc },
+ { "coalesce", -1, SQLITE_ARGS, 0, ifnullFunc },
+ { "coalesce", 0, 0, 0, 0 },
+ { "coalesce", 1, 0, 0, 0 },
+ { "ifnull", 2, SQLITE_ARGS, 0, ifnullFunc },
+ { "random", -1, SQLITE_NUMERIC, 0, randomFunc },
+ { "like", 2, SQLITE_NUMERIC, 0, likeFunc },
+ { "glob", 2, SQLITE_NUMERIC, 0, globFunc },
+ { "nullif", 2, SQLITE_ARGS, 0, nullifFunc },
+ { "sqlite_version",0,SQLITE_TEXT, 0, versionFunc},
+ { "quote", 1, SQLITE_ARGS, 0, quoteFunc },
+ { "last_insert_rowid", 0, SQLITE_NUMERIC, 1, last_insert_rowid },
+ { "change_count", 0, SQLITE_NUMERIC, 1, change_count },
+ { "last_statement_change_count",
+ 0, SQLITE_NUMERIC, 1, last_statement_change_count },
+#ifdef SQLITE_SOUNDEX
+ { "soundex", 1, SQLITE_TEXT, 0, soundexFunc},
+#endif
+#ifdef SQLITE_TEST
+ { "randstr", 2, SQLITE_TEXT, 0, randStr },
+#endif
+ };
+ static struct {
+ char *zName;
+ signed char nArg;
+ signed char dataType;
+ u8 argType;
+ void (*xStep)(sqlite_func*,int,const char**);
+ void (*xFinalize)(sqlite_func*);
+ } aAggs[] = {
+ { "min", 1, 0, 0, minmaxStep, minMaxFinalize },
+ { "max", 1, 0, 2, minmaxStep, minMaxFinalize },
+ { "sum", 1, SQLITE_NUMERIC, 0, sumStep, sumFinalize },
+ { "avg", 1, SQLITE_NUMERIC, 0, sumStep, avgFinalize },
+ { "count", 0, SQLITE_NUMERIC, 0, countStep, countFinalize },
+ { "count", 1, SQLITE_NUMERIC, 0, countStep, countFinalize },
+#if 0
+ { "stddev", 1, SQLITE_NUMERIC, 0, stdDevStep, stdDevFinalize },
+#endif
+ };
+ static const char *azTypeFuncs[] = { "min", "max", "typeof" };
+ int i;
+
+ for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
+ void *pArg = aFuncs[i].argType==2 ? (void*)(-1) : db;
+ sqlite_create_function(db, aFuncs[i].zName,
+ aFuncs[i].nArg, aFuncs[i].xFunc, pArg);
+ if( aFuncs[i].xFunc ){
+ sqlite_function_type(db, aFuncs[i].zName, aFuncs[i].dataType);
+ }
+ }
+ for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){
+ void *pArg = aAggs[i].argType==2 ? (void*)(-1) : db;
+ sqlite_create_aggregate(db, aAggs[i].zName,
+ aAggs[i].nArg, aAggs[i].xStep, aAggs[i].xFinalize, pArg);
+ sqlite_function_type(db, aAggs[i].zName, aAggs[i].dataType);
+ }
+ for(i=0; i<sizeof(azTypeFuncs)/sizeof(azTypeFuncs[0]); i++){
+ int n = strlen(azTypeFuncs[i]);
+ FuncDef *p = sqliteHashFind(&db->aFunc, azTypeFuncs[i], n);
+ while( p ){
+ p->includeTypes = 1;
+ p = p->pNext;
+ }
+ }
+ sqliteRegisterDateTimeFunctions(db);
+}
diff --git a/src/3rdparty/sqlite/hash.c b/src/3rdparty/sqlite/hash.c
new file mode 100644
index 0000000..c7feea8
--- /dev/null
+++ b/src/3rdparty/sqlite/hash.c
@@ -0,0 +1,356 @@
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the implementation of generic hash-tables
+** used in SQLite.
+**
+** $Id: hash.c,v 1.11 2004/01/08 02:17:33 drh Exp $
+*/
+#include "sqliteInt.h"
+#include <assert.h>
+
+/* Turn bulk memory into a hash table object by initializing the
+** fields of the Hash structure.
+**
+** "new" is a pointer to the hash table that is to be initialized.
+** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
+** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass
+** determines what kind of key the hash table will use. "copyKey" is
+** true if the hash table should make its own private copy of keys and
+** false if it should just use the supplied pointer. CopyKey only makes
+** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
+** for other key classes.
+*/
+void sqliteHashInit(Hash *new, int keyClass, int copyKey){
+ assert( new!=0 );
+ assert( keyClass>=SQLITE_HASH_INT && keyClass<=SQLITE_HASH_BINARY );
+ new->keyClass = keyClass;
+ new->copyKey = copyKey &&
+ (keyClass==SQLITE_HASH_STRING || keyClass==SQLITE_HASH_BINARY);
+ new->first = 0;
+ new->count = 0;
+ new->htsize = 0;
+ new->ht = 0;
+}
+
+/* Remove all entries from a hash table. Reclaim all memory.
+** Call this routine to delete a hash table or to reset a hash table
+** to the empty state.
+*/
+void sqliteHashClear(Hash *pH){
+ HashElem *elem; /* For looping over all elements of the table */
+
+ assert( pH!=0 );
+ elem = pH->first;
+ pH->first = 0;
+ if( pH->ht ) sqliteFree(pH->ht);
+ pH->ht = 0;
+ pH->htsize = 0;
+ while( elem ){
+ HashElem *next_elem = elem->next;
+ if( pH->copyKey && elem->pKey ){
+ sqliteFree(elem->pKey);
+ }
+ sqliteFree(elem);
+ elem = next_elem;
+ }
+ pH->count = 0;
+}
+
+/*
+** Hash and comparison functions when the mode is SQLITE_HASH_INT
+*/
+static int intHash(const void *pKey, int nKey){
+ return nKey ^ (nKey<<8) ^ (nKey>>8);
+}
+static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ return n2 - n1;
+}
+
+#if 0 /* NOT USED */
+/*
+** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
+*/
+static int ptrHash(const void *pKey, int nKey){
+ uptr x = Addr(pKey);
+ return x ^ (x<<8) ^ (x>>8);
+}
+static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( pKey1==pKey2 ) return 0;
+ if( pKey1<pKey2 ) return -1;
+ return 1;
+}
+#endif
+
+/*
+** Hash and comparison functions when the mode is SQLITE_HASH_STRING
+*/
+static int strHash(const void *pKey, int nKey){
+ return sqliteHashNoCase((const char*)pKey, nKey);
+}
+static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( n1!=n2 ) return n2-n1;
+ return sqliteStrNICmp((const char*)pKey1,(const char*)pKey2,n1);
+}
+
+/*
+** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
+*/
+static int binHash(const void *pKey, int nKey){
+ int h = 0;
+ const char *z = (const char *)pKey;
+ while( nKey-- > 0 ){
+ h = (h<<3) ^ h ^ *(z++);
+ }
+ return h & 0x7fffffff;
+}
+static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( n1!=n2 ) return n2-n1;
+ return memcmp(pKey1,pKey2,n1);
+}
+
+/*
+** Return a pointer to the appropriate hash function given the key class.
+**
+** The C syntax in this function definition may be unfamilar to some
+** programmers, so we provide the following additional explanation:
+**
+** The name of the function is "hashFunction". The function takes a
+** single parameter "keyClass". The return value of hashFunction()
+** is a pointer to another function. Specifically, the return value
+** of hashFunction() is a pointer to a function that takes two parameters
+** with types "const void*" and "int" and returns an "int".
+*/
+static int (*hashFunction(int keyClass))(const void*,int){
+ switch( keyClass ){
+ case SQLITE_HASH_INT: return &intHash;
+ /* case SQLITE_HASH_POINTER: return &ptrHash; // NOT USED */
+ case SQLITE_HASH_STRING: return &strHash;
+ case SQLITE_HASH_BINARY: return &binHash;;
+ default: break;
+ }
+ return 0;
+}
+
+/*
+** Return a pointer to the appropriate hash function given the key class.
+**
+** For help in interpreted the obscure C code in the function definition,
+** see the header comment on the previous function.
+*/
+static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
+ switch( keyClass ){
+ case SQLITE_HASH_INT: return &intCompare;
+ /* case SQLITE_HASH_POINTER: return &ptrCompare; // NOT USED */
+ case SQLITE_HASH_STRING: return &strCompare;
+ case SQLITE_HASH_BINARY: return &binCompare;
+ default: break;
+ }
+ return 0;
+}
+
+
+/* Resize the hash table so that it cantains "new_size" buckets.
+** "new_size" must be a power of 2. The hash table might fail
+** to resize if sqliteMalloc() fails.
+*/
+static void rehash(Hash *pH, int new_size){
+ struct _ht *new_ht; /* The new hash table */
+ HashElem *elem, *next_elem; /* For looping over existing elements */
+ HashElem *x; /* Element being copied to new hash table */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ assert( (new_size & (new_size-1))==0 );
+ new_ht = (struct _ht *)sqliteMalloc( new_size*sizeof(struct _ht) );
+ if( new_ht==0 ) return;
+ if( pH->ht ) sqliteFree(pH->ht);
+ pH->ht = new_ht;
+ pH->htsize = new_size;
+ xHash = hashFunction(pH->keyClass);
+ for(elem=pH->first, pH->first=0; elem; elem = next_elem){
+ int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
+ next_elem = elem->next;
+ x = new_ht[h].chain;
+ if( x ){
+ elem->next = x;
+ elem->prev = x->prev;
+ if( x->prev ) x->prev->next = elem;
+ else pH->first = elem;
+ x->prev = elem;
+ }else{
+ elem->next = pH->first;
+ if( pH->first ) pH->first->prev = elem;
+ elem->prev = 0;
+ pH->first = elem;
+ }
+ new_ht[h].chain = elem;
+ new_ht[h].count++;
+ }
+}
+
+/* This function (for internal use only) locates an element in an
+** hash table that matches the given key. The hash for this key has
+** already been computed and is passed as the 4th parameter.
+*/
+static HashElem *findElementGivenHash(
+ const Hash *pH, /* The pH to be searched */
+ const void *pKey, /* The key we are searching for */
+ int nKey,
+ int h /* The hash for this key. */
+){
+ HashElem *elem; /* Used to loop thru the element list */
+ int count; /* Number of elements left to test */
+ int (*xCompare)(const void*,int,const void*,int); /* comparison function */
+
+ if( pH->ht ){
+ elem = pH->ht[h].chain;
+ count = pH->ht[h].count;
+ xCompare = compareFunction(pH->keyClass);
+ while( count-- && elem ){
+ if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
+ return elem;
+ }
+ elem = elem->next;
+ }
+ }
+ return 0;
+}
+
+/* Remove a single entry from the hash table given a pointer to that
+** element and a hash on the element's key.
+*/
+static void removeElementGivenHash(
+ Hash *pH, /* The pH containing "elem" */
+ HashElem* elem, /* The element to be removed from the pH */
+ int h /* Hash value for the element */
+){
+ if( elem->prev ){
+ elem->prev->next = elem->next;
+ }else{
+ pH->first = elem->next;
+ }
+ if( elem->next ){
+ elem->next->prev = elem->prev;
+ }
+ if( pH->ht[h].chain==elem ){
+ pH->ht[h].chain = elem->next;
+ }
+ pH->ht[h].count--;
+ if( pH->ht[h].count<=0 ){
+ pH->ht[h].chain = 0;
+ }
+ if( pH->copyKey && elem->pKey ){
+ sqliteFree(elem->pKey);
+ }
+ sqliteFree( elem );
+ pH->count--;
+}
+
+/* Attempt to locate an element of the hash table pH with a key
+** that matches pKey,nKey. Return the data for this element if it is
+** found, or NULL if there is no match.
+*/
+void *sqliteHashFind(const Hash *pH, const void *pKey, int nKey){
+ int h; /* A hash on key */
+ HashElem *elem; /* The element that matches key */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ if( pH==0 || pH->ht==0 ) return 0;
+ xHash = hashFunction(pH->keyClass);
+ assert( xHash!=0 );
+ h = (*xHash)(pKey,nKey);
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
+ return elem ? elem->data : 0;
+}
+
+/* Insert an element into the hash table pH. The key is pKey,nKey
+** and the data is "data".
+**
+** If no element exists with a matching key, then a new
+** element is created. A copy of the key is made if the copyKey
+** flag is set. NULL is returned.
+**
+** If another element already exists with the same key, then the
+** new data replaces the old data and the old data is returned.
+** The key is not copied in this instance. If a malloc fails, then
+** the new data is returned and the hash table is unchanged.
+**
+** If the "data" parameter to this function is NULL, then the
+** element corresponding to "key" is removed from the hash table.
+*/
+void *sqliteHashInsert(Hash *pH, const void *pKey, int nKey, void *data){
+ int hraw; /* Raw hash value of the key */
+ int h; /* the hash of the key modulo hash table size */
+ HashElem *elem; /* Used to loop thru the element list */
+ HashElem *new_elem; /* New element added to the pH */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ assert( pH!=0 );
+ xHash = hashFunction(pH->keyClass);
+ assert( xHash!=0 );
+ hraw = (*xHash)(pKey, nKey);
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ h = hraw & (pH->htsize-1);
+ elem = findElementGivenHash(pH,pKey,nKey,h);
+ if( elem ){
+ void *old_data = elem->data;
+ if( data==0 ){
+ removeElementGivenHash(pH,elem,h);
+ }else{
+ elem->data = data;
+ }
+ return old_data;
+ }
+ if( data==0 ) return 0;
+ new_elem = (HashElem*)sqliteMalloc( sizeof(HashElem) );
+ if( new_elem==0 ) return data;
+ if( pH->copyKey && pKey!=0 ){
+ new_elem->pKey = sqliteMallocRaw( nKey );
+ if( new_elem->pKey==0 ){
+ sqliteFree(new_elem);
+ return data;
+ }
+ memcpy((void*)new_elem->pKey, pKey, nKey);
+ }else{
+ new_elem->pKey = (void*)pKey;
+ }
+ new_elem->nKey = nKey;
+ pH->count++;
+ if( pH->htsize==0 ) rehash(pH,8);
+ if( pH->htsize==0 ){
+ pH->count = 0;
+ sqliteFree(new_elem);
+ return data;
+ }
+ if( pH->count > pH->htsize ){
+ rehash(pH,pH->htsize*2);
+ }
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ h = hraw & (pH->htsize-1);
+ elem = pH->ht[h].chain;
+ if( elem ){
+ new_elem->next = elem;
+ new_elem->prev = elem->prev;
+ if( elem->prev ){ elem->prev->next = new_elem; }
+ else { pH->first = new_elem; }
+ elem->prev = new_elem;
+ }else{
+ new_elem->next = pH->first;
+ new_elem->prev = 0;
+ if( pH->first ){ pH->first->prev = new_elem; }
+ pH->first = new_elem;
+ }
+ pH->ht[h].count++;
+ pH->ht[h].chain = new_elem;
+ new_elem->data = data;
+ return 0;
+}
diff --git a/src/3rdparty/sqlite/hash.h b/src/3rdparty/sqlite/hash.h
new file mode 100644
index 0000000..05d0d00
--- /dev/null
+++ b/src/3rdparty/sqlite/hash.h
@@ -0,0 +1,109 @@
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the header file for the generic hash-table implemenation
+** used in SQLite.
+**
+** $Id: hash.h,v 1.6 2004/01/08 02:17:33 drh Exp $
+*/
+#ifndef _SQLITE_HASH_H_
+#define _SQLITE_HASH_H_
+
+/* Forward declarations of structures. */
+typedef struct Hash Hash;
+typedef struct HashElem HashElem;
+
+/* A complete hash table is an instance of the following structure.
+** The internals of this structure are intended to be opaque -- client
+** code should not attempt to access or modify the fields of this structure
+** directly. Change this structure only by using the routines below.
+** However, many of the "procedures" and "functions" for modifying and
+** accessing this structure are really macros, so we can't really make
+** this structure opaque.
+*/
+struct Hash {
+ char keyClass; /* SQLITE_HASH_INT, _POINTER, _STRING, _BINARY */
+ char copyKey; /* True if copy of key made on insert */
+ int count; /* Number of entries in this table */
+ HashElem *first; /* The first element of the array */
+ int htsize; /* Number of buckets in the hash table */
+ struct _ht { /* the hash table */
+ int count; /* Number of entries with this hash */
+ HashElem *chain; /* Pointer to first entry with this hash */
+ } *ht;
+};
+
+/* Each element in the hash table is an instance of the following
+** structure. All elements are stored on a single doubly-linked list.
+**
+** Again, this structure is intended to be opaque, but it can't really
+** be opaque because it is used by macros.
+*/
+struct HashElem {
+ HashElem *next, *prev; /* Next and previous elements in the table */
+ void *data; /* Data associated with this element */
+ void *pKey; int nKey; /* Key associated with this element */
+};
+
+/*
+** There are 4 different modes of operation for a hash table:
+**
+** SQLITE_HASH_INT nKey is used as the key and pKey is ignored.
+**
+** SQLITE_HASH_POINTER pKey is used as the key and nKey is ignored.
+**
+** SQLITE_HASH_STRING pKey points to a string that is nKey bytes long
+** (including the null-terminator, if any). Case
+** is ignored in comparisons.
+**
+** SQLITE_HASH_BINARY pKey points to binary data nKey bytes long.
+** memcmp() is used to compare keys.
+**
+** A copy of the key is made for SQLITE_HASH_STRING and SQLITE_HASH_BINARY
+** if the copyKey parameter to HashInit is 1.
+*/
+#define SQLITE_HASH_INT 1
+/* #define SQLITE_HASH_POINTER 2 // NOT USED */
+#define SQLITE_HASH_STRING 3
+#define SQLITE_HASH_BINARY 4
+
+/*
+** Access routines. To delete, insert a NULL pointer.
+*/
+void sqliteHashInit(Hash*, int keytype, int copyKey);
+void *sqliteHashInsert(Hash*, const void *pKey, int nKey, void *pData);
+void *sqliteHashFind(const Hash*, const void *pKey, int nKey);
+void sqliteHashClear(Hash*);
+
+/*
+** Macros for looping over all elements of a hash table. The idiom is
+** like this:
+**
+** Hash h;
+** HashElem *p;
+** ...
+** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
+** SomeStructure *pData = sqliteHashData(p);
+** // do something with pData
+** }
+*/
+#define sqliteHashFirst(H) ((H)->first)
+#define sqliteHashNext(E) ((E)->next)
+#define sqliteHashData(E) ((E)->data)
+#define sqliteHashKey(E) ((E)->pKey)
+#define sqliteHashKeysize(E) ((E)->nKey)
+
+/*
+** Number of entries in a hash table
+*/
+#define sqliteHashCount(H) ((H)->count)
+
+#endif /* _SQLITE_HASH_H_ */
diff --git a/src/3rdparty/sqlite/insert.c b/src/3rdparty/sqlite/insert.c
new file mode 100644
index 0000000..64e18ba
--- /dev/null
+++ b/src/3rdparty/sqlite/insert.c
@@ -0,0 +1,919 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle INSERT statements in SQLite.
+**
+** $Id: insert.c,v 1.94 2004/02/24 01:05:33 drh Exp $
+*/
+#include "sqliteInt.h"
+
+/*
+** This routine is call to handle SQL of the following forms:
+**
+** insert into TABLE (IDLIST) values(EXPRLIST)
+** insert into TABLE (IDLIST) select
+**
+** The IDLIST following the table name is always optional. If omitted,
+** then a list of all columns for the table is substituted. The IDLIST
+** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
+**
+** The pList parameter holds EXPRLIST in the first form of the INSERT
+** statement above, and pSelect is NULL. For the second form, pList is
+** NULL and pSelect is a pointer to the select statement used to generate
+** data for the insert.
+**
+** The code generated follows one of three templates. For a simple
+** select with data coming from a VALUES clause, the code executes
+** once straight down through. The template looks like this:
+**
+** open write cursor to <table> and its indices
+** puts VALUES clause expressions onto the stack
+** write the resulting record into <table>
+** cleanup
+**
+** If the statement is of the form
+**
+** INSERT INTO <table> SELECT ...
+**
+** And the SELECT clause does not read from <table> at any time, then
+** the generated code follows this template:
+**
+** goto B
+** A: setup for the SELECT
+** loop over the tables in the SELECT
+** gosub C
+** end loop
+** cleanup after the SELECT
+** goto D
+** B: open write cursor to <table> and its indices
+** goto A
+** C: insert the select result into <table>
+** return
+** D: cleanup
+**
+** The third template is used if the insert statement takes its
+** values from a SELECT but the data is being inserted into a table
+** that is also read as part of the SELECT. In the third form,
+** we have to use a intermediate table to store the results of
+** the select. The template is like this:
+**
+** goto B
+** A: setup for the SELECT
+** loop over the tables in the SELECT
+** gosub C
+** end loop
+** cleanup after the SELECT
+** goto D
+** C: insert the select result into the intermediate table
+** return
+** B: open a cursor to an intermediate table
+** goto A
+** D: open write cursor to <table> and its indices
+** loop over the intermediate table
+** transfer values form intermediate table into <table>
+** end the loop
+** cleanup
+*/
+void sqliteInsert(
+ Parse *pParse, /* Parser context */
+ SrcList *pTabList, /* Name of table into which we are inserting */
+ ExprList *pList, /* List of values to be inserted */
+ Select *pSelect, /* A SELECT statement to use as the data source */
+ IdList *pColumn, /* Column names corresponding to IDLIST. */
+ int onError /* How to handle constraint errors */
+){
+ Table *pTab; /* The table to insert into */
+ char *zTab; /* Name of the table into which we are inserting */
+ const char *zDb; /* Name of the database holding this table */
+ int i, j, idx; /* Loop counters */
+ Vdbe *v; /* Generate code into this virtual machine */
+ Index *pIdx; /* For looping over indices of the table */
+ int nColumn; /* Number of columns in the data */
+ int base; /* VDBE Cursor number for pTab */
+ int iCont, iBreak; /* Beginning and end of the loop over srcTab */
+ sqlite *db; /* The main database structure */
+ int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
+ int endOfLoop; /* Label for the end of the insertion loop */
+ int useTempTable; /* Store SELECT results in intermediate table */
+ int srcTab; /* Data comes from this temporary cursor if >=0 */
+ int iSelectLoop; /* Address of code that implements the SELECT */
+ int iCleanup; /* Address of the cleanup code */
+ int iInsertBlock; /* Address of the subroutine used to insert data */
+ int iCntMem; /* Memory cell used for the row counter */
+ int isView; /* True if attempting to insert into a view */
+
+ int row_triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
+ int before_triggers; /* True if there are BEFORE triggers */
+ int after_triggers; /* True if there are AFTER triggers */
+ int newIdx = -1; /* Cursor for the NEW table */
+
+ if( pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup;
+ db = pParse->db;
+
+ /* Locate the table into which we will be inserting new information.
+ */
+ assert( pTabList->nSrc==1 );
+ zTab = pTabList->a[0].zName;
+ if( zTab==0 ) goto insert_cleanup;
+ pTab = sqliteSrcListLookup(pParse, pTabList);
+ if( pTab==0 ){
+ goto insert_cleanup;
+ }
+ assert( pTab->iDb<db->nDb );
+ zDb = db->aDb[pTab->iDb].zName;
+ if( sqliteAuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
+ goto insert_cleanup;
+ }
+
+ /* Ensure that:
+ * (a) the table is not read-only,
+ * (b) that if it is a view then ON INSERT triggers exist
+ */
+ before_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT,
+ TK_BEFORE, TK_ROW, 0);
+ after_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT,
+ TK_AFTER, TK_ROW, 0);
+ row_triggers_exist = before_triggers || after_triggers;
+ isView = pTab->pSelect!=0;
+ if( sqliteIsReadOnly(pParse, pTab, before_triggers) ){
+ goto insert_cleanup;
+ }
+ if( pTab==0 ) goto insert_cleanup;
+
+ /* If pTab is really a view, make sure it has been initialized.
+ */
+ if( isView && sqliteViewGetColumnNames(pParse, pTab) ){
+ goto insert_cleanup;
+ }
+
+ /* Allocate a VDBE
+ */
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) goto insert_cleanup;
+ sqliteBeginWriteOperation(pParse, pSelect || row_triggers_exist, pTab->iDb);
+
+ /* if there are row triggers, allocate a temp table for new.* references. */
+ if( row_triggers_exist ){
+ newIdx = pParse->nTab++;
+ }
+
+ /* Figure out how many columns of data are supplied. If the data
+ ** is coming from a SELECT statement, then this step also generates
+ ** all the code to implement the SELECT statement and invoke a subroutine
+ ** to process each row of the result. (Template 2.) If the SELECT
+ ** statement uses the the table that is being inserted into, then the
+ ** subroutine is also coded here. That subroutine stores the SELECT
+ ** results in a temporary table. (Template 3.)
+ */
+ if( pSelect ){
+ /* Data is coming from a SELECT. Generate code to implement that SELECT
+ */
+ int rc, iInitCode;
+ iInitCode = sqliteVdbeAddOp(v, OP_Goto, 0, 0);
+ iSelectLoop = sqliteVdbeCurrentAddr(v);
+ iInsertBlock = sqliteVdbeMakeLabel(v);
+ rc = sqliteSelect(pParse, pSelect, SRT_Subroutine, iInsertBlock, 0,0,0);
+ if( rc || pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup;
+ iCleanup = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_Goto, 0, iCleanup);
+ assert( pSelect->pEList );
+ nColumn = pSelect->pEList->nExpr;
+
+ /* Set useTempTable to TRUE if the result of the SELECT statement
+ ** should be written into a temporary table. Set to FALSE if each
+ ** row of the SELECT can be written directly into the result table.
+ **
+ ** A temp table must be used if the table being updated is also one
+ ** of the tables being read by the SELECT statement. Also use a
+ ** temp table in the case of row triggers.
+ */
+ if( row_triggers_exist ){
+ useTempTable = 1;
+ }else{
+ int addr = sqliteVdbeFindOp(v, OP_OpenRead, pTab->tnum);
+ useTempTable = 0;
+ if( addr>0 ){
+ VdbeOp *pOp = sqliteVdbeGetOp(v, addr-2);
+ if( pOp->opcode==OP_Integer && pOp->p1==pTab->iDb ){
+ useTempTable = 1;
+ }
+ }
+ }
+
+ if( useTempTable ){
+ /* Generate the subroutine that SELECT calls to process each row of
+ ** the result. Store the result in a temporary table
+ */
+ srcTab = pParse->nTab++;
+ sqliteVdbeResolveLabel(v, iInsertBlock);
+ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
+ sqliteVdbeAddOp(v, OP_NewRecno, srcTab, 0);
+ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, srcTab, 0);
+ sqliteVdbeAddOp(v, OP_Return, 0, 0);
+
+ /* The following code runs first because the GOTO at the very top
+ ** of the program jumps to it. Create the temporary table, then jump
+ ** back up and execute the SELECT code above.
+ */
+ sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v));
+ sqliteVdbeAddOp(v, OP_OpenTemp, srcTab, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop);
+ sqliteVdbeResolveLabel(v, iCleanup);
+ }else{
+ sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v));
+ }
+ }else{
+ /* This is the case if the data for the INSERT is coming from a VALUES
+ ** clause
+ */
+ SrcList dummy;
+ assert( pList!=0 );
+ srcTab = -1;
+ useTempTable = 0;
+ assert( pList );
+ nColumn = pList->nExpr;
+ dummy.nSrc = 0;
+ for(i=0; i<nColumn; i++){
+ if( sqliteExprResolveIds(pParse, &dummy, 0, pList->a[i].pExpr) ){
+ goto insert_cleanup;
+ }
+ if( sqliteExprCheck(pParse, pList->a[i].pExpr, 0, 0) ){
+ goto insert_cleanup;
+ }
+ }
+ }
+
+ /* Make sure the number of columns in the source data matches the number
+ ** of columns to be inserted into the table.
+ */
+ if( pColumn==0 && nColumn!=pTab->nCol ){
+ sqliteErrorMsg(pParse,
+ "table %S has %d columns but %d values were supplied",
+ pTabList, 0, pTab->nCol, nColumn);
+ goto insert_cleanup;
+ }
+ if( pColumn!=0 && nColumn!=pColumn->nId ){
+ sqliteErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
+ goto insert_cleanup;
+ }
+
+ /* If the INSERT statement included an IDLIST term, then make sure
+ ** all elements of the IDLIST really are columns of the table and
+ ** remember the column indices.
+ **
+ ** If the table has an INTEGER PRIMARY KEY column and that column
+ ** is named in the IDLIST, then record in the keyColumn variable
+ ** the index into IDLIST of the primary key column. keyColumn is
+ ** the index of the primary key as it appears in IDLIST, not as
+ ** is appears in the original table. (The index of the primary
+ ** key in the original table is pTab->iPKey.)
+ */
+ if( pColumn ){
+ for(i=0; i<pColumn->nId; i++){
+ pColumn->a[i].idx = -1;
+ }
+ for(i=0; i<pColumn->nId; i++){
+ for(j=0; j<pTab->nCol; j++){
+ if( sqliteStrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
+ pColumn->a[i].idx = j;
+ if( j==pTab->iPKey ){
+ keyColumn = i;
+ }
+ break;
+ }
+ }
+ if( j>=pTab->nCol ){
+ if( sqliteIsRowid(pColumn->a[i].zName) ){
+ keyColumn = i;
+ }else{
+ sqliteErrorMsg(pParse, "table %S has no column named %s",
+ pTabList, 0, pColumn->a[i].zName);
+ pParse->nErr++;
+ goto insert_cleanup;
+ }
+ }
+ }
+ }
+
+ /* If there is no IDLIST term but the table has an integer primary
+ ** key, the set the keyColumn variable to the primary key column index
+ ** in the original table definition.
+ */
+ if( pColumn==0 ){
+ keyColumn = pTab->iPKey;
+ }
+
+ /* Open the temp table for FOR EACH ROW triggers
+ */
+ if( row_triggers_exist ){
+ sqliteVdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
+ }
+
+ /* Initialize the count of rows to be inserted
+ */
+ if( db->flags & SQLITE_CountRows ){
+ iCntMem = pParse->nMem++;
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
+ sqliteVdbeAddOp(v, OP_MemStore, iCntMem, 1);
+ }
+
+ /* Open tables and indices if there are no row triggers */
+ if( !row_triggers_exist ){
+ base = pParse->nTab;
+ idx = sqliteOpenTableAndIndices(pParse, pTab, base);
+ pParse->nTab += idx;
+ }
+
+ /* If the data source is a temporary table, then we have to create
+ ** a loop because there might be multiple rows of data. If the data
+ ** source is a subroutine call from the SELECT statement, then we need
+ ** to launch the SELECT statement processing.
+ */
+ if( useTempTable ){
+ iBreak = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_Rewind, srcTab, iBreak);
+ iCont = sqliteVdbeCurrentAddr(v);
+ }else if( pSelect ){
+ sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop);
+ sqliteVdbeResolveLabel(v, iInsertBlock);
+ }
+
+ /* Run the BEFORE and INSTEAD OF triggers, if there are any
+ */
+ endOfLoop = sqliteVdbeMakeLabel(v);
+ if( before_triggers ){
+
+ /* build the NEW.* reference row. Note that if there is an INTEGER
+ ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
+ ** translated into a unique ID for the row. But on a BEFORE trigger,
+ ** we do not know what the unique ID will be (because the insert has
+ ** not happened yet) so we substitute a rowid of -1
+ */
+ if( keyColumn<0 ){
+ sqliteVdbeAddOp(v, OP_Integer, -1, 0);
+ }else if( useTempTable ){
+ sqliteVdbeAddOp(v, OP_Column, srcTab, keyColumn);
+ }else if( pSelect ){
+ sqliteVdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
+ }else{
+ sqliteExprCode(pParse, pList->a[keyColumn].pExpr);
+ sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ sqliteVdbeAddOp(v, OP_Integer, -1, 0);
+ sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
+ }
+
+ /* Create the new column data
+ */
+ for(i=0; i<pTab->nCol; i++){
+ if( pColumn==0 ){
+ j = i;
+ }else{
+ for(j=0; j<pColumn->nId; j++){
+ if( pColumn->a[j].idx==i ) break;
+ }
+ }
+ if( pColumn && j>=pColumn->nId ){
+ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC);
+ }else if( useTempTable ){
+ sqliteVdbeAddOp(v, OP_Column, srcTab, j);
+ }else if( pSelect ){
+ sqliteVdbeAddOp(v, OP_Dup, nColumn-j-1, 1);
+ }else{
+ sqliteExprCode(pParse, pList->a[j].pExpr);
+ }
+ }
+ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
+
+ /* Fire BEFORE or INSTEAD OF triggers */
+ if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_BEFORE, pTab,
+ newIdx, -1, onError, endOfLoop) ){
+ goto insert_cleanup;
+ }
+ }
+
+ /* If any triggers exists, the opening of tables and indices is deferred
+ ** until now.
+ */
+ if( row_triggers_exist && !isView ){
+ base = pParse->nTab;
+ idx = sqliteOpenTableAndIndices(pParse, pTab, base);
+ pParse->nTab += idx;
+ }
+
+ /* Push the record number for the new entry onto the stack. The
+ ** record number is a randomly generate integer created by NewRecno
+ ** except when the table has an INTEGER PRIMARY KEY column, in which
+ ** case the record number is the same as that column.
+ */
+ if( !isView ){
+ if( keyColumn>=0 ){
+ if( useTempTable ){
+ sqliteVdbeAddOp(v, OP_Column, srcTab, keyColumn);
+ }else if( pSelect ){
+ sqliteVdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
+ }else{
+ sqliteExprCode(pParse, pList->a[keyColumn].pExpr);
+ }
+ /* If the PRIMARY KEY expression is NULL, then use OP_NewRecno
+ ** to generate a unique primary key value.
+ */
+ sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ sqliteVdbeAddOp(v, OP_NewRecno, base, 0);
+ sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_NewRecno, base, 0);
+ }
+
+ /* Push onto the stack, data for all columns of the new entry, beginning
+ ** with the first column.
+ */
+ for(i=0; i<pTab->nCol; i++){
+ if( i==pTab->iPKey ){
+ /* The value of the INTEGER PRIMARY KEY column is always a NULL.
+ ** Whenever this column is read, the record number will be substituted
+ ** in its place. So will fill this column with a NULL to avoid
+ ** taking up data space with information that will never be used. */
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ continue;
+ }
+ if( pColumn==0 ){
+ j = i;
+ }else{
+ for(j=0; j<pColumn->nId; j++){
+ if( pColumn->a[j].idx==i ) break;
+ }
+ }
+ if( pColumn && j>=pColumn->nId ){
+ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC);
+ }else if( useTempTable ){
+ sqliteVdbeAddOp(v, OP_Column, srcTab, j);
+ }else if( pSelect ){
+ sqliteVdbeAddOp(v, OP_Dup, i+nColumn-j, 1);
+ }else{
+ sqliteExprCode(pParse, pList->a[j].pExpr);
+ }
+ }
+
+ /* Generate code to check constraints and generate index keys and
+ ** do the insertion.
+ */
+ sqliteGenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
+ 0, onError, endOfLoop);
+ sqliteCompleteInsertion(pParse, pTab, base, 0,0,0,
+ after_triggers ? newIdx : -1);
+ }
+
+ /* Update the count of rows that are inserted
+ */
+ if( (db->flags & SQLITE_CountRows)!=0 ){
+ sqliteVdbeAddOp(v, OP_MemIncr, iCntMem, 0);
+ }
+
+ if( row_triggers_exist ){
+ /* Close all tables opened */
+ if( !isView ){
+ sqliteVdbeAddOp(v, OP_Close, base, 0);
+ for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
+ sqliteVdbeAddOp(v, OP_Close, idx+base, 0);
+ }
+ }
+
+ /* Code AFTER triggers */
+ if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_AFTER, pTab, newIdx, -1,
+ onError, endOfLoop) ){
+ goto insert_cleanup;
+ }
+ }
+
+ /* The bottom of the loop, if the data source is a SELECT statement
+ */
+ sqliteVdbeResolveLabel(v, endOfLoop);
+ if( useTempTable ){
+ sqliteVdbeAddOp(v, OP_Next, srcTab, iCont);
+ sqliteVdbeResolveLabel(v, iBreak);
+ sqliteVdbeAddOp(v, OP_Close, srcTab, 0);
+ }else if( pSelect ){
+ sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
+ sqliteVdbeAddOp(v, OP_Return, 0, 0);
+ sqliteVdbeResolveLabel(v, iCleanup);
+ }
+
+ if( !row_triggers_exist ){
+ /* Close all tables opened */
+ sqliteVdbeAddOp(v, OP_Close, base, 0);
+ for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
+ sqliteVdbeAddOp(v, OP_Close, idx+base, 0);
+ }
+ }
+
+ sqliteVdbeAddOp(v, OP_SetCounts, 0, 0);
+ sqliteEndWriteOperation(pParse);
+
+ /*
+ ** Return the number of rows inserted.
+ */
+ if( db->flags & SQLITE_CountRows ){
+ sqliteVdbeOp3(v, OP_ColumnName, 0, 1, "rows inserted", P3_STATIC);
+ sqliteVdbeAddOp(v, OP_MemLoad, iCntMem, 0);
+ sqliteVdbeAddOp(v, OP_Callback, 1, 0);
+ }
+
+insert_cleanup:
+ sqliteSrcListDelete(pTabList);
+ if( pList ) sqliteExprListDelete(pList);
+ if( pSelect ) sqliteSelectDelete(pSelect);
+ sqliteIdListDelete(pColumn);
+}
+
+/*
+** Generate code to do a constraint check prior to an INSERT or an UPDATE.
+**
+** When this routine is called, the stack contains (from bottom to top)
+** the following values:
+**
+** 1. The recno of the row to be updated before the update. This
+** value is omitted unless we are doing an UPDATE that involves a
+** change to the record number.
+**
+** 2. The recno of the row after the update.
+**
+** 3. The data in the first column of the entry after the update.
+**
+** i. Data from middle columns...
+**
+** N. The data in the last column of the entry after the update.
+**
+** The old recno shown as entry (1) above is omitted unless both isUpdate
+** and recnoChng are 1. isUpdate is true for UPDATEs and false for
+** INSERTs and recnoChng is true if the record number is being changed.
+**
+** The code generated by this routine pushes additional entries onto
+** the stack which are the keys for new index entries for the new record.
+** The order of index keys is the same as the order of the indices on
+** the pTable->pIndex list. A key is only created for index i if
+** aIdxUsed!=0 and aIdxUsed[i]!=0.
+**
+** This routine also generates code to check constraints. NOT NULL,
+** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
+** then the appropriate action is performed. There are five possible
+** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
+**
+** Constraint type Action What Happens
+** --------------- ---------- ----------------------------------------
+** any ROLLBACK The current transaction is rolled back and
+** sqlite_exec() returns immediately with a
+** return code of SQLITE_CONSTRAINT.
+**
+** any ABORT Back out changes from the current command
+** only (do not do a complete rollback) then
+** cause sqlite_exec() to return immediately
+** with SQLITE_CONSTRAINT.
+**
+** any FAIL Sqlite_exec() returns immediately with a
+** return code of SQLITE_CONSTRAINT. The
+** transaction is not rolled back and any
+** prior changes are retained.
+**
+** any IGNORE The record number and data is popped from
+** the stack and there is an immediate jump
+** to label ignoreDest.
+**
+** NOT NULL REPLACE The NULL value is replace by the default
+** value for that column. If the default value
+** is NULL, the action is the same as ABORT.
+**
+** UNIQUE REPLACE The other row that conflicts with the row
+** being inserted is removed.
+**
+** CHECK REPLACE Illegal. The results in an exception.
+**
+** Which action to take is determined by the overrideError parameter.
+** Or if overrideError==OE_Default, then the pParse->onError parameter
+** is used. Or if pParse->onError==OE_Default then the onError value
+** for the constraint is used.
+**
+** The calling routine must open a read/write cursor for pTab with
+** cursor number "base". All indices of pTab must also have open
+** read/write cursors with cursor number base+i for the i-th cursor.
+** Except, if there is no possibility of a REPLACE action then
+** cursors do not need to be open for indices where aIdxUsed[i]==0.
+**
+** If the isUpdate flag is true, it means that the "base" cursor is
+** initially pointing to an entry that is being updated. The isUpdate
+** flag causes extra code to be generated so that the "base" cursor
+** is still pointing at the same entry after the routine returns.
+** Without the isUpdate flag, the "base" cursor might be moved.
+*/
+void sqliteGenerateConstraintChecks(
+ Parse *pParse, /* The parser context */
+ Table *pTab, /* the table into which we are inserting */
+ int base, /* Index of a read/write cursor pointing at pTab */
+ char *aIdxUsed, /* Which indices are used. NULL means all are used */
+ int recnoChng, /* True if the record number will change */
+ int isUpdate, /* True for UPDATE, False for INSERT */
+ int overrideError, /* Override onError to this if not OE_Default */
+ int ignoreDest /* Jump to this label on an OE_Ignore resolution */
+){
+ int i;
+ Vdbe *v;
+ int nCol;
+ int onError;
+ int addr;
+ int extra;
+ int iCur;
+ Index *pIdx;
+ int seenReplace = 0;
+ int jumpInst1, jumpInst2;
+ int contAddr;
+ int hasTwoRecnos = (isUpdate && recnoChng);
+
+ v = sqliteGetVdbe(pParse);
+ assert( v!=0 );
+ assert( pTab->pSelect==0 ); /* This table is not a VIEW */
+ nCol = pTab->nCol;
+
+ /* Test all NOT NULL constraints.
+ */
+ for(i=0; i<nCol; i++){
+ if( i==pTab->iPKey ){
+ continue;
+ }
+ onError = pTab->aCol[i].notNull;
+ if( onError==OE_None ) continue;
+ if( overrideError!=OE_Default ){
+ onError = overrideError;
+ }else if( pParse->db->onError!=OE_Default ){
+ onError = pParse->db->onError;
+ }else if( onError==OE_Default ){
+ onError = OE_Abort;
+ }
+ if( onError==OE_Replace && pTab->aCol[i].zDflt==0 ){
+ onError = OE_Abort;
+ }
+ sqliteVdbeAddOp(v, OP_Dup, nCol-1-i, 1);
+ addr = sqliteVdbeAddOp(v, OP_NotNull, 1, 0);
+ switch( onError ){
+ case OE_Rollback:
+ case OE_Abort:
+ case OE_Fail: {
+ char *zMsg = 0;
+ sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
+ sqliteSetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
+ " may not be NULL", (char*)0);
+ sqliteVdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
+ break;
+ }
+ case OE_Ignore: {
+ sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
+ break;
+ }
+ case OE_Replace: {
+ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC);
+ sqliteVdbeAddOp(v, OP_Push, nCol-i, 0);
+ break;
+ }
+ default: assert(0);
+ }
+ sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
+ }
+
+ /* Test all CHECK constraints
+ */
+ /**** TBD ****/
+
+ /* If we have an INTEGER PRIMARY KEY, make sure the primary key
+ ** of the new record does not previously exist. Except, if this
+ ** is an UPDATE and the primary key is not changing, that is OK.
+ */
+ if( recnoChng ){
+ onError = pTab->keyConf;
+ if( overrideError!=OE_Default ){
+ onError = overrideError;
+ }else if( pParse->db->onError!=OE_Default ){
+ onError = pParse->db->onError;
+ }else if( onError==OE_Default ){
+ onError = OE_Abort;
+ }
+
+ if( isUpdate ){
+ sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
+ sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
+ jumpInst1 = sqliteVdbeAddOp(v, OP_Eq, 0, 0);
+ }
+ sqliteVdbeAddOp(v, OP_Dup, nCol, 1);
+ jumpInst2 = sqliteVdbeAddOp(v, OP_NotExists, base, 0);
+ switch( onError ){
+ default: {
+ onError = OE_Abort;
+ /* Fall thru into the next case */
+ }
+ case OE_Rollback:
+ case OE_Abort:
+ case OE_Fail: {
+ sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
+ "PRIMARY KEY must be unique", P3_STATIC);
+ break;
+ }
+ case OE_Replace: {
+ sqliteGenerateRowIndexDelete(pParse->db, v, pTab, base, 0);
+ if( isUpdate ){
+ sqliteVdbeAddOp(v, OP_Dup, nCol+hasTwoRecnos, 1);
+ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
+ }
+ seenReplace = 1;
+ break;
+ }
+ case OE_Ignore: {
+ assert( seenReplace==0 );
+ sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
+ break;
+ }
+ }
+ contAddr = sqliteVdbeCurrentAddr(v);
+ sqliteVdbeChangeP2(v, jumpInst2, contAddr);
+ if( isUpdate ){
+ sqliteVdbeChangeP2(v, jumpInst1, contAddr);
+ sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
+ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
+ }
+ }
+
+ /* Test all UNIQUE constraints by creating entries for each UNIQUE
+ ** index and making sure that duplicate entries do not already exist.
+ ** Add the new records to the indices as we go.
+ */
+ extra = -1;
+ for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
+ if( aIdxUsed && aIdxUsed[iCur]==0 ) continue; /* Skip unused indices */
+ extra++;
+
+ /* Create a key for accessing the index entry */
+ sqliteVdbeAddOp(v, OP_Dup, nCol+extra, 1);
+ for(i=0; i<pIdx->nColumn; i++){
+ int idx = pIdx->aiColumn[i];
+ if( idx==pTab->iPKey ){
+ sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
+ }else{
+ sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
+ }
+ }
+ jumpInst1 = sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
+ if( pParse->db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);
+
+ /* Find out what action to take in case there is an indexing conflict */
+ onError = pIdx->onError;
+ if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */
+ if( overrideError!=OE_Default ){
+ onError = overrideError;
+ }else if( pParse->db->onError!=OE_Default ){
+ onError = pParse->db->onError;
+ }else if( onError==OE_Default ){
+ onError = OE_Abort;
+ }
+ if( seenReplace ){
+ if( onError==OE_Ignore ) onError = OE_Replace;
+ else if( onError==OE_Fail ) onError = OE_Abort;
+ }
+
+
+ /* Check to see if the new index entry will be unique */
+ sqliteVdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRecnos, 1);
+ jumpInst2 = sqliteVdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);
+
+ /* Generate code that executes if the new index entry is not unique */
+ switch( onError ){
+ case OE_Rollback:
+ case OE_Abort:
+ case OE_Fail: {
+ int j, n1, n2;
+ char zErrMsg[200];
+ strcpy(zErrMsg, pIdx->nColumn>1 ? "columns " : "column ");
+ n1 = strlen(zErrMsg);
+ for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
+ char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
+ n2 = strlen(zCol);
+ if( j>0 ){
+ strcpy(&zErrMsg[n1], ", ");
+ n1 += 2;
+ }
+ if( n1+n2>sizeof(zErrMsg)-30 ){
+ strcpy(&zErrMsg[n1], "...");
+ n1 += 3;
+ break;
+ }else{
+ strcpy(&zErrMsg[n1], zCol);
+ n1 += n2;
+ }
+ }
+ strcpy(&zErrMsg[n1],
+ pIdx->nColumn>1 ? " are not unique" : " is not unique");
+ sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0);
+ break;
+ }
+ case OE_Ignore: {
+ assert( seenReplace==0 );
+ sqliteVdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRecnos, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
+ break;
+ }
+ case OE_Replace: {
+ sqliteGenerateRowDelete(pParse->db, v, pTab, base, 0);
+ if( isUpdate ){
+ sqliteVdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRecnos, 1);
+ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
+ }
+ seenReplace = 1;
+ break;
+ }
+ default: assert(0);
+ }
+ contAddr = sqliteVdbeCurrentAddr(v);
+#if NULL_DISTINCT_FOR_UNIQUE
+ sqliteVdbeChangeP2(v, jumpInst1, contAddr);
+#endif
+ sqliteVdbeChangeP2(v, jumpInst2, contAddr);
+ }
+}
+
+/*
+** This routine generates code to finish the INSERT or UPDATE operation
+** that was started by a prior call to sqliteGenerateConstraintChecks.
+** The stack must contain keys for all active indices followed by data
+** and the recno for the new entry. This routine creates the new
+** entries in all indices and in the main table.
+**
+** The arguments to this routine should be the same as the first six
+** arguments to sqliteGenerateConstraintChecks.
+*/
+void sqliteCompleteInsertion(
+ Parse *pParse, /* The parser context */
+ Table *pTab, /* the table into which we are inserting */
+ int base, /* Index of a read/write cursor pointing at pTab */
+ char *aIdxUsed, /* Which indices are used. NULL means all are used */
+ int recnoChng, /* True if the record number will change */
+ int isUpdate, /* True for UPDATE, False for INSERT */
+ int newIdx /* Index of NEW table for triggers. -1 if none */
+){
+ int i;
+ Vdbe *v;
+ int nIdx;
+ Index *pIdx;
+
+ v = sqliteGetVdbe(pParse);
+ assert( v!=0 );
+ assert( pTab->pSelect==0 ); /* This table is not a VIEW */
+ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
+ for(i=nIdx-1; i>=0; i--){
+ if( aIdxUsed && aIdxUsed[i]==0 ) continue;
+ sqliteVdbeAddOp(v, OP_IdxPut, base+i+1, 0);
+ }
+ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
+ if( newIdx>=0 ){
+ sqliteVdbeAddOp(v, OP_Dup, 1, 0);
+ sqliteVdbeAddOp(v, OP_Dup, 1, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
+ }
+ sqliteVdbeAddOp(v, OP_PutIntKey, base,
+ (pParse->trigStack?0:OPFLAG_NCHANGE) |
+ (isUpdate?0:OPFLAG_LASTROWID) | OPFLAG_CSCHANGE);
+ if( isUpdate && recnoChng ){
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ }
+}
+
+/*
+** Generate code that will open write cursors for a table and for all
+** indices of that table. The "base" parameter is the cursor number used
+** for the table. Indices are opened on subsequent cursors.
+**
+** Return the total number of cursors opened. This is always at least
+** 1 (for the main table) plus more for each cursor.
+*/
+int sqliteOpenTableAndIndices(Parse *pParse, Table *pTab, int base){
+ int i;
+ Index *pIdx;
+ Vdbe *v = sqliteGetVdbe(pParse);
+ assert( v!=0 );
+ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
+ sqliteVdbeOp3(v, OP_OpenWrite, base, pTab->tnum, pTab->zName, P3_STATIC);
+ for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
+ sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
+ sqliteVdbeOp3(v, OP_OpenWrite, i+base, pIdx->tnum, pIdx->zName, P3_STATIC);
+ }
+ return i;
+}
diff --git a/src/3rdparty/sqlite/main.c b/src/3rdparty/sqlite/main.c
new file mode 100644
index 0000000..6fa0141
--- /dev/null
+++ b/src/3rdparty/sqlite/main.c
@@ -0,0 +1,1136 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Main file for the SQLite library. The routines in this file
+** implement the programmer interface to the library. Routines in
+** other files are for internal use by SQLite and should not be
+** accessed by users of the library.
+**
+** $Id: main.c,v 1.162 2004/03/04 19:09:20 rdc Exp $
+*/
+#include "sqliteInt.h"
+#include "os.h"
+#include <ctype.h>
+
+/*
+** A pointer to this structure is used to communicate information
+** from sqliteInit into the sqliteInitCallback.
+*/
+typedef struct {
+ sqlite *db; /* The database being initialized */
+ char **pzErrMsg; /* Error message stored here */
+} InitData;
+
+/*
+** Fill the InitData structure with an error message that indicates
+** that the database is corrupt.
+*/
+static void corruptSchema(InitData *pData, const char *zExtra){
+ sqliteSetString(pData->pzErrMsg, "malformed database schema",
+ zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0);
+}
+
+/*
+** This is the callback routine for the code that initializes the
+** database. See sqliteInit() below for additional information.
+**
+** Each callback contains the following information:
+**
+** argv[0] = "file-format" or "schema-cookie" or "table" or "index"
+** argv[1] = table or index name or meta statement type.
+** argv[2] = root page number for table or index. NULL for meta.
+** argv[3] = SQL text for a CREATE TABLE or CREATE INDEX statement.
+** argv[4] = "1" for temporary files, "0" for main database, "2" or more
+** for auxiliary database files.
+**
+*/
+static
+int sqliteInitCallback(void *pInit, int argc, char **argv, char **azColName){
+ InitData *pData = (InitData*)pInit;
+ int nErr = 0;
+
+ assert( argc==5 );
+ if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */
+ if( argv[0]==0 ){
+ corruptSchema(pData, 0);
+ return 1;
+ }
+ switch( argv[0][0] ){
+ case 'v':
+ case 'i':
+ case 't': { /* CREATE TABLE, CREATE INDEX, or CREATE VIEW statements */
+ sqlite *db = pData->db;
+ if( argv[2]==0 || argv[4]==0 ){
+ corruptSchema(pData, 0);
+ return 1;
+ }
+ if( argv[3] && argv[3][0] ){
+ /* Call the parser to process a CREATE TABLE, INDEX or VIEW.
+ ** But because db->init.busy is set to 1, no VDBE code is generated
+ ** or executed. All the parser does is build the internal data
+ ** structures that describe the table, index, or view.
+ */
+ char *zErr;
+ assert( db->init.busy );
+ db->init.iDb = atoi(argv[4]);
+ assert( db->init.iDb>=0 && db->init.iDb<db->nDb );
+ db->init.newTnum = atoi(argv[2]);
+ if( sqlite_exec(db, argv[3], 0, 0, &zErr) ){
+ corruptSchema(pData, zErr);
+ sqlite_freemem(zErr);
+ }
+ db->init.iDb = 0;
+ }else{
+ /* If the SQL column is blank it means this is an index that
+ ** was created to be the PRIMARY KEY or to fulfill a UNIQUE
+ ** constraint for a CREATE TABLE. The index should have already
+ ** been created when we processed the CREATE TABLE. All we have
+ ** to do here is record the root page number for that index.
+ */
+ int iDb;
+ Index *pIndex;
+
+ iDb = atoi(argv[4]);
+ assert( iDb>=0 && iDb<db->nDb );
+ pIndex = sqliteFindIndex(db, argv[1], db->aDb[iDb].zName);
+ if( pIndex==0 || pIndex->tnum!=0 ){
+ /* This can occur if there exists an index on a TEMP table which
+ ** has the same name as another index on a permanent index. Since
+ ** the permanent table is hidden by the TEMP table, we can also
+ ** safely ignore the index on the permanent table.
+ */
+ /* Do Nothing */;
+ }else{
+ pIndex->tnum = atoi(argv[2]);
+ }
+ }
+ break;
+ }
+ default: {
+ /* This can not happen! */
+ nErr = 1;
+ assert( nErr==0 );
+ }
+ }
+ return nErr;
+}
+
+/*
+** This is a callback procedure used to reconstruct a table. The
+** name of the table to be reconstructed is passed in as argv[0].
+**
+** This routine is used to automatically upgrade a database from
+** format version 1 or 2 to version 3. The correct operation of
+** this routine relys on the fact that no indices are used when
+** copying a table out to a temporary file.
+**
+** The change from version 2 to version 3 occurred between SQLite
+** version 2.5.6 and 2.6.0 on 2002-July-18.
+*/
+static
+int upgrade_3_callback(void *pInit, int argc, char **argv, char **NotUsed){
+ InitData *pData = (InitData*)pInit;
+ int rc;
+ Table *pTab;
+ Trigger *pTrig;
+ char *zErr = 0;
+
+ pTab = sqliteFindTable(pData->db, argv[0], 0);
+ assert( pTab!=0 );
+ assert( sqliteStrICmp(pTab->zName, argv[0])==0 );
+ if( pTab ){
+ pTrig = pTab->pTrigger;
+ pTab->pTrigger = 0; /* Disable all triggers before rebuilding the table */
+ }
+ rc = sqlite_exec_printf(pData->db,
+ "CREATE TEMP TABLE sqlite_x AS SELECT * FROM '%q'; "
+ "DELETE FROM '%q'; "
+ "INSERT INTO '%q' SELECT * FROM sqlite_x; "
+ "DROP TABLE sqlite_x;",
+ 0, 0, &zErr, argv[0], argv[0], argv[0]);
+ if( zErr ){
+ if( *pData->pzErrMsg ) sqlite_freemem(*pData->pzErrMsg);
+ *pData->pzErrMsg = zErr;
+ }
+
+ /* If an error occurred in the SQL above, then the transaction will
+ ** rollback which will delete the internal symbol tables. This will
+ ** cause the structure that pTab points to be deleted. In case that
+ ** happened, we need to refetch pTab.
+ */
+ pTab = sqliteFindTable(pData->db, argv[0], 0);
+ if( pTab ){
+ assert( sqliteStrICmp(pTab->zName, argv[0])==0 );
+ pTab->pTrigger = pTrig; /* Re-enable triggers */
+ }
+ return rc!=SQLITE_OK;
+}
+
+
+
+/*
+** Attempt to read the database schema and initialize internal
+** data structures for a single database file. The index of the
+** database file is given by iDb. iDb==0 is used for the main
+** database. iDb==1 should never be used. iDb>=2 is used for
+** auxiliary databases. Return one of the SQLITE_ error codes to
+** indicate success or failure.
+*/
+static int sqliteInitOne(sqlite *db, int iDb, char **pzErrMsg){
+ int rc;
+ BtCursor *curMain;
+ int size;
+ Table *pTab;
+ char *azArg[6];
+ char zDbNum[30];
+ int meta[SQLITE_N_BTREE_META];
+ InitData initData;
+
+ /*
+ ** The master database table has a structure like this
+ */
+ static char master_schema[] =
+ "CREATE TABLE sqlite_master(\n"
+ " type text,\n"
+ " name text,\n"
+ " tbl_name text,\n"
+ " rootpage integer,\n"
+ " sql text\n"
+ ")"
+ ;
+ static char temp_master_schema[] =
+ "CREATE TEMP TABLE sqlite_temp_master(\n"
+ " type text,\n"
+ " name text,\n"
+ " tbl_name text,\n"
+ " rootpage integer,\n"
+ " sql text\n"
+ ")"
+ ;
+
+ /* The following SQL will read the schema from the master tables.
+ ** The first version works with SQLite file formats 2 or greater.
+ ** The second version is for format 1 files.
+ **
+ ** Beginning with file format 2, the rowid for new table entries
+ ** (including entries in sqlite_master) is an increasing integer.
+ ** So for file format 2 and later, we can play back sqlite_master
+ ** and all the CREATE statements will appear in the right order.
+ ** But with file format 1, table entries were random and so we
+ ** have to make sure the CREATE TABLEs occur before their corresponding
+ ** CREATE INDEXs. (We don't have to deal with CREATE VIEW or
+ ** CREATE TRIGGER in file format 1 because those constructs did
+ ** not exist then.)
+ */
+ static char init_script[] =
+ "SELECT type, name, rootpage, sql, 1 FROM sqlite_temp_master "
+ "UNION ALL "
+ "SELECT type, name, rootpage, sql, 0 FROM sqlite_master";
+ static char older_init_script[] =
+ "SELECT type, name, rootpage, sql, 1 FROM sqlite_temp_master "
+ "UNION ALL "
+ "SELECT type, name, rootpage, sql, 0 FROM sqlite_master "
+ "WHERE type='table' "
+ "UNION ALL "
+ "SELECT type, name, rootpage, sql, 0 FROM sqlite_master "
+ "WHERE type='index'";
+
+
+ assert( iDb>=0 && iDb!=1 && iDb<db->nDb );
+
+ /* Construct the schema tables: sqlite_master and sqlite_temp_master
+ */
+ sqliteSafetyOff(db);
+ azArg[0] = "table";
+ azArg[1] = MASTER_NAME;
+ azArg[2] = "2";
+ azArg[3] = master_schema;
+ sprintf(zDbNum, "%d", iDb);
+ azArg[4] = zDbNum;
+ azArg[5] = 0;
+ initData.db = db;
+ initData.pzErrMsg = pzErrMsg;
+ sqliteInitCallback(&initData, 5, azArg, 0);
+ pTab = sqliteFindTable(db, MASTER_NAME, "main");
+ if( pTab ){
+ pTab->readOnly = 1;
+ }
+ if( iDb==0 ){
+ azArg[1] = TEMP_MASTER_NAME;
+ azArg[3] = temp_master_schema;
+ azArg[4] = "1";
+ sqliteInitCallback(&initData, 5, azArg, 0);
+ pTab = sqliteFindTable(db, TEMP_MASTER_NAME, "temp");
+ if( pTab ){
+ pTab->readOnly = 1;
+ }
+ }
+ sqliteSafetyOn(db);
+
+ /* Create a cursor to hold the database open
+ */
+ if( db->aDb[iDb].pBt==0 ) return SQLITE_OK;
+ rc = sqliteBtreeCursor(db->aDb[iDb].pBt, 2, 0, &curMain);
+ if( rc ){
+ sqliteSetString(pzErrMsg, sqlite_error_string(rc), (char*)0);
+ return rc;
+ }
+
+ /* Get the database meta information
+ */
+ rc = sqliteBtreeGetMeta(db->aDb[iDb].pBt, meta);
+ if( rc ){
+ sqliteSetString(pzErrMsg, sqlite_error_string(rc), (char*)0);
+ sqliteBtreeCloseCursor(curMain);
+ return rc;
+ }
+ db->aDb[iDb].schema_cookie = meta[1];
+ if( iDb==0 ){
+ db->next_cookie = meta[1];
+ db->file_format = meta[2];
+ size = meta[3];
+ if( size==0 ){ size = MAX_PAGES; }
+ db->cache_size = size;
+ db->safety_level = meta[4];
+ if( db->safety_level==0 ) db->safety_level = 2;
+
+ /*
+ ** file_format==1 Version 2.1.0.
+ ** file_format==2 Version 2.2.0. Add support for INTEGER PRIMARY KEY.
+ ** file_format==3 Version 2.6.0. Fix empty-string index bug.
+ ** file_format==4 Version 2.7.0. Add support for separate numeric and
+ ** text datatypes.
+ */
+ if( db->file_format==0 ){
+ /* This happens if the database was initially empty */
+ db->file_format = 4;
+ }else if( db->file_format>4 ){
+ sqliteBtreeCloseCursor(curMain);
+ sqliteSetString(pzErrMsg, "unsupported file format", (char*)0);
+ return SQLITE_ERROR;
+ }
+ }else if( db->file_format!=meta[2] || db->file_format<4 ){
+ assert( db->file_format>=4 );
+ if( meta[2]==0 ){
+ sqliteSetString(pzErrMsg, "cannot attach empty database: ",
+ db->aDb[iDb].zName, (char*)0);
+ }else{
+ sqliteSetString(pzErrMsg, "incompatible file format in auxiliary "
+ "database: ", db->aDb[iDb].zName, (char*)0);
+ }
+ sqliteBtreeClose(db->aDb[iDb].pBt);
+ db->aDb[iDb].pBt = 0;
+ return SQLITE_FORMAT;
+ }
+ sqliteBtreeSetCacheSize(db->aDb[iDb].pBt, db->cache_size);
+ sqliteBtreeSetSafetyLevel(db->aDb[iDb].pBt, meta[4]==0 ? 2 : meta[4]);
+
+ /* Read the schema information out of the schema tables
+ */
+ assert( db->init.busy );
+ sqliteSafetyOff(db);
+ if( iDb==0 ){
+ rc = sqlite_exec(db,
+ db->file_format>=2 ? init_script : older_init_script,
+ sqliteInitCallback, &initData, 0);
+ }else{
+ char *zSql = 0;
+ sqliteSetString(&zSql,
+ "SELECT type, name, rootpage, sql, ", zDbNum, " FROM \"",
+ db->aDb[iDb].zName, "\".sqlite_master", (char*)0);
+ rc = sqlite_exec(db, zSql, sqliteInitCallback, &initData, 0);
+ sqliteFree(zSql);
+ }
+ sqliteSafetyOn(db);
+ sqliteBtreeCloseCursor(curMain);
+ if( sqlite_malloc_failed ){
+ sqliteSetString(pzErrMsg, "out of memory", (char*)0);
+ rc = SQLITE_NOMEM;
+ sqliteResetInternalSchema(db, 0);
+ }
+ if( rc==SQLITE_OK ){
+ DbSetProperty(db, iDb, DB_SchemaLoaded);
+ if( iDb==0 ){
+ DbSetProperty(db, 1, DB_SchemaLoaded);
+ }
+ }else{
+ sqliteResetInternalSchema(db, iDb);
+ }
+ return rc;
+}
+
+/*
+** Initialize all database files - the main database file, the file
+** used to store temporary tables, and any additional database files
+** created using ATTACH statements. Return a success code. If an
+** error occurs, write an error message into *pzErrMsg.
+**
+** After the database is initialized, the SQLITE_Initialized
+** bit is set in the flags field of the sqlite structure. An
+** attempt is made to initialize the database as soon as it
+** is opened. If that fails (perhaps because another process
+** has the sqlite_master table locked) than another attempt
+** is made the first time the database is accessed.
+*/
+int sqliteInit(sqlite *db, char **pzErrMsg){
+ int i, rc;
+
+ if( db->init.busy ) return SQLITE_OK;
+ assert( (db->flags & SQLITE_Initialized)==0 );
+ rc = SQLITE_OK;
+ db->init.busy = 1;
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ if( DbHasProperty(db, i, DB_SchemaLoaded) ) continue;
+ assert( i!=1 ); /* Should have been initialized together with 0 */
+ rc = sqliteInitOne(db, i, pzErrMsg);
+ if( rc ){
+ sqliteResetInternalSchema(db, i);
+ }
+ }
+ db->init.busy = 0;
+ if( rc==SQLITE_OK ){
+ db->flags |= SQLITE_Initialized;
+ sqliteCommitInternalChanges(db);
+ }
+
+ /* If the database is in formats 1 or 2, then upgrade it to
+ ** version 3. This will reconstruct all indices. If the
+ ** upgrade fails for any reason (ex: out of disk space, database
+ ** is read only, interrupt received, etc.) then fail the init.
+ */
+ if( rc==SQLITE_OK && db->file_format<3 ){
+ char *zErr = 0;
+ InitData initData;
+ int meta[SQLITE_N_BTREE_META];
+
+ db->magic = SQLITE_MAGIC_OPEN;
+ initData.db = db;
+ initData.pzErrMsg = &zErr;
+ db->file_format = 3;
+ rc = sqlite_exec(db,
+ "BEGIN; SELECT name FROM sqlite_master WHERE type='table';",
+ upgrade_3_callback,
+ &initData,
+ &zErr);
+ if( rc==SQLITE_OK ){
+ sqliteBtreeGetMeta(db->aDb[0].pBt, meta);
+ meta[2] = 4;
+ sqliteBtreeUpdateMeta(db->aDb[0].pBt, meta);
+ sqlite_exec(db, "COMMIT", 0, 0, 0);
+ }
+ if( rc!=SQLITE_OK ){
+ sqliteSetString(pzErrMsg,
+ "unable to upgrade database to the version 2.6 format",
+ zErr ? ": " : 0, zErr, (char*)0);
+ }
+ sqlite_freemem(zErr);
+ }
+
+ if( rc!=SQLITE_OK ){
+ db->flags &= ~SQLITE_Initialized;
+ }
+ return rc;
+}
+
+/*
+** The version of the library
+*/
+const char rcsid[] = "@(#) \044Id: SQLite version " SQLITE_VERSION " $";
+const char sqlite_version[] = SQLITE_VERSION;
+
+/*
+** Does the library expect data to be encoded as UTF-8 or iso8859? The
+** following global constant always lets us know.
+*/
+#ifdef SQLITE_UTF8
+const char sqlite_encoding[] = "UTF-8";
+#else
+const char sqlite_encoding[] = "iso8859";
+#endif
+
+/*
+** Open a new SQLite database. Construct an "sqlite" structure to define
+** the state of this database and return a pointer to that structure.
+**
+** An attempt is made to initialize the in-memory data structures that
+** hold the database schema. But if this fails (because the schema file
+** is locked) then that step is deferred until the first call to
+** sqlite_exec().
+*/
+sqlite *sqlite_open(const char *zFilename, int mode, char **pzErrMsg){
+ sqlite *db;
+ int rc, i;
+
+ /* Allocate the sqlite data structure */
+ db = sqliteMalloc( sizeof(sqlite) );
+ if( pzErrMsg ) *pzErrMsg = 0;
+ if( db==0 ) goto no_mem_on_open;
+ db->onError = OE_Default;
+ db->priorNewRowid = 0;
+ db->magic = SQLITE_MAGIC_BUSY;
+ db->nDb = 2;
+ db->aDb = db->aDbStatic;
+ /* db->flags |= SQLITE_ShortColNames; */
+ sqliteHashInit(&db->aFunc, SQLITE_HASH_STRING, 1);
+ for(i=0; i<db->nDb; i++){
+ sqliteHashInit(&db->aDb[i].tblHash, SQLITE_HASH_STRING, 0);
+ sqliteHashInit(&db->aDb[i].idxHash, SQLITE_HASH_STRING, 0);
+ sqliteHashInit(&db->aDb[i].trigHash, SQLITE_HASH_STRING, 0);
+ sqliteHashInit(&db->aDb[i].aFKey, SQLITE_HASH_STRING, 1);
+ }
+
+ /* Open the backend database driver */
+ if( zFilename[0]==':' && strcmp(zFilename,":memory:")==0 ){
+ db->temp_store = 2;
+ }
+ rc = sqliteBtreeFactory(db, zFilename, 0, MAX_PAGES, &db->aDb[0].pBt);
+ if( rc!=SQLITE_OK ){
+ switch( rc ){
+ default: {
+ sqliteSetString(pzErrMsg, "unable to open database: ",
+ zFilename, (char*)0);
+ }
+ }
+ sqliteFree(db);
+ sqliteStrRealloc(pzErrMsg);
+ return 0;
+ }
+ db->aDb[0].zName = "main";
+ db->aDb[1].zName = "temp";
+
+ /* Attempt to read the schema */
+ sqliteRegisterBuiltinFunctions(db);
+ rc = sqliteInit(db, pzErrMsg);
+ db->magic = SQLITE_MAGIC_OPEN;
+ if( sqlite_malloc_failed ){
+ sqlite_close(db);
+ goto no_mem_on_open;
+ }else if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
+ sqlite_close(db);
+ sqliteStrRealloc(pzErrMsg);
+ return 0;
+ }else if( pzErrMsg ){
+ sqliteFree(*pzErrMsg);
+ *pzErrMsg = 0;
+ }
+
+ /* Return a pointer to the newly opened database structure */
+ return db;
+
+no_mem_on_open:
+ sqliteSetString(pzErrMsg, "out of memory", (char*)0);
+ sqliteStrRealloc(pzErrMsg);
+ return 0;
+}
+
+/*
+** Return the ROWID of the most recent insert
+*/
+int sqlite_last_insert_rowid(sqlite *db){
+ return db->lastRowid;
+}
+
+/*
+** Return the number of changes in the most recent call to sqlite_exec().
+*/
+int sqlite_changes(sqlite *db){
+ return db->nChange;
+}
+
+/*
+** Return the number of changes produced by the last INSERT, UPDATE, or
+** DELETE statement to complete execution. The count does not include
+** changes due to SQL statements executed in trigger programs that were
+** triggered by that statement
+*/
+int sqlite_last_statement_changes(sqlite *db){
+ return db->lsChange;
+}
+
+/*
+** Close an existing SQLite database
+*/
+void sqlite_close(sqlite *db){
+ HashElem *i;
+ int j;
+ db->want_to_close = 1;
+ if( sqliteSafetyCheck(db) || sqliteSafetyOn(db) ){
+ /* printf("DID NOT CLOSE\n"); fflush(stdout); */
+ return;
+ }
+ db->magic = SQLITE_MAGIC_CLOSED;
+ for(j=0; j<db->nDb; j++){
+ struct Db *pDb = &db->aDb[j];
+ if( pDb->pBt ){
+ sqliteBtreeClose(pDb->pBt);
+ pDb->pBt = 0;
+ }
+ }
+ sqliteResetInternalSchema(db, 0);
+ assert( db->nDb<=2 );
+ assert( db->aDb==db->aDbStatic );
+ for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
+ FuncDef *pFunc, *pNext;
+ for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){
+ pNext = pFunc->pNext;
+ sqliteFree(pFunc);
+ }
+ }
+ sqliteHashClear(&db->aFunc);
+ sqliteFree(db);
+}
+
+/*
+** Rollback all database files.
+*/
+void sqliteRollbackAll(sqlite *db){
+ int i;
+ for(i=0; i<db->nDb; i++){
+ if( db->aDb[i].pBt ){
+ sqliteBtreeRollback(db->aDb[i].pBt);
+ db->aDb[i].inTrans = 0;
+ }
+ }
+ sqliteResetInternalSchema(db, 0);
+ /* sqliteRollbackInternalChanges(db); */
+}
+
+/*
+** Execute SQL code. Return one of the SQLITE_ success/failure
+** codes. Also write an error message into memory obtained from
+** malloc() and make *pzErrMsg point to that message.
+**
+** If the SQL is a query, then for each row in the query result
+** the xCallback() function is called. pArg becomes the first
+** argument to xCallback(). If xCallback=NULL then no callback
+** is invoked, even for queries.
+*/
+int sqlite_exec(
+ sqlite *db, /* The database on which the SQL executes */
+ const char *zSql, /* The SQL to be executed */
+ sqlite_callback xCallback, /* Invoke this callback routine */
+ void *pArg, /* First argument to xCallback() */
+ char **pzErrMsg /* Write error messages here */
+){
+ int rc = SQLITE_OK;
+ const char *zLeftover;
+ sqlite_vm *pVm;
+ int nRetry = 0;
+ int nChange = 0;
+ int nCallback;
+
+ if( zSql==0 ) return SQLITE_OK;
+ while( rc==SQLITE_OK && zSql[0] ){
+ pVm = 0;
+ rc = sqlite_compile(db, zSql, &zLeftover, &pVm, pzErrMsg);
+ if( rc!=SQLITE_OK ){
+ assert( pVm==0 || sqlite_malloc_failed );
+ return rc;
+ }
+ if( pVm==0 ){
+ /* This happens if the zSql input contained only whitespace */
+ break;
+ }
+ db->nChange += nChange;
+ nCallback = 0;
+ while(1){
+ int nArg;
+ char **azArg, **azCol;
+ rc = sqlite_step(pVm, &nArg, (const char***)&azArg,(const char***)&azCol);
+ if( rc==SQLITE_ROW ){
+ if( xCallback!=0 && xCallback(pArg, nArg, azArg, azCol) ){
+ sqlite_finalize(pVm, 0);
+ return SQLITE_ABORT;
+ }
+ nCallback++;
+ }else{
+ if( rc==SQLITE_DONE && nCallback==0
+ && (db->flags & SQLITE_NullCallback)!=0 && xCallback!=0 ){
+ xCallback(pArg, nArg, azArg, azCol);
+ }
+ rc = sqlite_finalize(pVm, pzErrMsg);
+ if( rc==SQLITE_SCHEMA && nRetry<2 ){
+ nRetry++;
+ rc = SQLITE_OK;
+ break;
+ }
+ if( db->pVdbe==0 ){
+ nChange = db->nChange;
+ }
+ nRetry = 0;
+ zSql = zLeftover;
+ while( isspace(zSql[0]) ) zSql++;
+ break;
+ }
+ }
+ }
+ return rc;
+}
+
+
+/*
+** Compile a single statement of SQL into a virtual machine. Return one
+** of the SQLITE_ success/failure codes. Also write an error message into
+** memory obtained from malloc() and make *pzErrMsg point to that message.
+*/
+int sqlite_compile(
+ sqlite *db, /* The database on which the SQL executes */
+ const char *zSql, /* The SQL to be executed */
+ const char **pzTail, /* OUT: Next statement after the first */
+ sqlite_vm **ppVm, /* OUT: The virtual machine */
+ char **pzErrMsg /* OUT: Write error messages here */
+){
+ Parse sParse;
+
+ if( pzErrMsg ) *pzErrMsg = 0;
+ if( sqliteSafetyOn(db) ) goto exec_misuse;
+ if( !db->init.busy ){
+ if( (db->flags & SQLITE_Initialized)==0 ){
+ int rc, cnt = 1;
+ while( (rc = sqliteInit(db, pzErrMsg))==SQLITE_BUSY
+ && db->xBusyCallback
+ && db->xBusyCallback(db->pBusyArg, "", cnt++)!=0 ){}
+ if( rc!=SQLITE_OK ){
+ sqliteStrRealloc(pzErrMsg);
+ sqliteSafetyOff(db);
+ return rc;
+ }
+ if( pzErrMsg ){
+ sqliteFree(*pzErrMsg);
+ *pzErrMsg = 0;
+ }
+ }
+ if( db->file_format<3 ){
+ sqliteSafetyOff(db);
+ sqliteSetString(pzErrMsg, "obsolete database file format", (char*)0);
+ return SQLITE_ERROR;
+ }
+ }
+ assert( (db->flags & SQLITE_Initialized)!=0 || db->init.busy );
+ if( db->pVdbe==0 ){ db->nChange = 0; }
+ memset(&sParse, 0, sizeof(sParse));
+ sParse.db = db;
+ sqliteRunParser(&sParse, zSql, pzErrMsg);
+ if( db->xTrace ){
+ /* Trace only the statment that was compiled.
+ ** Make a copy of that part of the SQL string since zSQL is const
+ ** and we must pass a zero terminated string to the trace function
+ ** The copy is unnecessary if the tail pointer is pointing at the
+ ** beginnig or end of the SQL string.
+ */
+ if( sParse.zTail && sParse.zTail!=zSql && *sParse.zTail ){
+ char *tmpSql = sqliteStrNDup(zSql, sParse.zTail - zSql);
+ if( tmpSql ){
+ db->xTrace(db->pTraceArg, tmpSql);
+ free(tmpSql);
+ }else{
+ /* If a memory error occurred during the copy,
+ ** trace entire SQL string and fall through to the
+ ** sqlite_malloc_failed test to report the error.
+ */
+ db->xTrace(db->pTraceArg, zSql);
+ }
+ }else{
+ db->xTrace(db->pTraceArg, zSql);
+ }
+ }
+ if( sqlite_malloc_failed ){
+ sqliteSetString(pzErrMsg, "out of memory", (char*)0);
+ sParse.rc = SQLITE_NOMEM;
+ sqliteRollbackAll(db);
+ sqliteResetInternalSchema(db, 0);
+ db->flags &= ~SQLITE_InTrans;
+ }
+ if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK;
+ if( sParse.rc!=SQLITE_OK && pzErrMsg && *pzErrMsg==0 ){
+ sqliteSetString(pzErrMsg, sqlite_error_string(sParse.rc), (char*)0);
+ }
+ sqliteStrRealloc(pzErrMsg);
+ if( sParse.rc==SQLITE_SCHEMA ){
+ sqliteResetInternalSchema(db, 0);
+ }
+ assert( ppVm );
+ *ppVm = (sqlite_vm*)sParse.pVdbe;
+ if( pzTail ) *pzTail = sParse.zTail;
+ if( sqliteSafetyOff(db) ) goto exec_misuse;
+ return sParse.rc;
+
+exec_misuse:
+ if( pzErrMsg ){
+ *pzErrMsg = 0;
+ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0);
+ sqliteStrRealloc(pzErrMsg);
+ }
+ return SQLITE_MISUSE;
+}
+
+
+/*
+** The following routine destroys a virtual machine that is created by
+** the sqlite_compile() routine.
+**
+** The integer returned is an SQLITE_ success/failure code that describes
+** the result of executing the virtual machine. An error message is
+** written into memory obtained from malloc and *pzErrMsg is made to
+** point to that error if pzErrMsg is not NULL. The calling routine
+** should use sqlite_freemem() to delete the message when it has finished
+** with it.
+*/
+int sqlite_finalize(
+ sqlite_vm *pVm, /* The virtual machine to be destroyed */
+ char **pzErrMsg /* OUT: Write error messages here */
+){
+ int rc = sqliteVdbeFinalize((Vdbe*)pVm, pzErrMsg);
+ sqliteStrRealloc(pzErrMsg);
+ return rc;
+}
+
+/*
+** Terminate the current execution of a virtual machine then
+** reset the virtual machine back to its starting state so that it
+** can be reused. Any error message resulting from the prior execution
+** is written into *pzErrMsg. A success code from the prior execution
+** is returned.
+*/
+int sqlite_reset(
+ sqlite_vm *pVm, /* The virtual machine to be destroyed */
+ char **pzErrMsg /* OUT: Write error messages here */
+){
+ int rc = sqliteVdbeReset((Vdbe*)pVm, pzErrMsg);
+ sqliteVdbeMakeReady((Vdbe*)pVm, -1, 0);
+ sqliteStrRealloc(pzErrMsg);
+ return rc;
+}
+
+/*
+** Return a static string that describes the kind of error specified in the
+** argument.
+*/
+const char *sqlite_error_string(int rc){
+ const char *z;
+ switch( rc ){
+ case SQLITE_OK: z = "not an error"; break;
+ case SQLITE_ERROR: z = "SQL logic error or missing database"; break;
+ case SQLITE_INTERNAL: z = "internal SQLite implementation flaw"; break;
+ case SQLITE_PERM: z = "access permission denied"; break;
+ case SQLITE_ABORT: z = "callback requested query abort"; break;
+ case SQLITE_BUSY: z = "database is locked"; break;
+ case SQLITE_LOCKED: z = "database table is locked"; break;
+ case SQLITE_NOMEM: z = "out of memory"; break;
+ case SQLITE_READONLY: z = "attempt to write a readonly database"; break;
+ case SQLITE_INTERRUPT: z = "interrupted"; break;
+ case SQLITE_IOERR: z = "disk I/O error"; break;
+ case SQLITE_CORRUPT: z = "database disk image is malformed"; break;
+ case SQLITE_NOTFOUND: z = "table or record not found"; break;
+ case SQLITE_FULL: z = "database is full"; break;
+ case SQLITE_CANTOPEN: z = "unable to open database file"; break;
+ case SQLITE_PROTOCOL: z = "database locking protocol failure"; break;
+ case SQLITE_EMPTY: z = "table contains no data"; break;
+ case SQLITE_SCHEMA: z = "database schema has changed"; break;
+ case SQLITE_TOOBIG: z = "too much data for one table row"; break;
+ case SQLITE_CONSTRAINT: z = "constraint failed"; break;
+ case SQLITE_MISMATCH: z = "datatype mismatch"; break;
+ case SQLITE_MISUSE: z = "library routine called out of sequence";break;
+ case SQLITE_NOLFS: z = "kernel lacks large file support"; break;
+ case SQLITE_AUTH: z = "authorization denied"; break;
+ case SQLITE_FORMAT: z = "auxiliary database format error"; break;
+ case SQLITE_RANGE: z = "bind index out of range"; break;
+ case SQLITE_NOTADB: z = "file is encrypted or is not a database";break;
+ default: z = "unknown error"; break;
+ }
+ return z;
+}
+
+/*
+** This routine implements a busy callback that sleeps and tries
+** again until a timeout value is reached. The timeout value is
+** an integer number of milliseconds passed in as the first
+** argument.
+*/
+static int sqliteDefaultBusyCallback(
+ void *Timeout, /* Maximum amount of time to wait */
+ const char *NotUsed, /* The name of the table that is busy */
+ int count /* Number of times table has been busy */
+){
+#if SQLITE_MIN_SLEEP_MS==1
+ static const char delays[] =
+ { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 50, 100};
+ static const short int totals[] =
+ { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228, 287};
+# define NDELAY (sizeof(delays)/sizeof(delays[0]))
+ int timeout = (int)Timeout;
+ int delay, prior;
+
+ if( count <= NDELAY ){
+ delay = delays[count-1];
+ prior = totals[count-1];
+ }else{
+ delay = delays[NDELAY-1];
+ prior = totals[NDELAY-1] + delay*(count-NDELAY-1);
+ }
+ if( prior + delay > timeout ){
+ delay = timeout - prior;
+ if( delay<=0 ) return 0;
+ }
+ sqliteOsSleep(delay);
+ return 1;
+#else
+ int timeout = (int)Timeout;
+ if( (count+1)*1000 > timeout ){
+ return 0;
+ }
+ sqliteOsSleep(1000);
+ return 1;
+#endif
+}
+
+/*
+** This routine sets the busy callback for an Sqlite database to the
+** given callback function with the given argument.
+*/
+void sqlite_busy_handler(
+ sqlite *db,
+ int (*xBusy)(void*,const char*,int),
+ void *pArg
+){
+ db->xBusyCallback = xBusy;
+ db->pBusyArg = pArg;
+}
+
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+/*
+** This routine sets the progress callback for an Sqlite database to the
+** given callback function with the given argument. The progress callback will
+** be invoked every nOps opcodes.
+*/
+void sqlite_progress_handler(
+ sqlite *db,
+ int nOps,
+ int (*xProgress)(void*),
+ void *pArg
+){
+ if( nOps>0 ){
+ db->xProgress = xProgress;
+ db->nProgressOps = nOps;
+ db->pProgressArg = pArg;
+ }else{
+ db->xProgress = 0;
+ db->nProgressOps = 0;
+ db->pProgressArg = 0;
+ }
+}
+#endif
+
+
+/*
+** This routine installs a default busy handler that waits for the
+** specified number of milliseconds before returning 0.
+*/
+void sqlite_busy_timeout(sqlite *db, int ms){
+ if( ms>0 ){
+ sqlite_busy_handler(db, sqliteDefaultBusyCallback, (void*)ms);
+ }else{
+ sqlite_busy_handler(db, 0, 0);
+ }
+}
+
+/*
+** Cause any pending operation to stop at its earliest opportunity.
+*/
+void sqlite_interrupt(sqlite *db){
+ db->flags |= SQLITE_Interrupt;
+}
+
+/*
+** Windows systems should call this routine to free memory that
+** is returned in the in the errmsg parameter of sqlite_open() when
+** SQLite is a DLL. For some reason, it does not work to call free()
+** directly.
+**
+** Note that we need to call free() not sqliteFree() here, since every
+** string that is exported from SQLite should have already passed through
+** sqliteStrRealloc().
+*/
+void sqlite_freemem(void *p){ free(p); }
+
+/*
+** Windows systems need functions to call to return the sqlite_version
+** and sqlite_encoding strings since they are unable to access constants
+** within DLLs.
+*/
+const char *sqlite_libversion(void){ return sqlite_version; }
+const char *sqlite_libencoding(void){ return sqlite_encoding; }
+
+/*
+** Create new user-defined functions. The sqlite_create_function()
+** routine creates a regular function and sqlite_create_aggregate()
+** creates an aggregate function.
+**
+** Passing a NULL xFunc argument or NULL xStep and xFinalize arguments
+** disables the function. Calling sqlite_create_function() with the
+** same name and number of arguments as a prior call to
+** sqlite_create_aggregate() disables the prior call to
+** sqlite_create_aggregate(), and vice versa.
+**
+** If nArg is -1 it means that this function will accept any number
+** of arguments, including 0. The maximum allowed value of nArg is 127.
+*/
+int sqlite_create_function(
+ sqlite *db, /* Add the function to this database connection */
+ const char *zName, /* Name of the function to add */
+ int nArg, /* Number of arguments */
+ void (*xFunc)(sqlite_func*,int,const char**), /* The implementation */
+ void *pUserData /* User data */
+){
+ FuncDef *p;
+ int nName;
+ if( db==0 || zName==0 || sqliteSafetyCheck(db) ) return 1;
+ if( nArg<-1 || nArg>127 ) return 1;
+ nName = strlen(zName);
+ if( nName>255 ) return 1;
+ p = sqliteFindFunction(db, zName, nName, nArg, 1);
+ if( p==0 ) return 1;
+ p->xFunc = xFunc;
+ p->xStep = 0;
+ p->xFinalize = 0;
+ p->pUserData = pUserData;
+ return 0;
+}
+int sqlite_create_aggregate(
+ sqlite *db, /* Add the function to this database connection */
+ const char *zName, /* Name of the function to add */
+ int nArg, /* Number of arguments */
+ void (*xStep)(sqlite_func*,int,const char**), /* The step function */
+ void (*xFinalize)(sqlite_func*), /* The finalizer */
+ void *pUserData /* User data */
+){
+ FuncDef *p;
+ int nName;
+ if( db==0 || zName==0 || sqliteSafetyCheck(db) ) return 1;
+ if( nArg<-1 || nArg>127 ) return 1;
+ nName = strlen(zName);
+ if( nName>255 ) return 1;
+ p = sqliteFindFunction(db, zName, nName, nArg, 1);
+ if( p==0 ) return 1;
+ p->xFunc = 0;
+ p->xStep = xStep;
+ p->xFinalize = xFinalize;
+ p->pUserData = pUserData;
+ return 0;
+}
+
+/*
+** Change the datatype for all functions with a given name. See the
+** header comment for the prototype of this function in sqlite.h for
+** additional information.
+*/
+int sqlite_function_type(sqlite *db, const char *zName, int dataType){
+ FuncDef *p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, strlen(zName));
+ while( p ){
+ p->dataType = dataType;
+ p = p->pNext;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Register a trace function. The pArg from the previously registered trace
+** is returned.
+**
+** A NULL trace function means that no tracing is executes. A non-NULL
+** trace is a pointer to a function that is invoked at the start of each
+** sqlite_exec().
+*/
+void *sqlite_trace(sqlite *db, void (*xTrace)(void*,const char*), void *pArg){
+ void *pOld = db->pTraceArg;
+ db->xTrace = xTrace;
+ db->pTraceArg = pArg;
+ return pOld;
+}
+
+/*** EXPERIMENTAL ***
+**
+** Register a function to be invoked when a transaction comments.
+** If either function returns non-zero, then the commit becomes a
+** rollback.
+*/
+void *sqlite_commit_hook(
+ sqlite *db, /* Attach the hook to this database */
+ int (*xCallback)(void*), /* Function to invoke on each commit */
+ void *pArg /* Argument to the function */
+){
+ void *pOld = db->pCommitArg;
+ db->xCommitCallback = xCallback;
+ db->pCommitArg = pArg;
+ return pOld;
+}
+
+
+/*
+** This routine is called to create a connection to a database BTree
+** driver. If zFilename is the name of a file, then that file is
+** opened and used. If zFilename is the magic name ":memory:" then
+** the database is stored in memory (and is thus forgotten as soon as
+** the connection is closed.) If zFilename is NULL then the database
+** is for temporary use only and is deleted as soon as the connection
+** is closed.
+**
+** A temporary database can be either a disk file (that is automatically
+** deleted when the file is closed) or a set of red-black trees held in memory,
+** depending on the values of the TEMP_STORE compile-time macro and the
+** db->temp_store variable, according to the following chart:
+**
+** TEMP_STORE db->temp_store Location of temporary database
+** ---------- -------------- ------------------------------
+** 0 any file
+** 1 1 file
+** 1 2 memory
+** 1 0 file
+** 2 1 file
+** 2 2 memory
+** 2 0 memory
+** 3 any memory
+*/
+int sqliteBtreeFactory(
+ const sqlite *db, /* Main database when opening aux otherwise 0 */
+ const char *zFilename, /* Name of the file containing the BTree database */
+ int omitJournal, /* if TRUE then do not journal this file */
+ int nCache, /* How many pages in the page cache */
+ Btree **ppBtree){ /* Pointer to new Btree object written here */
+
+ assert( ppBtree != 0);
+
+#ifndef SQLITE_OMIT_INMEMORYDB
+ if( zFilename==0 ){
+ if (TEMP_STORE == 0) {
+ /* Always use file based temporary DB */
+ return sqliteBtreeOpen(0, omitJournal, nCache, ppBtree);
+ } else if (TEMP_STORE == 1 || TEMP_STORE == 2) {
+ /* Switch depending on compile-time and/or runtime settings. */
+ int location = db->temp_store==0 ? TEMP_STORE : db->temp_store;
+
+ if (location == 1) {
+ return sqliteBtreeOpen(zFilename, omitJournal, nCache, ppBtree);
+ } else {
+ return sqliteRbtreeOpen(0, 0, 0, ppBtree);
+ }
+ } else {
+ /* Always use in-core DB */
+ return sqliteRbtreeOpen(0, 0, 0, ppBtree);
+ }
+ }else if( zFilename[0]==':' && strcmp(zFilename,":memory:")==0 ){
+ return sqliteRbtreeOpen(0, 0, 0, ppBtree);
+ }else
+#endif
+ {
+ return sqliteBtreeOpen(zFilename, omitJournal, nCache, ppBtree);
+ }
+}
diff --git a/src/3rdparty/sqlite/opcodes.c b/src/3rdparty/sqlite/opcodes.c
new file mode 100644
index 0000000..df5b3c8
--- /dev/null
+++ b/src/3rdparty/sqlite/opcodes.c
@@ -0,0 +1,138 @@
+/* Automatically generated file. Do not edit */
+char *sqliteOpcodeNames[] = { "???",
+ "Goto",
+ "Gosub",
+ "Return",
+ "Halt",
+ "Integer",
+ "String",
+ "Variable",
+ "Pop",
+ "Dup",
+ "Pull",
+ "Push",
+ "ColumnName",
+ "Callback",
+ "Concat",
+ "Add",
+ "Subtract",
+ "Multiply",
+ "Divide",
+ "Remainder",
+ "Function",
+ "BitAnd",
+ "BitOr",
+ "ShiftLeft",
+ "ShiftRight",
+ "AddImm",
+ "ForceInt",
+ "MustBeInt",
+ "Eq",
+ "Ne",
+ "Lt",
+ "Le",
+ "Gt",
+ "Ge",
+ "StrEq",
+ "StrNe",
+ "StrLt",
+ "StrLe",
+ "StrGt",
+ "StrGe",
+ "And",
+ "Or",
+ "Negative",
+ "AbsValue",
+ "Not",
+ "BitNot",
+ "Noop",
+ "If",
+ "IfNot",
+ "IsNull",
+ "NotNull",
+ "MakeRecord",
+ "MakeIdxKey",
+ "MakeKey",
+ "IncrKey",
+ "Checkpoint",
+ "Transaction",
+ "Commit",
+ "Rollback",
+ "ReadCookie",
+ "SetCookie",
+ "VerifyCookie",
+ "OpenRead",
+ "OpenWrite",
+ "OpenTemp",
+ "OpenPseudo",
+ "Close",
+ "MoveLt",
+ "MoveTo",
+ "Distinct",
+ "NotFound",
+ "Found",
+ "IsUnique",
+ "NotExists",
+ "NewRecno",
+ "PutIntKey",
+ "PutStrKey",
+ "Delete",
+ "SetCounts",
+ "KeyAsData",
+ "RowKey",
+ "RowData",
+ "Column",
+ "Recno",
+ "FullKey",
+ "NullRow",
+ "Last",
+ "Rewind",
+ "Prev",
+ "Next",
+ "IdxPut",
+ "IdxDelete",
+ "IdxRecno",
+ "IdxLT",
+ "IdxGT",
+ "IdxGE",
+ "IdxIsNull",
+ "Destroy",
+ "Clear",
+ "CreateIndex",
+ "CreateTable",
+ "IntegrityCk",
+ "ListWrite",
+ "ListRewind",
+ "ListRead",
+ "ListReset",
+ "ListPush",
+ "ListPop",
+ "ContextPush",
+ "ContextPop",
+ "SortPut",
+ "SortMakeRec",
+ "SortMakeKey",
+ "Sort",
+ "SortNext",
+ "SortCallback",
+ "SortReset",
+ "FileOpen",
+ "FileRead",
+ "FileColumn",
+ "MemStore",
+ "MemLoad",
+ "MemIncr",
+ "AggReset",
+ "AggInit",
+ "AggFunc",
+ "AggFocus",
+ "AggSet",
+ "AggGet",
+ "AggNext",
+ "SetInsert",
+ "SetFound",
+ "SetNotFound",
+ "SetFirst",
+ "SetNext",
+ "Vacuum",
+};
diff --git a/src/3rdparty/sqlite/opcodes.h b/src/3rdparty/sqlite/opcodes.h
new file mode 100644
index 0000000..a6bc6d4
--- /dev/null
+++ b/src/3rdparty/sqlite/opcodes.h
@@ -0,0 +1,136 @@
+/* Automatically generated file. Do not edit */
+#define OP_Goto 1
+#define OP_Gosub 2
+#define OP_Return 3
+#define OP_Halt 4
+#define OP_Integer 5
+#define OP_String 6
+#define OP_Variable 7
+#define OP_Pop 8
+#define OP_Dup 9
+#define OP_Pull 10
+#define OP_Push 11
+#define OP_ColumnName 12
+#define OP_Callback 13
+#define OP_Concat 14
+#define OP_Add 15
+#define OP_Subtract 16
+#define OP_Multiply 17
+#define OP_Divide 18
+#define OP_Remainder 19
+#define OP_Function 20
+#define OP_BitAnd 21
+#define OP_BitOr 22
+#define OP_ShiftLeft 23
+#define OP_ShiftRight 24
+#define OP_AddImm 25
+#define OP_ForceInt 26
+#define OP_MustBeInt 27
+#define OP_Eq 28
+#define OP_Ne 29
+#define OP_Lt 30
+#define OP_Le 31
+#define OP_Gt 32
+#define OP_Ge 33
+#define OP_StrEq 34
+#define OP_StrNe 35
+#define OP_StrLt 36
+#define OP_StrLe 37
+#define OP_StrGt 38
+#define OP_StrGe 39
+#define OP_And 40
+#define OP_Or 41
+#define OP_Negative 42
+#define OP_AbsValue 43
+#define OP_Not 44
+#define OP_BitNot 45
+#define OP_Noop 46
+#define OP_If 47
+#define OP_IfNot 48
+#define OP_IsNull 49
+#define OP_NotNull 50
+#define OP_MakeRecord 51
+#define OP_MakeIdxKey 52
+#define OP_MakeKey 53
+#define OP_IncrKey 54
+#define OP_Checkpoint 55
+#define OP_Transaction 56
+#define OP_Commit 57
+#define OP_Rollback 58
+#define OP_ReadCookie 59
+#define OP_SetCookie 60
+#define OP_VerifyCookie 61
+#define OP_OpenRead 62
+#define OP_OpenWrite 63
+#define OP_OpenTemp 64
+#define OP_OpenPseudo 65
+#define OP_Close 66
+#define OP_MoveLt 67
+#define OP_MoveTo 68
+#define OP_Distinct 69
+#define OP_NotFound 70
+#define OP_Found 71
+#define OP_IsUnique 72
+#define OP_NotExists 73
+#define OP_NewRecno 74
+#define OP_PutIntKey 75
+#define OP_PutStrKey 76
+#define OP_Delete 77
+#define OP_SetCounts 78
+#define OP_KeyAsData 79
+#define OP_RowKey 80
+#define OP_RowData 81
+#define OP_Column 82
+#define OP_Recno 83
+#define OP_FullKey 84
+#define OP_NullRow 85
+#define OP_Last 86
+#define OP_Rewind 87
+#define OP_Prev 88
+#define OP_Next 89
+#define OP_IdxPut 90
+#define OP_IdxDelete 91
+#define OP_IdxRecno 92
+#define OP_IdxLT 93
+#define OP_IdxGT 94
+#define OP_IdxGE 95
+#define OP_IdxIsNull 96
+#define OP_Destroy 97
+#define OP_Clear 98
+#define OP_CreateIndex 99
+#define OP_CreateTable 100
+#define OP_IntegrityCk 101
+#define OP_ListWrite 102
+#define OP_ListRewind 103
+#define OP_ListRead 104
+#define OP_ListReset 105
+#define OP_ListPush 106
+#define OP_ListPop 107
+#define OP_ContextPush 108
+#define OP_ContextPop 109
+#define OP_SortPut 110
+#define OP_SortMakeRec 111
+#define OP_SortMakeKey 112
+#define OP_Sort 113
+#define OP_SortNext 114
+#define OP_SortCallback 115
+#define OP_SortReset 116
+#define OP_FileOpen 117
+#define OP_FileRead 118
+#define OP_FileColumn 119
+#define OP_MemStore 120
+#define OP_MemLoad 121
+#define OP_MemIncr 122
+#define OP_AggReset 123
+#define OP_AggInit 124
+#define OP_AggFunc 125
+#define OP_AggFocus 126
+#define OP_AggSet 127
+#define OP_AggGet 128
+#define OP_AggNext 129
+#define OP_SetInsert 130
+#define OP_SetFound 131
+#define OP_SetNotFound 132
+#define OP_SetFirst 133
+#define OP_SetNext 134
+#define OP_Vacuum 135
diff --git a/src/3rdparty/sqlite/os.c b/src/3rdparty/sqlite/os.c
new file mode 100644
index 0000000..b4ae7a1
--- /dev/null
+++ b/src/3rdparty/sqlite/os.c
@@ -0,0 +1,1818 @@
+/*
+** 2001 September 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains code that is specific to particular operating
+** systems. The purpose of this file is to provide a uniform abstraction
+** on which the rest of SQLite can operate.
+*/
+#include "os.h" /* Must be first to enable large file support */
+#include "sqliteInt.h"
+
+#if OS_UNIX
+# include <time.h>
+# include <errno.h>
+# include <unistd.h>
+# ifndef O_LARGEFILE
+# define O_LARGEFILE 0
+# endif
+# ifdef SQLITE_DISABLE_LFS
+# undef O_LARGEFILE
+# define O_LARGEFILE 0
+# endif
+# ifndef O_NOFOLLOW
+# define O_NOFOLLOW 0
+# endif
+# ifndef O_BINARY
+# define O_BINARY 0
+# endif
+#endif
+
+
+#if OS_WIN
+# include <winbase.h>
+#endif
+
+#if OS_MAC
+# include <extras.h>
+# include <path2fss.h>
+# include <TextUtils.h>
+# include <FinderRegistry.h>
+# include <Folders.h>
+# include <Timer.h>
+# include <OSUtils.h>
+#endif
+
+/*
+** The DJGPP compiler environment looks mostly like Unix, but it
+** lacks the fcntl() system call. So redefine fcntl() to be something
+** that always succeeds. This means that locking does not occur under
+** DJGPP. But its DOS - what did you expect?
+*/
+#ifdef __DJGPP__
+# define fcntl(A,B,C) 0
+#endif
+
+/*
+** Macros used to determine whether or not to use threads. The
+** SQLITE_UNIX_THREADS macro is defined if we are synchronizing for
+** Posix threads and SQLITE_W32_THREADS is defined if we are
+** synchronizing using Win32 threads.
+*/
+#if OS_UNIX && defined(THREADSAFE) && THREADSAFE
+# include <pthread.h>
+# define SQLITE_UNIX_THREADS 1
+#endif
+#if OS_WIN && defined(THREADSAFE) && THREADSAFE
+# define SQLITE_W32_THREADS 1
+#endif
+#if OS_MAC && defined(THREADSAFE) && THREADSAFE
+# include <Multiprocessing.h>
+# define SQLITE_MACOS_MULTITASKING 1
+#endif
+
+/*
+** Macros for performance tracing. Normally turned off
+*/
+#if 0
+static int last_page = 0;
+__inline__ unsigned long long int hwtime(void){
+ unsigned long long int x;
+ __asm__("rdtsc\n\t"
+ "mov %%edx, %%ecx\n\t"
+ :"=A" (x));
+ return x;
+}
+static unsigned long long int g_start;
+static unsigned int elapse;
+#define TIMER_START g_start=hwtime()
+#define TIMER_END elapse=hwtime()-g_start
+#define SEEK(X) last_page=(X)
+#define TRACE1(X) fprintf(stderr,X)
+#define TRACE2(X,Y) fprintf(stderr,X,Y)
+#define TRACE3(X,Y,Z) fprintf(stderr,X,Y,Z)
+#define TRACE4(X,Y,Z,A) fprintf(stderr,X,Y,Z,A)
+#define TRACE5(X,Y,Z,A,B) fprintf(stderr,X,Y,Z,A,B)
+#else
+#define TIMER_START
+#define TIMER_END
+#define SEEK(X)
+#define TRACE1(X)
+#define TRACE2(X,Y)
+#define TRACE3(X,Y,Z)
+#define TRACE4(X,Y,Z,A)
+#define TRACE5(X,Y,Z,A,B)
+#endif
+
+
+#if OS_UNIX
+/*
+** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996)
+** section 6.5.2.2 lines 483 through 490 specify that when a process
+** sets or clears a lock, that operation overrides any prior locks set
+** by the same process. It does not explicitly say so, but this implies
+** that it overrides locks set by the same process using a different
+** file descriptor. Consider this test case:
+**
+** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
+** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
+**
+** Suppose ./file1 and ./file2 are really the same file (because
+** one is a hard or symbolic link to the other) then if you set
+** an exclusive lock on fd1, then try to get an exclusive lock
+** on fd2, it works. I would have expected the second lock to
+** fail since there was already a lock on the file due to fd1.
+** But not so. Since both locks came from the same process, the
+** second overrides the first, even though they were on different
+** file descriptors opened on different file names.
+**
+** Bummer. If you ask me, this is broken. Badly broken. It means
+** that we cannot use POSIX locks to synchronize file access among
+** competing threads of the same process. POSIX locks will work fine
+** to synchronize access for threads in separate processes, but not
+** threads within the same process.
+**
+** To work around the problem, SQLite has to manage file locks internally
+** on its own. Whenever a new database is opened, we have to find the
+** specific inode of the database file (the inode is determined by the
+** st_dev and st_ino fields of the stat structure that fstat() fills in)
+** and check for locks already existing on that inode. When locks are
+** created or removed, we have to look at our own internal record of the
+** locks to see if another thread has previously set a lock on that same
+** inode.
+**
+** The OsFile structure for POSIX is no longer just an integer file
+** descriptor. It is now a structure that holds the integer file
+** descriptor and a pointer to a structure that describes the internal
+** locks on the corresponding inode. There is one locking structure
+** per inode, so if the same inode is opened twice, both OsFile structures
+** point to the same locking structure. The locking structure keeps
+** a reference count (so we will know when to delete it) and a "cnt"
+** field that tells us its internal lock status. cnt==0 means the
+** file is unlocked. cnt==-1 means the file has an exclusive lock.
+** cnt>0 means there are cnt shared locks on the file.
+**
+** Any attempt to lock or unlock a file first checks the locking
+** structure. The fcntl() system call is only invoked to set a
+** POSIX lock if the internal lock structure transitions between
+** a locked and an unlocked state.
+**
+** 2004-Jan-11:
+** More recent discoveries about POSIX advisory locks. (The more
+** I discover, the more I realize the a POSIX advisory locks are
+** an abomination.)
+**
+** If you close a file descriptor that points to a file that has locks,
+** all locks on that file that are owned by the current process are
+** released. To work around this problem, each OsFile structure contains
+** a pointer to an openCnt structure. There is one openCnt structure
+** per open inode, which means that multiple OsFiles can point to a single
+** openCnt. When an attempt is made to close an OsFile, if there are
+** other OsFiles open on the same inode that are holding locks, the call
+** to close() the file descriptor is deferred until all of the locks clear.
+** The openCnt structure keeps a list of file descriptors that need to
+** be closed and that list is walked (and cleared) when the last lock
+** clears.
+**
+** First, under Linux threads, because each thread has a separate
+** process ID, lock operations in one thread do not override locks
+** to the same file in other threads. Linux threads behave like
+** separate processes in this respect. But, if you close a file
+** descriptor in linux threads, all locks are cleared, even locks
+** on other threads and even though the other threads have different
+** process IDs. Linux threads is inconsistent in this respect.
+** (I'm beginning to think that linux threads is an abomination too.)
+** The consequence of this all is that the hash table for the lockInfo
+** structure has to include the process id as part of its key because
+** locks in different threads are treated as distinct. But the
+** openCnt structure should not include the process id in its
+** key because close() clears lock on all threads, not just the current
+** thread. Were it not for this goofiness in linux threads, we could
+** combine the lockInfo and openCnt structures into a single structure.
+*/
+
+/*
+** An instance of the following structure serves as the key used
+** to locate a particular lockInfo structure given its inode. Note
+** that we have to include the process ID as part of the key. On some
+** threading implementations (ex: linux), each thread has a separate
+** process ID.
+*/
+struct lockKey {
+ dev_t dev; /* Device number */
+ ino_t ino; /* Inode number */
+ pid_t pid; /* Process ID */
+};
+
+/*
+** An instance of the following structure is allocated for each open
+** inode on each thread with a different process ID. (Threads have
+** different process IDs on linux, but not on most other unixes.)
+**
+** A single inode can have multiple file descriptors, so each OsFile
+** structure contains a pointer to an instance of this object and this
+** object keeps a count of the number of OsFiles pointing to it.
+*/
+struct lockInfo {
+ struct lockKey key; /* The lookup key */
+ int cnt; /* 0: unlocked. -1: write lock. 1...: read lock. */
+ int nRef; /* Number of pointers to this structure */
+};
+
+/*
+** An instance of the following structure serves as the key used
+** to locate a particular openCnt structure given its inode. This
+** is the same as the lockKey except that the process ID is omitted.
+*/
+struct openKey {
+ dev_t dev; /* Device number */
+ ino_t ino; /* Inode number */
+};
+
+/*
+** An instance of the following structure is allocated for each open
+** inode. This structure keeps track of the number of locks on that
+** inode. If a close is attempted against an inode that is holding
+** locks, the close is deferred until all locks clear by adding the
+** file descriptor to be closed to the pending list.
+*/
+struct openCnt {
+ struct openKey key; /* The lookup key */
+ int nRef; /* Number of pointers to this structure */
+ int nLock; /* Number of outstanding locks */
+ int nPending; /* Number of pending close() operations */
+ int *aPending; /* Malloced space holding fd's awaiting a close() */
+};
+
+/*
+** These hash table maps inodes and process IDs into lockInfo and openCnt
+** structures. Access to these hash tables must be protected by a mutex.
+*/
+static Hash lockHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
+static Hash openHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
+
+/*
+** Release a lockInfo structure previously allocated by findLockInfo().
+*/
+static void releaseLockInfo(struct lockInfo *pLock){
+ pLock->nRef--;
+ if( pLock->nRef==0 ){
+ sqliteHashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
+ sqliteFree(pLock);
+ }
+}
+
+/*
+** Release a openCnt structure previously allocated by findLockInfo().
+*/
+static void releaseOpenCnt(struct openCnt *pOpen){
+ pOpen->nRef--;
+ if( pOpen->nRef==0 ){
+ sqliteHashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
+ sqliteFree(pOpen->aPending);
+ sqliteFree(pOpen);
+ }
+}
+
+/*
+** Given a file descriptor, locate lockInfo and openCnt structures that
+** describes that file descriptor. Create a new ones if necessary. The
+** return values might be unset if an error occurs.
+**
+** Return the number of errors.
+*/
+int findLockInfo(
+ int fd, /* The file descriptor used in the key */
+ struct lockInfo **ppLock, /* Return the lockInfo structure here */
+ struct openCnt **ppOpen /* Return the openCnt structure here */
+){
+ int rc;
+ struct lockKey key1;
+ struct openKey key2;
+ struct stat statbuf;
+ struct lockInfo *pLock;
+ struct openCnt *pOpen;
+ rc = fstat(fd, &statbuf);
+ if( rc!=0 ) return 1;
+ memset(&key1, 0, sizeof(key1));
+ key1.dev = statbuf.st_dev;
+ key1.ino = statbuf.st_ino;
+ key1.pid = getpid();
+ memset(&key2, 0, sizeof(key2));
+ key2.dev = statbuf.st_dev;
+ key2.ino = statbuf.st_ino;
+ pLock = (struct lockInfo*)sqliteHashFind(&lockHash, &key1, sizeof(key1));
+ if( pLock==0 ){
+ struct lockInfo *pOld;
+ pLock = sqliteMallocRaw( sizeof(*pLock) );
+ if( pLock==0 ) return 1;
+ pLock->key = key1;
+ pLock->nRef = 1;
+ pLock->cnt = 0;
+ pOld = sqliteHashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
+ if( pOld!=0 ){
+ assert( pOld==pLock );
+ sqliteFree(pLock);
+ return 1;
+ }
+ }else{
+ pLock->nRef++;
+ }
+ *ppLock = pLock;
+ pOpen = (struct openCnt*)sqliteHashFind(&openHash, &key2, sizeof(key2));
+ if( pOpen==0 ){
+ struct openCnt *pOld;
+ pOpen = sqliteMallocRaw( sizeof(*pOpen) );
+ if( pOpen==0 ){
+ releaseLockInfo(pLock);
+ return 1;
+ }
+ pOpen->key = key2;
+ pOpen->nRef = 1;
+ pOpen->nLock = 0;
+ pOpen->nPending = 0;
+ pOpen->aPending = 0;
+ pOld = sqliteHashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
+ if( pOld!=0 ){
+ assert( pOld==pOpen );
+ sqliteFree(pOpen);
+ releaseLockInfo(pLock);
+ return 1;
+ }
+ }else{
+ pOpen->nRef++;
+ }
+ *ppOpen = pOpen;
+ return 0;
+}
+
+#endif /** POSIX advisory lock work-around **/
+
+/*
+** If we compile with the SQLITE_TEST macro set, then the following block
+** of code will give us the ability to simulate a disk I/O error. This
+** is used for testing the I/O recovery logic.
+*/
+#ifdef SQLITE_TEST
+int sqlite_io_error_pending = 0;
+#define SimulateIOError(A) \
+ if( sqlite_io_error_pending ) \
+ if( sqlite_io_error_pending-- == 1 ){ local_ioerr(); return A; }
+static void local_ioerr(){
+ sqlite_io_error_pending = 0; /* Really just a place to set a breakpoint */
+}
+#else
+#define SimulateIOError(A)
+#endif
+
+/*
+** When testing, keep a count of the number of open files.
+*/
+#ifdef SQLITE_TEST
+int sqlite_open_file_count = 0;
+#define OpenCounter(X) sqlite_open_file_count+=(X)
+#else
+#define OpenCounter(X)
+#endif
+
+
+/*
+** Delete the named file
+*/
+int sqliteOsDelete(const char *zFilename){
+#if OS_UNIX
+ unlink(zFilename);
+#endif
+#if OS_WIN
+ DeleteFile(zFilename);
+#endif
+#if OS_MAC
+ unlink(zFilename);
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** Return TRUE if the named file exists.
+*/
+int sqliteOsFileExists(const char *zFilename){
+#if OS_UNIX
+ return access(zFilename, 0)==0;
+#endif
+#if OS_WIN
+ return GetFileAttributes(zFilename) != 0xffffffff;
+#endif
+#if OS_MAC
+ return access(zFilename, 0)==0;
+#endif
+}
+
+
+#if 0 /* NOT USED */
+/*
+** Change the name of an existing file.
+*/
+int sqliteOsFileRename(const char *zOldName, const char *zNewName){
+#if OS_UNIX
+ if( link(zOldName, zNewName) ){
+ return SQLITE_ERROR;
+ }
+ unlink(zOldName);
+ return SQLITE_OK;
+#endif
+#if OS_WIN
+ if( !MoveFile(zOldName, zNewName) ){
+ return SQLITE_ERROR;
+ }
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+ /**** FIX ME ***/
+ return SQLITE_ERROR;
+#endif
+}
+#endif /* NOT USED */
+
+/*
+** Attempt to open a file for both reading and writing. If that
+** fails, try opening it read-only. If the file does not exist,
+** try to create it.
+**
+** On success, a handle for the open file is written to *id
+** and *pReadonly is set to 0 if the file was opened for reading and
+** writing or 1 if the file was opened read-only. The function returns
+** SQLITE_OK.
+**
+** On failure, the function returns SQLITE_CANTOPEN and leaves
+** *id and *pReadonly unchanged.
+*/
+int sqliteOsOpenReadWrite(
+ const char *zFilename,
+ OsFile *id,
+ int *pReadonly
+){
+#if OS_UNIX
+ int rc;
+ id->dirfd = -1;
+ id->fd = open(zFilename, O_RDWR|O_CREAT|O_LARGEFILE|O_BINARY, 0644);
+ if( id->fd<0 ){
+ id->fd = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
+ if( id->fd<0 ){
+ return SQLITE_CANTOPEN;
+ }
+ *pReadonly = 1;
+ }else{
+ *pReadonly = 0;
+ }
+ sqliteOsEnterMutex();
+ rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
+ sqliteOsLeaveMutex();
+ if( rc ){
+ close(id->fd);
+ return SQLITE_NOMEM;
+ }
+ id->locked = 0;
+ TRACE3("OPEN %-3d %s\n", id->fd, zFilename);
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+#if OS_WIN
+ HANDLE h = CreateFile(zFilename,
+ GENERIC_READ | GENERIC_WRITE,
+ FILE_SHARE_READ | FILE_SHARE_WRITE,
+ NULL,
+ OPEN_ALWAYS,
+ FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
+ NULL
+ );
+ if( h==INVALID_HANDLE_VALUE ){
+ h = CreateFile(zFilename,
+ GENERIC_READ,
+ FILE_SHARE_READ,
+ NULL,
+ OPEN_ALWAYS,
+ FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
+ NULL
+ );
+ if( h==INVALID_HANDLE_VALUE ){
+ return SQLITE_CANTOPEN;
+ }
+ *pReadonly = 1;
+ }else{
+ *pReadonly = 0;
+ }
+ id->h = h;
+ id->locked = 0;
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+ FSSpec fsSpec;
+# ifdef _LARGE_FILE
+ HFSUniStr255 dfName;
+ FSRef fsRef;
+ if( __path2fss(zFilename, &fsSpec) != noErr ){
+ if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
+ return SQLITE_CANTOPEN;
+ }
+ if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
+ return SQLITE_CANTOPEN;
+ FSGetDataForkName(&dfName);
+ if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
+ fsRdWrShPerm, &(id->refNum)) != noErr ){
+ if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
+ fsRdWrPerm, &(id->refNum)) != noErr ){
+ if (FSOpenFork(&fsRef, dfName.length, dfName.unicode,
+ fsRdPerm, &(id->refNum)) != noErr )
+ return SQLITE_CANTOPEN;
+ else
+ *pReadonly = 1;
+ } else
+ *pReadonly = 0;
+ } else
+ *pReadonly = 0;
+# else
+ __path2fss(zFilename, &fsSpec);
+ if( !sqliteOsFileExists(zFilename) ){
+ if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
+ return SQLITE_CANTOPEN;
+ }
+ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNum)) != noErr ){
+ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrPerm, &(id->refNum)) != noErr ){
+ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdPerm, &(id->refNum)) != noErr )
+ return SQLITE_CANTOPEN;
+ else
+ *pReadonly = 1;
+ } else
+ *pReadonly = 0;
+ } else
+ *pReadonly = 0;
+# endif
+ if( HOpenRF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNumRF)) != noErr){
+ id->refNumRF = -1;
+ }
+ id->locked = 0;
+ id->delOnClose = 0;
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+}
+
+
+/*
+** Attempt to open a new file for exclusive access by this process.
+** The file will be opened for both reading and writing. To avoid
+** a potential security problem, we do not allow the file to have
+** previously existed. Nor do we allow the file to be a symbolic
+** link.
+**
+** If delFlag is true, then make arrangements to automatically delete
+** the file when it is closed.
+**
+** On success, write the file handle into *id and return SQLITE_OK.
+**
+** On failure, return SQLITE_CANTOPEN.
+*/
+int sqliteOsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){
+#if OS_UNIX
+ int rc;
+ if( access(zFilename, 0)==0 ){
+ return SQLITE_CANTOPEN;
+ }
+ id->dirfd = -1;
+ id->fd = open(zFilename,
+ O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW|O_LARGEFILE|O_BINARY, 0600);
+ if( id->fd<0 ){
+ return SQLITE_CANTOPEN;
+ }
+ sqliteOsEnterMutex();
+ rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
+ sqliteOsLeaveMutex();
+ if( rc ){
+ close(id->fd);
+ unlink(zFilename);
+ return SQLITE_NOMEM;
+ }
+ id->locked = 0;
+ if( delFlag ){
+ unlink(zFilename);
+ }
+ TRACE3("OPEN-EX %-3d %s\n", id->fd, zFilename);
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+#if OS_WIN
+ HANDLE h;
+ int fileflags;
+ if( delFlag ){
+ fileflags = FILE_ATTRIBUTE_TEMPORARY | FILE_FLAG_RANDOM_ACCESS
+ | FILE_FLAG_DELETE_ON_CLOSE;
+ }else{
+ fileflags = FILE_FLAG_RANDOM_ACCESS;
+ }
+ h = CreateFile(zFilename,
+ GENERIC_READ | GENERIC_WRITE,
+ 0,
+ NULL,
+ CREATE_ALWAYS,
+ fileflags,
+ NULL
+ );
+ if( h==INVALID_HANDLE_VALUE ){
+ return SQLITE_CANTOPEN;
+ }
+ id->h = h;
+ id->locked = 0;
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+ FSSpec fsSpec;
+# ifdef _LARGE_FILE
+ HFSUniStr255 dfName;
+ FSRef fsRef;
+ __path2fss(zFilename, &fsSpec);
+ if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
+ return SQLITE_CANTOPEN;
+ if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
+ return SQLITE_CANTOPEN;
+ FSGetDataForkName(&dfName);
+ if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
+ fsRdWrPerm, &(id->refNum)) != noErr )
+ return SQLITE_CANTOPEN;
+# else
+ __path2fss(zFilename, &fsSpec);
+ if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
+ return SQLITE_CANTOPEN;
+ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrPerm, &(id->refNum)) != noErr )
+ return SQLITE_CANTOPEN;
+# endif
+ id->refNumRF = -1;
+ id->locked = 0;
+ id->delOnClose = delFlag;
+ if (delFlag)
+ id->pathToDel = sqliteOsFullPathname(zFilename);
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+}
+
+/*
+** Attempt to open a new file for read-only access.
+**
+** On success, write the file handle into *id and return SQLITE_OK.
+**
+** On failure, return SQLITE_CANTOPEN.
+*/
+int sqliteOsOpenReadOnly(const char *zFilename, OsFile *id){
+#if OS_UNIX
+ int rc;
+ id->dirfd = -1;
+ id->fd = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
+ if( id->fd<0 ){
+ return SQLITE_CANTOPEN;
+ }
+ sqliteOsEnterMutex();
+ rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
+ sqliteOsLeaveMutex();
+ if( rc ){
+ close(id->fd);
+ return SQLITE_NOMEM;
+ }
+ id->locked = 0;
+ TRACE3("OPEN-RO %-3d %s\n", id->fd, zFilename);
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+#if OS_WIN
+ HANDLE h = CreateFile(zFilename,
+ GENERIC_READ,
+ 0,
+ NULL,
+ OPEN_EXISTING,
+ FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
+ NULL
+ );
+ if( h==INVALID_HANDLE_VALUE ){
+ return SQLITE_CANTOPEN;
+ }
+ id->h = h;
+ id->locked = 0;
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+ FSSpec fsSpec;
+# ifdef _LARGE_FILE
+ HFSUniStr255 dfName;
+ FSRef fsRef;
+ if( __path2fss(zFilename, &fsSpec) != noErr )
+ return SQLITE_CANTOPEN;
+ if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
+ return SQLITE_CANTOPEN;
+ FSGetDataForkName(&dfName);
+ if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
+ fsRdPerm, &(id->refNum)) != noErr )
+ return SQLITE_CANTOPEN;
+# else
+ __path2fss(zFilename, &fsSpec);
+ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdPerm, &(id->refNum)) != noErr )
+ return SQLITE_CANTOPEN;
+# endif
+ if( HOpenRF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNumRF)) != noErr){
+ id->refNumRF = -1;
+ }
+ id->locked = 0;
+ id->delOnClose = 0;
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+}
+
+/*
+** Attempt to open a file descriptor for the directory that contains a
+** file. This file descriptor can be used to fsync() the directory
+** in order to make sure the creation of a new file is actually written
+** to disk.
+**
+** This routine is only meaningful for Unix. It is a no-op under
+** windows since windows does not support hard links.
+**
+** On success, a handle for a previously open file is at *id is
+** updated with the new directory file descriptor and SQLITE_OK is
+** returned.
+**
+** On failure, the function returns SQLITE_CANTOPEN and leaves
+** *id unchanged.
+*/
+int sqliteOsOpenDirectory(
+ const char *zDirname,
+ OsFile *id
+){
+#if OS_UNIX
+ if( id->fd<0 ){
+ /* Do not open the directory if the corresponding file is not already
+ ** open. */
+ return SQLITE_CANTOPEN;
+ }
+ assert( id->dirfd<0 );
+ id->dirfd = open(zDirname, O_RDONLY|O_BINARY, 0644);
+ if( id->dirfd<0 ){
+ return SQLITE_CANTOPEN;
+ }
+ TRACE3("OPENDIR %-3d %s\n", id->dirfd, zDirname);
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** Create a temporary file name in zBuf. zBuf must be big enough to
+** hold at least SQLITE_TEMPNAME_SIZE characters.
+*/
+int sqliteOsTempFileName(char *zBuf){
+#if OS_UNIX
+ static const char *azDirs[] = {
+ "/var/tmp",
+ "/usr/tmp",
+ "/tmp",
+ ".",
+ };
+ static unsigned char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ int i, j;
+ struct stat buf;
+ const char *zDir = ".";
+ for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
+ if( stat(azDirs[i], &buf) ) continue;
+ if( !S_ISDIR(buf.st_mode) ) continue;
+ if( access(azDirs[i], 07) ) continue;
+ zDir = azDirs[i];
+ break;
+ }
+ do{
+ sprintf(zBuf, "%s/"TEMP_FILE_PREFIX, zDir);
+ j = strlen(zBuf);
+ sqliteRandomness(15, &zBuf[j]);
+ for(i=0; i<15; i++, j++){
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
+ }
+ zBuf[j] = 0;
+ }while( access(zBuf,0)==0 );
+#endif
+#if OS_WIN
+ static char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ int i, j;
+ char zTempPath[SQLITE_TEMPNAME_SIZE];
+ GetTempPath(SQLITE_TEMPNAME_SIZE-30, zTempPath);
+ for(i=strlen(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
+ zTempPath[i] = 0;
+ for(;;){
+ sprintf(zBuf, "%s\\"TEMP_FILE_PREFIX, zTempPath);
+ j = strlen(zBuf);
+ sqliteRandomness(15, &zBuf[j]);
+ for(i=0; i<15; i++, j++){
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
+ }
+ zBuf[j] = 0;
+ if( !sqliteOsFileExists(zBuf) ) break;
+ }
+#endif
+#if OS_MAC
+ static char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ int i, j;
+ char zTempPath[SQLITE_TEMPNAME_SIZE];
+ char zdirName[32];
+ CInfoPBRec infoRec;
+ Str31 dirName;
+ memset(&infoRec, 0, sizeof(infoRec));
+ memset(zTempPath, 0, SQLITE_TEMPNAME_SIZE);
+ if( FindFolder(kOnSystemDisk, kTemporaryFolderType, kCreateFolder,
+ &(infoRec.dirInfo.ioVRefNum), &(infoRec.dirInfo.ioDrParID)) == noErr ){
+ infoRec.dirInfo.ioNamePtr = dirName;
+ do{
+ infoRec.dirInfo.ioFDirIndex = -1;
+ infoRec.dirInfo.ioDrDirID = infoRec.dirInfo.ioDrParID;
+ if( PBGetCatInfoSync(&infoRec) == noErr ){
+ CopyPascalStringToC(dirName, zdirName);
+ i = strlen(zdirName);
+ memmove(&(zTempPath[i+1]), zTempPath, strlen(zTempPath));
+ strcpy(zTempPath, zdirName);
+ zTempPath[i] = ':';
+ }else{
+ *zTempPath = 0;
+ break;
+ }
+ } while( infoRec.dirInfo.ioDrDirID != fsRtDirID );
+ }
+ if( *zTempPath == 0 )
+ getcwd(zTempPath, SQLITE_TEMPNAME_SIZE-24);
+ for(;;){
+ sprintf(zBuf, "%s"TEMP_FILE_PREFIX, zTempPath);
+ j = strlen(zBuf);
+ sqliteRandomness(15, &zBuf[j]);
+ for(i=0; i<15; i++, j++){
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
+ }
+ zBuf[j] = 0;
+ if( !sqliteOsFileExists(zBuf) ) break;
+ }
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** Close a file.
+*/
+int sqliteOsClose(OsFile *id){
+#if OS_UNIX
+ sqliteOsUnlock(id);
+ if( id->dirfd>=0 ) close(id->dirfd);
+ id->dirfd = -1;
+ sqliteOsEnterMutex();
+ if( id->pOpen->nLock ){
+ /* If there are outstanding locks, do not actually close the file just
+ ** yet because that would clear those locks. Instead, add the file
+ ** descriptor to pOpen->aPending. It will be automatically closed when
+ ** the last lock is cleared.
+ */
+ int *aNew;
+ struct openCnt *pOpen = id->pOpen;
+ pOpen->nPending++;
+ aNew = sqliteRealloc( pOpen->aPending, pOpen->nPending*sizeof(int) );
+ if( aNew==0 ){
+ /* If a malloc fails, just leak the file descriptor */
+ }else{
+ pOpen->aPending = aNew;
+ pOpen->aPending[pOpen->nPending-1] = id->fd;
+ }
+ }else{
+ /* There are no outstanding locks so we can close the file immediately */
+ close(id->fd);
+ }
+ releaseLockInfo(id->pLock);
+ releaseOpenCnt(id->pOpen);
+ sqliteOsLeaveMutex();
+ TRACE2("CLOSE %-3d\n", id->fd);
+ OpenCounter(-1);
+ return SQLITE_OK;
+#endif
+#if OS_WIN
+ CloseHandle(id->h);
+ OpenCounter(-1);
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+ if( id->refNumRF!=-1 )
+ FSClose(id->refNumRF);
+# ifdef _LARGE_FILE
+ FSCloseFork(id->refNum);
+# else
+ FSClose(id->refNum);
+# endif
+ if( id->delOnClose ){
+ unlink(id->pathToDel);
+ sqliteFree(id->pathToDel);
+ }
+ OpenCounter(-1);
+ return SQLITE_OK;
+#endif
+}
+
+/*
+** Read data from a file into a buffer. Return SQLITE_OK if all
+** bytes were read successfully and SQLITE_IOERR if anything goes
+** wrong.
+*/
+int sqliteOsRead(OsFile *id, void *pBuf, int amt){
+#if OS_UNIX
+ int got;
+ SimulateIOError(SQLITE_IOERR);
+ TIMER_START;
+ got = read(id->fd, pBuf, amt);
+ TIMER_END;
+ TRACE4("READ %-3d %7d %d\n", id->fd, last_page, elapse);
+ SEEK(0);
+ /* if( got<0 ) got = 0; */
+ if( got==amt ){
+ return SQLITE_OK;
+ }else{
+ return SQLITE_IOERR;
+ }
+#endif
+#if OS_WIN
+ DWORD got;
+ SimulateIOError(SQLITE_IOERR);
+ TRACE2("READ %d\n", last_page);
+ if( !ReadFile(id->h, pBuf, amt, &got, 0) ){
+ got = 0;
+ }
+ if( got==(DWORD)amt ){
+ return SQLITE_OK;
+ }else{
+ return SQLITE_IOERR;
+ }
+#endif
+#if OS_MAC
+ int got;
+ SimulateIOError(SQLITE_IOERR);
+ TRACE2("READ %d\n", last_page);
+# ifdef _LARGE_FILE
+ FSReadFork(id->refNum, fsAtMark, 0, (ByteCount)amt, pBuf, (ByteCount*)&got);
+# else
+ got = amt;
+ FSRead(id->refNum, &got, pBuf);
+# endif
+ if( got==amt ){
+ return SQLITE_OK;
+ }else{
+ return SQLITE_IOERR;
+ }
+#endif
+}
+
+/*
+** Write data from a buffer into a file. Return SQLITE_OK on success
+** or some other error code on failure.
+*/
+int sqliteOsWrite(OsFile *id, const void *pBuf, int amt){
+#if OS_UNIX
+ int wrote = 0;
+ SimulateIOError(SQLITE_IOERR);
+ TIMER_START;
+ while( amt>0 && (wrote = write(id->fd, pBuf, amt))>0 ){
+ amt -= wrote;
+ pBuf = &((char*)pBuf)[wrote];
+ }
+ TIMER_END;
+ TRACE4("WRITE %-3d %7d %d\n", id->fd, last_page, elapse);
+ SEEK(0);
+ if( amt>0 ){
+ return SQLITE_FULL;
+ }
+ return SQLITE_OK;
+#endif
+#if OS_WIN
+ int rc;
+ DWORD wrote;
+ SimulateIOError(SQLITE_IOERR);
+ TRACE2("WRITE %d\n", last_page);
+ while( amt>0 && (rc = WriteFile(id->h, pBuf, amt, &wrote, 0))!=0 && wrote>0 ){
+ amt -= wrote;
+ pBuf = &((char*)pBuf)[wrote];
+ }
+ if( !rc || amt>(int)wrote ){
+ return SQLITE_FULL;
+ }
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+ OSErr oserr;
+ int wrote = 0;
+ SimulateIOError(SQLITE_IOERR);
+ TRACE2("WRITE %d\n", last_page);
+ while( amt>0 ){
+# ifdef _LARGE_FILE
+ oserr = FSWriteFork(id->refNum, fsAtMark, 0,
+ (ByteCount)amt, pBuf, (ByteCount*)&wrote);
+# else
+ wrote = amt;
+ oserr = FSWrite(id->refNum, &wrote, pBuf);
+# endif
+ if( wrote == 0 || oserr != noErr)
+ break;
+ amt -= wrote;
+ pBuf = &((char*)pBuf)[wrote];
+ }
+ if( oserr != noErr || amt>wrote ){
+ return SQLITE_FULL;
+ }
+ return SQLITE_OK;
+#endif
+}
+
+/*
+** Move the read/write pointer in a file.
+*/
+int sqliteOsSeek(OsFile *id, off_t offset){
+ SEEK(offset/1024 + 1);
+#if OS_UNIX
+ lseek(id->fd, offset, SEEK_SET);
+ return SQLITE_OK;
+#endif
+#if OS_WIN
+ {
+ LONG upperBits = offset>>32;
+ LONG lowerBits = offset & 0xffffffff;
+ DWORD rc;
+ rc = SetFilePointer(id->h, lowerBits, &upperBits, FILE_BEGIN);
+ /* TRACE3("SEEK rc=0x%x upper=0x%x\n", rc, upperBits); */
+ }
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+ {
+ off_t curSize;
+ if( sqliteOsFileSize(id, &curSize) != SQLITE_OK ){
+ return SQLITE_IOERR;
+ }
+ if( offset >= curSize ){
+ if( sqliteOsTruncate(id, offset+1) != SQLITE_OK ){
+ return SQLITE_IOERR;
+ }
+ }
+# ifdef _LARGE_FILE
+ if( FSSetForkPosition(id->refNum, fsFromStart, offset) != noErr ){
+# else
+ if( SetFPos(id->refNum, fsFromStart, offset) != noErr ){
+# endif
+ return SQLITE_IOERR;
+ }else{
+ return SQLITE_OK;
+ }
+ }
+#endif
+}
+
+/*
+** Make sure all writes to a particular file are committed to disk.
+**
+** Under Unix, also make sure that the directory entry for the file
+** has been created by fsync-ing the directory that contains the file.
+** If we do not do this and we encounter a power failure, the directory
+** entry for the journal might not exist after we reboot. The next
+** SQLite to access the file will not know that the journal exists (because
+** the directory entry for the journal was never created) and the transaction
+** will not roll back - possibly leading to database corruption.
+*/
+int sqliteOsSync(OsFile *id){
+#if OS_UNIX
+ SimulateIOError(SQLITE_IOERR);
+ TRACE2("SYNC %-3d\n", id->fd);
+ if( fsync(id->fd) ){
+ return SQLITE_IOERR;
+ }else{
+ if( id->dirfd>=0 ){
+ TRACE2("DIRSYNC %-3d\n", id->dirfd);
+ fsync(id->dirfd);
+ close(id->dirfd); /* Only need to sync once, so close the directory */
+ id->dirfd = -1; /* when we are done. */
+ }
+ return SQLITE_OK;
+ }
+#endif
+#if OS_WIN
+ if( FlushFileBuffers(id->h) ){
+ return SQLITE_OK;
+ }else{
+ return SQLITE_IOERR;
+ }
+#endif
+#if OS_MAC
+# ifdef _LARGE_FILE
+ if( FSFlushFork(id->refNum) != noErr ){
+# else
+ ParamBlockRec params;
+ memset(&params, 0, sizeof(ParamBlockRec));
+ params.ioParam.ioRefNum = id->refNum;
+ if( PBFlushFileSync(&params) != noErr ){
+# endif
+ return SQLITE_IOERR;
+ }else{
+ return SQLITE_OK;
+ }
+#endif
+}
+
+/*
+** Truncate an open file to a specified size
+*/
+int sqliteOsTruncate(OsFile *id, off_t nByte){
+ SimulateIOError(SQLITE_IOERR);
+#if OS_UNIX
+ return ftruncate(id->fd, nByte)==0 ? SQLITE_OK : SQLITE_IOERR;
+#endif
+#if OS_WIN
+ {
+ LONG upperBits = nByte>>32;
+ SetFilePointer(id->h, nByte, &upperBits, FILE_BEGIN);
+ SetEndOfFile(id->h);
+ }
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+# ifdef _LARGE_FILE
+ if( FSSetForkSize(id->refNum, fsFromStart, nByte) != noErr){
+# else
+ if( SetEOF(id->refNum, nByte) != noErr ){
+# endif
+ return SQLITE_IOERR;
+ }else{
+ return SQLITE_OK;
+ }
+#endif
+}
+
+/*
+** Determine the current size of a file in bytes
+*/
+int sqliteOsFileSize(OsFile *id, off_t *pSize){
+#if OS_UNIX
+ struct stat buf;
+ SimulateIOError(SQLITE_IOERR);
+ if( fstat(id->fd, &buf)!=0 ){
+ return SQLITE_IOERR;
+ }
+ *pSize = buf.st_size;
+ return SQLITE_OK;
+#endif
+#if OS_WIN
+ DWORD upperBits, lowerBits;
+ SimulateIOError(SQLITE_IOERR);
+ lowerBits = GetFileSize(id->h, &upperBits);
+ *pSize = (((off_t)upperBits)<<32) + lowerBits;
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+# ifdef _LARGE_FILE
+ if( FSGetForkSize(id->refNum, pSize) != noErr){
+# else
+ if( GetEOF(id->refNum, pSize) != noErr ){
+# endif
+ return SQLITE_IOERR;
+ }else{
+ return SQLITE_OK;
+ }
+#endif
+}
+
+#if OS_WIN
+/*
+** Return true (non-zero) if we are running under WinNT, Win2K or WinXP.
+** Return false (zero) for Win95, Win98, or WinME.
+**
+** Here is an interesting observation: Win95, Win98, and WinME lack
+** the LockFileEx() API. But we can still statically link against that
+** API as long as we don't call it win running Win95/98/ME. A call to
+** this routine is used to determine if the host is Win95/98/ME or
+** WinNT/2K/XP so that we will know whether or not we can safely call
+** the LockFileEx() API.
+*/
+int isNT(void){
+ static int osType = 0; /* 0=unknown 1=win95 2=winNT */
+ if( osType==0 ){
+ OSVERSIONINFO sInfo;
+ sInfo.dwOSVersionInfoSize = sizeof(sInfo);
+ GetVersionEx(&sInfo);
+ osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
+ }
+ return osType==2;
+}
+#endif
+
+/*
+** Windows file locking notes: [similar issues apply to MacOS]
+**
+** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
+** those functions are not available. So we use only LockFile() and
+** UnlockFile().
+**
+** LockFile() prevents not just writing but also reading by other processes.
+** (This is a design error on the part of Windows, but there is nothing
+** we can do about that.) So the region used for locking is at the
+** end of the file where it is unlikely to ever interfere with an
+** actual read attempt.
+**
+** A database read lock is obtained by locking a single randomly-chosen
+** byte out of a specific range of bytes. The lock byte is obtained at
+** random so two separate readers can probably access the file at the
+** same time, unless they are unlucky and choose the same lock byte.
+** A database write lock is obtained by locking all bytes in the range.
+** There can only be one writer.
+**
+** A lock is obtained on the first byte of the lock range before acquiring
+** either a read lock or a write lock. This prevents two processes from
+** attempting to get a lock at a same time. The semantics of
+** sqliteOsReadLock() require that if there is already a write lock, that
+** lock is converted into a read lock atomically. The lock on the first
+** byte allows us to drop the old write lock and get the read lock without
+** another process jumping into the middle and messing us up. The same
+** argument applies to sqliteOsWriteLock().
+**
+** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
+** which means we can use reader/writer locks. When reader writer locks
+** are used, the lock is placed on the same range of bytes that is used
+** for probabilistic locking in Win95/98/ME. Hence, the locking scheme
+** will support two or more Win95 readers or two or more WinNT readers.
+** But a single Win95 reader will lock out all WinNT readers and a single
+** WinNT reader will lock out all other Win95 readers.
+**
+** Note: On MacOS we use the resource fork for locking.
+**
+** The following #defines specify the range of bytes used for locking.
+** N_LOCKBYTE is the number of bytes available for doing the locking.
+** The first byte used to hold the lock while the lock is changing does
+** not count toward this number. FIRST_LOCKBYTE is the address of
+** the first byte in the range of bytes used for locking.
+*/
+#define N_LOCKBYTE 10239
+#if OS_MAC
+# define FIRST_LOCKBYTE (0x000fffff - N_LOCKBYTE)
+#else
+# define FIRST_LOCKBYTE (0xffffffff - N_LOCKBYTE)
+#endif
+
+/*
+** Change the status of the lock on the file "id" to be a readlock.
+** If the file was write locked, then this reduces the lock to a read.
+** If the file was read locked, then this acquires a new read lock.
+**
+** Return SQLITE_OK on success and SQLITE_BUSY on failure. If this
+** library was compiled with large file support (LFS) but LFS is not
+** available on the host, then an SQLITE_NOLFS is returned.
+*/
+int sqliteOsReadLock(OsFile *id){
+#if OS_UNIX
+ int rc;
+ sqliteOsEnterMutex();
+ if( id->pLock->cnt>0 ){
+ if( !id->locked ){
+ id->pLock->cnt++;
+ id->locked = 1;
+ id->pOpen->nLock++;
+ }
+ rc = SQLITE_OK;
+ }else if( id->locked || id->pLock->cnt==0 ){
+ struct flock lock;
+ int s;
+ lock.l_type = F_RDLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = lock.l_len = 0L;
+ s = fcntl(id->fd, F_SETLK, &lock);
+ if( s!=0 ){
+ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
+ }else{
+ rc = SQLITE_OK;
+ if( !id->locked ){
+ id->pOpen->nLock++;
+ id->locked = 1;
+ }
+ id->pLock->cnt = 1;
+ }
+ }else{
+ rc = SQLITE_BUSY;
+ }
+ sqliteOsLeaveMutex();
+ return rc;
+#endif
+#if OS_WIN
+ int rc;
+ if( id->locked>0 ){
+ rc = SQLITE_OK;
+ }else{
+ int lk;
+ int res;
+ int cnt = 100;
+ sqliteRandomness(sizeof(lk), &lk);
+ lk = (lk & 0x7fffffff)%N_LOCKBYTE + 1;
+ while( cnt-->0 && (res = LockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0))==0 ){
+ Sleep(1);
+ }
+ if( res ){
+ UnlockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
+ if( isNT() ){
+ OVERLAPPED ovlp;
+ ovlp.Offset = FIRST_LOCKBYTE+1;
+ ovlp.OffsetHigh = 0;
+ ovlp.hEvent = 0;
+ res = LockFileEx(id->h, LOCKFILE_FAIL_IMMEDIATELY,
+ 0, N_LOCKBYTE, 0, &ovlp);
+ }else{
+ res = LockFile(id->h, FIRST_LOCKBYTE+lk, 0, 1, 0);
+ }
+ UnlockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0);
+ }
+ if( res ){
+ id->locked = lk;
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_BUSY;
+ }
+ }
+ return rc;
+#endif
+#if OS_MAC
+ int rc;
+ if( id->locked>0 || id->refNumRF == -1 ){
+ rc = SQLITE_OK;
+ }else{
+ int lk;
+ OSErr res;
+ int cnt = 5;
+ ParamBlockRec params;
+ sqliteRandomness(sizeof(lk), &lk);
+ lk = (lk & 0x7fffffff)%N_LOCKBYTE + 1;
+ memset(&params, 0, sizeof(params));
+ params.ioParam.ioRefNum = id->refNumRF;
+ params.ioParam.ioPosMode = fsFromStart;
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
+ params.ioParam.ioReqCount = 1;
+ while( cnt-->0 && (res = PBLockRangeSync(&params))!=noErr ){
+ UInt32 finalTicks;
+ Delay(1, &finalTicks); /* 1/60 sec */
+ }
+ if( res == noErr ){
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
+ params.ioParam.ioReqCount = N_LOCKBYTE;
+ PBUnlockRangeSync(&params);
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+lk;
+ params.ioParam.ioReqCount = 1;
+ res = PBLockRangeSync(&params);
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
+ params.ioParam.ioReqCount = 1;
+ PBUnlockRangeSync(&params);
+ }
+ if( res == noErr ){
+ id->locked = lk;
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_BUSY;
+ }
+ }
+ return rc;
+#endif
+}
+
+/*
+** Change the lock status to be an exclusive or write lock. Return
+** SQLITE_OK on success and SQLITE_BUSY on a failure. If this
+** library was compiled with large file support (LFS) but LFS is not
+** available on the host, then an SQLITE_NOLFS is returned.
+*/
+int sqliteOsWriteLock(OsFile *id){
+#if OS_UNIX
+ int rc;
+ sqliteOsEnterMutex();
+ if( id->pLock->cnt==0 || (id->pLock->cnt==1 && id->locked==1) ){
+ struct flock lock;
+ int s;
+ lock.l_type = F_WRLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = lock.l_len = 0L;
+ s = fcntl(id->fd, F_SETLK, &lock);
+ if( s!=0 ){
+ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
+ }else{
+ rc = SQLITE_OK;
+ if( !id->locked ){
+ id->pOpen->nLock++;
+ id->locked = 1;
+ }
+ id->pLock->cnt = -1;
+ }
+ }else{
+ rc = SQLITE_BUSY;
+ }
+ sqliteOsLeaveMutex();
+ return rc;
+#endif
+#if OS_WIN
+ int rc;
+ if( id->locked<0 ){
+ rc = SQLITE_OK;
+ }else{
+ int res;
+ int cnt = 100;
+ while( cnt-->0 && (res = LockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0))==0 ){
+ Sleep(1);
+ }
+ if( res ){
+ if( id->locked>0 ){
+ if( isNT() ){
+ UnlockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
+ }else{
+ res = UnlockFile(id->h, FIRST_LOCKBYTE + id->locked, 0, 1, 0);
+ }
+ }
+ if( res ){
+ res = LockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
+ }else{
+ res = 0;
+ }
+ UnlockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0);
+ }
+ if( res ){
+ id->locked = -1;
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_BUSY;
+ }
+ }
+ return rc;
+#endif
+#if OS_MAC
+ int rc;
+ if( id->locked<0 || id->refNumRF == -1 ){
+ rc = SQLITE_OK;
+ }else{
+ OSErr res;
+ int cnt = 5;
+ ParamBlockRec params;
+ memset(&params, 0, sizeof(params));
+ params.ioParam.ioRefNum = id->refNumRF;
+ params.ioParam.ioPosMode = fsFromStart;
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
+ params.ioParam.ioReqCount = 1;
+ while( cnt-->0 && (res = PBLockRangeSync(&params))!=noErr ){
+ UInt32 finalTicks;
+ Delay(1, &finalTicks); /* 1/60 sec */
+ }
+ if( res == noErr ){
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE + id->locked;
+ params.ioParam.ioReqCount = 1;
+ if( id->locked==0
+ || PBUnlockRangeSync(&params)==noErr ){
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
+ params.ioParam.ioReqCount = N_LOCKBYTE;
+ res = PBLockRangeSync(&params);
+ }else{
+ res = afpRangeNotLocked;
+ }
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
+ params.ioParam.ioReqCount = 1;
+ PBUnlockRangeSync(&params);
+ }
+ if( res == noErr ){
+ id->locked = -1;
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_BUSY;
+ }
+ }
+ return rc;
+#endif
+}
+
+/*
+** Unlock the given file descriptor. If the file descriptor was
+** not previously locked, then this routine is a no-op. If this
+** library was compiled with large file support (LFS) but LFS is not
+** available on the host, then an SQLITE_NOLFS is returned.
+*/
+int sqliteOsUnlock(OsFile *id){
+#if OS_UNIX
+ int rc;
+ if( !id->locked ) return SQLITE_OK;
+ sqliteOsEnterMutex();
+ assert( id->pLock->cnt!=0 );
+ if( id->pLock->cnt>1 ){
+ id->pLock->cnt--;
+ rc = SQLITE_OK;
+ }else{
+ struct flock lock;
+ int s;
+ lock.l_type = F_UNLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = lock.l_len = 0L;
+ s = fcntl(id->fd, F_SETLK, &lock);
+ if( s!=0 ){
+ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
+ }else{
+ rc = SQLITE_OK;
+ id->pLock->cnt = 0;
+ }
+ }
+ if( rc==SQLITE_OK ){
+ /* Decrement the count of locks against this same file. When the
+ ** count reaches zero, close any other file descriptors whose close
+ ** was deferred because of outstanding locks.
+ */
+ struct openCnt *pOpen = id->pOpen;
+ pOpen->nLock--;
+ assert( pOpen->nLock>=0 );
+ if( pOpen->nLock==0 && pOpen->nPending>0 ){
+ int i;
+ for(i=0; i<pOpen->nPending; i++){
+ close(pOpen->aPending[i]);
+ }
+ sqliteFree(pOpen->aPending);
+ pOpen->nPending = 0;
+ pOpen->aPending = 0;
+ }
+ }
+ sqliteOsLeaveMutex();
+ id->locked = 0;
+ return rc;
+#endif
+#if OS_WIN
+ int rc;
+ if( id->locked==0 ){
+ rc = SQLITE_OK;
+ }else if( isNT() || id->locked<0 ){
+ UnlockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
+ rc = SQLITE_OK;
+ id->locked = 0;
+ }else{
+ UnlockFile(id->h, FIRST_LOCKBYTE+id->locked, 0, 1, 0);
+ rc = SQLITE_OK;
+ id->locked = 0;
+ }
+ return rc;
+#endif
+#if OS_MAC
+ int rc;
+ ParamBlockRec params;
+ memset(&params, 0, sizeof(params));
+ params.ioParam.ioRefNum = id->refNumRF;
+ params.ioParam.ioPosMode = fsFromStart;
+ if( id->locked==0 || id->refNumRF == -1 ){
+ rc = SQLITE_OK;
+ }else if( id->locked<0 ){
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
+ params.ioParam.ioReqCount = N_LOCKBYTE;
+ PBUnlockRangeSync(&params);
+ rc = SQLITE_OK;
+ id->locked = 0;
+ }else{
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+id->locked;
+ params.ioParam.ioReqCount = 1;
+ PBUnlockRangeSync(&params);
+ rc = SQLITE_OK;
+ id->locked = 0;
+ }
+ return rc;
+#endif
+}
+
+/*
+** Get information to seed the random number generator. The seed
+** is written into the buffer zBuf[256]. The calling function must
+** supply a sufficiently large buffer.
+*/
+int sqliteOsRandomSeed(char *zBuf){
+ /* We have to initialize zBuf to prevent valgrind from reporting
+ ** errors. The reports issued by valgrind are incorrect - we would
+ ** prefer that the randomness be increased by making use of the
+ ** uninitialized space in zBuf - but valgrind errors tend to worry
+ ** some users. Rather than argue, it seems easier just to initialize
+ ** the whole array and silence valgrind, even if that means less randomness
+ ** in the random seed.
+ **
+ ** When testing, initializing zBuf[] to zero is all we do. That means
+ ** that we always use the same random number sequence.* This makes the
+ ** tests repeatable.
+ */
+ memset(zBuf, 0, 256);
+#if OS_UNIX && !defined(SQLITE_TEST)
+ {
+ int pid;
+ time((time_t*)zBuf);
+ pid = getpid();
+ memcpy(&zBuf[sizeof(time_t)], &pid, sizeof(pid));
+ }
+#endif
+#if OS_WIN && !defined(SQLITE_TEST)
+ GetSystemTime((LPSYSTEMTIME)zBuf);
+#endif
+#if OS_MAC
+ {
+ int pid;
+ Microseconds((UnsignedWide*)zBuf);
+ pid = getpid();
+ memcpy(&zBuf[sizeof(UnsignedWide)], &pid, sizeof(pid));
+ }
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** Sleep for a little while. Return the amount of time slept.
+*/
+int sqliteOsSleep(int ms){
+#if OS_UNIX
+#if defined(HAVE_USLEEP) && HAVE_USLEEP
+ usleep(ms*1000);
+ return ms;
+#else
+ sleep((ms+999)/1000);
+ return 1000*((ms+999)/1000);
+#endif
+#endif
+#if OS_WIN
+ Sleep(ms);
+ return ms;
+#endif
+#if OS_MAC
+ UInt32 finalTicks;
+ UInt32 ticks = (((UInt32)ms+16)*3)/50; /* 1/60 sec per tick */
+ Delay(ticks, &finalTicks);
+ return (int)((ticks*50)/3);
+#endif
+}
+
+/*
+** Static variables used for thread synchronization
+*/
+static int inMutex = 0;
+#ifdef SQLITE_UNIX_THREADS
+ static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
+#endif
+#ifdef SQLITE_W32_THREADS
+ static CRITICAL_SECTION cs;
+#endif
+#ifdef SQLITE_MACOS_MULTITASKING
+ static MPCriticalRegionID criticalRegion;
+#endif
+
+/*
+** The following pair of routine implement mutual exclusion for
+** multi-threaded processes. Only a single thread is allowed to
+** executed code that is surrounded by EnterMutex() and LeaveMutex().
+**
+** SQLite uses only a single Mutex. There is not much critical
+** code and what little there is executes quickly and without blocking.
+*/
+void sqliteOsEnterMutex(){
+#ifdef SQLITE_UNIX_THREADS
+ pthread_mutex_lock(&mutex);
+#endif
+#ifdef SQLITE_W32_THREADS
+ static int isInit = 0;
+ while( !isInit ){
+ static long lock = 0;
+ if( InterlockedIncrement(&lock)==1 ){
+ InitializeCriticalSection(&cs);
+ isInit = 1;
+ }else{
+ Sleep(1);
+ }
+ }
+ EnterCriticalSection(&cs);
+#endif
+#ifdef SQLITE_MACOS_MULTITASKING
+ static volatile int notInit = 1;
+ if( notInit ){
+ if( notInit == 2 ) /* as close as you can get to thread safe init */
+ MPYield();
+ else{
+ notInit = 2;
+ MPCreateCriticalRegion(&criticalRegion);
+ notInit = 0;
+ }
+ }
+ MPEnterCriticalRegion(criticalRegion, kDurationForever);
+#endif
+ assert( !inMutex );
+ inMutex = 1;
+}
+void sqliteOsLeaveMutex(){
+ assert( inMutex );
+ inMutex = 0;
+#ifdef SQLITE_UNIX_THREADS
+ pthread_mutex_unlock(&mutex);
+#endif
+#ifdef SQLITE_W32_THREADS
+ LeaveCriticalSection(&cs);
+#endif
+#ifdef SQLITE_MACOS_MULTITASKING
+ MPExitCriticalRegion(criticalRegion);
+#endif
+}
+
+/*
+** Turn a relative pathname into a full pathname. Return a pointer
+** to the full pathname stored in space obtained from sqliteMalloc().
+** The calling function is responsible for freeing this space once it
+** is no longer needed.
+*/
+char *sqliteOsFullPathname(const char *zRelative){
+#if OS_UNIX
+ char *zFull = 0;
+ if( zRelative[0]=='/' ){
+ sqliteSetString(&zFull, zRelative, (char*)0);
+ }else{
+ char zBuf[5000];
+ sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), "/", zRelative,
+ (char*)0);
+ }
+ return zFull;
+#endif
+#if OS_WIN
+ char *zNotUsed;
+ char *zFull;
+ int nByte;
+ nByte = GetFullPathName(zRelative, 0, 0, &zNotUsed) + 1;
+ zFull = sqliteMalloc( nByte );
+ if( zFull==0 ) return 0;
+ GetFullPathName(zRelative, nByte, zFull, &zNotUsed);
+ return zFull;
+#endif
+#if OS_MAC
+ char *zFull = 0;
+ if( zRelative[0]==':' ){
+ char zBuf[_MAX_PATH+1];
+ sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), &(zRelative[1]),
+ (char*)0);
+ }else{
+ if( strchr(zRelative, ':') ){
+ sqliteSetString(&zFull, zRelative, (char*)0);
+ }else{
+ char zBuf[_MAX_PATH+1];
+ sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), zRelative, (char*)0);
+ }
+ }
+ return zFull;
+#endif
+}
+
+/*
+** The following variable, if set to a now-zero value, become the result
+** returned from sqliteOsCurrentTime(). This is used for testing.
+*/
+#ifdef SQLITE_TEST
+int sqlite_current_time = 0;
+#endif
+
+/*
+** Find the current time (in Universal Coordinated Time). Write the
+** current time and date as a Julian Day number into *prNow and
+** return 0. Return 1 if the time and date cannot be found.
+*/
+int sqliteOsCurrentTime(double *prNow){
+#if OS_UNIX
+ time_t t;
+ time(&t);
+ *prNow = t/86400.0 + 2440587.5;
+#endif
+#if OS_WIN
+ FILETIME ft;
+ /* FILETIME structure is a 64-bit value representing the number of
+ 100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
+ */
+ double now;
+ GetSystemTimeAsFileTime( &ft );
+ now = ((double)ft.dwHighDateTime) * 4294967296.0;
+ *prNow = (now + ft.dwLowDateTime)/864000000000.0 + 2305813.5;
+#endif
+#ifdef SQLITE_TEST
+ if( sqlite_current_time ){
+ *prNow = sqlite_current_time/86400.0 + 2440587.5;
+ }
+#endif
+ return 0;
+}
diff --git a/src/3rdparty/sqlite/os.h b/src/3rdparty/sqlite/os.h
new file mode 100644
index 0000000..72c75c7
--- /dev/null
+++ b/src/3rdparty/sqlite/os.h
@@ -0,0 +1,192 @@
+/*
+** 2001 September 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file (together with is companion C source-code file
+** "os.c") attempt to abstract the underlying operating system so that
+** the SQLite library will work on both POSIX and windows systems.
+*/
+#ifndef _SQLITE_OS_H_
+#define _SQLITE_OS_H_
+
+#include "config.h"
+/*
+** Helpful hint: To get this to compile on HP/UX, add -D_INCLUDE_POSIX_SOURCE
+** to the compiler command line.
+*/
+
+/*
+** These #defines should enable >2GB file support on Posix if the
+** underlying operating system supports it. If the OS lacks
+** large file support, or if the OS is windows, these should be no-ops.
+**
+** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
+** on the compiler command line. This is necessary if you are compiling
+** on a recent machine (ex: RedHat 7.2) but you want your code to work
+** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
+** without this option, LFS is enable. But LFS does not exist in the kernel
+** in RedHat 6.0, so the code won't work. Hence, for maximum binary
+** portability you should omit LFS.
+**
+** Similar is true for MacOS. LFS is only supported on MacOS 9 and later.
+*/
+#ifndef SQLITE_DISABLE_LFS
+# define _LARGE_FILE 1
+# ifndef _FILE_OFFSET_BITS
+# define _FILE_OFFSET_BITS 64
+# endif
+# define _LARGEFILE_SOURCE 1
+#endif
+
+/*
+** Temporary files are named starting with this prefix followed by 16 random
+** alphanumeric characters, and no file extension. They are stored in the
+** OS's standard temporary file directory, and are deleted prior to exit.
+** If sqlite is being embedded in another program, you may wish to change the
+** prefix to reflect your program's name, so that if your program exits
+** prematurely, old temporary files can be easily identified. This can be done
+** using -DTEMP_FILE_PREFIX=myprefix_ on the compiler command line.
+*/
+#ifndef TEMP_FILE_PREFIX
+# define TEMP_FILE_PREFIX "sqlite_"
+#endif
+
+/*
+** Figure out if we are dealing with Unix, Windows or MacOS.
+**
+** N.B. MacOS means Mac Classic (or Carbon). Treat Darwin (OS X) as Unix.
+** The MacOS build is designed to use CodeWarrior (tested with v8)
+*/
+#ifndef OS_UNIX
+# ifndef OS_WIN
+# ifndef OS_MAC
+# if defined(__MACOS__)
+# define OS_MAC 1
+# define OS_WIN 0
+# define OS_UNIX 0
+# elif defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
+# define OS_MAC 0
+# define OS_WIN 1
+# define OS_UNIX 0
+# else
+# define OS_MAC 0
+# define OS_WIN 0
+# define OS_UNIX 1
+# endif
+# else
+# define OS_WIN 0
+# define OS_UNIX 0
+# endif
+# else
+# define OS_MAC 0
+# define OS_UNIX 0
+# endif
+#else
+# define OS_MAC 0
+# ifndef OS_WIN
+# define OS_WIN 0
+# endif
+#endif
+
+/*
+** A handle for an open file is stored in an OsFile object.
+*/
+#if OS_UNIX
+# include <sys/types.h>
+# include <sys/stat.h>
+# include <fcntl.h>
+# include <unistd.h>
+ typedef struct OsFile OsFile;
+ struct OsFile {
+ struct openCnt *pOpen; /* Info about all open fd's on this inode */
+ struct lockInfo *pLock; /* Info about locks on this inode */
+ int fd; /* The file descriptor */
+ int locked; /* True if this instance holds the lock */
+ int dirfd; /* File descriptor for the directory */
+ };
+# define SQLITE_TEMPNAME_SIZE 200
+# if defined(HAVE_USLEEP) && HAVE_USLEEP
+# define SQLITE_MIN_SLEEP_MS 1
+# else
+# define SQLITE_MIN_SLEEP_MS 1000
+# endif
+#endif
+
+#if OS_WIN
+#include <windows.h>
+#include <winbase.h>
+ typedef struct OsFile OsFile;
+ struct OsFile {
+ HANDLE h; /* Handle for accessing the file */
+ int locked; /* 0: unlocked, <0: write lock, >0: read lock */
+ };
+# if defined(_MSC_VER) || defined(__BORLANDC__)
+ typedef __int64 off_t;
+# else
+# if !defined(_CYGWIN_TYPES_H)
+ typedef long long off_t;
+# if defined(__MINGW32__)
+# define _OFF_T_
+# endif
+# endif
+# endif
+# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
+# define SQLITE_MIN_SLEEP_MS 1
+#endif
+
+#if OS_MAC
+# include <unistd.h>
+# include <Files.h>
+ typedef struct OsFile OsFile;
+ struct OsFile {
+ SInt16 refNum; /* Data fork/file reference number */
+ SInt16 refNumRF; /* Resource fork reference number (for locking) */
+ int locked; /* 0: unlocked, <0: write lock, >0: read lock */
+ int delOnClose; /* True if file is to be deleted on close */
+ char *pathToDel; /* Name of file to delete on close */
+ };
+# ifdef _LARGE_FILE
+ typedef SInt64 off_t;
+# else
+ typedef SInt32 off_t;
+# endif
+# define SQLITE_TEMPNAME_SIZE _MAX_PATH
+# define SQLITE_MIN_SLEEP_MS 17
+#endif
+
+int sqliteOsDelete(const char*);
+int sqliteOsFileExists(const char*);
+int sqliteOsFileRename(const char*, const char*);
+int sqliteOsOpenReadWrite(const char*, OsFile*, int*);
+int sqliteOsOpenExclusive(const char*, OsFile*, int);
+int sqliteOsOpenReadOnly(const char*, OsFile*);
+int sqliteOsOpenDirectory(const char*, OsFile*);
+int sqliteOsTempFileName(char*);
+int sqliteOsClose(OsFile*);
+int sqliteOsRead(OsFile*, void*, int amt);
+int sqliteOsWrite(OsFile*, const void*, int amt);
+int sqliteOsSeek(OsFile*, off_t offset);
+int sqliteOsSync(OsFile*);
+int sqliteOsTruncate(OsFile*, off_t size);
+int sqliteOsFileSize(OsFile*, off_t *pSize);
+int sqliteOsReadLock(OsFile*);
+int sqliteOsWriteLock(OsFile*);
+int sqliteOsUnlock(OsFile*);
+int sqliteOsRandomSeed(char*);
+int sqliteOsSleep(int ms);
+int sqliteOsCurrentTime(double*);
+void sqliteOsEnterMutex(void);
+void sqliteOsLeaveMutex(void);
+char *sqliteOsFullPathname(const char*);
+
+
+
+#endif /* _SQLITE_OS_H_ */
diff --git a/src/3rdparty/sqlite/pager.c b/src/3rdparty/sqlite/pager.c
new file mode 100644
index 0000000..8b6a154
--- /dev/null
+++ b/src/3rdparty/sqlite/pager.c
@@ -0,0 +1,2220 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the implementation of the page cache subsystem or "pager".
+**
+** The pager is used to access a database disk file. It implements
+** atomic commit and rollback through the use of a journal file that
+** is separate from the database file. The pager also implements file
+** locking to prevent two processes from writing the same database
+** file simultaneously, or one process from reading the database while
+** another is writing.
+**
+** @(#) $Id: pager.c,v 1.101 2004/02/25 02:20:41 drh Exp $
+*/
+#include "os.h" /* Must be first to enable large file support */
+#include "sqliteInt.h"
+#include "pager.h"
+#include <assert.h>
+#include <string.h>
+
+/*
+** Macros for troubleshooting. Normally turned off
+*/
+#if 0
+static Pager *mainPager = 0;
+#define SET_PAGER(X) if( mainPager==0 ) mainPager = (X)
+#define CLR_PAGER(X) if( mainPager==(X) ) mainPager = 0
+#define TRACE1(X) if( pPager==mainPager ) fprintf(stderr,X)
+#define TRACE2(X,Y) if( pPager==mainPager ) fprintf(stderr,X,Y)
+#define TRACE3(X,Y,Z) if( pPager==mainPager ) fprintf(stderr,X,Y,Z)
+#else
+#define SET_PAGER(X)
+#define CLR_PAGER(X)
+#define TRACE1(X)
+#define TRACE2(X,Y)
+#define TRACE3(X,Y,Z)
+#endif
+
+
+/*
+** The page cache as a whole is always in one of the following
+** states:
+**
+** SQLITE_UNLOCK The page cache is not currently reading or
+** writing the database file. There is no
+** data held in memory. This is the initial
+** state.
+**
+** SQLITE_READLOCK The page cache is reading the database.
+** Writing is not permitted. There can be
+** multiple readers accessing the same database
+** file at the same time.
+**
+** SQLITE_WRITELOCK The page cache is writing the database.
+** Access is exclusive. No other processes or
+** threads can be reading or writing while one
+** process is writing.
+**
+** The page cache comes up in SQLITE_UNLOCK. The first time a
+** sqlite_page_get() occurs, the state transitions to SQLITE_READLOCK.
+** After all pages have been released using sqlite_page_unref(),
+** the state transitions back to SQLITE_UNLOCK. The first time
+** that sqlite_page_write() is called, the state transitions to
+** SQLITE_WRITELOCK. (Note that sqlite_page_write() can only be
+** called on an outstanding page which means that the pager must
+** be in SQLITE_READLOCK before it transitions to SQLITE_WRITELOCK.)
+** The sqlite_page_rollback() and sqlite_page_commit() functions
+** transition the state from SQLITE_WRITELOCK back to SQLITE_READLOCK.
+*/
+#define SQLITE_UNLOCK 0
+#define SQLITE_READLOCK 1
+#define SQLITE_WRITELOCK 2
+
+
+/*
+** Each in-memory image of a page begins with the following header.
+** This header is only visible to this pager module. The client
+** code that calls pager sees only the data that follows the header.
+**
+** Client code should call sqlitepager_write() on a page prior to making
+** any modifications to that page. The first time sqlitepager_write()
+** is called, the original page contents are written into the rollback
+** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once
+** the journal page has made it onto the disk surface, PgHdr.needSync
+** is cleared. The modified page cannot be written back into the original
+** database file until the journal pages has been synced to disk and the
+** PgHdr.needSync has been cleared.
+**
+** The PgHdr.dirty flag is set when sqlitepager_write() is called and
+** is cleared again when the page content is written back to the original
+** database file.
+*/
+typedef struct PgHdr PgHdr;
+struct PgHdr {
+ Pager *pPager; /* The pager to which this page belongs */
+ Pgno pgno; /* The page number for this page */
+ PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */
+ int nRef; /* Number of users of this page */
+ PgHdr *pNextFree, *pPrevFree; /* Freelist of pages where nRef==0 */
+ PgHdr *pNextAll, *pPrevAll; /* A list of all pages */
+ PgHdr *pNextCkpt, *pPrevCkpt; /* List of pages in the checkpoint journal */
+ u8 inJournal; /* TRUE if has been written to journal */
+ u8 inCkpt; /* TRUE if written to the checkpoint journal */
+ u8 dirty; /* TRUE if we need to write back changes */
+ u8 needSync; /* Sync journal before writing this page */
+ u8 alwaysRollback; /* Disable dont_rollback() for this page */
+ PgHdr *pDirty; /* Dirty pages sorted by PgHdr.pgno */
+ /* SQLITE_PAGE_SIZE bytes of page data follow this header */
+ /* Pager.nExtra bytes of local data follow the page data */
+};
+
+
+/*
+** A macro used for invoking the codec if there is one
+*/
+#ifdef SQLITE_HAS_CODEC
+# define CODEC(P,D,N,X) if( P->xCodec ){ P->xCodec(P->pCodecArg,D,N,X); }
+#else
+# define CODEC(P,D,N,X)
+#endif
+
+/*
+** Convert a pointer to a PgHdr into a pointer to its data
+** and back again.
+*/
+#define PGHDR_TO_DATA(P) ((void*)(&(P)[1]))
+#define DATA_TO_PGHDR(D) (&((PgHdr*)(D))[-1])
+#define PGHDR_TO_EXTRA(P) ((void*)&((char*)(&(P)[1]))[SQLITE_PAGE_SIZE])
+
+/*
+** How big to make the hash table used for locating in-memory pages
+** by page number.
+*/
+#define N_PG_HASH 2048
+
+/*
+** Hash a page number
+*/
+#define pager_hash(PN) ((PN)&(N_PG_HASH-1))
+
+/*
+** A open page cache is an instance of the following structure.
+*/
+struct Pager {
+ char *zFilename; /* Name of the database file */
+ char *zJournal; /* Name of the journal file */
+ char *zDirectory; /* Directory hold database and journal files */
+ OsFile fd, jfd; /* File descriptors for database and journal */
+ OsFile cpfd; /* File descriptor for the checkpoint journal */
+ int dbSize; /* Number of pages in the file */
+ int origDbSize; /* dbSize before the current change */
+ int ckptSize; /* Size of database (in pages) at ckpt_begin() */
+ off_t ckptJSize; /* Size of journal at ckpt_begin() */
+ int nRec; /* Number of pages written to the journal */
+ u32 cksumInit; /* Quasi-random value added to every checksum */
+ int ckptNRec; /* Number of records in the checkpoint journal */
+ int nExtra; /* Add this many bytes to each in-memory page */
+ void (*xDestructor)(void*); /* Call this routine when freeing pages */
+ int nPage; /* Total number of in-memory pages */
+ int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */
+ int mxPage; /* Maximum number of pages to hold in cache */
+ int nHit, nMiss, nOvfl; /* Cache hits, missing, and LRU overflows */
+ void (*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
+ void *pCodecArg; /* First argument to xCodec() */
+ u8 journalOpen; /* True if journal file descriptors is valid */
+ u8 journalStarted; /* True if header of journal is synced */
+ u8 useJournal; /* Use a rollback journal on this file */
+ u8 ckptOpen; /* True if the checkpoint journal is open */
+ u8 ckptInUse; /* True we are in a checkpoint */
+ u8 ckptAutoopen; /* Open ckpt journal when main journal is opened*/
+ u8 noSync; /* Do not sync the journal if true */
+ u8 fullSync; /* Do extra syncs of the journal for robustness */
+ u8 state; /* SQLITE_UNLOCK, _READLOCK or _WRITELOCK */
+ u8 errMask; /* One of several kinds of errors */
+ u8 tempFile; /* zFilename is a temporary file */
+ u8 readOnly; /* True for a read-only database */
+ u8 needSync; /* True if an fsync() is needed on the journal */
+ u8 dirtyFile; /* True if database file has changed in any way */
+ u8 alwaysRollback; /* Disable dont_rollback() for all pages */
+ u8 *aInJournal; /* One bit for each page in the database file */
+ u8 *aInCkpt; /* One bit for each page in the database */
+ PgHdr *pFirst, *pLast; /* List of free pages */
+ PgHdr *pFirstSynced; /* First free page with PgHdr.needSync==0 */
+ PgHdr *pAll; /* List of all pages */
+ PgHdr *pCkpt; /* List of pages in the checkpoint journal */
+ PgHdr *aHash[N_PG_HASH]; /* Hash table to map page number of PgHdr */
+};
+
+/*
+** These are bits that can be set in Pager.errMask.
+*/
+#define PAGER_ERR_FULL 0x01 /* a write() failed */
+#define PAGER_ERR_MEM 0x02 /* malloc() failed */
+#define PAGER_ERR_LOCK 0x04 /* error in the locking protocol */
+#define PAGER_ERR_CORRUPT 0x08 /* database or journal corruption */
+#define PAGER_ERR_DISK 0x10 /* general disk I/O error - bad hard drive? */
+
+/*
+** The journal file contains page records in the following
+** format.
+**
+** Actually, this structure is the complete page record for pager
+** formats less than 3. Beginning with format 3, this record is surrounded
+** by two checksums.
+*/
+typedef struct PageRecord PageRecord;
+struct PageRecord {
+ Pgno pgno; /* The page number */
+ char aData[SQLITE_PAGE_SIZE]; /* Original data for page pgno */
+};
+
+/*
+** Journal files begin with the following magic string. The data
+** was obtained from /dev/random. It is used only as a sanity check.
+**
+** There are three journal formats (so far). The 1st journal format writes
+** 32-bit integers in the byte-order of the host machine. New
+** formats writes integers as big-endian. All new journals use the
+** new format, but we have to be able to read an older journal in order
+** to rollback journals created by older versions of the library.
+**
+** The 3rd journal format (added for 2.8.0) adds additional sanity
+** checking information to the journal. If the power fails while the
+** journal is being written, semi-random garbage data might appear in
+** the journal file after power is restored. If an attempt is then made
+** to roll the journal back, the database could be corrupted. The additional
+** sanity checking data is an attempt to discover the garbage in the
+** journal and ignore it.
+**
+** The sanity checking information for the 3rd journal format consists
+** of a 32-bit checksum on each page of data. The checksum covers both
+** the page number and the SQLITE_PAGE_SIZE bytes of data for the page.
+** This cksum is initialized to a 32-bit random value that appears in the
+** journal file right after the header. The random initializer is important,
+** because garbage data that appears at the end of a journal is likely
+** data that was once in other files that have now been deleted. If the
+** garbage data came from an obsolete journal file, the checksums might
+** be correct. But by initializing the checksum to random value which
+** is different for every journal, we minimize that risk.
+*/
+static const unsigned char aJournalMagic1[] = {
+ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd4,
+};
+static const unsigned char aJournalMagic2[] = {
+ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd5,
+};
+static const unsigned char aJournalMagic3[] = {
+ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd6,
+};
+#define JOURNAL_FORMAT_1 1
+#define JOURNAL_FORMAT_2 2
+#define JOURNAL_FORMAT_3 3
+
+/*
+** The following integer determines what format to use when creating
+** new primary journal files. By default we always use format 3.
+** When testing, we can set this value to older journal formats in order to
+** make sure that newer versions of the library are able to rollback older
+** journal files.
+**
+** Note that checkpoint journals always use format 2 and omit the header.
+*/
+#ifdef SQLITE_TEST
+int journal_format = 3;
+#else
+# define journal_format 3
+#endif
+
+/*
+** The size of the header and of each page in the journal varies according
+** to which journal format is being used. The following macros figure out
+** the sizes based on format numbers.
+*/
+#define JOURNAL_HDR_SZ(X) \
+ (sizeof(aJournalMagic1) + sizeof(Pgno) + ((X)>=3)*2*sizeof(u32))
+#define JOURNAL_PG_SZ(X) \
+ (SQLITE_PAGE_SIZE + sizeof(Pgno) + ((X)>=3)*sizeof(u32))
+
+/*
+** Enable reference count tracking here:
+*/
+#ifdef SQLITE_TEST
+ int pager_refinfo_enable = 0;
+ static void pager_refinfo(PgHdr *p){
+ static int cnt = 0;
+ if( !pager_refinfo_enable ) return;
+ printf(
+ "REFCNT: %4d addr=0x%08x nRef=%d\n",
+ p->pgno, (int)PGHDR_TO_DATA(p), p->nRef
+ );
+ cnt++; /* Something to set a breakpoint on */
+ }
+# define REFINFO(X) pager_refinfo(X)
+#else
+# define REFINFO(X)
+#endif
+
+/*
+** Read a 32-bit integer from the given file descriptor. Store the integer
+** that is read in *pRes. Return SQLITE_OK if everything worked, or an
+** error code is something goes wrong.
+**
+** If the journal format is 2 or 3, read a big-endian integer. If the
+** journal format is 1, read an integer in the native byte-order of the
+** host machine.
+*/
+static int read32bits(int format, OsFile *fd, u32 *pRes){
+ u32 res;
+ int rc;
+ rc = sqliteOsRead(fd, &res, sizeof(res));
+ if( rc==SQLITE_OK && format>JOURNAL_FORMAT_1 ){
+ unsigned char ac[4];
+ memcpy(ac, &res, 4);
+ res = (ac[0]<<24) | (ac[1]<<16) | (ac[2]<<8) | ac[3];
+ }
+ *pRes = res;
+ return rc;
+}
+
+/*
+** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
+** on success or an error code is something goes wrong.
+**
+** If the journal format is 2 or 3, write the integer as 4 big-endian
+** bytes. If the journal format is 1, write the integer in the native
+** byte order. In normal operation, only formats 2 and 3 are used.
+** Journal format 1 is only used for testing.
+*/
+static int write32bits(OsFile *fd, u32 val){
+ unsigned char ac[4];
+ if( journal_format<=1 ){
+ return sqliteOsWrite(fd, &val, 4);
+ }
+ ac[0] = (val>>24) & 0xff;
+ ac[1] = (val>>16) & 0xff;
+ ac[2] = (val>>8) & 0xff;
+ ac[3] = val & 0xff;
+ return sqliteOsWrite(fd, ac, 4);
+}
+
+/*
+** Write a 32-bit integer into a page header right before the
+** page data. This will overwrite the PgHdr.pDirty pointer.
+**
+** The integer is big-endian for formats 2 and 3 and native byte order
+** for journal format 1.
+*/
+static void store32bits(u32 val, PgHdr *p, int offset){
+ unsigned char *ac;
+ ac = &((unsigned char*)PGHDR_TO_DATA(p))[offset];
+ if( journal_format<=1 ){
+ memcpy(ac, &val, 4);
+ }else{
+ ac[0] = (val>>24) & 0xff;
+ ac[1] = (val>>16) & 0xff;
+ ac[2] = (val>>8) & 0xff;
+ ac[3] = val & 0xff;
+ }
+}
+
+
+/*
+** Convert the bits in the pPager->errMask into an approprate
+** return code.
+*/
+static int pager_errcode(Pager *pPager){
+ int rc = SQLITE_OK;
+ if( pPager->errMask & PAGER_ERR_LOCK ) rc = SQLITE_PROTOCOL;
+ if( pPager->errMask & PAGER_ERR_DISK ) rc = SQLITE_IOERR;
+ if( pPager->errMask & PAGER_ERR_FULL ) rc = SQLITE_FULL;
+ if( pPager->errMask & PAGER_ERR_MEM ) rc = SQLITE_NOMEM;
+ if( pPager->errMask & PAGER_ERR_CORRUPT ) rc = SQLITE_CORRUPT;
+ return rc;
+}
+
+/*
+** Add or remove a page from the list of all pages that are in the
+** checkpoint journal.
+**
+** The Pager keeps a separate list of pages that are currently in
+** the checkpoint journal. This helps the sqlitepager_ckpt_commit()
+** routine run MUCH faster for the common case where there are many
+** pages in memory but only a few are in the checkpoint journal.
+*/
+static void page_add_to_ckpt_list(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ if( pPg->inCkpt ) return;
+ assert( pPg->pPrevCkpt==0 && pPg->pNextCkpt==0 );
+ pPg->pPrevCkpt = 0;
+ if( pPager->pCkpt ){
+ pPager->pCkpt->pPrevCkpt = pPg;
+ }
+ pPg->pNextCkpt = pPager->pCkpt;
+ pPager->pCkpt = pPg;
+ pPg->inCkpt = 1;
+}
+static void page_remove_from_ckpt_list(PgHdr *pPg){
+ if( !pPg->inCkpt ) return;
+ if( pPg->pPrevCkpt ){
+ assert( pPg->pPrevCkpt->pNextCkpt==pPg );
+ pPg->pPrevCkpt->pNextCkpt = pPg->pNextCkpt;
+ }else{
+ assert( pPg->pPager->pCkpt==pPg );
+ pPg->pPager->pCkpt = pPg->pNextCkpt;
+ }
+ if( pPg->pNextCkpt ){
+ assert( pPg->pNextCkpt->pPrevCkpt==pPg );
+ pPg->pNextCkpt->pPrevCkpt = pPg->pPrevCkpt;
+ }
+ pPg->pNextCkpt = 0;
+ pPg->pPrevCkpt = 0;
+ pPg->inCkpt = 0;
+}
+
+/*
+** Find a page in the hash table given its page number. Return
+** a pointer to the page or NULL if not found.
+*/
+static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
+ PgHdr *p = pPager->aHash[pager_hash(pgno)];
+ while( p && p->pgno!=pgno ){
+ p = p->pNextHash;
+ }
+ return p;
+}
+
+/*
+** Unlock the database and clear the in-memory cache. This routine
+** sets the state of the pager back to what it was when it was first
+** opened. Any outstanding pages are invalidated and subsequent attempts
+** to access those pages will likely result in a coredump.
+*/
+static void pager_reset(Pager *pPager){
+ PgHdr *pPg, *pNext;
+ for(pPg=pPager->pAll; pPg; pPg=pNext){
+ pNext = pPg->pNextAll;
+ sqliteFree(pPg);
+ }
+ pPager->pFirst = 0;
+ pPager->pFirstSynced = 0;
+ pPager->pLast = 0;
+ pPager->pAll = 0;
+ memset(pPager->aHash, 0, sizeof(pPager->aHash));
+ pPager->nPage = 0;
+ if( pPager->state>=SQLITE_WRITELOCK ){
+ sqlitepager_rollback(pPager);
+ }
+ sqliteOsUnlock(&pPager->fd);
+ pPager->state = SQLITE_UNLOCK;
+ pPager->dbSize = -1;
+ pPager->nRef = 0;
+ assert( pPager->journalOpen==0 );
+}
+
+/*
+** When this routine is called, the pager has the journal file open and
+** a write lock on the database. This routine releases the database
+** write lock and acquires a read lock in its place. The journal file
+** is deleted and closed.
+**
+** TODO: Consider keeping the journal file open for temporary databases.
+** This might give a performance improvement on windows where opening
+** a file is an expensive operation.
+*/
+static int pager_unwritelock(Pager *pPager){
+ int rc;
+ PgHdr *pPg;
+ if( pPager->state<SQLITE_WRITELOCK ) return SQLITE_OK;
+ sqlitepager_ckpt_commit(pPager);
+ if( pPager->ckptOpen ){
+ sqliteOsClose(&pPager->cpfd);
+ pPager->ckptOpen = 0;
+ }
+ if( pPager->journalOpen ){
+ sqliteOsClose(&pPager->jfd);
+ pPager->journalOpen = 0;
+ sqliteOsDelete(pPager->zJournal);
+ sqliteFree( pPager->aInJournal );
+ pPager->aInJournal = 0;
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
+ pPg->inJournal = 0;
+ pPg->dirty = 0;
+ pPg->needSync = 0;
+ }
+ }else{
+ assert( pPager->dirtyFile==0 || pPager->useJournal==0 );
+ }
+ rc = sqliteOsReadLock(&pPager->fd);
+ if( rc==SQLITE_OK ){
+ pPager->state = SQLITE_READLOCK;
+ }else{
+ /* This can only happen if a process does a BEGIN, then forks and the
+ ** child process does the COMMIT. Because of the semantics of unix
+ ** file locking, the unlock will fail.
+ */
+ pPager->state = SQLITE_UNLOCK;
+ }
+ return rc;
+}
+
+/*
+** Compute and return a checksum for the page of data.
+**
+** This is not a real checksum. It is really just the sum of the
+** random initial value and the page number. We considered do a checksum
+** of the database, but that was found to be too slow.
+*/
+static u32 pager_cksum(Pager *pPager, Pgno pgno, const char *aData){
+ u32 cksum = pPager->cksumInit + pgno;
+ return cksum;
+}
+
+/*
+** Read a single page from the journal file opened on file descriptor
+** jfd. Playback this one page.
+**
+** There are three different journal formats. The format parameter determines
+** which format is used by the journal that is played back.
+*/
+static int pager_playback_one_page(Pager *pPager, OsFile *jfd, int format){
+ int rc;
+ PgHdr *pPg; /* An existing page in the cache */
+ PageRecord pgRec;
+ u32 cksum;
+
+ rc = read32bits(format, jfd, &pgRec.pgno);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = sqliteOsRead(jfd, &pgRec.aData, sizeof(pgRec.aData));
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Sanity checking on the page. This is more important that I originally
+ ** thought. If a power failure occurs while the journal is being written,
+ ** it could cause invalid data to be written into the journal. We need to
+ ** detect this invalid data (with high probability) and ignore it.
+ */
+ if( pgRec.pgno==0 ){
+ return SQLITE_DONE;
+ }
+ if( pgRec.pgno>(unsigned)pPager->dbSize ){
+ return SQLITE_OK;
+ }
+ if( format>=JOURNAL_FORMAT_3 ){
+ rc = read32bits(format, jfd, &cksum);
+ if( rc ) return rc;
+ if( pager_cksum(pPager, pgRec.pgno, pgRec.aData)!=cksum ){
+ return SQLITE_DONE;
+ }
+ }
+
+ /* Playback the page. Update the in-memory copy of the page
+ ** at the same time, if there is one.
+ */
+ pPg = pager_lookup(pPager, pgRec.pgno);
+ TRACE2("PLAYBACK %d\n", pgRec.pgno);
+ sqliteOsSeek(&pPager->fd, (pgRec.pgno-1)*(off_t)SQLITE_PAGE_SIZE);
+ rc = sqliteOsWrite(&pPager->fd, pgRec.aData, SQLITE_PAGE_SIZE);
+ if( pPg ){
+ /* No page should ever be rolled back that is in use, except for page
+ ** 1 which is held in use in order to keep the lock on the database
+ ** active.
+ */
+ assert( pPg->nRef==0 || pPg->pgno==1 );
+ memcpy(PGHDR_TO_DATA(pPg), pgRec.aData, SQLITE_PAGE_SIZE);
+ memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
+ pPg->dirty = 0;
+ pPg->needSync = 0;
+ CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
+ }
+ return rc;
+}
+
+/*
+** Playback the journal and thus restore the database file to
+** the state it was in before we started making changes.
+**
+** The journal file format is as follows:
+**
+** * 8 byte prefix. One of the aJournalMagic123 vectors defined
+** above. The format of the journal file is determined by which
+** of the three prefix vectors is seen.
+** * 4 byte big-endian integer which is the number of valid page records
+** in the journal. If this value is 0xffffffff, then compute the
+** number of page records from the journal size. This field appears
+** in format 3 only.
+** * 4 byte big-endian integer which is the initial value for the
+** sanity checksum. This field appears in format 3 only.
+** * 4 byte integer which is the number of pages to truncate the
+** database to during a rollback.
+** * Zero or more pages instances, each as follows:
+** + 4 byte page number.
+** + SQLITE_PAGE_SIZE bytes of data.
+** + 4 byte checksum (format 3 only)
+**
+** When we speak of the journal header, we mean the first 4 bullets above.
+** Each entry in the journal is an instance of the 5th bullet. Note that
+** bullets 2 and 3 only appear in format-3 journals.
+**
+** Call the value from the second bullet "nRec". nRec is the number of
+** valid page entries in the journal. In most cases, you can compute the
+** value of nRec from the size of the journal file. But if a power
+** failure occurred while the journal was being written, it could be the
+** case that the size of the journal file had already been increased but
+** the extra entries had not yet made it safely to disk. In such a case,
+** the value of nRec computed from the file size would be too large. For
+** that reason, we always use the nRec value in the header.
+**
+** If the nRec value is 0xffffffff it means that nRec should be computed
+** from the file size. This value is used when the user selects the
+** no-sync option for the journal. A power failure could lead to corruption
+** in this case. But for things like temporary table (which will be
+** deleted when the power is restored) we don't care.
+**
+** Journal formats 1 and 2 do not have an nRec value in the header so we
+** have to compute nRec from the file size. This has risks (as described
+** above) which is why all persistent tables have been changed to use
+** format 3.
+**
+** If the file opened as the journal file is not a well-formed
+** journal file then the database will likely already be
+** corrupted, so the PAGER_ERR_CORRUPT bit is set in pPager->errMask
+** and SQLITE_CORRUPT is returned. If it all works, then this routine
+** returns SQLITE_OK.
+*/
+static int pager_playback(Pager *pPager, int useJournalSize){
+ off_t szJ; /* Size of the journal file in bytes */
+ int nRec; /* Number of Records in the journal */
+ int i; /* Loop counter */
+ Pgno mxPg = 0; /* Size of the original file in pages */
+ int format; /* Format of the journal file. */
+ unsigned char aMagic[sizeof(aJournalMagic1)];
+ int rc;
+
+ /* Figure out how many records are in the journal. Abort early if
+ ** the journal is empty.
+ */
+ assert( pPager->journalOpen );
+ sqliteOsSeek(&pPager->jfd, 0);
+ rc = sqliteOsFileSize(&pPager->jfd, &szJ);
+ if( rc!=SQLITE_OK ){
+ goto end_playback;
+ }
+
+ /* If the journal file is too small to contain a complete header,
+ ** it must mean that the process that created the journal was just
+ ** beginning to write the journal file when it died. In that case,
+ ** the database file should have still been completely unchanged.
+ ** Nothing needs to be rolled back. We can safely ignore this journal.
+ */
+ if( szJ < sizeof(aMagic)+sizeof(Pgno) ){
+ goto end_playback;
+ }
+
+ /* Read the beginning of the journal and truncate the
+ ** database file back to its original size.
+ */
+ rc = sqliteOsRead(&pPager->jfd, aMagic, sizeof(aMagic));
+ if( rc!=SQLITE_OK ){
+ rc = SQLITE_PROTOCOL;
+ goto end_playback;
+ }
+ if( memcmp(aMagic, aJournalMagic3, sizeof(aMagic))==0 ){
+ format = JOURNAL_FORMAT_3;
+ }else if( memcmp(aMagic, aJournalMagic2, sizeof(aMagic))==0 ){
+ format = JOURNAL_FORMAT_2;
+ }else if( memcmp(aMagic, aJournalMagic1, sizeof(aMagic))==0 ){
+ format = JOURNAL_FORMAT_1;
+ }else{
+ rc = SQLITE_PROTOCOL;
+ goto end_playback;
+ }
+ if( format>=JOURNAL_FORMAT_3 ){
+ if( szJ < sizeof(aMagic) + 3*sizeof(u32) ){
+ /* Ignore the journal if it is too small to contain a complete
+ ** header. We already did this test once above, but at the prior
+ ** test, we did not know the journal format and so we had to assume
+ ** the smallest possible header. Now we know the header is bigger
+ ** than the minimum so we test again.
+ */
+ goto end_playback;
+ }
+ rc = read32bits(format, &pPager->jfd, (u32*)&nRec);
+ if( rc ) goto end_playback;
+ rc = read32bits(format, &pPager->jfd, &pPager->cksumInit);
+ if( rc ) goto end_playback;
+ if( nRec==0xffffffff || useJournalSize ){
+ nRec = (szJ - JOURNAL_HDR_SZ(3))/JOURNAL_PG_SZ(3);
+ }
+ }else{
+ nRec = (szJ - JOURNAL_HDR_SZ(2))/JOURNAL_PG_SZ(2);
+ assert( nRec*JOURNAL_PG_SZ(2)+JOURNAL_HDR_SZ(2)==szJ );
+ }
+ rc = read32bits(format, &pPager->jfd, &mxPg);
+ if( rc!=SQLITE_OK ){
+ goto end_playback;
+ }
+ assert( pPager->origDbSize==0 || pPager->origDbSize==mxPg );
+ rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)mxPg);
+ if( rc!=SQLITE_OK ){
+ goto end_playback;
+ }
+ pPager->dbSize = mxPg;
+
+ /* Copy original pages out of the journal and back into the database file.
+ */
+ for(i=0; i<nRec; i++){
+ rc = pager_playback_one_page(pPager, &pPager->jfd, format);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ }
+ break;
+ }
+ }
+
+ /* Pages that have been written to the journal but never synced
+ ** where not restored by the loop above. We have to restore those
+ ** pages by reading them back from the original database.
+ */
+ if( rc==SQLITE_OK ){
+ PgHdr *pPg;
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
+ char zBuf[SQLITE_PAGE_SIZE];
+ if( !pPg->dirty ) continue;
+ if( (int)pPg->pgno <= pPager->origDbSize ){
+ sqliteOsSeek(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)(pPg->pgno-1));
+ rc = sqliteOsRead(&pPager->fd, zBuf, SQLITE_PAGE_SIZE);
+ TRACE2("REFETCH %d\n", pPg->pgno);
+ CODEC(pPager, zBuf, pPg->pgno, 2);
+ if( rc ) break;
+ }else{
+ memset(zBuf, 0, SQLITE_PAGE_SIZE);
+ }
+ if( pPg->nRef==0 || memcmp(zBuf, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE) ){
+ memcpy(PGHDR_TO_DATA(pPg), zBuf, SQLITE_PAGE_SIZE);
+ memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
+ }
+ pPg->needSync = 0;
+ pPg->dirty = 0;
+ }
+ }
+
+end_playback:
+ if( rc!=SQLITE_OK ){
+ pager_unwritelock(pPager);
+ pPager->errMask |= PAGER_ERR_CORRUPT;
+ rc = SQLITE_CORRUPT;
+ }else{
+ rc = pager_unwritelock(pPager);
+ }
+ return rc;
+}
+
+/*
+** Playback the checkpoint journal.
+**
+** This is similar to playing back the transaction journal but with
+** a few extra twists.
+**
+** (1) The number of pages in the database file at the start of
+** the checkpoint is stored in pPager->ckptSize, not in the
+** journal file itself.
+**
+** (2) In addition to playing back the checkpoint journal, also
+** playback all pages of the transaction journal beginning
+** at offset pPager->ckptJSize.
+*/
+static int pager_ckpt_playback(Pager *pPager){
+ off_t szJ; /* Size of the full journal */
+ int nRec; /* Number of Records */
+ int i; /* Loop counter */
+ int rc;
+
+ /* Truncate the database back to its original size.
+ */
+ rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)pPager->ckptSize);
+ pPager->dbSize = pPager->ckptSize;
+
+ /* Figure out how many records are in the checkpoint journal.
+ */
+ assert( pPager->ckptInUse && pPager->journalOpen );
+ sqliteOsSeek(&pPager->cpfd, 0);
+ nRec = pPager->ckptNRec;
+
+ /* Copy original pages out of the checkpoint journal and back into the
+ ** database file. Note that the checkpoint journal always uses format
+ ** 2 instead of format 3 since it does not need to be concerned with
+ ** power failures corrupting the journal and can thus omit the checksums.
+ */
+ for(i=nRec-1; i>=0; i--){
+ rc = pager_playback_one_page(pPager, &pPager->cpfd, 2);
+ assert( rc!=SQLITE_DONE );
+ if( rc!=SQLITE_OK ) goto end_ckpt_playback;
+ }
+
+ /* Figure out how many pages need to be copied out of the transaction
+ ** journal.
+ */
+ rc = sqliteOsSeek(&pPager->jfd, pPager->ckptJSize);
+ if( rc!=SQLITE_OK ){
+ goto end_ckpt_playback;
+ }
+ rc = sqliteOsFileSize(&pPager->jfd, &szJ);
+ if( rc!=SQLITE_OK ){
+ goto end_ckpt_playback;
+ }
+ nRec = (szJ - pPager->ckptJSize)/JOURNAL_PG_SZ(journal_format);
+ for(i=nRec-1; i>=0; i--){
+ rc = pager_playback_one_page(pPager, &pPager->jfd, journal_format);
+ if( rc!=SQLITE_OK ){
+ assert( rc!=SQLITE_DONE );
+ goto end_ckpt_playback;
+ }
+ }
+
+end_ckpt_playback:
+ if( rc!=SQLITE_OK ){
+ pPager->errMask |= PAGER_ERR_CORRUPT;
+ rc = SQLITE_CORRUPT;
+ }
+ return rc;
+}
+
+/*
+** Change the maximum number of in-memory pages that are allowed.
+**
+** The maximum number is the absolute value of the mxPage parameter.
+** If mxPage is negative, the noSync flag is also set. noSync bypasses
+** calls to sqliteOsSync(). The pager runs much faster with noSync on,
+** but if the operating system crashes or there is an abrupt power
+** failure, the database file might be left in an inconsistent and
+** unrepairable state.
+*/
+void sqlitepager_set_cachesize(Pager *pPager, int mxPage){
+ if( mxPage>=0 ){
+ pPager->noSync = pPager->tempFile;
+ if( pPager->noSync==0 ) pPager->needSync = 0;
+ }else{
+ pPager->noSync = 1;
+ mxPage = -mxPage;
+ }
+ if( mxPage>10 ){
+ pPager->mxPage = mxPage;
+ }
+}
+
+/*
+** Adjust the robustness of the database to damage due to OS crashes
+** or power failures by changing the number of syncs()s when writing
+** the rollback journal. There are three levels:
+**
+** OFF sqliteOsSync() is never called. This is the default
+** for temporary and transient files.
+**
+** NORMAL The journal is synced once before writes begin on the
+** database. This is normally adequate protection, but
+** it is theoretically possible, though very unlikely,
+** that an inopertune power failure could leave the journal
+** in a state which would cause damage to the database
+** when it is rolled back.
+**
+** FULL The journal is synced twice before writes begin on the
+** database (with some additional information - the nRec field
+** of the journal header - being written in between the two
+** syncs). If we assume that writing a
+** single disk sector is atomic, then this mode provides
+** assurance that the journal will not be corrupted to the
+** point of causing damage to the database during rollback.
+**
+** Numeric values associated with these states are OFF==1, NORMAL=2,
+** and FULL=3.
+*/
+void sqlitepager_set_safety_level(Pager *pPager, int level){
+ pPager->noSync = level==1 || pPager->tempFile;
+ pPager->fullSync = level==3 && !pPager->tempFile;
+ if( pPager->noSync==0 ) pPager->needSync = 0;
+}
+
+/*
+** Open a temporary file. Write the name of the file into zName
+** (zName must be at least SQLITE_TEMPNAME_SIZE bytes long.) Write
+** the file descriptor into *fd. Return SQLITE_OK on success or some
+** other error code if we fail.
+**
+** The OS will automatically delete the temporary file when it is
+** closed.
+*/
+static int sqlitepager_opentemp(char *zFile, OsFile *fd){
+ int cnt = 8;
+ int rc;
+ do{
+ cnt--;
+ sqliteOsTempFileName(zFile);
+ rc = sqliteOsOpenExclusive(zFile, fd, 1);
+ }while( cnt>0 && rc!=SQLITE_OK );
+ return rc;
+}
+
+/*
+** Create a new page cache and put a pointer to the page cache in *ppPager.
+** The file to be cached need not exist. The file is not locked until
+** the first call to sqlitepager_get() and is only held open until the
+** last page is released using sqlitepager_unref().
+**
+** If zFilename is NULL then a randomly-named temporary file is created
+** and used as the file to be cached. The file will be deleted
+** automatically when it is closed.
+*/
+int sqlitepager_open(
+ Pager **ppPager, /* Return the Pager structure here */
+ const char *zFilename, /* Name of the database file to open */
+ int mxPage, /* Max number of in-memory cache pages */
+ int nExtra, /* Extra bytes append to each in-memory page */
+ int useJournal /* TRUE to use a rollback journal on this file */
+){
+ Pager *pPager;
+ char *zFullPathname;
+ int nameLen;
+ OsFile fd;
+ int rc, i;
+ int tempFile;
+ int readOnly = 0;
+ char zTemp[SQLITE_TEMPNAME_SIZE];
+
+ *ppPager = 0;
+ if( sqlite_malloc_failed ){
+ return SQLITE_NOMEM;
+ }
+ if( zFilename && zFilename[0] ){
+ zFullPathname = sqliteOsFullPathname(zFilename);
+ rc = sqliteOsOpenReadWrite(zFullPathname, &fd, &readOnly);
+ tempFile = 0;
+ }else{
+ rc = sqlitepager_opentemp(zTemp, &fd);
+ zFilename = zTemp;
+ zFullPathname = sqliteOsFullPathname(zFilename);
+ tempFile = 1;
+ }
+ if( sqlite_malloc_failed ){
+ return SQLITE_NOMEM;
+ }
+ if( rc!=SQLITE_OK ){
+ sqliteFree(zFullPathname);
+ return SQLITE_CANTOPEN;
+ }
+ nameLen = strlen(zFullPathname);
+ pPager = sqliteMalloc( sizeof(*pPager) + nameLen*3 + 30 );
+ if( pPager==0 ){
+ sqliteOsClose(&fd);
+ sqliteFree(zFullPathname);
+ return SQLITE_NOMEM;
+ }
+ SET_PAGER(pPager);
+ pPager->zFilename = (char*)&pPager[1];
+ pPager->zDirectory = &pPager->zFilename[nameLen+1];
+ pPager->zJournal = &pPager->zDirectory[nameLen+1];
+ strcpy(pPager->zFilename, zFullPathname);
+ strcpy(pPager->zDirectory, zFullPathname);
+ for(i=nameLen; i>0 && pPager->zDirectory[i-1]!='/'; i--){}
+ if( i>0 ) pPager->zDirectory[i-1] = 0;
+ strcpy(pPager->zJournal, zFullPathname);
+ sqliteFree(zFullPathname);
+ strcpy(&pPager->zJournal[nameLen], "-journal");
+ pPager->fd = fd;
+ pPager->journalOpen = 0;
+ pPager->useJournal = useJournal;
+ pPager->ckptOpen = 0;
+ pPager->ckptInUse = 0;
+ pPager->nRef = 0;
+ pPager->dbSize = -1;
+ pPager->ckptSize = 0;
+ pPager->ckptJSize = 0;
+ pPager->nPage = 0;
+ pPager->mxPage = mxPage>5 ? mxPage : 10;
+ pPager->state = SQLITE_UNLOCK;
+ pPager->errMask = 0;
+ pPager->tempFile = tempFile;
+ pPager->readOnly = readOnly;
+ pPager->needSync = 0;
+ pPager->noSync = pPager->tempFile || !useJournal;
+ pPager->pFirst = 0;
+ pPager->pFirstSynced = 0;
+ pPager->pLast = 0;
+ pPager->nExtra = nExtra;
+ memset(pPager->aHash, 0, sizeof(pPager->aHash));
+ *ppPager = pPager;
+ return SQLITE_OK;
+}
+
+/*
+** Set the destructor for this pager. If not NULL, the destructor is called
+** when the reference count on each page reaches zero. The destructor can
+** be used to clean up information in the extra segment appended to each page.
+**
+** The destructor is not called as a result sqlitepager_close().
+** Destructors are only called by sqlitepager_unref().
+*/
+void sqlitepager_set_destructor(Pager *pPager, void (*xDesc)(void*)){
+ pPager->xDestructor = xDesc;
+}
+
+/*
+** Return the total number of pages in the disk file associated with
+** pPager.
+*/
+int sqlitepager_pagecount(Pager *pPager){
+ off_t n;
+ assert( pPager!=0 );
+ if( pPager->dbSize>=0 ){
+ return pPager->dbSize;
+ }
+ if( sqliteOsFileSize(&pPager->fd, &n)!=SQLITE_OK ){
+ pPager->errMask |= PAGER_ERR_DISK;
+ return 0;
+ }
+ n /= SQLITE_PAGE_SIZE;
+ if( pPager->state!=SQLITE_UNLOCK ){
+ pPager->dbSize = n;
+ }
+ return n;
+}
+
+/*
+** Forward declaration
+*/
+static int syncJournal(Pager*);
+
+/*
+** Truncate the file to the number of pages specified.
+*/
+int sqlitepager_truncate(Pager *pPager, Pgno nPage){
+ int rc;
+ if( pPager->dbSize<0 ){
+ sqlitepager_pagecount(pPager);
+ }
+ if( pPager->errMask!=0 ){
+ rc = pager_errcode(pPager);
+ return rc;
+ }
+ if( nPage>=(unsigned)pPager->dbSize ){
+ return SQLITE_OK;
+ }
+ syncJournal(pPager);
+ rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)nPage);
+ if( rc==SQLITE_OK ){
+ pPager->dbSize = nPage;
+ }
+ return rc;
+}
+
+/*
+** Shutdown the page cache. Free all memory and close all files.
+**
+** If a transaction was in progress when this routine is called, that
+** transaction is rolled back. All outstanding pages are invalidated
+** and their memory is freed. Any attempt to use a page associated
+** with this page cache after this function returns will likely
+** result in a coredump.
+*/
+int sqlitepager_close(Pager *pPager){
+ PgHdr *pPg, *pNext;
+ switch( pPager->state ){
+ case SQLITE_WRITELOCK: {
+ sqlitepager_rollback(pPager);
+ sqliteOsUnlock(&pPager->fd);
+ assert( pPager->journalOpen==0 );
+ break;
+ }
+ case SQLITE_READLOCK: {
+ sqliteOsUnlock(&pPager->fd);
+ break;
+ }
+ default: {
+ /* Do nothing */
+ break;
+ }
+ }
+ for(pPg=pPager->pAll; pPg; pPg=pNext){
+ pNext = pPg->pNextAll;
+ sqliteFree(pPg);
+ }
+ sqliteOsClose(&pPager->fd);
+ assert( pPager->journalOpen==0 );
+ /* Temp files are automatically deleted by the OS
+ ** if( pPager->tempFile ){
+ ** sqliteOsDelete(pPager->zFilename);
+ ** }
+ */
+ CLR_PAGER(pPager);
+ if( pPager->zFilename!=(char*)&pPager[1] ){
+ assert( 0 ); /* Cannot happen */
+ sqliteFree(pPager->zFilename);
+ sqliteFree(pPager->zJournal);
+ sqliteFree(pPager->zDirectory);
+ }
+ sqliteFree(pPager);
+ return SQLITE_OK;
+}
+
+/*
+** Return the page number for the given page data.
+*/
+Pgno sqlitepager_pagenumber(void *pData){
+ PgHdr *p = DATA_TO_PGHDR(pData);
+ return p->pgno;
+}
+
+/*
+** Increment the reference count for a page. If the page is
+** currently on the freelist (the reference count is zero) then
+** remove it from the freelist.
+*/
+#define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
+static void _page_ref(PgHdr *pPg){
+ if( pPg->nRef==0 ){
+ /* The page is currently on the freelist. Remove it. */
+ if( pPg==pPg->pPager->pFirstSynced ){
+ PgHdr *p = pPg->pNextFree;
+ while( p && p->needSync ){ p = p->pNextFree; }
+ pPg->pPager->pFirstSynced = p;
+ }
+ if( pPg->pPrevFree ){
+ pPg->pPrevFree->pNextFree = pPg->pNextFree;
+ }else{
+ pPg->pPager->pFirst = pPg->pNextFree;
+ }
+ if( pPg->pNextFree ){
+ pPg->pNextFree->pPrevFree = pPg->pPrevFree;
+ }else{
+ pPg->pPager->pLast = pPg->pPrevFree;
+ }
+ pPg->pPager->nRef++;
+ }
+ pPg->nRef++;
+ REFINFO(pPg);
+}
+
+/*
+** Increment the reference count for a page. The input pointer is
+** a reference to the page data.
+*/
+int sqlitepager_ref(void *pData){
+ PgHdr *pPg = DATA_TO_PGHDR(pData);
+ page_ref(pPg);
+ return SQLITE_OK;
+}
+
+/*
+** Sync the journal. In other words, make sure all the pages that have
+** been written to the journal have actually reached the surface of the
+** disk. It is not safe to modify the original database file until after
+** the journal has been synced. If the original database is modified before
+** the journal is synced and a power failure occurs, the unsynced journal
+** data would be lost and we would be unable to completely rollback the
+** database changes. Database corruption would occur.
+**
+** This routine also updates the nRec field in the header of the journal.
+** (See comments on the pager_playback() routine for additional information.)
+** If the sync mode is FULL, two syncs will occur. First the whole journal
+** is synced, then the nRec field is updated, then a second sync occurs.
+**
+** For temporary databases, we do not care if we are able to rollback
+** after a power failure, so sync occurs.
+**
+** This routine clears the needSync field of every page current held in
+** memory.
+*/
+static int syncJournal(Pager *pPager){
+ PgHdr *pPg;
+ int rc = SQLITE_OK;
+
+ /* Sync the journal before modifying the main database
+ ** (assuming there is a journal and it needs to be synced.)
+ */
+ if( pPager->needSync ){
+ if( !pPager->tempFile ){
+ assert( pPager->journalOpen );
+ /* assert( !pPager->noSync ); // noSync might be set if synchronous
+ ** was turned off after the transaction was started. Ticket #615 */
+#ifndef NDEBUG
+ {
+ /* Make sure the pPager->nRec counter we are keeping agrees
+ ** with the nRec computed from the size of the journal file.
+ */
+ off_t hdrSz, pgSz, jSz;
+ hdrSz = JOURNAL_HDR_SZ(journal_format);
+ pgSz = JOURNAL_PG_SZ(journal_format);
+ rc = sqliteOsFileSize(&pPager->jfd, &jSz);
+ if( rc!=0 ) return rc;
+ assert( pPager->nRec*pgSz+hdrSz==jSz );
+ }
+#endif
+ if( journal_format>=3 ){
+ /* Write the nRec value into the journal file header */
+ off_t szJ;
+ if( pPager->fullSync ){
+ TRACE1("SYNC\n");
+ rc = sqliteOsSync(&pPager->jfd);
+ if( rc!=0 ) return rc;
+ }
+ sqliteOsSeek(&pPager->jfd, sizeof(aJournalMagic1));
+ rc = write32bits(&pPager->jfd, pPager->nRec);
+ if( rc ) return rc;
+ szJ = JOURNAL_HDR_SZ(journal_format) +
+ pPager->nRec*JOURNAL_PG_SZ(journal_format);
+ sqliteOsSeek(&pPager->jfd, szJ);
+ }
+ TRACE1("SYNC\n");
+ rc = sqliteOsSync(&pPager->jfd);
+ if( rc!=0 ) return rc;
+ pPager->journalStarted = 1;
+ }
+ pPager->needSync = 0;
+
+ /* Erase the needSync flag from every page.
+ */
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
+ pPg->needSync = 0;
+ }
+ pPager->pFirstSynced = pPager->pFirst;
+ }
+
+#ifndef NDEBUG
+ /* If the Pager.needSync flag is clear then the PgHdr.needSync
+ ** flag must also be clear for all pages. Verify that this
+ ** invariant is true.
+ */
+ else{
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
+ assert( pPg->needSync==0 );
+ }
+ assert( pPager->pFirstSynced==pPager->pFirst );
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** Given a list of pages (connected by the PgHdr.pDirty pointer) write
+** every one of those pages out to the database file and mark them all
+** as clean.
+*/
+static int pager_write_pagelist(PgHdr *pList){
+ Pager *pPager;
+ int rc;
+
+ if( pList==0 ) return SQLITE_OK;
+ pPager = pList->pPager;
+ while( pList ){
+ assert( pList->dirty );
+ sqliteOsSeek(&pPager->fd, (pList->pgno-1)*(off_t)SQLITE_PAGE_SIZE);
+ CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
+ TRACE2("STORE %d\n", pList->pgno);
+ rc = sqliteOsWrite(&pPager->fd, PGHDR_TO_DATA(pList), SQLITE_PAGE_SIZE);
+ CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 0);
+ if( rc ) return rc;
+ pList->dirty = 0;
+ pList = pList->pDirty;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Collect every dirty page into a dirty list and
+** return a pointer to the head of that list. All pages are
+** collected even if they are still in use.
+*/
+static PgHdr *pager_get_all_dirty_pages(Pager *pPager){
+ PgHdr *p, *pList;
+ pList = 0;
+ for(p=pPager->pAll; p; p=p->pNextAll){
+ if( p->dirty ){
+ p->pDirty = pList;
+ pList = p;
+ }
+ }
+ return pList;
+}
+
+/*
+** Acquire a page.
+**
+** A read lock on the disk file is obtained when the first page is acquired.
+** This read lock is dropped when the last page is released.
+**
+** A _get works for any page number greater than 0. If the database
+** file is smaller than the requested page, then no actual disk
+** read occurs and the memory image of the page is initialized to
+** all zeros. The extra data appended to a page is always initialized
+** to zeros the first time a page is loaded into memory.
+**
+** The acquisition might fail for several reasons. In all cases,
+** an appropriate error code is returned and *ppPage is set to NULL.
+**
+** See also sqlitepager_lookup(). Both this routine and _lookup() attempt
+** to find a page in the in-memory cache first. If the page is not already
+** in memory, this routine goes to disk to read it in whereas _lookup()
+** just returns 0. This routine acquires a read-lock the first time it
+** has to go to disk, and could also playback an old journal if necessary.
+** Since _lookup() never goes to disk, it never has to deal with locks
+** or journal files.
+*/
+int sqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage){
+ PgHdr *pPg;
+ int rc;
+
+ /* Make sure we have not hit any critical errors.
+ */
+ assert( pPager!=0 );
+ assert( pgno!=0 );
+ *ppPage = 0;
+ if( pPager->errMask & ~(PAGER_ERR_FULL) ){
+ return pager_errcode(pPager);
+ }
+
+ /* If this is the first page accessed, then get a read lock
+ ** on the database file.
+ */
+ if( pPager->nRef==0 ){
+ rc = sqliteOsReadLock(&pPager->fd);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ pPager->state = SQLITE_READLOCK;
+
+ /* If a journal file exists, try to play it back.
+ */
+ if( pPager->useJournal && sqliteOsFileExists(pPager->zJournal) ){
+ int rc;
+
+ /* Get a write lock on the database
+ */
+ rc = sqliteOsWriteLock(&pPager->fd);
+ if( rc!=SQLITE_OK ){
+ if( sqliteOsUnlock(&pPager->fd)!=SQLITE_OK ){
+ /* This should never happen! */
+ rc = SQLITE_INTERNAL;
+ }
+ return rc;
+ }
+ pPager->state = SQLITE_WRITELOCK;
+
+ /* Open the journal for reading only. Return SQLITE_BUSY if
+ ** we are unable to open the journal file.
+ **
+ ** The journal file does not need to be locked itself. The
+ ** journal file is never open unless the main database file holds
+ ** a write lock, so there is never any chance of two or more
+ ** processes opening the journal at the same time.
+ */
+ rc = sqliteOsOpenReadOnly(pPager->zJournal, &pPager->jfd);
+ if( rc!=SQLITE_OK ){
+ rc = sqliteOsUnlock(&pPager->fd);
+ assert( rc==SQLITE_OK );
+ return SQLITE_BUSY;
+ }
+ pPager->journalOpen = 1;
+ pPager->journalStarted = 0;
+
+ /* Playback and delete the journal. Drop the database write
+ ** lock and reacquire the read lock.
+ */
+ rc = pager_playback(pPager, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+ pPg = 0;
+ }else{
+ /* Search for page in cache */
+ pPg = pager_lookup(pPager, pgno);
+ }
+ if( pPg==0 ){
+ /* The requested page is not in the page cache. */
+ int h;
+ pPager->nMiss++;
+ if( pPager->nPage<pPager->mxPage || pPager->pFirst==0 ){
+ /* Create a new page */
+ pPg = sqliteMallocRaw( sizeof(*pPg) + SQLITE_PAGE_SIZE
+ + sizeof(u32) + pPager->nExtra );
+ if( pPg==0 ){
+ pager_unwritelock(pPager);
+ pPager->errMask |= PAGER_ERR_MEM;
+ return SQLITE_NOMEM;
+ }
+ memset(pPg, 0, sizeof(*pPg));
+ pPg->pPager = pPager;
+ pPg->pNextAll = pPager->pAll;
+ if( pPager->pAll ){
+ pPager->pAll->pPrevAll = pPg;
+ }
+ pPg->pPrevAll = 0;
+ pPager->pAll = pPg;
+ pPager->nPage++;
+ }else{
+ /* Find a page to recycle. Try to locate a page that does not
+ ** require us to do an fsync() on the journal.
+ */
+ pPg = pPager->pFirstSynced;
+
+ /* If we could not find a page that does not require an fsync()
+ ** on the journal file then fsync the journal file. This is a
+ ** very slow operation, so we work hard to avoid it. But sometimes
+ ** it can't be helped.
+ */
+ if( pPg==0 ){
+ int rc = syncJournal(pPager);
+ if( rc!=0 ){
+ sqlitepager_rollback(pPager);
+ return SQLITE_IOERR;
+ }
+ pPg = pPager->pFirst;
+ }
+ assert( pPg->nRef==0 );
+
+ /* Write the page to the database file if it is dirty.
+ */
+ if( pPg->dirty ){
+ assert( pPg->needSync==0 );
+ pPg->pDirty = 0;
+ rc = pager_write_pagelist( pPg );
+ if( rc!=SQLITE_OK ){
+ sqlitepager_rollback(pPager);
+ return SQLITE_IOERR;
+ }
+ }
+ assert( pPg->dirty==0 );
+
+ /* If the page we are recycling is marked as alwaysRollback, then
+ ** set the global alwaysRollback flag, thus disabling the
+ ** sqlite_dont_rollback() optimization for the rest of this transaction.
+ ** It is necessary to do this because the page marked alwaysRollback
+ ** might be reloaded at a later time but at that point we won't remember
+ ** that is was marked alwaysRollback. This means that all pages must
+ ** be marked as alwaysRollback from here on out.
+ */
+ if( pPg->alwaysRollback ){
+ pPager->alwaysRollback = 1;
+ }
+
+ /* Unlink the old page from the free list and the hash table
+ */
+ if( pPg==pPager->pFirstSynced ){
+ PgHdr *p = pPg->pNextFree;
+ while( p && p->needSync ){ p = p->pNextFree; }
+ pPager->pFirstSynced = p;
+ }
+ if( pPg->pPrevFree ){
+ pPg->pPrevFree->pNextFree = pPg->pNextFree;
+ }else{
+ assert( pPager->pFirst==pPg );
+ pPager->pFirst = pPg->pNextFree;
+ }
+ if( pPg->pNextFree ){
+ pPg->pNextFree->pPrevFree = pPg->pPrevFree;
+ }else{
+ assert( pPager->pLast==pPg );
+ pPager->pLast = pPg->pPrevFree;
+ }
+ pPg->pNextFree = pPg->pPrevFree = 0;
+ if( pPg->pNextHash ){
+ pPg->pNextHash->pPrevHash = pPg->pPrevHash;
+ }
+ if( pPg->pPrevHash ){
+ pPg->pPrevHash->pNextHash = pPg->pNextHash;
+ }else{
+ h = pager_hash(pPg->pgno);
+ assert( pPager->aHash[h]==pPg );
+ pPager->aHash[h] = pPg->pNextHash;
+ }
+ pPg->pNextHash = pPg->pPrevHash = 0;
+ pPager->nOvfl++;
+ }
+ pPg->pgno = pgno;
+ if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){
+ sqliteCheckMemory(pPager->aInJournal, pgno/8);
+ assert( pPager->journalOpen );
+ pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0;
+ pPg->needSync = 0;
+ }else{
+ pPg->inJournal = 0;
+ pPg->needSync = 0;
+ }
+ if( pPager->aInCkpt && (int)pgno<=pPager->ckptSize
+ && (pPager->aInCkpt[pgno/8] & (1<<(pgno&7)))!=0 ){
+ page_add_to_ckpt_list(pPg);
+ }else{
+ page_remove_from_ckpt_list(pPg);
+ }
+ pPg->dirty = 0;
+ pPg->nRef = 1;
+ REFINFO(pPg);
+ pPager->nRef++;
+ h = pager_hash(pgno);
+ pPg->pNextHash = pPager->aHash[h];
+ pPager->aHash[h] = pPg;
+ if( pPg->pNextHash ){
+ assert( pPg->pNextHash->pPrevHash==0 );
+ pPg->pNextHash->pPrevHash = pPg;
+ }
+ if( pPager->nExtra>0 ){
+ memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
+ }
+ if( pPager->dbSize<0 ) sqlitepager_pagecount(pPager);
+ if( pPager->errMask!=0 ){
+ sqlitepager_unref(PGHDR_TO_DATA(pPg));
+ rc = pager_errcode(pPager);
+ return rc;
+ }
+ if( pPager->dbSize<(int)pgno ){
+ memset(PGHDR_TO_DATA(pPg), 0, SQLITE_PAGE_SIZE);
+ }else{
+ int rc;
+ sqliteOsSeek(&pPager->fd, (pgno-1)*(off_t)SQLITE_PAGE_SIZE);
+ rc = sqliteOsRead(&pPager->fd, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE);
+ TRACE2("FETCH %d\n", pPg->pgno);
+ CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
+ if( rc!=SQLITE_OK ){
+ off_t fileSize;
+ if( sqliteOsFileSize(&pPager->fd,&fileSize)!=SQLITE_OK
+ || fileSize>=pgno*SQLITE_PAGE_SIZE ){
+ sqlitepager_unref(PGHDR_TO_DATA(pPg));
+ return rc;
+ }else{
+ memset(PGHDR_TO_DATA(pPg), 0, SQLITE_PAGE_SIZE);
+ }
+ }
+ }
+ }else{
+ /* The requested page is in the page cache. */
+ pPager->nHit++;
+ page_ref(pPg);
+ }
+ *ppPage = PGHDR_TO_DATA(pPg);
+ return SQLITE_OK;
+}
+
+/*
+** Acquire a page if it is already in the in-memory cache. Do
+** not read the page from disk. Return a pointer to the page,
+** or 0 if the page is not in cache.
+**
+** See also sqlitepager_get(). The difference between this routine
+** and sqlitepager_get() is that _get() will go to the disk and read
+** in the page if the page is not already in cache. This routine
+** returns NULL if the page is not in cache or if a disk I/O error
+** has ever happened.
+*/
+void *sqlitepager_lookup(Pager *pPager, Pgno pgno){
+ PgHdr *pPg;
+
+ assert( pPager!=0 );
+ assert( pgno!=0 );
+ if( pPager->errMask & ~(PAGER_ERR_FULL) ){
+ return 0;
+ }
+ /* if( pPager->nRef==0 ){
+ ** return 0;
+ ** }
+ */
+ pPg = pager_lookup(pPager, pgno);
+ if( pPg==0 ) return 0;
+ page_ref(pPg);
+ return PGHDR_TO_DATA(pPg);
+}
+
+/*
+** Release a page.
+**
+** If the number of references to the page drop to zero, then the
+** page is added to the LRU list. When all references to all pages
+** are released, a rollback occurs and the lock on the database is
+** removed.
+*/
+int sqlitepager_unref(void *pData){
+ PgHdr *pPg;
+
+ /* Decrement the reference count for this page
+ */
+ pPg = DATA_TO_PGHDR(pData);
+ assert( pPg->nRef>0 );
+ pPg->nRef--;
+ REFINFO(pPg);
+
+ /* When the number of references to a page reach 0, call the
+ ** destructor and add the page to the freelist.
+ */
+ if( pPg->nRef==0 ){
+ Pager *pPager;
+ pPager = pPg->pPager;
+ pPg->pNextFree = 0;
+ pPg->pPrevFree = pPager->pLast;
+ pPager->pLast = pPg;
+ if( pPg->pPrevFree ){
+ pPg->pPrevFree->pNextFree = pPg;
+ }else{
+ pPager->pFirst = pPg;
+ }
+ if( pPg->needSync==0 && pPager->pFirstSynced==0 ){
+ pPager->pFirstSynced = pPg;
+ }
+ if( pPager->xDestructor ){
+ pPager->xDestructor(pData);
+ }
+
+ /* When all pages reach the freelist, drop the read lock from
+ ** the database file.
+ */
+ pPager->nRef--;
+ assert( pPager->nRef>=0 );
+ if( pPager->nRef==0 ){
+ pager_reset(pPager);
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Create a journal file for pPager. There should already be a write
+** lock on the database file when this routine is called.
+**
+** Return SQLITE_OK if everything. Return an error code and release the
+** write lock if anything goes wrong.
+*/
+static int pager_open_journal(Pager *pPager){
+ int rc;
+ assert( pPager->state==SQLITE_WRITELOCK );
+ assert( pPager->journalOpen==0 );
+ assert( pPager->useJournal );
+ sqlitepager_pagecount(pPager);
+ pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 );
+ if( pPager->aInJournal==0 ){
+ sqliteOsReadLock(&pPager->fd);
+ pPager->state = SQLITE_READLOCK;
+ return SQLITE_NOMEM;
+ }
+ rc = sqliteOsOpenExclusive(pPager->zJournal, &pPager->jfd,pPager->tempFile);
+ if( rc!=SQLITE_OK ){
+ sqliteFree(pPager->aInJournal);
+ pPager->aInJournal = 0;
+ sqliteOsReadLock(&pPager->fd);
+ pPager->state = SQLITE_READLOCK;
+ return SQLITE_CANTOPEN;
+ }
+ sqliteOsOpenDirectory(pPager->zDirectory, &pPager->jfd);
+ pPager->journalOpen = 1;
+ pPager->journalStarted = 0;
+ pPager->needSync = 0;
+ pPager->alwaysRollback = 0;
+ pPager->nRec = 0;
+ if( pPager->errMask!=0 ){
+ rc = pager_errcode(pPager);
+ return rc;
+ }
+ pPager->origDbSize = pPager->dbSize;
+ if( journal_format==JOURNAL_FORMAT_3 ){
+ rc = sqliteOsWrite(&pPager->jfd, aJournalMagic3, sizeof(aJournalMagic3));
+ if( rc==SQLITE_OK ){
+ rc = write32bits(&pPager->jfd, pPager->noSync ? 0xffffffff : 0);
+ }
+ if( rc==SQLITE_OK ){
+ sqliteRandomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
+ rc = write32bits(&pPager->jfd, pPager->cksumInit);
+ }
+ }else if( journal_format==JOURNAL_FORMAT_2 ){
+ rc = sqliteOsWrite(&pPager->jfd, aJournalMagic2, sizeof(aJournalMagic2));
+ }else{
+ assert( journal_format==JOURNAL_FORMAT_1 );
+ rc = sqliteOsWrite(&pPager->jfd, aJournalMagic1, sizeof(aJournalMagic1));
+ }
+ if( rc==SQLITE_OK ){
+ rc = write32bits(&pPager->jfd, pPager->dbSize);
+ }
+ if( pPager->ckptAutoopen && rc==SQLITE_OK ){
+ rc = sqlitepager_ckpt_begin(pPager);
+ }
+ if( rc!=SQLITE_OK ){
+ rc = pager_unwritelock(pPager);
+ if( rc==SQLITE_OK ){
+ rc = SQLITE_FULL;
+ }
+ }
+ return rc;
+}
+
+/*
+** Acquire a write-lock on the database. The lock is removed when
+** the any of the following happen:
+**
+** * sqlitepager_commit() is called.
+** * sqlitepager_rollback() is called.
+** * sqlitepager_close() is called.
+** * sqlitepager_unref() is called to on every outstanding page.
+**
+** The parameter to this routine is a pointer to any open page of the
+** database file. Nothing changes about the page - it is used merely
+** to acquire a pointer to the Pager structure and as proof that there
+** is already a read-lock on the database.
+**
+** A journal file is opened if this is not a temporary file. For
+** temporary files, the opening of the journal file is deferred until
+** there is an actual need to write to the journal.
+**
+** If the database is already write-locked, this routine is a no-op.
+*/
+int sqlitepager_begin(void *pData){
+ PgHdr *pPg = DATA_TO_PGHDR(pData);
+ Pager *pPager = pPg->pPager;
+ int rc = SQLITE_OK;
+ assert( pPg->nRef>0 );
+ assert( pPager->state!=SQLITE_UNLOCK );
+ if( pPager->state==SQLITE_READLOCK ){
+ assert( pPager->aInJournal==0 );
+ rc = sqliteOsWriteLock(&pPager->fd);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ pPager->state = SQLITE_WRITELOCK;
+ pPager->dirtyFile = 0;
+ TRACE1("TRANSACTION\n");
+ if( pPager->useJournal && !pPager->tempFile ){
+ rc = pager_open_journal(pPager);
+ }
+ }
+ return rc;
+}
+
+/*
+** Mark a data page as writeable. The page is written into the journal
+** if it is not there already. This routine must be called before making
+** changes to a page.
+**
+** The first time this routine is called, the pager creates a new
+** journal and acquires a write lock on the database. If the write
+** lock could not be acquired, this routine returns SQLITE_BUSY. The
+** calling routine must check for that return value and be careful not to
+** change any page data until this routine returns SQLITE_OK.
+**
+** If the journal file could not be written because the disk is full,
+** then this routine returns SQLITE_FULL and does an immediate rollback.
+** All subsequent write attempts also return SQLITE_FULL until there
+** is a call to sqlitepager_commit() or sqlitepager_rollback() to
+** reset.
+*/
+int sqlitepager_write(void *pData){
+ PgHdr *pPg = DATA_TO_PGHDR(pData);
+ Pager *pPager = pPg->pPager;
+ int rc = SQLITE_OK;
+
+ /* Check for errors
+ */
+ if( pPager->errMask ){
+ return pager_errcode(pPager);
+ }
+ if( pPager->readOnly ){
+ return SQLITE_PERM;
+ }
+
+ /* Mark the page as dirty. If the page has already been written
+ ** to the journal then we can return right away.
+ */
+ pPg->dirty = 1;
+ if( pPg->inJournal && (pPg->inCkpt || pPager->ckptInUse==0) ){
+ pPager->dirtyFile = 1;
+ return SQLITE_OK;
+ }
+
+ /* If we get this far, it means that the page needs to be
+ ** written to the transaction journal or the ckeckpoint journal
+ ** or both.
+ **
+ ** First check to see that the transaction journal exists and
+ ** create it if it does not.
+ */
+ assert( pPager->state!=SQLITE_UNLOCK );
+ rc = sqlitepager_begin(pData);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ assert( pPager->state==SQLITE_WRITELOCK );
+ if( !pPager->journalOpen && pPager->useJournal ){
+ rc = pager_open_journal(pPager);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ assert( pPager->journalOpen || !pPager->useJournal );
+ pPager->dirtyFile = 1;
+
+ /* The transaction journal now exists and we have a write lock on the
+ ** main database file. Write the current page to the transaction
+ ** journal if it is not there already.
+ */
+ if( !pPg->inJournal && pPager->useJournal ){
+ if( (int)pPg->pgno <= pPager->origDbSize ){
+ int szPg;
+ u32 saved;
+ if( journal_format>=JOURNAL_FORMAT_3 ){
+ u32 cksum = pager_cksum(pPager, pPg->pgno, pData);
+ saved = *(u32*)PGHDR_TO_EXTRA(pPg);
+ store32bits(cksum, pPg, SQLITE_PAGE_SIZE);
+ szPg = SQLITE_PAGE_SIZE+8;
+ }else{
+ szPg = SQLITE_PAGE_SIZE+4;
+ }
+ store32bits(pPg->pgno, pPg, -4);
+ CODEC(pPager, pData, pPg->pgno, 7);
+ rc = sqliteOsWrite(&pPager->jfd, &((char*)pData)[-4], szPg);
+ TRACE3("JOURNAL %d %d\n", pPg->pgno, pPg->needSync);
+ CODEC(pPager, pData, pPg->pgno, 0);
+ if( journal_format>=JOURNAL_FORMAT_3 ){
+ *(u32*)PGHDR_TO_EXTRA(pPg) = saved;
+ }
+ if( rc!=SQLITE_OK ){
+ sqlitepager_rollback(pPager);
+ pPager->errMask |= PAGER_ERR_FULL;
+ return rc;
+ }
+ pPager->nRec++;
+ assert( pPager->aInJournal!=0 );
+ pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
+ pPg->needSync = !pPager->noSync;
+ pPg->inJournal = 1;
+ if( pPager->ckptInUse ){
+ pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
+ page_add_to_ckpt_list(pPg);
+ }
+ }else{
+ pPg->needSync = !pPager->journalStarted && !pPager->noSync;
+ TRACE3("APPEND %d %d\n", pPg->pgno, pPg->needSync);
+ }
+ if( pPg->needSync ){
+ pPager->needSync = 1;
+ }
+ }
+
+ /* If the checkpoint journal is open and the page is not in it,
+ ** then write the current page to the checkpoint journal. Note that
+ ** the checkpoint journal always uses the simplier format 2 that lacks
+ ** checksums. The header is also omitted from the checkpoint journal.
+ */
+ if( pPager->ckptInUse && !pPg->inCkpt && (int)pPg->pgno<=pPager->ckptSize ){
+ assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
+ store32bits(pPg->pgno, pPg, -4);
+ CODEC(pPager, pData, pPg->pgno, 7);
+ rc = sqliteOsWrite(&pPager->cpfd, &((char*)pData)[-4], SQLITE_PAGE_SIZE+4);
+ TRACE2("CKPT-JOURNAL %d\n", pPg->pgno);
+ CODEC(pPager, pData, pPg->pgno, 0);
+ if( rc!=SQLITE_OK ){
+ sqlitepager_rollback(pPager);
+ pPager->errMask |= PAGER_ERR_FULL;
+ return rc;
+ }
+ pPager->ckptNRec++;
+ assert( pPager->aInCkpt!=0 );
+ pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
+ page_add_to_ckpt_list(pPg);
+ }
+
+ /* Update the database size and return.
+ */
+ if( pPager->dbSize<(int)pPg->pgno ){
+ pPager->dbSize = pPg->pgno;
+ }
+ return rc;
+}
+
+/*
+** Return TRUE if the page given in the argument was previously passed
+** to sqlitepager_write(). In other words, return TRUE if it is ok
+** to change the content of the page.
+*/
+int sqlitepager_iswriteable(void *pData){
+ PgHdr *pPg = DATA_TO_PGHDR(pData);
+ return pPg->dirty;
+}
+
+/*
+** Replace the content of a single page with the information in the third
+** argument.
+*/
+int sqlitepager_overwrite(Pager *pPager, Pgno pgno, void *pData){
+ void *pPage;
+ int rc;
+
+ rc = sqlitepager_get(pPager, pgno, &pPage);
+ if( rc==SQLITE_OK ){
+ rc = sqlitepager_write(pPage);
+ if( rc==SQLITE_OK ){
+ memcpy(pPage, pData, SQLITE_PAGE_SIZE);
+ }
+ sqlitepager_unref(pPage);
+ }
+ return rc;
+}
+
+/*
+** A call to this routine tells the pager that it is not necessary to
+** write the information on page "pgno" back to the disk, even though
+** that page might be marked as dirty.
+**
+** The overlying software layer calls this routine when all of the data
+** on the given page is unused. The pager marks the page as clean so
+** that it does not get written to disk.
+**
+** Tests show that this optimization, together with the
+** sqlitepager_dont_rollback() below, more than double the speed
+** of large INSERT operations and quadruple the speed of large DELETEs.
+**
+** When this routine is called, set the alwaysRollback flag to true.
+** Subsequent calls to sqlitepager_dont_rollback() for the same page
+** will thereafter be ignored. This is necessary to avoid a problem
+** where a page with data is added to the freelist during one part of
+** a transaction then removed from the freelist during a later part
+** of the same transaction and reused for some other purpose. When it
+** is first added to the freelist, this routine is called. When reused,
+** the dont_rollback() routine is called. But because the page contains
+** critical data, we still need to be sure it gets rolled back in spite
+** of the dont_rollback() call.
+*/
+void sqlitepager_dont_write(Pager *pPager, Pgno pgno){
+ PgHdr *pPg;
+
+ pPg = pager_lookup(pPager, pgno);
+ pPg->alwaysRollback = 1;
+ if( pPg && pPg->dirty ){
+ if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
+ /* If this pages is the last page in the file and the file has grown
+ ** during the current transaction, then do NOT mark the page as clean.
+ ** When the database file grows, we must make sure that the last page
+ ** gets written at least once so that the disk file will be the correct
+ ** size. If you do not write this page and the size of the file
+ ** on the disk ends up being too small, that can lead to database
+ ** corruption during the next transaction.
+ */
+ }else{
+ TRACE2("DONT_WRITE %d\n", pgno);
+ pPg->dirty = 0;
+ }
+ }
+}
+
+/*
+** A call to this routine tells the pager that if a rollback occurs,
+** it is not necessary to restore the data on the given page. This
+** means that the pager does not have to record the given page in the
+** rollback journal.
+*/
+void sqlitepager_dont_rollback(void *pData){
+ PgHdr *pPg = DATA_TO_PGHDR(pData);
+ Pager *pPager = pPg->pPager;
+
+ if( pPager->state!=SQLITE_WRITELOCK || pPager->journalOpen==0 ) return;
+ if( pPg->alwaysRollback || pPager->alwaysRollback ) return;
+ if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){
+ assert( pPager->aInJournal!=0 );
+ pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
+ pPg->inJournal = 1;
+ if( pPager->ckptInUse ){
+ pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
+ page_add_to_ckpt_list(pPg);
+ }
+ TRACE2("DONT_ROLLBACK %d\n", pPg->pgno);
+ }
+ if( pPager->ckptInUse && !pPg->inCkpt && (int)pPg->pgno<=pPager->ckptSize ){
+ assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
+ assert( pPager->aInCkpt!=0 );
+ pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
+ page_add_to_ckpt_list(pPg);
+ }
+}
+
+/*
+** Commit all changes to the database and release the write lock.
+**
+** If the commit fails for any reason, a rollback attempt is made
+** and an error code is returned. If the commit worked, SQLITE_OK
+** is returned.
+*/
+int sqlitepager_commit(Pager *pPager){
+ int rc;
+ PgHdr *pPg;
+
+ if( pPager->errMask==PAGER_ERR_FULL ){
+ rc = sqlitepager_rollback(pPager);
+ if( rc==SQLITE_OK ){
+ rc = SQLITE_FULL;
+ }
+ return rc;
+ }
+ if( pPager->errMask!=0 ){
+ rc = pager_errcode(pPager);
+ return rc;
+ }
+ if( pPager->state!=SQLITE_WRITELOCK ){
+ return SQLITE_ERROR;
+ }
+ TRACE1("COMMIT\n");
+ if( pPager->dirtyFile==0 ){
+ /* Exit early (without doing the time-consuming sqliteOsSync() calls)
+ ** if there have been no changes to the database file. */
+ assert( pPager->needSync==0 );
+ rc = pager_unwritelock(pPager);
+ pPager->dbSize = -1;
+ return rc;
+ }
+ assert( pPager->journalOpen );
+ rc = syncJournal(pPager);
+ if( rc!=SQLITE_OK ){
+ goto commit_abort;
+ }
+ pPg = pager_get_all_dirty_pages(pPager);
+ if( pPg ){
+ rc = pager_write_pagelist(pPg);
+ if( rc || (!pPager->noSync && sqliteOsSync(&pPager->fd)!=SQLITE_OK) ){
+ goto commit_abort;
+ }
+ }
+ rc = pager_unwritelock(pPager);
+ pPager->dbSize = -1;
+ return rc;
+
+ /* Jump here if anything goes wrong during the commit process.
+ */
+commit_abort:
+ rc = sqlitepager_rollback(pPager);
+ if( rc==SQLITE_OK ){
+ rc = SQLITE_FULL;
+ }
+ return rc;
+}
+
+/*
+** Rollback all changes. The database falls back to read-only mode.
+** All in-memory cache pages revert to their original data contents.
+** The journal is deleted.
+**
+** This routine cannot fail unless some other process is not following
+** the correct locking protocol (SQLITE_PROTOCOL) or unless some other
+** process is writing trash into the journal file (SQLITE_CORRUPT) or
+** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error
+** codes are returned for all these occasions. Otherwise,
+** SQLITE_OK is returned.
+*/
+int sqlitepager_rollback(Pager *pPager){
+ int rc;
+ TRACE1("ROLLBACK\n");
+ if( !pPager->dirtyFile || !pPager->journalOpen ){
+ rc = pager_unwritelock(pPager);
+ pPager->dbSize = -1;
+ return rc;
+ }
+
+ if( pPager->errMask!=0 && pPager->errMask!=PAGER_ERR_FULL ){
+ if( pPager->state>=SQLITE_WRITELOCK ){
+ pager_playback(pPager, 1);
+ }
+ return pager_errcode(pPager);
+ }
+ if( pPager->state!=SQLITE_WRITELOCK ){
+ return SQLITE_OK;
+ }
+ rc = pager_playback(pPager, 1);
+ if( rc!=SQLITE_OK ){
+ rc = SQLITE_CORRUPT;
+ pPager->errMask |= PAGER_ERR_CORRUPT;
+ }
+ pPager->dbSize = -1;
+ return rc;
+}
+
+/*
+** Return TRUE if the database file is opened read-only. Return FALSE
+** if the database is (in theory) writable.
+*/
+int sqlitepager_isreadonly(Pager *pPager){
+ return pPager->readOnly;
+}
+
+/*
+** This routine is used for testing and analysis only.
+*/
+int *sqlitepager_stats(Pager *pPager){
+ static int a[9];
+ a[0] = pPager->nRef;
+ a[1] = pPager->nPage;
+ a[2] = pPager->mxPage;
+ a[3] = pPager->dbSize;
+ a[4] = pPager->state;
+ a[5] = pPager->errMask;
+ a[6] = pPager->nHit;
+ a[7] = pPager->nMiss;
+ a[8] = pPager->nOvfl;
+ return a;
+}
+
+/*
+** Set the checkpoint.
+**
+** This routine should be called with the transaction journal already
+** open. A new checkpoint journal is created that can be used to rollback
+** changes of a single SQL command within a larger transaction.
+*/
+int sqlitepager_ckpt_begin(Pager *pPager){
+ int rc;
+ char zTemp[SQLITE_TEMPNAME_SIZE];
+ if( !pPager->journalOpen ){
+ pPager->ckptAutoopen = 1;
+ return SQLITE_OK;
+ }
+ assert( pPager->journalOpen );
+ assert( !pPager->ckptInUse );
+ pPager->aInCkpt = sqliteMalloc( pPager->dbSize/8 + 1 );
+ if( pPager->aInCkpt==0 ){
+ sqliteOsReadLock(&pPager->fd);
+ return SQLITE_NOMEM;
+ }
+#ifndef NDEBUG
+ rc = sqliteOsFileSize(&pPager->jfd, &pPager->ckptJSize);
+ if( rc ) goto ckpt_begin_failed;
+ assert( pPager->ckptJSize ==
+ pPager->nRec*JOURNAL_PG_SZ(journal_format)+JOURNAL_HDR_SZ(journal_format) );
+#endif
+ pPager->ckptJSize = pPager->nRec*JOURNAL_PG_SZ(journal_format)
+ + JOURNAL_HDR_SZ(journal_format);
+ pPager->ckptSize = pPager->dbSize;
+ if( !pPager->ckptOpen ){
+ rc = sqlitepager_opentemp(zTemp, &pPager->cpfd);
+ if( rc ) goto ckpt_begin_failed;
+ pPager->ckptOpen = 1;
+ pPager->ckptNRec = 0;
+ }
+ pPager->ckptInUse = 1;
+ return SQLITE_OK;
+
+ckpt_begin_failed:
+ if( pPager->aInCkpt ){
+ sqliteFree(pPager->aInCkpt);
+ pPager->aInCkpt = 0;
+ }
+ return rc;
+}
+
+/*
+** Commit a checkpoint.
+*/
+int sqlitepager_ckpt_commit(Pager *pPager){
+ if( pPager->ckptInUse ){
+ PgHdr *pPg, *pNext;
+ sqliteOsSeek(&pPager->cpfd, 0);
+ /* sqliteOsTruncate(&pPager->cpfd, 0); */
+ pPager->ckptNRec = 0;
+ pPager->ckptInUse = 0;
+ sqliteFree( pPager->aInCkpt );
+ pPager->aInCkpt = 0;
+ for(pPg=pPager->pCkpt; pPg; pPg=pNext){
+ pNext = pPg->pNextCkpt;
+ assert( pPg->inCkpt );
+ pPg->inCkpt = 0;
+ pPg->pPrevCkpt = pPg->pNextCkpt = 0;
+ }
+ pPager->pCkpt = 0;
+ }
+ pPager->ckptAutoopen = 0;
+ return SQLITE_OK;
+}
+
+/*
+** Rollback a checkpoint.
+*/
+int sqlitepager_ckpt_rollback(Pager *pPager){
+ int rc;
+ if( pPager->ckptInUse ){
+ rc = pager_ckpt_playback(pPager);
+ sqlitepager_ckpt_commit(pPager);
+ }else{
+ rc = SQLITE_OK;
+ }
+ pPager->ckptAutoopen = 0;
+ return rc;
+}
+
+/*
+** Return the full pathname of the database file.
+*/
+const char *sqlitepager_filename(Pager *pPager){
+ return pPager->zFilename;
+}
+
+/*
+** Set the codec for this pager
+*/
+void sqlitepager_set_codec(
+ Pager *pPager,
+ void (*xCodec)(void*,void*,Pgno,int),
+ void *pCodecArg
+){
+ pPager->xCodec = xCodec;
+ pPager->pCodecArg = pCodecArg;
+}
+
+#ifdef SQLITE_TEST
+/*
+** Print a listing of all referenced pages and their ref count.
+*/
+void sqlitepager_refdump(Pager *pPager){
+ PgHdr *pPg;
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
+ if( pPg->nRef<=0 ) continue;
+ printf("PAGE %3d addr=0x%08x nRef=%d\n",
+ pPg->pgno, (int)PGHDR_TO_DATA(pPg), pPg->nRef);
+ }
+}
+#endif
diff --git a/src/3rdparty/sqlite/pager.h b/src/3rdparty/sqlite/pager.h
new file mode 100644
index 0000000..09bc7ae
--- /dev/null
+++ b/src/3rdparty/sqlite/pager.h
@@ -0,0 +1,107 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the sqlite page cache
+** subsystem. The page cache subsystem reads and writes a file a page
+** at a time and provides a journal for rollback.
+**
+** @(#) $Id: pager.h,v 1.26 2004/02/11 02:18:07 drh Exp $
+*/
+
+/*
+** The size of one page
+**
+** You can change this value to another (reasonable) value you want.
+** It need not be a power of two, though the interface to the disk
+** will likely be faster if it is.
+**
+** Experiments show that a page size of 1024 gives the best speed
+** for common usages. The speed differences for different sizes
+** such as 512, 2048, 4096, an so forth, is minimal. Note, however,
+** that changing the page size results in a completely imcompatible
+** file format.
+*/
+#ifndef SQLITE_PAGE_SIZE
+#define SQLITE_PAGE_SIZE 1024
+#endif
+
+/*
+** Number of extra bytes of data allocated at the end of each page and
+** stored on disk but not used by the higher level btree layer. Changing
+** this value results in a completely incompatible file format.
+*/
+#ifndef SQLITE_PAGE_RESERVE
+#define SQLITE_PAGE_RESERVE 0
+#endif
+
+/*
+** The total number of usable bytes stored on disk for each page.
+** The usable bytes come at the beginning of the page and the reserve
+** bytes come at the end.
+*/
+#define SQLITE_USABLE_SIZE (SQLITE_PAGE_SIZE-SQLITE_PAGE_RESERVE)
+
+/*
+** Maximum number of pages in one database. (This is a limitation of
+** imposed by 4GB files size limits.)
+*/
+#define SQLITE_MAX_PAGE 1073741823
+
+/*
+** The type used to represent a page number. The first page in a file
+** is called page 1. 0 is used to represent "not a page".
+*/
+typedef unsigned int Pgno;
+
+/*
+** Each open file is managed by a separate instance of the "Pager" structure.
+*/
+typedef struct Pager Pager;
+
+/*
+** See source code comments for a detailed description of the following
+** routines:
+*/
+int sqlitepager_open(Pager **ppPager, const char *zFilename,
+ int nPage, int nExtra, int useJournal);
+void sqlitepager_set_destructor(Pager*, void(*)(void*));
+void sqlitepager_set_cachesize(Pager*, int);
+int sqlitepager_close(Pager *pPager);
+int sqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage);
+void *sqlitepager_lookup(Pager *pPager, Pgno pgno);
+int sqlitepager_ref(void*);
+int sqlitepager_unref(void*);
+Pgno sqlitepager_pagenumber(void*);
+int sqlitepager_write(void*);
+int sqlitepager_iswriteable(void*);
+int sqlitepager_overwrite(Pager *pPager, Pgno pgno, void*);
+int sqlitepager_pagecount(Pager*);
+int sqlitepager_truncate(Pager*,Pgno);
+int sqlitepager_begin(void*);
+int sqlitepager_commit(Pager*);
+int sqlitepager_rollback(Pager*);
+int sqlitepager_isreadonly(Pager*);
+int sqlitepager_ckpt_begin(Pager*);
+int sqlitepager_ckpt_commit(Pager*);
+int sqlitepager_ckpt_rollback(Pager*);
+void sqlitepager_dont_rollback(void*);
+void sqlitepager_dont_write(Pager*, Pgno);
+int *sqlitepager_stats(Pager*);
+void sqlitepager_set_safety_level(Pager*,int);
+const char *sqlitepager_filename(Pager*);
+int sqlitepager_rename(Pager*, const char *zNewName);
+void sqlitepager_set_codec(Pager*,void(*)(void*,void*,Pgno,int),void*);
+
+#ifdef SQLITE_TEST
+void sqlitepager_refdump(Pager*);
+int pager_refinfo_enable;
+int journal_format;
+#endif
diff --git a/src/3rdparty/sqlite/parse.c b/src/3rdparty/sqlite/parse.c
new file mode 100644
index 0000000..4635369
--- /dev/null
+++ b/src/3rdparty/sqlite/parse.c
@@ -0,0 +1,4035 @@
+/* Driver template for the LEMON parser generator.
+** The author disclaims copyright to this source code.
+*/
+/* First off, code is include which follows the "include" declaration
+** in the input file. */
+#include <stdio.h>
+#line 33 "parse.y"
+
+#include "sqliteInt.h"
+#include "parse.h"
+
+/*
+** An instance of this structure holds information about the
+** LIMIT clause of a SELECT statement.
+*/
+struct LimitVal {
+ int limit; /* The LIMIT value. -1 if there is no limit */
+ int offset; /* The OFFSET. 0 if there is none */
+};
+
+/*
+** An instance of the following structure describes the event of a
+** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
+** TK_DELETE, or TK_INSTEAD. If the event is of the form
+**
+** UPDATE ON (a,b,c)
+**
+** Then the "b" IdList records the list "a,b,c".
+*/
+struct TrigEvent { int a; IdList * b; };
+
+
+#line 34 "parse.c"
+/* Next is all token values, in a form suitable for use by makeheaders.
+** This section will be null unless lemon is run with the -m switch.
+*/
+/*
+** These constants (all generated automatically by the parser generator)
+** specify the various kinds of tokens (terminals) that the parser
+** understands.
+**
+** Each symbol here is a terminal symbol in the grammar.
+*/
+/* Make sure the INTERFACE macro is defined.
+*/
+#ifndef INTERFACE
+# define INTERFACE 1
+#endif
+/* The next thing included is series of defines which control
+** various aspects of the generated parser.
+** YYCODETYPE is the data type used for storing terminal
+** and nonterminal numbers. "unsigned char" is
+** used if there are fewer than 250 terminals
+** and nonterminals. "int" is used otherwise.
+** YYNOCODE is a number of type YYCODETYPE which corresponds
+** to no legal terminal or nonterminal number. This
+** number is used to fill in empty slots of the hash
+** table.
+** YYFALLBACK If defined, this indicates that one or more tokens
+** have fall-back values which should be used if the
+** original value of the token will not parse.
+** YYACTIONTYPE is the data type used for storing terminal
+** and nonterminal numbers. "unsigned char" is
+** used if there are fewer than 250 rules and
+** states combined. "int" is used otherwise.
+** sqliteParserTOKENTYPE is the data type used for minor tokens given
+** directly to the parser from the tokenizer.
+** YYMINORTYPE is the data type used for all minor tokens.
+** This is typically a union of many types, one of
+** which is sqliteParserTOKENTYPE. The entry in the union
+** for base tokens is called "yy0".
+** YYSTACKDEPTH is the maximum depth of the parser's stack.
+** sqliteParserARG_SDECL A static variable declaration for the %extra_argument
+** sqliteParserARG_PDECL A parameter declaration for the %extra_argument
+** sqliteParserARG_STORE Code to store %extra_argument into yypParser
+** sqliteParserARG_FETCH Code to extract %extra_argument from yypParser
+** YYNSTATE the combined number of states.
+** YYNRULE the number of rules in the grammar
+** YYERRORSYMBOL is the code number of the error symbol. If not
+** defined, then do no error processing.
+*/
+/*  */
+#define YYCODETYPE unsigned char
+#define YYNOCODE 221
+#define YYACTIONTYPE unsigned short int
+#define sqliteParserTOKENTYPE Token
+typedef union {
+ sqliteParserTOKENTYPE yy0;
+ TriggerStep * yy19;
+ struct LimitVal yy124;
+ Select* yy179;
+ Expr * yy182;
+ Expr* yy242;
+ struct TrigEvent yy290;
+ Token yy298;
+ SrcList* yy307;
+ IdList* yy320;
+ ExprList* yy322;
+ int yy372;
+ struct {int value; int mask;} yy407;
+ int yy441;
+} YYMINORTYPE;
+#define YYSTACKDEPTH 100
+#define sqliteParserARG_SDECL Parse *pParse;
+#define sqliteParserARG_PDECL ,Parse *pParse
+#define sqliteParserARG_FETCH Parse *pParse = yypParser->pParse
+#define sqliteParserARG_STORE yypParser->pParse = pParse
+#define YYNSTATE 563
+#define YYNRULE 293
+#define YYERRORSYMBOL 131
+#define YYERRSYMDT yy441
+#define YYFALLBACK 1
+#define YY_NO_ACTION (YYNSTATE+YYNRULE+2)
+#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1)
+#define YY_ERROR_ACTION (YYNSTATE+YYNRULE)
+
+/* Next are that tables used to determine what action to take based on the
+** current state and lookahead token. These tables are used to implement
+** functions that take a state number and lookahead value and return an
+** action integer.
+**
+** Suppose the action integer is N. Then the action is determined as
+** follows
+**
+** 0 <= N < YYNSTATE Shift N. That is, push the lookahead
+** token onto the stack and goto state N.
+**
+** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE.
+**
+** N == YYNSTATE+YYNRULE A syntax error has occurred.
+**
+** N == YYNSTATE+YYNRULE+1 The parser accepts its input.
+**
+** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused
+** slots in the yy_action[] table.
+**
+** The action table is constructed as a single large table named yy_action[].
+** Given state S and lookahead X, the action is computed as
+**
+** yy_action[ yy_shift_ofst[S] + X ]
+**
+** If the index value yy_shift_ofst[S]+X is out of range or if the value
+** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S]
+** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table
+** and that yy_default[S] should be used instead.
+**
+** The formula above is for computing the action when the lookahead is
+** a terminal symbol. If the lookahead is a non-terminal (as occurs after
+** a reduce action) then the yy_reduce_ofst[] array is used in place of
+** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
+** YY_SHIFT_USE_DFLT.
+**
+** The following are the tables generated in this section:
+**
+** yy_action[] A single table containing all actions.
+** yy_lookahead[] A table containing the lookahead for each entry in
+** yy_action. Used to detect hash collisions.
+** yy_shift_ofst[] For each state, the offset into yy_action for
+** shifting terminals.
+** yy_reduce_ofst[] For each state, the offset into yy_action for
+** shifting non-terminals after a reduce.
+** yy_default[] Default action for each state.
+*/
+static YYACTIONTYPE yy_action[] = {
+ /* 0 */ 264, 5, 262, 119, 123, 117, 121, 129, 131, 133,
+ /* 10 */ 135, 144, 146, 148, 150, 152, 154, 568, 106, 106,
+ /* 20 */ 143, 857, 1, 562, 3, 142, 129, 131, 133, 135,
+ /* 30 */ 144, 146, 148, 150, 152, 154, 174, 103, 8, 115,
+ /* 40 */ 104, 139, 127, 125, 156, 161, 157, 162, 166, 119,
+ /* 50 */ 123, 117, 121, 129, 131, 133, 135, 144, 146, 148,
+ /* 60 */ 150, 152, 154, 31, 361, 392, 263, 143, 363, 369,
+ /* 70 */ 374, 97, 142, 148, 150, 152, 154, 68, 75, 377,
+ /* 80 */ 167, 64, 218, 46, 20, 289, 115, 104, 139, 127,
+ /* 90 */ 125, 156, 161, 157, 162, 166, 119, 123, 117, 121,
+ /* 100 */ 129, 131, 133, 135, 144, 146, 148, 150, 152, 154,
+ /* 110 */ 193, 41, 336, 563, 44, 54, 60, 62, 308, 331,
+ /* 120 */ 175, 20, 560, 561, 572, 333, 640, 18, 359, 144,
+ /* 130 */ 146, 148, 150, 152, 154, 143, 181, 179, 303, 18,
+ /* 140 */ 142, 84, 86, 20, 177, 66, 67, 111, 21, 22,
+ /* 150 */ 112, 105, 83, 792, 115, 104, 139, 127, 125, 156,
+ /* 160 */ 161, 157, 162, 166, 119, 123, 117, 121, 129, 131,
+ /* 170 */ 133, 135, 144, 146, 148, 150, 152, 154, 790, 560,
+ /* 180 */ 561, 46, 13, 113, 183, 21, 22, 534, 361, 2,
+ /* 190 */ 3, 14, 363, 369, 374, 338, 361, 690, 544, 542,
+ /* 200 */ 363, 369, 374, 377, 836, 143, 15, 21, 22, 16,
+ /* 210 */ 142, 377, 44, 54, 60, 62, 308, 331, 396, 535,
+ /* 220 */ 17, 9, 191, 333, 115, 104, 139, 127, 125, 156,
+ /* 230 */ 161, 157, 162, 166, 119, 123, 117, 121, 129, 131,
+ /* 240 */ 133, 135, 144, 146, 148, 150, 152, 154, 571, 230,
+ /* 250 */ 340, 343, 143, 20, 536, 537, 538, 142, 402, 337,
+ /* 260 */ 398, 339, 357, 68, 346, 347, 32, 64, 266, 391,
+ /* 270 */ 37, 115, 104, 139, 127, 125, 156, 161, 157, 162,
+ /* 280 */ 166, 119, 123, 117, 121, 129, 131, 133, 135, 144,
+ /* 290 */ 146, 148, 150, 152, 154, 839, 193, 651, 291, 298,
+ /* 300 */ 300, 221, 357, 43, 173, 689, 175, 251, 330, 36,
+ /* 310 */ 37, 106, 232, 40, 335, 58, 137, 21, 22, 330,
+ /* 320 */ 411, 143, 181, 179, 47, 59, 142, 358, 390, 174,
+ /* 330 */ 177, 66, 67, 111, 448, 49, 112, 105, 583, 213,
+ /* 340 */ 115, 104, 139, 127, 125, 156, 161, 157, 162, 166,
+ /* 350 */ 119, 123, 117, 121, 129, 131, 133, 135, 144, 146,
+ /* 360 */ 148, 150, 152, 154, 306, 301, 106, 249, 259, 113,
+ /* 370 */ 183, 793, 70, 253, 281, 219, 20, 106, 20, 11,
+ /* 380 */ 106, 482, 454, 444, 299, 143, 169, 10, 171, 172,
+ /* 390 */ 142, 169, 73, 171, 172, 103, 688, 69, 174, 169,
+ /* 400 */ 252, 171, 172, 12, 115, 104, 139, 127, 125, 156,
+ /* 410 */ 161, 157, 162, 166, 119, 123, 117, 121, 129, 131,
+ /* 420 */ 133, 135, 144, 146, 148, 150, 152, 154, 95, 237,
+ /* 430 */ 313, 20, 143, 295, 244, 424, 169, 142, 171, 172,
+ /* 440 */ 21, 22, 21, 22, 219, 386, 316, 323, 325, 837,
+ /* 450 */ 19, 115, 104, 139, 127, 125, 156, 161, 157, 162,
+ /* 460 */ 166, 119, 123, 117, 121, 129, 131, 133, 135, 144,
+ /* 470 */ 146, 148, 150, 152, 154, 106, 661, 20, 264, 143,
+ /* 480 */ 262, 844, 315, 169, 142, 171, 172, 333, 38, 842,
+ /* 490 */ 10, 356, 348, 184, 421, 21, 22, 282, 115, 104,
+ /* 500 */ 139, 127, 125, 156, 161, 157, 162, 166, 119, 123,
+ /* 510 */ 117, 121, 129, 131, 133, 135, 144, 146, 148, 150,
+ /* 520 */ 152, 154, 69, 254, 262, 251, 143, 639, 663, 35,
+ /* 530 */ 65, 142, 726, 313, 283, 259, 185, 417, 419, 418,
+ /* 540 */ 284, 21, 22, 690, 263, 115, 104, 139, 127, 125,
+ /* 550 */ 156, 161, 157, 162, 166, 119, 123, 117, 121, 129,
+ /* 560 */ 131, 133, 135, 144, 146, 148, 150, 152, 154, 256,
+ /* 570 */ 20, 791, 424, 143, 169, 52, 171, 172, 142, 169,
+ /* 580 */ 24, 171, 172, 247, 53, 315, 26, 169, 263, 171,
+ /* 590 */ 172, 253, 115, 164, 139, 127, 125, 156, 161, 157,
+ /* 600 */ 162, 166, 119, 123, 117, 121, 129, 131, 133, 135,
+ /* 610 */ 144, 146, 148, 150, 152, 154, 426, 349, 252, 425,
+ /* 620 */ 143, 262, 575, 297, 591, 142, 169, 296, 171, 172,
+ /* 630 */ 169, 471, 171, 172, 21, 22, 427, 221, 91, 115,
+ /* 640 */ 227, 139, 127, 125, 156, 161, 157, 162, 166, 119,
+ /* 650 */ 123, 117, 121, 129, 131, 133, 135, 144, 146, 148,
+ /* 660 */ 150, 152, 154, 388, 312, 106, 89, 143, 720, 376,
+ /* 670 */ 387, 170, 142, 487, 666, 248, 320, 216, 319, 217,
+ /* 680 */ 28, 459, 30, 305, 189, 263, 209, 104, 139, 127,
+ /* 690 */ 125, 156, 161, 157, 162, 166, 119, 123, 117, 121,
+ /* 700 */ 129, 131, 133, 135, 144, 146, 148, 150, 152, 154,
+ /* 710 */ 106, 106, 809, 494, 143, 489, 106, 816, 33, 142,
+ /* 720 */ 395, 234, 273, 217, 274, 420, 20, 545, 114, 481,
+ /* 730 */ 137, 429, 576, 321, 116, 139, 127, 125, 156, 161,
+ /* 740 */ 157, 162, 166, 119, 123, 117, 121, 129, 131, 133,
+ /* 750 */ 135, 144, 146, 148, 150, 152, 154, 7, 322, 23,
+ /* 760 */ 25, 27, 394, 68, 415, 416, 10, 64, 197, 477,
+ /* 770 */ 577, 533, 266, 548, 578, 831, 276, 201, 520, 4,
+ /* 780 */ 6, 245, 430, 557, 29, 266, 491, 106, 441, 497,
+ /* 790 */ 21, 22, 205, 168, 443, 195, 193, 531, 276, 448,
+ /* 800 */ 276, 808, 267, 272, 529, 174, 175, 318, 440, 341,
+ /* 810 */ 344, 106, 342, 345, 69, 286, 68, 582, 69, 69,
+ /* 820 */ 64, 540, 181, 179, 541, 328, 302, 366, 217, 118,
+ /* 830 */ 177, 66, 67, 111, 34, 143, 112, 105, 445, 510,
+ /* 840 */ 142, 215, 278, 800, 467, 276, 498, 503, 444, 193,
+ /* 850 */ 106, 219, 486, 443, 42, 73, 231, 73, 45, 175,
+ /* 860 */ 449, 39, 225, 229, 278, 451, 278, 68, 174, 113,
+ /* 870 */ 183, 64, 371, 55, 106, 181, 179, 292, 69, 276,
+ /* 880 */ 276, 69, 48, 177, 66, 67, 111, 224, 276, 112,
+ /* 890 */ 105, 106, 481, 393, 106, 106, 63, 106, 106, 106,
+ /* 900 */ 193, 653, 106, 467, 233, 51, 380, 437, 526, 120,
+ /* 910 */ 175, 278, 122, 124, 219, 126, 128, 130, 69, 453,
+ /* 920 */ 132, 106, 113, 183, 451, 106, 181, 179, 159, 106,
+ /* 930 */ 106, 106, 518, 106, 177, 66, 67, 111, 106, 134,
+ /* 940 */ 112, 105, 422, 136, 106, 278, 278, 138, 141, 145,
+ /* 950 */ 720, 147, 106, 329, 275, 274, 149, 106, 852, 158,
+ /* 960 */ 106, 106, 151, 106, 106, 351, 106, 352, 106, 464,
+ /* 970 */ 153, 106, 106, 113, 183, 155, 106, 106, 163, 165,
+ /* 980 */ 106, 176, 178, 106, 180, 106, 182, 106, 401, 190,
+ /* 990 */ 192, 106, 106, 293, 210, 212, 106, 367, 214, 274,
+ /* 1000 */ 372, 226, 274, 228, 381, 241, 274, 106, 106, 246,
+ /* 1010 */ 280, 290, 106, 69, 375, 438, 472, 274, 422, 832,
+ /* 1020 */ 106, 73, 474, 73, 458, 412, 462, 480, 464, 478,
+ /* 1030 */ 466, 690, 515, 519, 475, 478, 516, 50, 479, 221,
+ /* 1040 */ 690, 221, 56, 57, 61, 592, 71, 69, 593, 73,
+ /* 1050 */ 72, 74, 245, 242, 93, 81, 76, 69, 77, 240,
+ /* 1060 */ 78, 82, 79, 245, 85, 554, 80, 88, 87, 90,
+ /* 1070 */ 92, 94, 96, 102, 100, 99, 101, 107, 109, 160,
+ /* 1080 */ 154, 667, 98, 508, 108, 668, 110, 220, 211, 669,
+ /* 1090 */ 137, 140, 188, 194, 186, 196, 187, 199, 198, 200,
+ /* 1100 */ 203, 204, 202, 207, 206, 208, 221, 223, 222, 235,
+ /* 1110 */ 236, 239, 238, 217, 250, 258, 243, 261, 279, 270,
+ /* 1120 */ 271, 255, 257, 260, 269, 265, 285, 294, 277, 268,
+ /* 1130 */ 287, 304, 309, 307, 327, 312, 288, 354, 389, 314,
+ /* 1140 */ 364, 365, 370, 378, 379, 382, 310, 49, 311, 362,
+ /* 1150 */ 368, 373, 317, 324, 326, 332, 350, 355, 383, 400,
+ /* 1160 */ 353, 397, 399, 403, 404, 334, 405, 406, 407, 384,
+ /* 1170 */ 413, 409, 824, 414, 360, 385, 829, 423, 410, 431,
+ /* 1180 */ 428, 432, 830, 433, 434, 436, 439, 798, 799, 447,
+ /* 1190 */ 442, 450, 727, 728, 446, 823, 452, 838, 455, 445,
+ /* 1200 */ 456, 457, 408, 435, 460, 461, 463, 840, 465, 468,
+ /* 1210 */ 470, 469, 476, 841, 483, 485, 843, 660, 662, 493,
+ /* 1220 */ 806, 496, 473, 849, 499, 719, 501, 484, 488, 490,
+ /* 1230 */ 492, 502, 504, 495, 500, 507, 505, 506, 509, 722,
+ /* 1240 */ 513, 511, 512, 514, 517, 725, 528, 522, 524, 525,
+ /* 1250 */ 527, 523, 807, 530, 810, 532, 811, 812, 813, 814,
+ /* 1260 */ 817, 819, 539, 820, 818, 815, 521, 543, 546, 552,
+ /* 1270 */ 556, 550, 850, 547, 549, 851, 555, 558, 551, 855,
+ /* 1280 */ 553, 559,
+};
+static YYCODETYPE yy_lookahead[] = {
+ /* 0 */ 21, 9, 23, 70, 71, 72, 73, 74, 75, 76,
+ /* 10 */ 77, 78, 79, 80, 81, 82, 83, 9, 140, 140,
+ /* 20 */ 41, 132, 133, 134, 135, 46, 74, 75, 76, 77,
+ /* 30 */ 78, 79, 80, 81, 82, 83, 158, 158, 138, 60,
+ /* 40 */ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
+ /* 50 */ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
+ /* 60 */ 81, 82, 83, 19, 90, 21, 87, 41, 94, 95,
+ /* 70 */ 96, 192, 46, 80, 81, 82, 83, 19, 174, 105,
+ /* 80 */ 19, 23, 204, 62, 23, 181, 60, 61, 62, 63,
+ /* 90 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
+ /* 100 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
+ /* 110 */ 52, 90, 91, 0, 93, 94, 95, 96, 97, 98,
+ /* 120 */ 62, 23, 9, 10, 9, 104, 20, 12, 22, 78,
+ /* 130 */ 79, 80, 81, 82, 83, 41, 78, 79, 80, 12,
+ /* 140 */ 46, 78, 79, 23, 86, 87, 88, 89, 87, 88,
+ /* 150 */ 92, 93, 89, 127, 60, 61, 62, 63, 64, 65,
+ /* 160 */ 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
+ /* 170 */ 76, 77, 78, 79, 80, 81, 82, 83, 14, 9,
+ /* 180 */ 10, 62, 15, 125, 126, 87, 88, 140, 90, 134,
+ /* 190 */ 135, 24, 94, 95, 96, 23, 90, 9, 78, 79,
+ /* 200 */ 94, 95, 96, 105, 11, 41, 39, 87, 88, 42,
+ /* 210 */ 46, 105, 93, 94, 95, 96, 97, 98, 17, 99,
+ /* 220 */ 53, 139, 128, 104, 60, 61, 62, 63, 64, 65,
+ /* 230 */ 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
+ /* 240 */ 76, 77, 78, 79, 80, 81, 82, 83, 9, 19,
+ /* 250 */ 78, 79, 41, 23, 207, 208, 209, 46, 57, 87,
+ /* 260 */ 59, 89, 140, 19, 92, 93, 144, 23, 152, 147,
+ /* 270 */ 148, 60, 61, 62, 63, 64, 65, 66, 67, 68,
+ /* 280 */ 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
+ /* 290 */ 79, 80, 81, 82, 83, 14, 52, 9, 182, 20,
+ /* 300 */ 20, 113, 140, 156, 20, 20, 62, 22, 161, 147,
+ /* 310 */ 148, 140, 20, 155, 156, 26, 200, 87, 88, 161,
+ /* 320 */ 127, 41, 78, 79, 93, 36, 46, 165, 166, 158,
+ /* 330 */ 86, 87, 88, 89, 53, 104, 92, 93, 9, 128,
+ /* 340 */ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
+ /* 350 */ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+ /* 360 */ 80, 81, 82, 83, 20, 194, 140, 183, 184, 125,
+ /* 370 */ 126, 127, 146, 88, 19, 204, 23, 140, 23, 31,
+ /* 380 */ 140, 100, 101, 102, 158, 41, 107, 99, 109, 110,
+ /* 390 */ 46, 107, 111, 109, 110, 158, 20, 171, 158, 107,
+ /* 400 */ 115, 109, 110, 170, 60, 61, 62, 63, 64, 65,
+ /* 410 */ 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
+ /* 420 */ 76, 77, 78, 79, 80, 81, 82, 83, 191, 192,
+ /* 430 */ 47, 23, 41, 80, 194, 140, 107, 46, 109, 110,
+ /* 440 */ 87, 88, 87, 88, 204, 62, 100, 101, 102, 11,
+ /* 450 */ 140, 60, 61, 62, 63, 64, 65, 66, 67, 68,
+ /* 460 */ 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
+ /* 470 */ 79, 80, 81, 82, 83, 140, 9, 23, 21, 41,
+ /* 480 */ 23, 9, 99, 107, 46, 109, 110, 104, 149, 9,
+ /* 490 */ 99, 152, 153, 158, 199, 87, 88, 146, 60, 61,
+ /* 500 */ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
+ /* 510 */ 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
+ /* 520 */ 82, 83, 171, 115, 23, 22, 41, 20, 9, 22,
+ /* 530 */ 19, 46, 9, 47, 183, 184, 201, 100, 101, 102,
+ /* 540 */ 189, 87, 88, 19, 87, 60, 61, 62, 63, 64,
+ /* 550 */ 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
+ /* 560 */ 75, 76, 77, 78, 79, 80, 81, 82, 83, 115,
+ /* 570 */ 23, 14, 140, 41, 107, 34, 109, 110, 46, 107,
+ /* 580 */ 138, 109, 110, 22, 43, 99, 138, 107, 87, 109,
+ /* 590 */ 110, 88, 60, 61, 62, 63, 64, 65, 66, 67,
+ /* 600 */ 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
+ /* 610 */ 78, 79, 80, 81, 82, 83, 25, 19, 115, 28,
+ /* 620 */ 41, 23, 9, 108, 113, 46, 107, 112, 109, 110,
+ /* 630 */ 107, 199, 109, 110, 87, 88, 45, 113, 22, 60,
+ /* 640 */ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
+ /* 650 */ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
+ /* 660 */ 81, 82, 83, 161, 162, 140, 50, 41, 9, 139,
+ /* 670 */ 168, 108, 46, 17, 111, 114, 91, 20, 93, 22,
+ /* 680 */ 138, 22, 142, 158, 127, 87, 129, 61, 62, 63,
+ /* 690 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
+ /* 700 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
+ /* 710 */ 140, 140, 9, 57, 41, 59, 140, 9, 145, 46,
+ /* 720 */ 143, 20, 20, 22, 22, 49, 23, 19, 158, 158,
+ /* 730 */ 200, 18, 9, 29, 158, 62, 63, 64, 65, 66,
+ /* 740 */ 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ /* 750 */ 77, 78, 79, 80, 81, 82, 83, 11, 54, 13,
+ /* 760 */ 14, 15, 16, 19, 55, 56, 99, 23, 15, 198,
+ /* 770 */ 9, 63, 152, 27, 9, 99, 140, 24, 32, 136,
+ /* 780 */ 137, 122, 205, 37, 141, 152, 130, 140, 211, 146,
+ /* 790 */ 87, 88, 39, 146, 146, 42, 52, 51, 140, 53,
+ /* 800 */ 140, 9, 182, 167, 58, 158, 62, 103, 95, 89,
+ /* 810 */ 89, 140, 92, 92, 171, 182, 19, 9, 171, 171,
+ /* 820 */ 23, 89, 78, 79, 92, 167, 20, 167, 22, 158,
+ /* 830 */ 86, 87, 88, 89, 20, 41, 92, 93, 60, 196,
+ /* 840 */ 46, 194, 206, 130, 196, 140, 100, 101, 102, 52,
+ /* 850 */ 140, 204, 106, 146, 140, 111, 146, 111, 139, 62,
+ /* 860 */ 212, 150, 68, 69, 206, 217, 206, 19, 158, 125,
+ /* 870 */ 126, 23, 167, 48, 140, 78, 79, 80, 171, 140,
+ /* 880 */ 140, 171, 139, 86, 87, 88, 89, 93, 140, 92,
+ /* 890 */ 93, 140, 158, 146, 140, 140, 19, 140, 140, 140,
+ /* 900 */ 52, 123, 140, 196, 194, 44, 167, 167, 116, 158,
+ /* 910 */ 62, 206, 158, 158, 204, 158, 158, 158, 171, 212,
+ /* 920 */ 158, 140, 125, 126, 217, 140, 78, 79, 62, 140,
+ /* 930 */ 140, 140, 198, 140, 86, 87, 88, 89, 140, 158,
+ /* 940 */ 92, 93, 22, 158, 140, 206, 206, 158, 158, 158,
+ /* 950 */ 9, 158, 140, 20, 206, 22, 158, 140, 9, 93,
+ /* 960 */ 140, 140, 158, 140, 140, 20, 140, 22, 140, 140,
+ /* 970 */ 158, 140, 140, 125, 126, 158, 140, 140, 158, 158,
+ /* 980 */ 140, 158, 158, 140, 158, 140, 158, 140, 146, 158,
+ /* 990 */ 158, 140, 140, 140, 158, 158, 140, 20, 158, 22,
+ /* 1000 */ 20, 158, 22, 158, 20, 158, 22, 140, 140, 158,
+ /* 1010 */ 158, 158, 140, 171, 158, 20, 20, 22, 22, 99,
+ /* 1020 */ 140, 111, 146, 111, 195, 158, 158, 20, 140, 22,
+ /* 1030 */ 158, 103, 146, 20, 124, 22, 124, 164, 158, 113,
+ /* 1040 */ 114, 113, 157, 139, 139, 113, 172, 171, 113, 111,
+ /* 1050 */ 171, 173, 122, 119, 117, 180, 175, 171, 176, 120,
+ /* 1060 */ 177, 121, 178, 122, 89, 116, 179, 154, 89, 154,
+ /* 1070 */ 154, 118, 22, 151, 98, 157, 23, 113, 113, 93,
+ /* 1080 */ 83, 111, 193, 195, 140, 111, 140, 140, 127, 111,
+ /* 1090 */ 200, 200, 14, 19, 202, 20, 203, 140, 22, 20,
+ /* 1100 */ 140, 20, 22, 140, 22, 20, 113, 186, 140, 140,
+ /* 1110 */ 186, 157, 193, 22, 185, 115, 118, 186, 99, 116,
+ /* 1120 */ 19, 140, 140, 140, 188, 140, 20, 113, 157, 187,
+ /* 1130 */ 187, 20, 140, 139, 19, 162, 188, 20, 166, 140,
+ /* 1140 */ 48, 19, 19, 48, 19, 97, 159, 104, 160, 140,
+ /* 1150 */ 139, 139, 163, 163, 163, 151, 154, 152, 140, 21,
+ /* 1160 */ 154, 140, 140, 140, 213, 164, 214, 99, 140, 159,
+ /* 1170 */ 40, 215, 11, 38, 166, 160, 99, 140, 216, 130,
+ /* 1180 */ 49, 140, 99, 99, 140, 19, 139, 9, 130, 169,
+ /* 1190 */ 11, 14, 123, 123, 170, 9, 9, 14, 169, 60,
+ /* 1200 */ 140, 103, 186, 186, 140, 63, 176, 9, 63, 123,
+ /* 1210 */ 19, 140, 19, 9, 114, 176, 9, 9, 9, 186,
+ /* 1220 */ 9, 186, 197, 9, 114, 9, 186, 140, 140, 140,
+ /* 1230 */ 140, 176, 169, 140, 140, 103, 140, 186, 176, 9,
+ /* 1240 */ 186, 123, 140, 197, 19, 9, 87, 140, 114, 140,
+ /* 1250 */ 35, 186, 9, 140, 9, 152, 9, 9, 9, 9,
+ /* 1260 */ 9, 9, 210, 9, 9, 9, 169, 210, 140, 140,
+ /* 1270 */ 33, 152, 9, 20, 218, 9, 152, 218, 21, 9,
+ /* 1280 */ 219, 140,
+};
+#define YY_SHIFT_USE_DFLT (-68)
+static short yy_shift_ofst[] = {
+ /* 0 */ 170, 113, -68, 746, -8, -68, 8, 127, 288, 239,
+ /* 10 */ 348, 167, -68, -68, -68, -68, -68, -68, 547, -68,
+ /* 20 */ -68, -68, -68, 115, 613, 115, 723, 115, 761, 44,
+ /* 30 */ 765, 547, 507, 814, 808, 98, -68, 501, -68, 21,
+ /* 40 */ -68, 547, 119, -68, 667, -68, 231, 667, -68, 861,
+ /* 50 */ -68, 541, -68, -68, 825, 289, 667, -68, -68, -68,
+ /* 60 */ 667, -68, 877, 848, 511, 58, 932, 935, 744, -68,
+ /* 70 */ 279, 938, -68, 515, -68, 561, 930, 934, 939, 937,
+ /* 80 */ 940, -68, 63, -68, 975, -68, 979, -68, 616, 63,
+ /* 90 */ -68, 63, -68, 953, 848, 1050, 848, 976, 289, -68,
+ /* 100 */ 1053, -68, -68, 485, 848, -68, 964, 547, 965, 547,
+ /* 110 */ -68, -68, -68, -68, 673, 848, 626, 848, -48, 848,
+ /* 120 */ -48, 848, -48, 848, -48, 848, -67, 848, -67, 848,
+ /* 130 */ 51, 848, 51, 848, 51, 848, 51, 848, -67, 794,
+ /* 140 */ 848, -67, -68, -68, 848, -7, 848, -7, 848, 997,
+ /* 150 */ 848, 997, 848, 997, 848, -68, -68, 866, -68, 986,
+ /* 160 */ -68, -68, 848, 532, 848, -67, 61, 744, 284, 563,
+ /* 170 */ 970, 974, 978, -68, 485, 848, 673, 848, -68, 848,
+ /* 180 */ -68, 848, -68, 244, 26, 961, 557, 1078, -68, 848,
+ /* 190 */ 94, 848, 485, 1074, 753, 1075, -68, 1076, 547, 1079,
+ /* 200 */ -68, 1080, 547, 1081, -68, 1082, 547, 1085, -68, 848,
+ /* 210 */ 164, 848, 211, 848, 485, 657, -68, 848, -68, -68,
+ /* 220 */ 993, 547, -68, -68, -68, 848, 579, 848, 673, 230,
+ /* 230 */ 744, 292, -68, 701, -68, 993, -68, 976, 289, -68,
+ /* 240 */ 848, 485, 998, 848, 1091, 848, 485, -68, -68, 503,
+ /* 250 */ -68, -68, -68, 408, -68, 454, -68, 1000, -68, 355,
+ /* 260 */ 993, 457, -68, -68, 547, -68, -68, 1019, 1003, -68,
+ /* 270 */ 1101, 547, 702, -68, 547, -68, 289, -68, -68, 848,
+ /* 280 */ 485, 938, 376, 285, 1106, 457, 1019, 1003, -68, 797,
+ /* 290 */ -21, -68, -68, 1014, 353, -68, -68, -68, -68, 280,
+ /* 300 */ -68, 806, -68, 1111, -68, 344, 667, -68, 547, 1115,
+ /* 310 */ -68, 486, -68, 547, -68, 346, 704, -68, 585, -68,
+ /* 320 */ -68, -68, -68, 704, -68, 704, -68, 547, 933, -68,
+ /* 330 */ -68, 1053, -68, 861, -68, -68, 172, -68, -68, -68,
+ /* 340 */ 720, -68, -68, 721, -68, -68, -68, -68, 598, 63,
+ /* 350 */ 945, -68, 63, 1117, -68, -68, -68, -68, 106, -26,
+ /* 360 */ -68, 547, -68, 1092, 1122, 547, 977, 667, -68, 1123,
+ /* 370 */ 547, 980, 667, -68, 848, 391, -68, 1095, 1125, 547,
+ /* 380 */ 984, 1048, 547, 1115, -68, 383, 1043, -68, -68, -68,
+ /* 390 */ -68, -68, 938, 329, 713, 201, 547, -68, 547, 1138,
+ /* 400 */ 938, 467, 547, 591, 437, 1068, 547, 993, 1130, 193,
+ /* 410 */ 1161, 848, 438, 1135, 709, -68, -68, 1077, 1083, 676,
+ /* 420 */ 547, 920, 547, -68, -68, -68, -68, 1131, -68, -68,
+ /* 430 */ 1049, 547, 1084, 547, 524, 1166, 547, 995, 288, 1178,
+ /* 440 */ 1058, 1179, 281, 472, 778, 167, -68, 1069, 1070, 1177,
+ /* 450 */ 1186, 1187, 281, 1183, 1139, 547, 1098, 547, 659, 547,
+ /* 460 */ 1142, 848, 485, 1198, 1145, 848, 485, 1086, 547, 1191,
+ /* 470 */ 547, 996, -68, 910, 480, 1193, 848, 1007, 848, 485,
+ /* 480 */ 1204, 485, 1100, 547, 941, 1207, 656, 547, 1208, 547,
+ /* 490 */ 1209, 547, 188, 1211, 547, 188, 1214, 519, 1110, 547,
+ /* 500 */ 993, 941, 1216, 1139, 547, 928, 1132, 547, 659, 1230,
+ /* 510 */ 1118, 547, 993, 1191, 912, 523, 1225, 848, 1013, 1236,
+ /* 520 */ 1139, 547, 926, 1134, 547, 792, 1215, 1159, 1243, 703,
+ /* 530 */ 1245, 501, 708, 120, 1247, 1248, 1249, 1250, 732, 1251,
+ /* 540 */ 1252, 1254, 732, 1255, -68, 547, 1253, 1256, 1237, 501,
+ /* 550 */ 1257, 547, 949, 1263, 501, 1266, -68, 1237, 547, 1270,
+ /* 560 */ -68, -68, -68,
+};
+#define YY_REDUCE_USE_DFLT (-123)
+static short yy_reduce_ofst[] = {
+ /* 0 */ -111, 55, -123, 643, -123, -123, -123, -100, 82, -123,
+ /* 10 */ -123, 233, -123, -123, -123, -123, -123, -123, 310, -123,
+ /* 20 */ -123, -123, -123, 442, -123, 448, -123, 542, -123, 540,
+ /* 30 */ -123, 122, 573, -123, -123, 162, -123, 339, 711, 158,
+ /* 40 */ -123, 714, 147, -123, 719, -123, -123, 743, -123, 873,
+ /* 50 */ -123, -123, -123, -123, -123, 885, 904, -123, -123, -123,
+ /* 60 */ 905, -123, -123, 525, -123, 171, -123, -123, 226, -123,
+ /* 70 */ 874, 879, -123, 878, -96, 881, 882, 883, 884, 887,
+ /* 80 */ 875, -123, 913, -123, -123, -123, -123, -123, -123, 915,
+ /* 90 */ -123, 916, -123, -123, 237, -123, -121, 889, 918, -123,
+ /* 100 */ 922, -123, -123, 890, 570, -123, -123, 944, -123, 946,
+ /* 110 */ -123, -123, -123, -123, 890, 576, 890, 671, 890, 751,
+ /* 120 */ 890, 754, 890, 755, 890, 757, 890, 758, 890, 759,
+ /* 130 */ 890, 762, 890, 781, 890, 785, 890, 789, 890, 891,
+ /* 140 */ 790, 890, -123, -123, 791, 890, 793, 890, 798, 890,
+ /* 150 */ 804, 890, 812, 890, 817, 890, -123, -123, -123, -123,
+ /* 160 */ -123, -123, 820, 890, 821, 890, 947, 647, 874, -123,
+ /* 170 */ -123, -123, -123, -123, 890, 823, 890, 824, 890, 826,
+ /* 180 */ 890, 828, 890, 335, 890, 892, 893, -123, -123, 831,
+ /* 190 */ 890, 832, 890, -123, -123, -123, -123, -123, 957, -123,
+ /* 200 */ -123, -123, 960, -123, -123, -123, 963, -123, -123, 836,
+ /* 210 */ 890, 837, 890, 840, 890, -123, -123, -122, -123, -123,
+ /* 220 */ 921, 968, -123, -123, -123, 843, 890, 845, 890, 969,
+ /* 230 */ 710, 874, -123, -123, -123, 924, -123, 919, 954, -123,
+ /* 240 */ 847, 890, -123, 240, -123, 851, 890, -123, 184, 929,
+ /* 250 */ -123, -123, -123, 981, -123, 982, -123, -123, -123, 983,
+ /* 260 */ 931, 620, -123, -123, 985, -123, -123, 942, 936, -123,
+ /* 270 */ -123, 636, -123, -123, 748, -123, 971, -123, -123, 852,
+ /* 280 */ 890, 351, 874, 929, -123, 633, 943, 948, -123, 853,
+ /* 290 */ 116, -123, -123, -123, 944, -123, -123, -123, -123, 890,
+ /* 300 */ -123, -123, -123, -123, -123, 890, 994, -123, 992, 987,
+ /* 310 */ 988, 973, -123, 999, -123, -123, 989, -123, -123, -123,
+ /* 320 */ -123, -123, -123, 990, -123, 991, -123, 658, -123, -123,
+ /* 330 */ -123, 1004, -123, 1001, -123, -123, -123, -123, -123, -123,
+ /* 340 */ -123, -123, -123, -123, -123, -123, -123, -123, 1005, 1002,
+ /* 350 */ -123, -123, 1006, -123, -123, -123, -123, -123, 972, 1008,
+ /* 360 */ -123, 1009, -123, -123, -123, 660, -123, 1011, -123, -123,
+ /* 370 */ 705, -123, 1012, -123, 856, 530, -123, -123, -123, 739,
+ /* 380 */ -123, -123, 1018, 1010, 1015, 502, -123, -123, -123, -123,
+ /* 390 */ -123, -123, 747, 874, 577, -123, 1021, -123, 1022, -123,
+ /* 400 */ 842, 874, 1023, 951, 952, -123, 1028, 1016, 956, 962,
+ /* 410 */ -123, 867, 890, -123, -123, -123, -123, -123, -123, -123,
+ /* 420 */ 295, -123, 1037, -123, -123, -123, -123, -123, -123, -123,
+ /* 430 */ -123, 1041, -123, 1044, 1017, -123, 740, -123, 1047, -123,
+ /* 440 */ -123, -123, 648, 874, 1020, 1024, -123, -123, -123, -123,
+ /* 450 */ -123, -123, 707, -123, 1029, 1060, -123, 829, 1030, 1064,
+ /* 460 */ -123, 868, 890, -123, -123, 872, 890, -123, 1071, 1025,
+ /* 470 */ 432, -123, -123, 876, 874, -123, 571, -123, 880, 890,
+ /* 480 */ -123, 890, -123, 1087, 1039, -123, -123, 1088, -123, 1089,
+ /* 490 */ -123, 1090, 1033, -123, 1093, 1035, -123, 874, -123, 1094,
+ /* 500 */ 1040, 1055, -123, 1063, 1096, 1051, -123, 888, 1062, -123,
+ /* 510 */ -123, 1102, 1054, 1046, 886, 874, -123, 734, -123, -123,
+ /* 520 */ 1097, 1107, 1065, -123, 1109, -123, -123, -123, -123, 1113,
+ /* 530 */ -123, 1103, -123, 47, -123, -123, -123, -123, 1052, -123,
+ /* 540 */ -123, -123, 1057, -123, -123, 1128, -123, -123, 1056, 1119,
+ /* 550 */ -123, 1129, 1061, -123, 1124, -123, -123, 1059, 1141, -123,
+ /* 560 */ -123, -123, -123,
+};
+static YYACTIONTYPE yy_default[] = {
+ /* 0 */ 570, 570, 564, 856, 856, 566, 856, 572, 856, 856,
+ /* 10 */ 856, 856, 652, 655, 656, 657, 658, 659, 573, 574,
+ /* 20 */ 591, 592, 593, 856, 856, 856, 856, 856, 856, 856,
+ /* 30 */ 856, 856, 856, 856, 856, 856, 584, 594, 604, 586,
+ /* 40 */ 603, 856, 856, 605, 651, 616, 856, 651, 617, 636,
+ /* 50 */ 634, 856, 637, 638, 856, 708, 651, 618, 706, 707,
+ /* 60 */ 651, 619, 856, 856, 737, 797, 743, 738, 856, 664,
+ /* 70 */ 856, 856, 665, 673, 675, 682, 720, 711, 713, 701,
+ /* 80 */ 715, 670, 856, 600, 856, 601, 856, 602, 716, 856,
+ /* 90 */ 717, 856, 718, 856, 856, 702, 856, 709, 708, 703,
+ /* 100 */ 856, 588, 710, 705, 856, 736, 856, 856, 739, 856,
+ /* 110 */ 740, 741, 742, 744, 747, 856, 748, 856, 749, 856,
+ /* 120 */ 750, 856, 751, 856, 752, 856, 753, 856, 754, 856,
+ /* 130 */ 755, 856, 756, 856, 757, 856, 758, 856, 759, 856,
+ /* 140 */ 856, 760, 761, 762, 856, 763, 856, 764, 856, 765,
+ /* 150 */ 856, 766, 856, 767, 856, 768, 769, 856, 770, 856,
+ /* 160 */ 773, 771, 856, 856, 856, 779, 856, 797, 856, 856,
+ /* 170 */ 856, 856, 856, 782, 796, 856, 774, 856, 775, 856,
+ /* 180 */ 776, 856, 777, 856, 856, 856, 856, 856, 787, 856,
+ /* 190 */ 856, 856, 788, 856, 856, 856, 845, 856, 856, 856,
+ /* 200 */ 846, 856, 856, 856, 847, 856, 856, 856, 848, 856,
+ /* 210 */ 856, 856, 856, 856, 789, 856, 781, 797, 794, 795,
+ /* 220 */ 690, 856, 691, 785, 772, 856, 856, 856, 780, 856,
+ /* 230 */ 797, 856, 784, 856, 783, 690, 786, 709, 708, 704,
+ /* 240 */ 856, 714, 856, 797, 712, 856, 721, 674, 685, 683,
+ /* 250 */ 684, 692, 693, 856, 694, 856, 695, 856, 696, 856,
+ /* 260 */ 690, 681, 589, 590, 856, 679, 680, 698, 700, 686,
+ /* 270 */ 856, 856, 856, 699, 856, 803, 708, 805, 804, 856,
+ /* 280 */ 697, 685, 856, 856, 856, 681, 698, 700, 687, 856,
+ /* 290 */ 681, 676, 677, 856, 856, 678, 671, 672, 778, 856,
+ /* 300 */ 735, 856, 745, 856, 746, 856, 651, 620, 856, 801,
+ /* 310 */ 624, 621, 625, 856, 626, 856, 856, 627, 856, 630,
+ /* 320 */ 631, 632, 633, 856, 628, 856, 629, 856, 856, 802,
+ /* 330 */ 622, 856, 623, 636, 635, 606, 856, 607, 608, 609,
+ /* 340 */ 856, 610, 613, 856, 611, 614, 612, 615, 595, 856,
+ /* 350 */ 856, 596, 856, 856, 597, 599, 598, 587, 856, 856,
+ /* 360 */ 641, 856, 644, 856, 856, 856, 856, 651, 645, 856,
+ /* 370 */ 856, 856, 651, 646, 856, 651, 647, 856, 856, 856,
+ /* 380 */ 856, 856, 856, 801, 624, 649, 856, 648, 650, 642,
+ /* 390 */ 643, 585, 856, 856, 581, 856, 856, 579, 856, 856,
+ /* 400 */ 856, 856, 856, 828, 856, 856, 856, 690, 833, 856,
+ /* 410 */ 856, 856, 856, 856, 856, 834, 835, 856, 856, 856,
+ /* 420 */ 856, 856, 856, 733, 734, 825, 826, 856, 827, 580,
+ /* 430 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 856,
+ /* 440 */ 856, 856, 856, 856, 856, 856, 654, 856, 856, 856,
+ /* 450 */ 856, 856, 856, 856, 653, 856, 856, 856, 856, 856,
+ /* 460 */ 856, 856, 723, 856, 856, 856, 724, 856, 856, 731,
+ /* 470 */ 856, 856, 732, 856, 856, 856, 856, 856, 856, 729,
+ /* 480 */ 856, 730, 856, 856, 856, 856, 856, 856, 856, 856,
+ /* 490 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 856,
+ /* 500 */ 690, 856, 856, 653, 856, 856, 856, 856, 856, 856,
+ /* 510 */ 856, 856, 690, 731, 856, 856, 856, 856, 856, 856,
+ /* 520 */ 653, 856, 856, 856, 856, 856, 856, 856, 856, 856,
+ /* 530 */ 856, 856, 856, 822, 856, 856, 856, 856, 856, 856,
+ /* 540 */ 856, 856, 856, 856, 821, 856, 856, 856, 854, 856,
+ /* 550 */ 856, 856, 856, 856, 856, 856, 853, 854, 856, 856,
+ /* 560 */ 567, 569, 565,
+};
+#define YY_SZ_ACTTAB (sizeof(yy_action)/sizeof(yy_action[0]))
+
+/* The next table maps tokens into fallback tokens. If a construct
+** like the following:
+**
+** %fallback ID X Y Z.
+**
+** appears in the grammer, then ID becomes a fallback token for X, Y,
+** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
+** but it does not parse, the type of the token is changed to ID and
+** the parse is retried before an error is thrown.
+*/
+#ifdef YYFALLBACK
+static const YYCODETYPE yyFallback[] = {
+ 0, /* $ => nothing */
+ 0, /* END_OF_FILE => nothing */
+ 0, /* ILLEGAL => nothing */
+ 0, /* SPACE => nothing */
+ 0, /* UNCLOSED_STRING => nothing */
+ 0, /* COMMENT => nothing */
+ 0, /* FUNCTION => nothing */
+ 0, /* COLUMN => nothing */
+ 0, /* AGG_FUNCTION => nothing */
+ 0, /* SEMI => nothing */
+ 23, /* EXPLAIN => ID */
+ 23, /* BEGIN => ID */
+ 0, /* TRANSACTION => nothing */
+ 0, /* COMMIT => nothing */
+ 23, /* END => ID */
+ 0, /* ROLLBACK => nothing */
+ 0, /* CREATE => nothing */
+ 0, /* TABLE => nothing */
+ 23, /* TEMP => ID */
+ 0, /* LP => nothing */
+ 0, /* RP => nothing */
+ 0, /* AS => nothing */
+ 0, /* COMMA => nothing */
+ 0, /* ID => nothing */
+ 23, /* ABORT => ID */
+ 23, /* AFTER => ID */
+ 23, /* ASC => ID */
+ 23, /* ATTACH => ID */
+ 23, /* BEFORE => ID */
+ 23, /* CASCADE => ID */
+ 23, /* CLUSTER => ID */
+ 23, /* CONFLICT => ID */
+ 23, /* COPY => ID */
+ 23, /* DATABASE => ID */
+ 23, /* DEFERRED => ID */
+ 23, /* DELIMITERS => ID */
+ 23, /* DESC => ID */
+ 23, /* DETACH => ID */
+ 23, /* EACH => ID */
+ 23, /* FAIL => ID */
+ 23, /* FOR => ID */
+ 23, /* GLOB => ID */
+ 23, /* IGNORE => ID */
+ 23, /* IMMEDIATE => ID */
+ 23, /* INITIALLY => ID */
+ 23, /* INSTEAD => ID */
+ 23, /* LIKE => ID */
+ 23, /* MATCH => ID */
+ 23, /* KEY => ID */
+ 23, /* OF => ID */
+ 23, /* OFFSET => ID */
+ 23, /* PRAGMA => ID */
+ 23, /* RAISE => ID */
+ 23, /* REPLACE => ID */
+ 23, /* RESTRICT => ID */
+ 23, /* ROW => ID */
+ 23, /* STATEMENT => ID */
+ 23, /* TRIGGER => ID */
+ 23, /* VACUUM => ID */
+ 23, /* VIEW => ID */
+ 0, /* OR => nothing */
+ 0, /* AND => nothing */
+ 0, /* NOT => nothing */
+ 0, /* EQ => nothing */
+ 0, /* NE => nothing */
+ 0, /* ISNULL => nothing */
+ 0, /* NOTNULL => nothing */
+ 0, /* IS => nothing */
+ 0, /* BETWEEN => nothing */
+ 0, /* IN => nothing */
+ 0, /* GT => nothing */
+ 0, /* GE => nothing */
+ 0, /* LT => nothing */
+ 0, /* LE => nothing */
+ 0, /* BITAND => nothing */
+ 0, /* BITOR => nothing */
+ 0, /* LSHIFT => nothing */
+ 0, /* RSHIFT => nothing */
+ 0, /* PLUS => nothing */
+ 0, /* MINUS => nothing */
+ 0, /* STAR => nothing */
+ 0, /* SLASH => nothing */
+ 0, /* REM => nothing */
+ 0, /* CONCAT => nothing */
+ 0, /* UMINUS => nothing */
+ 0, /* UPLUS => nothing */
+ 0, /* BITNOT => nothing */
+ 0, /* STRING => nothing */
+ 0, /* JOIN_KW => nothing */
+ 0, /* INTEGER => nothing */
+ 0, /* CONSTRAINT => nothing */
+ 0, /* DEFAULT => nothing */
+ 0, /* FLOAT => nothing */
+ 0, /* NULL => nothing */
+ 0, /* PRIMARY => nothing */
+ 0, /* UNIQUE => nothing */
+ 0, /* CHECK => nothing */
+ 0, /* REFERENCES => nothing */
+ 0, /* COLLATE => nothing */
+ 0, /* ON => nothing */
+ 0, /* DELETE => nothing */
+ 0, /* UPDATE => nothing */
+ 0, /* INSERT => nothing */
+ 0, /* SET => nothing */
+ 0, /* DEFERRABLE => nothing */
+ 0, /* FOREIGN => nothing */
+ 0, /* DROP => nothing */
+ 0, /* UNION => nothing */
+ 0, /* ALL => nothing */
+ 0, /* INTERSECT => nothing */
+ 0, /* EXCEPT => nothing */
+ 0, /* SELECT => nothing */
+ 0, /* DISTINCT => nothing */
+ 0, /* DOT => nothing */
+ 0, /* FROM => nothing */
+ 0, /* JOIN => nothing */
+ 0, /* USING => nothing */
+ 0, /* ORDER => nothing */
+ 0, /* BY => nothing */
+ 0, /* GROUP => nothing */
+ 0, /* HAVING => nothing */
+ 0, /* LIMIT => nothing */
+ 0, /* WHERE => nothing */
+ 0, /* INTO => nothing */
+ 0, /* VALUES => nothing */
+ 0, /* VARIABLE => nothing */
+ 0, /* CASE => nothing */
+ 0, /* WHEN => nothing */
+ 0, /* THEN => nothing */
+ 0, /* ELSE => nothing */
+ 0, /* INDEX => nothing */
+};
+#endif /* YYFALLBACK */
+
+/* The following structure represents a single element of the
+** parser's stack. Information stored includes:
+**
+** + The state number for the parser at this level of the stack.
+**
+** + The value of the token stored at this level of the stack.
+** (In other words, the "major" token.)
+**
+** + The semantic value stored at this level of the stack. This is
+** the information used by the action routines in the grammar.
+** It is sometimes called the "minor" token.
+*/
+struct yyStackEntry {
+ int stateno; /* The state-number */
+ int major; /* The major token value. This is the code
+ ** number for the token at this stack level */
+ YYMINORTYPE minor; /* The user-supplied minor token value. This
+ ** is the value of the token */
+};
+typedef struct yyStackEntry yyStackEntry;
+
+/* The state of the parser is completely contained in an instance of
+** the following structure */
+struct yyParser {
+ int yyidx; /* Index of top element in stack */
+ int yyerrcnt; /* Shifts left before out of the error */
+ sqliteParserARG_SDECL /* A place to hold %extra_argument */
+ yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
+};
+typedef struct yyParser yyParser;
+
+#ifndef NDEBUG
+#include <stdio.h>
+static FILE *yyTraceFILE = 0;
+static char *yyTracePrompt = 0;
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/*
+** Turn parser tracing on by giving a stream to which to write the trace
+** and a prompt to preface each trace message. Tracing is turned off
+** by making either argument NULL
+**
+** Inputs:
+** <ul>
+** <li> A FILE* to which trace output should be written.
+** If NULL, then tracing is turned off.
+** <li> A prefix string written at the beginning of every
+** line of trace output. If NULL, then tracing is
+** turned off.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+void sqliteParserTrace(FILE *TraceFILE, char *zTracePrompt){
+ yyTraceFILE = TraceFILE;
+ yyTracePrompt = zTracePrompt;
+ if( yyTraceFILE==0 ) yyTracePrompt = 0;
+ else if( yyTracePrompt==0 ) yyTraceFILE = 0;
+}
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/* For tracing shifts, the names of all terminals and nonterminals
+** are required. The following table supplies these names */
+static const char *yyTokenName[] = {
+ "$", "END_OF_FILE", "ILLEGAL", "SPACE",
+ "UNCLOSED_STRING", "COMMENT", "FUNCTION", "COLUMN",
+ "AGG_FUNCTION", "SEMI", "EXPLAIN", "BEGIN",
+ "TRANSACTION", "COMMIT", "END", "ROLLBACK",
+ "CREATE", "TABLE", "TEMP", "LP",
+ "RP", "AS", "COMMA", "ID",
+ "ABORT", "AFTER", "ASC", "ATTACH",
+ "BEFORE", "CASCADE", "CLUSTER", "CONFLICT",
+ "COPY", "DATABASE", "DEFERRED", "DELIMITERS",
+ "DESC", "DETACH", "EACH", "FAIL",
+ "FOR", "GLOB", "IGNORE", "IMMEDIATE",
+ "INITIALLY", "INSTEAD", "LIKE", "MATCH",
+ "KEY", "OF", "OFFSET", "PRAGMA",
+ "RAISE", "REPLACE", "RESTRICT", "ROW",
+ "STATEMENT", "TRIGGER", "VACUUM", "VIEW",
+ "OR", "AND", "NOT", "EQ",
+ "NE", "ISNULL", "NOTNULL", "IS",
+ "BETWEEN", "IN", "GT", "GE",
+ "LT", "LE", "BITAND", "BITOR",
+ "LSHIFT", "RSHIFT", "PLUS", "MINUS",
+ "STAR", "SLASH", "REM", "CONCAT",
+ "UMINUS", "UPLUS", "BITNOT", "STRING",
+ "JOIN_KW", "INTEGER", "CONSTRAINT", "DEFAULT",
+ "FLOAT", "NULL", "PRIMARY", "UNIQUE",
+ "CHECK", "REFERENCES", "COLLATE", "ON",
+ "DELETE", "UPDATE", "INSERT", "SET",
+ "DEFERRABLE", "FOREIGN", "DROP", "UNION",
+ "ALL", "INTERSECT", "EXCEPT", "SELECT",
+ "DISTINCT", "DOT", "FROM", "JOIN",
+ "USING", "ORDER", "BY", "GROUP",
+ "HAVING", "LIMIT", "WHERE", "INTO",
+ "VALUES", "VARIABLE", "CASE", "WHEN",
+ "THEN", "ELSE", "INDEX", "error",
+ "input", "cmdlist", "ecmd", "explain",
+ "cmdx", "cmd", "trans_opt", "onconf",
+ "nm", "create_table", "create_table_args", "temp",
+ "columnlist", "conslist_opt", "select", "column",
+ "columnid", "type", "carglist", "id",
+ "ids", "typename", "signed", "carg",
+ "ccons", "sortorder", "expr", "idxlist_opt",
+ "refargs", "defer_subclause", "refarg", "refact",
+ "init_deferred_pred_opt", "conslist", "tcons", "idxlist",
+ "defer_subclause_opt", "orconf", "resolvetype", "oneselect",
+ "multiselect_op", "distinct", "selcollist", "from",
+ "where_opt", "groupby_opt", "having_opt", "orderby_opt",
+ "limit_opt", "sclp", "as", "seltablist",
+ "stl_prefix", "joinop", "dbnm", "on_opt",
+ "using_opt", "seltablist_paren", "joinop2", "sortlist",
+ "sortitem", "collate", "exprlist", "setlist",
+ "insert_cmd", "inscollist_opt", "itemlist", "inscollist",
+ "likeop", "case_operand", "case_exprlist", "case_else",
+ "expritem", "uniqueflag", "idxitem", "plus_num",
+ "minus_num", "plus_opt", "number", "trigger_decl",
+ "trigger_cmd_list", "trigger_time", "trigger_event", "foreach_clause",
+ "when_clause", "trigger_cmd", "database_kw_opt", "key_opt",
+};
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/* For tracing reduce actions, the names of all rules are required.
+*/
+static const char *yyRuleName[] = {
+ /* 0 */ "input ::= cmdlist",
+ /* 1 */ "cmdlist ::= cmdlist ecmd",
+ /* 2 */ "cmdlist ::= ecmd",
+ /* 3 */ "ecmd ::= explain cmdx SEMI",
+ /* 4 */ "ecmd ::= SEMI",
+ /* 5 */ "cmdx ::= cmd",
+ /* 6 */ "explain ::= EXPLAIN",
+ /* 7 */ "explain ::=",
+ /* 8 */ "cmd ::= BEGIN trans_opt onconf",
+ /* 9 */ "trans_opt ::=",
+ /* 10 */ "trans_opt ::= TRANSACTION",
+ /* 11 */ "trans_opt ::= TRANSACTION nm",
+ /* 12 */ "cmd ::= COMMIT trans_opt",
+ /* 13 */ "cmd ::= END trans_opt",
+ /* 14 */ "cmd ::= ROLLBACK trans_opt",
+ /* 15 */ "cmd ::= create_table create_table_args",
+ /* 16 */ "create_table ::= CREATE temp TABLE nm",
+ /* 17 */ "temp ::= TEMP",
+ /* 18 */ "temp ::=",
+ /* 19 */ "create_table_args ::= LP columnlist conslist_opt RP",
+ /* 20 */ "create_table_args ::= AS select",
+ /* 21 */ "columnlist ::= columnlist COMMA column",
+ /* 22 */ "columnlist ::= column",
+ /* 23 */ "column ::= columnid type carglist",
+ /* 24 */ "columnid ::= nm",
+ /* 25 */ "id ::= ID",
+ /* 26 */ "ids ::= ID",
+ /* 27 */ "ids ::= STRING",
+ /* 28 */ "nm ::= ID",
+ /* 29 */ "nm ::= STRING",
+ /* 30 */ "nm ::= JOIN_KW",
+ /* 31 */ "type ::=",
+ /* 32 */ "type ::= typename",
+ /* 33 */ "type ::= typename LP signed RP",
+ /* 34 */ "type ::= typename LP signed COMMA signed RP",
+ /* 35 */ "typename ::= ids",
+ /* 36 */ "typename ::= typename ids",
+ /* 37 */ "signed ::= INTEGER",
+ /* 38 */ "signed ::= PLUS INTEGER",
+ /* 39 */ "signed ::= MINUS INTEGER",
+ /* 40 */ "carglist ::= carglist carg",
+ /* 41 */ "carglist ::=",
+ /* 42 */ "carg ::= CONSTRAINT nm ccons",
+ /* 43 */ "carg ::= ccons",
+ /* 44 */ "carg ::= DEFAULT STRING",
+ /* 45 */ "carg ::= DEFAULT ID",
+ /* 46 */ "carg ::= DEFAULT INTEGER",
+ /* 47 */ "carg ::= DEFAULT PLUS INTEGER",
+ /* 48 */ "carg ::= DEFAULT MINUS INTEGER",
+ /* 49 */ "carg ::= DEFAULT FLOAT",
+ /* 50 */ "carg ::= DEFAULT PLUS FLOAT",
+ /* 51 */ "carg ::= DEFAULT MINUS FLOAT",
+ /* 52 */ "carg ::= DEFAULT NULL",
+ /* 53 */ "ccons ::= NULL onconf",
+ /* 54 */ "ccons ::= NOT NULL onconf",
+ /* 55 */ "ccons ::= PRIMARY KEY sortorder onconf",
+ /* 56 */ "ccons ::= UNIQUE onconf",
+ /* 57 */ "ccons ::= CHECK LP expr RP onconf",
+ /* 58 */ "ccons ::= REFERENCES nm idxlist_opt refargs",
+ /* 59 */ "ccons ::= defer_subclause",
+ /* 60 */ "ccons ::= COLLATE id",
+ /* 61 */ "refargs ::=",
+ /* 62 */ "refargs ::= refargs refarg",
+ /* 63 */ "refarg ::= MATCH nm",
+ /* 64 */ "refarg ::= ON DELETE refact",
+ /* 65 */ "refarg ::= ON UPDATE refact",
+ /* 66 */ "refarg ::= ON INSERT refact",
+ /* 67 */ "refact ::= SET NULL",
+ /* 68 */ "refact ::= SET DEFAULT",
+ /* 69 */ "refact ::= CASCADE",
+ /* 70 */ "refact ::= RESTRICT",
+ /* 71 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt",
+ /* 72 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt",
+ /* 73 */ "init_deferred_pred_opt ::=",
+ /* 74 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED",
+ /* 75 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE",
+ /* 76 */ "conslist_opt ::=",
+ /* 77 */ "conslist_opt ::= COMMA conslist",
+ /* 78 */ "conslist ::= conslist COMMA tcons",
+ /* 79 */ "conslist ::= conslist tcons",
+ /* 80 */ "conslist ::= tcons",
+ /* 81 */ "tcons ::= CONSTRAINT nm",
+ /* 82 */ "tcons ::= PRIMARY KEY LP idxlist RP onconf",
+ /* 83 */ "tcons ::= UNIQUE LP idxlist RP onconf",
+ /* 84 */ "tcons ::= CHECK expr onconf",
+ /* 85 */ "tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt",
+ /* 86 */ "defer_subclause_opt ::=",
+ /* 87 */ "defer_subclause_opt ::= defer_subclause",
+ /* 88 */ "onconf ::=",
+ /* 89 */ "onconf ::= ON CONFLICT resolvetype",
+ /* 90 */ "orconf ::=",
+ /* 91 */ "orconf ::= OR resolvetype",
+ /* 92 */ "resolvetype ::= ROLLBACK",
+ /* 93 */ "resolvetype ::= ABORT",
+ /* 94 */ "resolvetype ::= FAIL",
+ /* 95 */ "resolvetype ::= IGNORE",
+ /* 96 */ "resolvetype ::= REPLACE",
+ /* 97 */ "cmd ::= DROP TABLE nm",
+ /* 98 */ "cmd ::= CREATE temp VIEW nm AS select",
+ /* 99 */ "cmd ::= DROP VIEW nm",
+ /* 100 */ "cmd ::= select",
+ /* 101 */ "select ::= oneselect",
+ /* 102 */ "select ::= select multiselect_op oneselect",
+ /* 103 */ "multiselect_op ::= UNION",
+ /* 104 */ "multiselect_op ::= UNION ALL",
+ /* 105 */ "multiselect_op ::= INTERSECT",
+ /* 106 */ "multiselect_op ::= EXCEPT",
+ /* 107 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt",
+ /* 108 */ "distinct ::= DISTINCT",
+ /* 109 */ "distinct ::= ALL",
+ /* 110 */ "distinct ::=",
+ /* 111 */ "sclp ::= selcollist COMMA",
+ /* 112 */ "sclp ::=",
+ /* 113 */ "selcollist ::= sclp expr as",
+ /* 114 */ "selcollist ::= sclp STAR",
+ /* 115 */ "selcollist ::= sclp nm DOT STAR",
+ /* 116 */ "as ::= AS nm",
+ /* 117 */ "as ::= ids",
+ /* 118 */ "as ::=",
+ /* 119 */ "from ::=",
+ /* 120 */ "from ::= FROM seltablist",
+ /* 121 */ "stl_prefix ::= seltablist joinop",
+ /* 122 */ "stl_prefix ::=",
+ /* 123 */ "seltablist ::= stl_prefix nm dbnm as on_opt using_opt",
+ /* 124 */ "seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt",
+ /* 125 */ "seltablist_paren ::= select",
+ /* 126 */ "seltablist_paren ::= seltablist",
+ /* 127 */ "dbnm ::=",
+ /* 128 */ "dbnm ::= DOT nm",
+ /* 129 */ "joinop ::= COMMA",
+ /* 130 */ "joinop ::= JOIN",
+ /* 131 */ "joinop ::= JOIN_KW JOIN",
+ /* 132 */ "joinop ::= JOIN_KW nm JOIN",
+ /* 133 */ "joinop ::= JOIN_KW nm nm JOIN",
+ /* 134 */ "on_opt ::= ON expr",
+ /* 135 */ "on_opt ::=",
+ /* 136 */ "using_opt ::= USING LP idxlist RP",
+ /* 137 */ "using_opt ::=",
+ /* 138 */ "orderby_opt ::=",
+ /* 139 */ "orderby_opt ::= ORDER BY sortlist",
+ /* 140 */ "sortlist ::= sortlist COMMA sortitem collate sortorder",
+ /* 141 */ "sortlist ::= sortitem collate sortorder",
+ /* 142 */ "sortitem ::= expr",
+ /* 143 */ "sortorder ::= ASC",
+ /* 144 */ "sortorder ::= DESC",
+ /* 145 */ "sortorder ::=",
+ /* 146 */ "collate ::=",
+ /* 147 */ "collate ::= COLLATE id",
+ /* 148 */ "groupby_opt ::=",
+ /* 149 */ "groupby_opt ::= GROUP BY exprlist",
+ /* 150 */ "having_opt ::=",
+ /* 151 */ "having_opt ::= HAVING expr",
+ /* 152 */ "limit_opt ::=",
+ /* 153 */ "limit_opt ::= LIMIT signed",
+ /* 154 */ "limit_opt ::= LIMIT signed OFFSET signed",
+ /* 155 */ "limit_opt ::= LIMIT signed COMMA signed",
+ /* 156 */ "cmd ::= DELETE FROM nm dbnm where_opt",
+ /* 157 */ "where_opt ::=",
+ /* 158 */ "where_opt ::= WHERE expr",
+ /* 159 */ "cmd ::= UPDATE orconf nm dbnm SET setlist where_opt",
+ /* 160 */ "setlist ::= setlist COMMA nm EQ expr",
+ /* 161 */ "setlist ::= nm EQ expr",
+ /* 162 */ "cmd ::= insert_cmd INTO nm dbnm inscollist_opt VALUES LP itemlist RP",
+ /* 163 */ "cmd ::= insert_cmd INTO nm dbnm inscollist_opt select",
+ /* 164 */ "insert_cmd ::= INSERT orconf",
+ /* 165 */ "insert_cmd ::= REPLACE",
+ /* 166 */ "itemlist ::= itemlist COMMA expr",
+ /* 167 */ "itemlist ::= expr",
+ /* 168 */ "inscollist_opt ::=",
+ /* 169 */ "inscollist_opt ::= LP inscollist RP",
+ /* 170 */ "inscollist ::= inscollist COMMA nm",
+ /* 171 */ "inscollist ::= nm",
+ /* 172 */ "expr ::= LP expr RP",
+ /* 173 */ "expr ::= NULL",
+ /* 174 */ "expr ::= ID",
+ /* 175 */ "expr ::= JOIN_KW",
+ /* 176 */ "expr ::= nm DOT nm",
+ /* 177 */ "expr ::= nm DOT nm DOT nm",
+ /* 178 */ "expr ::= INTEGER",
+ /* 179 */ "expr ::= FLOAT",
+ /* 180 */ "expr ::= STRING",
+ /* 181 */ "expr ::= VARIABLE",
+ /* 182 */ "expr ::= ID LP exprlist RP",
+ /* 183 */ "expr ::= ID LP STAR RP",
+ /* 184 */ "expr ::= expr AND expr",
+ /* 185 */ "expr ::= expr OR expr",
+ /* 186 */ "expr ::= expr LT expr",
+ /* 187 */ "expr ::= expr GT expr",
+ /* 188 */ "expr ::= expr LE expr",
+ /* 189 */ "expr ::= expr GE expr",
+ /* 190 */ "expr ::= expr NE expr",
+ /* 191 */ "expr ::= expr EQ expr",
+ /* 192 */ "expr ::= expr BITAND expr",
+ /* 193 */ "expr ::= expr BITOR expr",
+ /* 194 */ "expr ::= expr LSHIFT expr",
+ /* 195 */ "expr ::= expr RSHIFT expr",
+ /* 196 */ "expr ::= expr likeop expr",
+ /* 197 */ "expr ::= expr NOT likeop expr",
+ /* 198 */ "likeop ::= LIKE",
+ /* 199 */ "likeop ::= GLOB",
+ /* 200 */ "expr ::= expr PLUS expr",
+ /* 201 */ "expr ::= expr MINUS expr",
+ /* 202 */ "expr ::= expr STAR expr",
+ /* 203 */ "expr ::= expr SLASH expr",
+ /* 204 */ "expr ::= expr REM expr",
+ /* 205 */ "expr ::= expr CONCAT expr",
+ /* 206 */ "expr ::= expr ISNULL",
+ /* 207 */ "expr ::= expr IS NULL",
+ /* 208 */ "expr ::= expr NOTNULL",
+ /* 209 */ "expr ::= expr NOT NULL",
+ /* 210 */ "expr ::= expr IS NOT NULL",
+ /* 211 */ "expr ::= NOT expr",
+ /* 212 */ "expr ::= BITNOT expr",
+ /* 213 */ "expr ::= MINUS expr",
+ /* 214 */ "expr ::= PLUS expr",
+ /* 215 */ "expr ::= LP select RP",
+ /* 216 */ "expr ::= expr BETWEEN expr AND expr",
+ /* 217 */ "expr ::= expr NOT BETWEEN expr AND expr",
+ /* 218 */ "expr ::= expr IN LP exprlist RP",
+ /* 219 */ "expr ::= expr IN LP select RP",
+ /* 220 */ "expr ::= expr NOT IN LP exprlist RP",
+ /* 221 */ "expr ::= expr NOT IN LP select RP",
+ /* 222 */ "expr ::= expr IN nm dbnm",
+ /* 223 */ "expr ::= expr NOT IN nm dbnm",
+ /* 224 */ "expr ::= CASE case_operand case_exprlist case_else END",
+ /* 225 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr",
+ /* 226 */ "case_exprlist ::= WHEN expr THEN expr",
+ /* 227 */ "case_else ::= ELSE expr",
+ /* 228 */ "case_else ::=",
+ /* 229 */ "case_operand ::= expr",
+ /* 230 */ "case_operand ::=",
+ /* 231 */ "exprlist ::= exprlist COMMA expritem",
+ /* 232 */ "exprlist ::= expritem",
+ /* 233 */ "expritem ::= expr",
+ /* 234 */ "expritem ::=",
+ /* 235 */ "cmd ::= CREATE uniqueflag INDEX nm ON nm dbnm LP idxlist RP onconf",
+ /* 236 */ "uniqueflag ::= UNIQUE",
+ /* 237 */ "uniqueflag ::=",
+ /* 238 */ "idxlist_opt ::=",
+ /* 239 */ "idxlist_opt ::= LP idxlist RP",
+ /* 240 */ "idxlist ::= idxlist COMMA idxitem",
+ /* 241 */ "idxlist ::= idxitem",
+ /* 242 */ "idxitem ::= nm sortorder",
+ /* 243 */ "cmd ::= DROP INDEX nm dbnm",
+ /* 244 */ "cmd ::= COPY orconf nm dbnm FROM nm USING DELIMITERS STRING",
+ /* 245 */ "cmd ::= COPY orconf nm dbnm FROM nm",
+ /* 246 */ "cmd ::= VACUUM",
+ /* 247 */ "cmd ::= VACUUM nm",
+ /* 248 */ "cmd ::= PRAGMA ids EQ nm",
+ /* 249 */ "cmd ::= PRAGMA ids EQ ON",
+ /* 250 */ "cmd ::= PRAGMA ids EQ plus_num",
+ /* 251 */ "cmd ::= PRAGMA ids EQ minus_num",
+ /* 252 */ "cmd ::= PRAGMA ids LP nm RP",
+ /* 253 */ "cmd ::= PRAGMA ids",
+ /* 254 */ "plus_num ::= plus_opt number",
+ /* 255 */ "minus_num ::= MINUS number",
+ /* 256 */ "number ::= INTEGER",
+ /* 257 */ "number ::= FLOAT",
+ /* 258 */ "plus_opt ::= PLUS",
+ /* 259 */ "plus_opt ::=",
+ /* 260 */ "cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END",
+ /* 261 */ "trigger_decl ::= temp TRIGGER nm trigger_time trigger_event ON nm dbnm foreach_clause when_clause",
+ /* 262 */ "trigger_time ::= BEFORE",
+ /* 263 */ "trigger_time ::= AFTER",
+ /* 264 */ "trigger_time ::= INSTEAD OF",
+ /* 265 */ "trigger_time ::=",
+ /* 266 */ "trigger_event ::= DELETE",
+ /* 267 */ "trigger_event ::= INSERT",
+ /* 268 */ "trigger_event ::= UPDATE",
+ /* 269 */ "trigger_event ::= UPDATE OF inscollist",
+ /* 270 */ "foreach_clause ::=",
+ /* 271 */ "foreach_clause ::= FOR EACH ROW",
+ /* 272 */ "foreach_clause ::= FOR EACH STATEMENT",
+ /* 273 */ "when_clause ::=",
+ /* 274 */ "when_clause ::= WHEN expr",
+ /* 275 */ "trigger_cmd_list ::= trigger_cmd SEMI trigger_cmd_list",
+ /* 276 */ "trigger_cmd_list ::=",
+ /* 277 */ "trigger_cmd ::= UPDATE orconf nm SET setlist where_opt",
+ /* 278 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP",
+ /* 279 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt select",
+ /* 280 */ "trigger_cmd ::= DELETE FROM nm where_opt",
+ /* 281 */ "trigger_cmd ::= select",
+ /* 282 */ "expr ::= RAISE LP IGNORE RP",
+ /* 283 */ "expr ::= RAISE LP ROLLBACK COMMA nm RP",
+ /* 284 */ "expr ::= RAISE LP ABORT COMMA nm RP",
+ /* 285 */ "expr ::= RAISE LP FAIL COMMA nm RP",
+ /* 286 */ "cmd ::= DROP TRIGGER nm dbnm",
+ /* 287 */ "cmd ::= ATTACH database_kw_opt ids AS nm key_opt",
+ /* 288 */ "key_opt ::= USING ids",
+ /* 289 */ "key_opt ::=",
+ /* 290 */ "database_kw_opt ::= DATABASE",
+ /* 291 */ "database_kw_opt ::=",
+ /* 292 */ "cmd ::= DETACH database_kw_opt nm",
+};
+#endif /* NDEBUG */
+
+/*
+** This function returns the symbolic name associated with a token
+** value.
+*/
+const char *sqliteParserTokenName(int tokenType){
+#ifndef NDEBUG
+ if( tokenType>0 && tokenType<(sizeof(yyTokenName)/sizeof(yyTokenName[0])) ){
+ return yyTokenName[tokenType];
+ }else{
+ return "Unknown";
+ }
+#else
+ return "";
+#endif
+}
+
+/*
+** This function allocates a new parser.
+** The only argument is a pointer to a function which works like
+** malloc.
+**
+** Inputs:
+** A pointer to the function used to allocate memory.
+**
+** Outputs:
+** A pointer to a parser. This pointer is used in subsequent calls
+** to sqliteParser and sqliteParserFree.
+*/
+void *sqliteParserAlloc(void *(*mallocProc)(size_t)){
+ yyParser *pParser;
+ pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
+ if( pParser ){
+ pParser->yyidx = -1;
+ }
+ return pParser;
+}
+
+/* The following function deletes the value associated with a
+** symbol. The symbol can be either a terminal or nonterminal.
+** "yymajor" is the symbol code, and "yypminor" is a pointer to
+** the value.
+*/
+static void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor){
+ switch( yymajor ){
+ /* Here is inserted the actions which take place when a
+ ** terminal or non-terminal is destroyed. This can happen
+ ** when the symbol is popped from the stack during a
+ ** reduce or during error processing or when a parser is
+ ** being destroyed before it is finished parsing.
+ **
+ ** Note: during a reduce, the only symbols destroyed are those
+ ** which appear on the RHS of the rule, but which are not used
+ ** inside the C code.
+ */
+ case 146:
+#line 286 "parse.y"
+{sqliteSelectDelete((yypminor->yy179));}
+#line 1235 "parse.c"
+ break;
+ case 158:
+#line 533 "parse.y"
+{sqliteExprDelete((yypminor->yy242));}
+#line 1240 "parse.c"
+ break;
+ case 159:
+#line 746 "parse.y"
+{sqliteIdListDelete((yypminor->yy320));}
+#line 1245 "parse.c"
+ break;
+ case 167:
+#line 744 "parse.y"
+{sqliteIdListDelete((yypminor->yy320));}
+#line 1250 "parse.c"
+ break;
+ case 171:
+#line 288 "parse.y"
+{sqliteSelectDelete((yypminor->yy179));}
+#line 1255 "parse.c"
+ break;
+ case 174:
+#line 322 "parse.y"
+{sqliteExprListDelete((yypminor->yy322));}
+#line 1260 "parse.c"
+ break;
+ case 175:
+#line 353 "parse.y"
+{sqliteSrcListDelete((yypminor->yy307));}
+#line 1265 "parse.c"
+ break;
+ case 176:
+#line 483 "parse.y"
+{sqliteExprDelete((yypminor->yy242));}
+#line 1270 "parse.c"
+ break;
+ case 177:
+#line 459 "parse.y"
+{sqliteExprListDelete((yypminor->yy322));}
+#line 1275 "parse.c"
+ break;
+ case 178:
+#line 464 "parse.y"
+{sqliteExprDelete((yypminor->yy242));}
+#line 1280 "parse.c"
+ break;
+ case 179:
+#line 431 "parse.y"
+{sqliteExprListDelete((yypminor->yy322));}
+#line 1285 "parse.c"
+ break;
+ case 181:
+#line 324 "parse.y"
+{sqliteExprListDelete((yypminor->yy322));}
+#line 1290 "parse.c"
+ break;
+ case 183:
+#line 349 "parse.y"
+{sqliteSrcListDelete((yypminor->yy307));}
+#line 1295 "parse.c"
+ break;
+ case 184:
+#line 351 "parse.y"
+{sqliteSrcListDelete((yypminor->yy307));}
+#line 1300 "parse.c"
+ break;
+ case 187:
+#line 420 "parse.y"
+{sqliteExprDelete((yypminor->yy242));}
+#line 1305 "parse.c"
+ break;
+ case 188:
+#line 425 "parse.y"
+{sqliteIdListDelete((yypminor->yy320));}
+#line 1310 "parse.c"
+ break;
+ case 189:
+#line 400 "parse.y"
+{sqliteSelectDelete((yypminor->yy179));}
+#line 1315 "parse.c"
+ break;
+ case 191:
+#line 433 "parse.y"
+{sqliteExprListDelete((yypminor->yy322));}
+#line 1320 "parse.c"
+ break;
+ case 192:
+#line 435 "parse.y"
+{sqliteExprDelete((yypminor->yy242));}
+#line 1325 "parse.c"
+ break;
+ case 194:
+#line 719 "parse.y"
+{sqliteExprListDelete((yypminor->yy322));}
+#line 1330 "parse.c"
+ break;
+ case 195:
+#line 489 "parse.y"
+{sqliteExprListDelete((yypminor->yy322));}
+#line 1335 "parse.c"
+ break;
+ case 197:
+#line 520 "parse.y"
+{sqliteIdListDelete((yypminor->yy320));}
+#line 1340 "parse.c"
+ break;
+ case 198:
+#line 514 "parse.y"
+{sqliteExprListDelete((yypminor->yy322));}
+#line 1345 "parse.c"
+ break;
+ case 199:
+#line 522 "parse.y"
+{sqliteIdListDelete((yypminor->yy320));}
+#line 1350 "parse.c"
+ break;
+ case 202:
+#line 702 "parse.y"
+{sqliteExprListDelete((yypminor->yy322));}
+#line 1355 "parse.c"
+ break;
+ case 204:
+#line 721 "parse.y"
+{sqliteExprDelete((yypminor->yy242));}
+#line 1360 "parse.c"
+ break;
+ case 212:
+#line 828 "parse.y"
+{sqliteDeleteTriggerStep((yypminor->yy19));}
+#line 1365 "parse.c"
+ break;
+ case 214:
+#line 812 "parse.y"
+{sqliteIdListDelete((yypminor->yy290).b);}
+#line 1370 "parse.c"
+ break;
+ case 217:
+#line 836 "parse.y"
+{sqliteDeleteTriggerStep((yypminor->yy19));}
+#line 1375 "parse.c"
+ break;
+ default: break; /* If no destructor action specified: do nothing */
+ }
+}
+
+/*
+** Pop the parser's stack once.
+**
+** If there is a destructor routine associated with the token which
+** is popped from the stack, then call it.
+**
+** Return the major token number for the symbol popped.
+*/
+static int yy_pop_parser_stack(yyParser *pParser){
+ YYCODETYPE yymajor;
+ yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];
+
+ if( pParser->yyidx<0 ) return 0;
+#ifndef NDEBUG
+ if( yyTraceFILE && pParser->yyidx>=0 ){
+ fprintf(yyTraceFILE,"%sPopping %s\n",
+ yyTracePrompt,
+ yyTokenName[yytos->major]);
+ }
+#endif
+ yymajor = yytos->major;
+ yy_destructor( yymajor, &yytos->minor);
+ pParser->yyidx--;
+ return yymajor;
+}
+
+/*
+** Deallocate and destroy a parser. Destructors are all called for
+** all stack elements before shutting the parser down.
+**
+** Inputs:
+** <ul>
+** <li> A pointer to the parser. This should be a pointer
+** obtained from sqliteParserAlloc.
+** <li> A pointer to a function used to reclaim memory obtained
+** from malloc.
+** </ul>
+*/
+void sqliteParserFree(
+ void *p, /* The parser to be deleted */
+ void (*freeProc)(void*) /* Function used to reclaim memory */
+){
+ yyParser *pParser = (yyParser*)p;
+ if( pParser==0 ) return;
+ while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
+ (*freeProc)((void*)pParser);
+}
+
+/*
+** Find the appropriate action for a parser given the terminal
+** look-ahead token iLookAhead.
+**
+** If the look-ahead token is YYNOCODE, then check to see if the action is
+** independent of the look-ahead. If it is, return the action, otherwise
+** return YY_NO_ACTION.
+*/
+static int yy_find_shift_action(
+ yyParser *pParser, /* The parser */
+ int iLookAhead /* The look-ahead token */
+){
+ int i;
+ int stateno = pParser->yystack[pParser->yyidx].stateno;
+
+ /* if( pParser->yyidx<0 ) return YY_NO_ACTION; */
+ i = yy_shift_ofst[stateno];
+ if( i==YY_SHIFT_USE_DFLT ){
+ return yy_default[stateno];
+ }
+ if( iLookAhead==YYNOCODE ){
+ return YY_NO_ACTION;
+ }
+ i += iLookAhead;
+ if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){
+#ifdef YYFALLBACK
+ int iFallback; /* Fallback token */
+ if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
+ && (iFallback = yyFallback[iLookAhead])!=0 ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
+ yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
+ }
+#endif
+ return yy_find_shift_action(pParser, iFallback);
+ }
+#endif
+ return yy_default[stateno];
+ }else{
+ return yy_action[i];
+ }
+}
+
+/*
+** Find the appropriate action for a parser given the non-terminal
+** look-ahead token iLookAhead.
+**
+** If the look-ahead token is YYNOCODE, then check to see if the action is
+** independent of the look-ahead. If it is, return the action, otherwise
+** return YY_NO_ACTION.
+*/
+static int yy_find_reduce_action(
+ yyParser *pParser, /* The parser */
+ int iLookAhead /* The look-ahead token */
+){
+ int i;
+ int stateno = pParser->yystack[pParser->yyidx].stateno;
+
+ i = yy_reduce_ofst[stateno];
+ if( i==YY_REDUCE_USE_DFLT ){
+ return yy_default[stateno];
+ }
+ if( iLookAhead==YYNOCODE ){
+ return YY_NO_ACTION;
+ }
+ i += iLookAhead;
+ if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){
+ return yy_default[stateno];
+ }else{
+ return yy_action[i];
+ }
+}
+
+/*
+** Perform a shift action.
+*/
+static void yy_shift(
+ yyParser *yypParser, /* The parser to be shifted */
+ int yyNewState, /* The new state to shift in */
+ int yyMajor, /* The major token to shift in */
+ YYMINORTYPE *yypMinor /* Pointer ot the minor token to shift in */
+){
+ yyStackEntry *yytos;
+ yypParser->yyidx++;
+ if( yypParser->yyidx>=YYSTACKDEPTH ){
+ sqliteParserARG_FETCH;
+ yypParser->yyidx--;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
+ }
+#endif
+ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
+ /* Here code is inserted which will execute if the parser
+ ** stack every overflows */
+ sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument var */
+ return;
+ }
+ yytos = &yypParser->yystack[yypParser->yyidx];
+ yytos->stateno = yyNewState;
+ yytos->major = yyMajor;
+ yytos->minor = *yypMinor;
+#ifndef NDEBUG
+ if( yyTraceFILE && yypParser->yyidx>0 ){
+ int i;
+ fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
+ fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
+ for(i=1; i<=yypParser->yyidx; i++)
+ fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
+ fprintf(yyTraceFILE,"\n");
+ }
+#endif
+}
+
+/* The following table contains information about every rule that
+** is used during the reduce.
+*/
+static struct {
+ YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
+ unsigned char nrhs; /* Number of right-hand side symbols in the rule */
+} yyRuleInfo[] = {
+ { 132, 1 },
+ { 133, 2 },
+ { 133, 1 },
+ { 134, 3 },
+ { 134, 1 },
+ { 136, 1 },
+ { 135, 1 },
+ { 135, 0 },
+ { 137, 3 },
+ { 138, 0 },
+ { 138, 1 },
+ { 138, 2 },
+ { 137, 2 },
+ { 137, 2 },
+ { 137, 2 },
+ { 137, 2 },
+ { 141, 4 },
+ { 143, 1 },
+ { 143, 0 },
+ { 142, 4 },
+ { 142, 2 },
+ { 144, 3 },
+ { 144, 1 },
+ { 147, 3 },
+ { 148, 1 },
+ { 151, 1 },
+ { 152, 1 },
+ { 152, 1 },
+ { 140, 1 },
+ { 140, 1 },
+ { 140, 1 },
+ { 149, 0 },
+ { 149, 1 },
+ { 149, 4 },
+ { 149, 6 },
+ { 153, 1 },
+ { 153, 2 },
+ { 154, 1 },
+ { 154, 2 },
+ { 154, 2 },
+ { 150, 2 },
+ { 150, 0 },
+ { 155, 3 },
+ { 155, 1 },
+ { 155, 2 },
+ { 155, 2 },
+ { 155, 2 },
+ { 155, 3 },
+ { 155, 3 },
+ { 155, 2 },
+ { 155, 3 },
+ { 155, 3 },
+ { 155, 2 },
+ { 156, 2 },
+ { 156, 3 },
+ { 156, 4 },
+ { 156, 2 },
+ { 156, 5 },
+ { 156, 4 },
+ { 156, 1 },
+ { 156, 2 },
+ { 160, 0 },
+ { 160, 2 },
+ { 162, 2 },
+ { 162, 3 },
+ { 162, 3 },
+ { 162, 3 },
+ { 163, 2 },
+ { 163, 2 },
+ { 163, 1 },
+ { 163, 1 },
+ { 161, 3 },
+ { 161, 2 },
+ { 164, 0 },
+ { 164, 2 },
+ { 164, 2 },
+ { 145, 0 },
+ { 145, 2 },
+ { 165, 3 },
+ { 165, 2 },
+ { 165, 1 },
+ { 166, 2 },
+ { 166, 6 },
+ { 166, 5 },
+ { 166, 3 },
+ { 166, 10 },
+ { 168, 0 },
+ { 168, 1 },
+ { 139, 0 },
+ { 139, 3 },
+ { 169, 0 },
+ { 169, 2 },
+ { 170, 1 },
+ { 170, 1 },
+ { 170, 1 },
+ { 170, 1 },
+ { 170, 1 },
+ { 137, 3 },
+ { 137, 6 },
+ { 137, 3 },
+ { 137, 1 },
+ { 146, 1 },
+ { 146, 3 },
+ { 172, 1 },
+ { 172, 2 },
+ { 172, 1 },
+ { 172, 1 },
+ { 171, 9 },
+ { 173, 1 },
+ { 173, 1 },
+ { 173, 0 },
+ { 181, 2 },
+ { 181, 0 },
+ { 174, 3 },
+ { 174, 2 },
+ { 174, 4 },
+ { 182, 2 },
+ { 182, 1 },
+ { 182, 0 },
+ { 175, 0 },
+ { 175, 2 },
+ { 184, 2 },
+ { 184, 0 },
+ { 183, 6 },
+ { 183, 7 },
+ { 189, 1 },
+ { 189, 1 },
+ { 186, 0 },
+ { 186, 2 },
+ { 185, 1 },
+ { 185, 1 },
+ { 185, 2 },
+ { 185, 3 },
+ { 185, 4 },
+ { 187, 2 },
+ { 187, 0 },
+ { 188, 4 },
+ { 188, 0 },
+ { 179, 0 },
+ { 179, 3 },
+ { 191, 5 },
+ { 191, 3 },
+ { 192, 1 },
+ { 157, 1 },
+ { 157, 1 },
+ { 157, 0 },
+ { 193, 0 },
+ { 193, 2 },
+ { 177, 0 },
+ { 177, 3 },
+ { 178, 0 },
+ { 178, 2 },
+ { 180, 0 },
+ { 180, 2 },
+ { 180, 4 },
+ { 180, 4 },
+ { 137, 5 },
+ { 176, 0 },
+ { 176, 2 },
+ { 137, 7 },
+ { 195, 5 },
+ { 195, 3 },
+ { 137, 9 },
+ { 137, 6 },
+ { 196, 2 },
+ { 196, 1 },
+ { 198, 3 },
+ { 198, 1 },
+ { 197, 0 },
+ { 197, 3 },
+ { 199, 3 },
+ { 199, 1 },
+ { 158, 3 },
+ { 158, 1 },
+ { 158, 1 },
+ { 158, 1 },
+ { 158, 3 },
+ { 158, 5 },
+ { 158, 1 },
+ { 158, 1 },
+ { 158, 1 },
+ { 158, 1 },
+ { 158, 4 },
+ { 158, 4 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 4 },
+ { 200, 1 },
+ { 200, 1 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 3 },
+ { 158, 2 },
+ { 158, 3 },
+ { 158, 2 },
+ { 158, 3 },
+ { 158, 4 },
+ { 158, 2 },
+ { 158, 2 },
+ { 158, 2 },
+ { 158, 2 },
+ { 158, 3 },
+ { 158, 5 },
+ { 158, 6 },
+ { 158, 5 },
+ { 158, 5 },
+ { 158, 6 },
+ { 158, 6 },
+ { 158, 4 },
+ { 158, 5 },
+ { 158, 5 },
+ { 202, 5 },
+ { 202, 4 },
+ { 203, 2 },
+ { 203, 0 },
+ { 201, 1 },
+ { 201, 0 },
+ { 194, 3 },
+ { 194, 1 },
+ { 204, 1 },
+ { 204, 0 },
+ { 137, 11 },
+ { 205, 1 },
+ { 205, 0 },
+ { 159, 0 },
+ { 159, 3 },
+ { 167, 3 },
+ { 167, 1 },
+ { 206, 2 },
+ { 137, 4 },
+ { 137, 9 },
+ { 137, 6 },
+ { 137, 1 },
+ { 137, 2 },
+ { 137, 4 },
+ { 137, 4 },
+ { 137, 4 },
+ { 137, 4 },
+ { 137, 5 },
+ { 137, 2 },
+ { 207, 2 },
+ { 208, 2 },
+ { 210, 1 },
+ { 210, 1 },
+ { 209, 1 },
+ { 209, 0 },
+ { 137, 5 },
+ { 211, 10 },
+ { 213, 1 },
+ { 213, 1 },
+ { 213, 2 },
+ { 213, 0 },
+ { 214, 1 },
+ { 214, 1 },
+ { 214, 1 },
+ { 214, 3 },
+ { 215, 0 },
+ { 215, 3 },
+ { 215, 3 },
+ { 216, 0 },
+ { 216, 2 },
+ { 212, 3 },
+ { 212, 0 },
+ { 217, 6 },
+ { 217, 8 },
+ { 217, 5 },
+ { 217, 4 },
+ { 217, 1 },
+ { 158, 4 },
+ { 158, 6 },
+ { 158, 6 },
+ { 158, 6 },
+ { 137, 4 },
+ { 137, 6 },
+ { 219, 2 },
+ { 219, 0 },
+ { 218, 1 },
+ { 218, 0 },
+ { 137, 3 },
+};
+
+static void yy_accept(yyParser*); /* Forward Declaration */
+
+/*
+** Perform a reduce action and the shift that must immediately
+** follow the reduce.
+*/
+static void yy_reduce(
+ yyParser *yypParser, /* The parser */
+ int yyruleno /* Number of the rule by which to reduce */
+){
+ int yygoto; /* The next state */
+ int yyact; /* The next action */
+ YYMINORTYPE yygotominor; /* The LHS of the rule reduced */
+ yyStackEntry *yymsp; /* The top of the parser's stack */
+ int yysize; /* Amount to pop the stack */
+ sqliteParserARG_FETCH;
+ yymsp = &yypParser->yystack[yypParser->yyidx];
+#ifndef NDEBUG
+ if( yyTraceFILE && yyruleno>=0
+ && yyruleno<sizeof(yyRuleName)/sizeof(yyRuleName[0]) ){
+ fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt,
+ yyRuleName[yyruleno]);
+ }
+#endif /* NDEBUG */
+
+ switch( yyruleno ){
+ /* Beginning here are the reduction cases. A typical example
+ ** follows:
+ ** case 0:
+ ** #line <lineno> <grammarfile>
+ ** { ... } // User supplied code
+ ** #line <lineno> <thisfile>
+ ** break;
+ */
+ case 0:
+ /* No destructor defined for cmdlist */
+ break;
+ case 1:
+ /* No destructor defined for cmdlist */
+ /* No destructor defined for ecmd */
+ break;
+ case 2:
+ /* No destructor defined for ecmd */
+ break;
+ case 3:
+ /* No destructor defined for explain */
+ /* No destructor defined for cmdx */
+ /* No destructor defined for SEMI */
+ break;
+ case 4:
+ /* No destructor defined for SEMI */
+ break;
+ case 5:
+#line 72 "parse.y"
+{ sqliteExec(pParse); }
+#line 1901 "parse.c"
+ /* No destructor defined for cmd */
+ break;
+ case 6:
+#line 73 "parse.y"
+{ sqliteBeginParse(pParse, 1); }
+#line 1907 "parse.c"
+ /* No destructor defined for EXPLAIN */
+ break;
+ case 7:
+#line 74 "parse.y"
+{ sqliteBeginParse(pParse, 0); }
+#line 1913 "parse.c"
+ break;
+ case 8:
+#line 79 "parse.y"
+{sqliteBeginTransaction(pParse,yymsp[0].minor.yy372);}
+#line 1918 "parse.c"
+ /* No destructor defined for BEGIN */
+ /* No destructor defined for trans_opt */
+ break;
+ case 9:
+ break;
+ case 10:
+ /* No destructor defined for TRANSACTION */
+ break;
+ case 11:
+ /* No destructor defined for TRANSACTION */
+ /* No destructor defined for nm */
+ break;
+ case 12:
+#line 83 "parse.y"
+{sqliteCommitTransaction(pParse);}
+#line 1934 "parse.c"
+ /* No destructor defined for COMMIT */
+ /* No destructor defined for trans_opt */
+ break;
+ case 13:
+#line 84 "parse.y"
+{sqliteCommitTransaction(pParse);}
+#line 1941 "parse.c"
+ /* No destructor defined for END */
+ /* No destructor defined for trans_opt */
+ break;
+ case 14:
+#line 85 "parse.y"
+{sqliteRollbackTransaction(pParse);}
+#line 1948 "parse.c"
+ /* No destructor defined for ROLLBACK */
+ /* No destructor defined for trans_opt */
+ break;
+ case 15:
+ /* No destructor defined for create_table */
+ /* No destructor defined for create_table_args */
+ break;
+ case 16:
+#line 90 "parse.y"
+{
+ sqliteStartTable(pParse,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy298,yymsp[-2].minor.yy372,0);
+}
+#line 1961 "parse.c"
+ /* No destructor defined for TABLE */
+ break;
+ case 17:
+#line 94 "parse.y"
+{yygotominor.yy372 = 1;}
+#line 1967 "parse.c"
+ /* No destructor defined for TEMP */
+ break;
+ case 18:
+#line 95 "parse.y"
+{yygotominor.yy372 = 0;}
+#line 1973 "parse.c"
+ break;
+ case 19:
+#line 96 "parse.y"
+{
+ sqliteEndTable(pParse,&yymsp[0].minor.yy0,0);
+}
+#line 1980 "parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for columnlist */
+ /* No destructor defined for conslist_opt */
+ break;
+ case 20:
+#line 99 "parse.y"
+{
+ sqliteEndTable(pParse,0,yymsp[0].minor.yy179);
+ sqliteSelectDelete(yymsp[0].minor.yy179);
+}
+#line 1991 "parse.c"
+ /* No destructor defined for AS */
+ break;
+ case 21:
+ /* No destructor defined for columnlist */
+ /* No destructor defined for COMMA */
+ /* No destructor defined for column */
+ break;
+ case 22:
+ /* No destructor defined for column */
+ break;
+ case 23:
+ /* No destructor defined for columnid */
+ /* No destructor defined for type */
+ /* No destructor defined for carglist */
+ break;
+ case 24:
+#line 111 "parse.y"
+{sqliteAddColumn(pParse,&yymsp[0].minor.yy298);}
+#line 2010 "parse.c"
+ break;
+ case 25:
+#line 117 "parse.y"
+{yygotominor.yy298 = yymsp[0].minor.yy0;}
+#line 2015 "parse.c"
+ break;
+ case 26:
+#line 149 "parse.y"
+{yygotominor.yy298 = yymsp[0].minor.yy0;}
+#line 2020 "parse.c"
+ break;
+ case 27:
+#line 150 "parse.y"
+{yygotominor.yy298 = yymsp[0].minor.yy0;}
+#line 2025 "parse.c"
+ break;
+ case 28:
+#line 155 "parse.y"
+{yygotominor.yy298 = yymsp[0].minor.yy0;}
+#line 2030 "parse.c"
+ break;
+ case 29:
+#line 156 "parse.y"
+{yygotominor.yy298 = yymsp[0].minor.yy0;}
+#line 2035 "parse.c"
+ break;
+ case 30:
+#line 157 "parse.y"
+{yygotominor.yy298 = yymsp[0].minor.yy0;}
+#line 2040 "parse.c"
+ break;
+ case 31:
+ break;
+ case 32:
+#line 160 "parse.y"
+{sqliteAddColumnType(pParse,&yymsp[0].minor.yy298,&yymsp[0].minor.yy298);}
+#line 2047 "parse.c"
+ break;
+ case 33:
+#line 161 "parse.y"
+{sqliteAddColumnType(pParse,&yymsp[-3].minor.yy298,&yymsp[0].minor.yy0);}
+#line 2052 "parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for signed */
+ break;
+ case 34:
+#line 163 "parse.y"
+{sqliteAddColumnType(pParse,&yymsp[-5].minor.yy298,&yymsp[0].minor.yy0);}
+#line 2059 "parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for signed */
+ /* No destructor defined for COMMA */
+ /* No destructor defined for signed */
+ break;
+ case 35:
+#line 165 "parse.y"
+{yygotominor.yy298 = yymsp[0].minor.yy298;}
+#line 2068 "parse.c"
+ break;
+ case 36:
+#line 166 "parse.y"
+{yygotominor.yy298 = yymsp[-1].minor.yy298;}
+#line 2073 "parse.c"
+ /* No destructor defined for ids */
+ break;
+ case 37:
+#line 168 "parse.y"
+{ yygotominor.yy372 = atoi(yymsp[0].minor.yy0.z); }
+#line 2079 "parse.c"
+ break;
+ case 38:
+#line 169 "parse.y"
+{ yygotominor.yy372 = atoi(yymsp[0].minor.yy0.z); }
+#line 2084 "parse.c"
+ /* No destructor defined for PLUS */
+ break;
+ case 39:
+#line 170 "parse.y"
+{ yygotominor.yy372 = -atoi(yymsp[0].minor.yy0.z); }
+#line 2090 "parse.c"
+ /* No destructor defined for MINUS */
+ break;
+ case 40:
+ /* No destructor defined for carglist */
+ /* No destructor defined for carg */
+ break;
+ case 41:
+ break;
+ case 42:
+ /* No destructor defined for CONSTRAINT */
+ /* No destructor defined for nm */
+ /* No destructor defined for ccons */
+ break;
+ case 43:
+ /* No destructor defined for ccons */
+ break;
+ case 44:
+#line 175 "parse.y"
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
+#line 2110 "parse.c"
+ /* No destructor defined for DEFAULT */
+ break;
+ case 45:
+#line 176 "parse.y"
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
+#line 2116 "parse.c"
+ /* No destructor defined for DEFAULT */
+ break;
+ case 46:
+#line 177 "parse.y"
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
+#line 2122 "parse.c"
+ /* No destructor defined for DEFAULT */
+ break;
+ case 47:
+#line 178 "parse.y"
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
+#line 2128 "parse.c"
+ /* No destructor defined for DEFAULT */
+ /* No destructor defined for PLUS */
+ break;
+ case 48:
+#line 179 "parse.y"
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,1);}
+#line 2135 "parse.c"
+ /* No destructor defined for DEFAULT */
+ /* No destructor defined for MINUS */
+ break;
+ case 49:
+#line 180 "parse.y"
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
+#line 2142 "parse.c"
+ /* No destructor defined for DEFAULT */
+ break;
+ case 50:
+#line 181 "parse.y"
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
+#line 2148 "parse.c"
+ /* No destructor defined for DEFAULT */
+ /* No destructor defined for PLUS */
+ break;
+ case 51:
+#line 182 "parse.y"
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,1);}
+#line 2155 "parse.c"
+ /* No destructor defined for DEFAULT */
+ /* No destructor defined for MINUS */
+ break;
+ case 52:
+ /* No destructor defined for DEFAULT */
+ /* No destructor defined for NULL */
+ break;
+ case 53:
+ /* No destructor defined for NULL */
+ /* No destructor defined for onconf */
+ break;
+ case 54:
+#line 189 "parse.y"
+{sqliteAddNotNull(pParse, yymsp[0].minor.yy372);}
+#line 2170 "parse.c"
+ /* No destructor defined for NOT */
+ /* No destructor defined for NULL */
+ break;
+ case 55:
+#line 190 "parse.y"
+{sqliteAddPrimaryKey(pParse,0,yymsp[0].minor.yy372);}
+#line 2177 "parse.c"
+ /* No destructor defined for PRIMARY */
+ /* No destructor defined for KEY */
+ /* No destructor defined for sortorder */
+ break;
+ case 56:
+#line 191 "parse.y"
+{sqliteCreateIndex(pParse,0,0,0,yymsp[0].minor.yy372,0,0);}
+#line 2185 "parse.c"
+ /* No destructor defined for UNIQUE */
+ break;
+ case 57:
+ /* No destructor defined for CHECK */
+ /* No destructor defined for LP */
+ yy_destructor(158,&yymsp[-2].minor);
+ /* No destructor defined for RP */
+ /* No destructor defined for onconf */
+ break;
+ case 58:
+#line 194 "parse.y"
+{sqliteCreateForeignKey(pParse,0,&yymsp[-2].minor.yy298,yymsp[-1].minor.yy320,yymsp[0].minor.yy372);}
+#line 2198 "parse.c"
+ /* No destructor defined for REFERENCES */
+ break;
+ case 59:
+#line 195 "parse.y"
+{sqliteDeferForeignKey(pParse,yymsp[0].minor.yy372);}
+#line 2204 "parse.c"
+ break;
+ case 60:
+#line 196 "parse.y"
+{
+ sqliteAddCollateType(pParse, sqliteCollateType(yymsp[0].minor.yy298.z, yymsp[0].minor.yy298.n));
+}
+#line 2211 "parse.c"
+ /* No destructor defined for COLLATE */
+ break;
+ case 61:
+#line 206 "parse.y"
+{ yygotominor.yy372 = OE_Restrict * 0x010101; }
+#line 2217 "parse.c"
+ break;
+ case 62:
+#line 207 "parse.y"
+{ yygotominor.yy372 = (yymsp[-1].minor.yy372 & yymsp[0].minor.yy407.mask) | yymsp[0].minor.yy407.value; }
+#line 2222 "parse.c"
+ break;
+ case 63:
+#line 209 "parse.y"
+{ yygotominor.yy407.value = 0; yygotominor.yy407.mask = 0x000000; }
+#line 2227 "parse.c"
+ /* No destructor defined for MATCH */
+ /* No destructor defined for nm */
+ break;
+ case 64:
+#line 210 "parse.y"
+{ yygotominor.yy407.value = yymsp[0].minor.yy372; yygotominor.yy407.mask = 0x0000ff; }
+#line 2234 "parse.c"
+ /* No destructor defined for ON */
+ /* No destructor defined for DELETE */
+ break;
+ case 65:
+#line 211 "parse.y"
+{ yygotominor.yy407.value = yymsp[0].minor.yy372<<8; yygotominor.yy407.mask = 0x00ff00; }
+#line 2241 "parse.c"
+ /* No destructor defined for ON */
+ /* No destructor defined for UPDATE */
+ break;
+ case 66:
+#line 212 "parse.y"
+{ yygotominor.yy407.value = yymsp[0].minor.yy372<<16; yygotominor.yy407.mask = 0xff0000; }
+#line 2248 "parse.c"
+ /* No destructor defined for ON */
+ /* No destructor defined for INSERT */
+ break;
+ case 67:
+#line 214 "parse.y"
+{ yygotominor.yy372 = OE_SetNull; }
+#line 2255 "parse.c"
+ /* No destructor defined for SET */
+ /* No destructor defined for NULL */
+ break;
+ case 68:
+#line 215 "parse.y"
+{ yygotominor.yy372 = OE_SetDflt; }
+#line 2262 "parse.c"
+ /* No destructor defined for SET */
+ /* No destructor defined for DEFAULT */
+ break;
+ case 69:
+#line 216 "parse.y"
+{ yygotominor.yy372 = OE_Cascade; }
+#line 2269 "parse.c"
+ /* No destructor defined for CASCADE */
+ break;
+ case 70:
+#line 217 "parse.y"
+{ yygotominor.yy372 = OE_Restrict; }
+#line 2275 "parse.c"
+ /* No destructor defined for RESTRICT */
+ break;
+ case 71:
+#line 219 "parse.y"
+{yygotominor.yy372 = yymsp[0].minor.yy372;}
+#line 2281 "parse.c"
+ /* No destructor defined for NOT */
+ /* No destructor defined for DEFERRABLE */
+ break;
+ case 72:
+#line 220 "parse.y"
+{yygotominor.yy372 = yymsp[0].minor.yy372;}
+#line 2288 "parse.c"
+ /* No destructor defined for DEFERRABLE */
+ break;
+ case 73:
+#line 222 "parse.y"
+{yygotominor.yy372 = 0;}
+#line 2294 "parse.c"
+ break;
+ case 74:
+#line 223 "parse.y"
+{yygotominor.yy372 = 1;}
+#line 2299 "parse.c"
+ /* No destructor defined for INITIALLY */
+ /* No destructor defined for DEFERRED */
+ break;
+ case 75:
+#line 224 "parse.y"
+{yygotominor.yy372 = 0;}
+#line 2306 "parse.c"
+ /* No destructor defined for INITIALLY */
+ /* No destructor defined for IMMEDIATE */
+ break;
+ case 76:
+ break;
+ case 77:
+ /* No destructor defined for COMMA */
+ /* No destructor defined for conslist */
+ break;
+ case 78:
+ /* No destructor defined for conslist */
+ /* No destructor defined for COMMA */
+ /* No destructor defined for tcons */
+ break;
+ case 79:
+ /* No destructor defined for conslist */
+ /* No destructor defined for tcons */
+ break;
+ case 80:
+ /* No destructor defined for tcons */
+ break;
+ case 81:
+ /* No destructor defined for CONSTRAINT */
+ /* No destructor defined for nm */
+ break;
+ case 82:
+#line 236 "parse.y"
+{sqliteAddPrimaryKey(pParse,yymsp[-2].minor.yy320,yymsp[0].minor.yy372);}
+#line 2335 "parse.c"
+ /* No destructor defined for PRIMARY */
+ /* No destructor defined for KEY */
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 83:
+#line 238 "parse.y"
+{sqliteCreateIndex(pParse,0,0,yymsp[-2].minor.yy320,yymsp[0].minor.yy372,0,0);}
+#line 2344 "parse.c"
+ /* No destructor defined for UNIQUE */
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 84:
+ /* No destructor defined for CHECK */
+ yy_destructor(158,&yymsp[-1].minor);
+ /* No destructor defined for onconf */
+ break;
+ case 85:
+#line 241 "parse.y"
+{
+ sqliteCreateForeignKey(pParse, yymsp[-6].minor.yy320, &yymsp[-3].minor.yy298, yymsp[-2].minor.yy320, yymsp[-1].minor.yy372);
+ sqliteDeferForeignKey(pParse, yymsp[0].minor.yy372);
+}
+#line 2360 "parse.c"
+ /* No destructor defined for FOREIGN */
+ /* No destructor defined for KEY */
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ /* No destructor defined for REFERENCES */
+ break;
+ case 86:
+#line 246 "parse.y"
+{yygotominor.yy372 = 0;}
+#line 2370 "parse.c"
+ break;
+ case 87:
+#line 247 "parse.y"
+{yygotominor.yy372 = yymsp[0].minor.yy372;}
+#line 2375 "parse.c"
+ break;
+ case 88:
+#line 255 "parse.y"
+{ yygotominor.yy372 = OE_Default; }
+#line 2380 "parse.c"
+ break;
+ case 89:
+#line 256 "parse.y"
+{ yygotominor.yy372 = yymsp[0].minor.yy372; }
+#line 2385 "parse.c"
+ /* No destructor defined for ON */
+ /* No destructor defined for CONFLICT */
+ break;
+ case 90:
+#line 257 "parse.y"
+{ yygotominor.yy372 = OE_Default; }
+#line 2392 "parse.c"
+ break;
+ case 91:
+#line 258 "parse.y"
+{ yygotominor.yy372 = yymsp[0].minor.yy372; }
+#line 2397 "parse.c"
+ /* No destructor defined for OR */
+ break;
+ case 92:
+#line 259 "parse.y"
+{ yygotominor.yy372 = OE_Rollback; }
+#line 2403 "parse.c"
+ /* No destructor defined for ROLLBACK */
+ break;
+ case 93:
+#line 260 "parse.y"
+{ yygotominor.yy372 = OE_Abort; }
+#line 2409 "parse.c"
+ /* No destructor defined for ABORT */
+ break;
+ case 94:
+#line 261 "parse.y"
+{ yygotominor.yy372 = OE_Fail; }
+#line 2415 "parse.c"
+ /* No destructor defined for FAIL */
+ break;
+ case 95:
+#line 262 "parse.y"
+{ yygotominor.yy372 = OE_Ignore; }
+#line 2421 "parse.c"
+ /* No destructor defined for IGNORE */
+ break;
+ case 96:
+#line 263 "parse.y"
+{ yygotominor.yy372 = OE_Replace; }
+#line 2427 "parse.c"
+ /* No destructor defined for REPLACE */
+ break;
+ case 97:
+#line 267 "parse.y"
+{sqliteDropTable(pParse,&yymsp[0].minor.yy298,0);}
+#line 2433 "parse.c"
+ /* No destructor defined for DROP */
+ /* No destructor defined for TABLE */
+ break;
+ case 98:
+#line 271 "parse.y"
+{
+ sqliteCreateView(pParse, &yymsp[-5].minor.yy0, &yymsp[-2].minor.yy298, yymsp[0].minor.yy179, yymsp[-4].minor.yy372);
+}
+#line 2442 "parse.c"
+ /* No destructor defined for VIEW */
+ /* No destructor defined for AS */
+ break;
+ case 99:
+#line 274 "parse.y"
+{
+ sqliteDropTable(pParse, &yymsp[0].minor.yy298, 1);
+}
+#line 2451 "parse.c"
+ /* No destructor defined for DROP */
+ /* No destructor defined for VIEW */
+ break;
+ case 100:
+#line 280 "parse.y"
+{
+ sqliteSelect(pParse, yymsp[0].minor.yy179, SRT_Callback, 0, 0, 0, 0);
+ sqliteSelectDelete(yymsp[0].minor.yy179);
+}
+#line 2461 "parse.c"
+ break;
+ case 101:
+#line 290 "parse.y"
+{yygotominor.yy179 = yymsp[0].minor.yy179;}
+#line 2466 "parse.c"
+ break;
+ case 102:
+#line 291 "parse.y"
+{
+ if( yymsp[0].minor.yy179 ){
+ yymsp[0].minor.yy179->op = yymsp[-1].minor.yy372;
+ yymsp[0].minor.yy179->pPrior = yymsp[-2].minor.yy179;
+ }
+ yygotominor.yy179 = yymsp[0].minor.yy179;
+}
+#line 2477 "parse.c"
+ break;
+ case 103:
+#line 299 "parse.y"
+{yygotominor.yy372 = TK_UNION;}
+#line 2482 "parse.c"
+ /* No destructor defined for UNION */
+ break;
+ case 104:
+#line 300 "parse.y"
+{yygotominor.yy372 = TK_ALL;}
+#line 2488 "parse.c"
+ /* No destructor defined for UNION */
+ /* No destructor defined for ALL */
+ break;
+ case 105:
+#line 301 "parse.y"
+{yygotominor.yy372 = TK_INTERSECT;}
+#line 2495 "parse.c"
+ /* No destructor defined for INTERSECT */
+ break;
+ case 106:
+#line 302 "parse.y"
+{yygotominor.yy372 = TK_EXCEPT;}
+#line 2501 "parse.c"
+ /* No destructor defined for EXCEPT */
+ break;
+ case 107:
+#line 304 "parse.y"
+{
+ yygotominor.yy179 = sqliteSelectNew(yymsp[-6].minor.yy322,yymsp[-5].minor.yy307,yymsp[-4].minor.yy242,yymsp[-3].minor.yy322,yymsp[-2].minor.yy242,yymsp[-1].minor.yy322,yymsp[-7].minor.yy372,yymsp[0].minor.yy124.limit,yymsp[0].minor.yy124.offset);
+}
+#line 2509 "parse.c"
+ /* No destructor defined for SELECT */
+ break;
+ case 108:
+#line 312 "parse.y"
+{yygotominor.yy372 = 1;}
+#line 2515 "parse.c"
+ /* No destructor defined for DISTINCT */
+ break;
+ case 109:
+#line 313 "parse.y"
+{yygotominor.yy372 = 0;}
+#line 2521 "parse.c"
+ /* No destructor defined for ALL */
+ break;
+ case 110:
+#line 314 "parse.y"
+{yygotominor.yy372 = 0;}
+#line 2527 "parse.c"
+ break;
+ case 111:
+#line 325 "parse.y"
+{yygotominor.yy322 = yymsp[-1].minor.yy322;}
+#line 2532 "parse.c"
+ /* No destructor defined for COMMA */
+ break;
+ case 112:
+#line 326 "parse.y"
+{yygotominor.yy322 = 0;}
+#line 2538 "parse.c"
+ break;
+ case 113:
+#line 327 "parse.y"
+{
+ yygotominor.yy322 = sqliteExprListAppend(yymsp[-2].minor.yy322,yymsp[-1].minor.yy242,yymsp[0].minor.yy298.n?&yymsp[0].minor.yy298:0);
+}
+#line 2545 "parse.c"
+ break;
+ case 114:
+#line 330 "parse.y"
+{
+ yygotominor.yy322 = sqliteExprListAppend(yymsp[-1].minor.yy322, sqliteExpr(TK_ALL, 0, 0, 0), 0);
+}
+#line 2552 "parse.c"
+ /* No destructor defined for STAR */
+ break;
+ case 115:
+#line 333 "parse.y"
+{
+ Expr *pRight = sqliteExpr(TK_ALL, 0, 0, 0);
+ Expr *pLeft = sqliteExpr(TK_ID, 0, 0, &yymsp[-2].minor.yy298);
+ yygotominor.yy322 = sqliteExprListAppend(yymsp[-3].minor.yy322, sqliteExpr(TK_DOT, pLeft, pRight, 0), 0);
+}
+#line 2562 "parse.c"
+ /* No destructor defined for DOT */
+ /* No destructor defined for STAR */
+ break;
+ case 116:
+#line 343 "parse.y"
+{ yygotominor.yy298 = yymsp[0].minor.yy298; }
+#line 2569 "parse.c"
+ /* No destructor defined for AS */
+ break;
+ case 117:
+#line 344 "parse.y"
+{ yygotominor.yy298 = yymsp[0].minor.yy298; }
+#line 2575 "parse.c"
+ break;
+ case 118:
+#line 345 "parse.y"
+{ yygotominor.yy298.n = 0; }
+#line 2580 "parse.c"
+ break;
+ case 119:
+#line 357 "parse.y"
+{yygotominor.yy307 = sqliteMalloc(sizeof(*yygotominor.yy307));}
+#line 2585 "parse.c"
+ break;
+ case 120:
+#line 358 "parse.y"
+{yygotominor.yy307 = yymsp[0].minor.yy307;}
+#line 2590 "parse.c"
+ /* No destructor defined for FROM */
+ break;
+ case 121:
+#line 363 "parse.y"
+{
+ yygotominor.yy307 = yymsp[-1].minor.yy307;
+ if( yygotominor.yy307 && yygotominor.yy307->nSrc>0 ) yygotominor.yy307->a[yygotominor.yy307->nSrc-1].jointype = yymsp[0].minor.yy372;
+}
+#line 2599 "parse.c"
+ break;
+ case 122:
+#line 367 "parse.y"
+{yygotominor.yy307 = 0;}
+#line 2604 "parse.c"
+ break;
+ case 123:
+#line 368 "parse.y"
+{
+ yygotominor.yy307 = sqliteSrcListAppend(yymsp[-5].minor.yy307,&yymsp[-4].minor.yy298,&yymsp[-3].minor.yy298);
+ if( yymsp[-2].minor.yy298.n ) sqliteSrcListAddAlias(yygotominor.yy307,&yymsp[-2].minor.yy298);
+ if( yymsp[-1].minor.yy242 ){
+ if( yygotominor.yy307 && yygotominor.yy307->nSrc>1 ){ yygotominor.yy307->a[yygotominor.yy307->nSrc-2].pOn = yymsp[-1].minor.yy242; }
+ else { sqliteExprDelete(yymsp[-1].minor.yy242); }
+ }
+ if( yymsp[0].minor.yy320 ){
+ if( yygotominor.yy307 && yygotominor.yy307->nSrc>1 ){ yygotominor.yy307->a[yygotominor.yy307->nSrc-2].pUsing = yymsp[0].minor.yy320; }
+ else { sqliteIdListDelete(yymsp[0].minor.yy320); }
+ }
+}
+#line 2620 "parse.c"
+ break;
+ case 124:
+#line 381 "parse.y"
+{
+ yygotominor.yy307 = sqliteSrcListAppend(yymsp[-6].minor.yy307,0,0);
+ yygotominor.yy307->a[yygotominor.yy307->nSrc-1].pSelect = yymsp[-4].minor.yy179;
+ if( yymsp[-2].minor.yy298.n ) sqliteSrcListAddAlias(yygotominor.yy307,&yymsp[-2].minor.yy298);
+ if( yymsp[-1].minor.yy242 ){
+ if( yygotominor.yy307 && yygotominor.yy307->nSrc>1 ){ yygotominor.yy307->a[yygotominor.yy307->nSrc-2].pOn = yymsp[-1].minor.yy242; }
+ else { sqliteExprDelete(yymsp[-1].minor.yy242); }
+ }
+ if( yymsp[0].minor.yy320 ){
+ if( yygotominor.yy307 && yygotominor.yy307->nSrc>1 ){ yygotominor.yy307->a[yygotominor.yy307->nSrc-2].pUsing = yymsp[0].minor.yy320; }
+ else { sqliteIdListDelete(yymsp[0].minor.yy320); }
+ }
+}
+#line 2637 "parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 125:
+#line 401 "parse.y"
+{yygotominor.yy179 = yymsp[0].minor.yy179;}
+#line 2644 "parse.c"
+ break;
+ case 126:
+#line 402 "parse.y"
+{
+ yygotominor.yy179 = sqliteSelectNew(0,yymsp[0].minor.yy307,0,0,0,0,0,-1,0);
+}
+#line 2651 "parse.c"
+ break;
+ case 127:
+#line 407 "parse.y"
+{yygotominor.yy298.z=0; yygotominor.yy298.n=0;}
+#line 2656 "parse.c"
+ break;
+ case 128:
+#line 408 "parse.y"
+{yygotominor.yy298 = yymsp[0].minor.yy298;}
+#line 2661 "parse.c"
+ /* No destructor defined for DOT */
+ break;
+ case 129:
+#line 412 "parse.y"
+{ yygotominor.yy372 = JT_INNER; }
+#line 2667 "parse.c"
+ /* No destructor defined for COMMA */
+ break;
+ case 130:
+#line 413 "parse.y"
+{ yygotominor.yy372 = JT_INNER; }
+#line 2673 "parse.c"
+ /* No destructor defined for JOIN */
+ break;
+ case 131:
+#line 414 "parse.y"
+{ yygotominor.yy372 = sqliteJoinType(pParse,&yymsp[-1].minor.yy0,0,0); }
+#line 2679 "parse.c"
+ /* No destructor defined for JOIN */
+ break;
+ case 132:
+#line 415 "parse.y"
+{ yygotominor.yy372 = sqliteJoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy298,0); }
+#line 2685 "parse.c"
+ /* No destructor defined for JOIN */
+ break;
+ case 133:
+#line 417 "parse.y"
+{ yygotominor.yy372 = sqliteJoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy298,&yymsp[-1].minor.yy298); }
+#line 2691 "parse.c"
+ /* No destructor defined for JOIN */
+ break;
+ case 134:
+#line 421 "parse.y"
+{yygotominor.yy242 = yymsp[0].minor.yy242;}
+#line 2697 "parse.c"
+ /* No destructor defined for ON */
+ break;
+ case 135:
+#line 422 "parse.y"
+{yygotominor.yy242 = 0;}
+#line 2703 "parse.c"
+ break;
+ case 136:
+#line 426 "parse.y"
+{yygotominor.yy320 = yymsp[-1].minor.yy320;}
+#line 2708 "parse.c"
+ /* No destructor defined for USING */
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 137:
+#line 427 "parse.y"
+{yygotominor.yy320 = 0;}
+#line 2716 "parse.c"
+ break;
+ case 138:
+#line 437 "parse.y"
+{yygotominor.yy322 = 0;}
+#line 2721 "parse.c"
+ break;
+ case 139:
+#line 438 "parse.y"
+{yygotominor.yy322 = yymsp[0].minor.yy322;}
+#line 2726 "parse.c"
+ /* No destructor defined for ORDER */
+ /* No destructor defined for BY */
+ break;
+ case 140:
+#line 439 "parse.y"
+{
+ yygotominor.yy322 = sqliteExprListAppend(yymsp[-4].minor.yy322,yymsp[-2].minor.yy242,0);
+ if( yygotominor.yy322 ) yygotominor.yy322->a[yygotominor.yy322->nExpr-1].sortOrder = yymsp[-1].minor.yy372+yymsp[0].minor.yy372;
+}
+#line 2736 "parse.c"
+ /* No destructor defined for COMMA */
+ break;
+ case 141:
+#line 443 "parse.y"
+{
+ yygotominor.yy322 = sqliteExprListAppend(0,yymsp[-2].minor.yy242,0);
+ if( yygotominor.yy322 ) yygotominor.yy322->a[0].sortOrder = yymsp[-1].minor.yy372+yymsp[0].minor.yy372;
+}
+#line 2745 "parse.c"
+ break;
+ case 142:
+#line 447 "parse.y"
+{yygotominor.yy242 = yymsp[0].minor.yy242;}
+#line 2750 "parse.c"
+ break;
+ case 143:
+#line 452 "parse.y"
+{yygotominor.yy372 = SQLITE_SO_ASC;}
+#line 2755 "parse.c"
+ /* No destructor defined for ASC */
+ break;
+ case 144:
+#line 453 "parse.y"
+{yygotominor.yy372 = SQLITE_SO_DESC;}
+#line 2761 "parse.c"
+ /* No destructor defined for DESC */
+ break;
+ case 145:
+#line 454 "parse.y"
+{yygotominor.yy372 = SQLITE_SO_ASC;}
+#line 2767 "parse.c"
+ break;
+ case 146:
+#line 455 "parse.y"
+{yygotominor.yy372 = SQLITE_SO_UNK;}
+#line 2772 "parse.c"
+ break;
+ case 147:
+#line 456 "parse.y"
+{yygotominor.yy372 = sqliteCollateType(yymsp[0].minor.yy298.z, yymsp[0].minor.yy298.n);}
+#line 2777 "parse.c"
+ /* No destructor defined for COLLATE */
+ break;
+ case 148:
+#line 460 "parse.y"
+{yygotominor.yy322 = 0;}
+#line 2783 "parse.c"
+ break;
+ case 149:
+#line 461 "parse.y"
+{yygotominor.yy322 = yymsp[0].minor.yy322;}
+#line 2788 "parse.c"
+ /* No destructor defined for GROUP */
+ /* No destructor defined for BY */
+ break;
+ case 150:
+#line 465 "parse.y"
+{yygotominor.yy242 = 0;}
+#line 2795 "parse.c"
+ break;
+ case 151:
+#line 466 "parse.y"
+{yygotominor.yy242 = yymsp[0].minor.yy242;}
+#line 2800 "parse.c"
+ /* No destructor defined for HAVING */
+ break;
+ case 152:
+#line 469 "parse.y"
+{yygotominor.yy124.limit = -1; yygotominor.yy124.offset = 0;}
+#line 2806 "parse.c"
+ break;
+ case 153:
+#line 470 "parse.y"
+{yygotominor.yy124.limit = yymsp[0].minor.yy372; yygotominor.yy124.offset = 0;}
+#line 2811 "parse.c"
+ /* No destructor defined for LIMIT */
+ break;
+ case 154:
+#line 472 "parse.y"
+{yygotominor.yy124.limit = yymsp[-2].minor.yy372; yygotominor.yy124.offset = yymsp[0].minor.yy372;}
+#line 2817 "parse.c"
+ /* No destructor defined for LIMIT */
+ /* No destructor defined for OFFSET */
+ break;
+ case 155:
+#line 474 "parse.y"
+{yygotominor.yy124.limit = yymsp[0].minor.yy372; yygotominor.yy124.offset = yymsp[-2].minor.yy372;}
+#line 2824 "parse.c"
+ /* No destructor defined for LIMIT */
+ /* No destructor defined for COMMA */
+ break;
+ case 156:
+#line 478 "parse.y"
+{
+ sqliteDeleteFrom(pParse, sqliteSrcListAppend(0,&yymsp[-2].minor.yy298,&yymsp[-1].minor.yy298), yymsp[0].minor.yy242);
+}
+#line 2833 "parse.c"
+ /* No destructor defined for DELETE */
+ /* No destructor defined for FROM */
+ break;
+ case 157:
+#line 485 "parse.y"
+{yygotominor.yy242 = 0;}
+#line 2840 "parse.c"
+ break;
+ case 158:
+#line 486 "parse.y"
+{yygotominor.yy242 = yymsp[0].minor.yy242;}
+#line 2845 "parse.c"
+ /* No destructor defined for WHERE */
+ break;
+ case 159:
+#line 494 "parse.y"
+{sqliteUpdate(pParse,sqliteSrcListAppend(0,&yymsp[-4].minor.yy298,&yymsp[-3].minor.yy298),yymsp[-1].minor.yy322,yymsp[0].minor.yy242,yymsp[-5].minor.yy372);}
+#line 2851 "parse.c"
+ /* No destructor defined for UPDATE */
+ /* No destructor defined for SET */
+ break;
+ case 160:
+#line 497 "parse.y"
+{yygotominor.yy322 = sqliteExprListAppend(yymsp[-4].minor.yy322,yymsp[0].minor.yy242,&yymsp[-2].minor.yy298);}
+#line 2858 "parse.c"
+ /* No destructor defined for COMMA */
+ /* No destructor defined for EQ */
+ break;
+ case 161:
+#line 498 "parse.y"
+{yygotominor.yy322 = sqliteExprListAppend(0,yymsp[0].minor.yy242,&yymsp[-2].minor.yy298);}
+#line 2865 "parse.c"
+ /* No destructor defined for EQ */
+ break;
+ case 162:
+#line 504 "parse.y"
+{sqliteInsert(pParse, sqliteSrcListAppend(0,&yymsp[-6].minor.yy298,&yymsp[-5].minor.yy298), yymsp[-1].minor.yy322, 0, yymsp[-4].minor.yy320, yymsp[-8].minor.yy372);}
+#line 2871 "parse.c"
+ /* No destructor defined for INTO */
+ /* No destructor defined for VALUES */
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 163:
+#line 506 "parse.y"
+{sqliteInsert(pParse, sqliteSrcListAppend(0,&yymsp[-3].minor.yy298,&yymsp[-2].minor.yy298), 0, yymsp[0].minor.yy179, yymsp[-1].minor.yy320, yymsp[-5].minor.yy372);}
+#line 2880 "parse.c"
+ /* No destructor defined for INTO */
+ break;
+ case 164:
+#line 509 "parse.y"
+{yygotominor.yy372 = yymsp[0].minor.yy372;}
+#line 2886 "parse.c"
+ /* No destructor defined for INSERT */
+ break;
+ case 165:
+#line 510 "parse.y"
+{yygotominor.yy372 = OE_Replace;}
+#line 2892 "parse.c"
+ /* No destructor defined for REPLACE */
+ break;
+ case 166:
+#line 516 "parse.y"
+{yygotominor.yy322 = sqliteExprListAppend(yymsp[-2].minor.yy322,yymsp[0].minor.yy242,0);}
+#line 2898 "parse.c"
+ /* No destructor defined for COMMA */
+ break;
+ case 167:
+#line 517 "parse.y"
+{yygotominor.yy322 = sqliteExprListAppend(0,yymsp[0].minor.yy242,0);}
+#line 2904 "parse.c"
+ break;
+ case 168:
+#line 524 "parse.y"
+{yygotominor.yy320 = 0;}
+#line 2909 "parse.c"
+ break;
+ case 169:
+#line 525 "parse.y"
+{yygotominor.yy320 = yymsp[-1].minor.yy320;}
+#line 2914 "parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 170:
+#line 526 "parse.y"
+{yygotominor.yy320 = sqliteIdListAppend(yymsp[-2].minor.yy320,&yymsp[0].minor.yy298);}
+#line 2921 "parse.c"
+ /* No destructor defined for COMMA */
+ break;
+ case 171:
+#line 527 "parse.y"
+{yygotominor.yy320 = sqliteIdListAppend(0,&yymsp[0].minor.yy298);}
+#line 2927 "parse.c"
+ break;
+ case 172:
+#line 535 "parse.y"
+{yygotominor.yy242 = yymsp[-1].minor.yy242; sqliteExprSpan(yygotominor.yy242,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); }
+#line 2932 "parse.c"
+ break;
+ case 173:
+#line 536 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_NULL, 0, 0, &yymsp[0].minor.yy0);}
+#line 2937 "parse.c"
+ break;
+ case 174:
+#line 537 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy0);}
+#line 2942 "parse.c"
+ break;
+ case 175:
+#line 538 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy0);}
+#line 2947 "parse.c"
+ break;
+ case 176:
+#line 539 "parse.y"
+{
+ Expr *temp1 = sqliteExpr(TK_ID, 0, 0, &yymsp[-2].minor.yy298);
+ Expr *temp2 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy298);
+ yygotominor.yy242 = sqliteExpr(TK_DOT, temp1, temp2, 0);
+}
+#line 2956 "parse.c"
+ /* No destructor defined for DOT */
+ break;
+ case 177:
+#line 544 "parse.y"
+{
+ Expr *temp1 = sqliteExpr(TK_ID, 0, 0, &yymsp[-4].minor.yy298);
+ Expr *temp2 = sqliteExpr(TK_ID, 0, 0, &yymsp[-2].minor.yy298);
+ Expr *temp3 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy298);
+ Expr *temp4 = sqliteExpr(TK_DOT, temp2, temp3, 0);
+ yygotominor.yy242 = sqliteExpr(TK_DOT, temp1, temp4, 0);
+}
+#line 2968 "parse.c"
+ /* No destructor defined for DOT */
+ /* No destructor defined for DOT */
+ break;
+ case 178:
+#line 551 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_INTEGER, 0, 0, &yymsp[0].minor.yy0);}
+#line 2975 "parse.c"
+ break;
+ case 179:
+#line 552 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_FLOAT, 0, 0, &yymsp[0].minor.yy0);}
+#line 2980 "parse.c"
+ break;
+ case 180:
+#line 553 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_STRING, 0, 0, &yymsp[0].minor.yy0);}
+#line 2985 "parse.c"
+ break;
+ case 181:
+#line 554 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_VARIABLE, 0, 0, &yymsp[0].minor.yy0);
+ if( yygotominor.yy242 ) yygotominor.yy242->iTable = ++pParse->nVar;
+}
+#line 2993 "parse.c"
+ break;
+ case 182:
+#line 558 "parse.y"
+{
+ yygotominor.yy242 = sqliteExprFunction(yymsp[-1].minor.yy322, &yymsp[-3].minor.yy0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
+}
+#line 3001 "parse.c"
+ /* No destructor defined for LP */
+ break;
+ case 183:
+#line 562 "parse.y"
+{
+ yygotominor.yy242 = sqliteExprFunction(0, &yymsp[-3].minor.yy0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
+}
+#line 3010 "parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for STAR */
+ break;
+ case 184:
+#line 566 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_AND, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3017 "parse.c"
+ /* No destructor defined for AND */
+ break;
+ case 185:
+#line 567 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_OR, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3023 "parse.c"
+ /* No destructor defined for OR */
+ break;
+ case 186:
+#line 568 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_LT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3029 "parse.c"
+ /* No destructor defined for LT */
+ break;
+ case 187:
+#line 569 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_GT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3035 "parse.c"
+ /* No destructor defined for GT */
+ break;
+ case 188:
+#line 570 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_LE, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3041 "parse.c"
+ /* No destructor defined for LE */
+ break;
+ case 189:
+#line 571 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_GE, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3047 "parse.c"
+ /* No destructor defined for GE */
+ break;
+ case 190:
+#line 572 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_NE, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3053 "parse.c"
+ /* No destructor defined for NE */
+ break;
+ case 191:
+#line 573 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_EQ, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3059 "parse.c"
+ /* No destructor defined for EQ */
+ break;
+ case 192:
+#line 574 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_BITAND, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3065 "parse.c"
+ /* No destructor defined for BITAND */
+ break;
+ case 193:
+#line 575 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_BITOR, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3071 "parse.c"
+ /* No destructor defined for BITOR */
+ break;
+ case 194:
+#line 576 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_LSHIFT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3077 "parse.c"
+ /* No destructor defined for LSHIFT */
+ break;
+ case 195:
+#line 577 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_RSHIFT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3083 "parse.c"
+ /* No destructor defined for RSHIFT */
+ break;
+ case 196:
+#line 578 "parse.y"
+{
+ ExprList *pList = sqliteExprListAppend(0, yymsp[0].minor.yy242, 0);
+ pList = sqliteExprListAppend(pList, yymsp[-2].minor.yy242, 0);
+ yygotominor.yy242 = sqliteExprFunction(pList, 0);
+ if( yygotominor.yy242 ) yygotominor.yy242->op = yymsp[-1].minor.yy372;
+ sqliteExprSpan(yygotominor.yy242, &yymsp[-2].minor.yy242->span, &yymsp[0].minor.yy242->span);
+}
+#line 3095 "parse.c"
+ break;
+ case 197:
+#line 585 "parse.y"
+{
+ ExprList *pList = sqliteExprListAppend(0, yymsp[0].minor.yy242, 0);
+ pList = sqliteExprListAppend(pList, yymsp[-3].minor.yy242, 0);
+ yygotominor.yy242 = sqliteExprFunction(pList, 0);
+ if( yygotominor.yy242 ) yygotominor.yy242->op = yymsp[-1].minor.yy372;
+ yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy242->span,&yymsp[0].minor.yy242->span);
+}
+#line 3107 "parse.c"
+ /* No destructor defined for NOT */
+ break;
+ case 198:
+#line 594 "parse.y"
+{yygotominor.yy372 = TK_LIKE;}
+#line 3113 "parse.c"
+ /* No destructor defined for LIKE */
+ break;
+ case 199:
+#line 595 "parse.y"
+{yygotominor.yy372 = TK_GLOB;}
+#line 3119 "parse.c"
+ /* No destructor defined for GLOB */
+ break;
+ case 200:
+#line 596 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_PLUS, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3125 "parse.c"
+ /* No destructor defined for PLUS */
+ break;
+ case 201:
+#line 597 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_MINUS, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3131 "parse.c"
+ /* No destructor defined for MINUS */
+ break;
+ case 202:
+#line 598 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_STAR, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3137 "parse.c"
+ /* No destructor defined for STAR */
+ break;
+ case 203:
+#line 599 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_SLASH, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3143 "parse.c"
+ /* No destructor defined for SLASH */
+ break;
+ case 204:
+#line 600 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_REM, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3149 "parse.c"
+ /* No destructor defined for REM */
+ break;
+ case 205:
+#line 601 "parse.y"
+{yygotominor.yy242 = sqliteExpr(TK_CONCAT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
+#line 3155 "parse.c"
+ /* No destructor defined for CONCAT */
+ break;
+ case 206:
+#line 602 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_ISNULL, yymsp[-1].minor.yy242, 0, 0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy242->span,&yymsp[0].minor.yy0);
+}
+#line 3164 "parse.c"
+ break;
+ case 207:
+#line 606 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_ISNULL, yymsp[-2].minor.yy242, 0, 0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-2].minor.yy242->span,&yymsp[0].minor.yy0);
+}
+#line 3172 "parse.c"
+ /* No destructor defined for IS */
+ break;
+ case 208:
+#line 610 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_NOTNULL, yymsp[-1].minor.yy242, 0, 0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy242->span,&yymsp[0].minor.yy0);
+}
+#line 3181 "parse.c"
+ break;
+ case 209:
+#line 614 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_NOTNULL, yymsp[-2].minor.yy242, 0, 0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-2].minor.yy242->span,&yymsp[0].minor.yy0);
+}
+#line 3189 "parse.c"
+ /* No destructor defined for NOT */
+ break;
+ case 210:
+#line 618 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_NOTNULL, yymsp[-3].minor.yy242, 0, 0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy242->span,&yymsp[0].minor.yy0);
+}
+#line 3198 "parse.c"
+ /* No destructor defined for IS */
+ /* No destructor defined for NOT */
+ break;
+ case 211:
+#line 622 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_NOT, yymsp[0].minor.yy242, 0, 0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy242->span);
+}
+#line 3208 "parse.c"
+ break;
+ case 212:
+#line 626 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_BITNOT, yymsp[0].minor.yy242, 0, 0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy242->span);
+}
+#line 3216 "parse.c"
+ break;
+ case 213:
+#line 630 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_UMINUS, yymsp[0].minor.yy242, 0, 0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy242->span);
+}
+#line 3224 "parse.c"
+ break;
+ case 214:
+#line 634 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_UPLUS, yymsp[0].minor.yy242, 0, 0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy242->span);
+}
+#line 3232 "parse.c"
+ break;
+ case 215:
+#line 638 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_SELECT, 0, 0, 0);
+ if( yygotominor.yy242 ) yygotominor.yy242->pSelect = yymsp[-1].minor.yy179;
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
+}
+#line 3241 "parse.c"
+ break;
+ case 216:
+#line 643 "parse.y"
+{
+ ExprList *pList = sqliteExprListAppend(0, yymsp[-2].minor.yy242, 0);
+ pList = sqliteExprListAppend(pList, yymsp[0].minor.yy242, 0);
+ yygotominor.yy242 = sqliteExpr(TK_BETWEEN, yymsp[-4].minor.yy242, 0, 0);
+ if( yygotominor.yy242 ) yygotominor.yy242->pList = pList;
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-4].minor.yy242->span,&yymsp[0].minor.yy242->span);
+}
+#line 3252 "parse.c"
+ /* No destructor defined for BETWEEN */
+ /* No destructor defined for AND */
+ break;
+ case 217:
+#line 650 "parse.y"
+{
+ ExprList *pList = sqliteExprListAppend(0, yymsp[-2].minor.yy242, 0);
+ pList = sqliteExprListAppend(pList, yymsp[0].minor.yy242, 0);
+ yygotominor.yy242 = sqliteExpr(TK_BETWEEN, yymsp[-5].minor.yy242, 0, 0);
+ if( yygotominor.yy242 ) yygotominor.yy242->pList = pList;
+ yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-5].minor.yy242->span,&yymsp[0].minor.yy242->span);
+}
+#line 3266 "parse.c"
+ /* No destructor defined for NOT */
+ /* No destructor defined for BETWEEN */
+ /* No destructor defined for AND */
+ break;
+ case 218:
+#line 658 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-4].minor.yy242, 0, 0);
+ if( yygotominor.yy242 ) yygotominor.yy242->pList = yymsp[-1].minor.yy322;
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-4].minor.yy242->span,&yymsp[0].minor.yy0);
+}
+#line 3278 "parse.c"
+ /* No destructor defined for IN */
+ /* No destructor defined for LP */
+ break;
+ case 219:
+#line 663 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-4].minor.yy242, 0, 0);
+ if( yygotominor.yy242 ) yygotominor.yy242->pSelect = yymsp[-1].minor.yy179;
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-4].minor.yy242->span,&yymsp[0].minor.yy0);
+}
+#line 3289 "parse.c"
+ /* No destructor defined for IN */
+ /* No destructor defined for LP */
+ break;
+ case 220:
+#line 668 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-5].minor.yy242, 0, 0);
+ if( yygotominor.yy242 ) yygotominor.yy242->pList = yymsp[-1].minor.yy322;
+ yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-5].minor.yy242->span,&yymsp[0].minor.yy0);
+}
+#line 3301 "parse.c"
+ /* No destructor defined for NOT */
+ /* No destructor defined for IN */
+ /* No destructor defined for LP */
+ break;
+ case 221:
+#line 674 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-5].minor.yy242, 0, 0);
+ if( yygotominor.yy242 ) yygotominor.yy242->pSelect = yymsp[-1].minor.yy179;
+ yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-5].minor.yy242->span,&yymsp[0].minor.yy0);
+}
+#line 3314 "parse.c"
+ /* No destructor defined for NOT */
+ /* No destructor defined for IN */
+ /* No destructor defined for LP */
+ break;
+ case 222:
+#line 680 "parse.y"
+{
+ SrcList *pSrc = sqliteSrcListAppend(0, &yymsp[-1].minor.yy298, &yymsp[0].minor.yy298);
+ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-3].minor.yy242, 0, 0);
+ if( yygotominor.yy242 ) yygotominor.yy242->pSelect = sqliteSelectNew(0,pSrc,0,0,0,0,0,-1,0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy242->span,yymsp[0].minor.yy298.z?&yymsp[0].minor.yy298:&yymsp[-1].minor.yy298);
+}
+#line 3327 "parse.c"
+ /* No destructor defined for IN */
+ break;
+ case 223:
+#line 686 "parse.y"
+{
+ SrcList *pSrc = sqliteSrcListAppend(0, &yymsp[-1].minor.yy298, &yymsp[0].minor.yy298);
+ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-4].minor.yy242, 0, 0);
+ if( yygotominor.yy242 ) yygotominor.yy242->pSelect = sqliteSelectNew(0,pSrc,0,0,0,0,0,-1,0);
+ yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-4].minor.yy242->span,yymsp[0].minor.yy298.z?&yymsp[0].minor.yy298:&yymsp[-1].minor.yy298);
+}
+#line 3339 "parse.c"
+ /* No destructor defined for NOT */
+ /* No destructor defined for IN */
+ break;
+ case 224:
+#line 696 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_CASE, yymsp[-3].minor.yy242, yymsp[-1].minor.yy242, 0);
+ if( yygotominor.yy242 ) yygotominor.yy242->pList = yymsp[-2].minor.yy322;
+ sqliteExprSpan(yygotominor.yy242, &yymsp[-4].minor.yy0, &yymsp[0].minor.yy0);
+}
+#line 3350 "parse.c"
+ break;
+ case 225:
+#line 703 "parse.y"
+{
+ yygotominor.yy322 = sqliteExprListAppend(yymsp[-4].minor.yy322, yymsp[-2].minor.yy242, 0);
+ yygotominor.yy322 = sqliteExprListAppend(yygotominor.yy322, yymsp[0].minor.yy242, 0);
+}
+#line 3358 "parse.c"
+ /* No destructor defined for WHEN */
+ /* No destructor defined for THEN */
+ break;
+ case 226:
+#line 707 "parse.y"
+{
+ yygotominor.yy322 = sqliteExprListAppend(0, yymsp[-2].minor.yy242, 0);
+ yygotominor.yy322 = sqliteExprListAppend(yygotominor.yy322, yymsp[0].minor.yy242, 0);
+}
+#line 3368 "parse.c"
+ /* No destructor defined for WHEN */
+ /* No destructor defined for THEN */
+ break;
+ case 227:
+#line 712 "parse.y"
+{yygotominor.yy242 = yymsp[0].minor.yy242;}
+#line 3375 "parse.c"
+ /* No destructor defined for ELSE */
+ break;
+ case 228:
+#line 713 "parse.y"
+{yygotominor.yy242 = 0;}
+#line 3381 "parse.c"
+ break;
+ case 229:
+#line 715 "parse.y"
+{yygotominor.yy242 = yymsp[0].minor.yy242;}
+#line 3386 "parse.c"
+ break;
+ case 230:
+#line 716 "parse.y"
+{yygotominor.yy242 = 0;}
+#line 3391 "parse.c"
+ break;
+ case 231:
+#line 724 "parse.y"
+{yygotominor.yy322 = sqliteExprListAppend(yymsp[-2].minor.yy322,yymsp[0].minor.yy242,0);}
+#line 3396 "parse.c"
+ /* No destructor defined for COMMA */
+ break;
+ case 232:
+#line 725 "parse.y"
+{yygotominor.yy322 = sqliteExprListAppend(0,yymsp[0].minor.yy242,0);}
+#line 3402 "parse.c"
+ break;
+ case 233:
+#line 726 "parse.y"
+{yygotominor.yy242 = yymsp[0].minor.yy242;}
+#line 3407 "parse.c"
+ break;
+ case 234:
+#line 727 "parse.y"
+{yygotominor.yy242 = 0;}
+#line 3412 "parse.c"
+ break;
+ case 235:
+#line 732 "parse.y"
+{
+ SrcList *pSrc = sqliteSrcListAppend(0, &yymsp[-5].minor.yy298, &yymsp[-4].minor.yy298);
+ if( yymsp[-9].minor.yy372!=OE_None ) yymsp[-9].minor.yy372 = yymsp[0].minor.yy372;
+ if( yymsp[-9].minor.yy372==OE_Default) yymsp[-9].minor.yy372 = OE_Abort;
+ sqliteCreateIndex(pParse, &yymsp[-7].minor.yy298, pSrc, yymsp[-2].minor.yy320, yymsp[-9].minor.yy372, &yymsp[-10].minor.yy0, &yymsp[-1].minor.yy0);
+}
+#line 3422 "parse.c"
+ /* No destructor defined for INDEX */
+ /* No destructor defined for ON */
+ /* No destructor defined for LP */
+ break;
+ case 236:
+#line 740 "parse.y"
+{ yygotominor.yy372 = OE_Abort; }
+#line 3430 "parse.c"
+ /* No destructor defined for UNIQUE */
+ break;
+ case 237:
+#line 741 "parse.y"
+{ yygotominor.yy372 = OE_None; }
+#line 3436 "parse.c"
+ break;
+ case 238:
+#line 749 "parse.y"
+{yygotominor.yy320 = 0;}
+#line 3441 "parse.c"
+ break;
+ case 239:
+#line 750 "parse.y"
+{yygotominor.yy320 = yymsp[-1].minor.yy320;}
+#line 3446 "parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 240:
+#line 751 "parse.y"
+{yygotominor.yy320 = sqliteIdListAppend(yymsp[-2].minor.yy320,&yymsp[0].minor.yy298);}
+#line 3453 "parse.c"
+ /* No destructor defined for COMMA */
+ break;
+ case 241:
+#line 752 "parse.y"
+{yygotominor.yy320 = sqliteIdListAppend(0,&yymsp[0].minor.yy298);}
+#line 3459 "parse.c"
+ break;
+ case 242:
+#line 753 "parse.y"
+{yygotominor.yy298 = yymsp[-1].minor.yy298;}
+#line 3464 "parse.c"
+ /* No destructor defined for sortorder */
+ break;
+ case 243:
+#line 758 "parse.y"
+{
+ sqliteDropIndex(pParse, sqliteSrcListAppend(0,&yymsp[-1].minor.yy298,&yymsp[0].minor.yy298));
+}
+#line 3472 "parse.c"
+ /* No destructor defined for DROP */
+ /* No destructor defined for INDEX */
+ break;
+ case 244:
+#line 766 "parse.y"
+{sqliteCopy(pParse,sqliteSrcListAppend(0,&yymsp[-6].minor.yy298,&yymsp[-5].minor.yy298),&yymsp[-3].minor.yy298,&yymsp[0].minor.yy0,yymsp[-7].minor.yy372);}
+#line 3479 "parse.c"
+ /* No destructor defined for COPY */
+ /* No destructor defined for FROM */
+ /* No destructor defined for USING */
+ /* No destructor defined for DELIMITERS */
+ break;
+ case 245:
+#line 768 "parse.y"
+{sqliteCopy(pParse,sqliteSrcListAppend(0,&yymsp[-3].minor.yy298,&yymsp[-2].minor.yy298),&yymsp[0].minor.yy298,0,yymsp[-4].minor.yy372);}
+#line 3488 "parse.c"
+ /* No destructor defined for COPY */
+ /* No destructor defined for FROM */
+ break;
+ case 246:
+#line 772 "parse.y"
+{sqliteVacuum(pParse,0);}
+#line 3495 "parse.c"
+ /* No destructor defined for VACUUM */
+ break;
+ case 247:
+#line 773 "parse.y"
+{sqliteVacuum(pParse,&yymsp[0].minor.yy298);}
+#line 3501 "parse.c"
+ /* No destructor defined for VACUUM */
+ break;
+ case 248:
+#line 777 "parse.y"
+{sqlitePragma(pParse,&yymsp[-2].minor.yy298,&yymsp[0].minor.yy298,0);}
+#line 3507 "parse.c"
+ /* No destructor defined for PRAGMA */
+ /* No destructor defined for EQ */
+ break;
+ case 249:
+#line 778 "parse.y"
+{sqlitePragma(pParse,&yymsp[-2].minor.yy298,&yymsp[0].minor.yy0,0);}
+#line 3514 "parse.c"
+ /* No destructor defined for PRAGMA */
+ /* No destructor defined for EQ */
+ break;
+ case 250:
+#line 779 "parse.y"
+{sqlitePragma(pParse,&yymsp[-2].minor.yy298,&yymsp[0].minor.yy298,0);}
+#line 3521 "parse.c"
+ /* No destructor defined for PRAGMA */
+ /* No destructor defined for EQ */
+ break;
+ case 251:
+#line 780 "parse.y"
+{sqlitePragma(pParse,&yymsp[-2].minor.yy298,&yymsp[0].minor.yy298,1);}
+#line 3528 "parse.c"
+ /* No destructor defined for PRAGMA */
+ /* No destructor defined for EQ */
+ break;
+ case 252:
+#line 781 "parse.y"
+{sqlitePragma(pParse,&yymsp[-3].minor.yy298,&yymsp[-1].minor.yy298,0);}
+#line 3535 "parse.c"
+ /* No destructor defined for PRAGMA */
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 253:
+#line 782 "parse.y"
+{sqlitePragma(pParse,&yymsp[0].minor.yy298,&yymsp[0].minor.yy298,0);}
+#line 3543 "parse.c"
+ /* No destructor defined for PRAGMA */
+ break;
+ case 254:
+#line 783 "parse.y"
+{yygotominor.yy298 = yymsp[0].minor.yy298;}
+#line 3549 "parse.c"
+ /* No destructor defined for plus_opt */
+ break;
+ case 255:
+#line 784 "parse.y"
+{yygotominor.yy298 = yymsp[0].minor.yy298;}
+#line 3555 "parse.c"
+ /* No destructor defined for MINUS */
+ break;
+ case 256:
+#line 785 "parse.y"
+{yygotominor.yy298 = yymsp[0].minor.yy0;}
+#line 3561 "parse.c"
+ break;
+ case 257:
+#line 786 "parse.y"
+{yygotominor.yy298 = yymsp[0].minor.yy0;}
+#line 3566 "parse.c"
+ break;
+ case 258:
+ /* No destructor defined for PLUS */
+ break;
+ case 259:
+ break;
+ case 260:
+#line 792 "parse.y"
+{
+ Token all;
+ all.z = yymsp[-4].minor.yy0.z;
+ all.n = (yymsp[0].minor.yy0.z - yymsp[-4].minor.yy0.z) + yymsp[0].minor.yy0.n;
+ sqliteFinishTrigger(pParse, yymsp[-1].minor.yy19, &all);
+}
+#line 3581 "parse.c"
+ /* No destructor defined for trigger_decl */
+ /* No destructor defined for BEGIN */
+ break;
+ case 261:
+#line 800 "parse.y"
+{
+ SrcList *pTab = sqliteSrcListAppend(0, &yymsp[-3].minor.yy298, &yymsp[-2].minor.yy298);
+ sqliteBeginTrigger(pParse, &yymsp[-7].minor.yy298, yymsp[-6].minor.yy372, yymsp[-5].minor.yy290.a, yymsp[-5].minor.yy290.b, pTab, yymsp[-1].minor.yy372, yymsp[0].minor.yy182, yymsp[-9].minor.yy372);
+}
+#line 3591 "parse.c"
+ /* No destructor defined for TRIGGER */
+ /* No destructor defined for ON */
+ break;
+ case 262:
+#line 806 "parse.y"
+{ yygotominor.yy372 = TK_BEFORE; }
+#line 3598 "parse.c"
+ /* No destructor defined for BEFORE */
+ break;
+ case 263:
+#line 807 "parse.y"
+{ yygotominor.yy372 = TK_AFTER; }
+#line 3604 "parse.c"
+ /* No destructor defined for AFTER */
+ break;
+ case 264:
+#line 808 "parse.y"
+{ yygotominor.yy372 = TK_INSTEAD;}
+#line 3610 "parse.c"
+ /* No destructor defined for INSTEAD */
+ /* No destructor defined for OF */
+ break;
+ case 265:
+#line 809 "parse.y"
+{ yygotominor.yy372 = TK_BEFORE; }
+#line 3617 "parse.c"
+ break;
+ case 266:
+#line 813 "parse.y"
+{ yygotominor.yy290.a = TK_DELETE; yygotominor.yy290.b = 0; }
+#line 3622 "parse.c"
+ /* No destructor defined for DELETE */
+ break;
+ case 267:
+#line 814 "parse.y"
+{ yygotominor.yy290.a = TK_INSERT; yygotominor.yy290.b = 0; }
+#line 3628 "parse.c"
+ /* No destructor defined for INSERT */
+ break;
+ case 268:
+#line 815 "parse.y"
+{ yygotominor.yy290.a = TK_UPDATE; yygotominor.yy290.b = 0;}
+#line 3634 "parse.c"
+ /* No destructor defined for UPDATE */
+ break;
+ case 269:
+#line 816 "parse.y"
+{yygotominor.yy290.a = TK_UPDATE; yygotominor.yy290.b = yymsp[0].minor.yy320; }
+#line 3640 "parse.c"
+ /* No destructor defined for UPDATE */
+ /* No destructor defined for OF */
+ break;
+ case 270:
+#line 819 "parse.y"
+{ yygotominor.yy372 = TK_ROW; }
+#line 3647 "parse.c"
+ break;
+ case 271:
+#line 820 "parse.y"
+{ yygotominor.yy372 = TK_ROW; }
+#line 3652 "parse.c"
+ /* No destructor defined for FOR */
+ /* No destructor defined for EACH */
+ /* No destructor defined for ROW */
+ break;
+ case 272:
+#line 821 "parse.y"
+{ yygotominor.yy372 = TK_STATEMENT; }
+#line 3660 "parse.c"
+ /* No destructor defined for FOR */
+ /* No destructor defined for EACH */
+ /* No destructor defined for STATEMENT */
+ break;
+ case 273:
+#line 824 "parse.y"
+{ yygotominor.yy182 = 0; }
+#line 3668 "parse.c"
+ break;
+ case 274:
+#line 825 "parse.y"
+{ yygotominor.yy182 = yymsp[0].minor.yy242; }
+#line 3673 "parse.c"
+ /* No destructor defined for WHEN */
+ break;
+ case 275:
+#line 829 "parse.y"
+{
+ yymsp[-2].minor.yy19->pNext = yymsp[0].minor.yy19;
+ yygotominor.yy19 = yymsp[-2].minor.yy19;
+}
+#line 3682 "parse.c"
+ /* No destructor defined for SEMI */
+ break;
+ case 276:
+#line 833 "parse.y"
+{ yygotominor.yy19 = 0; }
+#line 3688 "parse.c"
+ break;
+ case 277:
+#line 839 "parse.y"
+{ yygotominor.yy19 = sqliteTriggerUpdateStep(&yymsp[-3].minor.yy298, yymsp[-1].minor.yy322, yymsp[0].minor.yy242, yymsp[-4].minor.yy372); }
+#line 3693 "parse.c"
+ /* No destructor defined for UPDATE */
+ /* No destructor defined for SET */
+ break;
+ case 278:
+#line 844 "parse.y"
+{yygotominor.yy19 = sqliteTriggerInsertStep(&yymsp[-5].minor.yy298, yymsp[-4].minor.yy320, yymsp[-1].minor.yy322, 0, yymsp[-7].minor.yy372);}
+#line 3700 "parse.c"
+ /* No destructor defined for INTO */
+ /* No destructor defined for VALUES */
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 279:
+#line 847 "parse.y"
+{yygotominor.yy19 = sqliteTriggerInsertStep(&yymsp[-2].minor.yy298, yymsp[-1].minor.yy320, 0, yymsp[0].minor.yy179, yymsp[-4].minor.yy372);}
+#line 3709 "parse.c"
+ /* No destructor defined for INTO */
+ break;
+ case 280:
+#line 851 "parse.y"
+{yygotominor.yy19 = sqliteTriggerDeleteStep(&yymsp[-1].minor.yy298, yymsp[0].minor.yy242);}
+#line 3715 "parse.c"
+ /* No destructor defined for DELETE */
+ /* No destructor defined for FROM */
+ break;
+ case 281:
+#line 854 "parse.y"
+{yygotominor.yy19 = sqliteTriggerSelectStep(yymsp[0].minor.yy179); }
+#line 3722 "parse.c"
+ break;
+ case 282:
+#line 857 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_RAISE, 0, 0, 0);
+ yygotominor.yy242->iColumn = OE_Ignore;
+ sqliteExprSpan(yygotominor.yy242, &yymsp[-3].minor.yy0, &yymsp[0].minor.yy0);
+}
+#line 3731 "parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for IGNORE */
+ break;
+ case 283:
+#line 862 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy298);
+ yygotominor.yy242->iColumn = OE_Rollback;
+ sqliteExprSpan(yygotominor.yy242, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
+}
+#line 3742 "parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for ROLLBACK */
+ /* No destructor defined for COMMA */
+ break;
+ case 284:
+#line 867 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy298);
+ yygotominor.yy242->iColumn = OE_Abort;
+ sqliteExprSpan(yygotominor.yy242, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
+}
+#line 3754 "parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for ABORT */
+ /* No destructor defined for COMMA */
+ break;
+ case 285:
+#line 872 "parse.y"
+{
+ yygotominor.yy242 = sqliteExpr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy298);
+ yygotominor.yy242->iColumn = OE_Fail;
+ sqliteExprSpan(yygotominor.yy242, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
+}
+#line 3766 "parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for FAIL */
+ /* No destructor defined for COMMA */
+ break;
+ case 286:
+#line 879 "parse.y"
+{
+ sqliteDropTrigger(pParse,sqliteSrcListAppend(0,&yymsp[-1].minor.yy298,&yymsp[0].minor.yy298));
+}
+#line 3776 "parse.c"
+ /* No destructor defined for DROP */
+ /* No destructor defined for TRIGGER */
+ break;
+ case 287:
+#line 884 "parse.y"
+{
+ sqliteAttach(pParse, &yymsp[-3].minor.yy298, &yymsp[-1].minor.yy298, &yymsp[0].minor.yy298);
+}
+#line 3785 "parse.c"
+ /* No destructor defined for ATTACH */
+ /* No destructor defined for database_kw_opt */
+ /* No destructor defined for AS */
+ break;
+ case 288:
+#line 888 "parse.y"
+{ yygotominor.yy298 = yymsp[0].minor.yy298; }
+#line 3793 "parse.c"
+ /* No destructor defined for USING */
+ break;
+ case 289:
+#line 889 "parse.y"
+{ yygotominor.yy298.z = 0; yygotominor.yy298.n = 0; }
+#line 3799 "parse.c"
+ break;
+ case 290:
+ /* No destructor defined for DATABASE */
+ break;
+ case 291:
+ break;
+ case 292:
+#line 895 "parse.y"
+{
+ sqliteDetach(pParse, &yymsp[0].minor.yy298);
+}
+#line 3811 "parse.c"
+ /* No destructor defined for DETACH */
+ /* No destructor defined for database_kw_opt */
+ break;
+ };
+ yygoto = yyRuleInfo[yyruleno].lhs;
+ yysize = yyRuleInfo[yyruleno].nrhs;
+ yypParser->yyidx -= yysize;
+ yyact = yy_find_reduce_action(yypParser,yygoto);
+ if( yyact < YYNSTATE ){
+ yy_shift(yypParser,yyact,yygoto,&yygotominor);
+ }else if( yyact == YYNSTATE + YYNRULE + 1 ){
+ yy_accept(yypParser);
+ }
+}
+
+/*
+** The following code executes when the parse fails
+*/
+static void yy_parse_failed(
+ yyParser *yypParser /* The parser */
+){
+ sqliteParserARG_FETCH;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
+ }
+#endif
+ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
+ /* Here code is inserted which will be executed whenever the
+ ** parser fails */
+ sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
+}
+
+/*
+** The following code executes when a syntax error first occurs.
+*/
+static void yy_syntax_error(
+ yyParser *yypParser, /* The parser */
+ int yymajor, /* The major type of the error token */
+ YYMINORTYPE yyminor /* The minor type of the error token */
+){
+ sqliteParserARG_FETCH;
+#define TOKEN (yyminor.yy0)
+#line 23 "parse.y"
+
+ if( pParse->zErrMsg==0 ){
+ if( TOKEN.z[0] ){
+ sqliteErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
+ }else{
+ sqliteErrorMsg(pParse, "incomplete SQL statement");
+ }
+ }
+
+#line 3865 "parse.c"
+ sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
+}
+
+/*
+** The following is executed when the parser accepts
+*/
+static void yy_accept(
+ yyParser *yypParser /* The parser */
+){
+ sqliteParserARG_FETCH;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
+ }
+#endif
+ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
+ /* Here code is inserted which will be executed whenever the
+ ** parser accepts */
+ sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
+}
+
+/* The main parser program.
+** The first argument is a pointer to a structure obtained from
+** "sqliteParserAlloc" which describes the current state of the parser.
+** The second argument is the major token number. The third is
+** the minor token. The fourth optional argument is whatever the
+** user wants (and specified in the grammar) and is available for
+** use by the action routines.
+**
+** Inputs:
+** <ul>
+** <li> A pointer to the parser (an opaque structure.)
+** <li> The major token number.
+** <li> The minor token number.
+** <li> An option argument of a grammar-specified type.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+void sqliteParser(
+ void *yyp, /* The parser */
+ int yymajor, /* The major token code number */
+ sqliteParserTOKENTYPE yyminor /* The value for the token */
+ sqliteParserARG_PDECL /* Optional %extra_argument parameter */
+){
+ YYMINORTYPE yyminorunion;
+ int yyact; /* The parser action. */
+ int yyendofinput; /* True if we are at the end of input */
+ int yyerrorhit = 0; /* True if yymajor has invoked an error */
+ yyParser *yypParser; /* The parser */
+
+ /* (re)initialize the parser, if necessary */
+ yypParser = (yyParser*)yyp;
+ if( yypParser->yyidx<0 ){
+ if( yymajor==0 ) return;
+ yypParser->yyidx = 0;
+ yypParser->yyerrcnt = -1;
+ yypParser->yystack[0].stateno = 0;
+ yypParser->yystack[0].major = 0;
+ }
+ yyminorunion.yy0 = yyminor;
+ yyendofinput = (yymajor==0);
+ sqliteParserARG_STORE;
+
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
+ }
+#endif
+
+ do{
+ yyact = yy_find_shift_action(yypParser,yymajor);
+ if( yyact<YYNSTATE ){
+ yy_shift(yypParser,yyact,yymajor,&yyminorunion);
+ yypParser->yyerrcnt--;
+ if( yyendofinput && yypParser->yyidx>=0 ){
+ yymajor = 0;
+ }else{
+ yymajor = YYNOCODE;
+ }
+ }else if( yyact < YYNSTATE + YYNRULE ){
+ yy_reduce(yypParser,yyact-YYNSTATE);
+ }else if( yyact == YY_ERROR_ACTION ){
+ int yymx;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
+ }
+#endif
+#ifdef YYERRORSYMBOL
+ /* A syntax error has occurred.
+ ** The response to an error depends upon whether or not the
+ ** grammar defines an error token "ERROR".
+ **
+ ** This is what we do if the grammar does define ERROR:
+ **
+ ** * Call the %syntax_error function.
+ **
+ ** * Begin popping the stack until we enter a state where
+ ** it is legal to shift the error symbol, then shift
+ ** the error symbol.
+ **
+ ** * Set the error count to three.
+ **
+ ** * Begin accepting and shifting new tokens. No new error
+ ** processing will occur until three tokens have been
+ ** shifted successfully.
+ **
+ */
+ if( yypParser->yyerrcnt<0 ){
+ yy_syntax_error(yypParser,yymajor,yyminorunion);
+ }
+ yymx = yypParser->yystack[yypParser->yyidx].major;
+ if( yymx==YYERRORSYMBOL || yyerrorhit ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sDiscard input token %s\n",
+ yyTracePrompt,yyTokenName[yymajor]);
+ }
+#endif
+ yy_destructor(yymajor,&yyminorunion);
+ yymajor = YYNOCODE;
+ }else{
+ while(
+ yypParser->yyidx >= 0 &&
+ yymx != YYERRORSYMBOL &&
+ (yyact = yy_find_shift_action(yypParser,YYERRORSYMBOL)) >= YYNSTATE
+ ){
+ yy_pop_parser_stack(yypParser);
+ }
+ if( yypParser->yyidx < 0 || yymajor==0 ){
+ yy_destructor(yymajor,&yyminorunion);
+ yy_parse_failed(yypParser);
+ yymajor = YYNOCODE;
+ }else if( yymx!=YYERRORSYMBOL ){
+ YYMINORTYPE u2;
+ u2.YYERRSYMDT = 0;
+ yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2);
+ }
+ }
+ yypParser->yyerrcnt = 3;
+ yyerrorhit = 1;
+#else /* YYERRORSYMBOL is not defined */
+ /* This is what we do if the grammar does not define ERROR:
+ **
+ ** * Report an error message, and throw away the input token.
+ **
+ ** * If the input token is $, then fail the parse.
+ **
+ ** As before, subsequent error messages are suppressed until
+ ** three input tokens have been successfully shifted.
+ */
+ if( yypParser->yyerrcnt<=0 ){
+ yy_syntax_error(yypParser,yymajor,yyminorunion);
+ }
+ yypParser->yyerrcnt = 3;
+ yy_destructor(yymajor,&yyminorunion);
+ if( yyendofinput ){
+ yy_parse_failed(yypParser);
+ }
+ yymajor = YYNOCODE;
+#endif
+ }else{
+ yy_accept(yypParser);
+ yymajor = YYNOCODE;
+ }
+ }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
+ return;
+}
diff --git a/src/3rdparty/sqlite/parse.h b/src/3rdparty/sqlite/parse.h
new file mode 100644
index 0000000..188a336
--- /dev/null
+++ b/src/3rdparty/sqlite/parse.h
@@ -0,0 +1,130 @@
+#define TK_END_OF_FILE 1
+#define TK_ILLEGAL 2
+#define TK_SPACE 3
+#define TK_UNCLOSED_STRING 4
+#define TK_COMMENT 5
+#define TK_FUNCTION 6
+#define TK_COLUMN 7
+#define TK_AGG_FUNCTION 8
+#define TK_SEMI 9
+#define TK_EXPLAIN 10
+#define TK_BEGIN 11
+#define TK_TRANSACTION 12
+#define TK_COMMIT 13
+#define TK_END 14
+#define TK_ROLLBACK 15
+#define TK_CREATE 16
+#define TK_TABLE 17
+#define TK_TEMP 18
+#define TK_LP 19
+#define TK_RP 20
+#define TK_AS 21
+#define TK_COMMA 22
+#define TK_ID 23
+#define TK_ABORT 24
+#define TK_AFTER 25
+#define TK_ASC 26
+#define TK_ATTACH 27
+#define TK_BEFORE 28
+#define TK_CASCADE 29
+#define TK_CLUSTER 30
+#define TK_CONFLICT 31
+#define TK_COPY 32
+#define TK_DATABASE 33
+#define TK_DEFERRED 34
+#define TK_DELIMITERS 35
+#define TK_DESC 36
+#define TK_DETACH 37
+#define TK_EACH 38
+#define TK_FAIL 39
+#define TK_FOR 40
+#define TK_GLOB 41
+#define TK_IGNORE 42
+#define TK_IMMEDIATE 43
+#define TK_INITIALLY 44
+#define TK_INSTEAD 45
+#define TK_LIKE 46
+#define TK_MATCH 47
+#define TK_KEY 48
+#define TK_OF 49
+#define TK_OFFSET 50
+#define TK_PRAGMA 51
+#define TK_RAISE 52
+#define TK_REPLACE 53
+#define TK_RESTRICT 54
+#define TK_ROW 55
+#define TK_STATEMENT 56
+#define TK_TRIGGER 57
+#define TK_VACUUM 58
+#define TK_VIEW 59
+#define TK_OR 60
+#define TK_AND 61
+#define TK_NOT 62
+#define TK_EQ 63
+#define TK_NE 64
+#define TK_ISNULL 65
+#define TK_NOTNULL 66
+#define TK_IS 67
+#define TK_BETWEEN 68
+#define TK_IN 69
+#define TK_GT 70
+#define TK_GE 71
+#define TK_LT 72
+#define TK_LE 73
+#define TK_BITAND 74
+#define TK_BITOR 75
+#define TK_LSHIFT 76
+#define TK_RSHIFT 77
+#define TK_PLUS 78
+#define TK_MINUS 79
+#define TK_STAR 80
+#define TK_SLASH 81
+#define TK_REM 82
+#define TK_CONCAT 83
+#define TK_UMINUS 84
+#define TK_UPLUS 85
+#define TK_BITNOT 86
+#define TK_STRING 87
+#define TK_JOIN_KW 88
+#define TK_INTEGER 89
+#define TK_CONSTRAINT 90
+#define TK_DEFAULT 91
+#define TK_FLOAT 92
+#define TK_NULL 93
+#define TK_PRIMARY 94
+#define TK_UNIQUE 95
+#define TK_CHECK 96
+#define TK_REFERENCES 97
+#define TK_COLLATE 98
+#define TK_ON 99
+#define TK_DELETE 100
+#define TK_UPDATE 101
+#define TK_INSERT 102
+#define TK_SET 103
+#define TK_DEFERRABLE 104
+#define TK_FOREIGN 105
+#define TK_DROP 106
+#define TK_UNION 107
+#define TK_ALL 108
+#define TK_INTERSECT 109
+#define TK_EXCEPT 110
+#define TK_SELECT 111
+#define TK_DISTINCT 112
+#define TK_DOT 113
+#define TK_FROM 114
+#define TK_JOIN 115
+#define TK_USING 116
+#define TK_ORDER 117
+#define TK_BY 118
+#define TK_GROUP 119
+#define TK_HAVING 120
+#define TK_LIMIT 121
+#define TK_WHERE 122
+#define TK_INTO 123
+#define TK_VALUES 124
+#define TK_VARIABLE 125
+#define TK_CASE 126
+#define TK_WHEN 127
+#define TK_THEN 128
+#define TK_ELSE 129
+#define TK_INDEX 130
diff --git a/src/3rdparty/sqlite/pragma.c b/src/3rdparty/sqlite/pragma.c
new file mode 100644
index 0000000..d9cf635
--- /dev/null
+++ b/src/3rdparty/sqlite/pragma.c
@@ -0,0 +1,699 @@
+/*
+** 2003 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the PRAGMA command.
+**
+** $Id: pragma.c,v 1.18 2004/02/22 20:05:01 drh Exp $
+*/
+#include "sqliteInt.h"
+#include <ctype.h>
+
+/*
+** Interpret the given string as a boolean value.
+*/
+static int getBoolean(const char *z){
+ static char *azTrue[] = { "yes", "on", "true" };
+ int i;
+ if( z[0]==0 ) return 0;
+ if( isdigit(z[0]) || (z[0]=='-' && isdigit(z[1])) ){
+ return atoi(z);
+ }
+ for(i=0; i<sizeof(azTrue)/sizeof(azTrue[0]); i++){
+ if( sqliteStrICmp(z,azTrue[i])==0 ) return 1;
+ }
+ return 0;
+}
+
+/*
+** Interpret the given string as a safety level. Return 0 for OFF,
+** 1 for ON or NORMAL and 2 for FULL. Return 1 for an empty or
+** unrecognized string argument.
+**
+** Note that the values returned are one less that the values that
+** should be passed into sqliteBtreeSetSafetyLevel(). The is done
+** to support legacy SQL code. The safety level used to be boolean
+** and older scripts may have used numbers 0 for OFF and 1 for ON.
+*/
+static int getSafetyLevel(char *z){
+ static const struct {
+ const char *zWord;
+ int val;
+ } aKey[] = {
+ { "no", 0 },
+ { "off", 0 },
+ { "false", 0 },
+ { "yes", 1 },
+ { "on", 1 },
+ { "true", 1 },
+ { "full", 2 },
+ };
+ int i;
+ if( z[0]==0 ) return 1;
+ if( isdigit(z[0]) || (z[0]=='-' && isdigit(z[1])) ){
+ return atoi(z);
+ }
+ for(i=0; i<sizeof(aKey)/sizeof(aKey[0]); i++){
+ if( sqliteStrICmp(z,aKey[i].zWord)==0 ) return aKey[i].val;
+ }
+ return 1;
+}
+
+/*
+** Interpret the given string as a temp db location. Return 1 for file
+** backed temporary databases, 2 for the Red-Black tree in memory database
+** and 0 to use the compile-time default.
+*/
+static int getTempStore(char *z){
+ if( z[0]>='0' || z[0]<='2' ){
+ return z[0] - '0';
+ }else if( sqliteStrICmp(z, "file")==0 ){
+ return 1;
+ }else if( sqliteStrICmp(z, "memory")==0 ){
+ return 2;
+ }else{
+ return 0;
+ }
+}
+
+/*
+** Check to see if zRight and zLeft refer to a pragma that queries
+** or changes one of the flags in db->flags. Return 1 if so and 0 if not.
+** Also, implement the pragma.
+*/
+static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
+ static const struct {
+ const char *zName; /* Name of the pragma */
+ int mask; /* Mask for the db->flags value */
+ } aPragma[] = {
+ { "vdbe_trace", SQLITE_VdbeTrace },
+ { "full_column_names", SQLITE_FullColNames },
+ { "short_column_names", SQLITE_ShortColNames },
+ { "show_datatypes", SQLITE_ReportTypes },
+ { "count_changes", SQLITE_CountRows },
+ { "empty_result_callbacks", SQLITE_NullCallback },
+ };
+ int i;
+ for(i=0; i<sizeof(aPragma)/sizeof(aPragma[0]); i++){
+ if( sqliteStrICmp(zLeft, aPragma[i].zName)==0 ){
+ sqlite *db = pParse->db;
+ Vdbe *v;
+ if( strcmp(zLeft,zRight)==0 && (v = sqliteGetVdbe(pParse))!=0 ){
+ sqliteVdbeOp3(v, OP_ColumnName, 0, 1, aPragma[i].zName, P3_STATIC);
+ sqliteVdbeOp3(v, OP_ColumnName, 1, 0, "boolean", P3_STATIC);
+ sqliteVdbeCode(v, OP_Integer, (db->flags & aPragma[i].mask)!=0, 0,
+ OP_Callback, 1, 0,
+ 0);
+ }else if( getBoolean(zRight) ){
+ db->flags |= aPragma[i].mask;
+ }else{
+ db->flags &= ~aPragma[i].mask;
+ }
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Process a pragma statement.
+**
+** Pragmas are of this form:
+**
+** PRAGMA id = value
+**
+** The identifier might also be a string. The value is a string, and
+** identifier, or a number. If minusFlag is true, then the value is
+** a number that was preceded by a minus sign.
+*/
+void sqlitePragma(Parse *pParse, Token *pLeft, Token *pRight, int minusFlag){
+ char *zLeft = 0;
+ char *zRight = 0;
+ sqlite *db = pParse->db;
+ Vdbe *v = sqliteGetVdbe(pParse);
+ if( v==0 ) return;
+
+ zLeft = sqliteStrNDup(pLeft->z, pLeft->n);
+ sqliteDequote(zLeft);
+ if( minusFlag ){
+ zRight = 0;
+ sqliteSetNString(&zRight, "-", 1, pRight->z, pRight->n, 0);
+ }else{
+ zRight = sqliteStrNDup(pRight->z, pRight->n);
+ sqliteDequote(zRight);
+ }
+ if( sqliteAuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, 0) ){
+ sqliteFree(zLeft);
+ sqliteFree(zRight);
+ return;
+ }
+
+ /*
+ ** PRAGMA default_cache_size
+ ** PRAGMA default_cache_size=N
+ **
+ ** The first form reports the current persistent setting for the
+ ** page cache size. The value returned is the maximum number of
+ ** pages in the page cache. The second form sets both the current
+ ** page cache size value and the persistent page cache size value
+ ** stored in the database file.
+ **
+ ** The default cache size is stored in meta-value 2 of page 1 of the
+ ** database file. The cache size is actually the absolute value of
+ ** this memory location. The sign of meta-value 2 determines the
+ ** synchronous setting. A negative value means synchronous is off
+ ** and a positive value means synchronous is on.
+ */
+ if( sqliteStrICmp(zLeft,"default_cache_size")==0 ){
+ static VdbeOpList getCacheSize[] = {
+ { OP_ReadCookie, 0, 2, 0},
+ { OP_AbsValue, 0, 0, 0},
+ { OP_Dup, 0, 0, 0},
+ { OP_Integer, 0, 0, 0},
+ { OP_Ne, 0, 6, 0},
+ { OP_Integer, 0, 0, 0}, /* 5 */
+ { OP_ColumnName, 0, 1, "cache_size"},
+ { OP_Callback, 1, 0, 0},
+ };
+ int addr;
+ if( pRight->z==pLeft->z ){
+ addr = sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
+ sqliteVdbeChangeP1(v, addr+5, MAX_PAGES);
+ }else{
+ int size = atoi(zRight);
+ if( size<0 ) size = -size;
+ sqliteBeginWriteOperation(pParse, 0, 0);
+ sqliteVdbeAddOp(v, OP_Integer, size, 0);
+ sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2);
+ addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0);
+ sqliteVdbeAddOp(v, OP_Ge, 0, addr+3);
+ sqliteVdbeAddOp(v, OP_Negative, 0, 0);
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 2);
+ sqliteEndWriteOperation(pParse);
+ db->cache_size = db->cache_size<0 ? -size : size;
+ sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
+ }
+ }else
+
+ /*
+ ** PRAGMA cache_size
+ ** PRAGMA cache_size=N
+ **
+ ** The first form reports the current local setting for the
+ ** page cache size. The local setting can be different from
+ ** the persistent cache size value that is stored in the database
+ ** file itself. The value returned is the maximum number of
+ ** pages in the page cache. The second form sets the local
+ ** page cache size value. It does not change the persistent
+ ** cache size stored on the disk so the cache size will revert
+ ** to its default value when the database is closed and reopened.
+ ** N should be a positive integer.
+ */
+ if( sqliteStrICmp(zLeft,"cache_size")==0 ){
+ static VdbeOpList getCacheSize[] = {
+ { OP_ColumnName, 0, 1, "cache_size"},
+ { OP_Callback, 1, 0, 0},
+ };
+ if( pRight->z==pLeft->z ){
+ int size = db->cache_size;;
+ if( size<0 ) size = -size;
+ sqliteVdbeAddOp(v, OP_Integer, size, 0);
+ sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
+ }else{
+ int size = atoi(zRight);
+ if( size<0 ) size = -size;
+ if( db->cache_size<0 ) size = -size;
+ db->cache_size = size;
+ sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
+ }
+ }else
+
+ /*
+ ** PRAGMA default_synchronous
+ ** PRAGMA default_synchronous=ON|OFF|NORMAL|FULL
+ **
+ ** The first form returns the persistent value of the "synchronous" setting
+ ** that is stored in the database. This is the synchronous setting that
+ ** is used whenever the database is opened unless overridden by a separate
+ ** "synchronous" pragma. The second form changes the persistent and the
+ ** local synchronous setting to the value given.
+ **
+ ** If synchronous is OFF, SQLite does not attempt any fsync() systems calls
+ ** to make sure data is committed to disk. Write operations are very fast,
+ ** but a power failure can leave the database in an inconsistent state.
+ ** If synchronous is ON or NORMAL, SQLite will do an fsync() system call to
+ ** make sure data is being written to disk. The risk of corruption due to
+ ** a power loss in this mode is negligible but non-zero. If synchronous
+ ** is FULL, extra fsync()s occur to reduce the risk of corruption to near
+ ** zero, but with a write performance penalty. The default mode is NORMAL.
+ */
+ if( sqliteStrICmp(zLeft,"default_synchronous")==0 ){
+ static VdbeOpList getSync[] = {
+ { OP_ColumnName, 0, 1, "synchronous"},
+ { OP_ReadCookie, 0, 3, 0},
+ { OP_Dup, 0, 0, 0},
+ { OP_If, 0, 0, 0}, /* 3 */
+ { OP_ReadCookie, 0, 2, 0},
+ { OP_Integer, 0, 0, 0},
+ { OP_Lt, 0, 5, 0},
+ { OP_AddImm, 1, 0, 0},
+ { OP_Callback, 1, 0, 0},
+ { OP_Halt, 0, 0, 0},
+ { OP_AddImm, -1, 0, 0}, /* 10 */
+ { OP_Callback, 1, 0, 0}
+ };
+ if( pRight->z==pLeft->z ){
+ int addr = sqliteVdbeAddOpList(v, ArraySize(getSync), getSync);
+ sqliteVdbeChangeP2(v, addr+3, addr+10);
+ }else{
+ int addr;
+ int size = db->cache_size;
+ if( size<0 ) size = -size;
+ sqliteBeginWriteOperation(pParse, 0, 0);
+ sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2);
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0);
+ sqliteVdbeAddOp(v, OP_Ne, 0, addr+3);
+ sqliteVdbeAddOp(v, OP_AddImm, MAX_PAGES, 0);
+ sqliteVdbeAddOp(v, OP_AbsValue, 0, 0);
+ db->safety_level = getSafetyLevel(zRight)+1;
+ if( db->safety_level==1 ){
+ sqliteVdbeAddOp(v, OP_Negative, 0, 0);
+ size = -size;
+ }
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 2);
+ sqliteVdbeAddOp(v, OP_Integer, db->safety_level, 0);
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 3);
+ sqliteEndWriteOperation(pParse);
+ db->cache_size = size;
+ sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
+ sqliteBtreeSetSafetyLevel(db->aDb[0].pBt, db->safety_level);
+ }
+ }else
+
+ /*
+ ** PRAGMA synchronous
+ ** PRAGMA synchronous=OFF|ON|NORMAL|FULL
+ **
+ ** Return or set the local value of the synchronous flag. Changing
+ ** the local value does not make changes to the disk file and the
+ ** default value will be restored the next time the database is
+ ** opened.
+ */
+ if( sqliteStrICmp(zLeft,"synchronous")==0 ){
+ static VdbeOpList getSync[] = {
+ { OP_ColumnName, 0, 1, "synchronous"},
+ { OP_Callback, 1, 0, 0},
+ };
+ if( pRight->z==pLeft->z ){
+ sqliteVdbeAddOp(v, OP_Integer, db->safety_level-1, 0);
+ sqliteVdbeAddOpList(v, ArraySize(getSync), getSync);
+ }else{
+ int size = db->cache_size;
+ if( size<0 ) size = -size;
+ db->safety_level = getSafetyLevel(zRight)+1;
+ if( db->safety_level==1 ) size = -size;
+ db->cache_size = size;
+ sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
+ sqliteBtreeSetSafetyLevel(db->aDb[0].pBt, db->safety_level);
+ }
+ }else
+
+#ifndef NDEBUG
+ if( sqliteStrICmp(zLeft, "trigger_overhead_test")==0 ){
+ if( getBoolean(zRight) ){
+ always_code_trigger_setup = 1;
+ }else{
+ always_code_trigger_setup = 0;
+ }
+ }else
+#endif
+
+ if( flagPragma(pParse, zLeft, zRight) ){
+ /* The flagPragma() call also generates any necessary code */
+ }else
+
+ if( sqliteStrICmp(zLeft, "table_info")==0 ){
+ Table *pTab;
+ pTab = sqliteFindTable(db, zRight, 0);
+ if( pTab ){
+ static VdbeOpList tableInfoPreface[] = {
+ { OP_ColumnName, 0, 0, "cid"},
+ { OP_ColumnName, 1, 0, "name"},
+ { OP_ColumnName, 2, 0, "type"},
+ { OP_ColumnName, 3, 0, "notnull"},
+ { OP_ColumnName, 4, 0, "dflt_value"},
+ { OP_ColumnName, 5, 1, "pk"},
+ };
+ int i;
+ sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface);
+ sqliteViewGetColumnNames(pParse, pTab);
+ for(i=0; i<pTab->nCol; i++){
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
+ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zName, 0);
+ sqliteVdbeOp3(v, OP_String, 0, 0,
+ pTab->aCol[i].zType ? pTab->aCol[i].zType : "numeric", 0);
+ sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].notNull, 0);
+ sqliteVdbeOp3(v, OP_String, 0, 0,
+ pTab->aCol[i].zDflt, P3_STATIC);
+ sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].isPrimKey, 0);
+ sqliteVdbeAddOp(v, OP_Callback, 6, 0);
+ }
+ }
+ }else
+
+ if( sqliteStrICmp(zLeft, "index_info")==0 ){
+ Index *pIdx;
+ Table *pTab;
+ pIdx = sqliteFindIndex(db, zRight, 0);
+ if( pIdx ){
+ static VdbeOpList tableInfoPreface[] = {
+ { OP_ColumnName, 0, 0, "seqno"},
+ { OP_ColumnName, 1, 0, "cid"},
+ { OP_ColumnName, 2, 1, "name"},
+ };
+ int i;
+ pTab = pIdx->pTable;
+ sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface);
+ for(i=0; i<pIdx->nColumn; i++){
+ int cnum = pIdx->aiColumn[i];
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
+ sqliteVdbeAddOp(v, OP_Integer, cnum, 0);
+ assert( pTab->nCol>cnum );
+ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[cnum].zName, 0);
+ sqliteVdbeAddOp(v, OP_Callback, 3, 0);
+ }
+ }
+ }else
+
+ if( sqliteStrICmp(zLeft, "index_list")==0 ){
+ Index *pIdx;
+ Table *pTab;
+ pTab = sqliteFindTable(db, zRight, 0);
+ if( pTab ){
+ v = sqliteGetVdbe(pParse);
+ pIdx = pTab->pIndex;
+ }
+ if( pTab && pIdx ){
+ int i = 0;
+ static VdbeOpList indexListPreface[] = {
+ { OP_ColumnName, 0, 0, "seq"},
+ { OP_ColumnName, 1, 0, "name"},
+ { OP_ColumnName, 2, 1, "unique"},
+ };
+
+ sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
+ while(pIdx){
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
+ sqliteVdbeOp3(v, OP_String, 0, 0, pIdx->zName, 0);
+ sqliteVdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0);
+ sqliteVdbeAddOp(v, OP_Callback, 3, 0);
+ ++i;
+ pIdx = pIdx->pNext;
+ }
+ }
+ }else
+
+ if( sqliteStrICmp(zLeft, "foreign_key_list")==0 ){
+ FKey *pFK;
+ Table *pTab;
+ pTab = sqliteFindTable(db, zRight, 0);
+ if( pTab ){
+ v = sqliteGetVdbe(pParse);
+ pFK = pTab->pFKey;
+ }
+ if( pTab && pFK ){
+ int i = 0;
+ static VdbeOpList indexListPreface[] = {
+ { OP_ColumnName, 0, 0, "id"},
+ { OP_ColumnName, 1, 0, "seq"},
+ { OP_ColumnName, 2, 0, "table"},
+ { OP_ColumnName, 3, 0, "from"},
+ { OP_ColumnName, 4, 1, "to"},
+ };
+
+ sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
+ while(pFK){
+ int j;
+ for(j=0; j<pFK->nCol; j++){
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
+ sqliteVdbeAddOp(v, OP_Integer, j, 0);
+ sqliteVdbeOp3(v, OP_String, 0, 0, pFK->zTo, 0);
+ sqliteVdbeOp3(v, OP_String, 0, 0,
+ pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
+ sqliteVdbeOp3(v, OP_String, 0, 0, pFK->aCol[j].zCol, 0);
+ sqliteVdbeAddOp(v, OP_Callback, 5, 0);
+ }
+ ++i;
+ pFK = pFK->pNextFrom;
+ }
+ }
+ }else
+
+ if( sqliteStrICmp(zLeft, "database_list")==0 ){
+ int i;
+ static VdbeOpList indexListPreface[] = {
+ { OP_ColumnName, 0, 0, "seq"},
+ { OP_ColumnName, 1, 0, "name"},
+ { OP_ColumnName, 2, 1, "file"},
+ };
+
+ sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
+ for(i=0; i<db->nDb; i++){
+ if( db->aDb[i].pBt==0 ) continue;
+ assert( db->aDb[i].zName!=0 );
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
+ sqliteVdbeOp3(v, OP_String, 0, 0, db->aDb[i].zName, 0);
+ sqliteVdbeOp3(v, OP_String, 0, 0,
+ sqliteBtreeGetFilename(db->aDb[i].pBt), 0);
+ sqliteVdbeAddOp(v, OP_Callback, 3, 0);
+ }
+ }else
+
+
+ /*
+ ** PRAGMA temp_store
+ ** PRAGMA temp_store = "default"|"memory"|"file"
+ **
+ ** Return or set the local value of the temp_store flag. Changing
+ ** the local value does not make changes to the disk file and the default
+ ** value will be restored the next time the database is opened.
+ **
+ ** Note that it is possible for the library compile-time options to
+ ** override this setting
+ */
+ if( sqliteStrICmp(zLeft, "temp_store")==0 ){
+ static VdbeOpList getTmpDbLoc[] = {
+ { OP_ColumnName, 0, 1, "temp_store"},
+ { OP_Callback, 1, 0, 0},
+ };
+ if( pRight->z==pLeft->z ){
+ sqliteVdbeAddOp(v, OP_Integer, db->temp_store, 0);
+ sqliteVdbeAddOpList(v, ArraySize(getTmpDbLoc), getTmpDbLoc);
+ }else{
+ if (&db->aDb[1].pBt != 0) {
+ sqliteErrorMsg(pParse, "The temporary database already exists - "
+ "its location cannot now be changed");
+ } else {
+ db->temp_store = getTempStore(zRight);
+ }
+ }
+ }else
+
+ /*
+ ** PRAGMA default_temp_store
+ ** PRAGMA default_temp_store = "default"|"memory"|"file"
+ **
+ ** Return or set the value of the persistent temp_store flag (as
+ ** well as the value currently in force).
+ **
+ ** Note that it is possible for the library compile-time options to
+ ** override this setting
+ */
+ if( sqliteStrICmp(zLeft, "default_temp_store")==0 ){
+ static VdbeOpList getTmpDbLoc[] = {
+ { OP_ColumnName, 0, 1, "temp_store"},
+ { OP_ReadCookie, 0, 5, 0},
+ { OP_Callback, 1, 0, 0}};
+ if( pRight->z==pLeft->z ){
+ sqliteVdbeAddOpList(v, ArraySize(getTmpDbLoc), getTmpDbLoc);
+ }else{
+ if (&db->aDb[1].pBt != 0) {
+ sqliteErrorMsg(pParse, "The temporary database already exists - "
+ "its location cannot now be changed");
+ } else {
+ sqliteBeginWriteOperation(pParse, 0, 0);
+ db->temp_store = getTempStore(zRight);
+ sqliteVdbeAddOp(v, OP_Integer, db->temp_store, 0);
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 5);
+ sqliteEndWriteOperation(pParse);
+ }
+ }
+ }else
+
+#ifndef NDEBUG
+ if( sqliteStrICmp(zLeft, "parser_trace")==0 ){
+ extern void sqliteParserTrace(FILE*, char *);
+ if( getBoolean(zRight) ){
+ sqliteParserTrace(stdout, "parser: ");
+ }else{
+ sqliteParserTrace(0, 0);
+ }
+ }else
+#endif
+
+ if( sqliteStrICmp(zLeft, "integrity_check")==0 ){
+ int i, j, addr;
+
+ /* Code that initializes the integrity check program. Set the
+ ** error count 0
+ */
+ static VdbeOpList initCode[] = {
+ { OP_Integer, 0, 0, 0},
+ { OP_MemStore, 0, 1, 0},
+ { OP_ColumnName, 0, 1, "integrity_check"},
+ };
+
+ /* Code to do an BTree integrity check on a single database file.
+ */
+ static VdbeOpList checkDb[] = {
+ { OP_SetInsert, 0, 0, "2"},
+ { OP_Integer, 0, 0, 0}, /* 1 */
+ { OP_OpenRead, 0, 2, 0},
+ { OP_Rewind, 0, 7, 0}, /* 3 */
+ { OP_Column, 0, 3, 0}, /* 4 */
+ { OP_SetInsert, 0, 0, 0},
+ { OP_Next, 0, 4, 0}, /* 6 */
+ { OP_IntegrityCk, 0, 0, 0}, /* 7 */
+ { OP_Dup, 0, 1, 0},
+ { OP_String, 0, 0, "ok"},
+ { OP_StrEq, 0, 12, 0}, /* 10 */
+ { OP_MemIncr, 0, 0, 0},
+ { OP_String, 0, 0, "*** in database "},
+ { OP_String, 0, 0, 0}, /* 13 */
+ { OP_String, 0, 0, " ***\n"},
+ { OP_Pull, 3, 0, 0},
+ { OP_Concat, 4, 1, 0},
+ { OP_Callback, 1, 0, 0},
+ };
+
+ /* Code that appears at the end of the integrity check. If no error
+ ** messages have been generated, output OK. Otherwise output the
+ ** error message
+ */
+ static VdbeOpList endCode[] = {
+ { OP_MemLoad, 0, 0, 0},
+ { OP_Integer, 0, 0, 0},
+ { OP_Ne, 0, 0, 0}, /* 2 */
+ { OP_String, 0, 0, "ok"},
+ { OP_Callback, 1, 0, 0},
+ };
+
+ /* Initialize the VDBE program */
+ sqliteVdbeAddOpList(v, ArraySize(initCode), initCode);
+
+ /* Do an integrity check on each database file */
+ for(i=0; i<db->nDb; i++){
+ HashElem *x;
+
+ /* Do an integrity check of the B-Tree
+ */
+ addr = sqliteVdbeAddOpList(v, ArraySize(checkDb), checkDb);
+ sqliteVdbeChangeP1(v, addr+1, i);
+ sqliteVdbeChangeP2(v, addr+3, addr+7);
+ sqliteVdbeChangeP2(v, addr+6, addr+4);
+ sqliteVdbeChangeP2(v, addr+7, i);
+ sqliteVdbeChangeP2(v, addr+10, addr+ArraySize(checkDb));
+ sqliteVdbeChangeP3(v, addr+13, db->aDb[i].zName, P3_STATIC);
+
+ /* Make sure all the indices are constructed correctly.
+ */
+ sqliteCodeVerifySchema(pParse, i);
+ for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){
+ Table *pTab = sqliteHashData(x);
+ Index *pIdx;
+ int loopTop;
+
+ if( pTab->pIndex==0 ) continue;
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
+ sqliteVdbeOp3(v, OP_OpenRead, 1, pTab->tnum, pTab->zName, 0);
+ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
+ if( pIdx->tnum==0 ) continue;
+ sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
+ sqliteVdbeOp3(v, OP_OpenRead, j+2, pIdx->tnum, pIdx->zName, 0);
+ }
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
+ sqliteVdbeAddOp(v, OP_MemStore, 1, 1);
+ loopTop = sqliteVdbeAddOp(v, OP_Rewind, 1, 0);
+ sqliteVdbeAddOp(v, OP_MemIncr, 1, 0);
+ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
+ int k, jmp2;
+ static VdbeOpList idxErr[] = {
+ { OP_MemIncr, 0, 0, 0},
+ { OP_String, 0, 0, "rowid "},
+ { OP_Recno, 1, 0, 0},
+ { OP_String, 0, 0, " missing from index "},
+ { OP_String, 0, 0, 0}, /* 4 */
+ { OP_Concat, 4, 0, 0},
+ { OP_Callback, 1, 0, 0},
+ };
+ sqliteVdbeAddOp(v, OP_Recno, 1, 0);
+ for(k=0; k<pIdx->nColumn; k++){
+ int idx = pIdx->aiColumn[k];
+ if( idx==pTab->iPKey ){
+ sqliteVdbeAddOp(v, OP_Recno, 1, 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_Column, 1, idx);
+ }
+ }
+ sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
+ if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);
+ jmp2 = sqliteVdbeAddOp(v, OP_Found, j+2, 0);
+ addr = sqliteVdbeAddOpList(v, ArraySize(idxErr), idxErr);
+ sqliteVdbeChangeP3(v, addr+4, pIdx->zName, P3_STATIC);
+ sqliteVdbeChangeP2(v, jmp2, sqliteVdbeCurrentAddr(v));
+ }
+ sqliteVdbeAddOp(v, OP_Next, 1, loopTop+1);
+ sqliteVdbeChangeP2(v, loopTop, sqliteVdbeCurrentAddr(v));
+ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
+ static VdbeOpList cntIdx[] = {
+ { OP_Integer, 0, 0, 0},
+ { OP_MemStore, 2, 1, 0},
+ { OP_Rewind, 0, 0, 0}, /* 2 */
+ { OP_MemIncr, 2, 0, 0},
+ { OP_Next, 0, 0, 0}, /* 4 */
+ { OP_MemLoad, 1, 0, 0},
+ { OP_MemLoad, 2, 0, 0},
+ { OP_Eq, 0, 0, 0}, /* 7 */
+ { OP_MemIncr, 0, 0, 0},
+ { OP_String, 0, 0, "wrong # of entries in index "},
+ { OP_String, 0, 0, 0}, /* 10 */
+ { OP_Concat, 2, 0, 0},
+ { OP_Callback, 1, 0, 0},
+ };
+ if( pIdx->tnum==0 ) continue;
+ addr = sqliteVdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
+ sqliteVdbeChangeP1(v, addr+2, j+2);
+ sqliteVdbeChangeP2(v, addr+2, addr+5);
+ sqliteVdbeChangeP1(v, addr+4, j+2);
+ sqliteVdbeChangeP2(v, addr+4, addr+3);
+ sqliteVdbeChangeP2(v, addr+7, addr+ArraySize(cntIdx));
+ sqliteVdbeChangeP3(v, addr+10, pIdx->zName, P3_STATIC);
+ }
+ }
+ }
+ addr = sqliteVdbeAddOpList(v, ArraySize(endCode), endCode);
+ sqliteVdbeChangeP2(v, addr+2, addr+ArraySize(endCode));
+ }else
+
+ {}
+ sqliteFree(zLeft);
+ sqliteFree(zRight);
+}
diff --git a/src/3rdparty/sqlite/printf.c b/src/3rdparty/sqlite/printf.c
new file mode 100644
index 0000000..620578d
--- /dev/null
+++ b/src/3rdparty/sqlite/printf.c
@@ -0,0 +1,855 @@
+/*
+** The "printf" code that follows dates from the 1980's. It is in
+** the public domain. The original comments are included here for
+** completeness. They are very out-of-date but might be useful as
+** an historical reference. Most of the "enhancements" have been backed
+** out so that the functionality is now the same as standard printf().
+**
+**************************************************************************
+**
+** The following modules is an enhanced replacement for the "printf" subroutines
+** found in the standard C library. The following enhancements are
+** supported:
+**
+** + Additional functions. The standard set of "printf" functions
+** includes printf, fprintf, sprintf, vprintf, vfprintf, and
+** vsprintf. This module adds the following:
+**
+** * snprintf -- Works like sprintf, but has an extra argument
+** which is the size of the buffer written to.
+**
+** * mprintf -- Similar to sprintf. Writes output to memory
+** obtained from malloc.
+**
+** * xprintf -- Calls a function to dispose of output.
+**
+** * nprintf -- No output, but returns the number of characters
+** that would have been output by printf.
+**
+** * A v- version (ex: vsnprintf) of every function is also
+** supplied.
+**
+** + A few extensions to the formatting notation are supported:
+**
+** * The "=" flag (similar to "-") causes the output to be
+** be centered in the appropriately sized field.
+**
+** * The %b field outputs an integer in binary notation.
+**
+** * The %c field now accepts a precision. The character output
+** is repeated by the number of times the precision specifies.
+**
+** * The %' field works like %c, but takes as its character the
+** next character of the format string, instead of the next
+** argument. For example, printf("%.78'-") prints 78 minus
+** signs, the same as printf("%.78c",'-').
+**
+** + When compiled using GCC on a SPARC, this version of printf is
+** faster than the library printf for SUN OS 4.1.
+**
+** + All functions are fully reentrant.
+**
+*/
+#include "sqliteInt.h"
+
+/*
+** Conversion types fall into various categories as defined by the
+** following enumeration.
+*/
+#define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */
+#define etFLOAT 2 /* Floating point. %f */
+#define etEXP 3 /* Exponentional notation. %e and %E */
+#define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */
+#define etSIZE 5 /* Return number of characters processed so far. %n */
+#define etSTRING 6 /* Strings. %s */
+#define etDYNSTRING 7 /* Dynamically allocated strings. %z */
+#define etPERCENT 8 /* Percent symbol. %% */
+#define etCHARX 9 /* Characters. %c */
+#define etERROR 10 /* Used to indicate no such conversion type */
+/* The rest are extensions, not normally found in printf() */
+#define etCHARLIT 11 /* Literal characters. %' */
+#define etSQLESCAPE 12 /* Strings with '\'' doubled. %q */
+#define etSQLESCAPE2 13 /* Strings with '\'' doubled and enclosed in '',
+ NULL pointers replaced by SQL NULL. %Q */
+#define etTOKEN 14 /* a pointer to a Token structure */
+#define etSRCLIST 15 /* a pointer to a SrcList */
+
+
+/*
+** An "etByte" is an 8-bit unsigned value.
+*/
+typedef unsigned char etByte;
+
+/*
+** Each builtin conversion character (ex: the 'd' in "%d") is described
+** by an instance of the following structure
+*/
+typedef struct et_info { /* Information about each format field */
+ char fmttype; /* The format field code letter */
+ etByte base; /* The base for radix conversion */
+ etByte flags; /* One or more of FLAG_ constants below */
+ etByte type; /* Conversion paradigm */
+ char *charset; /* The character set for conversion */
+ char *prefix; /* Prefix on non-zero values in alt format */
+} et_info;
+
+/*
+** Allowed values for et_info.flags
+*/
+#define FLAG_SIGNED 1 /* True if the value to convert is signed */
+#define FLAG_INTERN 2 /* True if for internal use only */
+
+
+/*
+** The following table is searched linearly, so it is good to put the
+** most frequently used conversion types first.
+*/
+static et_info fmtinfo[] = {
+ { 'd', 10, 1, etRADIX, "0123456789", 0 },
+ { 's', 0, 0, etSTRING, 0, 0 },
+ { 'z', 0, 2, etDYNSTRING, 0, 0 },
+ { 'q', 0, 0, etSQLESCAPE, 0, 0 },
+ { 'Q', 0, 0, etSQLESCAPE2, 0, 0 },
+ { 'c', 0, 0, etCHARX, 0, 0 },
+ { 'o', 8, 0, etRADIX, "01234567", "0" },
+ { 'u', 10, 0, etRADIX, "0123456789", 0 },
+ { 'x', 16, 0, etRADIX, "0123456789abcdef", "x0" },
+ { 'X', 16, 0, etRADIX, "0123456789ABCDEF", "X0" },
+ { 'f', 0, 1, etFLOAT, 0, 0 },
+ { 'e', 0, 1, etEXP, "e", 0 },
+ { 'E', 0, 1, etEXP, "E", 0 },
+ { 'g', 0, 1, etGENERIC, "e", 0 },
+ { 'G', 0, 1, etGENERIC, "E", 0 },
+ { 'i', 10, 1, etRADIX, "0123456789", 0 },
+ { 'n', 0, 0, etSIZE, 0, 0 },
+ { '%', 0, 0, etPERCENT, 0, 0 },
+ { 'p', 10, 0, etRADIX, "0123456789", 0 },
+ { 'T', 0, 2, etTOKEN, 0, 0 },
+ { 'S', 0, 2, etSRCLIST, 0, 0 },
+};
+#define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0]))
+
+/*
+** If NOFLOATINGPOINT is defined, then none of the floating point
+** conversions will work.
+*/
+#ifndef etNOFLOATINGPOINT
+/*
+** "*val" is a double such that 0.1 <= *val < 10.0
+** Return the ascii code for the leading digit of *val, then
+** multiply "*val" by 10.0 to renormalize.
+**
+** Example:
+** input: *val = 3.14159
+** output: *val = 1.4159 function return = '3'
+**
+** The counter *cnt is incremented each time. After counter exceeds
+** 16 (the number of significant digits in a 64-bit float) '0' is
+** always returned.
+*/
+static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
+ int digit;
+ LONGDOUBLE_TYPE d;
+ if( (*cnt)++ >= 16 ) return '0';
+ digit = (int)*val;
+ d = digit;
+ digit += '0';
+ *val = (*val - d)*10.0;
+ return digit;
+}
+#endif
+
+#define etBUFSIZE 1000 /* Size of the output buffer */
+
+/*
+** The root program. All variations call this core.
+**
+** INPUTS:
+** func This is a pointer to a function taking three arguments
+** 1. A pointer to anything. Same as the "arg" parameter.
+** 2. A pointer to the list of characters to be output
+** (Note, this list is NOT null terminated.)
+** 3. An integer number of characters to be output.
+** (Note: This number might be zero.)
+**
+** arg This is the pointer to anything which will be passed as the
+** first argument to "func". Use it for whatever you like.
+**
+** fmt This is the format string, as in the usual print.
+**
+** ap This is a pointer to a list of arguments. Same as in
+** vfprint.
+**
+** OUTPUTS:
+** The return value is the total number of characters sent to
+** the function "func". Returns -1 on a error.
+**
+** Note that the order in which automatic variables are declared below
+** seems to make a big difference in determining how fast this beast
+** will run.
+*/
+static int vxprintf(
+ void (*func)(void*,const char*,int), /* Consumer of text */
+ void *arg, /* First argument to the consumer */
+ int useExtended, /* Allow extended %-conversions */
+ const char *fmt, /* Format string */
+ va_list ap /* arguments */
+){
+ int c; /* Next character in the format string */
+ char *bufpt; /* Pointer to the conversion buffer */
+ int precision; /* Precision of the current field */
+ int length; /* Length of the field */
+ int idx; /* A general purpose loop counter */
+ int count; /* Total number of characters output */
+ int width; /* Width of the current field */
+ etByte flag_leftjustify; /* True if "-" flag is present */
+ etByte flag_plussign; /* True if "+" flag is present */
+ etByte flag_blanksign; /* True if " " flag is present */
+ etByte flag_alternateform; /* True if "#" flag is present */
+ etByte flag_zeropad; /* True if field width constant starts with zero */
+ etByte flag_long; /* True if "l" flag is present */
+ unsigned long longvalue; /* Value for integer types */
+ LONGDOUBLE_TYPE realvalue; /* Value for real types */
+ et_info *infop; /* Pointer to the appropriate info structure */
+ char buf[etBUFSIZE]; /* Conversion buffer */
+ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
+ etByte errorflag = 0; /* True if an error is encountered */
+ etByte xtype; /* Conversion paradigm */
+ char *zExtra; /* Extra memory used for etTCLESCAPE conversions */
+ static char spaces[] = " ";
+#define etSPACESIZE (sizeof(spaces)-1)
+#ifndef etNOFLOATINGPOINT
+ int exp; /* exponent of real numbers */
+ double rounder; /* Used for rounding floating point values */
+ etByte flag_dp; /* True if decimal point should be shown */
+ etByte flag_rtz; /* True if trailing zeros should be removed */
+ etByte flag_exp; /* True to force display of the exponent */
+ int nsd; /* Number of significant digits returned */
+#endif
+
+ count = length = 0;
+ bufpt = 0;
+ for(; (c=(*fmt))!=0; ++fmt){
+ if( c!='%' ){
+ int amt;
+ bufpt = (char *)fmt;
+ amt = 1;
+ while( (c=(*++fmt))!='%' && c!=0 ) amt++;
+ (*func)(arg,bufpt,amt);
+ count += amt;
+ if( c==0 ) break;
+ }
+ if( (c=(*++fmt))==0 ){
+ errorflag = 1;
+ (*func)(arg,"%",1);
+ count++;
+ break;
+ }
+ /* Find out what flags are present */
+ flag_leftjustify = flag_plussign = flag_blanksign =
+ flag_alternateform = flag_zeropad = 0;
+ do{
+ switch( c ){
+ case '-': flag_leftjustify = 1; c = 0; break;
+ case '+': flag_plussign = 1; c = 0; break;
+ case ' ': flag_blanksign = 1; c = 0; break;
+ case '#': flag_alternateform = 1; c = 0; break;
+ case '0': flag_zeropad = 1; c = 0; break;
+ default: break;
+ }
+ }while( c==0 && (c=(*++fmt))!=0 );
+ /* Get the field width */
+ width = 0;
+ if( c=='*' ){
+ width = va_arg(ap,int);
+ if( width<0 ){
+ flag_leftjustify = 1;
+ width = -width;
+ }
+ c = *++fmt;
+ }else{
+ while( c>='0' && c<='9' ){
+ width = width*10 + c - '0';
+ c = *++fmt;
+ }
+ }
+ if( width > etBUFSIZE-10 ){
+ width = etBUFSIZE-10;
+ }
+ /* Get the precision */
+ if( c=='.' ){
+ precision = 0;
+ c = *++fmt;
+ if( c=='*' ){
+ precision = va_arg(ap,int);
+ if( precision<0 ) precision = -precision;
+ c = *++fmt;
+ }else{
+ while( c>='0' && c<='9' ){
+ precision = precision*10 + c - '0';
+ c = *++fmt;
+ }
+ }
+ /* Limit the precision to prevent overflowing buf[] during conversion */
+ if( precision>etBUFSIZE-40 ) precision = etBUFSIZE-40;
+ }else{
+ precision = -1;
+ }
+ /* Get the conversion type modifier */
+ if( c=='l' ){
+ flag_long = 1;
+ c = *++fmt;
+ }else{
+ flag_long = 0;
+ }
+ /* Fetch the info entry for the field */
+ infop = 0;
+ xtype = etERROR;
+ for(idx=0; idx<etNINFO; idx++){
+ if( c==fmtinfo[idx].fmttype ){
+ infop = &fmtinfo[idx];
+ if( useExtended || (infop->flags & FLAG_INTERN)==0 ){
+ xtype = infop->type;
+ }
+ break;
+ }
+ }
+ zExtra = 0;
+
+ /*
+ ** At this point, variables are initialized as follows:
+ **
+ ** flag_alternateform TRUE if a '#' is present.
+ ** flag_plussign TRUE if a '+' is present.
+ ** flag_leftjustify TRUE if a '-' is present or if the
+ ** field width was negative.
+ ** flag_zeropad TRUE if the width began with 0.
+ ** flag_long TRUE if the letter 'l' (ell) prefixed
+ ** the conversion character.
+ ** flag_blanksign TRUE if a ' ' is present.
+ ** width The specified field width. This is
+ ** always non-negative. Zero is the default.
+ ** precision The specified precision. The default
+ ** is -1.
+ ** xtype The class of the conversion.
+ ** infop Pointer to the appropriate info struct.
+ */
+ switch( xtype ){
+ case etRADIX:
+ if( flag_long ) longvalue = va_arg(ap,long);
+ else longvalue = va_arg(ap,int);
+#if 1
+ /* For the format %#x, the value zero is printed "0" not "0x0".
+ ** I think this is stupid. */
+ if( longvalue==0 ) flag_alternateform = 0;
+#else
+ /* More sensible: turn off the prefix for octal (to prevent "00"),
+ ** but leave the prefix for hex. */
+ if( longvalue==0 && infop->base==8 ) flag_alternateform = 0;
+#endif
+ if( infop->flags & FLAG_SIGNED ){
+ if( *(long*)&longvalue<0 ){
+ longvalue = -*(long*)&longvalue;
+ prefix = '-';
+ }else if( flag_plussign ) prefix = '+';
+ else if( flag_blanksign ) prefix = ' ';
+ else prefix = 0;
+ }else prefix = 0;
+ if( flag_zeropad && precision<width-(prefix!=0) ){
+ precision = width-(prefix!=0);
+ }
+ bufpt = &buf[etBUFSIZE-1];
+ {
+ register char *cset; /* Use registers for speed */
+ register int base;
+ cset = infop->charset;
+ base = infop->base;
+ do{ /* Convert to ascii */
+ *(--bufpt) = cset[longvalue%base];
+ longvalue = longvalue/base;
+ }while( longvalue>0 );
+ }
+ length = &buf[etBUFSIZE-1]-bufpt;
+ for(idx=precision-length; idx>0; idx--){
+ *(--bufpt) = '0'; /* Zero pad */
+ }
+ if( prefix ) *(--bufpt) = prefix; /* Add sign */
+ if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */
+ char *pre, x;
+ pre = infop->prefix;
+ if( *bufpt!=pre[0] ){
+ for(pre=infop->prefix; (x=(*pre))!=0; pre++) *(--bufpt) = x;
+ }
+ }
+ length = &buf[etBUFSIZE-1]-bufpt;
+ break;
+ case etFLOAT:
+ case etEXP:
+ case etGENERIC:
+ realvalue = va_arg(ap,double);
+#ifndef etNOFLOATINGPOINT
+ if( precision<0 ) precision = 6; /* Set default precision */
+ if( precision>etBUFSIZE-10 ) precision = etBUFSIZE-10;
+ if( realvalue<0.0 ){
+ realvalue = -realvalue;
+ prefix = '-';
+ }else{
+ if( flag_plussign ) prefix = '+';
+ else if( flag_blanksign ) prefix = ' ';
+ else prefix = 0;
+ }
+ if( infop->type==etGENERIC && precision>0 ) precision--;
+ rounder = 0.0;
+#if 0
+ /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */
+ for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1);
+#else
+ /* It makes more sense to use 0.5 */
+ for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1);
+#endif
+ if( infop->type==etFLOAT ) realvalue += rounder;
+ /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
+ exp = 0;
+ if( realvalue>0.0 ){
+ while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; }
+ while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; }
+ while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; }
+ while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; }
+ if( exp>350 || exp<-350 ){
+ bufpt = "NaN";
+ length = 3;
+ break;
+ }
+ }
+ bufpt = buf;
+ /*
+ ** If the field type is etGENERIC, then convert to either etEXP
+ ** or etFLOAT, as appropriate.
+ */
+ flag_exp = xtype==etEXP;
+ if( xtype!=etFLOAT ){
+ realvalue += rounder;
+ if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
+ }
+ if( xtype==etGENERIC ){
+ flag_rtz = !flag_alternateform;
+ if( exp<-4 || exp>precision ){
+ xtype = etEXP;
+ }else{
+ precision = precision - exp;
+ xtype = etFLOAT;
+ }
+ }else{
+ flag_rtz = 0;
+ }
+ /*
+ ** The "exp+precision" test causes output to be of type etEXP if
+ ** the precision is too large to fit in buf[].
+ */
+ nsd = 0;
+ if( xtype==etFLOAT && exp+precision<etBUFSIZE-30 ){
+ flag_dp = (precision>0 || flag_alternateform);
+ if( prefix ) *(bufpt++) = prefix; /* Sign */
+ if( exp<0 ) *(bufpt++) = '0'; /* Digits before "." */
+ else for(; exp>=0; exp--) *(bufpt++) = et_getdigit(&realvalue,&nsd);
+ if( flag_dp ) *(bufpt++) = '.'; /* The decimal point */
+ for(exp++; exp<0 && precision>0; precision--, exp++){
+ *(bufpt++) = '0';
+ }
+ while( (precision--)>0 ) *(bufpt++) = et_getdigit(&realvalue,&nsd);
+ *(bufpt--) = 0; /* Null terminate */
+ if( flag_rtz && flag_dp ){ /* Remove trailing zeros and "." */
+ while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0;
+ if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0;
+ }
+ bufpt++; /* point to next free slot */
+ }else{ /* etEXP or etGENERIC */
+ flag_dp = (precision>0 || flag_alternateform);
+ if( prefix ) *(bufpt++) = prefix; /* Sign */
+ *(bufpt++) = et_getdigit(&realvalue,&nsd); /* First digit */
+ if( flag_dp ) *(bufpt++) = '.'; /* Decimal point */
+ while( (precision--)>0 ) *(bufpt++) = et_getdigit(&realvalue,&nsd);
+ bufpt--; /* point to last digit */
+ if( flag_rtz && flag_dp ){ /* Remove tail zeros */
+ while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0;
+ if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0;
+ }
+ bufpt++; /* point to next free slot */
+ if( exp || flag_exp ){
+ *(bufpt++) = infop->charset[0];
+ if( exp<0 ){ *(bufpt++) = '-'; exp = -exp; } /* sign of exp */
+ else { *(bufpt++) = '+'; }
+ if( exp>=100 ){
+ *(bufpt++) = (exp/100)+'0'; /* 100's digit */
+ exp %= 100;
+ }
+ *(bufpt++) = exp/10+'0'; /* 10's digit */
+ *(bufpt++) = exp%10+'0'; /* 1's digit */
+ }
+ }
+ /* The converted number is in buf[] and zero terminated. Output it.
+ ** Note that the number is in the usual order, not reversed as with
+ ** integer conversions. */
+ length = bufpt-buf;
+ bufpt = buf;
+
+ /* Special case: Add leading zeros if the flag_zeropad flag is
+ ** set and we are not left justified */
+ if( flag_zeropad && !flag_leftjustify && length < width){
+ int i;
+ int nPad = width - length;
+ for(i=width; i>=nPad; i--){
+ bufpt[i] = bufpt[i-nPad];
+ }
+ i = prefix!=0;
+ while( nPad-- ) bufpt[i++] = '0';
+ length = width;
+ }
+#endif
+ break;
+ case etSIZE:
+ *(va_arg(ap,int*)) = count;
+ length = width = 0;
+ break;
+ case etPERCENT:
+ buf[0] = '%';
+ bufpt = buf;
+ length = 1;
+ break;
+ case etCHARLIT:
+ case etCHARX:
+ c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt);
+ if( precision>=0 ){
+ for(idx=1; idx<precision; idx++) buf[idx] = c;
+ length = precision;
+ }else{
+ length =1;
+ }
+ bufpt = buf;
+ break;
+ case etSTRING:
+ case etDYNSTRING:
+ bufpt = va_arg(ap,char*);
+ if( bufpt==0 ){
+ bufpt = "";
+ }else if( xtype==etDYNSTRING ){
+ zExtra = bufpt;
+ }
+ length = strlen(bufpt);
+ if( precision>=0 && precision<length ) length = precision;
+ break;
+ case etSQLESCAPE:
+ case etSQLESCAPE2:
+ {
+ int i, j, n, c, isnull;
+ char *arg = va_arg(ap,char*);
+ isnull = arg==0;
+ if( isnull ) arg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
+ for(i=n=0; (c=arg[i])!=0; i++){
+ if( c=='\'' ) n++;
+ }
+ n += i + 1 + ((!isnull && xtype==etSQLESCAPE2) ? 2 : 0);
+ if( n>etBUFSIZE ){
+ bufpt = zExtra = sqliteMalloc( n );
+ if( bufpt==0 ) return -1;
+ }else{
+ bufpt = buf;
+ }
+ j = 0;
+ if( !isnull && xtype==etSQLESCAPE2 ) bufpt[j++] = '\'';
+ for(i=0; (c=arg[i])!=0; i++){
+ bufpt[j++] = c;
+ if( c=='\'' ) bufpt[j++] = c;
+ }
+ if( !isnull && xtype==etSQLESCAPE2 ) bufpt[j++] = '\'';
+ bufpt[j] = 0;
+ length = j;
+ if( precision>=0 && precision<length ) length = precision;
+ }
+ break;
+ case etTOKEN: {
+ Token *pToken = va_arg(ap, Token*);
+ (*func)(arg, pToken->z, pToken->n);
+ length = width = 0;
+ break;
+ }
+ case etSRCLIST: {
+ SrcList *pSrc = va_arg(ap, SrcList*);
+ int k = va_arg(ap, int);
+ struct SrcList_item *pItem = &pSrc->a[k];
+ assert( k>=0 && k<pSrc->nSrc );
+ if( pItem->zDatabase && pItem->zDatabase[0] ){
+ (*func)(arg, pItem->zDatabase, strlen(pItem->zDatabase));
+ (*func)(arg, ".", 1);
+ }
+ (*func)(arg, pItem->zName, strlen(pItem->zName));
+ length = width = 0;
+ break;
+ }
+ case etERROR:
+ buf[0] = '%';
+ buf[1] = c;
+ errorflag = 0;
+ idx = 1+(c!=0);
+ (*func)(arg,"%",idx);
+ count += idx;
+ if( c==0 ) fmt--;
+ break;
+ }/* End switch over the format type */
+ /*
+ ** The text of the conversion is pointed to by "bufpt" and is
+ ** "length" characters long. The field width is "width". Do
+ ** the output.
+ */
+ if( !flag_leftjustify ){
+ register int nspace;
+ nspace = width-length;
+ if( nspace>0 ){
+ count += nspace;
+ while( nspace>=etSPACESIZE ){
+ (*func)(arg,spaces,etSPACESIZE);
+ nspace -= etSPACESIZE;
+ }
+ if( nspace>0 ) (*func)(arg,spaces,nspace);
+ }
+ }
+ if( length>0 ){
+ (*func)(arg,bufpt,length);
+ count += length;
+ }
+ if( flag_leftjustify ){
+ register int nspace;
+ nspace = width-length;
+ if( nspace>0 ){
+ count += nspace;
+ while( nspace>=etSPACESIZE ){
+ (*func)(arg,spaces,etSPACESIZE);
+ nspace -= etSPACESIZE;
+ }
+ if( nspace>0 ) (*func)(arg,spaces,nspace);
+ }
+ }
+ if( zExtra ){
+ sqliteFree(zExtra);
+ }
+ }/* End for loop over the format string */
+ return errorflag ? -1 : count;
+} /* End of function */
+
+
+/* This structure is used to store state information about the
+** write to memory that is currently in progress.
+*/
+struct sgMprintf {
+ char *zBase; /* A base allocation */
+ char *zText; /* The string collected so far */
+ int nChar; /* Length of the string so far */
+ int nTotal; /* Output size if unconstrained */
+ int nAlloc; /* Amount of space allocated in zText */
+ void *(*xRealloc)(void*,int); /* Function used to realloc memory */
+};
+
+/*
+** This function implements the callback from vxprintf.
+**
+** This routine add nNewChar characters of text in zNewText to
+** the sgMprintf structure pointed to by "arg".
+*/
+static void mout(void *arg, const char *zNewText, int nNewChar){
+ struct sgMprintf *pM = (struct sgMprintf*)arg;
+ pM->nTotal += nNewChar;
+ if( pM->nChar + nNewChar + 1 > pM->nAlloc ){
+ if( pM->xRealloc==0 ){
+ nNewChar = pM->nAlloc - pM->nChar - 1;
+ }else{
+ pM->nAlloc = pM->nChar + nNewChar*2 + 1;
+ if( pM->zText==pM->zBase ){
+ pM->zText = pM->xRealloc(0, pM->nAlloc);
+ if( pM->zText && pM->nChar ){
+ memcpy(pM->zText, pM->zBase, pM->nChar);
+ }
+ }else{
+ pM->zText = pM->xRealloc(pM->zText, pM->nAlloc);
+ }
+ }
+ }
+ if( pM->zText && nNewChar>0 ){
+ memcpy(&pM->zText[pM->nChar], zNewText, nNewChar);
+ pM->nChar += nNewChar;
+ pM->zText[pM->nChar] = 0;
+ }
+}
+
+/*
+** This routine is a wrapper around xprintf() that invokes mout() as
+** the consumer.
+*/
+static char *base_vprintf(
+ void *(*xRealloc)(void*,int), /* Routine to realloc memory. May be NULL */
+ int useInternal, /* Use internal %-conversions if true */
+ char *zInitBuf, /* Initially write here, before mallocing */
+ int nInitBuf, /* Size of zInitBuf[] */
+ const char *zFormat, /* format string */
+ va_list ap /* arguments */
+){
+ struct sgMprintf sM;
+ sM.zBase = sM.zText = zInitBuf;
+ sM.nChar = sM.nTotal = 0;
+ sM.nAlloc = nInitBuf;
+ sM.xRealloc = xRealloc;
+ vxprintf(mout, &sM, useInternal, zFormat, ap);
+ if( xRealloc ){
+ if( sM.zText==sM.zBase ){
+ sM.zText = xRealloc(0, sM.nChar+1);
+ memcpy(sM.zText, sM.zBase, sM.nChar+1);
+ }else if( sM.nAlloc>sM.nChar+10 ){
+ sM.zText = xRealloc(sM.zText, sM.nChar+1);
+ }
+ }
+ return sM.zText;
+}
+
+/*
+** Realloc that is a real function, not a macro.
+*/
+static void *printf_realloc(void *old, int size){
+ return sqliteRealloc(old,size);
+}
+
+/*
+** Print into memory obtained from sqliteMalloc(). Use the internal
+** %-conversion extensions.
+*/
+char *sqliteVMPrintf(const char *zFormat, va_list ap){
+ char zBase[1000];
+ return base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap);
+}
+
+/*
+** Print into memory obtained from sqliteMalloc(). Use the internal
+** %-conversion extensions.
+*/
+char *sqliteMPrintf(const char *zFormat, ...){
+ va_list ap;
+ char *z;
+ char zBase[1000];
+ va_start(ap, zFormat);
+ z = base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap);
+ va_end(ap);
+ return z;
+}
+
+/*
+** Print into memory obtained from malloc(). Do not use the internal
+** %-conversion extensions. This routine is for use by external users.
+*/
+char *sqlite_mprintf(const char *zFormat, ...){
+ va_list ap;
+ char *z;
+ char zBuf[200];
+
+ va_start(ap,zFormat);
+ z = base_vprintf((void*(*)(void*,int))realloc, 0,
+ zBuf, sizeof(zBuf), zFormat, ap);
+ va_end(ap);
+ return z;
+}
+
+/* This is the varargs version of sqlite_mprintf.
+*/
+char *sqlite_vmprintf(const char *zFormat, va_list ap){
+ char zBuf[200];
+ return base_vprintf((void*(*)(void*,int))realloc, 0,
+ zBuf, sizeof(zBuf), zFormat, ap);
+}
+
+/*
+** sqlite_snprintf() works like snprintf() except that it ignores the
+** current locale settings. This is important for SQLite because we
+** are not able to use a "," as the decimal point in place of "." as
+** specified by some locales.
+*/
+char *sqlite_snprintf(int n, char *zBuf, const char *zFormat, ...){
+ char *z;
+ va_list ap;
+
+ va_start(ap,zFormat);
+ z = base_vprintf(0, 0, zBuf, n, zFormat, ap);
+ va_end(ap);
+ return z;
+}
+
+/*
+** The following four routines implement the varargs versions of the
+** sqlite_exec() and sqlite_get_table() interfaces. See the sqlite.h
+** header files for a more detailed description of how these interfaces
+** work.
+**
+** These routines are all just simple wrappers.
+*/
+int sqlite_exec_printf(
+ sqlite *db, /* An open database */
+ const char *sqlFormat, /* printf-style format string for the SQL */
+ sqlite_callback xCallback, /* Callback function */
+ void *pArg, /* 1st argument to callback function */
+ char **errmsg, /* Error msg written here */
+ ... /* Arguments to the format string. */
+){
+ va_list ap;
+ int rc;
+
+ va_start(ap, errmsg);
+ rc = sqlite_exec_vprintf(db, sqlFormat, xCallback, pArg, errmsg, ap);
+ va_end(ap);
+ return rc;
+}
+int sqlite_exec_vprintf(
+ sqlite *db, /* An open database */
+ const char *sqlFormat, /* printf-style format string for the SQL */
+ sqlite_callback xCallback, /* Callback function */
+ void *pArg, /* 1st argument to callback function */
+ char **errmsg, /* Error msg written here */
+ va_list ap /* Arguments to the format string. */
+){
+ char *zSql;
+ int rc;
+
+ zSql = sqlite_vmprintf(sqlFormat, ap);
+ rc = sqlite_exec(db, zSql, xCallback, pArg, errmsg);
+ free(zSql);
+ return rc;
+}
+int sqlite_get_table_printf(
+ sqlite *db, /* An open database */
+ const char *sqlFormat, /* printf-style format string for the SQL */
+ char ***resultp, /* Result written to a char *[] that this points to */
+ int *nrow, /* Number of result rows written here */
+ int *ncol, /* Number of result columns written here */
+ char **errmsg, /* Error msg written here */
+ ... /* Arguments to the format string */
+){
+ va_list ap;
+ int rc;
+
+ va_start(ap, errmsg);
+ rc = sqlite_get_table_vprintf(db, sqlFormat, resultp, nrow, ncol, errmsg, ap);
+ va_end(ap);
+ return rc;
+}
+int sqlite_get_table_vprintf(
+ sqlite *db, /* An open database */
+ const char *sqlFormat, /* printf-style format string for the SQL */
+ char ***resultp, /* Result written to a char *[] that this points to */
+ int *nrow, /* Number of result rows written here */
+ int *ncolumn, /* Number of result columns written here */
+ char **errmsg, /* Error msg written here */
+ va_list ap /* Arguments to the format string */
+){
+ char *zSql;
+ int rc;
+
+ zSql = sqlite_vmprintf(sqlFormat, ap);
+ rc = sqlite_get_table(db, zSql, resultp, nrow, ncolumn, errmsg);
+ free(zSql);
+ return rc;
+}
diff --git a/src/3rdparty/sqlite/random.c b/src/3rdparty/sqlite/random.c
new file mode 100644
index 0000000..bf4b6d0
--- /dev/null
+++ b/src/3rdparty/sqlite/random.c
@@ -0,0 +1,97 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code to implement a pseudo-random number
+** generator (PRNG) for SQLite.
+**
+** Random numbers are used by some of the database backends in order
+** to generate random integer keys for tables or random filenames.
+**
+** $Id: random.c,v 1.11 2004/02/11 09:46:33 drh Exp $
+*/
+#include "sqliteInt.h"
+#include "os.h"
+
+
+/*
+** Get a single 8-bit random value from the RC4 PRNG. The Mutex
+** must be held while executing this routine.
+**
+** Why not just use a library random generator like lrand48() for this?
+** Because the OP_NewRecno opcode in the VDBE depends on having a very
+** good source of random numbers. The lrand48() library function may
+** well be good enough. But maybe not. Or maybe lrand48() has some
+** subtle problems on some systems that could cause problems. It is hard
+** to know. To minimize the risk of problems due to bad lrand48()
+** implementations, SQLite uses this random number generator based
+** on RC4, which we know works very well.
+*/
+static int randomByte(){
+ unsigned char t;
+
+ /* All threads share a single random number generator.
+ ** This structure is the current state of the generator.
+ */
+ static struct {
+ unsigned char isInit; /* True if initialized */
+ unsigned char i, j; /* State variables */
+ unsigned char s[256]; /* State variables */
+ } prng;
+
+ /* Initialize the state of the random number generator once,
+ ** the first time this routine is called. The seed value does
+ ** not need to contain a lot of randomness since we are not
+ ** trying to do secure encryption or anything like that...
+ **
+ ** Nothing in this file or anywhere else in SQLite does any kind of
+ ** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random
+ ** number generator) not as an encryption device.
+ */
+ if( !prng.isInit ){
+ int i;
+ char k[256];
+ prng.j = 0;
+ prng.i = 0;
+ sqliteOsRandomSeed(k);
+ for(i=0; i<256; i++){
+ prng.s[i] = i;
+ }
+ for(i=0; i<256; i++){
+ prng.j += prng.s[i] + k[i];
+ t = prng.s[prng.j];
+ prng.s[prng.j] = prng.s[i];
+ prng.s[i] = t;
+ }
+ prng.isInit = 1;
+ }
+
+ /* Generate and return single random byte
+ */
+ prng.i++;
+ t = prng.s[prng.i];
+ prng.j += t;
+ prng.s[prng.i] = prng.s[prng.j];
+ prng.s[prng.j] = t;
+ t += prng.s[prng.i];
+ return prng.s[t];
+}
+
+/*
+** Return N random bytes.
+*/
+void sqliteRandomness(int N, void *pBuf){
+ unsigned char *zBuf = pBuf;
+ sqliteOsEnterMutex();
+ while( N-- ){
+ *(zBuf++) = randomByte();
+ }
+ sqliteOsLeaveMutex();
+}
diff --git a/src/3rdparty/sqlite/select.c b/src/3rdparty/sqlite/select.c
new file mode 100644
index 0000000..f472817
--- /dev/null
+++ b/src/3rdparty/sqlite/select.c
@@ -0,0 +1,2404 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle SELECT statements in SQLite.
+**
+** $Id: select.c,v 1.160 2004/03/02 18:37:41 drh Exp $
+*/
+#include "sqliteInt.h"
+
+
+/*
+** Allocate a new Select structure and return a pointer to that
+** structure.
+*/
+Select *sqliteSelectNew(
+ ExprList *pEList, /* which columns to include in the result */
+ SrcList *pSrc, /* the FROM clause -- which tables to scan */
+ Expr *pWhere, /* the WHERE clause */
+ ExprList *pGroupBy, /* the GROUP BY clause */
+ Expr *pHaving, /* the HAVING clause */
+ ExprList *pOrderBy, /* the ORDER BY clause */
+ int isDistinct, /* true if the DISTINCT keyword is present */
+ int nLimit, /* LIMIT value. -1 means not used */
+ int nOffset /* OFFSET value. 0 means no offset */
+){
+ Select *pNew;
+ pNew = sqliteMalloc( sizeof(*pNew) );
+ if( pNew==0 ){
+ sqliteExprListDelete(pEList);
+ sqliteSrcListDelete(pSrc);
+ sqliteExprDelete(pWhere);
+ sqliteExprListDelete(pGroupBy);
+ sqliteExprDelete(pHaving);
+ sqliteExprListDelete(pOrderBy);
+ }else{
+ if( pEList==0 ){
+ pEList = sqliteExprListAppend(0, sqliteExpr(TK_ALL,0,0,0), 0);
+ }
+ pNew->pEList = pEList;
+ pNew->pSrc = pSrc;
+ pNew->pWhere = pWhere;
+ pNew->pGroupBy = pGroupBy;
+ pNew->pHaving = pHaving;
+ pNew->pOrderBy = pOrderBy;
+ pNew->isDistinct = isDistinct;
+ pNew->op = TK_SELECT;
+ pNew->nLimit = nLimit;
+ pNew->nOffset = nOffset;
+ pNew->iLimit = -1;
+ pNew->iOffset = -1;
+ }
+ return pNew;
+}
+
+/*
+** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
+** type of join. Return an integer constant that expresses that type
+** in terms of the following bit values:
+**
+** JT_INNER
+** JT_OUTER
+** JT_NATURAL
+** JT_LEFT
+** JT_RIGHT
+**
+** A full outer join is the combination of JT_LEFT and JT_RIGHT.
+**
+** If an illegal or unsupported join type is seen, then still return
+** a join type, but put an error in the pParse structure.
+*/
+int sqliteJoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
+ int jointype = 0;
+ Token *apAll[3];
+ Token *p;
+ static struct {
+ const char *zKeyword;
+ int nChar;
+ int code;
+ } keywords[] = {
+ { "natural", 7, JT_NATURAL },
+ { "left", 4, JT_LEFT|JT_OUTER },
+ { "right", 5, JT_RIGHT|JT_OUTER },
+ { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER },
+ { "outer", 5, JT_OUTER },
+ { "inner", 5, JT_INNER },
+ { "cross", 5, JT_INNER },
+ };
+ int i, j;
+ apAll[0] = pA;
+ apAll[1] = pB;
+ apAll[2] = pC;
+ for(i=0; i<3 && apAll[i]; i++){
+ p = apAll[i];
+ for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
+ if( p->n==keywords[j].nChar
+ && sqliteStrNICmp(p->z, keywords[j].zKeyword, p->n)==0 ){
+ jointype |= keywords[j].code;
+ break;
+ }
+ }
+ if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
+ jointype |= JT_ERROR;
+ break;
+ }
+ }
+ if(
+ (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
+ (jointype & JT_ERROR)!=0
+ ){
+ static Token dummy = { 0, 0 };
+ char *zSp1 = " ", *zSp2 = " ";
+ if( pB==0 ){ pB = &dummy; zSp1 = 0; }
+ if( pC==0 ){ pC = &dummy; zSp2 = 0; }
+ sqliteSetNString(&pParse->zErrMsg, "unknown or unsupported join type: ", 0,
+ pA->z, pA->n, zSp1, 1, pB->z, pB->n, zSp2, 1, pC->z, pC->n, 0);
+ pParse->nErr++;
+ jointype = JT_INNER;
+ }else if( jointype & JT_RIGHT ){
+ sqliteErrorMsg(pParse,
+ "RIGHT and FULL OUTER JOINs are not currently supported");
+ jointype = JT_INNER;
+ }
+ return jointype;
+}
+
+/*
+** Return the index of a column in a table. Return -1 if the column
+** is not contained in the table.
+*/
+static int columnIndex(Table *pTab, const char *zCol){
+ int i;
+ for(i=0; i<pTab->nCol; i++){
+ if( sqliteStrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
+ }
+ return -1;
+}
+
+/*
+** Add a term to the WHERE expression in *ppExpr that requires the
+** zCol column to be equal in the two tables pTab1 and pTab2.
+*/
+static void addWhereTerm(
+ const char *zCol, /* Name of the column */
+ const Table *pTab1, /* First table */
+ const Table *pTab2, /* Second table */
+ Expr **ppExpr /* Add the equality term to this expression */
+){
+ Token dummy;
+ Expr *pE1a, *pE1b, *pE1c;
+ Expr *pE2a, *pE2b, *pE2c;
+ Expr *pE;
+
+ dummy.z = zCol;
+ dummy.n = strlen(zCol);
+ dummy.dyn = 0;
+ pE1a = sqliteExpr(TK_ID, 0, 0, &dummy);
+ pE2a = sqliteExpr(TK_ID, 0, 0, &dummy);
+ dummy.z = pTab1->zName;
+ dummy.n = strlen(dummy.z);
+ pE1b = sqliteExpr(TK_ID, 0, 0, &dummy);
+ dummy.z = pTab2->zName;
+ dummy.n = strlen(dummy.z);
+ pE2b = sqliteExpr(TK_ID, 0, 0, &dummy);
+ pE1c = sqliteExpr(TK_DOT, pE1b, pE1a, 0);
+ pE2c = sqliteExpr(TK_DOT, pE2b, pE2a, 0);
+ pE = sqliteExpr(TK_EQ, pE1c, pE2c, 0);
+ ExprSetProperty(pE, EP_FromJoin);
+ if( *ppExpr ){
+ *ppExpr = sqliteExpr(TK_AND, *ppExpr, pE, 0);
+ }else{
+ *ppExpr = pE;
+ }
+}
+
+/*
+** Set the EP_FromJoin property on all terms of the given expression.
+**
+** The EP_FromJoin property is used on terms of an expression to tell
+** the LEFT OUTER JOIN processing logic that this term is part of the
+** join restriction specified in the ON or USING clause and not a part
+** of the more general WHERE clause. These terms are moved over to the
+** WHERE clause during join processing but we need to remember that they
+** originated in the ON or USING clause.
+*/
+static void setJoinExpr(Expr *p){
+ while( p ){
+ ExprSetProperty(p, EP_FromJoin);
+ setJoinExpr(p->pLeft);
+ p = p->pRight;
+ }
+}
+
+/*
+** This routine processes the join information for a SELECT statement.
+** ON and USING clauses are converted into extra terms of the WHERE clause.
+** NATURAL joins also create extra WHERE clause terms.
+**
+** This routine returns the number of errors encountered.
+*/
+static int sqliteProcessJoin(Parse *pParse, Select *p){
+ SrcList *pSrc;
+ int i, j;
+ pSrc = p->pSrc;
+ for(i=0; i<pSrc->nSrc-1; i++){
+ struct SrcList_item *pTerm = &pSrc->a[i];
+ struct SrcList_item *pOther = &pSrc->a[i+1];
+
+ if( pTerm->pTab==0 || pOther->pTab==0 ) continue;
+
+ /* When the NATURAL keyword is present, add WHERE clause terms for
+ ** every column that the two tables have in common.
+ */
+ if( pTerm->jointype & JT_NATURAL ){
+ Table *pTab;
+ if( pTerm->pOn || pTerm->pUsing ){
+ sqliteErrorMsg(pParse, "a NATURAL join may not have "
+ "an ON or USING clause", 0);
+ return 1;
+ }
+ pTab = pTerm->pTab;
+ for(j=0; j<pTab->nCol; j++){
+ if( columnIndex(pOther->pTab, pTab->aCol[j].zName)>=0 ){
+ addWhereTerm(pTab->aCol[j].zName, pTab, pOther->pTab, &p->pWhere);
+ }
+ }
+ }
+
+ /* Disallow both ON and USING clauses in the same join
+ */
+ if( pTerm->pOn && pTerm->pUsing ){
+ sqliteErrorMsg(pParse, "cannot have both ON and USING "
+ "clauses in the same join");
+ return 1;
+ }
+
+ /* Add the ON clause to the end of the WHERE clause, connected by
+ ** and AND operator.
+ */
+ if( pTerm->pOn ){
+ setJoinExpr(pTerm->pOn);
+ if( p->pWhere==0 ){
+ p->pWhere = pTerm->pOn;
+ }else{
+ p->pWhere = sqliteExpr(TK_AND, p->pWhere, pTerm->pOn, 0);
+ }
+ pTerm->pOn = 0;
+ }
+
+ /* Create extra terms on the WHERE clause for each column named
+ ** in the USING clause. Example: If the two tables to be joined are
+ ** A and B and the USING clause names X, Y, and Z, then add this
+ ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
+ ** Report an error if any column mentioned in the USING clause is
+ ** not contained in both tables to be joined.
+ */
+ if( pTerm->pUsing ){
+ IdList *pList;
+ int j;
+ assert( i<pSrc->nSrc-1 );
+ pList = pTerm->pUsing;
+ for(j=0; j<pList->nId; j++){
+ if( columnIndex(pTerm->pTab, pList->a[j].zName)<0 ||
+ columnIndex(pOther->pTab, pList->a[j].zName)<0 ){
+ sqliteErrorMsg(pParse, "cannot join using column %s - column "
+ "not present in both tables", pList->a[j].zName);
+ return 1;
+ }
+ addWhereTerm(pList->a[j].zName, pTerm->pTab, pOther->pTab, &p->pWhere);
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** Delete the given Select structure and all of its substructures.
+*/
+void sqliteSelectDelete(Select *p){
+ if( p==0 ) return;
+ sqliteExprListDelete(p->pEList);
+ sqliteSrcListDelete(p->pSrc);
+ sqliteExprDelete(p->pWhere);
+ sqliteExprListDelete(p->pGroupBy);
+ sqliteExprDelete(p->pHaving);
+ sqliteExprListDelete(p->pOrderBy);
+ sqliteSelectDelete(p->pPrior);
+ sqliteFree(p->zSelect);
+ sqliteFree(p);
+}
+
+/*
+** Delete the aggregate information from the parse structure.
+*/
+static void sqliteAggregateInfoReset(Parse *pParse){
+ sqliteFree(pParse->aAgg);
+ pParse->aAgg = 0;
+ pParse->nAgg = 0;
+ pParse->useAgg = 0;
+}
+
+/*
+** Insert code into "v" that will push the record on the top of the
+** stack into the sorter.
+*/
+static void pushOntoSorter(Parse *pParse, Vdbe *v, ExprList *pOrderBy){
+ char *zSortOrder;
+ int i;
+ zSortOrder = sqliteMalloc( pOrderBy->nExpr + 1 );
+ if( zSortOrder==0 ) return;
+ for(i=0; i<pOrderBy->nExpr; i++){
+ int order = pOrderBy->a[i].sortOrder;
+ int type;
+ int c;
+ if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
+ type = SQLITE_SO_TEXT;
+ }else if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_NUM ){
+ type = SQLITE_SO_NUM;
+ }else if( pParse->db->file_format>=4 ){
+ type = sqliteExprType(pOrderBy->a[i].pExpr);
+ }else{
+ type = SQLITE_SO_NUM;
+ }
+ if( (order & SQLITE_SO_DIRMASK)==SQLITE_SO_ASC ){
+ c = type==SQLITE_SO_TEXT ? 'A' : '+';
+ }else{
+ c = type==SQLITE_SO_TEXT ? 'D' : '-';
+ }
+ zSortOrder[i] = c;
+ sqliteExprCode(pParse, pOrderBy->a[i].pExpr);
+ }
+ zSortOrder[pOrderBy->nExpr] = 0;
+ sqliteVdbeOp3(v, OP_SortMakeKey, pOrderBy->nExpr, 0, zSortOrder, P3_DYNAMIC);
+ sqliteVdbeAddOp(v, OP_SortPut, 0, 0);
+}
+
+/*
+** This routine adds a P3 argument to the last VDBE opcode that was
+** inserted. The P3 argument added is a string suitable for the
+** OP_MakeKey or OP_MakeIdxKey opcodes. The string consists of
+** characters 't' or 'n' depending on whether or not the various
+** fields of the key to be generated should be treated as numeric
+** or as text. See the OP_MakeKey and OP_MakeIdxKey opcode
+** documentation for additional information about the P3 string.
+** See also the sqliteAddIdxKeyType() routine.
+*/
+void sqliteAddKeyType(Vdbe *v, ExprList *pEList){
+ int nColumn = pEList->nExpr;
+ char *zType = sqliteMalloc( nColumn+1 );
+ int i;
+ if( zType==0 ) return;
+ for(i=0; i<nColumn; i++){
+ zType[i] = sqliteExprType(pEList->a[i].pExpr)==SQLITE_SO_NUM ? 'n' : 't';
+ }
+ zType[i] = 0;
+ sqliteVdbeChangeP3(v, -1, zType, P3_DYNAMIC);
+}
+
+/*
+** This routine generates the code for the inside of the inner loop
+** of a SELECT.
+**
+** If srcTab and nColumn are both zero, then the pEList expressions
+** are evaluated in order to get the data for this row. If nColumn>0
+** then data is pulled from srcTab and pEList is used only to get the
+** datatypes for each column.
+*/
+static int selectInnerLoop(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The complete select statement being coded */
+ ExprList *pEList, /* List of values being extracted */
+ int srcTab, /* Pull data from this table */
+ int nColumn, /* Number of columns in the source table */
+ ExprList *pOrderBy, /* If not NULL, sort results using this key */
+ int distinct, /* If >=0, make sure results are distinct */
+ int eDest, /* How to dispose of the results */
+ int iParm, /* An argument to the disposal method */
+ int iContinue, /* Jump here to continue with next row */
+ int iBreak /* Jump here to break out of the inner loop */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+
+ if( v==0 ) return 0;
+ assert( pEList!=0 );
+
+ /* If there was a LIMIT clause on the SELECT statement, then do the check
+ ** to see if this row should be output.
+ */
+ if( pOrderBy==0 ){
+ if( p->iOffset>=0 ){
+ int addr = sqliteVdbeCurrentAddr(v);
+ sqliteVdbeAddOp(v, OP_MemIncr, p->iOffset, addr+2);
+ sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
+ }
+ if( p->iLimit>=0 ){
+ sqliteVdbeAddOp(v, OP_MemIncr, p->iLimit, iBreak);
+ }
+ }
+
+ /* Pull the requested columns.
+ */
+ if( nColumn>0 ){
+ for(i=0; i<nColumn; i++){
+ sqliteVdbeAddOp(v, OP_Column, srcTab, i);
+ }
+ }else{
+ nColumn = pEList->nExpr;
+ for(i=0; i<pEList->nExpr; i++){
+ sqliteExprCode(pParse, pEList->a[i].pExpr);
+ }
+ }
+
+ /* If the DISTINCT keyword was present on the SELECT statement
+ ** and this row has been seen before, then do not make this row
+ ** part of the result.
+ */
+ if( distinct>=0 && pEList && pEList->nExpr>0 ){
+#if NULL_ALWAYS_DISTINCT
+ sqliteVdbeAddOp(v, OP_IsNull, -pEList->nExpr, sqliteVdbeCurrentAddr(v)+7);
+#endif
+ sqliteVdbeAddOp(v, OP_MakeKey, pEList->nExpr, 1);
+ if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pEList);
+ sqliteVdbeAddOp(v, OP_Distinct, distinct, sqliteVdbeCurrentAddr(v)+3);
+ sqliteVdbeAddOp(v, OP_Pop, pEList->nExpr+1, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_PutStrKey, distinct, 0);
+ }
+
+ switch( eDest ){
+ /* In this mode, write each query result to the key of the temporary
+ ** table iParm.
+ */
+ case SRT_Union: {
+ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
+ break;
+ }
+
+ /* Store the result as data using a unique key.
+ */
+ case SRT_Table:
+ case SRT_TempTable: {
+ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
+ if( pOrderBy ){
+ pushOntoSorter(pParse, v, pOrderBy);
+ }else{
+ sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
+ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
+ }
+ break;
+ }
+
+ /* Construct a record from the query result, but instead of
+ ** saving that record, use it as a key to delete elements from
+ ** the temporary table iParm.
+ */
+ case SRT_Except: {
+ int addr;
+ addr = sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
+ sqliteVdbeAddOp(v, OP_NotFound, iParm, addr+3);
+ sqliteVdbeAddOp(v, OP_Delete, iParm, 0);
+ break;
+ }
+
+ /* If we are creating a set for an "expr IN (SELECT ...)" construct,
+ ** then there should be a single item on the stack. Write this
+ ** item into the set table with bogus data.
+ */
+ case SRT_Set: {
+ int addr1 = sqliteVdbeCurrentAddr(v);
+ int addr2;
+ assert( nColumn==1 );
+ sqliteVdbeAddOp(v, OP_NotNull, -1, addr1+3);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ addr2 = sqliteVdbeAddOp(v, OP_Goto, 0, 0);
+ if( pOrderBy ){
+ pushOntoSorter(pParse, v, pOrderBy);
+ }else{
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
+ }
+ sqliteVdbeChangeP2(v, addr2, sqliteVdbeCurrentAddr(v));
+ break;
+ }
+
+ /* If this is a scalar select that is part of an expression, then
+ ** store the results in the appropriate memory cell and break out
+ ** of the scan loop.
+ */
+ case SRT_Mem: {
+ assert( nColumn==1 );
+ if( pOrderBy ){
+ pushOntoSorter(pParse, v, pOrderBy);
+ }else{
+ sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
+ sqliteVdbeAddOp(v, OP_Goto, 0, iBreak);
+ }
+ break;
+ }
+
+ /* Send the data to the callback function.
+ */
+ case SRT_Callback:
+ case SRT_Sorter: {
+ if( pOrderBy ){
+ sqliteVdbeAddOp(v, OP_SortMakeRec, nColumn, 0);
+ pushOntoSorter(pParse, v, pOrderBy);
+ }else{
+ assert( eDest==SRT_Callback );
+ sqliteVdbeAddOp(v, OP_Callback, nColumn, 0);
+ }
+ break;
+ }
+
+ /* Invoke a subroutine to handle the results. The subroutine itself
+ ** is responsible for popping the results off of the stack.
+ */
+ case SRT_Subroutine: {
+ if( pOrderBy ){
+ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
+ pushOntoSorter(pParse, v, pOrderBy);
+ }else{
+ sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
+ }
+ break;
+ }
+
+ /* Discard the results. This is used for SELECT statements inside
+ ** the body of a TRIGGER. The purpose of such selects is to call
+ ** user-defined functions that have side effects. We do not care
+ ** about the actual results of the select.
+ */
+ default: {
+ assert( eDest==SRT_Discard );
+ sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
+ break;
+ }
+ }
+ return 0;
+}
+
+/*
+** If the inner loop was generated using a non-null pOrderBy argument,
+** then the results were placed in a sorter. After the loop is terminated
+** we need to run the sorter and output the results. The following
+** routine generates the code needed to do that.
+*/
+static void generateSortTail(
+ Select *p, /* The SELECT statement */
+ Vdbe *v, /* Generate code into this VDBE */
+ int nColumn, /* Number of columns of data */
+ int eDest, /* Write the sorted results here */
+ int iParm /* Optional parameter associated with eDest */
+){
+ int end1 = sqliteVdbeMakeLabel(v);
+ int end2 = sqliteVdbeMakeLabel(v);
+ int addr;
+ if( eDest==SRT_Sorter ) return;
+ sqliteVdbeAddOp(v, OP_Sort, 0, 0);
+ addr = sqliteVdbeAddOp(v, OP_SortNext, 0, end1);
+ if( p->iOffset>=0 ){
+ sqliteVdbeAddOp(v, OP_MemIncr, p->iOffset, addr+4);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, addr);
+ }
+ if( p->iLimit>=0 ){
+ sqliteVdbeAddOp(v, OP_MemIncr, p->iLimit, end2);
+ }
+ switch( eDest ){
+ case SRT_Callback: {
+ sqliteVdbeAddOp(v, OP_SortCallback, nColumn, 0);
+ break;
+ }
+ case SRT_Table:
+ case SRT_TempTable: {
+ sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
+ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
+ break;
+ }
+ case SRT_Set: {
+ assert( nColumn==1 );
+ sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, sqliteVdbeCurrentAddr(v)+3);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
+ break;
+ }
+ case SRT_Mem: {
+ assert( nColumn==1 );
+ sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
+ sqliteVdbeAddOp(v, OP_Goto, 0, end1);
+ break;
+ }
+ case SRT_Subroutine: {
+ int i;
+ for(i=0; i<nColumn; i++){
+ sqliteVdbeAddOp(v, OP_Column, -1-i, i);
+ }
+ sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ break;
+ }
+ default: {
+ /* Do nothing */
+ break;
+ }
+ }
+ sqliteVdbeAddOp(v, OP_Goto, 0, addr);
+ sqliteVdbeResolveLabel(v, end2);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ sqliteVdbeResolveLabel(v, end1);
+ sqliteVdbeAddOp(v, OP_SortReset, 0, 0);
+}
+
+/*
+** Generate code that will tell the VDBE the datatypes of
+** columns in the result set.
+**
+** This routine only generates code if the "PRAGMA show_datatypes=on"
+** has been executed. The datatypes are reported out in the azCol
+** parameter to the callback function. The first N azCol[] entries
+** are the names of the columns, and the second N entries are the
+** datatypes for the columns.
+**
+** The "datatype" for a result that is a column of a type is the
+** datatype definition extracted from the CREATE TABLE statement.
+** The datatype for an expression is either TEXT or NUMERIC. The
+** datatype for a ROWID field is INTEGER.
+*/
+static void generateColumnTypes(
+ Parse *pParse, /* Parser context */
+ SrcList *pTabList, /* List of tables */
+ ExprList *pEList /* Expressions defining the result set */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i, j;
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *p = pEList->a[i].pExpr;
+ char *zType = 0;
+ if( p==0 ) continue;
+ if( p->op==TK_COLUMN && pTabList ){
+ Table *pTab;
+ int iCol = p->iColumn;
+ for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
+ assert( j<pTabList->nSrc );
+ pTab = pTabList->a[j].pTab;
+ if( iCol<0 ) iCol = pTab->iPKey;
+ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zType = "INTEGER";
+ }else{
+ zType = pTab->aCol[iCol].zType;
+ }
+ }else{
+ if( sqliteExprType(p)==SQLITE_SO_TEXT ){
+ zType = "TEXT";
+ }else{
+ zType = "NUMERIC";
+ }
+ }
+ sqliteVdbeOp3(v, OP_ColumnName, i + pEList->nExpr, 0, zType, 0);
+ }
+}
+
+/*
+** Generate code that will tell the VDBE the names of columns
+** in the result set. This information is used to provide the
+** azCol[] values in the callback.
+*/
+static void generateColumnNames(
+ Parse *pParse, /* Parser context */
+ SrcList *pTabList, /* List of tables */
+ ExprList *pEList /* Expressions defining the result set */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i, j;
+ sqlite *db = pParse->db;
+ int fullNames, shortNames;
+
+ assert( v!=0 );
+ if( pParse->colNamesSet || v==0 || sqlite_malloc_failed ) return;
+ pParse->colNamesSet = 1;
+ fullNames = (db->flags & SQLITE_FullColNames)!=0;
+ shortNames = (db->flags & SQLITE_ShortColNames)!=0;
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *p;
+ int p2 = i==pEList->nExpr-1;
+ p = pEList->a[i].pExpr;
+ if( p==0 ) continue;
+ if( pEList->a[i].zName ){
+ char *zName = pEList->a[i].zName;
+ sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0);
+ continue;
+ }
+ if( p->op==TK_COLUMN && pTabList ){
+ Table *pTab;
+ char *zCol;
+ int iCol = p->iColumn;
+ for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
+ assert( j<pTabList->nSrc );
+ pTab = pTabList->a[j].pTab;
+ if( iCol<0 ) iCol = pTab->iPKey;
+ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zCol = "_ROWID_";
+ }else{
+ zCol = pTab->aCol[iCol].zName;
+ }
+ if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
+ int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n);
+ sqliteVdbeCompressSpace(v, addr);
+ }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
+ char *zName = 0;
+ char *zTab;
+
+ zTab = pTabList->a[j].zAlias;
+ if( fullNames || zTab==0 ) zTab = pTab->zName;
+ sqliteSetString(&zName, zTab, ".", zCol, 0);
+ sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, P3_DYNAMIC);
+ }else{
+ sqliteVdbeOp3(v, OP_ColumnName, i, p2, zCol, 0);
+ }
+ }else if( p->span.z && p->span.z[0] ){
+ int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n);
+ sqliteVdbeCompressSpace(v, addr);
+ }else{
+ char zName[30];
+ assert( p->op!=TK_COLUMN || pTabList==0 );
+ sprintf(zName, "column%d", i+1);
+ sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0);
+ }
+ }
+}
+
+/*
+** Name of the connection operator, used for error messages.
+*/
+static const char *selectOpName(int id){
+ char *z;
+ switch( id ){
+ case TK_ALL: z = "UNION ALL"; break;
+ case TK_INTERSECT: z = "INTERSECT"; break;
+ case TK_EXCEPT: z = "EXCEPT"; break;
+ default: z = "UNION"; break;
+ }
+ return z;
+}
+
+/*
+** Forward declaration
+*/
+static int fillInColumnList(Parse*, Select*);
+
+/*
+** Given a SELECT statement, generate a Table structure that describes
+** the result set of that SELECT.
+*/
+Table *sqliteResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
+ Table *pTab;
+ int i, j;
+ ExprList *pEList;
+ Column *aCol;
+
+ if( fillInColumnList(pParse, pSelect) ){
+ return 0;
+ }
+ pTab = sqliteMalloc( sizeof(Table) );
+ if( pTab==0 ){
+ return 0;
+ }
+ pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
+ pEList = pSelect->pEList;
+ pTab->nCol = pEList->nExpr;
+ assert( pTab->nCol>0 );
+ pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
+ for(i=0; i<pTab->nCol; i++){
+ Expr *p, *pR;
+ if( pEList->a[i].zName ){
+ aCol[i].zName = sqliteStrDup(pEList->a[i].zName);
+ }else if( (p=pEList->a[i].pExpr)->op==TK_DOT
+ && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
+ int cnt;
+ sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, 0);
+ for(j=cnt=0; j<i; j++){
+ if( sqliteStrICmp(aCol[j].zName, aCol[i].zName)==0 ){
+ int n;
+ char zBuf[30];
+ sprintf(zBuf,"_%d",++cnt);
+ n = strlen(zBuf);
+ sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, zBuf, n,0);
+ j = -1;
+ }
+ }
+ }else if( p->span.z && p->span.z[0] ){
+ sqliteSetNString(&pTab->aCol[i].zName, p->span.z, p->span.n, 0);
+ }else{
+ char zBuf[30];
+ sprintf(zBuf, "column%d", i+1);
+ pTab->aCol[i].zName = sqliteStrDup(zBuf);
+ }
+ }
+ pTab->iPKey = -1;
+ return pTab;
+}
+
+/*
+** For the given SELECT statement, do three things.
+**
+** (1) Fill in the pTabList->a[].pTab fields in the SrcList that
+** defines the set of tables that should be scanned. For views,
+** fill pTabList->a[].pSelect with a copy of the SELECT statement
+** that implements the view. A copy is made of the view's SELECT
+** statement so that we can freely modify or delete that statement
+** without worrying about messing up the presistent representation
+** of the view.
+**
+** (2) Add terms to the WHERE clause to accomodate the NATURAL keyword
+** on joins and the ON and USING clause of joins.
+**
+** (3) Scan the list of columns in the result set (pEList) looking
+** for instances of the "*" operator or the TABLE.* operator.
+** If found, expand each "*" to be every column in every table
+** and TABLE.* to be every column in TABLE.
+**
+** Return 0 on success. If there are problems, leave an error message
+** in pParse and return non-zero.
+*/
+static int fillInColumnList(Parse *pParse, Select *p){
+ int i, j, k, rc;
+ SrcList *pTabList;
+ ExprList *pEList;
+ Table *pTab;
+
+ if( p==0 || p->pSrc==0 ) return 1;
+ pTabList = p->pSrc;
+ pEList = p->pEList;
+
+ /* Look up every table in the table list.
+ */
+ for(i=0; i<pTabList->nSrc; i++){
+ if( pTabList->a[i].pTab ){
+ /* This routine has run before! No need to continue */
+ return 0;
+ }
+ if( pTabList->a[i].zName==0 ){
+ /* A sub-query in the FROM clause of a SELECT */
+ assert( pTabList->a[i].pSelect!=0 );
+ if( pTabList->a[i].zAlias==0 ){
+ char zFakeName[60];
+ sprintf(zFakeName, "sqlite_subquery_%p_",
+ (void*)pTabList->a[i].pSelect);
+ sqliteSetString(&pTabList->a[i].zAlias, zFakeName, 0);
+ }
+ pTabList->a[i].pTab = pTab =
+ sqliteResultSetOfSelect(pParse, pTabList->a[i].zAlias,
+ pTabList->a[i].pSelect);
+ if( pTab==0 ){
+ return 1;
+ }
+ /* The isTransient flag indicates that the Table structure has been
+ ** dynamically allocated and may be freed at any time. In other words,
+ ** pTab is not pointing to a persistent table structure that defines
+ ** part of the schema. */
+ pTab->isTransient = 1;
+ }else{
+ /* An ordinary table or view name in the FROM clause */
+ pTabList->a[i].pTab = pTab =
+ sqliteLocateTable(pParse,pTabList->a[i].zName,pTabList->a[i].zDatabase);
+ if( pTab==0 ){
+ return 1;
+ }
+ if( pTab->pSelect ){
+ /* We reach here if the named table is a really a view */
+ if( sqliteViewGetColumnNames(pParse, pTab) ){
+ return 1;
+ }
+ /* If pTabList->a[i].pSelect!=0 it means we are dealing with a
+ ** view within a view. The SELECT structure has already been
+ ** copied by the outer view so we can skip the copy step here
+ ** in the inner view.
+ */
+ if( pTabList->a[i].pSelect==0 ){
+ pTabList->a[i].pSelect = sqliteSelectDup(pTab->pSelect);
+ }
+ }
+ }
+ }
+
+ /* Process NATURAL keywords, and ON and USING clauses of joins.
+ */
+ if( sqliteProcessJoin(pParse, p) ) return 1;
+
+ /* For every "*" that occurs in the column list, insert the names of
+ ** all columns in all tables. And for every TABLE.* insert the names
+ ** of all columns in TABLE. The parser inserted a special expression
+ ** with the TK_ALL operator for each "*" that it found in the column list.
+ ** The following code just has to locate the TK_ALL expressions and expand
+ ** each one to the list of all columns in all tables.
+ **
+ ** The first loop just checks to see if there are any "*" operators
+ ** that need expanding.
+ */
+ for(k=0; k<pEList->nExpr; k++){
+ Expr *pE = pEList->a[k].pExpr;
+ if( pE->op==TK_ALL ) break;
+ if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
+ && pE->pLeft && pE->pLeft->op==TK_ID ) break;
+ }
+ rc = 0;
+ if( k<pEList->nExpr ){
+ /*
+ ** If we get here it means the result set contains one or more "*"
+ ** operators that need to be expanded. Loop through each expression
+ ** in the result set and expand them one by one.
+ */
+ struct ExprList_item *a = pEList->a;
+ ExprList *pNew = 0;
+ for(k=0; k<pEList->nExpr; k++){
+ Expr *pE = a[k].pExpr;
+ if( pE->op!=TK_ALL &&
+ (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
+ /* This particular expression does not need to be expanded.
+ */
+ pNew = sqliteExprListAppend(pNew, a[k].pExpr, 0);
+ pNew->a[pNew->nExpr-1].zName = a[k].zName;
+ a[k].pExpr = 0;
+ a[k].zName = 0;
+ }else{
+ /* This expression is a "*" or a "TABLE.*" and needs to be
+ ** expanded. */
+ int tableSeen = 0; /* Set to 1 when TABLE matches */
+ Token *pName; /* text of name of TABLE */
+ if( pE->op==TK_DOT && pE->pLeft ){
+ pName = &pE->pLeft->token;
+ }else{
+ pName = 0;
+ }
+ for(i=0; i<pTabList->nSrc; i++){
+ Table *pTab = pTabList->a[i].pTab;
+ char *zTabName = pTabList->a[i].zAlias;
+ if( zTabName==0 || zTabName[0]==0 ){
+ zTabName = pTab->zName;
+ }
+ if( pName && (zTabName==0 || zTabName[0]==0 ||
+ sqliteStrNICmp(pName->z, zTabName, pName->n)!=0 ||
+ zTabName[pName->n]!=0) ){
+ continue;
+ }
+ tableSeen = 1;
+ for(j=0; j<pTab->nCol; j++){
+ Expr *pExpr, *pLeft, *pRight;
+ char *zName = pTab->aCol[j].zName;
+
+ if( i>0 && (pTabList->a[i-1].jointype & JT_NATURAL)!=0 &&
+ columnIndex(pTabList->a[i-1].pTab, zName)>=0 ){
+ /* In a NATURAL join, omit the join columns from the
+ ** table on the right */
+ continue;
+ }
+ if( i>0 && sqliteIdListIndex(pTabList->a[i-1].pUsing, zName)>=0 ){
+ /* In a join with a USING clause, omit columns in the
+ ** using clause from the table on the right. */
+ continue;
+ }
+ pRight = sqliteExpr(TK_ID, 0, 0, 0);
+ if( pRight==0 ) break;
+ pRight->token.z = zName;
+ pRight->token.n = strlen(zName);
+ pRight->token.dyn = 0;
+ if( zTabName && pTabList->nSrc>1 ){
+ pLeft = sqliteExpr(TK_ID, 0, 0, 0);
+ pExpr = sqliteExpr(TK_DOT, pLeft, pRight, 0);
+ if( pExpr==0 ) break;
+ pLeft->token.z = zTabName;
+ pLeft->token.n = strlen(zTabName);
+ pLeft->token.dyn = 0;
+ sqliteSetString((char**)&pExpr->span.z, zTabName, ".", zName, 0);
+ pExpr->span.n = strlen(pExpr->span.z);
+ pExpr->span.dyn = 1;
+ pExpr->token.z = 0;
+ pExpr->token.n = 0;
+ pExpr->token.dyn = 0;
+ }else{
+ pExpr = pRight;
+ pExpr->span = pExpr->token;
+ }
+ pNew = sqliteExprListAppend(pNew, pExpr, 0);
+ }
+ }
+ if( !tableSeen ){
+ if( pName ){
+ sqliteErrorMsg(pParse, "no such table: %T", pName);
+ }else{
+ sqliteErrorMsg(pParse, "no tables specified");
+ }
+ rc = 1;
+ }
+ }
+ }
+ sqliteExprListDelete(pEList);
+ p->pEList = pNew;
+ }
+ return rc;
+}
+
+/*
+** This routine recursively unlinks the Select.pSrc.a[].pTab pointers
+** in a select structure. It just sets the pointers to NULL. This
+** routine is recursive in the sense that if the Select.pSrc.a[].pSelect
+** pointer is not NULL, this routine is called recursively on that pointer.
+**
+** This routine is called on the Select structure that defines a
+** VIEW in order to undo any bindings to tables. This is necessary
+** because those tables might be DROPed by a subsequent SQL command.
+** If the bindings are not removed, then the Select.pSrc->a[].pTab field
+** will be left pointing to a deallocated Table structure after the
+** DROP and a coredump will occur the next time the VIEW is used.
+*/
+void sqliteSelectUnbind(Select *p){
+ int i;
+ SrcList *pSrc = p->pSrc;
+ Table *pTab;
+ if( p==0 ) return;
+ for(i=0; i<pSrc->nSrc; i++){
+ if( (pTab = pSrc->a[i].pTab)!=0 ){
+ if( pTab->isTransient ){
+ sqliteDeleteTable(0, pTab);
+ }
+ pSrc->a[i].pTab = 0;
+ if( pSrc->a[i].pSelect ){
+ sqliteSelectUnbind(pSrc->a[i].pSelect);
+ }
+ }
+ }
+}
+
+/*
+** This routine associates entries in an ORDER BY expression list with
+** columns in a result. For each ORDER BY expression, the opcode of
+** the top-level node is changed to TK_COLUMN and the iColumn value of
+** the top-level node is filled in with column number and the iTable
+** value of the top-level node is filled with iTable parameter.
+**
+** If there are prior SELECT clauses, they are processed first. A match
+** in an earlier SELECT takes precedence over a later SELECT.
+**
+** Any entry that does not match is flagged as an error. The number
+** of errors is returned.
+**
+** This routine does NOT correctly initialize the Expr.dataType field
+** of the ORDER BY expressions. The multiSelectSortOrder() routine
+** must be called to do that after the individual select statements
+** have all been analyzed. This routine is unable to compute Expr.dataType
+** because it must be called before the individual select statements
+** have been analyzed.
+*/
+static int matchOrderbyToColumn(
+ Parse *pParse, /* A place to leave error messages */
+ Select *pSelect, /* Match to result columns of this SELECT */
+ ExprList *pOrderBy, /* The ORDER BY values to match against columns */
+ int iTable, /* Insert this value in iTable */
+ int mustComplete /* If TRUE all ORDER BYs must match */
+){
+ int nErr = 0;
+ int i, j;
+ ExprList *pEList;
+
+ if( pSelect==0 || pOrderBy==0 ) return 1;
+ if( mustComplete ){
+ for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
+ }
+ if( fillInColumnList(pParse, pSelect) ){
+ return 1;
+ }
+ if( pSelect->pPrior ){
+ if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
+ return 1;
+ }
+ }
+ pEList = pSelect->pEList;
+ for(i=0; i<pOrderBy->nExpr; i++){
+ Expr *pE = pOrderBy->a[i].pExpr;
+ int iCol = -1;
+ if( pOrderBy->a[i].done ) continue;
+ if( sqliteExprIsInteger(pE, &iCol) ){
+ if( iCol<=0 || iCol>pEList->nExpr ){
+ sqliteErrorMsg(pParse,
+ "ORDER BY position %d should be between 1 and %d",
+ iCol, pEList->nExpr);
+ nErr++;
+ break;
+ }
+ if( !mustComplete ) continue;
+ iCol--;
+ }
+ for(j=0; iCol<0 && j<pEList->nExpr; j++){
+ if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){
+ char *zName, *zLabel;
+ zName = pEList->a[j].zName;
+ assert( pE->token.z );
+ zLabel = sqliteStrNDup(pE->token.z, pE->token.n);
+ sqliteDequote(zLabel);
+ if( sqliteStrICmp(zName, zLabel)==0 ){
+ iCol = j;
+ }
+ sqliteFree(zLabel);
+ }
+ if( iCol<0 && sqliteExprCompare(pE, pEList->a[j].pExpr) ){
+ iCol = j;
+ }
+ }
+ if( iCol>=0 ){
+ pE->op = TK_COLUMN;
+ pE->iColumn = iCol;
+ pE->iTable = iTable;
+ pOrderBy->a[i].done = 1;
+ }
+ if( iCol<0 && mustComplete ){
+ sqliteErrorMsg(pParse,
+ "ORDER BY term number %d does not match any result column", i+1);
+ nErr++;
+ break;
+ }
+ }
+ return nErr;
+}
+
+/*
+** Get a VDBE for the given parser context. Create a new one if necessary.
+** If an error occurs, return NULL and leave a message in pParse.
+*/
+Vdbe *sqliteGetVdbe(Parse *pParse){
+ Vdbe *v = pParse->pVdbe;
+ if( v==0 ){
+ v = pParse->pVdbe = sqliteVdbeCreate(pParse->db);
+ }
+ return v;
+}
+
+/*
+** This routine sets the Expr.dataType field on all elements of
+** the pOrderBy expression list. The pOrderBy list will have been
+** set up by matchOrderbyToColumn(). Hence each expression has
+** a TK_COLUMN as its root node. The Expr.iColumn refers to a
+** column in the result set. The datatype is set to SQLITE_SO_TEXT
+** if the corresponding column in p and every SELECT to the left of
+** p has a datatype of SQLITE_SO_TEXT. If the cooressponding column
+** in p or any of the left SELECTs is SQLITE_SO_NUM, then the datatype
+** of the order-by expression is set to SQLITE_SO_NUM.
+**
+** Examples:
+**
+** CREATE TABLE one(a INTEGER, b TEXT);
+** CREATE TABLE two(c VARCHAR(5), d FLOAT);
+**
+** SELECT b, b FROM one UNION SELECT d, c FROM two ORDER BY 1, 2;
+**
+** The primary sort key will use SQLITE_SO_NUM because the "d" in
+** the second SELECT is numeric. The 1st column of the first SELECT
+** is text but that does not matter because a numeric always overrides
+** a text.
+**
+** The secondary key will use the SQLITE_SO_TEXT sort order because
+** both the (second) "b" in the first SELECT and the "c" in the second
+** SELECT have a datatype of text.
+*/
+static void multiSelectSortOrder(Select *p, ExprList *pOrderBy){
+ int i;
+ ExprList *pEList;
+ if( pOrderBy==0 ) return;
+ if( p==0 ){
+ for(i=0; i<pOrderBy->nExpr; i++){
+ pOrderBy->a[i].pExpr->dataType = SQLITE_SO_TEXT;
+ }
+ return;
+ }
+ multiSelectSortOrder(p->pPrior, pOrderBy);
+ pEList = p->pEList;
+ for(i=0; i<pOrderBy->nExpr; i++){
+ Expr *pE = pOrderBy->a[i].pExpr;
+ if( pE->dataType==SQLITE_SO_NUM ) continue;
+ assert( pE->iColumn>=0 );
+ if( pEList->nExpr>pE->iColumn ){
+ pE->dataType = sqliteExprType(pEList->a[pE->iColumn].pExpr);
+ }
+ }
+}
+
+/*
+** Compute the iLimit and iOffset fields of the SELECT based on the
+** nLimit and nOffset fields. nLimit and nOffset hold the integers
+** that appear in the original SQL statement after the LIMIT and OFFSET
+** keywords. Or that hold -1 and 0 if those keywords are omitted.
+** iLimit and iOffset are the integer memory register numbers for
+** counters used to compute the limit and offset. If there is no
+** limit and/or offset, then iLimit and iOffset are negative.
+**
+** This routine changes the values if iLimit and iOffset only if
+** a limit or offset is defined by nLimit and nOffset. iLimit and
+** iOffset should have been preset to appropriate default values
+** (usually but not always -1) prior to calling this routine.
+** Only if nLimit>=0 or nOffset>0 do the limit registers get
+** redefined. The UNION ALL operator uses this property to force
+** the reuse of the same limit and offset registers across multiple
+** SELECT statements.
+*/
+static void computeLimitRegisters(Parse *pParse, Select *p){
+ /*
+ ** If the comparison is p->nLimit>0 then "LIMIT 0" shows
+ ** all rows. It is the same as no limit. If the comparision is
+ ** p->nLimit>=0 then "LIMIT 0" show no rows at all.
+ ** "LIMIT -1" always shows all rows. There is some
+ ** contraversy about what the correct behavior should be.
+ ** The current implementation interprets "LIMIT 0" to mean
+ ** no rows.
+ */
+ if( p->nLimit>=0 ){
+ int iMem = pParse->nMem++;
+ Vdbe *v = sqliteGetVdbe(pParse);
+ if( v==0 ) return;
+ sqliteVdbeAddOp(v, OP_Integer, -p->nLimit, 0);
+ sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
+ p->iLimit = iMem;
+ }
+ if( p->nOffset>0 ){
+ int iMem = pParse->nMem++;
+ Vdbe *v = sqliteGetVdbe(pParse);
+ if( v==0 ) return;
+ sqliteVdbeAddOp(v, OP_Integer, -p->nOffset, 0);
+ sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
+ p->iOffset = iMem;
+ }
+}
+
+/*
+** This routine is called to process a query that is really the union
+** or intersection of two or more separate queries.
+**
+** "p" points to the right-most of the two queries. the query on the
+** left is p->pPrior. The left query could also be a compound query
+** in which case this routine will be called recursively.
+**
+** The results of the total query are to be written into a destination
+** of type eDest with parameter iParm.
+**
+** Example 1: Consider a three-way compound SQL statement.
+**
+** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
+**
+** This statement is parsed up as follows:
+**
+** SELECT c FROM t3
+** |
+** `-----> SELECT b FROM t2
+** |
+** `------> SELECT a FROM t1
+**
+** The arrows in the diagram above represent the Select.pPrior pointer.
+** So if this routine is called with p equal to the t3 query, then
+** pPrior will be the t2 query. p->op will be TK_UNION in this case.
+**
+** Notice that because of the way SQLite parses compound SELECTs, the
+** individual selects always group from left to right.
+*/
+static int multiSelect(Parse *pParse, Select *p, int eDest, int iParm){
+ int rc; /* Success code from a subroutine */
+ Select *pPrior; /* Another SELECT immediately to our left */
+ Vdbe *v; /* Generate code to this VDBE */
+
+ /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
+ ** the last SELECT in the series may have an ORDER BY or LIMIT.
+ */
+ if( p==0 || p->pPrior==0 ) return 1;
+ pPrior = p->pPrior;
+ if( pPrior->pOrderBy ){
+ sqliteErrorMsg(pParse,"ORDER BY clause should come after %s not before",
+ selectOpName(p->op));
+ return 1;
+ }
+ if( pPrior->nLimit>=0 || pPrior->nOffset>0 ){
+ sqliteErrorMsg(pParse,"LIMIT clause should come after %s not before",
+ selectOpName(p->op));
+ return 1;
+ }
+
+ /* Make sure we have a valid query engine. If not, create a new one.
+ */
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) return 1;
+
+ /* Create the destination temporary table if necessary
+ */
+ if( eDest==SRT_TempTable ){
+ sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
+ eDest = SRT_Table;
+ }
+
+ /* Generate code for the left and right SELECT statements.
+ */
+ switch( p->op ){
+ case TK_ALL: {
+ if( p->pOrderBy==0 ){
+ pPrior->nLimit = p->nLimit;
+ pPrior->nOffset = p->nOffset;
+ rc = sqliteSelect(pParse, pPrior, eDest, iParm, 0, 0, 0);
+ if( rc ) return rc;
+ p->pPrior = 0;
+ p->iLimit = pPrior->iLimit;
+ p->iOffset = pPrior->iOffset;
+ p->nLimit = -1;
+ p->nOffset = 0;
+ rc = sqliteSelect(pParse, p, eDest, iParm, 0, 0, 0);
+ p->pPrior = pPrior;
+ if( rc ) return rc;
+ break;
+ }
+ /* For UNION ALL ... ORDER BY fall through to the next case */
+ }
+ case TK_EXCEPT:
+ case TK_UNION: {
+ int unionTab; /* Cursor number of the temporary table holding result */
+ int op; /* One of the SRT_ operations to apply to self */
+ int priorOp; /* The SRT_ operation to apply to prior selects */
+ int nLimit, nOffset; /* Saved values of p->nLimit and p->nOffset */
+ ExprList *pOrderBy; /* The ORDER BY clause for the right SELECT */
+
+ priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
+ if( eDest==priorOp && p->pOrderBy==0 && p->nLimit<0 && p->nOffset==0 ){
+ /* We can reuse a temporary table generated by a SELECT to our
+ ** right.
+ */
+ unionTab = iParm;
+ }else{
+ /* We will need to create our own temporary table to hold the
+ ** intermediate results.
+ */
+ unionTab = pParse->nTab++;
+ if( p->pOrderBy
+ && matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){
+ return 1;
+ }
+ if( p->op!=TK_ALL ){
+ sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 1);
+ sqliteVdbeAddOp(v, OP_KeyAsData, unionTab, 1);
+ }else{
+ sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 0);
+ }
+ }
+
+ /* Code the SELECT statements to our left
+ */
+ rc = sqliteSelect(pParse, pPrior, priorOp, unionTab, 0, 0, 0);
+ if( rc ) return rc;
+
+ /* Code the current SELECT statement
+ */
+ switch( p->op ){
+ case TK_EXCEPT: op = SRT_Except; break;
+ case TK_UNION: op = SRT_Union; break;
+ case TK_ALL: op = SRT_Table; break;
+ }
+ p->pPrior = 0;
+ pOrderBy = p->pOrderBy;
+ p->pOrderBy = 0;
+ nLimit = p->nLimit;
+ p->nLimit = -1;
+ nOffset = p->nOffset;
+ p->nOffset = 0;
+ rc = sqliteSelect(pParse, p, op, unionTab, 0, 0, 0);
+ p->pPrior = pPrior;
+ p->pOrderBy = pOrderBy;
+ p->nLimit = nLimit;
+ p->nOffset = nOffset;
+ if( rc ) return rc;
+
+ /* Convert the data in the temporary table into whatever form
+ ** it is that we currently need.
+ */
+ if( eDest!=priorOp || unionTab!=iParm ){
+ int iCont, iBreak, iStart;
+ assert( p->pEList );
+ if( eDest==SRT_Callback ){
+ generateColumnNames(pParse, 0, p->pEList);
+ generateColumnTypes(pParse, p->pSrc, p->pEList);
+ }
+ iBreak = sqliteVdbeMakeLabel(v);
+ iCont = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_Rewind, unionTab, iBreak);
+ computeLimitRegisters(pParse, p);
+ iStart = sqliteVdbeCurrentAddr(v);
+ multiSelectSortOrder(p, p->pOrderBy);
+ rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
+ p->pOrderBy, -1, eDest, iParm,
+ iCont, iBreak);
+ if( rc ) return 1;
+ sqliteVdbeResolveLabel(v, iCont);
+ sqliteVdbeAddOp(v, OP_Next, unionTab, iStart);
+ sqliteVdbeResolveLabel(v, iBreak);
+ sqliteVdbeAddOp(v, OP_Close, unionTab, 0);
+ if( p->pOrderBy ){
+ generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
+ }
+ }
+ break;
+ }
+ case TK_INTERSECT: {
+ int tab1, tab2;
+ int iCont, iBreak, iStart;
+ int nLimit, nOffset;
+
+ /* INTERSECT is different from the others since it requires
+ ** two temporary tables. Hence it has its own case. Begin
+ ** by allocating the tables we will need.
+ */
+ tab1 = pParse->nTab++;
+ tab2 = pParse->nTab++;
+ if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){
+ return 1;
+ }
+ sqliteVdbeAddOp(v, OP_OpenTemp, tab1, 1);
+ sqliteVdbeAddOp(v, OP_KeyAsData, tab1, 1);
+
+ /* Code the SELECTs to our left into temporary table "tab1".
+ */
+ rc = sqliteSelect(pParse, pPrior, SRT_Union, tab1, 0, 0, 0);
+ if( rc ) return rc;
+
+ /* Code the current SELECT into temporary table "tab2"
+ */
+ sqliteVdbeAddOp(v, OP_OpenTemp, tab2, 1);
+ sqliteVdbeAddOp(v, OP_KeyAsData, tab2, 1);
+ p->pPrior = 0;
+ nLimit = p->nLimit;
+ p->nLimit = -1;
+ nOffset = p->nOffset;
+ p->nOffset = 0;
+ rc = sqliteSelect(pParse, p, SRT_Union, tab2, 0, 0, 0);
+ p->pPrior = pPrior;
+ p->nLimit = nLimit;
+ p->nOffset = nOffset;
+ if( rc ) return rc;
+
+ /* Generate code to take the intersection of the two temporary
+ ** tables.
+ */
+ assert( p->pEList );
+ if( eDest==SRT_Callback ){
+ generateColumnNames(pParse, 0, p->pEList);
+ generateColumnTypes(pParse, p->pSrc, p->pEList);
+ }
+ iBreak = sqliteVdbeMakeLabel(v);
+ iCont = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_Rewind, tab1, iBreak);
+ computeLimitRegisters(pParse, p);
+ iStart = sqliteVdbeAddOp(v, OP_FullKey, tab1, 0);
+ sqliteVdbeAddOp(v, OP_NotFound, tab2, iCont);
+ multiSelectSortOrder(p, p->pOrderBy);
+ rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
+ p->pOrderBy, -1, eDest, iParm,
+ iCont, iBreak);
+ if( rc ) return 1;
+ sqliteVdbeResolveLabel(v, iCont);
+ sqliteVdbeAddOp(v, OP_Next, tab1, iStart);
+ sqliteVdbeResolveLabel(v, iBreak);
+ sqliteVdbeAddOp(v, OP_Close, tab2, 0);
+ sqliteVdbeAddOp(v, OP_Close, tab1, 0);
+ if( p->pOrderBy ){
+ generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
+ }
+ break;
+ }
+ }
+ assert( p->pEList && pPrior->pEList );
+ if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
+ sqliteErrorMsg(pParse, "SELECTs to the left and right of %s"
+ " do not have the same number of result columns", selectOpName(p->op));
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Scan through the expression pExpr. Replace every reference to
+** a column in table number iTable with a copy of the iColumn-th
+** entry in pEList. (But leave references to the ROWID column
+** unchanged.)
+**
+** This routine is part of the flattening procedure. A subquery
+** whose result set is defined by pEList appears as entry in the
+** FROM clause of a SELECT such that the VDBE cursor assigned to that
+** FORM clause entry is iTable. This routine make the necessary
+** changes to pExpr so that it refers directly to the source table
+** of the subquery rather the result set of the subquery.
+*/
+static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */
+static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
+ if( pExpr==0 ) return;
+ if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
+ if( pExpr->iColumn<0 ){
+ pExpr->op = TK_NULL;
+ }else{
+ Expr *pNew;
+ assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
+ assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
+ pNew = pEList->a[pExpr->iColumn].pExpr;
+ assert( pNew!=0 );
+ pExpr->op = pNew->op;
+ pExpr->dataType = pNew->dataType;
+ assert( pExpr->pLeft==0 );
+ pExpr->pLeft = sqliteExprDup(pNew->pLeft);
+ assert( pExpr->pRight==0 );
+ pExpr->pRight = sqliteExprDup(pNew->pRight);
+ assert( pExpr->pList==0 );
+ pExpr->pList = sqliteExprListDup(pNew->pList);
+ pExpr->iTable = pNew->iTable;
+ pExpr->iColumn = pNew->iColumn;
+ pExpr->iAgg = pNew->iAgg;
+ sqliteTokenCopy(&pExpr->token, &pNew->token);
+ sqliteTokenCopy(&pExpr->span, &pNew->span);
+ }
+ }else{
+ substExpr(pExpr->pLeft, iTable, pEList);
+ substExpr(pExpr->pRight, iTable, pEList);
+ substExprList(pExpr->pList, iTable, pEList);
+ }
+}
+static void
+substExprList(ExprList *pList, int iTable, ExprList *pEList){
+ int i;
+ if( pList==0 ) return;
+ for(i=0; i<pList->nExpr; i++){
+ substExpr(pList->a[i].pExpr, iTable, pEList);
+ }
+}
+
+/*
+** This routine attempts to flatten subqueries in order to speed
+** execution. It returns 1 if it makes changes and 0 if no flattening
+** occurs.
+**
+** To understand the concept of flattening, consider the following
+** query:
+**
+** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
+**
+** The default way of implementing this query is to execute the
+** subquery first and store the results in a temporary table, then
+** run the outer query on that temporary table. This requires two
+** passes over the data. Furthermore, because the temporary table
+** has no indices, the WHERE clause on the outer query cannot be
+** optimized.
+**
+** This routine attempts to rewrite queries such as the above into
+** a single flat select, like this:
+**
+** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
+**
+** The code generated for this simpification gives the same result
+** but only has to scan the data once. And because indices might
+** exist on the table t1, a complete scan of the data might be
+** avoided.
+**
+** Flattening is only attempted if all of the following are true:
+**
+** (1) The subquery and the outer query do not both use aggregates.
+**
+** (2) The subquery is not an aggregate or the outer query is not a join.
+**
+** (3) The subquery is not the right operand of a left outer join, or
+** the subquery is not itself a join. (Ticket #306)
+**
+** (4) The subquery is not DISTINCT or the outer query is not a join.
+**
+** (5) The subquery is not DISTINCT or the outer query does not use
+** aggregates.
+**
+** (6) The subquery does not use aggregates or the outer query is not
+** DISTINCT.
+**
+** (7) The subquery has a FROM clause.
+**
+** (8) The subquery does not use LIMIT or the outer query is not a join.
+**
+** (9) The subquery does not use LIMIT or the outer query does not use
+** aggregates.
+**
+** (10) The subquery does not use aggregates or the outer query does not
+** use LIMIT.
+**
+** (11) The subquery and the outer query do not both have ORDER BY clauses.
+**
+** (12) The subquery is not the right term of a LEFT OUTER JOIN or the
+** subquery has no WHERE clause. (added by ticket #350)
+**
+** In this routine, the "p" parameter is a pointer to the outer query.
+** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
+** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
+**
+** If flattening is not attempted, this routine is a no-op and returns 0.
+** If flattening is attempted this routine returns 1.
+**
+** All of the expression analysis must occur on both the outer query and
+** the subquery before this routine runs.
+*/
+static int flattenSubquery(
+ Parse *pParse, /* The parsing context */
+ Select *p, /* The parent or outer SELECT statement */
+ int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
+ int isAgg, /* True if outer SELECT uses aggregate functions */
+ int subqueryIsAgg /* True if the subquery uses aggregate functions */
+){
+ Select *pSub; /* The inner query or "subquery" */
+ SrcList *pSrc; /* The FROM clause of the outer query */
+ SrcList *pSubSrc; /* The FROM clause of the subquery */
+ ExprList *pList; /* The result set of the outer query */
+ int iParent; /* VDBE cursor number of the pSub result set temp table */
+ int i;
+ Expr *pWhere;
+
+ /* Check to see if flattening is permitted. Return 0 if not.
+ */
+ if( p==0 ) return 0;
+ pSrc = p->pSrc;
+ assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
+ pSub = pSrc->a[iFrom].pSelect;
+ assert( pSub!=0 );
+ if( isAgg && subqueryIsAgg ) return 0;
+ if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;
+ pSubSrc = pSub->pSrc;
+ assert( pSubSrc );
+ if( pSubSrc->nSrc==0 ) return 0;
+ if( (pSub->isDistinct || pSub->nLimit>=0) && (pSrc->nSrc>1 || isAgg) ){
+ return 0;
+ }
+ if( (p->isDistinct || p->nLimit>=0) && subqueryIsAgg ) return 0;
+ if( p->pOrderBy && pSub->pOrderBy ) return 0;
+
+ /* Restriction 3: If the subquery is a join, make sure the subquery is
+ ** not used as the right operand of an outer join. Examples of why this
+ ** is not allowed:
+ **
+ ** t1 LEFT OUTER JOIN (t2 JOIN t3)
+ **
+ ** If we flatten the above, we would get
+ **
+ ** (t1 LEFT OUTER JOIN t2) JOIN t3
+ **
+ ** which is not at all the same thing.
+ */
+ if( pSubSrc->nSrc>1 && iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 ){
+ return 0;
+ }
+
+ /* Restriction 12: If the subquery is the right operand of a left outer
+ ** join, make sure the subquery has no WHERE clause.
+ ** An examples of why this is not allowed:
+ **
+ ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
+ **
+ ** If we flatten the above, we would get
+ **
+ ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
+ **
+ ** But the t2.x>0 test will always fail on a NULL row of t2, which
+ ** effectively converts the OUTER JOIN into an INNER JOIN.
+ */
+ if( iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0
+ && pSub->pWhere!=0 ){
+ return 0;
+ }
+
+ /* If we reach this point, it means flattening is permitted for the
+ ** iFrom-th entry of the FROM clause in the outer query.
+ */
+
+ /* Move all of the FROM elements of the subquery into the
+ ** the FROM clause of the outer query. Before doing this, remember
+ ** the cursor number for the original outer query FROM element in
+ ** iParent. The iParent cursor will never be used. Subsequent code
+ ** will scan expressions looking for iParent references and replace
+ ** those references with expressions that resolve to the subquery FROM
+ ** elements we are now copying in.
+ */
+ iParent = pSrc->a[iFrom].iCursor;
+ {
+ int nSubSrc = pSubSrc->nSrc;
+ int jointype = pSrc->a[iFrom].jointype;
+
+ if( pSrc->a[iFrom].pTab && pSrc->a[iFrom].pTab->isTransient ){
+ sqliteDeleteTable(0, pSrc->a[iFrom].pTab);
+ }
+ sqliteFree(pSrc->a[iFrom].zDatabase);
+ sqliteFree(pSrc->a[iFrom].zName);
+ sqliteFree(pSrc->a[iFrom].zAlias);
+ if( nSubSrc>1 ){
+ int extra = nSubSrc - 1;
+ for(i=1; i<nSubSrc; i++){
+ pSrc = sqliteSrcListAppend(pSrc, 0, 0);
+ }
+ p->pSrc = pSrc;
+ for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
+ pSrc->a[i] = pSrc->a[i-extra];
+ }
+ }
+ for(i=0; i<nSubSrc; i++){
+ pSrc->a[i+iFrom] = pSubSrc->a[i];
+ memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
+ }
+ pSrc->a[iFrom+nSubSrc-1].jointype = jointype;
+ }
+
+ /* Now begin substituting subquery result set expressions for
+ ** references to the iParent in the outer query.
+ **
+ ** Example:
+ **
+ ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
+ ** \ \_____________ subquery __________/ /
+ ** \_____________________ outer query ______________________________/
+ **
+ ** We look at every expression in the outer query and every place we see
+ ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
+ */
+ substExprList(p->pEList, iParent, pSub->pEList);
+ pList = p->pEList;
+ for(i=0; i<pList->nExpr; i++){
+ Expr *pExpr;
+ if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
+ pList->a[i].zName = sqliteStrNDup(pExpr->span.z, pExpr->span.n);
+ }
+ }
+ if( isAgg ){
+ substExprList(p->pGroupBy, iParent, pSub->pEList);
+ substExpr(p->pHaving, iParent, pSub->pEList);
+ }
+ if( pSub->pOrderBy ){
+ assert( p->pOrderBy==0 );
+ p->pOrderBy = pSub->pOrderBy;
+ pSub->pOrderBy = 0;
+ }else if( p->pOrderBy ){
+ substExprList(p->pOrderBy, iParent, pSub->pEList);
+ }
+ if( pSub->pWhere ){
+ pWhere = sqliteExprDup(pSub->pWhere);
+ }else{
+ pWhere = 0;
+ }
+ if( subqueryIsAgg ){
+ assert( p->pHaving==0 );
+ p->pHaving = p->pWhere;
+ p->pWhere = pWhere;
+ substExpr(p->pHaving, iParent, pSub->pEList);
+ if( pSub->pHaving ){
+ Expr *pHaving = sqliteExprDup(pSub->pHaving);
+ if( p->pHaving ){
+ p->pHaving = sqliteExpr(TK_AND, p->pHaving, pHaving, 0);
+ }else{
+ p->pHaving = pHaving;
+ }
+ }
+ assert( p->pGroupBy==0 );
+ p->pGroupBy = sqliteExprListDup(pSub->pGroupBy);
+ }else if( p->pWhere==0 ){
+ p->pWhere = pWhere;
+ }else{
+ substExpr(p->pWhere, iParent, pSub->pEList);
+ if( pWhere ){
+ p->pWhere = sqliteExpr(TK_AND, p->pWhere, pWhere, 0);
+ }
+ }
+
+ /* The flattened query is distinct if either the inner or the
+ ** outer query is distinct.
+ */
+ p->isDistinct = p->isDistinct || pSub->isDistinct;
+
+ /* Transfer the limit expression from the subquery to the outer
+ ** query.
+ */
+ if( pSub->nLimit>=0 ){
+ if( p->nLimit<0 ){
+ p->nLimit = pSub->nLimit;
+ }else if( p->nLimit+p->nOffset > pSub->nLimit+pSub->nOffset ){
+ p->nLimit = pSub->nLimit + pSub->nOffset - p->nOffset;
+ }
+ }
+ p->nOffset += pSub->nOffset;
+
+ /* Finially, delete what is left of the subquery and return
+ ** success.
+ */
+ sqliteSelectDelete(pSub);
+ return 1;
+}
+
+/*
+** Analyze the SELECT statement passed in as an argument to see if it
+** is a simple min() or max() query. If it is and this query can be
+** satisfied using a single seek to the beginning or end of an index,
+** then generate the code for this SELECT and return 1. If this is not a
+** simple min() or max() query, then return 0;
+**
+** A simply min() or max() query looks like this:
+**
+** SELECT min(a) FROM table;
+** SELECT max(a) FROM table;
+**
+** The query may have only a single table in its FROM argument. There
+** can be no GROUP BY or HAVING or WHERE clauses. The result set must
+** be the min() or max() of a single column of the table. The column
+** in the min() or max() function must be indexed.
+**
+** The parameters to this routine are the same as for sqliteSelect().
+** See the header comment on that routine for additional information.
+*/
+static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
+ Expr *pExpr;
+ int iCol;
+ Table *pTab;
+ Index *pIdx;
+ int base;
+ Vdbe *v;
+ int seekOp;
+ int cont;
+ ExprList eList;
+ struct ExprList_item eListItem;
+
+ /* Check to see if this query is a simple min() or max() query. Return
+ ** zero if it is not.
+ */
+ if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
+ if( p->pSrc->nSrc!=1 ) return 0;
+ if( p->pEList->nExpr!=1 ) return 0;
+ pExpr = p->pEList->a[0].pExpr;
+ if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
+ if( pExpr->pList==0 || pExpr->pList->nExpr!=1 ) return 0;
+ if( pExpr->token.n!=3 ) return 0;
+ if( sqliteStrNICmp(pExpr->token.z,"min",3)==0 ){
+ seekOp = OP_Rewind;
+ }else if( sqliteStrNICmp(pExpr->token.z,"max",3)==0 ){
+ seekOp = OP_Last;
+ }else{
+ return 0;
+ }
+ pExpr = pExpr->pList->a[0].pExpr;
+ if( pExpr->op!=TK_COLUMN ) return 0;
+ iCol = pExpr->iColumn;
+ pTab = p->pSrc->a[0].pTab;
+
+ /* If we get to here, it means the query is of the correct form.
+ ** Check to make sure we have an index and make pIdx point to the
+ ** appropriate index. If the min() or max() is on an INTEGER PRIMARY
+ ** key column, no index is necessary so set pIdx to NULL. If no
+ ** usable index is found, return 0.
+ */
+ if( iCol<0 ){
+ pIdx = 0;
+ }else{
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ assert( pIdx->nColumn>=1 );
+ if( pIdx->aiColumn[0]==iCol ) break;
+ }
+ if( pIdx==0 ) return 0;
+ }
+
+ /* Identify column types if we will be using the callback. This
+ ** step is skipped if the output is going to a table or a memory cell.
+ ** The column names have already been generated in the calling function.
+ */
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) return 0;
+ if( eDest==SRT_Callback ){
+ generateColumnTypes(pParse, p->pSrc, p->pEList);
+ }
+
+ /* If the output is destined for a temporary table, open that table.
+ */
+ if( eDest==SRT_TempTable ){
+ sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
+ }
+
+ /* Generating code to find the min or the max. Basically all we have
+ ** to do is find the first or the last entry in the chosen index. If
+ ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
+ ** or last entry in the main table.
+ */
+ sqliteCodeVerifySchema(pParse, pTab->iDb);
+ base = p->pSrc->a[0].iCursor;
+ computeLimitRegisters(pParse, p);
+ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
+ sqliteVdbeOp3(v, OP_OpenRead, base, pTab->tnum, pTab->zName, 0);
+ cont = sqliteVdbeMakeLabel(v);
+ if( pIdx==0 ){
+ sqliteVdbeAddOp(v, seekOp, base, 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
+ sqliteVdbeOp3(v, OP_OpenRead, base+1, pIdx->tnum, pIdx->zName, P3_STATIC);
+ sqliteVdbeAddOp(v, seekOp, base+1, 0);
+ sqliteVdbeAddOp(v, OP_IdxRecno, base+1, 0);
+ sqliteVdbeAddOp(v, OP_Close, base+1, 0);
+ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
+ }
+ eList.nExpr = 1;
+ memset(&eListItem, 0, sizeof(eListItem));
+ eList.a = &eListItem;
+ eList.a[0].pExpr = pExpr;
+ selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, cont, cont);
+ sqliteVdbeResolveLabel(v, cont);
+ sqliteVdbeAddOp(v, OP_Close, base, 0);
+ return 1;
+}
+
+/*
+** Generate code for the given SELECT statement.
+**
+** The results are distributed in various ways depending on the
+** value of eDest and iParm.
+**
+** eDest Value Result
+** ------------ -------------------------------------------
+** SRT_Callback Invoke the callback for each row of the result.
+**
+** SRT_Mem Store first result in memory cell iParm
+**
+** SRT_Set Store results as keys of a table with cursor iParm
+**
+** SRT_Union Store results as a key in a temporary table iParm
+**
+** SRT_Except Remove results from the temporary table iParm.
+**
+** SRT_Table Store results in temporary table iParm
+**
+** The table above is incomplete. Additional eDist value have be added
+** since this comment was written. See the selectInnerLoop() function for
+** a complete listing of the allowed values of eDest and their meanings.
+**
+** This routine returns the number of errors. If any errors are
+** encountered, then an appropriate error message is left in
+** pParse->zErrMsg.
+**
+** This routine does NOT free the Select structure passed in. The
+** calling function needs to do that.
+**
+** The pParent, parentTab, and *pParentAgg fields are filled in if this
+** SELECT is a subquery. This routine may try to combine this SELECT
+** with its parent to form a single flat query. In so doing, it might
+** change the parent query from a non-aggregate to an aggregate query.
+** For that reason, the pParentAgg flag is passed as a pointer, so it
+** can be changed.
+**
+** Example 1: The meaning of the pParent parameter.
+**
+** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
+** \ \_______ subquery _______/ /
+** \ /
+** \____________________ outer query ___________________/
+**
+** This routine is called for the outer query first. For that call,
+** pParent will be NULL. During the processing of the outer query, this
+** routine is called recursively to handle the subquery. For the recursive
+** call, pParent will point to the outer query. Because the subquery is
+** the second element in a three-way join, the parentTab parameter will
+** be 1 (the 2nd value of a 0-indexed array.)
+*/
+int sqliteSelect(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The SELECT statement being coded. */
+ int eDest, /* How to dispose of the results */
+ int iParm, /* A parameter used by the eDest disposal method */
+ Select *pParent, /* Another SELECT for which this is a sub-query */
+ int parentTab, /* Index in pParent->pSrc of this query */
+ int *pParentAgg /* True if pParent uses aggregate functions */
+){
+ int i;
+ WhereInfo *pWInfo;
+ Vdbe *v;
+ int isAgg = 0; /* True for select lists like "count(*)" */
+ ExprList *pEList; /* List of columns to extract. */
+ SrcList *pTabList; /* List of tables to select from */
+ Expr *pWhere; /* The WHERE clause. May be NULL */
+ ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
+ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
+ Expr *pHaving; /* The HAVING clause. May be NULL */
+ int isDistinct; /* True if the DISTINCT keyword is present */
+ int distinct; /* Table to use for the distinct set */
+ int rc = 1; /* Value to return from this function */
+
+ if( sqlite_malloc_failed || pParse->nErr || p==0 ) return 1;
+ if( sqliteAuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
+
+ /* If there is are a sequence of queries, do the earlier ones first.
+ */
+ if( p->pPrior ){
+ return multiSelect(pParse, p, eDest, iParm);
+ }
+
+ /* Make local copies of the parameters for this query.
+ */
+ pTabList = p->pSrc;
+ pWhere = p->pWhere;
+ pOrderBy = p->pOrderBy;
+ pGroupBy = p->pGroupBy;
+ pHaving = p->pHaving;
+ isDistinct = p->isDistinct;
+
+ /* Allocate VDBE cursors for each table in the FROM clause
+ */
+ sqliteSrcListAssignCursors(pParse, pTabList);
+
+ /*
+ ** Do not even attempt to generate any code if we have already seen
+ ** errors before this routine starts.
+ */
+ if( pParse->nErr>0 ) goto select_end;
+
+ /* Expand any "*" terms in the result set. (For example the "*" in
+ ** "SELECT * FROM t1") The fillInColumnlist() routine also does some
+ ** other housekeeping - see the header comment for details.
+ */
+ if( fillInColumnList(pParse, p) ){
+ goto select_end;
+ }
+ pWhere = p->pWhere;
+ pEList = p->pEList;
+ if( pEList==0 ) goto select_end;
+
+ /* If writing to memory or generating a set
+ ** only a single column may be output.
+ */
+ if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
+ sqliteErrorMsg(pParse, "only a single result allowed for "
+ "a SELECT that is part of an expression");
+ goto select_end;
+ }
+
+ /* ORDER BY is ignored for some destinations.
+ */
+ switch( eDest ){
+ case SRT_Union:
+ case SRT_Except:
+ case SRT_Discard:
+ pOrderBy = 0;
+ break;
+ default:
+ break;
+ }
+
+ /* At this point, we should have allocated all the cursors that we
+ ** need to handle subquerys and temporary tables.
+ **
+ ** Resolve the column names and do a semantics check on all the expressions.
+ */
+ for(i=0; i<pEList->nExpr; i++){
+ if( sqliteExprResolveIds(pParse, pTabList, 0, pEList->a[i].pExpr) ){
+ goto select_end;
+ }
+ if( sqliteExprCheck(pParse, pEList->a[i].pExpr, 1, &isAgg) ){
+ goto select_end;
+ }
+ }
+ if( pWhere ){
+ if( sqliteExprResolveIds(pParse, pTabList, pEList, pWhere) ){
+ goto select_end;
+ }
+ if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
+ goto select_end;
+ }
+ }
+ if( pHaving ){
+ if( pGroupBy==0 ){
+ sqliteErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
+ goto select_end;
+ }
+ if( sqliteExprResolveIds(pParse, pTabList, pEList, pHaving) ){
+ goto select_end;
+ }
+ if( sqliteExprCheck(pParse, pHaving, 1, &isAgg) ){
+ goto select_end;
+ }
+ }
+ if( pOrderBy ){
+ for(i=0; i<pOrderBy->nExpr; i++){
+ int iCol;
+ Expr *pE = pOrderBy->a[i].pExpr;
+ if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
+ sqliteExprDelete(pE);
+ pE = pOrderBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
+ }
+ if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){
+ goto select_end;
+ }
+ if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
+ goto select_end;
+ }
+ if( sqliteExprIsConstant(pE) ){
+ if( sqliteExprIsInteger(pE, &iCol)==0 ){
+ sqliteErrorMsg(pParse,
+ "ORDER BY terms must not be non-integer constants");
+ goto select_end;
+ }else if( iCol<=0 || iCol>pEList->nExpr ){
+ sqliteErrorMsg(pParse,
+ "ORDER BY column number %d out of range - should be "
+ "between 1 and %d", iCol, pEList->nExpr);
+ goto select_end;
+ }
+ }
+ }
+ }
+ if( pGroupBy ){
+ for(i=0; i<pGroupBy->nExpr; i++){
+ int iCol;
+ Expr *pE = pGroupBy->a[i].pExpr;
+ if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
+ sqliteExprDelete(pE);
+ pE = pGroupBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
+ }
+ if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){
+ goto select_end;
+ }
+ if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
+ goto select_end;
+ }
+ if( sqliteExprIsConstant(pE) ){
+ if( sqliteExprIsInteger(pE, &iCol)==0 ){
+ sqliteErrorMsg(pParse,
+ "GROUP BY terms must not be non-integer constants");
+ goto select_end;
+ }else if( iCol<=0 || iCol>pEList->nExpr ){
+ sqliteErrorMsg(pParse,
+ "GROUP BY column number %d out of range - should be "
+ "between 1 and %d", iCol, pEList->nExpr);
+ goto select_end;
+ }
+ }
+ }
+ }
+
+ /* Begin generating code.
+ */
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) goto select_end;
+
+ /* Identify column names if we will be using them in a callback. This
+ ** step is skipped if the output is going to some other destination.
+ */
+ if( eDest==SRT_Callback ){
+ generateColumnNames(pParse, pTabList, pEList);
+ }
+
+ /* Check for the special case of a min() or max() function by itself
+ ** in the result set.
+ */
+ if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
+ rc = 0;
+ goto select_end;
+ }
+
+ /* Generate code for all sub-queries in the FROM clause
+ */
+ for(i=0; i<pTabList->nSrc; i++){
+ const char *zSavedAuthContext;
+ int needRestoreContext;
+
+ if( pTabList->a[i].pSelect==0 ) continue;
+ if( pTabList->a[i].zName!=0 ){
+ zSavedAuthContext = pParse->zAuthContext;
+ pParse->zAuthContext = pTabList->a[i].zName;
+ needRestoreContext = 1;
+ }else{
+ needRestoreContext = 0;
+ }
+ sqliteSelect(pParse, pTabList->a[i].pSelect, SRT_TempTable,
+ pTabList->a[i].iCursor, p, i, &isAgg);
+ if( needRestoreContext ){
+ pParse->zAuthContext = zSavedAuthContext;
+ }
+ pTabList = p->pSrc;
+ pWhere = p->pWhere;
+ if( eDest!=SRT_Union && eDest!=SRT_Except && eDest!=SRT_Discard ){
+ pOrderBy = p->pOrderBy;
+ }
+ pGroupBy = p->pGroupBy;
+ pHaving = p->pHaving;
+ isDistinct = p->isDistinct;
+ }
+
+ /* Check to see if this is a subquery that can be "flattened" into its parent.
+ ** If flattening is a possiblity, do so and return immediately.
+ */
+ if( pParent && pParentAgg &&
+ flattenSubquery(pParse, pParent, parentTab, *pParentAgg, isAgg) ){
+ if( isAgg ) *pParentAgg = 1;
+ return rc;
+ }
+
+ /* Set the limiter.
+ */
+ computeLimitRegisters(pParse, p);
+
+ /* Identify column types if we will be using a callback. This
+ ** step is skipped if the output is going to a destination other
+ ** than a callback.
+ **
+ ** We have to do this separately from the creation of column names
+ ** above because if the pTabList contains views then they will not
+ ** have been resolved and we will not know the column types until
+ ** now.
+ */
+ if( eDest==SRT_Callback ){
+ generateColumnTypes(pParse, pTabList, pEList);
+ }
+
+ /* If the output is destined for a temporary table, open that table.
+ */
+ if( eDest==SRT_TempTable ){
+ sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
+ }
+
+ /* Do an analysis of aggregate expressions.
+ */
+ sqliteAggregateInfoReset(pParse);
+ if( isAgg || pGroupBy ){
+ assert( pParse->nAgg==0 );
+ isAgg = 1;
+ for(i=0; i<pEList->nExpr; i++){
+ if( sqliteExprAnalyzeAggregates(pParse, pEList->a[i].pExpr) ){
+ goto select_end;
+ }
+ }
+ if( pGroupBy ){
+ for(i=0; i<pGroupBy->nExpr; i++){
+ if( sqliteExprAnalyzeAggregates(pParse, pGroupBy->a[i].pExpr) ){
+ goto select_end;
+ }
+ }
+ }
+ if( pHaving && sqliteExprAnalyzeAggregates(pParse, pHaving) ){
+ goto select_end;
+ }
+ if( pOrderBy ){
+ for(i=0; i<pOrderBy->nExpr; i++){
+ if( sqliteExprAnalyzeAggregates(pParse, pOrderBy->a[i].pExpr) ){
+ goto select_end;
+ }
+ }
+ }
+ }
+
+ /* Reset the aggregator
+ */
+ if( isAgg ){
+ sqliteVdbeAddOp(v, OP_AggReset, 0, pParse->nAgg);
+ for(i=0; i<pParse->nAgg; i++){
+ FuncDef *pFunc;
+ if( (pFunc = pParse->aAgg[i].pFunc)!=0 && pFunc->xFinalize!=0 ){
+ sqliteVdbeOp3(v, OP_AggInit, 0, i, (char*)pFunc, P3_POINTER);
+ }
+ }
+ if( pGroupBy==0 ){
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_AggFocus, 0, 0);
+ }
+ }
+
+ /* Initialize the memory cell to NULL
+ */
+ if( eDest==SRT_Mem ){
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
+ }
+
+ /* Open a temporary table to use for the distinct set.
+ */
+ if( isDistinct ){
+ distinct = pParse->nTab++;
+ sqliteVdbeAddOp(v, OP_OpenTemp, distinct, 1);
+ }else{
+ distinct = -1;
+ }
+
+ /* Begin the database scan
+ */
+ pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 0,
+ pGroupBy ? 0 : &pOrderBy);
+ if( pWInfo==0 ) goto select_end;
+
+ /* Use the standard inner loop if we are not dealing with
+ ** aggregates
+ */
+ if( !isAgg ){
+ if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
+ iParm, pWInfo->iContinue, pWInfo->iBreak) ){
+ goto select_end;
+ }
+ }
+
+ /* If we are dealing with aggregates, then do the special aggregate
+ ** processing.
+ */
+ else{
+ AggExpr *pAgg;
+ if( pGroupBy ){
+ int lbl1;
+ for(i=0; i<pGroupBy->nExpr; i++){
+ sqliteExprCode(pParse, pGroupBy->a[i].pExpr);
+ }
+ sqliteVdbeAddOp(v, OP_MakeKey, pGroupBy->nExpr, 0);
+ if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pGroupBy);
+ lbl1 = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_AggFocus, 0, lbl1);
+ for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
+ if( pAgg->isAgg ) continue;
+ sqliteExprCode(pParse, pAgg->pExpr);
+ sqliteVdbeAddOp(v, OP_AggSet, 0, i);
+ }
+ sqliteVdbeResolveLabel(v, lbl1);
+ }
+ for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
+ Expr *pE;
+ int nExpr;
+ FuncDef *pDef;
+ if( !pAgg->isAgg ) continue;
+ assert( pAgg->pFunc!=0 );
+ assert( pAgg->pFunc->xStep!=0 );
+ pDef = pAgg->pFunc;
+ pE = pAgg->pExpr;
+ assert( pE!=0 );
+ assert( pE->op==TK_AGG_FUNCTION );
+ nExpr = sqliteExprCodeExprList(pParse, pE->pList, pDef->includeTypes);
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
+ sqliteVdbeOp3(v, OP_AggFunc, 0, nExpr, (char*)pDef, P3_POINTER);
+ }
+ }
+
+ /* End the database scan loop.
+ */
+ sqliteWhereEnd(pWInfo);
+
+ /* If we are processing aggregates, we need to set up a second loop
+ ** over all of the aggregate values and process them.
+ */
+ if( isAgg ){
+ int endagg = sqliteVdbeMakeLabel(v);
+ int startagg;
+ startagg = sqliteVdbeAddOp(v, OP_AggNext, 0, endagg);
+ pParse->useAgg = 1;
+ if( pHaving ){
+ sqliteExprIfFalse(pParse, pHaving, startagg, 1);
+ }
+ if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
+ iParm, startagg, endagg) ){
+ goto select_end;
+ }
+ sqliteVdbeAddOp(v, OP_Goto, 0, startagg);
+ sqliteVdbeResolveLabel(v, endagg);
+ sqliteVdbeAddOp(v, OP_Noop, 0, 0);
+ pParse->useAgg = 0;
+ }
+
+ /* If there is an ORDER BY clause, then we need to sort the results
+ ** and send them to the callback one by one.
+ */
+ if( pOrderBy ){
+ generateSortTail(p, v, pEList->nExpr, eDest, iParm);
+ }
+
+ /* If this was a subquery, we have now converted the subquery into a
+ ** temporary table. So delete the subquery structure from the parent
+ ** to prevent this subquery from being evaluated again and to force the
+ ** the use of the temporary table.
+ */
+ if( pParent ){
+ assert( pParent->pSrc->nSrc>parentTab );
+ assert( pParent->pSrc->a[parentTab].pSelect==p );
+ sqliteSelectDelete(p);
+ pParent->pSrc->a[parentTab].pSelect = 0;
+ }
+
+ /* The SELECT was successfully coded. Set the return code to 0
+ ** to indicate no errors.
+ */
+ rc = 0;
+
+ /* Control jumps to here if an error is encountered above, or upon
+ ** successful coding of the SELECT.
+ */
+select_end:
+ sqliteAggregateInfoReset(pParse);
+ return rc;
+}
diff --git a/src/3rdparty/sqlite/shell.c b/src/3rdparty/sqlite/shell.c
new file mode 100644
index 0000000..58771aa
--- /dev/null
+++ b/src/3rdparty/sqlite/shell.c
@@ -0,0 +1,1350 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code to implement the "sqlite" command line
+** utility for accessing SQLite databases.
+**
+** $Id: shell.c,v 1.91 2004/02/25 02:25:37 drh Exp $
+*/
+#include <stdlib.h>
+#include <string.h>
+#include <stdio.h>
+#include "sqlite.h"
+#include <ctype.h>
+
+#if !defined(_WIN32) && !defined(WIN32) && !defined(__MACOS__)
+# include <signal.h>
+# include <pwd.h>
+# include <unistd.h>
+# include <sys/types.h>
+#endif
+
+#ifdef __MACOS__
+# include <console.h>
+# include <signal.h>
+# include <unistd.h>
+# include <extras.h>
+# include <Files.h>
+# include <Folders.h>
+#endif
+
+#if defined(HAVE_READLINE) && HAVE_READLINE==1
+# include <readline/readline.h>
+# include <readline/history.h>
+#else
+# define readline(p) local_getline(p,stdin)
+# define add_history(X)
+# define read_history(X)
+# define write_history(X)
+# define stifle_history(X)
+#endif
+
+/* Make sure isatty() has a prototype.
+*/
+extern int isatty();
+
+/*
+** The following is the open SQLite database. We make a pointer
+** to this database a static variable so that it can be accessed
+** by the SIGINT handler to interrupt database processing.
+*/
+static sqlite *db = 0;
+
+/*
+** True if an interrupt (Control-C) has been received.
+*/
+static int seenInterrupt = 0;
+
+/*
+** This is the name of our program. It is set in main(), used
+** in a number of other places, mostly for error messages.
+*/
+static char *Argv0;
+
+/*
+** Prompt strings. Initialized in main. Settable with
+** .prompt main continue
+*/
+static char mainPrompt[20]; /* First line prompt. default: "sqlite> "*/
+static char continuePrompt[20]; /* Continuation prompt. default: " ...> " */
+
+
+/*
+** Determines if a string is a number of not.
+*/
+extern int sqliteIsNumber(const char*);
+
+/*
+** This routine reads a line of text from standard input, stores
+** the text in memory obtained from malloc() and returns a pointer
+** to the text. NULL is returned at end of file, or if malloc()
+** fails.
+**
+** The interface is like "readline" but no command-line editing
+** is done.
+*/
+static char *local_getline(char *zPrompt, FILE *in){
+ char *zLine;
+ int nLine;
+ int n;
+ int eol;
+
+ if( zPrompt && *zPrompt ){
+ printf("%s",zPrompt);
+ fflush(stdout);
+ }
+ nLine = 100;
+ zLine = malloc( nLine );
+ if( zLine==0 ) return 0;
+ n = 0;
+ eol = 0;
+ while( !eol ){
+ if( n+100>nLine ){
+ nLine = nLine*2 + 100;
+ zLine = realloc(zLine, nLine);
+ if( zLine==0 ) return 0;
+ }
+ if( fgets(&zLine[n], nLine - n, in)==0 ){
+ if( n==0 ){
+ free(zLine);
+ return 0;
+ }
+ zLine[n] = 0;
+ eol = 1;
+ break;
+ }
+ while( zLine[n] ){ n++; }
+ if( n>0 && zLine[n-1]=='\n' ){
+ n--;
+ zLine[n] = 0;
+ eol = 1;
+ }
+ }
+ zLine = realloc( zLine, n+1 );
+ return zLine;
+}
+
+/*
+** Retrieve a single line of input text. "isatty" is true if text
+** is coming from a terminal. In that case, we issue a prompt and
+** attempt to use "readline" for command-line editing. If "isatty"
+** is false, use "local_getline" instead of "readline" and issue no prompt.
+**
+** zPrior is a string of prior text retrieved. If not the empty
+** string, then issue a continuation prompt.
+*/
+static char *one_input_line(const char *zPrior, FILE *in){
+ char *zPrompt;
+ char *zResult;
+ if( in!=0 ){
+ return local_getline(0, in);
+ }
+ if( zPrior && zPrior[0] ){
+ zPrompt = continuePrompt;
+ }else{
+ zPrompt = mainPrompt;
+ }
+ zResult = readline(zPrompt);
+ if( zResult ) add_history(zResult);
+ return zResult;
+}
+
+struct previous_mode_data {
+ int valid; /* Is there legit data in here? */
+ int mode;
+ int showHeader;
+ int colWidth[100];
+};
+/*
+** An pointer to an instance of this structure is passed from
+** the main program to the callback. This is used to communicate
+** state and mode information.
+*/
+struct callback_data {
+ sqlite *db; /* The database */
+ int echoOn; /* True to echo input commands */
+ int cnt; /* Number of records displayed so far */
+ FILE *out; /* Write results here */
+ int mode; /* An output mode setting */
+ int showHeader; /* True to show column names in List or Column mode */
+ char *zDestTable; /* Name of destination table when MODE_Insert */
+ char separator[20]; /* Separator character for MODE_List */
+ int colWidth[100]; /* Requested width of each column when in column mode*/
+ int actualWidth[100]; /* Actual width of each column */
+ char nullvalue[20]; /* The text to print when a NULL comes back from
+ ** the database */
+ struct previous_mode_data explainPrev;
+ /* Holds the mode information just before
+ ** .explain ON */
+ char outfile[FILENAME_MAX]; /* Filename for *out */
+ const char *zDbFilename; /* name of the database file */
+ char *zKey; /* Encryption key */
+};
+
+/*
+** These are the allowed modes.
+*/
+#define MODE_Line 0 /* One column per line. Blank line between records */
+#define MODE_Column 1 /* One record per line in neat columns */
+#define MODE_List 2 /* One record per line with a separator */
+#define MODE_Semi 3 /* Same as MODE_List but append ";" to each line */
+#define MODE_Html 4 /* Generate an XHTML table */
+#define MODE_Insert 5 /* Generate SQL "insert" statements */
+#define MODE_NUM_OF 6 /* The number of modes (not a mode itself) */
+
+char *modeDescr[MODE_NUM_OF] = {
+ "line",
+ "column",
+ "list",
+ "semi",
+ "html",
+ "insert"
+};
+
+/*
+** Number of elements in an array
+*/
+#define ArraySize(X) (sizeof(X)/sizeof(X[0]))
+
+/*
+** Output the given string as a quoted string using SQL quoting conventions.
+*/
+static void output_quoted_string(FILE *out, const char *z){
+ int i;
+ int nSingle = 0;
+ for(i=0; z[i]; i++){
+ if( z[i]=='\'' ) nSingle++;
+ }
+ if( nSingle==0 ){
+ fprintf(out,"'%s'",z);
+ }else{
+ fprintf(out,"'");
+ while( *z ){
+ for(i=0; z[i] && z[i]!='\''; i++){}
+ if( i==0 ){
+ fprintf(out,"''");
+ z++;
+ }else if( z[i]=='\'' ){
+ fprintf(out,"%.*s''",i,z);
+ z += i+1;
+ }else{
+ fprintf(out,"%s",z);
+ break;
+ }
+ }
+ fprintf(out,"'");
+ }
+}
+
+/*
+** Output the given string with characters that are special to
+** HTML escaped.
+*/
+static void output_html_string(FILE *out, const char *z){
+ int i;
+ while( *z ){
+ for(i=0; z[i] && z[i]!='<' && z[i]!='&'; i++){}
+ if( i>0 ){
+ fprintf(out,"%.*s",i,z);
+ }
+ if( z[i]=='<' ){
+ fprintf(out,"&lt;");
+ }else if( z[i]=='&' ){
+ fprintf(out,"&amp;");
+ }else{
+ break;
+ }
+ z += i + 1;
+ }
+}
+
+/*
+** This routine runs when the user presses Ctrl-C
+*/
+static void interrupt_handler(int NotUsed){
+ seenInterrupt = 1;
+ if( db ) sqlite_interrupt(db);
+}
+
+/*
+** This is the callback routine that the SQLite library
+** invokes for each row of a query result.
+*/
+static int callback(void *pArg, int nArg, char **azArg, char **azCol){
+ int i;
+ struct callback_data *p = (struct callback_data*)pArg;
+ switch( p->mode ){
+ case MODE_Line: {
+ int w = 5;
+ if( azArg==0 ) break;
+ for(i=0; i<nArg; i++){
+ int len = strlen(azCol[i]);
+ if( len>w ) w = len;
+ }
+ if( p->cnt++>0 ) fprintf(p->out,"\n");
+ for(i=0; i<nArg; i++){
+ fprintf(p->out,"%*s = %s\n", w, azCol[i],
+ azArg[i] ? azArg[i] : p->nullvalue);
+ }
+ break;
+ }
+ case MODE_Column: {
+ if( p->cnt++==0 ){
+ for(i=0; i<nArg; i++){
+ int w, n;
+ if( i<ArraySize(p->colWidth) ){
+ w = p->colWidth[i];
+ }else{
+ w = 0;
+ }
+ if( w<=0 ){
+ w = strlen(azCol[i] ? azCol[i] : "");
+ if( w<10 ) w = 10;
+ n = strlen(azArg && azArg[i] ? azArg[i] : p->nullvalue);
+ if( w<n ) w = n;
+ }
+ if( i<ArraySize(p->actualWidth) ){
+ p->actualWidth[i] = w;
+ }
+ if( p->showHeader ){
+ fprintf(p->out,"%-*.*s%s",w,w,azCol[i], i==nArg-1 ? "\n": " ");
+ }
+ }
+ if( p->showHeader ){
+ for(i=0; i<nArg; i++){
+ int w;
+ if( i<ArraySize(p->actualWidth) ){
+ w = p->actualWidth[i];
+ }else{
+ w = 10;
+ }
+ fprintf(p->out,"%-*.*s%s",w,w,"-----------------------------------"
+ "----------------------------------------------------------",
+ i==nArg-1 ? "\n": " ");
+ }
+ }
+ }
+ if( azArg==0 ) break;
+ for(i=0; i<nArg; i++){
+ int w;
+ if( i<ArraySize(p->actualWidth) ){
+ w = p->actualWidth[i];
+ }else{
+ w = 10;
+ }
+ fprintf(p->out,"%-*.*s%s",w,w,
+ azArg[i] ? azArg[i] : p->nullvalue, i==nArg-1 ? "\n": " ");
+ }
+ break;
+ }
+ case MODE_Semi:
+ case MODE_List: {
+ if( p->cnt++==0 && p->showHeader ){
+ for(i=0; i<nArg; i++){
+ fprintf(p->out,"%s%s",azCol[i], i==nArg-1 ? "\n" : p->separator);
+ }
+ }
+ if( azArg==0 ) break;
+ for(i=0; i<nArg; i++){
+ char *z = azArg[i];
+ if( z==0 ) z = p->nullvalue;
+ fprintf(p->out, "%s", z);
+ if( i<nArg-1 ){
+ fprintf(p->out, "%s", p->separator);
+ }else if( p->mode==MODE_Semi ){
+ fprintf(p->out, ";\n");
+ }else{
+ fprintf(p->out, "\n");
+ }
+ }
+ break;
+ }
+ case MODE_Html: {
+ if( p->cnt++==0 && p->showHeader ){
+ fprintf(p->out,"<TR>");
+ for(i=0; i<nArg; i++){
+ fprintf(p->out,"<TH>%s</TH>",azCol[i]);
+ }
+ fprintf(p->out,"</TR>\n");
+ }
+ if( azArg==0 ) break;
+ fprintf(p->out,"<TR>");
+ for(i=0; i<nArg; i++){
+ fprintf(p->out,"<TD>");
+ output_html_string(p->out, azArg[i] ? azArg[i] : p->nullvalue);
+ fprintf(p->out,"</TD>\n");
+ }
+ fprintf(p->out,"</TR>\n");
+ break;
+ }
+ case MODE_Insert: {
+ if( azArg==0 ) break;
+ fprintf(p->out,"INSERT INTO %s VALUES(",p->zDestTable);
+ for(i=0; i<nArg; i++){
+ char *zSep = i>0 ? ",": "";
+ if( azArg[i]==0 ){
+ fprintf(p->out,"%sNULL",zSep);
+ }else if( sqliteIsNumber(azArg[i]) ){
+ fprintf(p->out,"%s%s",zSep, azArg[i]);
+ }else{
+ if( zSep[0] ) fprintf(p->out,"%s",zSep);
+ output_quoted_string(p->out, azArg[i]);
+ }
+ }
+ fprintf(p->out,");\n");
+ break;
+ }
+ }
+ return 0;
+}
+
+/*
+** Set the destination table field of the callback_data structure to
+** the name of the table given. Escape any quote characters in the
+** table name.
+*/
+static void set_table_name(struct callback_data *p, const char *zName){
+ int i, n;
+ int needQuote;
+ char *z;
+
+ if( p->zDestTable ){
+ free(p->zDestTable);
+ p->zDestTable = 0;
+ }
+ if( zName==0 ) return;
+ needQuote = !isalpha(*zName) && *zName!='_';
+ for(i=n=0; zName[i]; i++, n++){
+ if( !isalnum(zName[i]) && zName[i]!='_' ){
+ needQuote = 1;
+ if( zName[i]=='\'' ) n++;
+ }
+ }
+ if( needQuote ) n += 2;
+ z = p->zDestTable = malloc( n+1 );
+ if( z==0 ){
+ fprintf(stderr,"Out of memory!\n");
+ exit(1);
+ }
+ n = 0;
+ if( needQuote ) z[n++] = '\'';
+ for(i=0; zName[i]; i++){
+ z[n++] = zName[i];
+ if( zName[i]=='\'' ) z[n++] = '\'';
+ }
+ if( needQuote ) z[n++] = '\'';
+ z[n] = 0;
+}
+
+/*
+** This is a different callback routine used for dumping the database.
+** Each row received by this callback consists of a table name,
+** the table type ("index" or "table") and SQL to create the table.
+** This routine should print text sufficient to recreate the table.
+*/
+static int dump_callback(void *pArg, int nArg, char **azArg, char **azCol){
+ struct callback_data *p = (struct callback_data *)pArg;
+ if( nArg!=3 ) return 1;
+ fprintf(p->out, "%s;\n", azArg[2]);
+ if( strcmp(azArg[1],"table")==0 ){
+ struct callback_data d2;
+ d2 = *p;
+ d2.mode = MODE_Insert;
+ d2.zDestTable = 0;
+ set_table_name(&d2, azArg[0]);
+ sqlite_exec_printf(p->db,
+ "SELECT * FROM '%q'",
+ callback, &d2, 0, azArg[0]
+ );
+ set_table_name(&d2, 0);
+ }
+ return 0;
+}
+
+/*
+** Text of a help message
+*/
+static char zHelp[] =
+ ".databases List names and files of attached databases\n"
+ ".dump ?TABLE? ... Dump the database in a text format\n"
+ ".echo ON|OFF Turn command echo on or off\n"
+ ".exit Exit this program\n"
+ ".explain ON|OFF Turn output mode suitable for EXPLAIN on or off.\n"
+ ".header(s) ON|OFF Turn display of headers on or off\n"
+ ".help Show this message\n"
+ ".indices TABLE Show names of all indices on TABLE\n"
+ ".mode MODE Set mode to one of \"line(s)\", \"column(s)\", \n"
+ " \"insert\", \"list\", or \"html\"\n"
+ ".mode insert TABLE Generate SQL insert statements for TABLE\n"
+ ".nullvalue STRING Print STRING instead of nothing for NULL data\n"
+ ".output FILENAME Send output to FILENAME\n"
+ ".output stdout Send output to the screen\n"
+ ".prompt MAIN CONTINUE Replace the standard prompts\n"
+ ".quit Exit this program\n"
+ ".read FILENAME Execute SQL in FILENAME\n"
+#ifdef SQLITE_HAS_CODEC
+ ".rekey OLD NEW NEW Change the encryption key\n"
+#endif
+ ".schema ?TABLE? Show the CREATE statements\n"
+ ".separator STRING Change separator string for \"list\" mode\n"
+ ".show Show the current values for various settings\n"
+ ".tables ?PATTERN? List names of tables matching a pattern\n"
+ ".timeout MS Try opening locked tables for MS milliseconds\n"
+ ".width NUM NUM ... Set column widths for \"column\" mode\n"
+;
+
+/* Forward reference */
+static void process_input(struct callback_data *p, FILE *in);
+
+/*
+** Make sure the database is open. If it is not, then open it. If
+** the database fails to open, print an error message and exit.
+*/
+static void open_db(struct callback_data *p){
+ if( p->db==0 ){
+ char *zErrMsg = 0;
+#ifdef SQLITE_HAS_CODEC
+ int n = p->zKey ? strlen(p->zKey) : 0;
+ db = p->db = sqlite_open_encrypted(p->zDbFilename, p->zKey, n, 0, &zErrMsg);
+#else
+ db = p->db = sqlite_open(p->zDbFilename, 0, &zErrMsg);
+#endif
+ if( p->db==0 ){
+ if( zErrMsg ){
+ fprintf(stderr,"Unable to open database \"%s\": %s\n",
+ p->zDbFilename, zErrMsg);
+ }else{
+ fprintf(stderr,"Unable to open database %s\n", p->zDbFilename);
+ }
+ exit(1);
+ }
+ }
+}
+
+/*
+** If an input line begins with "." then invoke this routine to
+** process that line.
+**
+** Return 1 to exit and 0 to continue.
+*/
+static int do_meta_command(char *zLine, struct callback_data *p){
+ int i = 1;
+ int nArg = 0;
+ int n, c;
+ int rc = 0;
+ char *azArg[50];
+
+ /* Parse the input line into tokens.
+ */
+ while( zLine[i] && nArg<ArraySize(azArg) ){
+ while( isspace(zLine[i]) ){ i++; }
+ if( zLine[i]=='\'' || zLine[i]=='"' ){
+ int delim = zLine[i++];
+ azArg[nArg++] = &zLine[i];
+ while( zLine[i] && zLine[i]!=delim ){ i++; }
+ if( zLine[i]==delim ){
+ zLine[i++] = 0;
+ }
+ }else{
+ azArg[nArg++] = &zLine[i];
+ while( zLine[i] && !isspace(zLine[i]) ){ i++; }
+ if( zLine[i] ) zLine[i++] = 0;
+ }
+ }
+
+ /* Process the input line.
+ */
+ if( nArg==0 ) return rc;
+ n = strlen(azArg[0]);
+ c = azArg[0][0];
+ if( c=='d' && n>1 && strncmp(azArg[0], "databases", n)==0 ){
+ struct callback_data data;
+ char *zErrMsg = 0;
+ open_db(p);
+ memcpy(&data, p, sizeof(data));
+ data.showHeader = 0;
+ data.mode = MODE_Column;
+ sqlite_exec(p->db, "PRAGMA database_list; ", callback, &data, &zErrMsg);
+ if( zErrMsg ){
+ fprintf(stderr,"Error: %s\n", zErrMsg);
+ sqlite_freemem(zErrMsg);
+ }
+ }else
+
+ if( c=='d' && strncmp(azArg[0], "dump", n)==0 ){
+ char *zErrMsg = 0;
+ open_db(p);
+ fprintf(p->out, "BEGIN TRANSACTION;\n");
+ if( nArg==1 ){
+ sqlite_exec(p->db,
+ "SELECT name, type, sql FROM sqlite_master "
+ "WHERE type!='meta' AND sql NOT NULL "
+ "ORDER BY substr(type,2,1), name",
+ dump_callback, p, &zErrMsg
+ );
+ }else{
+ int i;
+ for(i=1; i<nArg && zErrMsg==0; i++){
+ sqlite_exec_printf(p->db,
+ "SELECT name, type, sql FROM sqlite_master "
+ "WHERE tbl_name LIKE '%q' AND type!='meta' AND sql NOT NULL "
+ "ORDER BY substr(type,2,1), name",
+ dump_callback, p, &zErrMsg, azArg[i]
+ );
+ }
+ }
+ if( zErrMsg ){
+ fprintf(stderr,"Error: %s\n", zErrMsg);
+ sqlite_freemem(zErrMsg);
+ }else{
+ fprintf(p->out, "COMMIT;\n");
+ }
+ }else
+
+ if( c=='e' && strncmp(azArg[0], "echo", n)==0 && nArg>1 ){
+ int j;
+ char *z = azArg[1];
+ int val = atoi(azArg[1]);
+ for(j=0; z[j]; j++){
+ if( isupper(z[j]) ) z[j] = tolower(z[j]);
+ }
+ if( strcmp(z,"on")==0 ){
+ val = 1;
+ }else if( strcmp(z,"yes")==0 ){
+ val = 1;
+ }
+ p->echoOn = val;
+ }else
+
+ if( c=='e' && strncmp(azArg[0], "exit", n)==0 ){
+ rc = 1;
+ }else
+
+ if( c=='e' && strncmp(azArg[0], "explain", n)==0 ){
+ int j;
+ char *z = nArg>=2 ? azArg[1] : "1";
+ int val = atoi(z);
+ for(j=0; z[j]; j++){
+ if( isupper(z[j]) ) z[j] = tolower(z[j]);
+ }
+ if( strcmp(z,"on")==0 ){
+ val = 1;
+ }else if( strcmp(z,"yes")==0 ){
+ val = 1;
+ }
+ if(val == 1) {
+ if(!p->explainPrev.valid) {
+ p->explainPrev.valid = 1;
+ p->explainPrev.mode = p->mode;
+ p->explainPrev.showHeader = p->showHeader;
+ memcpy(p->explainPrev.colWidth,p->colWidth,sizeof(p->colWidth));
+ }
+ /* We could put this code under the !p->explainValid
+ ** condition so that it does not execute if we are already in
+ ** explain mode. However, always executing it allows us an easy
+ ** was to reset to explain mode in case the user previously
+ ** did an .explain followed by a .width, .mode or .header
+ ** command.
+ */
+ p->mode = MODE_Column;
+ p->showHeader = 1;
+ memset(p->colWidth,0,ArraySize(p->colWidth));
+ p->colWidth[0] = 4;
+ p->colWidth[1] = 12;
+ p->colWidth[2] = 10;
+ p->colWidth[3] = 10;
+ p->colWidth[4] = 35;
+ }else if (p->explainPrev.valid) {
+ p->explainPrev.valid = 0;
+ p->mode = p->explainPrev.mode;
+ p->showHeader = p->explainPrev.showHeader;
+ memcpy(p->colWidth,p->explainPrev.colWidth,sizeof(p->colWidth));
+ }
+ }else
+
+ if( c=='h' && (strncmp(azArg[0], "header", n)==0
+ ||
+ strncmp(azArg[0], "headers", n)==0 )&& nArg>1 ){
+ int j;
+ char *z = azArg[1];
+ int val = atoi(azArg[1]);
+ for(j=0; z[j]; j++){
+ if( isupper(z[j]) ) z[j] = tolower(z[j]);
+ }
+ if( strcmp(z,"on")==0 ){
+ val = 1;
+ }else if( strcmp(z,"yes")==0 ){
+ val = 1;
+ }
+ p->showHeader = val;
+ }else
+
+ if( c=='h' && strncmp(azArg[0], "help", n)==0 ){
+ fprintf(stderr,zHelp);
+ }else
+
+ if( c=='i' && strncmp(azArg[0], "indices", n)==0 && nArg>1 ){
+ struct callback_data data;
+ char *zErrMsg = 0;
+ open_db(p);
+ memcpy(&data, p, sizeof(data));
+ data.showHeader = 0;
+ data.mode = MODE_List;
+ sqlite_exec_printf(p->db,
+ "SELECT name FROM sqlite_master "
+ "WHERE type='index' AND tbl_name LIKE '%q' "
+ "UNION ALL "
+ "SELECT name FROM sqlite_temp_master "
+ "WHERE type='index' AND tbl_name LIKE '%q' "
+ "ORDER BY 1",
+ callback, &data, &zErrMsg, azArg[1], azArg[1]
+ );
+ if( zErrMsg ){
+ fprintf(stderr,"Error: %s\n", zErrMsg);
+ sqlite_freemem(zErrMsg);
+ }
+ }else
+
+ if( c=='m' && strncmp(azArg[0], "mode", n)==0 && nArg>=2 ){
+ int n2 = strlen(azArg[1]);
+ if( strncmp(azArg[1],"line",n2)==0
+ ||
+ strncmp(azArg[1],"lines",n2)==0 ){
+ p->mode = MODE_Line;
+ }else if( strncmp(azArg[1],"column",n2)==0
+ ||
+ strncmp(azArg[1],"columns",n2)==0 ){
+ p->mode = MODE_Column;
+ }else if( strncmp(azArg[1],"list",n2)==0 ){
+ p->mode = MODE_List;
+ }else if( strncmp(azArg[1],"html",n2)==0 ){
+ p->mode = MODE_Html;
+ }else if( strncmp(azArg[1],"insert",n2)==0 ){
+ p->mode = MODE_Insert;
+ if( nArg>=3 ){
+ set_table_name(p, azArg[2]);
+ }else{
+ set_table_name(p, "table");
+ }
+ }else {
+ fprintf(stderr,"mode should be on of: column html insert line list\n");
+ }
+ }else
+
+ if( c=='n' && strncmp(azArg[0], "nullvalue", n)==0 && nArg==2 ) {
+ sprintf(p->nullvalue, "%.*s", (int)ArraySize(p->nullvalue)-1, azArg[1]);
+ }else
+
+ if( c=='o' && strncmp(azArg[0], "output", n)==0 && nArg==2 ){
+ if( p->out!=stdout ){
+ fclose(p->out);
+ }
+ if( strcmp(azArg[1],"stdout")==0 ){
+ p->out = stdout;
+ strcpy(p->outfile,"stdout");
+ }else{
+ p->out = fopen(azArg[1], "wb");
+ if( p->out==0 ){
+ fprintf(stderr,"can't write to \"%s\"\n", azArg[1]);
+ p->out = stdout;
+ } else {
+ strcpy(p->outfile,azArg[1]);
+ }
+ }
+ }else
+
+ if( c=='p' && strncmp(azArg[0], "prompt", n)==0 && (nArg==2 || nArg==3)){
+ if( nArg >= 2) {
+ strncpy(mainPrompt,azArg[1],(int)ArraySize(mainPrompt)-1);
+ }
+ if( nArg >= 3) {
+ strncpy(continuePrompt,azArg[2],(int)ArraySize(continuePrompt)-1);
+ }
+ }else
+
+ if( c=='q' && strncmp(azArg[0], "quit", n)==0 ){
+ rc = 1;
+ }else
+
+ if( c=='r' && strncmp(azArg[0], "read", n)==0 && nArg==2 ){
+ FILE *alt = fopen(azArg[1], "rb");
+ if( alt==0 ){
+ fprintf(stderr,"can't open \"%s\"\n", azArg[1]);
+ }else{
+ process_input(p, alt);
+ fclose(alt);
+ }
+ }else
+
+#ifdef SQLITE_HAS_CODEC
+ if( c=='r' && strncmp(azArg[0],"rekey", n)==0 && nArg==4 ){
+ char *zOld = p->zKey;
+ if( zOld==0 ) zOld = "";
+ if( strcmp(azArg[1],zOld) ){
+ fprintf(stderr,"old key is incorrect\n");
+ }else if( strcmp(azArg[2], azArg[3]) ){
+ fprintf(stderr,"2nd copy of new key does not match the 1st\n");
+ }else{
+ sqlite_freemem(p->zKey);
+ p->zKey = sqlite_mprintf("%s", azArg[2]);
+ sqlite_rekey(p->db, p->zKey, strlen(p->zKey));
+ }
+ }else
+#endif
+
+ if( c=='s' && strncmp(azArg[0], "schema", n)==0 ){
+ struct callback_data data;
+ char *zErrMsg = 0;
+ open_db(p);
+ memcpy(&data, p, sizeof(data));
+ data.showHeader = 0;
+ data.mode = MODE_Semi;
+ if( nArg>1 ){
+ extern int sqliteStrICmp(const char*,const char*);
+ if( sqliteStrICmp(azArg[1],"sqlite_master")==0 ){
+ char *new_argv[2], *new_colv[2];
+ new_argv[0] = "CREATE TABLE sqlite_master (\n"
+ " type text,\n"
+ " name text,\n"
+ " tbl_name text,\n"
+ " rootpage integer,\n"
+ " sql text\n"
+ ")";
+ new_argv[1] = 0;
+ new_colv[0] = "sql";
+ new_colv[1] = 0;
+ callback(&data, 1, new_argv, new_colv);
+ }else if( sqliteStrICmp(azArg[1],"sqlite_temp_master")==0 ){
+ char *new_argv[2], *new_colv[2];
+ new_argv[0] = "CREATE TEMP TABLE sqlite_temp_master (\n"
+ " type text,\n"
+ " name text,\n"
+ " tbl_name text,\n"
+ " rootpage integer,\n"
+ " sql text\n"
+ ")";
+ new_argv[1] = 0;
+ new_colv[0] = "sql";
+ new_colv[1] = 0;
+ callback(&data, 1, new_argv, new_colv);
+ }else{
+ sqlite_exec_printf(p->db,
+ "SELECT sql FROM "
+ " (SELECT * FROM sqlite_master UNION ALL"
+ " SELECT * FROM sqlite_temp_master) "
+ "WHERE tbl_name LIKE '%q' AND type!='meta' AND sql NOTNULL "
+ "ORDER BY substr(type,2,1), name",
+ callback, &data, &zErrMsg, azArg[1]);
+ }
+ }else{
+ sqlite_exec(p->db,
+ "SELECT sql FROM "
+ " (SELECT * FROM sqlite_master UNION ALL"
+ " SELECT * FROM sqlite_temp_master) "
+ "WHERE type!='meta' AND sql NOTNULL "
+ "ORDER BY substr(type,2,1), name",
+ callback, &data, &zErrMsg
+ );
+ }
+ if( zErrMsg ){
+ fprintf(stderr,"Error: %s\n", zErrMsg);
+ sqlite_freemem(zErrMsg);
+ }
+ }else
+
+ if( c=='s' && strncmp(azArg[0], "separator", n)==0 && nArg==2 ){
+ sprintf(p->separator, "%.*s", (int)ArraySize(p->separator)-1, azArg[1]);
+ }else
+
+ if( c=='s' && strncmp(azArg[0], "show", n)==0){
+ int i;
+ fprintf(p->out,"%9.9s: %s\n","echo", p->echoOn ? "on" : "off");
+ fprintf(p->out,"%9.9s: %s\n","explain", p->explainPrev.valid ? "on" :"off");
+ fprintf(p->out,"%9.9s: %s\n","headers", p->showHeader ? "on" : "off");
+ fprintf(p->out,"%9.9s: %s\n","mode", modeDescr[p->mode]);
+ fprintf(p->out,"%9.9s: %s\n","nullvalue", p->nullvalue);
+ fprintf(p->out,"%9.9s: %s\n","output",
+ strlen(p->outfile) ? p->outfile : "stdout");
+ fprintf(p->out,"%9.9s: %s\n","separator", p->separator);
+ fprintf(p->out,"%9.9s: ","width");
+ for (i=0;i<(int)ArraySize(p->colWidth) && p->colWidth[i] != 0;i++) {
+ fprintf(p->out,"%d ",p->colWidth[i]);
+ }
+ fprintf(p->out,"\n\n");
+ }else
+
+ if( c=='t' && n>1 && strncmp(azArg[0], "tables", n)==0 ){
+ char **azResult;
+ int nRow, rc;
+ char *zErrMsg;
+ open_db(p);
+ if( nArg==1 ){
+ rc = sqlite_get_table(p->db,
+ "SELECT name FROM sqlite_master "
+ "WHERE type IN ('table','view') "
+ "UNION ALL "
+ "SELECT name FROM sqlite_temp_master "
+ "WHERE type IN ('table','view') "
+ "ORDER BY 1",
+ &azResult, &nRow, 0, &zErrMsg
+ );
+ }else{
+ rc = sqlite_get_table_printf(p->db,
+ "SELECT name FROM sqlite_master "
+ "WHERE type IN ('table','view') AND name LIKE '%%%q%%' "
+ "UNION ALL "
+ "SELECT name FROM sqlite_temp_master "
+ "WHERE type IN ('table','view') AND name LIKE '%%%q%%' "
+ "ORDER BY 1",
+ &azResult, &nRow, 0, &zErrMsg, azArg[1], azArg[1]
+ );
+ }
+ if( zErrMsg ){
+ fprintf(stderr,"Error: %s\n", zErrMsg);
+ sqlite_freemem(zErrMsg);
+ }
+ if( rc==SQLITE_OK ){
+ int len, maxlen = 0;
+ int i, j;
+ int nPrintCol, nPrintRow;
+ for(i=1; i<=nRow; i++){
+ if( azResult[i]==0 ) continue;
+ len = strlen(azResult[i]);
+ if( len>maxlen ) maxlen = len;
+ }
+ nPrintCol = 80/(maxlen+2);
+ if( nPrintCol<1 ) nPrintCol = 1;
+ nPrintRow = (nRow + nPrintCol - 1)/nPrintCol;
+ for(i=0; i<nPrintRow; i++){
+ for(j=i+1; j<=nRow; j+=nPrintRow){
+ char *zSp = j<=nPrintRow ? "" : " ";
+ printf("%s%-*s", zSp, maxlen, azResult[j] ? azResult[j] : "");
+ }
+ printf("\n");
+ }
+ }
+ sqlite_free_table(azResult);
+ }else
+
+ if( c=='t' && n>1 && strncmp(azArg[0], "timeout", n)==0 && nArg>=2 ){
+ open_db(p);
+ sqlite_busy_timeout(p->db, atoi(azArg[1]));
+ }else
+
+ if( c=='w' && strncmp(azArg[0], "width", n)==0 ){
+ int j;
+ for(j=1; j<nArg && j<ArraySize(p->colWidth); j++){
+ p->colWidth[j-1] = atoi(azArg[j]);
+ }
+ }else
+
+ {
+ fprintf(stderr, "unknown command or invalid arguments: "
+ " \"%s\". Enter \".help\" for help\n", azArg[0]);
+ }
+
+ return rc;
+}
+
+/*
+** Return TRUE if the last non-whitespace character in z[] is a semicolon.
+** z[] is N characters long.
+*/
+static int _ends_with_semicolon(const char *z, int N){
+ while( N>0 && isspace(z[N-1]) ){ N--; }
+ return N>0 && z[N-1]==';';
+}
+
+/*
+** Test to see if a line consists entirely of whitespace.
+*/
+static int _all_whitespace(const char *z){
+ for(; *z; z++){
+ if( isspace(*z) ) continue;
+ if( *z=='/' && z[1]=='*' ){
+ z += 2;
+ while( *z && (*z!='*' || z[1]!='/') ){ z++; }
+ if( *z==0 ) return 0;
+ z++;
+ continue;
+ }
+ if( *z=='-' && z[1]=='-' ){
+ z += 2;
+ while( *z && *z!='\n' ){ z++; }
+ if( *z==0 ) return 1;
+ continue;
+ }
+ return 0;
+ }
+ return 1;
+}
+
+/*
+** Return TRUE if the line typed in is an SQL command terminator other
+** than a semi-colon. The SQL Server style "go" command is understood
+** as is the Oracle "/".
+*/
+static int _is_command_terminator(const char *zLine){
+ extern int sqliteStrNICmp(const char*,const char*,int);
+ while( isspace(*zLine) ){ zLine++; };
+ if( zLine[0]=='/' && _all_whitespace(&zLine[1]) ) return 1; /* Oracle */
+ if( sqliteStrNICmp(zLine,"go",2)==0 && _all_whitespace(&zLine[2]) ){
+ return 1; /* SQL Server */
+ }
+ return 0;
+}
+
+/*
+** Read input from *in and process it. If *in==0 then input
+** is interactive - the user is typing it it. Otherwise, input
+** is coming from a file or device. A prompt is issued and history
+** is saved only if input is interactive. An interrupt signal will
+** cause this routine to exit immediately, unless input is interactive.
+*/
+static void process_input(struct callback_data *p, FILE *in){
+ char *zLine;
+ char *zSql = 0;
+ int nSql = 0;
+ char *zErrMsg;
+ int rc;
+ while( fflush(p->out), (zLine = one_input_line(zSql, in))!=0 ){
+ if( seenInterrupt ){
+ if( in!=0 ) break;
+ seenInterrupt = 0;
+ }
+ if( p->echoOn ) printf("%s\n", zLine);
+ if( (zSql==0 || zSql[0]==0) && _all_whitespace(zLine) ) continue;
+ if( zLine && zLine[0]=='.' && nSql==0 ){
+ int rc = do_meta_command(zLine, p);
+ free(zLine);
+ if( rc ) break;
+ continue;
+ }
+ if( _is_command_terminator(zLine) ){
+ strcpy(zLine,";");
+ }
+ if( zSql==0 ){
+ int i;
+ for(i=0; zLine[i] && isspace(zLine[i]); i++){}
+ if( zLine[i]!=0 ){
+ nSql = strlen(zLine);
+ zSql = malloc( nSql+1 );
+ strcpy(zSql, zLine);
+ }
+ }else{
+ int len = strlen(zLine);
+ zSql = realloc( zSql, nSql + len + 2 );
+ if( zSql==0 ){
+ fprintf(stderr,"%s: out of memory!\n", Argv0);
+ exit(1);
+ }
+ strcpy(&zSql[nSql++], "\n");
+ strcpy(&zSql[nSql], zLine);
+ nSql += len;
+ }
+ free(zLine);
+ if( zSql && _ends_with_semicolon(zSql, nSql) && sqlite_complete(zSql) ){
+ p->cnt = 0;
+ open_db(p);
+ rc = sqlite_exec(p->db, zSql, callback, p, &zErrMsg);
+ if( rc || zErrMsg ){
+ if( in!=0 && !p->echoOn ) printf("%s\n",zSql);
+ if( zErrMsg!=0 ){
+ printf("SQL error: %s\n", zErrMsg);
+ sqlite_freemem(zErrMsg);
+ zErrMsg = 0;
+ }else{
+ printf("SQL error: %s\n", sqlite_error_string(rc));
+ }
+ }
+ free(zSql);
+ zSql = 0;
+ nSql = 0;
+ }
+ }
+ if( zSql ){
+ if( !_all_whitespace(zSql) ) printf("Incomplete SQL: %s\n", zSql);
+ free(zSql);
+ }
+}
+
+/*
+** Return a pathname which is the user's home directory. A
+** 0 return indicates an error of some kind. Space to hold the
+** resulting string is obtained from malloc(). The calling
+** function should free the result.
+*/
+static char *find_home_dir(void){
+ char *home_dir = NULL;
+
+#if !defined(_WIN32) && !defined(WIN32) && !defined(__MACOS__)
+ struct passwd *pwent;
+ uid_t uid = getuid();
+ if( (pwent=getpwuid(uid)) != NULL) {
+ home_dir = pwent->pw_dir;
+ }
+#endif
+
+#ifdef __MACOS__
+ char home_path[_MAX_PATH+1];
+ home_dir = getcwd(home_path, _MAX_PATH);
+#endif
+
+ if (!home_dir) {
+ home_dir = getenv("HOME");
+ if (!home_dir) {
+ home_dir = getenv("HOMEPATH"); /* Windows? */
+ }
+ }
+
+#if defined(_WIN32) || defined(WIN32)
+ if (!home_dir) {
+ home_dir = "c:";
+ }
+#endif
+
+ if( home_dir ){
+ char *z = malloc( strlen(home_dir)+1 );
+ if( z ) strcpy(z, home_dir);
+ home_dir = z;
+ }
+
+ return home_dir;
+}
+
+/*
+** Read input from the file given by sqliterc_override. Or if that
+** parameter is NULL, take input from ~/.sqliterc
+*/
+static void process_sqliterc(
+ struct callback_data *p, /* Configuration data */
+ const char *sqliterc_override /* Name of config file. NULL to use default */
+){
+ char *home_dir = NULL;
+ const char *sqliterc = sqliterc_override;
+ char *zBuf;
+ FILE *in = NULL;
+
+ if (sqliterc == NULL) {
+ home_dir = find_home_dir();
+ if( home_dir==0 ){
+ fprintf(stderr,"%s: cannot locate your home directory!\n", Argv0);
+ return;
+ }
+ zBuf = malloc(strlen(home_dir) + 15);
+ if( zBuf==0 ){
+ fprintf(stderr,"%s: out of memory!\n", Argv0);
+ exit(1);
+ }
+ sprintf(zBuf,"%s/.sqliterc",home_dir);
+ free(home_dir);
+ sqliterc = (const char*)zBuf;
+ }
+ in = fopen(sqliterc,"rb");
+ if( in ){
+ if( isatty(fileno(stdout)) ){
+ printf("Loading resources from %s\n",sqliterc);
+ }
+ process_input(p,in);
+ fclose(in);
+ }
+ return;
+}
+
+/*
+** Show available command line options
+*/
+static const char zOptions[] =
+ " -init filename read/process named file\n"
+ " -echo print commands before execution\n"
+ " -[no]header turn headers on or off\n"
+ " -column set output mode to 'column'\n"
+ " -html set output mode to HTML\n"
+#ifdef SQLITE_HAS_CODEC
+ " -key KEY encryption key\n"
+#endif
+ " -line set output mode to 'line'\n"
+ " -list set output mode to 'list'\n"
+ " -separator 'x' set output field separator (|)\n"
+ " -nullvalue 'text' set text string for NULL values\n"
+ " -version show SQLite version\n"
+ " -help show this text, also show dot-commands\n"
+;
+static void usage(int showDetail){
+ fprintf(stderr, "Usage: %s [OPTIONS] FILENAME [SQL]\n", Argv0);
+ if( showDetail ){
+ fprintf(stderr, "Options are:\n%s", zOptions);
+ }else{
+ fprintf(stderr, "Use the -help option for additional information\n");
+ }
+ exit(1);
+}
+
+/*
+** Initialize the state information in data
+*/
+void main_init(struct callback_data *data) {
+ memset(data, 0, sizeof(*data));
+ data->mode = MODE_List;
+ strcpy(data->separator,"|");
+ data->showHeader = 0;
+ strcpy(mainPrompt,"sqlite> ");
+ strcpy(continuePrompt," ...> ");
+}
+
+int main(int argc, char **argv){
+ char *zErrMsg = 0;
+ struct callback_data data;
+ const char *zInitFile = 0;
+ char *zFirstCmd = 0;
+ int i;
+ extern int sqliteOsFileExists(const char*);
+
+#ifdef __MACOS__
+ argc = ccommand(&argv);
+#endif
+
+ Argv0 = argv[0];
+ main_init(&data);
+
+ /* Make sure we have a valid signal handler early, before anything
+ ** else is done.
+ */
+#ifdef SIGINT
+ signal(SIGINT, interrupt_handler);
+#endif
+
+ /* Do an initial pass through the command-line argument to locate
+ ** the name of the database file, the name of the initialization file,
+ ** and the first command to execute.
+ */
+ for(i=1; i<argc-1; i++){
+ if( argv[i][0]!='-' ) break;
+ if( strcmp(argv[i],"-separator")==0 || strcmp(argv[i],"-nullvalue")==0 ){
+ i++;
+ }else if( strcmp(argv[i],"-init")==0 ){
+ i++;
+ zInitFile = argv[i];
+ }else if( strcmp(argv[i],"-key")==0 ){
+ i++;
+ data.zKey = sqlite_mprintf("%s",argv[i]);
+ }
+ }
+ if( i<argc ){
+ data.zDbFilename = argv[i++];
+ }else{
+ data.zDbFilename = ":memory:";
+ }
+ if( i<argc ){
+ zFirstCmd = argv[i++];
+ }
+ data.out = stdout;
+
+ /* Go ahead and open the database file if it already exists. If the
+ ** file does not exist, delay opening it. This prevents empty database
+ ** files from being created if a user mistypes the database name argument
+ ** to the sqlite command-line tool.
+ */
+ if( sqliteOsFileExists(data.zDbFilename) ){
+ open_db(&data);
+ }
+
+ /* Process the initialization file if there is one. If no -init option
+ ** is given on the command line, look for a file named ~/.sqliterc and
+ ** try to process it.
+ */
+ process_sqliterc(&data,zInitFile);
+
+ /* Make a second pass through the command-line argument and set
+ ** options. This second pass is delayed until after the initialization
+ ** file is processed so that the command-line arguments will override
+ ** settings in the initialization file.
+ */
+ for(i=1; i<argc && argv[i][0]=='-'; i++){
+ char *z = argv[i];
+ if( strcmp(z,"-init")==0 || strcmp(z,"-key")==0 ){
+ i++;
+ }else if( strcmp(z,"-html")==0 ){
+ data.mode = MODE_Html;
+ }else if( strcmp(z,"-list")==0 ){
+ data.mode = MODE_List;
+ }else if( strcmp(z,"-line")==0 ){
+ data.mode = MODE_Line;
+ }else if( strcmp(z,"-column")==0 ){
+ data.mode = MODE_Column;
+ }else if( strcmp(z,"-separator")==0 ){
+ i++;
+ sprintf(data.separator,"%.*s",(int)sizeof(data.separator)-1,argv[i]);
+ }else if( strcmp(z,"-nullvalue")==0 ){
+ i++;
+ sprintf(data.nullvalue,"%.*s",(int)sizeof(data.nullvalue)-1,argv[i]);
+ }else if( strcmp(z,"-header")==0 ){
+ data.showHeader = 1;
+ }else if( strcmp(z,"-noheader")==0 ){
+ data.showHeader = 0;
+ }else if( strcmp(z,"-echo")==0 ){
+ data.echoOn = 1;
+ }else if( strcmp(z,"-version")==0 ){
+ printf("%s\n", sqlite_version);
+ return 1;
+ }else if( strcmp(z,"-help")==0 ){
+ usage(1);
+ }else{
+ fprintf(stderr,"%s: unknown option: %s\n", Argv0, z);
+ fprintf(stderr,"Use -help for a list of options.\n");
+ return 1;
+ }
+ }
+
+ if( zFirstCmd ){
+ /* Run just the command that follows the database name
+ */
+ if( zFirstCmd[0]=='.' ){
+ do_meta_command(zFirstCmd, &data);
+ exit(0);
+ }else{
+ int rc;
+ open_db(&data);
+ rc = sqlite_exec(data.db, zFirstCmd, callback, &data, &zErrMsg);
+ if( rc!=0 && zErrMsg!=0 ){
+ fprintf(stderr,"SQL error: %s\n", zErrMsg);
+ exit(1);
+ }
+ }
+ }else{
+ /* Run commands received from standard input
+ */
+ if( isatty(fileno(stdout)) && isatty(fileno(stdin)) ){
+ char *zHome;
+ char *zHistory = 0;
+ printf(
+ "SQLite version %s\n"
+ "Enter \".help\" for instructions\n",
+ sqlite_version
+ );
+ zHome = find_home_dir();
+ if( zHome && (zHistory = malloc(strlen(zHome)+20))!=0 ){
+ sprintf(zHistory,"%s/.sqlite_history", zHome);
+ }
+ if( zHistory ) read_history(zHistory);
+ process_input(&data, 0);
+ if( zHistory ){
+ stifle_history(100);
+ write_history(zHistory);
+ }
+ }else{
+ process_input(&data, stdin);
+ }
+ }
+ set_table_name(&data, 0);
+ if( db ) sqlite_close(db);
+ return 0;
+}
diff --git a/src/3rdparty/sqlite/sqlite.h b/src/3rdparty/sqlite/sqlite.h
new file mode 100644
index 0000000..b3b14e4
--- /dev/null
+++ b/src/3rdparty/sqlite/sqlite.h
@@ -0,0 +1,834 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the SQLite library
+** presents to client programs.
+**
+** @(#) $Id: sqlite.h.in,v 1.59 2004/02/25 22:51:06 rdc Exp $
+*/
+#ifndef _SQLITE_H_
+#define _SQLITE_H_
+#include <stdarg.h> /* Needed for the definition of va_list */
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+** The version of the SQLite library.
+*/
+#define SQLITE_VERSION "2.8.13"
+
+/*
+** The version string is also compiled into the library so that a program
+** can check to make sure that the lib*.a file and the *.h file are from
+** the same version.
+*/
+extern const char sqlite_version[];
+
+/*
+** The SQLITE_UTF8 macro is defined if the library expects to see
+** UTF-8 encoded data. The SQLITE_ISO8859 macro is defined if the
+** iso8859 encoded should be used.
+*/
+#define SQLITE_ISO8859 1
+
+/*
+** The following constant holds one of two strings, "UTF-8" or "iso8859",
+** depending on which character encoding the SQLite library expects to
+** see. The character encoding makes a difference for the LIKE and GLOB
+** operators and for the LENGTH() and SUBSTR() functions.
+*/
+extern const char sqlite_encoding[];
+
+/*
+** Each open sqlite database is represented by an instance of the
+** following opaque structure.
+*/
+typedef struct sqlite sqlite;
+
+/*
+** A function to open a new sqlite database.
+**
+** If the database does not exist and mode indicates write
+** permission, then a new database is created. If the database
+** does not exist and mode does not indicate write permission,
+** then the open fails, an error message generated (if errmsg!=0)
+** and the function returns 0.
+**
+** If mode does not indicates user write permission, then the
+** database is opened read-only.
+**
+** The Truth: As currently implemented, all databases are opened
+** for writing all the time. Maybe someday we will provide the
+** ability to open a database readonly. The mode parameters is
+** provided in anticipation of that enhancement.
+*/
+sqlite *sqlite_open(const char *filename, int mode, char **errmsg);
+
+/*
+** A function to close the database.
+**
+** Call this function with a pointer to a structure that was previously
+** returned from sqlite_open() and the corresponding database will by closed.
+*/
+void sqlite_close(sqlite *);
+
+/*
+** The type for a callback function.
+*/
+typedef int (*sqlite_callback)(void*,int,char**, char**);
+
+/*
+** A function to executes one or more statements of SQL.
+**
+** If one or more of the SQL statements are queries, then
+** the callback function specified by the 3rd parameter is
+** invoked once for each row of the query result. This callback
+** should normally return 0. If the callback returns a non-zero
+** value then the query is aborted, all subsequent SQL statements
+** are skipped and the sqlite_exec() function returns the SQLITE_ABORT.
+**
+** The 4th parameter is an arbitrary pointer that is passed
+** to the callback function as its first parameter.
+**
+** The 2nd parameter to the callback function is the number of
+** columns in the query result. The 3rd parameter to the callback
+** is an array of strings holding the values for each column.
+** The 4th parameter to the callback is an array of strings holding
+** the names of each column.
+**
+** The callback function may be NULL, even for queries. A NULL
+** callback is not an error. It just means that no callback
+** will be invoked.
+**
+** If an error occurs while parsing or evaluating the SQL (but
+** not while executing the callback) then an appropriate error
+** message is written into memory obtained from malloc() and
+** *errmsg is made to point to that message. The calling function
+** is responsible for freeing the memory that holds the error
+** message. Use sqlite_freemem() for this. If errmsg==NULL,
+** then no error message is ever written.
+**
+** The return value is is SQLITE_OK if there are no errors and
+** some other return code if there is an error. The particular
+** return value depends on the type of error.
+**
+** If the query could not be executed because a database file is
+** locked or busy, then this function returns SQLITE_BUSY. (This
+** behavior can be modified somewhat using the sqlite_busy_handler()
+** and sqlite_busy_timeout() functions below.)
+*/
+int sqlite_exec(
+ sqlite*, /* An open database */
+ const char *sql, /* SQL to be executed */
+ sqlite_callback, /* Callback function */
+ void *, /* 1st argument to callback function */
+ char **errmsg /* Error msg written here */
+);
+
+/*
+** Return values for sqlite_exec() and sqlite_step()
+*/
+#define SQLITE_OK 0 /* Successful result */
+#define SQLITE_ERROR 1 /* SQL error or missing database */
+#define SQLITE_INTERNAL 2 /* An internal logic error in SQLite */
+#define SQLITE_PERM 3 /* Access permission denied */
+#define SQLITE_ABORT 4 /* Callback routine requested an abort */
+#define SQLITE_BUSY 5 /* The database file is locked */
+#define SQLITE_LOCKED 6 /* A table in the database is locked */
+#define SQLITE_NOMEM 7 /* A malloc() failed */
+#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
+#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite_interrupt() */
+#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
+#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
+#define SQLITE_NOTFOUND 12 /* (Internal Only) Table or record not found */
+#define SQLITE_FULL 13 /* Insertion failed because database is full */
+#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
+#define SQLITE_PROTOCOL 15 /* Database lock protocol error */
+#define SQLITE_EMPTY 16 /* (Internal Only) Database table is empty */
+#define SQLITE_SCHEMA 17 /* The database schema changed */
+#define SQLITE_TOOBIG 18 /* Too much data for one row of a table */
+#define SQLITE_CONSTRAINT 19 /* Abort due to contraint violation */
+#define SQLITE_MISMATCH 20 /* Data type mismatch */
+#define SQLITE_MISUSE 21 /* Library used incorrectly */
+#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
+#define SQLITE_AUTH 23 /* Authorization denied */
+#define SQLITE_FORMAT 24 /* Auxiliary database format error */
+#define SQLITE_RANGE 25 /* 2nd parameter to sqlite_bind out of range */
+#define SQLITE_NOTADB 26 /* File opened that is not a database file */
+#define SQLITE_ROW 100 /* sqlite_step() has another row ready */
+#define SQLITE_DONE 101 /* sqlite_step() has finished executing */
+
+/*
+** Each entry in an SQLite table has a unique integer key. (The key is
+** the value of the INTEGER PRIMARY KEY column if there is such a column,
+** otherwise the key is generated at random. The unique key is always
+** available as the ROWID, OID, or _ROWID_ column.) The following routine
+** returns the integer key of the most recent insert in the database.
+**
+** This function is similar to the mysql_insert_id() function from MySQL.
+*/
+int sqlite_last_insert_rowid(sqlite*);
+
+/*
+** This function returns the number of database rows that were changed
+** (or inserted or deleted) by the most recent called sqlite_exec().
+**
+** All changes are counted, even if they were later undone by a
+** ROLLBACK or ABORT. Except, changes associated with creating and
+** dropping tables are not counted.
+**
+** If a callback invokes sqlite_exec() recursively, then the changes
+** in the inner, recursive call are counted together with the changes
+** in the outer call.
+**
+** SQLite implements the command "DELETE FROM table" without a WHERE clause
+** by dropping and recreating the table. (This is much faster than going
+** through and deleting individual elements form the table.) Because of
+** this optimization, the change count for "DELETE FROM table" will be
+** zero regardless of the number of elements that were originally in the
+** table. To get an accurate count of the number of rows deleted, use
+** "DELETE FROM table WHERE 1" instead.
+*/
+int sqlite_changes(sqlite*);
+
+/*
+** This function returns the number of database rows that were changed
+** by the last INSERT, UPDATE, or DELETE statment executed by sqlite_exec(),
+** or by the last VM to run to completion. The change count is not updated
+** by SQL statements other than INSERT, UPDATE or DELETE.
+**
+** Changes are counted, even if they are later undone by a ROLLBACK or
+** ABORT. Changes associated with trigger programs that execute as a
+** result of the INSERT, UPDATE, or DELETE statement are not counted.
+**
+** If a callback invokes sqlite_exec() recursively, then the changes
+** in the inner, recursive call are counted together with the changes
+** in the outer call.
+**
+** SQLite implements the command "DELETE FROM table" without a WHERE clause
+** by dropping and recreating the table. (This is much faster than going
+** through and deleting individual elements form the table.) Because of
+** this optimization, the change count for "DELETE FROM table" will be
+** zero regardless of the number of elements that were originally in the
+** table. To get an accurate count of the number of rows deleted, use
+** "DELETE FROM table WHERE 1" instead.
+**
+******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
+*/
+int sqlite_last_statement_changes(sqlite*);
+
+/* If the parameter to this routine is one of the return value constants
+** defined above, then this routine returns a constant text string which
+** descripts (in English) the meaning of the return value.
+*/
+const char *sqlite_error_string(int);
+#define sqliteErrStr sqlite_error_string /* Legacy. Do not use in new code. */
+
+/* This function causes any pending database operation to abort and
+** return at its earliest opportunity. This routine is typically
+** called in response to a user action such as pressing "Cancel"
+** or Ctrl-C where the user wants a long query operation to halt
+** immediately.
+*/
+void sqlite_interrupt(sqlite*);
+
+
+/* This function returns true if the given input string comprises
+** one or more complete SQL statements.
+**
+** The algorithm is simple. If the last token other than spaces
+** and comments is a semicolon, then return true. otherwise return
+** false.
+*/
+int sqlite_complete(const char *sql);
+
+/*
+** This routine identifies a callback function that is invoked
+** whenever an attempt is made to open a database table that is
+** currently locked by another process or thread. If the busy callback
+** is NULL, then sqlite_exec() returns SQLITE_BUSY immediately if
+** it finds a locked table. If the busy callback is not NULL, then
+** sqlite_exec() invokes the callback with three arguments. The
+** second argument is the name of the locked table and the third
+** argument is the number of times the table has been busy. If the
+** busy callback returns 0, then sqlite_exec() immediately returns
+** SQLITE_BUSY. If the callback returns non-zero, then sqlite_exec()
+** tries to open the table again and the cycle repeats.
+**
+** The default busy callback is NULL.
+**
+** Sqlite is re-entrant, so the busy handler may start a new query.
+** (It is not clear why anyone would every want to do this, but it
+** is allowed, in theory.) But the busy handler may not close the
+** database. Closing the database from a busy handler will delete
+** data structures out from under the executing query and will
+** probably result in a coredump.
+*/
+void sqlite_busy_handler(sqlite*, int(*)(void*,const char*,int), void*);
+
+/*
+** This routine sets a busy handler that sleeps for a while when a
+** table is locked. The handler will sleep multiple times until
+** at least "ms" milleseconds of sleeping have been done. After
+** "ms" milleseconds of sleeping, the handler returns 0 which
+** causes sqlite_exec() to return SQLITE_BUSY.
+**
+** Calling this routine with an argument less than or equal to zero
+** turns off all busy handlers.
+*/
+void sqlite_busy_timeout(sqlite*, int ms);
+
+/*
+** This next routine is really just a wrapper around sqlite_exec().
+** Instead of invoking a user-supplied callback for each row of the
+** result, this routine remembers each row of the result in memory
+** obtained from malloc(), then returns all of the result after the
+** query has finished.
+**
+** As an example, suppose the query result where this table:
+**
+** Name | Age
+** -----------------------
+** Alice | 43
+** Bob | 28
+** Cindy | 21
+**
+** If the 3rd argument were &azResult then after the function returns
+** azResult will contain the following data:
+**
+** azResult[0] = "Name";
+** azResult[1] = "Age";
+** azResult[2] = "Alice";
+** azResult[3] = "43";
+** azResult[4] = "Bob";
+** azResult[5] = "28";
+** azResult[6] = "Cindy";
+** azResult[7] = "21";
+**
+** Notice that there is an extra row of data containing the column
+** headers. But the *nrow return value is still 3. *ncolumn is
+** set to 2. In general, the number of values inserted into azResult
+** will be ((*nrow) + 1)*(*ncolumn).
+**
+** After the calling function has finished using the result, it should
+** pass the result data pointer to sqlite_free_table() in order to
+** release the memory that was malloc-ed. Because of the way the
+** malloc() happens, the calling function must not try to call
+** malloc() directly. Only sqlite_free_table() is able to release
+** the memory properly and safely.
+**
+** The return value of this routine is the same as from sqlite_exec().
+*/
+int sqlite_get_table(
+ sqlite*, /* An open database */
+ const char *sql, /* SQL to be executed */
+ char ***resultp, /* Result written to a char *[] that this points to */
+ int *nrow, /* Number of result rows written here */
+ int *ncolumn, /* Number of result columns written here */
+ char **errmsg /* Error msg written here */
+);
+
+/*
+** Call this routine to free the memory that sqlite_get_table() allocated.
+*/
+void sqlite_free_table(char **result);
+
+/*
+** The following routines are wrappers around sqlite_exec() and
+** sqlite_get_table(). The only difference between the routines that
+** follow and the originals is that the second argument to the
+** routines that follow is really a printf()-style format
+** string describing the SQL to be executed. Arguments to the format
+** string appear at the end of the argument list.
+**
+** All of the usual printf formatting options apply. In addition, there
+** is a "%q" option. %q works like %s in that it substitutes a null-terminated
+** string from the argument list. But %q also doubles every '\'' character.
+** %q is designed for use inside a string literal. By doubling each '\''
+** character it escapes that character and allows it to be inserted into
+** the string.
+**
+** For example, so some string variable contains text as follows:
+**
+** char *zText = "It's a happy day!";
+**
+** We can use this text in an SQL statement as follows:
+**
+** sqlite_exec_printf(db, "INSERT INTO table VALUES('%q')",
+** callback1, 0, 0, zText);
+**
+** Because the %q format string is used, the '\'' character in zText
+** is escaped and the SQL generated is as follows:
+**
+** INSERT INTO table1 VALUES('It''s a happy day!')
+**
+** This is correct. Had we used %s instead of %q, the generated SQL
+** would have looked like this:
+**
+** INSERT INTO table1 VALUES('It's a happy day!');
+**
+** This second example is an SQL syntax error. As a general rule you
+** should always use %q instead of %s when inserting text into a string
+** literal.
+*/
+int sqlite_exec_printf(
+ sqlite*, /* An open database */
+ const char *sqlFormat, /* printf-style format string for the SQL */
+ sqlite_callback, /* Callback function */
+ void *, /* 1st argument to callback function */
+ char **errmsg, /* Error msg written here */
+ ... /* Arguments to the format string. */
+);
+int sqlite_exec_vprintf(
+ sqlite*, /* An open database */
+ const char *sqlFormat, /* printf-style format string for the SQL */
+ sqlite_callback, /* Callback function */
+ void *, /* 1st argument to callback function */
+ char **errmsg, /* Error msg written here */
+ va_list ap /* Arguments to the format string. */
+);
+int sqlite_get_table_printf(
+ sqlite*, /* An open database */
+ const char *sqlFormat, /* printf-style format string for the SQL */
+ char ***resultp, /* Result written to a char *[] that this points to */
+ int *nrow, /* Number of result rows written here */
+ int *ncolumn, /* Number of result columns written here */
+ char **errmsg, /* Error msg written here */
+ ... /* Arguments to the format string */
+);
+int sqlite_get_table_vprintf(
+ sqlite*, /* An open database */
+ const char *sqlFormat, /* printf-style format string for the SQL */
+ char ***resultp, /* Result written to a char *[] that this points to */
+ int *nrow, /* Number of result rows written here */
+ int *ncolumn, /* Number of result columns written here */
+ char **errmsg, /* Error msg written here */
+ va_list ap /* Arguments to the format string */
+);
+char *sqlite_mprintf(const char*,...);
+char *sqlite_vmprintf(const char*, va_list);
+
+/*
+** Windows systems should call this routine to free memory that
+** is returned in the in the errmsg parameter of sqlite_open() when
+** SQLite is a DLL. For some reason, it does not work to call free()
+** directly.
+*/
+void sqlite_freemem(void *p);
+
+/*
+** Windows systems need functions to call to return the sqlite_version
+** and sqlite_encoding strings.
+*/
+const char *sqlite_libversion(void);
+const char *sqlite_libencoding(void);
+
+/*
+** A pointer to the following structure is used to communicate with
+** the implementations of user-defined functions.
+*/
+typedef struct sqlite_func sqlite_func;
+
+/*
+** Use the following routines to create new user-defined functions. See
+** the documentation for details.
+*/
+int sqlite_create_function(
+ sqlite*, /* Database where the new function is registered */
+ const char *zName, /* Name of the new function */
+ int nArg, /* Number of arguments. -1 means any number */
+ void (*xFunc)(sqlite_func*,int,const char**), /* C code to implement */
+ void *pUserData /* Available via the sqlite_user_data() call */
+);
+int sqlite_create_aggregate(
+ sqlite*, /* Database where the new function is registered */
+ const char *zName, /* Name of the function */
+ int nArg, /* Number of arguments */
+ void (*xStep)(sqlite_func*,int,const char**), /* Called for each row */
+ void (*xFinalize)(sqlite_func*), /* Called once to get final result */
+ void *pUserData /* Available via the sqlite_user_data() call */
+);
+
+/*
+** Use the following routine to define the datatype returned by a
+** user-defined function. The second argument can be one of the
+** constants SQLITE_NUMERIC, SQLITE_TEXT, or SQLITE_ARGS or it
+** can be an integer greater than or equal to zero. When the datatype
+** parameter is non-negative, the type of the result will be the
+** same as the datatype-th argument. If datatype==SQLITE_NUMERIC
+** then the result is always numeric. If datatype==SQLITE_TEXT then
+** the result is always text. If datatype==SQLITE_ARGS then the result
+** is numeric if any argument is numeric and is text otherwise.
+*/
+int sqlite_function_type(
+ sqlite *db, /* The database there the function is registered */
+ const char *zName, /* Name of the function */
+ int datatype /* The datatype for this function */
+);
+#define SQLITE_NUMERIC (-1)
+#define SQLITE_TEXT (-2)
+#define SQLITE_ARGS (-3)
+
+/*
+** The user function implementations call one of the following four routines
+** in order to return their results. The first parameter to each of these
+** routines is a copy of the first argument to xFunc() or xFinialize().
+** The second parameter to these routines is the result to be returned.
+** A NULL can be passed as the second parameter to sqlite_set_result_string()
+** in order to return a NULL result.
+**
+** The 3rd argument to _string and _error is the number of characters to
+** take from the string. If this argument is negative, then all characters
+** up to and including the first '\000' are used.
+**
+** The sqlite_set_result_string() function allocates a buffer to hold the
+** result and returns a pointer to this buffer. The calling routine
+** (that is, the implmentation of a user function) can alter the content
+** of this buffer if desired.
+*/
+char *sqlite_set_result_string(sqlite_func*,const char*,int);
+void sqlite_set_result_int(sqlite_func*,int);
+void sqlite_set_result_double(sqlite_func*,double);
+void sqlite_set_result_error(sqlite_func*,const char*,int);
+
+/*
+** The pUserData parameter to the sqlite_create_function() and
+** sqlite_create_aggregate() routines used to register user functions
+** is available to the implementation of the function using this
+** call.
+*/
+void *sqlite_user_data(sqlite_func*);
+
+/*
+** Aggregate functions use the following routine to allocate
+** a structure for storing their state. The first time this routine
+** is called for a particular aggregate, a new structure of size nBytes
+** is allocated, zeroed, and returned. On subsequent calls (for the
+** same aggregate instance) the same buffer is returned. The implementation
+** of the aggregate can use the returned buffer to accumulate data.
+**
+** The buffer allocated is freed automatically be SQLite.
+*/
+void *sqlite_aggregate_context(sqlite_func*, int nBytes);
+
+/*
+** The next routine returns the number of calls to xStep for a particular
+** aggregate function instance. The current call to xStep counts so this
+** routine always returns at least 1.
+*/
+int sqlite_aggregate_count(sqlite_func*);
+
+/*
+** This routine registers a callback with the SQLite library. The
+** callback is invoked (at compile-time, not at run-time) for each
+** attempt to access a column of a table in the database. The callback
+** returns SQLITE_OK if access is allowed, SQLITE_DENY if the entire
+** SQL statement should be aborted with an error and SQLITE_IGNORE
+** if the column should be treated as a NULL value.
+*/
+int sqlite_set_authorizer(
+ sqlite*,
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
+ void *pUserData
+);
+
+/*
+** The second parameter to the access authorization function above will
+** be one of the values below. These values signify what kind of operation
+** is to be authorized. The 3rd and 4th parameters to the authorization
+** function will be parameters or NULL depending on which of the following
+** codes is used as the second parameter. The 5th parameter is the name
+** of the database ("main", "temp", etc.) if applicable. The 6th parameter
+** is the name of the inner-most trigger or view that is responsible for
+** the access attempt or NULL if this access attempt is directly from
+** input SQL code.
+**
+** Arg-3 Arg-4
+*/
+#define SQLITE_COPY 0 /* Table Name File Name */
+#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
+#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
+#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
+#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
+#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
+#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
+#define SQLITE_DELETE 9 /* Table Name NULL */
+#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
+#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
+#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
+#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
+#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
+#define SQLITE_DROP_VIEW 17 /* View Name NULL */
+#define SQLITE_INSERT 18 /* Table Name NULL */
+#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
+#define SQLITE_READ 20 /* Table Name Column Name */
+#define SQLITE_SELECT 21 /* NULL NULL */
+#define SQLITE_TRANSACTION 22 /* NULL NULL */
+#define SQLITE_UPDATE 23 /* Table Name Column Name */
+#define SQLITE_ATTACH 24 /* Filename NULL */
+#define SQLITE_DETACH 25 /* Database Name NULL */
+
+
+/*
+** The return value of the authorization function should be one of the
+** following constants:
+*/
+/* #define SQLITE_OK 0 // Allow access (This is actually defined above) */
+#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
+#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
+
+/*
+** Register a function that is called at every invocation of sqlite_exec()
+** or sqlite_compile(). This function can be used (for example) to generate
+** a log file of all SQL executed against a database.
+*/
+void *sqlite_trace(sqlite*, void(*xTrace)(void*,const char*), void*);
+
+/*** The Callback-Free API
+**
+** The following routines implement a new way to access SQLite that does not
+** involve the use of callbacks.
+**
+** An sqlite_vm is an opaque object that represents a single SQL statement
+** that is ready to be executed.
+*/
+typedef struct sqlite_vm sqlite_vm;
+
+/*
+** To execute an SQLite query without the use of callbacks, you first have
+** to compile the SQL using this routine. The 1st parameter "db" is a pointer
+** to an sqlite object obtained from sqlite_open(). The 2nd parameter
+** "zSql" is the text of the SQL to be compiled. The remaining parameters
+** are all outputs.
+**
+** *pzTail is made to point to the first character past the end of the first
+** SQL statement in zSql. This routine only compiles the first statement
+** in zSql, so *pzTail is left pointing to what remains uncompiled.
+**
+** *ppVm is left pointing to a "virtual machine" that can be used to execute
+** the compiled statement. Or if there is an error, *ppVm may be set to NULL.
+** If the input text contained no SQL (if the input is and empty string or
+** a comment) then *ppVm is set to NULL.
+**
+** If any errors are detected during compilation, an error message is written
+** into space obtained from malloc() and *pzErrMsg is made to point to that
+** error message. The calling routine is responsible for freeing the text
+** of this message when it has finished with it. Use sqlite_freemem() to
+** free the message. pzErrMsg may be NULL in which case no error message
+** will be generated.
+**
+** On success, SQLITE_OK is returned. Otherwise and error code is returned.
+*/
+int sqlite_compile(
+ sqlite *db, /* The open database */
+ const char *zSql, /* SQL statement to be compiled */
+ const char **pzTail, /* OUT: uncompiled tail of zSql */
+ sqlite_vm **ppVm, /* OUT: the virtual machine to execute zSql */
+ char **pzErrmsg /* OUT: Error message. */
+);
+
+/*
+** After an SQL statement has been compiled, it is handed to this routine
+** to be executed. This routine executes the statement as far as it can
+** go then returns. The return value will be one of SQLITE_DONE,
+** SQLITE_ERROR, SQLITE_BUSY, SQLITE_ROW, or SQLITE_MISUSE.
+**
+** SQLITE_DONE means that the execute of the SQL statement is complete
+** an no errors have occurred. sqlite_step() should not be called again
+** for the same virtual machine. *pN is set to the number of columns in
+** the result set and *pazColName is set to an array of strings that
+** describe the column names and datatypes. The name of the i-th column
+** is (*pazColName)[i] and the datatype of the i-th column is
+** (*pazColName)[i+*pN]. *pazValue is set to NULL.
+**
+** SQLITE_ERROR means that the virtual machine encountered a run-time
+** error. sqlite_step() should not be called again for the same
+** virtual machine. *pN is set to 0 and *pazColName and *pazValue are set
+** to NULL. Use sqlite_finalize() to obtain the specific error code
+** and the error message text for the error.
+**
+** SQLITE_BUSY means that an attempt to open the database failed because
+** another thread or process is holding a lock. The calling routine
+** can try again to open the database by calling sqlite_step() again.
+** The return code will only be SQLITE_BUSY if no busy handler is registered
+** using the sqlite_busy_handler() or sqlite_busy_timeout() routines. If
+** a busy handler callback has been registered but returns 0, then this
+** routine will return SQLITE_ERROR and sqltie_finalize() will return
+** SQLITE_BUSY when it is called.
+**
+** SQLITE_ROW means that a single row of the result is now available.
+** The data is contained in *pazValue. The value of the i-th column is
+** (*azValue)[i]. *pN and *pazColName are set as described in SQLITE_DONE.
+** Invoke sqlite_step() again to advance to the next row.
+**
+** SQLITE_MISUSE is returned if sqlite_step() is called incorrectly.
+** For example, if you call sqlite_step() after the virtual machine
+** has halted (after a prior call to sqlite_step() has returned SQLITE_DONE)
+** or if you call sqlite_step() with an incorrectly initialized virtual
+** machine or a virtual machine that has been deleted or that is associated
+** with an sqlite structure that has been closed.
+*/
+int sqlite_step(
+ sqlite_vm *pVm, /* The virtual machine to execute */
+ int *pN, /* OUT: Number of columns in result */
+ const char ***pazValue, /* OUT: Column data */
+ const char ***pazColName /* OUT: Column names and datatypes */
+);
+
+/*
+** This routine is called to delete a virtual machine after it has finished
+** executing. The return value is the result code. SQLITE_OK is returned
+** if the statement executed successfully and some other value is returned if
+** there was any kind of error. If an error occurred and pzErrMsg is not
+** NULL, then an error message is written into memory obtained from malloc()
+** and *pzErrMsg is made to point to that error message. The calling routine
+** should use sqlite_freemem() to delete this message when it has finished
+** with it.
+**
+** This routine can be called at any point during the execution of the
+** virtual machine. If the virtual machine has not completed execution
+** when this routine is called, that is like encountering an error or
+** an interrupt. (See sqlite_interrupt().) Incomplete updates may be
+** rolled back and transactions cancelled, depending on the circumstances,
+** and the result code returned will be SQLITE_ABORT.
+*/
+int sqlite_finalize(sqlite_vm*, char **pzErrMsg);
+
+/*
+** This routine deletes the virtual machine, writes any error message to
+** *pzErrMsg and returns an SQLite return code in the same way as the
+** sqlite_finalize() function.
+**
+** Additionally, if ppVm is not NULL, *ppVm is left pointing to a new virtual
+** machine loaded with the compiled version of the original query ready for
+** execution.
+**
+** If sqlite_reset() returns SQLITE_SCHEMA, then *ppVm is set to NULL.
+**
+******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
+*/
+int sqlite_reset(sqlite_vm*, char **pzErrMsg);
+
+/*
+** If the SQL that was handed to sqlite_compile contains variables that
+** are represeted in the SQL text by a question mark ('?'). This routine
+** is used to assign values to those variables.
+**
+** The first parameter is a virtual machine obtained from sqlite_compile().
+** The 2nd "idx" parameter determines which variable in the SQL statement
+** to bind the value to. The left most '?' is 1. The 3rd parameter is
+** the value to assign to that variable. The 4th parameter is the number
+** of bytes in the value, including the terminating \000 for strings.
+** Finally, the 5th "copy" parameter is TRUE if SQLite should make its
+** own private copy of this value, or false if the space that the 3rd
+** parameter points to will be unchanging and can be used directly by
+** SQLite.
+**
+** Unbound variables are treated as having a value of NULL. To explicitly
+** set a variable to NULL, call this routine with the 3rd parameter as a
+** NULL pointer.
+**
+** If the 4th "len" parameter is -1, then strlen() is used to find the
+** length.
+**
+** This routine can only be called immediately after sqlite_compile()
+** or sqlite_reset() and before any calls to sqlite_step().
+**
+******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
+*/
+int sqlite_bind(sqlite_vm*, int idx, const char *value, int len, int copy);
+
+/*
+** This routine configures a callback function - the progress callback - that
+** is invoked periodically during long running calls to sqlite_exec(),
+** sqlite_step() and sqlite_get_table(). An example use for this API is to keep
+** a GUI updated during a large query.
+**
+** The progress callback is invoked once for every N virtual machine opcodes,
+** where N is the second argument to this function. The progress callback
+** itself is identified by the third argument to this function. The fourth
+** argument to this function is a void pointer passed to the progress callback
+** function each time it is invoked.
+**
+** If a call to sqlite_exec(), sqlite_step() or sqlite_get_table() results
+** in less than N opcodes being executed, then the progress callback is not
+** invoked.
+**
+** Calling this routine overwrites any previously installed progress callback.
+** To remove the progress callback altogether, pass NULL as the third
+** argument to this function.
+**
+** If the progress callback returns a result other than 0, then the current
+** query is immediately terminated and any database changes rolled back. If the
+** query was part of a larger transaction, then the transaction is not rolled
+** back and remains active. The sqlite_exec() call returns SQLITE_ABORT.
+**
+******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
+*/
+void sqlite_progress_handler(sqlite*, int, int(*)(void*), void*);
+
+/*
+** Register a callback function to be invoked whenever a new transaction
+** is committed. The pArg argument is passed through to the callback.
+** callback. If the callback function returns non-zero, then the commit
+** is converted into a rollback.
+**
+** If another function was previously registered, its pArg value is returned.
+** Otherwise NULL is returned.
+**
+** Registering a NULL function disables the callback.
+**
+******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
+*/
+void *sqlite_commit_hook(sqlite*, int(*)(void*), void*);
+
+/*
+** Open an encrypted SQLite database. If pKey==0 or nKey==0, this routine
+** is the same as sqlite_open().
+**
+** The code to implement this API is not available in the public release
+** of SQLite.
+*/
+sqlite *sqlite_open_encrypted(
+ const char *zFilename, /* Name of the encrypted database */
+ const void *pKey, /* Pointer to the key */
+ int nKey, /* Number of bytes in the key */
+ int *pErrcode, /* Write error code here */
+ char **pzErrmsg /* Write error message here */
+);
+
+/*
+** Change the key on an open database. If the current database is not
+** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the
+** database is decrypted.
+**
+** The code to implement this API is not available in the public release
+** of SQLite.
+*/
+int sqlite_rekey(
+ sqlite *db, /* Database to be rekeyed */
+ const void *pKey, int nKey /* The new key */
+);
+
+#ifdef __cplusplus
+} /* End of the 'extern "C"' block */
+#endif
+
+#endif /* _SQLITE_H_ */
diff --git a/src/3rdparty/sqlite/sqliteInt.h b/src/3rdparty/sqlite/sqliteInt.h
new file mode 100644
index 0000000..4c2b643
--- /dev/null
+++ b/src/3rdparty/sqlite/sqliteInt.h
@@ -0,0 +1,1266 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Internal interface definitions for SQLite.
+**
+** @(#) $Id: sqliteInt.h,v 1.220 2004/02/25 13:47:33 drh Exp $
+*/
+#include "config.h"
+#include "sqlite.h"
+#include "hash.h"
+#include "parse.h"
+#include "btree.h"
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+
+/*
+** The maximum number of in-memory pages to use for the main database
+** table and for temporary tables.
+*/
+#define MAX_PAGES 2000
+#define TEMP_PAGES 500
+
+/*
+** If the following macro is set to 1, then NULL values are considered
+** distinct for the SELECT DISTINCT statement and for UNION or EXCEPT
+** compound queries. No other SQL database engine (among those tested)
+** works this way except for OCELOT. But the SQL92 spec implies that
+** this is how things should work.
+**
+** If the following macro is set to 0, then NULLs are indistinct for
+** SELECT DISTINCT and for UNION.
+*/
+#define NULL_ALWAYS_DISTINCT 0
+
+/*
+** If the following macro is set to 1, then NULL values are considered
+** distinct when determining whether or not two entries are the same
+** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL,
+** OCELOT, and Firebird all work. The SQL92 spec explicitly says this
+** is the way things are suppose to work.
+**
+** If the following macro is set to 0, the NULLs are indistinct for
+** a UNIQUE index. In this mode, you can only have a single NULL entry
+** for a column declared UNIQUE. This is the way Informix and SQL Server
+** work.
+*/
+#define NULL_DISTINCT_FOR_UNIQUE 1
+
+/*
+** The maximum number of attached databases. This must be at least 2
+** in order to support the main database file (0) and the file used to
+** hold temporary tables (1). And it must be less than 256 because
+** an unsigned character is used to stored the database index.
+*/
+#define MAX_ATTACHED 10
+
+/*
+** The next macro is used to determine where TEMP tables and indices
+** are stored. Possible values:
+**
+** 0 Always use a temporary files
+** 1 Use a file unless overridden by "PRAGMA temp_store"
+** 2 Use memory unless overridden by "PRAGMA temp_store"
+** 3 Always use memory
+*/
+#ifndef TEMP_STORE
+# define TEMP_STORE 1
+#endif
+
+/*
+** When building SQLite for embedded systems where memory is scarce,
+** you can define one or more of the following macros to omit extra
+** features of the library and thus keep the size of the library to
+** a minimum.
+*/
+/* #define SQLITE_OMIT_AUTHORIZATION 1 */
+/* #define SQLITE_OMIT_INMEMORYDB 1 */
+/* #define SQLITE_OMIT_VACUUM 1 */
+/* #define SQLITE_OMIT_DATETIME_FUNCS 1 */
+/* #define SQLITE_OMIT_PROGRESS_CALLBACK 1 */
+
+/*
+** Integers of known sizes. These typedefs might change for architectures
+** where the sizes very. Preprocessor macros are available so that the
+** types can be conveniently redefined at compile-type. Like this:
+**
+** cc '-DUINTPTR_TYPE=long long int' ...
+*/
+#ifndef UINT32_TYPE
+# define UINT32_TYPE unsigned int
+#endif
+#ifndef UINT16_TYPE
+# define UINT16_TYPE unsigned short int
+#endif
+#ifndef UINT8_TYPE
+# define UINT8_TYPE unsigned char
+#endif
+#ifndef INT8_TYPE
+# define INT8_TYPE signed char
+#endif
+#ifndef INTPTR_TYPE
+# if SQLITE_PTR_SZ==4
+# define INTPTR_TYPE int
+# else
+# define INTPTR_TYPE long long
+# endif
+#endif
+typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
+typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
+typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
+typedef UINT8_TYPE i8; /* 1-byte signed integer */
+typedef INTPTR_TYPE ptr; /* Big enough to hold a pointer */
+typedef unsigned INTPTR_TYPE uptr; /* Big enough to hold a pointer */
+
+/*
+** Defer sourcing vdbe.h until after the "u8" typedef is defined.
+*/
+#include "vdbe.h"
+
+/*
+** Most C compilers these days recognize "long double", don't they?
+** Just in case we encounter one that does not, we will create a macro
+** for long double so that it can be easily changed to just "double".
+*/
+#ifndef LONGDOUBLE_TYPE
+# define LONGDOUBLE_TYPE long double
+#endif
+
+/*
+** This macro casts a pointer to an integer. Useful for doing
+** pointer arithmetic.
+*/
+#define Addr(X) ((uptr)X)
+
+/*
+** The maximum number of bytes of data that can be put into a single
+** row of a single table. The upper bound on this limit is 16777215
+** bytes (or 16MB-1). We have arbitrarily set the limit to just 1MB
+** here because the overflow page chain is inefficient for really big
+** records and we want to discourage people from thinking that
+** multi-megabyte records are OK. If your needs are different, you can
+** change this define and recompile to increase or decrease the record
+** size.
+**
+** The 16777198 is computed as follows: 238 bytes of payload on the
+** original pages plus 16448 overflow pages each holding 1020 bytes of
+** data.
+*/
+#define MAX_BYTES_PER_ROW 1048576
+/* #define MAX_BYTES_PER_ROW 16777198 */
+
+/*
+** If memory allocation problems are found, recompile with
+**
+** -DMEMORY_DEBUG=1
+**
+** to enable some sanity checking on malloc() and free(). To
+** check for memory leaks, recompile with
+**
+** -DMEMORY_DEBUG=2
+**
+** and a line of text will be written to standard error for
+** each malloc() and free(). This output can be analyzed
+** by an AWK script to determine if there are any leaks.
+*/
+#ifdef MEMORY_DEBUG
+# define sqliteMalloc(X) sqliteMalloc_(X,1,__FILE__,__LINE__)
+# define sqliteMallocRaw(X) sqliteMalloc_(X,0,__FILE__,__LINE__)
+# define sqliteFree(X) sqliteFree_(X,__FILE__,__LINE__)
+# define sqliteRealloc(X,Y) sqliteRealloc_(X,Y,__FILE__,__LINE__)
+# define sqliteStrDup(X) sqliteStrDup_(X,__FILE__,__LINE__)
+# define sqliteStrNDup(X,Y) sqliteStrNDup_(X,Y,__FILE__,__LINE__)
+ void sqliteStrRealloc(char**);
+#else
+# define sqliteRealloc_(X,Y) sqliteRealloc(X,Y)
+# define sqliteStrRealloc(X)
+#endif
+
+/*
+** This variable gets set if malloc() ever fails. After it gets set,
+** the SQLite library shuts down permanently.
+*/
+extern int sqlite_malloc_failed;
+
+/*
+** The following global variables are used for testing and debugging
+** only. They only work if MEMORY_DEBUG is defined.
+*/
+#ifdef MEMORY_DEBUG
+extern int sqlite_nMalloc; /* Number of sqliteMalloc() calls */
+extern int sqlite_nFree; /* Number of sqliteFree() calls */
+extern int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */
+#endif
+
+/*
+** Name of the master database table. The master database table
+** is a special table that holds the names and attributes of all
+** user tables and indices.
+*/
+#define MASTER_NAME "sqlite_master"
+#define TEMP_MASTER_NAME "sqlite_temp_master"
+
+/*
+** The name of the schema table.
+*/
+#define SCHEMA_TABLE(x) (x?TEMP_MASTER_NAME:MASTER_NAME)
+
+/*
+** A convenience macro that returns the number of elements in
+** an array.
+*/
+#define ArraySize(X) (sizeof(X)/sizeof(X[0]))
+
+/*
+** Forward references to structures
+*/
+typedef struct Column Column;
+typedef struct Table Table;
+typedef struct Index Index;
+typedef struct Instruction Instruction;
+typedef struct Expr Expr;
+typedef struct ExprList ExprList;
+typedef struct Parse Parse;
+typedef struct Token Token;
+typedef struct IdList IdList;
+typedef struct SrcList SrcList;
+typedef struct WhereInfo WhereInfo;
+typedef struct WhereLevel WhereLevel;
+typedef struct Select Select;
+typedef struct AggExpr AggExpr;
+typedef struct FuncDef FuncDef;
+typedef struct Trigger Trigger;
+typedef struct TriggerStep TriggerStep;
+typedef struct TriggerStack TriggerStack;
+typedef struct FKey FKey;
+typedef struct Db Db;
+typedef struct AuthContext AuthContext;
+
+/*
+** Each database file to be accessed by the system is an instance
+** of the following structure. There are normally two of these structures
+** in the sqlite.aDb[] array. aDb[0] is the main database file and
+** aDb[1] is the database file used to hold temporary tables. Additional
+** databases may be attached.
+*/
+struct Db {
+ char *zName; /* Name of this database */
+ Btree *pBt; /* The B*Tree structure for this database file */
+ int schema_cookie; /* Database schema version number for this file */
+ Hash tblHash; /* All tables indexed by name */
+ Hash idxHash; /* All (named) indices indexed by name */
+ Hash trigHash; /* All triggers indexed by name */
+ Hash aFKey; /* Foreign keys indexed by to-table */
+ u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */
+ u16 flags; /* Flags associated with this database */
+ void *pAux; /* Auxiliary data. Usually NULL */
+ void (*xFreeAux)(void*); /* Routine to free pAux */
+};
+
+/*
+** These macros can be used to test, set, or clear bits in the
+** Db.flags field.
+*/
+#define DbHasProperty(D,I,P) (((D)->aDb[I].flags&(P))==(P))
+#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].flags&(P))!=0)
+#define DbSetProperty(D,I,P) (D)->aDb[I].flags|=(P)
+#define DbClearProperty(D,I,P) (D)->aDb[I].flags&=~(P)
+
+/*
+** Allowed values for the DB.flags field.
+**
+** The DB_Locked flag is set when the first OP_Transaction or OP_Checkpoint
+** opcode is emitted for a database. This prevents multiple occurances
+** of those opcodes for the same database in the same program. Similarly,
+** the DB_Cookie flag is set when the OP_VerifyCookie opcode is emitted,
+** and prevents duplicate OP_VerifyCookies from taking up space and slowing
+** down execution.
+**
+** The DB_SchemaLoaded flag is set after the database schema has been
+** read into internal hash tables.
+**
+** DB_UnresetViews means that one or more views have column names that
+** have been filled out. If the schema changes, these column names might
+** changes and so the view will need to be reset.
+*/
+#define DB_Locked 0x0001 /* OP_Transaction opcode has been emitted */
+#define DB_Cookie 0x0002 /* OP_VerifyCookie opcode has been emiited */
+#define DB_SchemaLoaded 0x0004 /* The schema has been loaded */
+#define DB_UnresetViews 0x0008 /* Some views have defined column names */
+
+
+/*
+** Each database is an instance of the following structure.
+**
+** The sqlite.file_format is initialized by the database file
+** and helps determines how the data in the database file is
+** represented. This field allows newer versions of the library
+** to read and write older databases. The various file formats
+** are as follows:
+**
+** file_format==1 Version 2.1.0.
+** file_format==2 Version 2.2.0. Add support for INTEGER PRIMARY KEY.
+** file_format==3 Version 2.6.0. Fix empty-string index bug.
+** file_format==4 Version 2.7.0. Add support for separate numeric and
+** text datatypes.
+**
+** The sqlite.temp_store determines where temporary database files
+** are stored. If 1, then a file is created to hold those tables. If
+** 2, then they are held in memory. 0 means use the default value in
+** the TEMP_STORE macro.
+**
+** The sqlite.lastRowid records the last insert rowid generated by an
+** insert statement. Inserts on views do not affect its value. Each
+** trigger has its own context, so that lastRowid can be updated inside
+** triggers as usual. The previous value will be restored once the trigger
+** exits. Upon entering a before or instead of trigger, lastRowid is no
+** longer (since after version 2.8.12) reset to -1.
+**
+** The sqlite.nChange does not count changes within triggers and keeps no
+** context. It is reset at start of sqlite_exec.
+** The sqlite.lsChange represents the number of changes made by the last
+** insert, update, or delete statement. It remains constant throughout the
+** length of a statement and is then updated by OP_SetCounts. It keeps a
+** context stack just like lastRowid so that the count of changes
+** within a trigger is not seen outside the trigger. Changes to views do not
+** affect the value of lsChange.
+** The sqlite.csChange keeps track of the number of current changes (since
+** the last statement) and is used to update sqlite_lsChange.
+*/
+struct sqlite {
+ int nDb; /* Number of backends currently in use */
+ Db *aDb; /* All backends */
+ Db aDbStatic[2]; /* Static space for the 2 default backends */
+ int flags; /* Miscellanous flags. See below */
+ u8 file_format; /* What file format version is this database? */
+ u8 safety_level; /* How aggressive at synching data to disk */
+ u8 want_to_close; /* Close after all VDBEs are deallocated */
+ u8 temp_store; /* 1=file, 2=memory, 0=compile-time default */
+ u8 onError; /* Default conflict algorithm */
+ int next_cookie; /* Next value of aDb[0].schema_cookie */
+ int cache_size; /* Number of pages to use in the cache */
+ int nTable; /* Number of tables in the database */
+ void *pBusyArg; /* 1st Argument to the busy callback */
+ int (*xBusyCallback)(void *,const char*,int); /* The busy callback */
+ void *pCommitArg; /* Argument to xCommitCallback() */
+ int (*xCommitCallback)(void*);/* Invoked at every commit. */
+ Hash aFunc; /* All functions that can be in SQL exprs */
+ int lastRowid; /* ROWID of most recent insert (see above) */
+ int priorNewRowid; /* Last randomly generated ROWID */
+ int magic; /* Magic number for detect library misuse */
+ int nChange; /* Number of rows changed (see above) */
+ int lsChange; /* Last statement change count (see above) */
+ int csChange; /* Current statement change count (see above) */
+ struct sqliteInitInfo { /* Information used during initialization */
+ int iDb; /* When back is being initialized */
+ int newTnum; /* Rootpage of table being initialized */
+ u8 busy; /* TRUE if currently initializing */
+ } init;
+ struct Vdbe *pVdbe; /* List of active virtual machines */
+ void (*xTrace)(void*,const char*); /* Trace function */
+ void *pTraceArg; /* Argument to the trace function */
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
+ /* Access authorization function */
+ void *pAuthArg; /* 1st argument to the access auth function */
+#endif
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ int (*xProgress)(void *); /* The progress callback */
+ void *pProgressArg; /* Argument to the progress callback */
+ int nProgressOps; /* Number of opcodes for progress callback */
+#endif
+};
+
+/*
+** Possible values for the sqlite.flags and or Db.flags fields.
+**
+** On sqlite.flags, the SQLITE_InTrans value means that we have
+** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement
+** transaction is active on that particular database file.
+*/
+#define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */
+#define SQLITE_Initialized 0x00000002 /* True after initialization */
+#define SQLITE_Interrupt 0x00000004 /* Cancel current operation */
+#define SQLITE_InTrans 0x00000008 /* True if in a transaction */
+#define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */
+#define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */
+#define SQLITE_ShortColNames 0x00000040 /* Show short columns names */
+#define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */
+ /* DELETE, or UPDATE and return */
+ /* the count using a callback. */
+#define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */
+ /* result set is empty */
+#define SQLITE_ReportTypes 0x00000200 /* Include information on datatypes */
+ /* in 4th argument of callback */
+
+/*
+** Possible values for the sqlite.magic field.
+** The numbers are obtained at random and have no special meaning, other
+** than being distinct from one another.
+*/
+#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */
+#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */
+#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */
+#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */
+
+/*
+** Each SQL function is defined by an instance of the following
+** structure. A pointer to this structure is stored in the sqlite.aFunc
+** hash table. When multiple functions have the same name, the hash table
+** points to a linked list of these structures.
+*/
+struct FuncDef {
+ void (*xFunc)(sqlite_func*,int,const char**); /* Regular function */
+ void (*xStep)(sqlite_func*,int,const char**); /* Aggregate function step */
+ void (*xFinalize)(sqlite_func*); /* Aggregate function finializer */
+ signed char nArg; /* Number of arguments. -1 means unlimited */
+ signed char dataType; /* Arg that determines datatype. -1=NUMERIC, */
+ /* -2=TEXT. -3=SQLITE_ARGS */
+ u8 includeTypes; /* Add datatypes to args of xFunc and xStep */
+ void *pUserData; /* User data parameter */
+ FuncDef *pNext; /* Next function with same name */
+};
+
+/*
+** information about each column of an SQL table is held in an instance
+** of this structure.
+*/
+struct Column {
+ char *zName; /* Name of this column */
+ char *zDflt; /* Default value of this column */
+ char *zType; /* Data type for this column */
+ u8 notNull; /* True if there is a NOT NULL constraint */
+ u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */
+ u8 sortOrder; /* Some combination of SQLITE_SO_... values */
+ u8 dottedName; /* True if zName contains a "." character */
+};
+
+/*
+** The allowed sort orders.
+**
+** The TEXT and NUM values use bits that do not overlap with DESC and ASC.
+** That way the two can be combined into a single number.
+*/
+#define SQLITE_SO_UNK 0 /* Use the default collating type. (SCT_NUM) */
+#define SQLITE_SO_TEXT 2 /* Sort using memcmp() */
+#define SQLITE_SO_NUM 4 /* Sort using sqliteCompare() */
+#define SQLITE_SO_TYPEMASK 6 /* Mask to extract the collating sequence */
+#define SQLITE_SO_ASC 0 /* Sort in ascending order */
+#define SQLITE_SO_DESC 1 /* Sort in descending order */
+#define SQLITE_SO_DIRMASK 1 /* Mask to extract the sort direction */
+
+/*
+** Each SQL table is represented in memory by an instance of the
+** following structure.
+**
+** Table.zName is the name of the table. The case of the original
+** CREATE TABLE statement is stored, but case is not significant for
+** comparisons.
+**
+** Table.nCol is the number of columns in this table. Table.aCol is a
+** pointer to an array of Column structures, one for each column.
+**
+** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
+** the column that is that key. Otherwise Table.iPKey is negative. Note
+** that the datatype of the PRIMARY KEY must be INTEGER for this field to
+** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of
+** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid
+** is generated for each row of the table. Table.hasPrimKey is true if
+** the table has any PRIMARY KEY, INTEGER or otherwise.
+**
+** Table.tnum is the page number for the root BTree page of the table in the
+** database file. If Table.iDb is the index of the database table backend
+** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that
+** holds temporary tables and indices. If Table.isTransient
+** is true, then the table is stored in a file that is automatically deleted
+** when the VDBE cursor to the table is closed. In this case Table.tnum
+** refers VDBE cursor number that holds the table open, not to the root
+** page number. Transient tables are used to hold the results of a
+** sub-query that appears instead of a real table name in the FROM clause
+** of a SELECT statement.
+*/
+struct Table {
+ char *zName; /* Name of the table */
+ int nCol; /* Number of columns in this table */
+ Column *aCol; /* Information about each column */
+ int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */
+ Index *pIndex; /* List of SQL indexes on this table. */
+ int tnum; /* Root BTree node for this table (see note above) */
+ Select *pSelect; /* NULL for tables. Points to definition if a view. */
+ u8 readOnly; /* True if this table should not be written by the user */
+ u8 iDb; /* Index into sqlite.aDb[] of the backend for this table */
+ u8 isTransient; /* True if automatically deleted when VDBE finishes */
+ u8 hasPrimKey; /* True if there exists a primary key */
+ u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
+ Trigger *pTrigger; /* List of SQL triggers on this table */
+ FKey *pFKey; /* Linked list of all foreign keys in this table */
+};
+
+/*
+** Each foreign key constraint is an instance of the following structure.
+**
+** A foreign key is associated with two tables. The "from" table is
+** the table that contains the REFERENCES clause that creates the foreign
+** key. The "to" table is the table that is named in the REFERENCES clause.
+** Consider this example:
+**
+** CREATE TABLE ex1(
+** a INTEGER PRIMARY KEY,
+** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
+** );
+**
+** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
+**
+** Each REFERENCES clause generates an instance of the following structure
+** which is attached to the from-table. The to-table need not exist when
+** the from-table is created. The existance of the to-table is not checked
+** until an attempt is made to insert data into the from-table.
+**
+** The sqlite.aFKey hash table stores pointers to this structure
+** given the name of a to-table. For each to-table, all foreign keys
+** associated with that table are on a linked list using the FKey.pNextTo
+** field.
+*/
+struct FKey {
+ Table *pFrom; /* The table that constains the REFERENCES clause */
+ FKey *pNextFrom; /* Next foreign key in pFrom */
+ char *zTo; /* Name of table that the key points to */
+ FKey *pNextTo; /* Next foreign key that points to zTo */
+ int nCol; /* Number of columns in this key */
+ struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
+ int iFrom; /* Index of column in pFrom */
+ char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */
+ } *aCol; /* One entry for each of nCol column s */
+ u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
+ u8 updateConf; /* How to resolve conflicts that occur on UPDATE */
+ u8 deleteConf; /* How to resolve conflicts that occur on DELETE */
+ u8 insertConf; /* How to resolve conflicts that occur on INSERT */
+};
+
+/*
+** SQLite supports many different ways to resolve a contraint
+** error. ROLLBACK processing means that a constraint violation
+** causes the operation in process to fail and for the current transaction
+** to be rolled back. ABORT processing means the operation in process
+** fails and any prior changes from that one operation are backed out,
+** but the transaction is not rolled back. FAIL processing means that
+** the operation in progress stops and returns an error code. But prior
+** changes due to the same operation are not backed out and no rollback
+** occurs. IGNORE means that the particular row that caused the constraint
+** error is not inserted or updated. Processing continues and no error
+** is returned. REPLACE means that preexisting database rows that caused
+** a UNIQUE constraint violation are removed so that the new insert or
+** update can proceed. Processing continues and no error is reported.
+**
+** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
+** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
+** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign
+** key is set to NULL. CASCADE means that a DELETE or UPDATE of the
+** referenced table row is propagated into the row that holds the
+** foreign key.
+**
+** The following symbolic values are used to record which type
+** of action to take.
+*/
+#define OE_None 0 /* There is no constraint to check */
+#define OE_Rollback 1 /* Fail the operation and rollback the transaction */
+#define OE_Abort 2 /* Back out changes but do no rollback transaction */
+#define OE_Fail 3 /* Stop the operation but leave all prior changes */
+#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
+#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
+
+#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
+#define OE_SetNull 7 /* Set the foreign key value to NULL */
+#define OE_SetDflt 8 /* Set the foreign key value to its default */
+#define OE_Cascade 9 /* Cascade the changes */
+
+#define OE_Default 99 /* Do whatever the default action is */
+
+/*
+** Each SQL index is represented in memory by an
+** instance of the following structure.
+**
+** The columns of the table that are to be indexed are described
+** by the aiColumn[] field of this structure. For example, suppose
+** we have the following table and index:
+**
+** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
+** CREATE INDEX Ex2 ON Ex1(c3,c1);
+**
+** In the Table structure describing Ex1, nCol==3 because there are
+** three columns in the table. In the Index structure describing
+** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
+** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
+** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
+** The second column to be indexed (c1) has an index of 0 in
+** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
+**
+** The Index.onError field determines whether or not the indexed columns
+** must be unique and what to do if they are not. When Index.onError=OE_None,
+** it means this is not a unique index. Otherwise it is a unique index
+** and the value of Index.onError indicate the which conflict resolution
+** algorithm to employ whenever an attempt is made to insert a non-unique
+** element.
+*/
+struct Index {
+ char *zName; /* Name of this index */
+ int nColumn; /* Number of columns in the table used by this index */
+ int *aiColumn; /* Which columns are used by this index. 1st is 0 */
+ Table *pTable; /* The SQL table being indexed */
+ int tnum; /* Page containing root of this index in database file */
+ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
+ u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */
+ u8 iDb; /* Index in sqlite.aDb[] of where this index is stored */
+ Index *pNext; /* The next index associated with the same table */
+};
+
+/*
+** Each token coming out of the lexer is an instance of
+** this structure. Tokens are also used as part of an expression.
+**
+** Note if Token.z==0 then Token.dyn and Token.n are undefined and
+** may contain random values. Do not make any assuptions about Token.dyn
+** and Token.n when Token.z==0.
+*/
+struct Token {
+ const char *z; /* Text of the token. Not NULL-terminated! */
+ unsigned dyn : 1; /* True for malloced memory, false for static */
+ unsigned n : 31; /* Number of characters in this token */
+};
+
+/*
+** Each node of an expression in the parse tree is an instance
+** of this structure.
+**
+** Expr.op is the opcode. The integer parser token codes are reused
+** as opcodes here. For example, the parser defines TK_GE to be an integer
+** code representing the ">=" operator. This same integer code is reused
+** to represent the greater-than-or-equal-to operator in the expression
+** tree.
+**
+** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list
+** of argument if the expression is a function.
+**
+** Expr.token is the operator token for this node. For some expressions
+** that have subexpressions, Expr.token can be the complete text that gave
+** rise to the Expr. In the latter case, the token is marked as being
+** a compound token.
+**
+** An expression of the form ID or ID.ID refers to a column in a table.
+** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
+** the integer cursor number of a VDBE cursor pointing to that table and
+** Expr.iColumn is the column number for the specific column. If the
+** expression is used as a result in an aggregate SELECT, then the
+** value is also stored in the Expr.iAgg column in the aggregate so that
+** it can be accessed after all aggregates are computed.
+**
+** If the expression is a function, the Expr.iTable is an integer code
+** representing which function. If the expression is an unbound variable
+** marker (a question mark character '?' in the original SQL) then the
+** Expr.iTable holds the index number for that variable.
+**
+** The Expr.pSelect field points to a SELECT statement. The SELECT might
+** be the right operand of an IN operator. Or, if a scalar SELECT appears
+** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
+** operand.
+*/
+struct Expr {
+ u8 op; /* Operation performed by this node */
+ u8 dataType; /* Either SQLITE_SO_TEXT or SQLITE_SO_NUM */
+ u8 iDb; /* Database referenced by this expression */
+ u8 flags; /* Various flags. See below */
+ Expr *pLeft, *pRight; /* Left and right subnodes */
+ ExprList *pList; /* A list of expressions used as function arguments
+ ** or in "<expr> IN (<expr-list)" */
+ Token token; /* An operand token */
+ Token span; /* Complete text of the expression */
+ int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the
+ ** iColumn-th field of the iTable-th table. */
+ int iAgg; /* When op==TK_COLUMN and pParse->useAgg==TRUE, pull
+ ** result from the iAgg-th element of the aggregator */
+ Select *pSelect; /* When the expression is a sub-select. Also the
+ ** right side of "<expr> IN (<select>)" */
+};
+
+/*
+** The following are the meanings of bits in the Expr.flags field.
+*/
+#define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */
+
+/*
+** These macros can be used to test, set, or clear bits in the
+** Expr.flags field.
+*/
+#define ExprHasProperty(E,P) (((E)->flags&(P))==(P))
+#define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0)
+#define ExprSetProperty(E,P) (E)->flags|=(P)
+#define ExprClearProperty(E,P) (E)->flags&=~(P)
+
+/*
+** A list of expressions. Each expression may optionally have a
+** name. An expr/name combination can be used in several ways, such
+** as the list of "expr AS ID" fields following a "SELECT" or in the
+** list of "ID = expr" items in an UPDATE. A list of expressions can
+** also be used as the argument to a function, in which case the a.zName
+** field is not used.
+*/
+struct ExprList {
+ int nExpr; /* Number of expressions on the list */
+ int nAlloc; /* Number of entries allocated below */
+ struct ExprList_item {
+ Expr *pExpr; /* The list of expressions */
+ char *zName; /* Token associated with this expression */
+ u8 sortOrder; /* 1 for DESC or 0 for ASC */
+ u8 isAgg; /* True if this is an aggregate like count(*) */
+ u8 done; /* A flag to indicate when processing is finished */
+ } *a; /* One entry for each expression */
+};
+
+/*
+** An instance of this structure can hold a simple list of identifiers,
+** such as the list "a,b,c" in the following statements:
+**
+** INSERT INTO t(a,b,c) VALUES ...;
+** CREATE INDEX idx ON t(a,b,c);
+** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
+**
+** The IdList.a.idx field is used when the IdList represents the list of
+** column names after a table name in an INSERT statement. In the statement
+**
+** INSERT INTO t(a,b,c) ...
+**
+** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
+*/
+struct IdList {
+ int nId; /* Number of identifiers on the list */
+ int nAlloc; /* Number of entries allocated for a[] below */
+ struct IdList_item {
+ char *zName; /* Name of the identifier */
+ int idx; /* Index in some Table.aCol[] of a column named zName */
+ } *a;
+};
+
+/*
+** The following structure describes the FROM clause of a SELECT statement.
+** Each table or subquery in the FROM clause is a separate element of
+** the SrcList.a[] array.
+**
+** With the addition of multiple database support, the following structure
+** can also be used to describe a particular table such as the table that
+** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL,
+** such a table must be a simple name: ID. But in SQLite, the table can
+** now be identified by a database name, a dot, then the table name: ID.ID.
+*/
+struct SrcList {
+ u16 nSrc; /* Number of tables or subqueries in the FROM clause */
+ u16 nAlloc; /* Number of entries allocated in a[] below */
+ struct SrcList_item {
+ char *zDatabase; /* Name of database holding this table */
+ char *zName; /* Name of the table */
+ char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
+ Table *pTab; /* An SQL table corresponding to zName */
+ Select *pSelect; /* A SELECT statement used in place of a table name */
+ int jointype; /* Type of join between this table and the next */
+ int iCursor; /* The VDBE cursor number used to access this table */
+ Expr *pOn; /* The ON clause of a join */
+ IdList *pUsing; /* The USING clause of a join */
+ } a[1]; /* One entry for each identifier on the list */
+};
+
+/*
+** Permitted values of the SrcList.a.jointype field
+*/
+#define JT_INNER 0x0001 /* Any kind of inner or cross join */
+#define JT_NATURAL 0x0002 /* True for a "natural" join */
+#define JT_LEFT 0x0004 /* Left outer join */
+#define JT_RIGHT 0x0008 /* Right outer join */
+#define JT_OUTER 0x0010 /* The "OUTER" keyword is present */
+#define JT_ERROR 0x0020 /* unknown or unsupported join type */
+
+/*
+** For each nested loop in a WHERE clause implementation, the WhereInfo
+** structure contains a single instance of this structure. This structure
+** is intended to be private the the where.c module and should not be
+** access or modified by other modules.
+*/
+struct WhereLevel {
+ int iMem; /* Memory cell used by this level */
+ Index *pIdx; /* Index used */
+ int iCur; /* Cursor number used for this index */
+ int score; /* How well this indexed scored */
+ int brk; /* Jump here to break out of the loop */
+ int cont; /* Jump here to continue with the next loop cycle */
+ int op, p1, p2; /* Opcode used to terminate the loop */
+ int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */
+ int top; /* First instruction of interior of the loop */
+ int inOp, inP1, inP2;/* Opcode used to implement an IN operator */
+ int bRev; /* Do the scan in the reverse direction */
+};
+
+/*
+** The WHERE clause processing routine has two halves. The
+** first part does the start of the WHERE loop and the second
+** half does the tail of the WHERE loop. An instance of
+** this structure is returned by the first half and passed
+** into the second half to give some continuity.
+*/
+struct WhereInfo {
+ Parse *pParse;
+ SrcList *pTabList; /* List of tables in the join */
+ int iContinue; /* Jump here to continue with next record */
+ int iBreak; /* Jump here to break out of the loop */
+ int nLevel; /* Number of nested loop */
+ int savedNTab; /* Value of pParse->nTab before WhereBegin() */
+ int peakNTab; /* Value of pParse->nTab after WhereBegin() */
+ WhereLevel a[1]; /* Information about each nest loop in the WHERE */
+};
+
+/*
+** An instance of the following structure contains all information
+** needed to generate code for a single SELECT statement.
+**
+** The zSelect field is used when the Select structure must be persistent.
+** Normally, the expression tree points to tokens in the original input
+** string that encodes the select. But if the Select structure must live
+** longer than its input string (for example when it is used to describe
+** a VIEW) we have to make a copy of the input string so that the nodes
+** of the expression tree will have something to point to. zSelect is used
+** to hold that copy.
+**
+** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0.
+** If there is a LIMIT clause, the parser sets nLimit to the value of the
+** limit and nOffset to the value of the offset (or 0 if there is not
+** offset). But later on, nLimit and nOffset become the memory locations
+** in the VDBE that record the limit and offset counters.
+*/
+struct Select {
+ ExprList *pEList; /* The fields of the result */
+ u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
+ u8 isDistinct; /* True if the DISTINCT keyword is present */
+ SrcList *pSrc; /* The FROM clause */
+ Expr *pWhere; /* The WHERE clause */
+ ExprList *pGroupBy; /* The GROUP BY clause */
+ Expr *pHaving; /* The HAVING clause */
+ ExprList *pOrderBy; /* The ORDER BY clause */
+ Select *pPrior; /* Prior select in a compound select statement */
+ int nLimit, nOffset; /* LIMIT and OFFSET values. -1 means not used */
+ int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */
+ char *zSelect; /* Complete text of the SELECT command */
+};
+
+/*
+** The results of a select can be distributed in several ways.
+*/
+#define SRT_Callback 1 /* Invoke a callback with each row of result */
+#define SRT_Mem 2 /* Store result in a memory cell */
+#define SRT_Set 3 /* Store result as unique keys in a table */
+#define SRT_Union 5 /* Store result as keys in a table */
+#define SRT_Except 6 /* Remove result from a UNION table */
+#define SRT_Table 7 /* Store result as data with a unique key */
+#define SRT_TempTable 8 /* Store result in a trasient table */
+#define SRT_Discard 9 /* Do not save the results anywhere */
+#define SRT_Sorter 10 /* Store results in the sorter */
+#define SRT_Subroutine 11 /* Call a subroutine to handle results */
+
+/*
+** When a SELECT uses aggregate functions (like "count(*)" or "avg(f1)")
+** we have to do some additional analysis of expressions. An instance
+** of the following structure holds information about a single subexpression
+** somewhere in the SELECT statement. An array of these structures holds
+** all the information we need to generate code for aggregate
+** expressions.
+**
+** Note that when analyzing a SELECT containing aggregates, both
+** non-aggregate field variables and aggregate functions are stored
+** in the AggExpr array of the Parser structure.
+**
+** The pExpr field points to an expression that is part of either the
+** field list, the GROUP BY clause, the HAVING clause or the ORDER BY
+** clause. The expression will be freed when those clauses are cleaned
+** up. Do not try to delete the expression attached to AggExpr.pExpr.
+**
+** If AggExpr.pExpr==0, that means the expression is "count(*)".
+*/
+struct AggExpr {
+ int isAgg; /* if TRUE contains an aggregate function */
+ Expr *pExpr; /* The expression */
+ FuncDef *pFunc; /* Information about the aggregate function */
+};
+
+/*
+** An SQL parser context. A copy of this structure is passed through
+** the parser and down into all the parser action routine in order to
+** carry around information that is global to the entire parse.
+*/
+struct Parse {
+ sqlite *db; /* The main database structure */
+ int rc; /* Return code from execution */
+ char *zErrMsg; /* An error message */
+ Token sErrToken; /* The token at which the error occurred */
+ Token sFirstToken; /* The first token parsed */
+ Token sLastToken; /* The last token parsed */
+ const char *zTail; /* All SQL text past the last semicolon parsed */
+ Table *pNewTable; /* A table being constructed by CREATE TABLE */
+ Vdbe *pVdbe; /* An engine for executing database bytecode */
+ u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
+ u8 explain; /* True if the EXPLAIN flag is found on the query */
+ u8 nameClash; /* A permanent table name clashes with temp table name */
+ u8 useAgg; /* If true, extract field values from the aggregator
+ ** while generating expressions. Normally false */
+ int nErr; /* Number of errors seen */
+ int nTab; /* Number of previously allocated VDBE cursors */
+ int nMem; /* Number of memory cells used so far */
+ int nSet; /* Number of sets used so far */
+ int nAgg; /* Number of aggregate expressions */
+ int nVar; /* Number of '?' variables seen in the SQL so far */
+ AggExpr *aAgg; /* An array of aggregate expressions */
+ const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
+ Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */
+ TriggerStack *trigStack; /* Trigger actions being coded */
+};
+
+/*
+** An instance of the following structure can be declared on a stack and used
+** to save the Parse.zAuthContext value so that it can be restored later.
+*/
+struct AuthContext {
+ const char *zAuthContext; /* Put saved Parse.zAuthContext here */
+ Parse *pParse; /* The Parse structure */
+};
+
+/*
+** Bitfield flags for P2 value in OP_PutIntKey and OP_Delete
+*/
+#define OPFLAG_NCHANGE 1 /* Set to update db->nChange */
+#define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */
+#define OPFLAG_CSCHANGE 4 /* Set to update db->csChange */
+
+/*
+ * Each trigger present in the database schema is stored as an instance of
+ * struct Trigger.
+ *
+ * Pointers to instances of struct Trigger are stored in two ways.
+ * 1. In the "trigHash" hash table (part of the sqlite* that represents the
+ * database). This allows Trigger structures to be retrieved by name.
+ * 2. All triggers associated with a single table form a linked list, using the
+ * pNext member of struct Trigger. A pointer to the first element of the
+ * linked list is stored as the "pTrigger" member of the associated
+ * struct Table.
+ *
+ * The "step_list" member points to the first element of a linked list
+ * containing the SQL statements specified as the trigger program.
+ */
+struct Trigger {
+ char *name; /* The name of the trigger */
+ char *table; /* The table or view to which the trigger applies */
+ u8 iDb; /* Database containing this trigger */
+ u8 iTabDb; /* Database containing Trigger.table */
+ u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
+ u8 tr_tm; /* One of TK_BEFORE, TK_AFTER */
+ Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */
+ IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
+ the <column-list> is stored here */
+ int foreach; /* One of TK_ROW or TK_STATEMENT */
+ Token nameToken; /* Token containing zName. Use during parsing only */
+
+ TriggerStep *step_list; /* Link list of trigger program steps */
+ Trigger *pNext; /* Next trigger associated with the table */
+};
+
+/*
+ * An instance of struct TriggerStep is used to store a single SQL statement
+ * that is a part of a trigger-program.
+ *
+ * Instances of struct TriggerStep are stored in a singly linked list (linked
+ * using the "pNext" member) referenced by the "step_list" member of the
+ * associated struct Trigger instance. The first element of the linked list is
+ * the first step of the trigger-program.
+ *
+ * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
+ * "SELECT" statement. The meanings of the other members is determined by the
+ * value of "op" as follows:
+ *
+ * (op == TK_INSERT)
+ * orconf -> stores the ON CONFLICT algorithm
+ * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then
+ * this stores a pointer to the SELECT statement. Otherwise NULL.
+ * target -> A token holding the name of the table to insert into.
+ * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
+ * this stores values to be inserted. Otherwise NULL.
+ * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
+ * statement, then this stores the column-names to be
+ * inserted into.
+ *
+ * (op == TK_DELETE)
+ * target -> A token holding the name of the table to delete from.
+ * pWhere -> The WHERE clause of the DELETE statement if one is specified.
+ * Otherwise NULL.
+ *
+ * (op == TK_UPDATE)
+ * target -> A token holding the name of the table to update rows of.
+ * pWhere -> The WHERE clause of the UPDATE statement if one is specified.
+ * Otherwise NULL.
+ * pExprList -> A list of the columns to update and the expressions to update
+ * them to. See sqliteUpdate() documentation of "pChanges"
+ * argument.
+ *
+ */
+struct TriggerStep {
+ int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
+ int orconf; /* OE_Rollback etc. */
+ Trigger *pTrig; /* The trigger that this step is a part of */
+
+ Select *pSelect; /* Valid for SELECT and sometimes
+ INSERT steps (when pExprList == 0) */
+ Token target; /* Valid for DELETE, UPDATE, INSERT steps */
+ Expr *pWhere; /* Valid for DELETE, UPDATE steps */
+ ExprList *pExprList; /* Valid for UPDATE statements and sometimes
+ INSERT steps (when pSelect == 0) */
+ IdList *pIdList; /* Valid for INSERT statements only */
+
+ TriggerStep * pNext; /* Next in the link-list */
+};
+
+/*
+ * An instance of struct TriggerStack stores information required during code
+ * generation of a single trigger program. While the trigger program is being
+ * coded, its associated TriggerStack instance is pointed to by the
+ * "pTriggerStack" member of the Parse structure.
+ *
+ * The pTab member points to the table that triggers are being coded on. The
+ * newIdx member contains the index of the vdbe cursor that points at the temp
+ * table that stores the new.* references. If new.* references are not valid
+ * for the trigger being coded (for example an ON DELETE trigger), then newIdx
+ * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
+ *
+ * The ON CONFLICT policy to be used for the trigger program steps is stored
+ * as the orconf member. If this is OE_Default, then the ON CONFLICT clause
+ * specified for individual triggers steps is used.
+ *
+ * struct TriggerStack has a "pNext" member, to allow linked lists to be
+ * constructed. When coding nested triggers (triggers fired by other triggers)
+ * each nested trigger stores its parent trigger's TriggerStack as the "pNext"
+ * pointer. Once the nested trigger has been coded, the pNext value is restored
+ * to the pTriggerStack member of the Parse stucture and coding of the parent
+ * trigger continues.
+ *
+ * Before a nested trigger is coded, the linked list pointed to by the
+ * pTriggerStack is scanned to ensure that the trigger is not about to be coded
+ * recursively. If this condition is detected, the nested trigger is not coded.
+ */
+struct TriggerStack {
+ Table *pTab; /* Table that triggers are currently being coded on */
+ int newIdx; /* Index of vdbe cursor to "new" temp table */
+ int oldIdx; /* Index of vdbe cursor to "old" temp table */
+ int orconf; /* Current orconf policy */
+ int ignoreJump; /* where to jump to for a RAISE(IGNORE) */
+ Trigger *pTrigger; /* The trigger currently being coded */
+ TriggerStack *pNext; /* Next trigger down on the trigger stack */
+};
+
+/*
+** The following structure contains information used by the sqliteFix...
+** routines as they walk the parse tree to make database references
+** explicit.
+*/
+typedef struct DbFixer DbFixer;
+struct DbFixer {
+ Parse *pParse; /* The parsing context. Error messages written here */
+ const char *zDb; /* Make sure all objects are contained in this database */
+ const char *zType; /* Type of the container - used for error messages */
+ const Token *pName; /* Name of the container - used for error messages */
+};
+
+/*
+ * This global flag is set for performance testing of triggers. When it is set
+ * SQLite will perform the overhead of building new and old trigger references
+ * even when no triggers exist
+ */
+extern int always_code_trigger_setup;
+
+/*
+** Internal function prototypes
+*/
+int sqliteStrICmp(const char *, const char *);
+int sqliteStrNICmp(const char *, const char *, int);
+int sqliteHashNoCase(const char *, int);
+int sqliteIsNumber(const char*);
+int sqliteCompare(const char *, const char *);
+int sqliteSortCompare(const char *, const char *);
+void sqliteRealToSortable(double r, char *);
+#ifdef MEMORY_DEBUG
+ void *sqliteMalloc_(int,int,char*,int);
+ void sqliteFree_(void*,char*,int);
+ void *sqliteRealloc_(void*,int,char*,int);
+ char *sqliteStrDup_(const char*,char*,int);
+ char *sqliteStrNDup_(const char*, int,char*,int);
+ void sqliteCheckMemory(void*,int);
+#else
+ void *sqliteMalloc(int);
+ void *sqliteMallocRaw(int);
+ void sqliteFree(void*);
+ void *sqliteRealloc(void*,int);
+ char *sqliteStrDup(const char*);
+ char *sqliteStrNDup(const char*, int);
+# define sqliteCheckMemory(a,b)
+#endif
+char *sqliteMPrintf(const char*, ...);
+char *sqliteVMPrintf(const char*, va_list);
+void sqliteSetString(char **, const char *, ...);
+void sqliteSetNString(char **, ...);
+void sqliteErrorMsg(Parse*, const char*, ...);
+void sqliteDequote(char*);
+int sqliteKeywordCode(const char*, int);
+int sqliteRunParser(Parse*, const char*, char **);
+void sqliteExec(Parse*);
+Expr *sqliteExpr(int, Expr*, Expr*, Token*);
+void sqliteExprSpan(Expr*,Token*,Token*);
+Expr *sqliteExprFunction(ExprList*, Token*);
+void sqliteExprDelete(Expr*);
+ExprList *sqliteExprListAppend(ExprList*,Expr*,Token*);
+void sqliteExprListDelete(ExprList*);
+int sqliteInit(sqlite*, char**);
+void sqlitePragma(Parse*,Token*,Token*,int);
+void sqliteResetInternalSchema(sqlite*, int);
+void sqliteBeginParse(Parse*,int);
+void sqliteRollbackInternalChanges(sqlite*);
+void sqliteCommitInternalChanges(sqlite*);
+Table *sqliteResultSetOfSelect(Parse*,char*,Select*);
+void sqliteOpenMasterTable(Vdbe *v, int);
+void sqliteStartTable(Parse*,Token*,Token*,int,int);
+void sqliteAddColumn(Parse*,Token*);
+void sqliteAddNotNull(Parse*, int);
+void sqliteAddPrimaryKey(Parse*, IdList*, int);
+void sqliteAddColumnType(Parse*,Token*,Token*);
+void sqliteAddDefaultValue(Parse*,Token*,int);
+int sqliteCollateType(const char*, int);
+void sqliteAddCollateType(Parse*, int);
+void sqliteEndTable(Parse*,Token*,Select*);
+void sqliteCreateView(Parse*,Token*,Token*,Select*,int);
+int sqliteViewGetColumnNames(Parse*,Table*);
+void sqliteDropTable(Parse*, Token*, int);
+void sqliteDeleteTable(sqlite*, Table*);
+void sqliteInsert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
+IdList *sqliteIdListAppend(IdList*, Token*);
+int sqliteIdListIndex(IdList*,const char*);
+SrcList *sqliteSrcListAppend(SrcList*, Token*, Token*);
+void sqliteSrcListAddAlias(SrcList*, Token*);
+void sqliteSrcListAssignCursors(Parse*, SrcList*);
+void sqliteIdListDelete(IdList*);
+void sqliteSrcListDelete(SrcList*);
+void sqliteCreateIndex(Parse*,Token*,SrcList*,IdList*,int,Token*,Token*);
+void sqliteDropIndex(Parse*, SrcList*);
+void sqliteAddKeyType(Vdbe*, ExprList*);
+void sqliteAddIdxKeyType(Vdbe*, Index*);
+int sqliteSelect(Parse*, Select*, int, int, Select*, int, int*);
+Select *sqliteSelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*,
+ int,int,int);
+void sqliteSelectDelete(Select*);
+void sqliteSelectUnbind(Select*);
+Table *sqliteSrcListLookup(Parse*, SrcList*);
+int sqliteIsReadOnly(Parse*, Table*, int);
+void sqliteDeleteFrom(Parse*, SrcList*, Expr*);
+void sqliteUpdate(Parse*, SrcList*, ExprList*, Expr*, int);
+WhereInfo *sqliteWhereBegin(Parse*, SrcList*, Expr*, int, ExprList**);
+void sqliteWhereEnd(WhereInfo*);
+void sqliteExprCode(Parse*, Expr*);
+int sqliteExprCodeExprList(Parse*, ExprList*, int);
+void sqliteExprIfTrue(Parse*, Expr*, int, int);
+void sqliteExprIfFalse(Parse*, Expr*, int, int);
+Table *sqliteFindTable(sqlite*,const char*, const char*);
+Table *sqliteLocateTable(Parse*,const char*, const char*);
+Index *sqliteFindIndex(sqlite*,const char*, const char*);
+void sqliteUnlinkAndDeleteIndex(sqlite*,Index*);
+void sqliteCopy(Parse*, SrcList*, Token*, Token*, int);
+void sqliteVacuum(Parse*, Token*);
+int sqliteRunVacuum(char**, sqlite*);
+int sqliteGlobCompare(const unsigned char*,const unsigned char*);
+int sqliteLikeCompare(const unsigned char*,const unsigned char*);
+char *sqliteTableNameFromToken(Token*);
+int sqliteExprCheck(Parse*, Expr*, int, int*);
+int sqliteExprType(Expr*);
+int sqliteExprCompare(Expr*, Expr*);
+int sqliteFuncId(Token*);
+int sqliteExprResolveIds(Parse*, SrcList*, ExprList*, Expr*);
+int sqliteExprAnalyzeAggregates(Parse*, Expr*);
+Vdbe *sqliteGetVdbe(Parse*);
+void sqliteRandomness(int, void*);
+void sqliteRollbackAll(sqlite*);
+void sqliteCodeVerifySchema(Parse*, int);
+void sqliteBeginTransaction(Parse*, int);
+void sqliteCommitTransaction(Parse*);
+void sqliteRollbackTransaction(Parse*);
+int sqliteExprIsConstant(Expr*);
+int sqliteExprIsInteger(Expr*, int*);
+int sqliteIsRowid(const char*);
+void sqliteGenerateRowDelete(sqlite*, Vdbe*, Table*, int, int);
+void sqliteGenerateRowIndexDelete(sqlite*, Vdbe*, Table*, int, char*);
+void sqliteGenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int);
+void sqliteCompleteInsertion(Parse*, Table*, int, char*, int, int, int);
+int sqliteOpenTableAndIndices(Parse*, Table*, int);
+void sqliteBeginWriteOperation(Parse*, int, int);
+void sqliteEndWriteOperation(Parse*);
+Expr *sqliteExprDup(Expr*);
+void sqliteTokenCopy(Token*, Token*);
+ExprList *sqliteExprListDup(ExprList*);
+SrcList *sqliteSrcListDup(SrcList*);
+IdList *sqliteIdListDup(IdList*);
+Select *sqliteSelectDup(Select*);
+FuncDef *sqliteFindFunction(sqlite*,const char*,int,int,int);
+void sqliteRegisterBuiltinFunctions(sqlite*);
+void sqliteRegisterDateTimeFunctions(sqlite*);
+int sqliteSafetyOn(sqlite*);
+int sqliteSafetyOff(sqlite*);
+int sqliteSafetyCheck(sqlite*);
+void sqliteChangeCookie(sqlite*, Vdbe*);
+void sqliteBeginTrigger(Parse*, Token*,int,int,IdList*,SrcList*,int,Expr*,int);
+void sqliteFinishTrigger(Parse*, TriggerStep*, Token*);
+void sqliteDropTrigger(Parse*, SrcList*);
+void sqliteDropTriggerPtr(Parse*, Trigger*, int);
+int sqliteTriggersExist(Parse* , Trigger* , int , int , int, ExprList*);
+int sqliteCodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int,
+ int, int);
+void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
+void sqliteDeleteTriggerStep(TriggerStep*);
+TriggerStep *sqliteTriggerSelectStep(Select*);
+TriggerStep *sqliteTriggerInsertStep(Token*, IdList*, ExprList*, Select*, int);
+TriggerStep *sqliteTriggerUpdateStep(Token*, ExprList*, Expr*, int);
+TriggerStep *sqliteTriggerDeleteStep(Token*, Expr*);
+void sqliteDeleteTrigger(Trigger*);
+int sqliteJoinType(Parse*, Token*, Token*, Token*);
+void sqliteCreateForeignKey(Parse*, IdList*, Token*, IdList*, int);
+void sqliteDeferForeignKey(Parse*, int);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ void sqliteAuthRead(Parse*,Expr*,SrcList*);
+ int sqliteAuthCheck(Parse*,int, const char*, const char*, const char*);
+ void sqliteAuthContextPush(Parse*, AuthContext*, const char*);
+ void sqliteAuthContextPop(AuthContext*);
+#else
+# define sqliteAuthRead(a,b,c)
+# define sqliteAuthCheck(a,b,c,d,e) SQLITE_OK
+# define sqliteAuthContextPush(a,b,c)
+# define sqliteAuthContextPop(a) ((void)(a))
+#endif
+void sqliteAttach(Parse*, Token*, Token*, Token*);
+void sqliteDetach(Parse*, Token*);
+int sqliteBtreeFactory(const sqlite *db, const char *zFilename,
+ int mode, int nPg, Btree **ppBtree);
+int sqliteFixInit(DbFixer*, Parse*, int, const char*, const Token*);
+int sqliteFixSrcList(DbFixer*, SrcList*);
+int sqliteFixSelect(DbFixer*, Select*);
+int sqliteFixExpr(DbFixer*, Expr*);
+int sqliteFixExprList(DbFixer*, ExprList*);
+int sqliteFixTriggerStep(DbFixer*, TriggerStep*);
+double sqliteAtoF(const char *z, const char **);
+char *sqlite_snprintf(int,char*,const char*,...);
+int sqliteFitsIn32Bits(const char *);
diff --git a/src/3rdparty/sqlite/table.c b/src/3rdparty/sqlite/table.c
new file mode 100644
index 0000000..8169dbd
--- /dev/null
+++ b/src/3rdparty/sqlite/table.c
@@ -0,0 +1,203 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the sqlite_get_table() and sqlite_free_table()
+** interface routines. These are just wrappers around the main
+** interface routine of sqlite_exec().
+**
+** These routines are in a separate files so that they will not be linked
+** if they are not used.
+*/
+#include <stdlib.h>
+#include <string.h>
+#include "sqliteInt.h"
+
+/*
+** This structure is used to pass data from sqlite_get_table() through
+** to the callback function is uses to build the result.
+*/
+typedef struct TabResult {
+ char **azResult;
+ char *zErrMsg;
+ int nResult;
+ int nAlloc;
+ int nRow;
+ int nColumn;
+ int nData;
+ int rc;
+} TabResult;
+
+/*
+** This routine is called once for each row in the result table. Its job
+** is to fill in the TabResult structure appropriately, allocating new
+** memory as necessary.
+*/
+static int sqlite_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
+ TabResult *p = (TabResult*)pArg;
+ int need;
+ int i;
+ char *z;
+
+ /* Make sure there is enough space in p->azResult to hold everything
+ ** we need to remember from this invocation of the callback.
+ */
+ if( p->nRow==0 && argv!=0 ){
+ need = nCol*2;
+ }else{
+ need = nCol;
+ }
+ if( p->nData + need >= p->nAlloc ){
+ char **azNew;
+ p->nAlloc = p->nAlloc*2 + need + 1;
+ azNew = realloc( p->azResult, sizeof(char*)*p->nAlloc );
+ if( azNew==0 ){
+ p->rc = SQLITE_NOMEM;
+ return 1;
+ }
+ p->azResult = azNew;
+ }
+
+ /* If this is the first row, then generate an extra row containing
+ ** the names of all columns.
+ */
+ if( p->nRow==0 ){
+ p->nColumn = nCol;
+ for(i=0; i<nCol; i++){
+ if( colv[i]==0 ){
+ z = 0;
+ }else{
+ z = malloc( strlen(colv[i])+1 );
+ if( z==0 ){
+ p->rc = SQLITE_NOMEM;
+ return 1;
+ }
+ strcpy(z, colv[i]);
+ }
+ p->azResult[p->nData++] = z;
+ }
+ }else if( p->nColumn!=nCol ){
+ sqliteSetString(&p->zErrMsg,
+ "sqlite_get_table() called with two or more incompatible queries",
+ (char*)0);
+ p->rc = SQLITE_ERROR;
+ return 1;
+ }
+
+ /* Copy over the row data
+ */
+ if( argv!=0 ){
+ for(i=0; i<nCol; i++){
+ if( argv[i]==0 ){
+ z = 0;
+ }else{
+ z = malloc( strlen(argv[i])+1 );
+ if( z==0 ){
+ p->rc = SQLITE_NOMEM;
+ return 1;
+ }
+ strcpy(z, argv[i]);
+ }
+ p->azResult[p->nData++] = z;
+ }
+ p->nRow++;
+ }
+ return 0;
+}
+
+/*
+** Query the database. But instead of invoking a callback for each row,
+** malloc() for space to hold the result and return the entire results
+** at the conclusion of the call.
+**
+** The result that is written to ***pazResult is held in memory obtained
+** from malloc(). But the caller cannot free this memory directly.
+** Instead, the entire table should be passed to sqlite_free_table() when
+** the calling procedure is finished using it.
+*/
+int sqlite_get_table(
+ sqlite *db, /* The database on which the SQL executes */
+ const char *zSql, /* The SQL to be executed */
+ char ***pazResult, /* Write the result table here */
+ int *pnRow, /* Write the number of rows in the result here */
+ int *pnColumn, /* Write the number of columns of result here */
+ char **pzErrMsg /* Write error messages here */
+){
+ int rc;
+ TabResult res;
+ if( pazResult==0 ){ return SQLITE_ERROR; }
+ *pazResult = 0;
+ if( pnColumn ) *pnColumn = 0;
+ if( pnRow ) *pnRow = 0;
+ res.zErrMsg = 0;
+ res.nResult = 0;
+ res.nRow = 0;
+ res.nColumn = 0;
+ res.nData = 1;
+ res.nAlloc = 20;
+ res.rc = SQLITE_OK;
+ res.azResult = malloc( sizeof(char*)*res.nAlloc );
+ if( res.azResult==0 ){
+ return SQLITE_NOMEM;
+ }
+ res.azResult[0] = 0;
+ rc = sqlite_exec(db, zSql, sqlite_get_table_cb, &res, pzErrMsg);
+ if( res.azResult ){
+ res.azResult[0] = (char*)res.nData;
+ }
+ if( rc==SQLITE_ABORT ){
+ sqlite_free_table(&res.azResult[1]);
+ if( res.zErrMsg ){
+ if( pzErrMsg ){
+ free(*pzErrMsg);
+ *pzErrMsg = res.zErrMsg;
+ sqliteStrRealloc(pzErrMsg);
+ }else{
+ sqliteFree(res.zErrMsg);
+ }
+ }
+ return res.rc;
+ }
+ sqliteFree(res.zErrMsg);
+ if( rc!=SQLITE_OK ){
+ sqlite_free_table(&res.azResult[1]);
+ return rc;
+ }
+ if( res.nAlloc>res.nData ){
+ char **azNew;
+ azNew = realloc( res.azResult, sizeof(char*)*(res.nData+1) );
+ if( azNew==0 ){
+ sqlite_free_table(&res.azResult[1]);
+ return SQLITE_NOMEM;
+ }
+ res.nAlloc = res.nData+1;
+ res.azResult = azNew;
+ }
+ *pazResult = &res.azResult[1];
+ if( pnColumn ) *pnColumn = res.nColumn;
+ if( pnRow ) *pnRow = res.nRow;
+ return rc;
+}
+
+/*
+** This routine frees the space the sqlite_get_table() malloced.
+*/
+void sqlite_free_table(
+ char **azResult /* Result returned from from sqlite_get_table() */
+){
+ if( azResult ){
+ int i, n;
+ azResult--;
+ if( azResult==0 ) return;
+ n = (int)azResult[0];
+ for(i=1; i<n; i++){ if( azResult[i] ) free(azResult[i]); }
+ free(azResult);
+ }
+}
diff --git a/src/3rdparty/sqlite/tokenize.c b/src/3rdparty/sqlite/tokenize.c
new file mode 100644
index 0000000..d0a34fe
--- /dev/null
+++ b/src/3rdparty/sqlite/tokenize.c
@@ -0,0 +1,679 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** An tokenizer for SQL
+**
+** This file contains C code that splits an SQL input string up into
+** individual tokens and sends those tokens one-by-one over to the
+** parser for analysis.
+**
+** $Id: tokenize.c,v 1.68 2004/02/14 23:59:58 drh Exp $
+*/
+#include "sqliteInt.h"
+#include "os.h"
+#include <ctype.h>
+#include <stdlib.h>
+
+/*
+** All the keywords of the SQL language are stored as in a hash
+** table composed of instances of the following structure.
+*/
+typedef struct Keyword Keyword;
+struct Keyword {
+ char *zName; /* The keyword name */
+ u8 tokenType; /* Token value for this keyword */
+ u8 len; /* Length of this keyword */
+ u8 iNext; /* Index in aKeywordTable[] of next with same hash */
+};
+
+/*
+** These are the keywords
+*/
+static Keyword aKeywordTable[] = {
+ { "ABORT", TK_ABORT, },
+ { "AFTER", TK_AFTER, },
+ { "ALL", TK_ALL, },
+ { "AND", TK_AND, },
+ { "AS", TK_AS, },
+ { "ASC", TK_ASC, },
+ { "ATTACH", TK_ATTACH, },
+ { "BEFORE", TK_BEFORE, },
+ { "BEGIN", TK_BEGIN, },
+ { "BETWEEN", TK_BETWEEN, },
+ { "BY", TK_BY, },
+ { "CASCADE", TK_CASCADE, },
+ { "CASE", TK_CASE, },
+ { "CHECK", TK_CHECK, },
+ { "CLUSTER", TK_CLUSTER, },
+ { "COLLATE", TK_COLLATE, },
+ { "COMMIT", TK_COMMIT, },
+ { "CONFLICT", TK_CONFLICT, },
+ { "CONSTRAINT", TK_CONSTRAINT, },
+ { "COPY", TK_COPY, },
+ { "CREATE", TK_CREATE, },
+ { "CROSS", TK_JOIN_KW, },
+ { "DATABASE", TK_DATABASE, },
+ { "DEFAULT", TK_DEFAULT, },
+ { "DEFERRED", TK_DEFERRED, },
+ { "DEFERRABLE", TK_DEFERRABLE, },
+ { "DELETE", TK_DELETE, },
+ { "DELIMITERS", TK_DELIMITERS, },
+ { "DESC", TK_DESC, },
+ { "DETACH", TK_DETACH, },
+ { "DISTINCT", TK_DISTINCT, },
+ { "DROP", TK_DROP, },
+ { "END", TK_END, },
+ { "EACH", TK_EACH, },
+ { "ELSE", TK_ELSE, },
+ { "EXCEPT", TK_EXCEPT, },
+ { "EXPLAIN", TK_EXPLAIN, },
+ { "FAIL", TK_FAIL, },
+ { "FOR", TK_FOR, },
+ { "FOREIGN", TK_FOREIGN, },
+ { "FROM", TK_FROM, },
+ { "FULL", TK_JOIN_KW, },
+ { "GLOB", TK_GLOB, },
+ { "GROUP", TK_GROUP, },
+ { "HAVING", TK_HAVING, },
+ { "IGNORE", TK_IGNORE, },
+ { "IMMEDIATE", TK_IMMEDIATE, },
+ { "IN", TK_IN, },
+ { "INDEX", TK_INDEX, },
+ { "INITIALLY", TK_INITIALLY, },
+ { "INNER", TK_JOIN_KW, },
+ { "INSERT", TK_INSERT, },
+ { "INSTEAD", TK_INSTEAD, },
+ { "INTERSECT", TK_INTERSECT, },
+ { "INTO", TK_INTO, },
+ { "IS", TK_IS, },
+ { "ISNULL", TK_ISNULL, },
+ { "JOIN", TK_JOIN, },
+ { "KEY", TK_KEY, },
+ { "LEFT", TK_JOIN_KW, },
+ { "LIKE", TK_LIKE, },
+ { "LIMIT", TK_LIMIT, },
+ { "MATCH", TK_MATCH, },
+ { "NATURAL", TK_JOIN_KW, },
+ { "NOT", TK_NOT, },
+ { "NOTNULL", TK_NOTNULL, },
+ { "NULL", TK_NULL, },
+ { "OF", TK_OF, },
+ { "OFFSET", TK_OFFSET, },
+ { "ON", TK_ON, },
+ { "OR", TK_OR, },
+ { "ORDER", TK_ORDER, },
+ { "OUTER", TK_JOIN_KW, },
+ { "PRAGMA", TK_PRAGMA, },
+ { "PRIMARY", TK_PRIMARY, },
+ { "RAISE", TK_RAISE, },
+ { "REFERENCES", TK_REFERENCES, },
+ { "REPLACE", TK_REPLACE, },
+ { "RESTRICT", TK_RESTRICT, },
+ { "RIGHT", TK_JOIN_KW, },
+ { "ROLLBACK", TK_ROLLBACK, },
+ { "ROW", TK_ROW, },
+ { "SELECT", TK_SELECT, },
+ { "SET", TK_SET, },
+ { "STATEMENT", TK_STATEMENT, },
+ { "TABLE", TK_TABLE, },
+ { "TEMP", TK_TEMP, },
+ { "TEMPORARY", TK_TEMP, },
+ { "THEN", TK_THEN, },
+ { "TRANSACTION", TK_TRANSACTION, },
+ { "TRIGGER", TK_TRIGGER, },
+ { "UNION", TK_UNION, },
+ { "UNIQUE", TK_UNIQUE, },
+ { "UPDATE", TK_UPDATE, },
+ { "USING", TK_USING, },
+ { "VACUUM", TK_VACUUM, },
+ { "VALUES", TK_VALUES, },
+ { "VIEW", TK_VIEW, },
+ { "WHEN", TK_WHEN, },
+ { "WHERE", TK_WHERE, },
+};
+
+/*
+** This is the hash table
+*/
+#define KEY_HASH_SIZE 101
+static u8 aiHashTable[KEY_HASH_SIZE];
+
+
+/*
+** This function looks up an identifier to determine if it is a
+** keyword. If it is a keyword, the token code of that keyword is
+** returned. If the input is not a keyword, TK_ID is returned.
+*/
+int sqliteKeywordCode(const char *z, int n){
+ int h, i;
+ Keyword *p;
+ static char needInit = 1;
+ if( needInit ){
+ /* Initialize the keyword hash table */
+ sqliteOsEnterMutex();
+ if( needInit ){
+ int nk;
+ nk = sizeof(aKeywordTable)/sizeof(aKeywordTable[0]);
+ for(i=0; i<nk; i++){
+ aKeywordTable[i].len = strlen(aKeywordTable[i].zName);
+ h = sqliteHashNoCase(aKeywordTable[i].zName, aKeywordTable[i].len);
+ h %= KEY_HASH_SIZE;
+ aKeywordTable[i].iNext = aiHashTable[h];
+ aiHashTable[h] = i+1;
+ }
+ needInit = 0;
+ }
+ sqliteOsLeaveMutex();
+ }
+ h = sqliteHashNoCase(z, n) % KEY_HASH_SIZE;
+ for(i=aiHashTable[h]; i; i=p->iNext){
+ p = &aKeywordTable[i-1];
+ if( p->len==n && sqliteStrNICmp(p->zName, z, n)==0 ){
+ return p->tokenType;
+ }
+ }
+ return TK_ID;
+}
+
+
+/*
+** If X is a character that can be used in an identifier and
+** X&0x80==0 then isIdChar[X] will be 1. If X&0x80==0x80 then
+** X is always an identifier character. (Hence all UTF-8
+** characters can be part of an identifier). isIdChar[X] will
+** be 0 for every character in the lower 128 ASCII characters
+** that cannot be used as part of an identifier.
+**
+** In this implementation, an identifier can be a string of
+** alphabetic characters, digits, and "_" plus any character
+** with the high-order bit set. The latter rule means that
+** any sequence of UTF-8 characters or characters taken from
+** an extended ISO8859 character set can form an identifier.
+*/
+static const char isIdChar[] = {
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
+};
+
+
+/*
+** Return the length of the token that begins at z[0].
+** Store the token type in *tokenType before returning.
+*/
+static int sqliteGetToken(const unsigned char *z, int *tokenType){
+ int i;
+ switch( *z ){
+ case ' ': case '\t': case '\n': case '\f': case '\r': {
+ for(i=1; isspace(z[i]); i++){}
+ *tokenType = TK_SPACE;
+ return i;
+ }
+ case '-': {
+ if( z[1]=='-' ){
+ for(i=2; z[i] && z[i]!='\n'; i++){}
+ *tokenType = TK_COMMENT;
+ return i;
+ }
+ *tokenType = TK_MINUS;
+ return 1;
+ }
+ case '(': {
+ *tokenType = TK_LP;
+ return 1;
+ }
+ case ')': {
+ *tokenType = TK_RP;
+ return 1;
+ }
+ case ';': {
+ *tokenType = TK_SEMI;
+ return 1;
+ }
+ case '+': {
+ *tokenType = TK_PLUS;
+ return 1;
+ }
+ case '*': {
+ *tokenType = TK_STAR;
+ return 1;
+ }
+ case '/': {
+ if( z[1]!='*' || z[2]==0 ){
+ *tokenType = TK_SLASH;
+ return 1;
+ }
+ for(i=3; z[i] && (z[i]!='/' || z[i-1]!='*'); i++){}
+ if( z[i] ) i++;
+ *tokenType = TK_COMMENT;
+ return i;
+ }
+ case '%': {
+ *tokenType = TK_REM;
+ return 1;
+ }
+ case '=': {
+ *tokenType = TK_EQ;
+ return 1 + (z[1]=='=');
+ }
+ case '<': {
+ if( z[1]=='=' ){
+ *tokenType = TK_LE;
+ return 2;
+ }else if( z[1]=='>' ){
+ *tokenType = TK_NE;
+ return 2;
+ }else if( z[1]=='<' ){
+ *tokenType = TK_LSHIFT;
+ return 2;
+ }else{
+ *tokenType = TK_LT;
+ return 1;
+ }
+ }
+ case '>': {
+ if( z[1]=='=' ){
+ *tokenType = TK_GE;
+ return 2;
+ }else if( z[1]=='>' ){
+ *tokenType = TK_RSHIFT;
+ return 2;
+ }else{
+ *tokenType = TK_GT;
+ return 1;
+ }
+ }
+ case '!': {
+ if( z[1]!='=' ){
+ *tokenType = TK_ILLEGAL;
+ return 2;
+ }else{
+ *tokenType = TK_NE;
+ return 2;
+ }
+ }
+ case '|': {
+ if( z[1]!='|' ){
+ *tokenType = TK_BITOR;
+ return 1;
+ }else{
+ *tokenType = TK_CONCAT;
+ return 2;
+ }
+ }
+ case ',': {
+ *tokenType = TK_COMMA;
+ return 1;
+ }
+ case '&': {
+ *tokenType = TK_BITAND;
+ return 1;
+ }
+ case '~': {
+ *tokenType = TK_BITNOT;
+ return 1;
+ }
+ case '\'': case '"': {
+ int delim = z[0];
+ for(i=1; z[i]; i++){
+ if( z[i]==delim ){
+ if( z[i+1]==delim ){
+ i++;
+ }else{
+ break;
+ }
+ }
+ }
+ if( z[i] ) i++;
+ *tokenType = TK_STRING;
+ return i;
+ }
+ case '.': {
+ *tokenType = TK_DOT;
+ return 1;
+ }
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9': {
+ *tokenType = TK_INTEGER;
+ for(i=1; isdigit(z[i]); i++){}
+ if( z[i]=='.' && isdigit(z[i+1]) ){
+ i += 2;
+ while( isdigit(z[i]) ){ i++; }
+ *tokenType = TK_FLOAT;
+ }
+ if( (z[i]=='e' || z[i]=='E') &&
+ ( isdigit(z[i+1])
+ || ((z[i+1]=='+' || z[i+1]=='-') && isdigit(z[i+2]))
+ )
+ ){
+ i += 2;
+ while( isdigit(z[i]) ){ i++; }
+ *tokenType = TK_FLOAT;
+ }
+ return i;
+ }
+ case '[': {
+ for(i=1; z[i] && z[i-1]!=']'; i++){}
+ *tokenType = TK_ID;
+ return i;
+ }
+ case '?': {
+ *tokenType = TK_VARIABLE;
+ return 1;
+ }
+ default: {
+ if( (*z&0x80)==0 && !isIdChar[*z] ){
+ break;
+ }
+ for(i=1; (z[i]&0x80)!=0 || isIdChar[z[i]]; i++){}
+ *tokenType = sqliteKeywordCode((char*)z, i);
+ return i;
+ }
+ }
+ *tokenType = TK_ILLEGAL;
+ return 1;
+}
+
+/*
+** Run the parser on the given SQL string. The parser structure is
+** passed in. An SQLITE_ status code is returned. If an error occurs
+** and pzErrMsg!=NULL then an error message might be written into
+** memory obtained from malloc() and *pzErrMsg made to point to that
+** error message. Or maybe not.
+*/
+int sqliteRunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
+ int nErr = 0;
+ int i;
+ void *pEngine;
+ int tokenType;
+ int lastTokenParsed = -1;
+ sqlite *db = pParse->db;
+ extern void *sqliteParserAlloc(void*(*)(int));
+ extern void sqliteParserFree(void*, void(*)(void*));
+ extern int sqliteParser(void*, int, Token, Parse*);
+
+ db->flags &= ~SQLITE_Interrupt;
+ pParse->rc = SQLITE_OK;
+ i = 0;
+ pEngine = sqliteParserAlloc((void*(*)(int))malloc);
+ if( pEngine==0 ){
+ sqliteSetString(pzErrMsg, "out of memory", (char*)0);
+ return 1;
+ }
+ pParse->sLastToken.dyn = 0;
+ pParse->zTail = zSql;
+ while( sqlite_malloc_failed==0 && zSql[i]!=0 ){
+ assert( i>=0 );
+ pParse->sLastToken.z = &zSql[i];
+ assert( pParse->sLastToken.dyn==0 );
+ pParse->sLastToken.n = sqliteGetToken((unsigned char*)&zSql[i], &tokenType);
+ i += pParse->sLastToken.n;
+ switch( tokenType ){
+ case TK_SPACE:
+ case TK_COMMENT: {
+ if( (db->flags & SQLITE_Interrupt)!=0 ){
+ pParse->rc = SQLITE_INTERRUPT;
+ sqliteSetString(pzErrMsg, "interrupt", (char*)0);
+ goto abort_parse;
+ }
+ break;
+ }
+ case TK_ILLEGAL: {
+ sqliteSetNString(pzErrMsg, "unrecognized token: \"", -1,
+ pParse->sLastToken.z, pParse->sLastToken.n, "\"", 1, 0);
+ nErr++;
+ goto abort_parse;
+ }
+ case TK_SEMI: {
+ pParse->zTail = &zSql[i];
+ /* Fall thru into the default case */
+ }
+ default: {
+ sqliteParser(pEngine, tokenType, pParse->sLastToken, pParse);
+ lastTokenParsed = tokenType;
+ if( pParse->rc!=SQLITE_OK ){
+ goto abort_parse;
+ }
+ break;
+ }
+ }
+ }
+abort_parse:
+ if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
+ if( lastTokenParsed!=TK_SEMI ){
+ sqliteParser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
+ pParse->zTail = &zSql[i];
+ }
+ sqliteParser(pEngine, 0, pParse->sLastToken, pParse);
+ }
+ sqliteParserFree(pEngine, free);
+ if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
+ sqliteSetString(&pParse->zErrMsg, sqlite_error_string(pParse->rc),
+ (char*)0);
+ }
+ if( pParse->zErrMsg ){
+ if( pzErrMsg && *pzErrMsg==0 ){
+ *pzErrMsg = pParse->zErrMsg;
+ }else{
+ sqliteFree(pParse->zErrMsg);
+ }
+ pParse->zErrMsg = 0;
+ if( !nErr ) nErr++;
+ }
+ if( pParse->pVdbe && pParse->nErr>0 ){
+ sqliteVdbeDelete(pParse->pVdbe);
+ pParse->pVdbe = 0;
+ }
+ if( pParse->pNewTable ){
+ sqliteDeleteTable(pParse->db, pParse->pNewTable);
+ pParse->pNewTable = 0;
+ }
+ if( pParse->pNewTrigger ){
+ sqliteDeleteTrigger(pParse->pNewTrigger);
+ pParse->pNewTrigger = 0;
+ }
+ if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
+ pParse->rc = SQLITE_ERROR;
+ }
+ return nErr;
+}
+
+/*
+** Token types used by the sqlite_complete() routine. See the header
+** comments on that procedure for additional information.
+*/
+#define tkEXPLAIN 0
+#define tkCREATE 1
+#define tkTEMP 2
+#define tkTRIGGER 3
+#define tkEND 4
+#define tkSEMI 5
+#define tkWS 6
+#define tkOTHER 7
+
+/*
+** Return TRUE if the given SQL string ends in a semicolon.
+**
+** Special handling is require for CREATE TRIGGER statements.
+** Whenever the CREATE TRIGGER keywords are seen, the statement
+** must end with ";END;".
+**
+** This implementation uses a state machine with 7 states:
+**
+** (0) START At the beginning or end of an SQL statement. This routine
+** returns 1 if it ends in the START state and 0 if it ends
+** in any other state.
+**
+** (1) EXPLAIN The keyword EXPLAIN has been seen at the beginning of
+** a statement.
+**
+** (2) CREATE The keyword CREATE has been seen at the beginning of a
+** statement, possibly preceeded by EXPLAIN and/or followed by
+** TEMP or TEMPORARY
+**
+** (3) NORMAL We are in the middle of statement which ends with a single
+** semicolon.
+**
+** (4) TRIGGER We are in the middle of a trigger definition that must be
+** ended by a semicolon, the keyword END, and another semicolon.
+**
+** (5) SEMI We've seen the first semicolon in the ";END;" that occurs at
+** the end of a trigger definition.
+**
+** (6) END We've seen the ";END" of the ";END;" that occurs at the end
+** of a trigger difinition.
+**
+** Transitions between states above are determined by tokens extracted
+** from the input. The following tokens are significant:
+**
+** (0) tkEXPLAIN The "explain" keyword.
+** (1) tkCREATE The "create" keyword.
+** (2) tkTEMP The "temp" or "temporary" keyword.
+** (3) tkTRIGGER The "trigger" keyword.
+** (4) tkEND The "end" keyword.
+** (5) tkSEMI A semicolon.
+** (6) tkWS Whitespace
+** (7) tkOTHER Any other SQL token.
+**
+** Whitespace never causes a state transition and is always ignored.
+*/
+int sqlite_complete(const char *zSql){
+ u8 state = 0; /* Current state, using numbers defined in header comment */
+ u8 token; /* Value of the next token */
+
+ /* The following matrix defines the transition from one state to another
+ ** according to what token is seen. trans[state][token] returns the
+ ** next state.
+ */
+ static const u8 trans[7][8] = {
+ /* Token: */
+ /* State: ** EXPLAIN CREATE TEMP TRIGGER END SEMI WS OTHER */
+ /* 0 START: */ { 1, 2, 3, 3, 3, 0, 0, 3, },
+ /* 1 EXPLAIN: */ { 3, 2, 3, 3, 3, 0, 1, 3, },
+ /* 2 CREATE: */ { 3, 3, 2, 4, 3, 0, 2, 3, },
+ /* 3 NORMAL: */ { 3, 3, 3, 3, 3, 0, 3, 3, },
+ /* 4 TRIGGER: */ { 4, 4, 4, 4, 4, 5, 4, 4, },
+ /* 5 SEMI: */ { 4, 4, 4, 4, 6, 5, 5, 4, },
+ /* 6 END: */ { 4, 4, 4, 4, 4, 0, 6, 4, },
+ };
+
+ while( *zSql ){
+ switch( *zSql ){
+ case ';': { /* A semicolon */
+ token = tkSEMI;
+ break;
+ }
+ case ' ':
+ case '\r':
+ case '\t':
+ case '\n':
+ case '\f': { /* White space is ignored */
+ token = tkWS;
+ break;
+ }
+ case '/': { /* C-style comments */
+ if( zSql[1]!='*' ){
+ token = tkOTHER;
+ break;
+ }
+ zSql += 2;
+ while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
+ if( zSql[0]==0 ) return 0;
+ zSql++;
+ token = tkWS;
+ break;
+ }
+ case '-': { /* SQL-style comments from "--" to end of line */
+ if( zSql[1]!='-' ){
+ token = tkOTHER;
+ break;
+ }
+ while( *zSql && *zSql!='\n' ){ zSql++; }
+ if( *zSql==0 ) return state==0;
+ token = tkWS;
+ break;
+ }
+ case '[': { /* Microsoft-style identifiers in [...] */
+ zSql++;
+ while( *zSql && *zSql!=']' ){ zSql++; }
+ if( *zSql==0 ) return 0;
+ token = tkOTHER;
+ break;
+ }
+ case '"': /* single- and double-quoted strings */
+ case '\'': {
+ int c = *zSql;
+ zSql++;
+ while( *zSql && *zSql!=c ){ zSql++; }
+ if( *zSql==0 ) return 0;
+ token = tkOTHER;
+ break;
+ }
+ default: {
+ if( isIdChar[(u8)*zSql] ){
+ /* Keywords and unquoted identifiers */
+ int nId;
+ for(nId=1; isIdChar[(u8)zSql[nId]]; nId++){}
+ switch( *zSql ){
+ case 'c': case 'C': {
+ if( nId==6 && sqliteStrNICmp(zSql, "create", 6)==0 ){
+ token = tkCREATE;
+ }else{
+ token = tkOTHER;
+ }
+ break;
+ }
+ case 't': case 'T': {
+ if( nId==7 && sqliteStrNICmp(zSql, "trigger", 7)==0 ){
+ token = tkTRIGGER;
+ }else if( nId==4 && sqliteStrNICmp(zSql, "temp", 4)==0 ){
+ token = tkTEMP;
+ }else if( nId==9 && sqliteStrNICmp(zSql, "temporary", 9)==0 ){
+ token = tkTEMP;
+ }else{
+ token = tkOTHER;
+ }
+ break;
+ }
+ case 'e': case 'E': {
+ if( nId==3 && sqliteStrNICmp(zSql, "end", 3)==0 ){
+ token = tkEND;
+ }else if( nId==7 && sqliteStrNICmp(zSql, "explain", 7)==0 ){
+ token = tkEXPLAIN;
+ }else{
+ token = tkOTHER;
+ }
+ break;
+ }
+ default: {
+ token = tkOTHER;
+ break;
+ }
+ }
+ zSql += nId-1;
+ }else{
+ /* Operators and special symbols */
+ token = tkOTHER;
+ }
+ break;
+ }
+ }
+ state = trans[state][token];
+ zSql++;
+ }
+ return state==0;
+}
diff --git a/src/3rdparty/sqlite/trigger.c b/src/3rdparty/sqlite/trigger.c
new file mode 100644
index 0000000..8442bb5
--- /dev/null
+++ b/src/3rdparty/sqlite/trigger.c
@@ -0,0 +1,764 @@
+/*
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+*
+*/
+#include "sqliteInt.h"
+
+/*
+** Delete a linked list of TriggerStep structures.
+*/
+void sqliteDeleteTriggerStep(TriggerStep *pTriggerStep){
+ while( pTriggerStep ){
+ TriggerStep * pTmp = pTriggerStep;
+ pTriggerStep = pTriggerStep->pNext;
+
+ if( pTmp->target.dyn ) sqliteFree((char*)pTmp->target.z);
+ sqliteExprDelete(pTmp->pWhere);
+ sqliteExprListDelete(pTmp->pExprList);
+ sqliteSelectDelete(pTmp->pSelect);
+ sqliteIdListDelete(pTmp->pIdList);
+
+ sqliteFree(pTmp);
+ }
+}
+
+/*
+** This is called by the parser when it sees a CREATE TRIGGER statement
+** up to the point of the BEGIN before the trigger actions. A Trigger
+** structure is generated based on the information available and stored
+** in pParse->pNewTrigger. After the trigger actions have been parsed, the
+** sqliteFinishTrigger() function is called to complete the trigger
+** construction process.
+*/
+void sqliteBeginTrigger(
+ Parse *pParse, /* The parse context of the CREATE TRIGGER statement */
+ Token *pName, /* The name of the trigger */
+ int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */
+ int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */
+ IdList *pColumns, /* column list if this is an UPDATE OF trigger */
+ SrcList *pTableName,/* The name of the table/view the trigger applies to */
+ int foreach, /* One of TK_ROW or TK_STATEMENT */
+ Expr *pWhen, /* WHEN clause */
+ int isTemp /* True if the TEMPORARY keyword is present */
+){
+ Trigger *nt;
+ Table *tab;
+ char *zName = 0; /* Name of the trigger */
+ sqlite *db = pParse->db;
+ int iDb; /* When database to store the trigger in */
+ DbFixer sFix;
+
+ /* Check that:
+ ** 1. the trigger name does not already exist.
+ ** 2. the table (or view) does exist in the same database as the trigger.
+ ** 3. that we are not trying to create a trigger on the sqlite_master table
+ ** 4. That we are not trying to create an INSTEAD OF trigger on a table.
+ ** 5. That we are not trying to create a BEFORE or AFTER trigger on a view.
+ */
+ if( sqlite_malloc_failed ) goto trigger_cleanup;
+ assert( pTableName->nSrc==1 );
+ if( db->init.busy
+ && sqliteFixInit(&sFix, pParse, db->init.iDb, "trigger", pName)
+ && sqliteFixSrcList(&sFix, pTableName)
+ ){
+ goto trigger_cleanup;
+ }
+ tab = sqliteSrcListLookup(pParse, pTableName);
+ if( !tab ){
+ goto trigger_cleanup;
+ }
+ iDb = isTemp ? 1 : tab->iDb;
+ if( iDb>=2 && !db->init.busy ){
+ sqliteErrorMsg(pParse, "triggers may not be added to auxiliary "
+ "database %s", db->aDb[tab->iDb].zName);
+ goto trigger_cleanup;
+ }
+
+ zName = sqliteStrNDup(pName->z, pName->n);
+ sqliteDequote(zName);
+ if( sqliteHashFind(&(db->aDb[iDb].trigHash), zName,pName->n+1) ){
+ sqliteErrorMsg(pParse, "trigger %T already exists", pName);
+ goto trigger_cleanup;
+ }
+ if( sqliteStrNICmp(tab->zName, "sqlite_", 7)==0 ){
+ sqliteErrorMsg(pParse, "cannot create trigger on system table");
+ pParse->nErr++;
+ goto trigger_cleanup;
+ }
+ if( tab->pSelect && tr_tm != TK_INSTEAD ){
+ sqliteErrorMsg(pParse, "cannot create %s trigger on view: %S",
+ (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName, 0);
+ goto trigger_cleanup;
+ }
+ if( !tab->pSelect && tr_tm == TK_INSTEAD ){
+ sqliteErrorMsg(pParse, "cannot create INSTEAD OF"
+ " trigger on table: %S", pTableName, 0);
+ goto trigger_cleanup;
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int code = SQLITE_CREATE_TRIGGER;
+ const char *zDb = db->aDb[tab->iDb].zName;
+ const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb;
+ if( tab->iDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
+ if( sqliteAuthCheck(pParse, code, zName, tab->zName, zDbTrig) ){
+ goto trigger_cleanup;
+ }
+ if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(tab->iDb), 0, zDb)){
+ goto trigger_cleanup;
+ }
+ }
+#endif
+
+ /* INSTEAD OF triggers can only appear on views and BEGIN triggers
+ ** cannot appear on views. So we might as well translate every
+ ** INSTEAD OF trigger into a BEFORE trigger. It simplifies code
+ ** elsewhere.
+ */
+ if (tr_tm == TK_INSTEAD){
+ tr_tm = TK_BEFORE;
+ }
+
+ /* Build the Trigger object */
+ nt = (Trigger*)sqliteMalloc(sizeof(Trigger));
+ if( nt==0 ) goto trigger_cleanup;
+ nt->name = zName;
+ zName = 0;
+ nt->table = sqliteStrDup(pTableName->a[0].zName);
+ if( sqlite_malloc_failed ) goto trigger_cleanup;
+ nt->iDb = iDb;
+ nt->iTabDb = tab->iDb;
+ nt->op = op;
+ nt->tr_tm = tr_tm;
+ nt->pWhen = sqliteExprDup(pWhen);
+ nt->pColumns = sqliteIdListDup(pColumns);
+ nt->foreach = foreach;
+ sqliteTokenCopy(&nt->nameToken,pName);
+ assert( pParse->pNewTrigger==0 );
+ pParse->pNewTrigger = nt;
+
+trigger_cleanup:
+ sqliteFree(zName);
+ sqliteSrcListDelete(pTableName);
+ sqliteIdListDelete(pColumns);
+ sqliteExprDelete(pWhen);
+}
+
+/*
+** This routine is called after all of the trigger actions have been parsed
+** in order to complete the process of building the trigger.
+*/
+void sqliteFinishTrigger(
+ Parse *pParse, /* Parser context */
+ TriggerStep *pStepList, /* The triggered program */
+ Token *pAll /* Token that describes the complete CREATE TRIGGER */
+){
+ Trigger *nt = 0; /* The trigger whose construction is finishing up */
+ sqlite *db = pParse->db; /* The database */
+ DbFixer sFix;
+
+ if( pParse->nErr || pParse->pNewTrigger==0 ) goto triggerfinish_cleanup;
+ nt = pParse->pNewTrigger;
+ pParse->pNewTrigger = 0;
+ nt->step_list = pStepList;
+ while( pStepList ){
+ pStepList->pTrig = nt;
+ pStepList = pStepList->pNext;
+ }
+ if( sqliteFixInit(&sFix, pParse, nt->iDb, "trigger", &nt->nameToken)
+ && sqliteFixTriggerStep(&sFix, nt->step_list) ){
+ goto triggerfinish_cleanup;
+ }
+
+ /* if we are not initializing, and this trigger is not on a TEMP table,
+ ** build the sqlite_master entry
+ */
+ if( !db->init.busy ){
+ static VdbeOpList insertTrig[] = {
+ { OP_NewRecno, 0, 0, 0 },
+ { OP_String, 0, 0, "trigger" },
+ { OP_String, 0, 0, 0 }, /* 2: trigger name */
+ { OP_String, 0, 0, 0 }, /* 3: table name */
+ { OP_Integer, 0, 0, 0 },
+ { OP_String, 0, 0, 0 }, /* 5: SQL */
+ { OP_MakeRecord, 5, 0, 0 },
+ { OP_PutIntKey, 0, 0, 0 },
+ };
+ int addr;
+ Vdbe *v;
+
+ /* Make an entry in the sqlite_master table */
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) goto triggerfinish_cleanup;
+ sqliteBeginWriteOperation(pParse, 0, 0);
+ sqliteOpenMasterTable(v, nt->iDb);
+ addr = sqliteVdbeAddOpList(v, ArraySize(insertTrig), insertTrig);
+ sqliteVdbeChangeP3(v, addr+2, nt->name, 0);
+ sqliteVdbeChangeP3(v, addr+3, nt->table, 0);
+ sqliteVdbeChangeP3(v, addr+5, pAll->z, pAll->n);
+ if( nt->iDb==0 ){
+ sqliteChangeCookie(db, v);
+ }
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
+ sqliteEndWriteOperation(pParse);
+ }
+
+ if( !pParse->explain ){
+ Table *pTab;
+ sqliteHashInsert(&db->aDb[nt->iDb].trigHash,
+ nt->name, strlen(nt->name)+1, nt);
+ pTab = sqliteLocateTable(pParse, nt->table, db->aDb[nt->iTabDb].zName);
+ assert( pTab!=0 );
+ nt->pNext = pTab->pTrigger;
+ pTab->pTrigger = nt;
+ nt = 0;
+ }
+
+triggerfinish_cleanup:
+ sqliteDeleteTrigger(nt);
+ sqliteDeleteTrigger(pParse->pNewTrigger);
+ pParse->pNewTrigger = 0;
+ sqliteDeleteTriggerStep(pStepList);
+}
+
+/*
+** Make a copy of all components of the given trigger step. This has
+** the effect of copying all Expr.token.z values into memory obtained
+** from sqliteMalloc(). As initially created, the Expr.token.z values
+** all point to the input string that was fed to the parser. But that
+** string is ephemeral - it will go away as soon as the sqlite_exec()
+** call that started the parser exits. This routine makes a persistent
+** copy of all the Expr.token.z strings so that the TriggerStep structure
+** will be valid even after the sqlite_exec() call returns.
+*/
+static void sqlitePersistTriggerStep(TriggerStep *p){
+ if( p->target.z ){
+ p->target.z = sqliteStrNDup(p->target.z, p->target.n);
+ p->target.dyn = 1;
+ }
+ if( p->pSelect ){
+ Select *pNew = sqliteSelectDup(p->pSelect);
+ sqliteSelectDelete(p->pSelect);
+ p->pSelect = pNew;
+ }
+ if( p->pWhere ){
+ Expr *pNew = sqliteExprDup(p->pWhere);
+ sqliteExprDelete(p->pWhere);
+ p->pWhere = pNew;
+ }
+ if( p->pExprList ){
+ ExprList *pNew = sqliteExprListDup(p->pExprList);
+ sqliteExprListDelete(p->pExprList);
+ p->pExprList = pNew;
+ }
+ if( p->pIdList ){
+ IdList *pNew = sqliteIdListDup(p->pIdList);
+ sqliteIdListDelete(p->pIdList);
+ p->pIdList = pNew;
+ }
+}
+
+/*
+** Turn a SELECT statement (that the pSelect parameter points to) into
+** a trigger step. Return a pointer to a TriggerStep structure.
+**
+** The parser calls this routine when it finds a SELECT statement in
+** body of a TRIGGER.
+*/
+TriggerStep *sqliteTriggerSelectStep(Select *pSelect){
+ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
+ if( pTriggerStep==0 ) return 0;
+
+ pTriggerStep->op = TK_SELECT;
+ pTriggerStep->pSelect = pSelect;
+ pTriggerStep->orconf = OE_Default;
+ sqlitePersistTriggerStep(pTriggerStep);
+
+ return pTriggerStep;
+}
+
+/*
+** Build a trigger step out of an INSERT statement. Return a pointer
+** to the new trigger step.
+**
+** The parser calls this routine when it sees an INSERT inside the
+** body of a trigger.
+*/
+TriggerStep *sqliteTriggerInsertStep(
+ Token *pTableName, /* Name of the table into which we insert */
+ IdList *pColumn, /* List of columns in pTableName to insert into */
+ ExprList *pEList, /* The VALUE clause: a list of values to be inserted */
+ Select *pSelect, /* A SELECT statement that supplies values */
+ int orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
+){
+ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
+ if( pTriggerStep==0 ) return 0;
+
+ assert(pEList == 0 || pSelect == 0);
+ assert(pEList != 0 || pSelect != 0);
+
+ pTriggerStep->op = TK_INSERT;
+ pTriggerStep->pSelect = pSelect;
+ pTriggerStep->target = *pTableName;
+ pTriggerStep->pIdList = pColumn;
+ pTriggerStep->pExprList = pEList;
+ pTriggerStep->orconf = orconf;
+ sqlitePersistTriggerStep(pTriggerStep);
+
+ return pTriggerStep;
+}
+
+/*
+** Construct a trigger step that implements an UPDATE statement and return
+** a pointer to that trigger step. The parser calls this routine when it
+** sees an UPDATE statement inside the body of a CREATE TRIGGER.
+*/
+TriggerStep *sqliteTriggerUpdateStep(
+ Token *pTableName, /* Name of the table to be updated */
+ ExprList *pEList, /* The SET clause: list of column and new values */
+ Expr *pWhere, /* The WHERE clause */
+ int orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
+){
+ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
+ if( pTriggerStep==0 ) return 0;
+
+ pTriggerStep->op = TK_UPDATE;
+ pTriggerStep->target = *pTableName;
+ pTriggerStep->pExprList = pEList;
+ pTriggerStep->pWhere = pWhere;
+ pTriggerStep->orconf = orconf;
+ sqlitePersistTriggerStep(pTriggerStep);
+
+ return pTriggerStep;
+}
+
+/*
+** Construct a trigger step that implements a DELETE statement and return
+** a pointer to that trigger step. The parser calls this routine when it
+** sees a DELETE statement inside the body of a CREATE TRIGGER.
+*/
+TriggerStep *sqliteTriggerDeleteStep(Token *pTableName, Expr *pWhere){
+ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
+ if( pTriggerStep==0 ) return 0;
+
+ pTriggerStep->op = TK_DELETE;
+ pTriggerStep->target = *pTableName;
+ pTriggerStep->pWhere = pWhere;
+ pTriggerStep->orconf = OE_Default;
+ sqlitePersistTriggerStep(pTriggerStep);
+
+ return pTriggerStep;
+}
+
+/*
+** Recursively delete a Trigger structure
+*/
+void sqliteDeleteTrigger(Trigger *pTrigger){
+ if( pTrigger==0 ) return;
+ sqliteDeleteTriggerStep(pTrigger->step_list);
+ sqliteFree(pTrigger->name);
+ sqliteFree(pTrigger->table);
+ sqliteExprDelete(pTrigger->pWhen);
+ sqliteIdListDelete(pTrigger->pColumns);
+ if( pTrigger->nameToken.dyn ) sqliteFree((char*)pTrigger->nameToken.z);
+ sqliteFree(pTrigger);
+}
+
+/*
+ * This function is called to drop a trigger from the database schema.
+ *
+ * This may be called directly from the parser and therefore identifies
+ * the trigger by name. The sqliteDropTriggerPtr() routine does the
+ * same job as this routine except it take a spointer to the trigger
+ * instead of the trigger name.
+ *
+ * Note that this function does not delete the trigger entirely. Instead it
+ * removes it from the internal schema and places it in the trigDrop hash
+ * table. This is so that the trigger can be restored into the database schema
+ * if the transaction is rolled back.
+ */
+void sqliteDropTrigger(Parse *pParse, SrcList *pName){
+ Trigger *pTrigger;
+ int i;
+ const char *zDb;
+ const char *zName;
+ int nName;
+ sqlite *db = pParse->db;
+
+ if( sqlite_malloc_failed ) goto drop_trigger_cleanup;
+ assert( pName->nSrc==1 );
+ zDb = pName->a[0].zDatabase;
+ zName = pName->a[0].zName;
+ nName = strlen(zName);
+ for(i=0; i<db->nDb; i++){
+ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
+ if( zDb && sqliteStrICmp(db->aDb[j].zName, zDb) ) continue;
+ pTrigger = sqliteHashFind(&(db->aDb[j].trigHash), zName, nName+1);
+ if( pTrigger ) break;
+ }
+ if( !pTrigger ){
+ sqliteErrorMsg(pParse, "no such trigger: %S", pName, 0);
+ goto drop_trigger_cleanup;
+ }
+ sqliteDropTriggerPtr(pParse, pTrigger, 0);
+
+drop_trigger_cleanup:
+ sqliteSrcListDelete(pName);
+}
+
+/*
+** Drop a trigger given a pointer to that trigger. If nested is false,
+** then also generate code to remove the trigger from the SQLITE_MASTER
+** table.
+*/
+void sqliteDropTriggerPtr(Parse *pParse, Trigger *pTrigger, int nested){
+ Table *pTable;
+ Vdbe *v;
+ sqlite *db = pParse->db;
+
+ assert( pTrigger->iDb<db->nDb );
+ if( pTrigger->iDb>=2 ){
+ sqliteErrorMsg(pParse, "triggers may not be removed from "
+ "auxiliary database %s", db->aDb[pTrigger->iDb].zName);
+ return;
+ }
+ pTable = sqliteFindTable(db, pTrigger->table,db->aDb[pTrigger->iTabDb].zName);
+ assert(pTable);
+ assert( pTable->iDb==pTrigger->iDb || pTrigger->iDb==1 );
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int code = SQLITE_DROP_TRIGGER;
+ const char *zDb = db->aDb[pTrigger->iDb].zName;
+ const char *zTab = SCHEMA_TABLE(pTrigger->iDb);
+ if( pTrigger->iDb ) code = SQLITE_DROP_TEMP_TRIGGER;
+ if( sqliteAuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) ||
+ sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
+ return;
+ }
+ }
+#endif
+
+ /* Generate code to destroy the database record of the trigger.
+ */
+ if( pTable!=0 && !nested && (v = sqliteGetVdbe(pParse))!=0 ){
+ int base;
+ static VdbeOpList dropTrigger[] = {
+ { OP_Rewind, 0, ADDR(9), 0},
+ { OP_String, 0, 0, 0}, /* 1 */
+ { OP_Column, 0, 1, 0},
+ { OP_Ne, 0, ADDR(8), 0},
+ { OP_String, 0, 0, "trigger"},
+ { OP_Column, 0, 0, 0},
+ { OP_Ne, 0, ADDR(8), 0},
+ { OP_Delete, 0, 0, 0},
+ { OP_Next, 0, ADDR(1), 0}, /* 8 */
+ };
+
+ sqliteBeginWriteOperation(pParse, 0, 0);
+ sqliteOpenMasterTable(v, pTrigger->iDb);
+ base = sqliteVdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger);
+ sqliteVdbeChangeP3(v, base+1, pTrigger->name, 0);
+ if( pTrigger->iDb==0 ){
+ sqliteChangeCookie(db, v);
+ }
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
+ sqliteEndWriteOperation(pParse);
+ }
+
+ /*
+ * If this is not an "explain", then delete the trigger structure.
+ */
+ if( !pParse->explain ){
+ const char *zName = pTrigger->name;
+ int nName = strlen(zName);
+ if( pTable->pTrigger == pTrigger ){
+ pTable->pTrigger = pTrigger->pNext;
+ }else{
+ Trigger *cc = pTable->pTrigger;
+ while( cc ){
+ if( cc->pNext == pTrigger ){
+ cc->pNext = cc->pNext->pNext;
+ break;
+ }
+ cc = cc->pNext;
+ }
+ assert(cc);
+ }
+ sqliteHashInsert(&(db->aDb[pTrigger->iDb].trigHash), zName, nName+1, 0);
+ sqliteDeleteTrigger(pTrigger);
+ }
+}
+
+/*
+** pEList is the SET clause of an UPDATE statement. Each entry
+** in pEList is of the format <id>=<expr>. If any of the entries
+** in pEList have an <id> which matches an identifier in pIdList,
+** then return TRUE. If pIdList==NULL, then it is considered a
+** wildcard that matches anything. Likewise if pEList==NULL then
+** it matches anything so always return true. Return false only
+** if there is no match.
+*/
+static int checkColumnOverLap(IdList *pIdList, ExprList *pEList){
+ int e;
+ if( !pIdList || !pEList ) return 1;
+ for(e=0; e<pEList->nExpr; e++){
+ if( sqliteIdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1;
+ }
+ return 0;
+}
+
+/* A global variable that is TRUE if we should always set up temp tables for
+ * for triggers, even if there are no triggers to code. This is used to test
+ * how much overhead the triggers algorithm is causing.
+ *
+ * This flag can be set or cleared using the "trigger_overhead_test" pragma.
+ * The pragma is not documented since it is not really part of the interface
+ * to SQLite, just the test procedure.
+*/
+int always_code_trigger_setup = 0;
+
+/*
+ * Returns true if a trigger matching op, tr_tm and foreach that is NOT already
+ * on the Parse objects trigger-stack (to prevent recursive trigger firing) is
+ * found in the list specified as pTrigger.
+ */
+int sqliteTriggersExist(
+ Parse *pParse, /* Used to check for recursive triggers */
+ Trigger *pTrigger, /* A list of triggers associated with a table */
+ int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
+ int tr_tm, /* one of TK_BEFORE, TK_AFTER */
+ int foreach, /* one of TK_ROW or TK_STATEMENT */
+ ExprList *pChanges /* Columns that change in an UPDATE statement */
+){
+ Trigger * pTriggerCursor;
+
+ if( always_code_trigger_setup ){
+ return 1;
+ }
+
+ pTriggerCursor = pTrigger;
+ while( pTriggerCursor ){
+ if( pTriggerCursor->op == op &&
+ pTriggerCursor->tr_tm == tr_tm &&
+ pTriggerCursor->foreach == foreach &&
+ checkColumnOverLap(pTriggerCursor->pColumns, pChanges) ){
+ TriggerStack * ss;
+ ss = pParse->trigStack;
+ while( ss && ss->pTrigger != pTrigger ){
+ ss = ss->pNext;
+ }
+ if( !ss )return 1;
+ }
+ pTriggerCursor = pTriggerCursor->pNext;
+ }
+
+ return 0;
+}
+
+/*
+** Convert the pStep->target token into a SrcList and return a pointer
+** to that SrcList.
+**
+** This routine adds a specific database name, if needed, to the target when
+** forming the SrcList. This prevents a trigger in one database from
+** referring to a target in another database. An exception is when the
+** trigger is in TEMP in which case it can refer to any other database it
+** wants.
+*/
+static SrcList *targetSrcList(
+ Parse *pParse, /* The parsing context */
+ TriggerStep *pStep /* The trigger containing the target token */
+){
+ Token sDb; /* Dummy database name token */
+ int iDb; /* Index of the database to use */
+ SrcList *pSrc; /* SrcList to be returned */
+
+ iDb = pStep->pTrig->iDb;
+ if( iDb==0 || iDb>=2 ){
+ assert( iDb<pParse->db->nDb );
+ sDb.z = pParse->db->aDb[iDb].zName;
+ sDb.n = strlen(sDb.z);
+ pSrc = sqliteSrcListAppend(0, &sDb, &pStep->target);
+ } else {
+ pSrc = sqliteSrcListAppend(0, &pStep->target, 0);
+ }
+ return pSrc;
+}
+
+/*
+** Generate VDBE code for zero or more statements inside the body of a
+** trigger.
+*/
+static int codeTriggerProgram(
+ Parse *pParse, /* The parser context */
+ TriggerStep *pStepList, /* List of statements inside the trigger body */
+ int orconfin /* Conflict algorithm. (OE_Abort, etc) */
+){
+ TriggerStep * pTriggerStep = pStepList;
+ int orconf;
+
+ while( pTriggerStep ){
+ int saveNTab = pParse->nTab;
+
+ orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin;
+ pParse->trigStack->orconf = orconf;
+ switch( pTriggerStep->op ){
+ case TK_SELECT: {
+ Select * ss = sqliteSelectDup(pTriggerStep->pSelect);
+ assert(ss);
+ assert(ss->pSrc);
+ sqliteSelect(pParse, ss, SRT_Discard, 0, 0, 0, 0);
+ sqliteSelectDelete(ss);
+ break;
+ }
+ case TK_UPDATE: {
+ SrcList *pSrc;
+ pSrc = targetSrcList(pParse, pTriggerStep);
+ sqliteVdbeAddOp(pParse->pVdbe, OP_ListPush, 0, 0);
+ sqliteUpdate(pParse, pSrc,
+ sqliteExprListDup(pTriggerStep->pExprList),
+ sqliteExprDup(pTriggerStep->pWhere), orconf);
+ sqliteVdbeAddOp(pParse->pVdbe, OP_ListPop, 0, 0);
+ break;
+ }
+ case TK_INSERT: {
+ SrcList *pSrc;
+ pSrc = targetSrcList(pParse, pTriggerStep);
+ sqliteInsert(pParse, pSrc,
+ sqliteExprListDup(pTriggerStep->pExprList),
+ sqliteSelectDup(pTriggerStep->pSelect),
+ sqliteIdListDup(pTriggerStep->pIdList), orconf);
+ break;
+ }
+ case TK_DELETE: {
+ SrcList *pSrc;
+ sqliteVdbeAddOp(pParse->pVdbe, OP_ListPush, 0, 0);
+ pSrc = targetSrcList(pParse, pTriggerStep);
+ sqliteDeleteFrom(pParse, pSrc, sqliteExprDup(pTriggerStep->pWhere));
+ sqliteVdbeAddOp(pParse->pVdbe, OP_ListPop, 0, 0);
+ break;
+ }
+ default:
+ assert(0);
+ }
+ pParse->nTab = saveNTab;
+ pTriggerStep = pTriggerStep->pNext;
+ }
+
+ return 0;
+}
+
+/*
+** This is called to code FOR EACH ROW triggers.
+**
+** When the code that this function generates is executed, the following
+** must be true:
+**
+** 1. No cursors may be open in the main database. (But newIdx and oldIdx
+** can be indices of cursors in temporary tables. See below.)
+**
+** 2. If the triggers being coded are ON INSERT or ON UPDATE triggers, then
+** a temporary vdbe cursor (index newIdx) must be open and pointing at
+** a row containing values to be substituted for new.* expressions in the
+** trigger program(s).
+**
+** 3. If the triggers being coded are ON DELETE or ON UPDATE triggers, then
+** a temporary vdbe cursor (index oldIdx) must be open and pointing at
+** a row containing values to be substituted for old.* expressions in the
+** trigger program(s).
+**
+*/
+int sqliteCodeRowTrigger(
+ Parse *pParse, /* Parse context */
+ int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
+ ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
+ int tr_tm, /* One of TK_BEFORE, TK_AFTER */
+ Table *pTab, /* The table to code triggers from */
+ int newIdx, /* The indice of the "new" row to access */
+ int oldIdx, /* The indice of the "old" row to access */
+ int orconf, /* ON CONFLICT policy */
+ int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */
+){
+ Trigger * pTrigger;
+ TriggerStack * pTriggerStack;
+
+ assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE);
+ assert(tr_tm == TK_BEFORE || tr_tm == TK_AFTER );
+
+ assert(newIdx != -1 || oldIdx != -1);
+
+ pTrigger = pTab->pTrigger;
+ while( pTrigger ){
+ int fire_this = 0;
+
+ /* determine whether we should code this trigger */
+ if( pTrigger->op == op && pTrigger->tr_tm == tr_tm &&
+ pTrigger->foreach == TK_ROW ){
+ fire_this = 1;
+ pTriggerStack = pParse->trigStack;
+ while( pTriggerStack ){
+ if( pTriggerStack->pTrigger == pTrigger ){
+ fire_this = 0;
+ }
+ pTriggerStack = pTriggerStack->pNext;
+ }
+ if( op == TK_UPDATE && pTrigger->pColumns &&
+ !checkColumnOverLap(pTrigger->pColumns, pChanges) ){
+ fire_this = 0;
+ }
+ }
+
+ if( fire_this && (pTriggerStack = sqliteMalloc(sizeof(TriggerStack)))!=0 ){
+ int endTrigger;
+ SrcList dummyTablist;
+ Expr * whenExpr;
+ AuthContext sContext;
+
+ dummyTablist.nSrc = 0;
+
+ /* Push an entry on to the trigger stack */
+ pTriggerStack->pTrigger = pTrigger;
+ pTriggerStack->newIdx = newIdx;
+ pTriggerStack->oldIdx = oldIdx;
+ pTriggerStack->pTab = pTab;
+ pTriggerStack->pNext = pParse->trigStack;
+ pTriggerStack->ignoreJump = ignoreJump;
+ pParse->trigStack = pTriggerStack;
+ sqliteAuthContextPush(pParse, &sContext, pTrigger->name);
+
+ /* code the WHEN clause */
+ endTrigger = sqliteVdbeMakeLabel(pParse->pVdbe);
+ whenExpr = sqliteExprDup(pTrigger->pWhen);
+ if( sqliteExprResolveIds(pParse, &dummyTablist, 0, whenExpr) ){
+ pParse->trigStack = pParse->trigStack->pNext;
+ sqliteFree(pTriggerStack);
+ sqliteExprDelete(whenExpr);
+ return 1;
+ }
+ sqliteExprIfFalse(pParse, whenExpr, endTrigger, 1);
+ sqliteExprDelete(whenExpr);
+
+ sqliteVdbeAddOp(pParse->pVdbe, OP_ContextPush, 0, 0);
+ codeTriggerProgram(pParse, pTrigger->step_list, orconf);
+ sqliteVdbeAddOp(pParse->pVdbe, OP_ContextPop, 0, 0);
+
+ /* Pop the entry off the trigger stack */
+ pParse->trigStack = pParse->trigStack->pNext;
+ sqliteAuthContextPop(&sContext);
+ sqliteFree(pTriggerStack);
+
+ sqliteVdbeResolveLabel(pParse->pVdbe, endTrigger);
+ }
+ pTrigger = pTrigger->pNext;
+ }
+
+ return 0;
+}
diff --git a/src/3rdparty/sqlite/trolltech.patch b/src/3rdparty/sqlite/trolltech.patch
new file mode 100644
index 0000000..cbafffb
--- /dev/null
+++ b/src/3rdparty/sqlite/trolltech.patch
@@ -0,0 +1,39 @@
+diff -du ./config.h /home/harald/troll/qt-3.3/src/3rdparty/sqlite/config.h
+--- ./config.h 2004-03-30 19:13:22.000000000 +0200
++++ /home/harald/troll/qt-3.3/src/3rdparty/sqlite/config.h 2004-01-08 14:29:23.000000000 +0100
+@@ -1 +1,23 @@
+-#define SQLITE_PTR_SZ 4
++#include <qglobal.h>
++#include <qconfig.h>
++
++#ifndef QT_POINTER_SIZE
++# ifdef Q_OS_WIN32
++# define QT_POINTER_SIZE 4
++# elif Q_OS_WIN64
++# define QT_POINTER_SIZE 8
++# else
++# error This platform is unsupported
++# endif
++#endif /* QT_POINTER_SIZE */
++
++#define SQLITE_PTR_SZ QT_POINTER_SIZE
++
++#ifdef UNICODE
++# undef UNICODE
++#endif
++
++#ifdef Q_CC_MSVC
++# pragma warning(disable: 4018)
++# pragma warning(disable: 4761)
++#endif
+diff -du ./os.h /home/harald/troll/qt-3.3/src/3rdparty/sqlite/os.h
+--- ./os.h 2004-03-30 19:13:19.000000000 +0200
++++ /home/harald/troll/qt-3.3/src/3rdparty/sqlite/os.h 2004-01-08 14:29:23.000000000 +0100
+@@ -17,6 +17,7 @@
+ #ifndef _SQLITE_OS_H_
+ #define _SQLITE_OS_H_
+
++#include "config.h"
+ /*
+ ** Helpful hint: To get this to compile on HP/UX, add -D_INCLUDE_POSIX_SOURCE
+ ** to the compiler command line.
diff --git a/src/3rdparty/sqlite/update.c b/src/3rdparty/sqlite/update.c
new file mode 100644
index 0000000..a3d8811
--- /dev/null
+++ b/src/3rdparty/sqlite/update.c
@@ -0,0 +1,452 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle UPDATE statements.
+**
+** $Id: update.c,v 1.70 2004/02/22 20:05:02 drh Exp $
+*/
+#include "sqliteInt.h"
+
+/*
+** Process an UPDATE statement.
+**
+** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
+** \_______/ \________/ \______/ \________________/
+* onError pTabList pChanges pWhere
+*/
+void sqliteUpdate(
+ Parse *pParse, /* The parser context */
+ SrcList *pTabList, /* The table in which we should change things */
+ ExprList *pChanges, /* Things to be changed */
+ Expr *pWhere, /* The WHERE clause. May be null */
+ int onError /* How to handle constraint errors */
+){
+ int i, j; /* Loop counters */
+ Table *pTab; /* The table to be updated */
+ int addr; /* VDBE instruction address of the start of the loop */
+ WhereInfo *pWInfo; /* Information about the WHERE clause */
+ Vdbe *v; /* The virtual database engine */
+ Index *pIdx; /* For looping over indices */
+ int nIdx; /* Number of indices that need updating */
+ int nIdxTotal; /* Total number of indices */
+ int iCur; /* VDBE Cursor number of pTab */
+ sqlite *db; /* The database structure */
+ Index **apIdx = 0; /* An array of indices that need updating too */
+ char *aIdxUsed = 0; /* aIdxUsed[i]==1 if the i-th index is used */
+ int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the
+ ** an expression for the i-th column of the table.
+ ** aXRef[i]==-1 if the i-th column is not changed. */
+ int chngRecno; /* True if the record number is being changed */
+ Expr *pRecnoExpr; /* Expression defining the new record number */
+ int openAll; /* True if all indices need to be opened */
+ int isView; /* Trying to update a view */
+ AuthContext sContext; /* The authorization context */
+
+ int before_triggers; /* True if there are any BEFORE triggers */
+ int after_triggers; /* True if there are any AFTER triggers */
+ int row_triggers_exist = 0; /* True if any row triggers exist */
+
+ int newIdx = -1; /* index of trigger "new" temp table */
+ int oldIdx = -1; /* index of trigger "old" temp table */
+
+ sContext.pParse = 0;
+ if( pParse->nErr || sqlite_malloc_failed ) goto update_cleanup;
+ db = pParse->db;
+ assert( pTabList->nSrc==1 );
+
+ /* Locate the table which we want to update.
+ */
+ pTab = sqliteSrcListLookup(pParse, pTabList);
+ if( pTab==0 ) goto update_cleanup;
+ before_triggers = sqliteTriggersExist(pParse, pTab->pTrigger,
+ TK_UPDATE, TK_BEFORE, TK_ROW, pChanges);
+ after_triggers = sqliteTriggersExist(pParse, pTab->pTrigger,
+ TK_UPDATE, TK_AFTER, TK_ROW, pChanges);
+ row_triggers_exist = before_triggers || after_triggers;
+ isView = pTab->pSelect!=0;
+ if( sqliteIsReadOnly(pParse, pTab, before_triggers) ){
+ goto update_cleanup;
+ }
+ if( isView ){
+ if( sqliteViewGetColumnNames(pParse, pTab) ){
+ goto update_cleanup;
+ }
+ }
+ aXRef = sqliteMalloc( sizeof(int) * pTab->nCol );
+ if( aXRef==0 ) goto update_cleanup;
+ for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;
+
+ /* If there are FOR EACH ROW triggers, allocate cursors for the
+ ** special OLD and NEW tables
+ */
+ if( row_triggers_exist ){
+ newIdx = pParse->nTab++;
+ oldIdx = pParse->nTab++;
+ }
+
+ /* Allocate a cursors for the main database table and for all indices.
+ ** The index cursors might not be used, but if they are used they
+ ** need to occur right after the database cursor. So go ahead and
+ ** allocate enough space, just in case.
+ */
+ pTabList->a[0].iCursor = iCur = pParse->nTab++;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ pParse->nTab++;
+ }
+
+ /* Resolve the column names in all the expressions of the
+ ** of the UPDATE statement. Also find the column index
+ ** for each column to be updated in the pChanges array. For each
+ ** column to be updated, make sure we have authorization to change
+ ** that column.
+ */
+ chngRecno = 0;
+ for(i=0; i<pChanges->nExpr; i++){
+ if( sqliteExprResolveIds(pParse, pTabList, 0, pChanges->a[i].pExpr) ){
+ goto update_cleanup;
+ }
+ if( sqliteExprCheck(pParse, pChanges->a[i].pExpr, 0, 0) ){
+ goto update_cleanup;
+ }
+ for(j=0; j<pTab->nCol; j++){
+ if( sqliteStrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){
+ if( j==pTab->iPKey ){
+ chngRecno = 1;
+ pRecnoExpr = pChanges->a[i].pExpr;
+ }
+ aXRef[j] = i;
+ break;
+ }
+ }
+ if( j>=pTab->nCol ){
+ if( sqliteIsRowid(pChanges->a[i].zName) ){
+ chngRecno = 1;
+ pRecnoExpr = pChanges->a[i].pExpr;
+ }else{
+ sqliteErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName);
+ goto update_cleanup;
+ }
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int rc;
+ rc = sqliteAuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
+ pTab->aCol[j].zName, db->aDb[pTab->iDb].zName);
+ if( rc==SQLITE_DENY ){
+ goto update_cleanup;
+ }else if( rc==SQLITE_IGNORE ){
+ aXRef[j] = -1;
+ }
+ }
+#endif
+ }
+
+ /* Allocate memory for the array apIdx[] and fill it with pointers to every
+ ** index that needs to be updated. Indices only need updating if their
+ ** key includes one of the columns named in pChanges or if the record
+ ** number of the original table entry is changing.
+ */
+ for(nIdx=nIdxTotal=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdxTotal++){
+ if( chngRecno ){
+ i = 0;
+ }else {
+ for(i=0; i<pIdx->nColumn; i++){
+ if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
+ }
+ }
+ if( i<pIdx->nColumn ) nIdx++;
+ }
+ if( nIdxTotal>0 ){
+ apIdx = sqliteMalloc( sizeof(Index*) * nIdx + nIdxTotal );
+ if( apIdx==0 ) goto update_cleanup;
+ aIdxUsed = (char*)&apIdx[nIdx];
+ }
+ for(nIdx=j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
+ if( chngRecno ){
+ i = 0;
+ }else{
+ for(i=0; i<pIdx->nColumn; i++){
+ if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
+ }
+ }
+ if( i<pIdx->nColumn ){
+ apIdx[nIdx++] = pIdx;
+ aIdxUsed[j] = 1;
+ }else{
+ aIdxUsed[j] = 0;
+ }
+ }
+
+ /* Resolve the column names in all the expressions in the
+ ** WHERE clause.
+ */
+ if( pWhere ){
+ if( sqliteExprResolveIds(pParse, pTabList, 0, pWhere) ){
+ goto update_cleanup;
+ }
+ if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
+ goto update_cleanup;
+ }
+ }
+
+ /* Start the view context
+ */
+ if( isView ){
+ sqliteAuthContextPush(pParse, &sContext, pTab->zName);
+ }
+
+ /* Begin generating code.
+ */
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) goto update_cleanup;
+ sqliteBeginWriteOperation(pParse, 1, pTab->iDb);
+
+ /* If we are trying to update a view, construct that view into
+ ** a temporary table.
+ */
+ if( isView ){
+ Select *pView;
+ pView = sqliteSelectDup(pTab->pSelect);
+ sqliteSelect(pParse, pView, SRT_TempTable, iCur, 0, 0, 0);
+ sqliteSelectDelete(pView);
+ }
+
+ /* Begin the database scan
+ */
+ pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 1, 0);
+ if( pWInfo==0 ) goto update_cleanup;
+
+ /* Remember the index of every item to be updated.
+ */
+ sqliteVdbeAddOp(v, OP_ListWrite, 0, 0);
+
+ /* End the database scan loop.
+ */
+ sqliteWhereEnd(pWInfo);
+
+ /* Initialize the count of updated rows
+ */
+ if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
+ }
+
+ if( row_triggers_exist ){
+ /* Create pseudo-tables for NEW and OLD
+ */
+ sqliteVdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
+ sqliteVdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
+
+ /* The top of the update loop for when there are triggers.
+ */
+ sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
+ addr = sqliteVdbeAddOp(v, OP_ListRead, 0, 0);
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+
+ /* Open a cursor and make it point to the record that is
+ ** being updated.
+ */
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ if( !isView ){
+ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
+ sqliteVdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum);
+ }
+ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
+
+ /* Generate the OLD table
+ */
+ sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
+ sqliteVdbeAddOp(v, OP_RowData, iCur, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, oldIdx, 0);
+
+ /* Generate the NEW table
+ */
+ if( chngRecno ){
+ sqliteExprCode(pParse, pRecnoExpr);
+ }else{
+ sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
+ }
+ for(i=0; i<pTab->nCol; i++){
+ if( i==pTab->iPKey ){
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ continue;
+ }
+ j = aXRef[i];
+ if( j<0 ){
+ sqliteVdbeAddOp(v, OP_Column, iCur, i);
+ }else{
+ sqliteExprCode(pParse, pChanges->a[j].pExpr);
+ }
+ }
+ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
+ if( !isView ){
+ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
+ }
+
+ /* Fire the BEFORE and INSTEAD OF triggers
+ */
+ if( sqliteCodeRowTrigger(pParse, TK_UPDATE, pChanges, TK_BEFORE, pTab,
+ newIdx, oldIdx, onError, addr) ){
+ goto update_cleanup;
+ }
+ }
+
+ if( !isView ){
+ /*
+ ** Open every index that needs updating. Note that if any
+ ** index could potentially invoke a REPLACE conflict resolution
+ ** action, then we need to open all indices because we might need
+ ** to be deleting some records.
+ */
+ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
+ sqliteVdbeAddOp(v, OP_OpenWrite, iCur, pTab->tnum);
+ if( onError==OE_Replace ){
+ openAll = 1;
+ }else{
+ openAll = 0;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( pIdx->onError==OE_Replace ){
+ openAll = 1;
+ break;
+ }
+ }
+ }
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
+ if( openAll || aIdxUsed[i] ){
+ sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
+ sqliteVdbeAddOp(v, OP_OpenWrite, iCur+i+1, pIdx->tnum);
+ assert( pParse->nTab>iCur+i+1 );
+ }
+ }
+
+ /* Loop over every record that needs updating. We have to load
+ ** the old data for each record to be updated because some columns
+ ** might not change and we will need to copy the old value.
+ ** Also, the old data is needed to delete the old index entires.
+ ** So make the cursor point at the old record.
+ */
+ if( !row_triggers_exist ){
+ sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
+ addr = sqliteVdbeAddOp(v, OP_ListRead, 0, 0);
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ }
+ sqliteVdbeAddOp(v, OP_NotExists, iCur, addr);
+
+ /* If the record number will change, push the record number as it
+ ** will be after the update. (The old record number is currently
+ ** on top of the stack.)
+ */
+ if( chngRecno ){
+ sqliteExprCode(pParse, pRecnoExpr);
+ sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
+ }
+
+ /* Compute new data for this record.
+ */
+ for(i=0; i<pTab->nCol; i++){
+ if( i==pTab->iPKey ){
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ continue;
+ }
+ j = aXRef[i];
+ if( j<0 ){
+ sqliteVdbeAddOp(v, OP_Column, iCur, i);
+ }else{
+ sqliteExprCode(pParse, pChanges->a[j].pExpr);
+ }
+ }
+
+ /* Do constraint checks
+ */
+ sqliteGenerateConstraintChecks(pParse, pTab, iCur, aIdxUsed, chngRecno, 1,
+ onError, addr);
+
+ /* Delete the old indices for the current record.
+ */
+ sqliteGenerateRowIndexDelete(db, v, pTab, iCur, aIdxUsed);
+
+ /* If changing the record number, delete the old record.
+ */
+ if( chngRecno ){
+ sqliteVdbeAddOp(v, OP_Delete, iCur, 0);
+ }
+
+ /* Create the new index entries and the new record.
+ */
+ sqliteCompleteInsertion(pParse, pTab, iCur, aIdxUsed, chngRecno, 1, -1);
+ }
+
+ /* Increment the row counter
+ */
+ if( db->flags & SQLITE_CountRows && !pParse->trigStack){
+ sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
+ }
+
+ /* If there are triggers, close all the cursors after each iteration
+ ** through the loop. The fire the after triggers.
+ */
+ if( row_triggers_exist ){
+ if( !isView ){
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
+ if( openAll || aIdxUsed[i] )
+ sqliteVdbeAddOp(v, OP_Close, iCur+i+1, 0);
+ }
+ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
+ pParse->nTab = iCur;
+ }
+ if( sqliteCodeRowTrigger(pParse, TK_UPDATE, pChanges, TK_AFTER, pTab,
+ newIdx, oldIdx, onError, addr) ){
+ goto update_cleanup;
+ }
+ }
+
+ /* Repeat the above with the next record to be updated, until
+ ** all record selected by the WHERE clause have been updated.
+ */
+ sqliteVdbeAddOp(v, OP_Goto, 0, addr);
+ sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
+ sqliteVdbeAddOp(v, OP_ListReset, 0, 0);
+
+ /* Close all tables if there were no FOR EACH ROW triggers */
+ if( !row_triggers_exist ){
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
+ if( openAll || aIdxUsed[i] ){
+ sqliteVdbeAddOp(v, OP_Close, iCur+i+1, 0);
+ }
+ }
+ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
+ pParse->nTab = iCur;
+ }else{
+ sqliteVdbeAddOp(v, OP_Close, newIdx, 0);
+ sqliteVdbeAddOp(v, OP_Close, oldIdx, 0);
+ }
+
+ sqliteVdbeAddOp(v, OP_SetCounts, 0, 0);
+ sqliteEndWriteOperation(pParse);
+
+ /*
+ ** Return the number of rows that were changed.
+ */
+ if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
+ sqliteVdbeOp3(v, OP_ColumnName, 0, 1, "rows updated", P3_STATIC);
+ sqliteVdbeAddOp(v, OP_Callback, 1, 0);
+ }
+
+update_cleanup:
+ sqliteAuthContextPop(&sContext);
+ sqliteFree(apIdx);
+ sqliteFree(aXRef);
+ sqliteSrcListDelete(pTabList);
+ sqliteExprListDelete(pChanges);
+ sqliteExprDelete(pWhere);
+ return;
+}
diff --git a/src/3rdparty/sqlite/util.c b/src/3rdparty/sqlite/util.c
new file mode 100644
index 0000000..16b3b46
--- /dev/null
+++ b/src/3rdparty/sqlite/util.c
@@ -0,0 +1,1135 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Utility functions used throughout sqlite.
+**
+** This file contains functions for allocating memory, comparing
+** strings, and stuff like that.
+**
+** $Id: util.c,v 1.74 2004/02/22 17:49:34 drh Exp $
+*/
+#include "sqliteInt.h"
+#include <stdarg.h>
+#include <ctype.h>
+
+/*
+** If malloc() ever fails, this global variable gets set to 1.
+** This causes the library to abort and never again function.
+*/
+int sqlite_malloc_failed = 0;
+
+/*
+** If MEMORY_DEBUG is defined, then use versions of malloc() and
+** free() that track memory usage and check for buffer overruns.
+*/
+#ifdef MEMORY_DEBUG
+
+/*
+** For keeping track of the number of mallocs and frees. This
+** is used to check for memory leaks.
+*/
+int sqlite_nMalloc; /* Number of sqliteMalloc() calls */
+int sqlite_nFree; /* Number of sqliteFree() calls */
+int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */
+#if MEMORY_DEBUG>1
+static int memcnt = 0;
+#endif
+
+/*
+** Number of 32-bit guard words
+*/
+#define N_GUARD 1
+
+/*
+** Allocate new memory and set it to zero. Return NULL if
+** no memory is available.
+*/
+void *sqliteMalloc_(int n, int bZero, char *zFile, int line){
+ void *p;
+ int *pi;
+ int i, k;
+ if( sqlite_iMallocFail>=0 ){
+ sqlite_iMallocFail--;
+ if( sqlite_iMallocFail==0 ){
+ sqlite_malloc_failed++;
+#if MEMORY_DEBUG>1
+ fprintf(stderr,"**** failed to allocate %d bytes at %s:%d\n",
+ n, zFile,line);
+#endif
+ sqlite_iMallocFail--;
+ return 0;
+ }
+ }
+ if( n==0 ) return 0;
+ k = (n+sizeof(int)-1)/sizeof(int);
+ pi = malloc( (N_GUARD*2+1+k)*sizeof(int));
+ if( pi==0 ){
+ sqlite_malloc_failed++;
+ return 0;
+ }
+ sqlite_nMalloc++;
+ for(i=0; i<N_GUARD; i++) pi[i] = 0xdead1122;
+ pi[N_GUARD] = n;
+ for(i=0; i<N_GUARD; i++) pi[k+1+N_GUARD+i] = 0xdead3344;
+ p = &pi[N_GUARD+1];
+ memset(p, bZero==0, n);
+#if MEMORY_DEBUG>1
+ fprintf(stderr,"%06d malloc %d bytes at 0x%x from %s:%d\n",
+ ++memcnt, n, (int)p, zFile,line);
+#endif
+ return p;
+}
+
+/*
+** Check to see if the given pointer was obtained from sqliteMalloc()
+** and is able to hold at least N bytes. Raise an exception if this
+** is not the case.
+**
+** This routine is used for testing purposes only.
+*/
+void sqliteCheckMemory(void *p, int N){
+ int *pi = p;
+ int n, i, k;
+ pi -= N_GUARD+1;
+ for(i=0; i<N_GUARD; i++){
+ assert( pi[i]==0xdead1122 );
+ }
+ n = pi[N_GUARD];
+ assert( N>=0 && N<n );
+ k = (n+sizeof(int)-1)/sizeof(int);
+ for(i=0; i<N_GUARD; i++){
+ assert( pi[k+N_GUARD+1+i]==0xdead3344 );
+ }
+}
+
+/*
+** Free memory previously obtained from sqliteMalloc()
+*/
+void sqliteFree_(void *p, char *zFile, int line){
+ if( p ){
+ int *pi, i, k, n;
+ pi = p;
+ pi -= N_GUARD+1;
+ sqlite_nFree++;
+ for(i=0; i<N_GUARD; i++){
+ if( pi[i]!=0xdead1122 ){
+ fprintf(stderr,"Low-end memory corruption at 0x%x\n", (int)p);
+ return;
+ }
+ }
+ n = pi[N_GUARD];
+ k = (n+sizeof(int)-1)/sizeof(int);
+ for(i=0; i<N_GUARD; i++){
+ if( pi[k+N_GUARD+1+i]!=0xdead3344 ){
+ fprintf(stderr,"High-end memory corruption at 0x%x\n", (int)p);
+ return;
+ }
+ }
+ memset(pi, 0xff, (k+N_GUARD*2+1)*sizeof(int));
+#if MEMORY_DEBUG>1
+ fprintf(stderr,"%06d free %d bytes at 0x%x from %s:%d\n",
+ ++memcnt, n, (int)p, zFile,line);
+#endif
+ free(pi);
+ }
+}
+
+/*
+** Resize a prior allocation. If p==0, then this routine
+** works just like sqliteMalloc(). If n==0, then this routine
+** works just like sqliteFree().
+*/
+void *sqliteRealloc_(void *oldP, int n, char *zFile, int line){
+ int *oldPi, *pi, i, k, oldN, oldK;
+ void *p;
+ if( oldP==0 ){
+ return sqliteMalloc_(n,1,zFile,line);
+ }
+ if( n==0 ){
+ sqliteFree_(oldP,zFile,line);
+ return 0;
+ }
+ oldPi = oldP;
+ oldPi -= N_GUARD+1;
+ if( oldPi[0]!=0xdead1122 ){
+ fprintf(stderr,"Low-end memory corruption in realloc at 0x%x\n", (int)oldP);
+ return 0;
+ }
+ oldN = oldPi[N_GUARD];
+ oldK = (oldN+sizeof(int)-1)/sizeof(int);
+ for(i=0; i<N_GUARD; i++){
+ if( oldPi[oldK+N_GUARD+1+i]!=0xdead3344 ){
+ fprintf(stderr,"High-end memory corruption in realloc at 0x%x\n",
+ (int)oldP);
+ return 0;
+ }
+ }
+ k = (n + sizeof(int) - 1)/sizeof(int);
+ pi = malloc( (k+N_GUARD*2+1)*sizeof(int) );
+ if( pi==0 ){
+ sqlite_malloc_failed++;
+ return 0;
+ }
+ for(i=0; i<N_GUARD; i++) pi[i] = 0xdead1122;
+ pi[N_GUARD] = n;
+ for(i=0; i<N_GUARD; i++) pi[k+N_GUARD+1+i] = 0xdead3344;
+ p = &pi[N_GUARD+1];
+ memcpy(p, oldP, n>oldN ? oldN : n);
+ if( n>oldN ){
+ memset(&((char*)p)[oldN], 0, n-oldN);
+ }
+ memset(oldPi, 0xab, (oldK+N_GUARD+2)*sizeof(int));
+ free(oldPi);
+#if MEMORY_DEBUG>1
+ fprintf(stderr,"%06d realloc %d to %d bytes at 0x%x to 0x%x at %s:%d\n",
+ ++memcnt, oldN, n, (int)oldP, (int)p, zFile, line);
+#endif
+ return p;
+}
+
+/*
+** Make a duplicate of a string into memory obtained from malloc()
+** Free the original string using sqliteFree().
+**
+** This routine is called on all strings that are passed outside of
+** the SQLite library. That way clients can free the string using free()
+** rather than having to call sqliteFree().
+*/
+void sqliteStrRealloc(char **pz){
+ char *zNew;
+ if( pz==0 || *pz==0 ) return;
+ zNew = malloc( strlen(*pz) + 1 );
+ if( zNew==0 ){
+ sqlite_malloc_failed++;
+ sqliteFree(*pz);
+ *pz = 0;
+ }
+ strcpy(zNew, *pz);
+ sqliteFree(*pz);
+ *pz = zNew;
+}
+
+/*
+** Make a copy of a string in memory obtained from sqliteMalloc()
+*/
+char *sqliteStrDup_(const char *z, char *zFile, int line){
+ char *zNew;
+ if( z==0 ) return 0;
+ zNew = sqliteMalloc_(strlen(z)+1, 0, zFile, line);
+ if( zNew ) strcpy(zNew, z);
+ return zNew;
+}
+char *sqliteStrNDup_(const char *z, int n, char *zFile, int line){
+ char *zNew;
+ if( z==0 ) return 0;
+ zNew = sqliteMalloc_(n+1, 0, zFile, line);
+ if( zNew ){
+ memcpy(zNew, z, n);
+ zNew[n] = 0;
+ }
+ return zNew;
+}
+#endif /* MEMORY_DEBUG */
+
+/*
+** The following versions of malloc() and free() are for use in a
+** normal build.
+*/
+#if !defined(MEMORY_DEBUG)
+
+/*
+** Allocate new memory and set it to zero. Return NULL if
+** no memory is available. See also sqliteMallocRaw().
+*/
+void *sqliteMalloc(int n){
+ void *p;
+ if( (p = malloc(n))==0 ){
+ if( n>0 ) sqlite_malloc_failed++;
+ }else{
+ memset(p, 0, n);
+ }
+ return p;
+}
+
+/*
+** Allocate new memory but do not set it to zero. Return NULL if
+** no memory is available. See also sqliteMalloc().
+*/
+void *sqliteMallocRaw(int n){
+ void *p;
+ if( (p = malloc(n))==0 ){
+ if( n>0 ) sqlite_malloc_failed++;
+ }
+ return p;
+}
+
+/*
+** Free memory previously obtained from sqliteMalloc()
+*/
+void sqliteFree(void *p){
+ if( p ){
+ free(p);
+ }
+}
+
+/*
+** Resize a prior allocation. If p==0, then this routine
+** works just like sqliteMalloc(). If n==0, then this routine
+** works just like sqliteFree().
+*/
+void *sqliteRealloc(void *p, int n){
+ void *p2;
+ if( p==0 ){
+ return sqliteMalloc(n);
+ }
+ if( n==0 ){
+ sqliteFree(p);
+ return 0;
+ }
+ p2 = realloc(p, n);
+ if( p2==0 ){
+ sqlite_malloc_failed++;
+ }
+ return p2;
+}
+
+/*
+** Make a copy of a string in memory obtained from sqliteMalloc()
+*/
+char *sqliteStrDup(const char *z){
+ char *zNew;
+ if( z==0 ) return 0;
+ zNew = sqliteMallocRaw(strlen(z)+1);
+ if( zNew ) strcpy(zNew, z);
+ return zNew;
+}
+char *sqliteStrNDup(const char *z, int n){
+ char *zNew;
+ if( z==0 ) return 0;
+ zNew = sqliteMallocRaw(n+1);
+ if( zNew ){
+ memcpy(zNew, z, n);
+ zNew[n] = 0;
+ }
+ return zNew;
+}
+#endif /* !defined(MEMORY_DEBUG) */
+
+/*
+** Create a string from the 2nd and subsequent arguments (up to the
+** first NULL argument), store the string in memory obtained from
+** sqliteMalloc() and make the pointer indicated by the 1st argument
+** point to that string. The 1st argument must either be NULL or
+** point to memory obtained from sqliteMalloc().
+*/
+void sqliteSetString(char **pz, const char *zFirst, ...){
+ va_list ap;
+ int nByte;
+ const char *z;
+ char *zResult;
+
+ if( pz==0 ) return;
+ nByte = strlen(zFirst) + 1;
+ va_start(ap, zFirst);
+ while( (z = va_arg(ap, const char*))!=0 ){
+ nByte += strlen(z);
+ }
+ va_end(ap);
+ sqliteFree(*pz);
+ *pz = zResult = sqliteMallocRaw( nByte );
+ if( zResult==0 ){
+ return;
+ }
+ strcpy(zResult, zFirst);
+ zResult += strlen(zResult);
+ va_start(ap, zFirst);
+ while( (z = va_arg(ap, const char*))!=0 ){
+ strcpy(zResult, z);
+ zResult += strlen(zResult);
+ }
+ va_end(ap);
+#ifdef MEMORY_DEBUG
+#if MEMORY_DEBUG>1
+ fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
+#endif
+#endif
+}
+
+/*
+** Works like sqliteSetString, but each string is now followed by
+** a length integer which specifies how much of the source string
+** to copy (in bytes). -1 means use the whole string. The 1st
+** argument must either be NULL or point to memory obtained from
+** sqliteMalloc().
+*/
+void sqliteSetNString(char **pz, ...){
+ va_list ap;
+ int nByte;
+ const char *z;
+ char *zResult;
+ int n;
+
+ if( pz==0 ) return;
+ nByte = 0;
+ va_start(ap, pz);
+ while( (z = va_arg(ap, const char*))!=0 ){
+ n = va_arg(ap, int);
+ if( n<=0 ) n = strlen(z);
+ nByte += n;
+ }
+ va_end(ap);
+ sqliteFree(*pz);
+ *pz = zResult = sqliteMallocRaw( nByte + 1 );
+ if( zResult==0 ) return;
+ va_start(ap, pz);
+ while( (z = va_arg(ap, const char*))!=0 ){
+ n = va_arg(ap, int);
+ if( n<=0 ) n = strlen(z);
+ strncpy(zResult, z, n);
+ zResult += n;
+ }
+ *zResult = 0;
+#ifdef MEMORY_DEBUG
+#if MEMORY_DEBUG>1
+ fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
+#endif
+#endif
+ va_end(ap);
+}
+
+/*
+** Add an error message to pParse->zErrMsg and increment pParse->nErr.
+** The following formatting characters are allowed:
+**
+** %s Insert a string
+** %z A string that should be freed after use
+** %d Insert an integer
+** %T Insert a token
+** %S Insert the first element of a SrcList
+*/
+void sqliteErrorMsg(Parse *pParse, const char *zFormat, ...){
+ va_list ap;
+ pParse->nErr++;
+ sqliteFree(pParse->zErrMsg);
+ va_start(ap, zFormat);
+ pParse->zErrMsg = sqliteVMPrintf(zFormat, ap);
+ va_end(ap);
+}
+
+/*
+** Convert an SQL-style quoted string into a normal string by removing
+** the quote characters. The conversion is done in-place. If the
+** input does not begin with a quote character, then this routine
+** is a no-op.
+**
+** 2002-Feb-14: This routine is extended to remove MS-Access style
+** brackets from around identifers. For example: "[a-b-c]" becomes
+** "a-b-c".
+*/
+void sqliteDequote(char *z){
+ int quote;
+ int i, j;
+ if( z==0 ) return;
+ quote = z[0];
+ switch( quote ){
+ case '\'': break;
+ case '"': break;
+ case '[': quote = ']'; break;
+ default: return;
+ }
+ for(i=1, j=0; z[i]; i++){
+ if( z[i]==quote ){
+ if( z[i+1]==quote ){
+ z[j++] = quote;
+ i++;
+ }else{
+ z[j++] = 0;
+ break;
+ }
+ }else{
+ z[j++] = z[i];
+ }
+ }
+}
+
+/* An array to map all upper-case characters into their corresponding
+** lower-case character.
+*/
+static unsigned char UpperToLower[] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
+ 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
+ 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
+ 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
+ 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
+ 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
+ 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
+ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
+ 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
+ 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
+ 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
+ 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
+ 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
+ 252,253,254,255
+};
+
+/*
+** This function computes a hash on the name of a keyword.
+** Case is not significant.
+*/
+int sqliteHashNoCase(const char *z, int n){
+ int h = 0;
+ if( n<=0 ) n = strlen(z);
+ while( n > 0 ){
+ h = (h<<3) ^ h ^ UpperToLower[(unsigned char)*z++];
+ n--;
+ }
+ return h & 0x7fffffff;
+}
+
+/*
+** Some systems have stricmp(). Others have strcasecmp(). Because
+** there is no consistency, we will define our own.
+*/
+int sqliteStrICmp(const char *zLeft, const char *zRight){
+ register unsigned char *a, *b;
+ a = (unsigned char *)zLeft;
+ b = (unsigned char *)zRight;
+ while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
+ return *a - *b;
+}
+int sqliteStrNICmp(const char *zLeft, const char *zRight, int N){
+ register unsigned char *a, *b;
+ a = (unsigned char *)zLeft;
+ b = (unsigned char *)zRight;
+ while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
+ return N<0 ? 0 : *a - *b;
+}
+
+/*
+** Return TRUE if z is a pure numeric string. Return FALSE if the
+** string contains any character which is not part of a number.
+**
+** Am empty string is considered non-numeric.
+*/
+int sqliteIsNumber(const char *z){
+ if( *z=='-' || *z=='+' ) z++;
+ if( !isdigit(*z) ){
+ return 0;
+ }
+ z++;
+ while( isdigit(*z) ){ z++; }
+ if( *z=='.' ){
+ z++;
+ if( !isdigit(*z) ) return 0;
+ while( isdigit(*z) ){ z++; }
+ }
+ if( *z=='e' || *z=='E' ){
+ z++;
+ if( *z=='+' || *z=='-' ) z++;
+ if( !isdigit(*z) ) return 0;
+ while( isdigit(*z) ){ z++; }
+ }
+ return *z==0;
+}
+
+/*
+** The string z[] is an ascii representation of a real number.
+** Convert this string to a double.
+**
+** This routine assumes that z[] really is a valid number. If it
+** is not, the result is undefined.
+**
+** This routine is used instead of the library atof() function because
+** the library atof() might want to use "," as the decimal point instead
+** of "." depending on how locale is set. But that would cause problems
+** for SQL. So this routine always uses "." regardless of locale.
+*/
+double sqliteAtoF(const char *z, const char **pzEnd){
+ int sign = 1;
+ LONGDOUBLE_TYPE v1 = 0.0;
+ if( *z=='-' ){
+ sign = -1;
+ z++;
+ }else if( *z=='+' ){
+ z++;
+ }
+ while( isdigit(*z) ){
+ v1 = v1*10.0 + (*z - '0');
+ z++;
+ }
+ if( *z=='.' ){
+ LONGDOUBLE_TYPE divisor = 1.0;
+ z++;
+ while( isdigit(*z) ){
+ v1 = v1*10.0 + (*z - '0');
+ divisor *= 10.0;
+ z++;
+ }
+ v1 /= divisor;
+ }
+ if( *z=='e' || *z=='E' ){
+ int esign = 1;
+ int eval = 0;
+ LONGDOUBLE_TYPE scale = 1.0;
+ z++;
+ if( *z=='-' ){
+ esign = -1;
+ z++;
+ }else if( *z=='+' ){
+ z++;
+ }
+ while( isdigit(*z) ){
+ eval = eval*10 + *z - '0';
+ z++;
+ }
+ while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; }
+ while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; }
+ while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; }
+ while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; }
+ if( esign<0 ){
+ v1 /= scale;
+ }else{
+ v1 *= scale;
+ }
+ }
+ if( pzEnd ) *pzEnd = z;
+ return sign<0 ? -v1 : v1;
+}
+
+/*
+** The string zNum represents an integer. There might be some other
+** information following the integer too, but that part is ignored.
+** If the integer that the prefix of zNum represents will fit in a
+** 32-bit signed integer, return TRUE. Otherwise return FALSE.
+**
+** This routine returns FALSE for the string -2147483648 even that
+** that number will, in theory fit in a 32-bit integer. But positive
+** 2147483648 will not fit in 32 bits. So it seems safer to return
+** false.
+*/
+int sqliteFitsIn32Bits(const char *zNum){
+ int i, c;
+ if( *zNum=='-' || *zNum=='+' ) zNum++;
+ for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
+ return i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0);
+}
+
+/* This comparison routine is what we use for comparison operations
+** between numeric values in an SQL expression. "Numeric" is a little
+** bit misleading here. What we mean is that the strings have a
+** type of "numeric" from the point of view of SQL. The strings
+** do not necessarily contain numbers. They could contain text.
+**
+** If the input strings both look like actual numbers then they
+** compare in numerical order. Numerical strings are always less
+** than non-numeric strings so if one input string looks like a
+** number and the other does not, then the one that looks like
+** a number is the smaller. Non-numeric strings compare in
+** lexigraphical order (the same order as strcmp()).
+*/
+int sqliteCompare(const char *atext, const char *btext){
+ int result;
+ int isNumA, isNumB;
+ if( atext==0 ){
+ return -1;
+ }else if( btext==0 ){
+ return 1;
+ }
+ isNumA = sqliteIsNumber(atext);
+ isNumB = sqliteIsNumber(btext);
+ if( isNumA ){
+ if( !isNumB ){
+ result = -1;
+ }else{
+ double rA, rB;
+ rA = sqliteAtoF(atext, 0);
+ rB = sqliteAtoF(btext, 0);
+ if( rA<rB ){
+ result = -1;
+ }else if( rA>rB ){
+ result = +1;
+ }else{
+ result = 0;
+ }
+ }
+ }else if( isNumB ){
+ result = +1;
+ }else {
+ result = strcmp(atext, btext);
+ }
+ return result;
+}
+
+/*
+** This routine is used for sorting. Each key is a list of one or more
+** null-terminated elements. The list is terminated by two nulls in
+** a row. For example, the following text is a key with three elements
+**
+** Aone\000Dtwo\000Athree\000\000
+**
+** All elements begin with one of the characters "+-AD" and end with "\000"
+** with zero or more text elements in between. Except, NULL elements
+** consist of the special two-character sequence "N\000".
+**
+** Both arguments will have the same number of elements. This routine
+** returns negative, zero, or positive if the first argument is less
+** than, equal to, or greater than the first. (Result is a-b).
+**
+** Each element begins with one of the characters "+", "-", "A", "D".
+** This character determines the sort order and collating sequence:
+**
+** + Sort numerically in ascending order
+** - Sort numerically in descending order
+** A Sort as strings in ascending order
+** D Sort as strings in descending order.
+**
+** For the "+" and "-" sorting, pure numeric strings (strings for which the
+** isNum() function above returns TRUE) always compare less than strings
+** that are not pure numerics. Non-numeric strings compare in memcmp()
+** order. This is the same sort order as the sqliteCompare() function
+** above generates.
+**
+** The last point is a change from version 2.6.3 to version 2.7.0. In
+** version 2.6.3 and earlier, substrings of digits compare in numerical
+** and case was used only to break a tie.
+**
+** Elements that begin with 'A' or 'D' compare in memcmp() order regardless
+** of whether or not they look like a number.
+**
+** Note that the sort order imposed by the rules above is the same
+** from the ordering defined by the "<", "<=", ">", and ">=" operators
+** of expressions and for indices. This was not the case for version
+** 2.6.3 and earlier.
+*/
+int sqliteSortCompare(const char *a, const char *b){
+ int res = 0;
+ int isNumA, isNumB;
+ int dir = 0;
+
+ while( res==0 && *a && *b ){
+ if( a[0]=='N' || b[0]=='N' ){
+ if( a[0]==b[0] ){
+ a += 2;
+ b += 2;
+ continue;
+ }
+ if( a[0]=='N' ){
+ dir = b[0];
+ res = -1;
+ }else{
+ dir = a[0];
+ res = +1;
+ }
+ break;
+ }
+ assert( a[0]==b[0] );
+ if( (dir=a[0])=='A' || a[0]=='D' ){
+ res = strcmp(&a[1],&b[1]);
+ if( res ) break;
+ }else{
+ isNumA = sqliteIsNumber(&a[1]);
+ isNumB = sqliteIsNumber(&b[1]);
+ if( isNumA ){
+ double rA, rB;
+ if( !isNumB ){
+ res = -1;
+ break;
+ }
+ rA = sqliteAtoF(&a[1], 0);
+ rB = sqliteAtoF(&b[1], 0);
+ if( rA<rB ){
+ res = -1;
+ break;
+ }
+ if( rA>rB ){
+ res = +1;
+ break;
+ }
+ }else if( isNumB ){
+ res = +1;
+ break;
+ }else{
+ res = strcmp(&a[1],&b[1]);
+ if( res ) break;
+ }
+ }
+ a += strlen(&a[1]) + 2;
+ b += strlen(&b[1]) + 2;
+ }
+ if( dir=='-' || dir=='D' ) res = -res;
+ return res;
+}
+
+/*
+** Some powers of 64. These constants are needed in the
+** sqliteRealToSortable() routine below.
+*/
+#define _64e3 (64.0 * 64.0 * 64.0)
+#define _64e4 (64.0 * 64.0 * 64.0 * 64.0)
+#define _64e15 (_64e3 * _64e4 * _64e4 * _64e4)
+#define _64e16 (_64e4 * _64e4 * _64e4 * _64e4)
+#define _64e63 (_64e15 * _64e16 * _64e16 * _64e16)
+#define _64e64 (_64e16 * _64e16 * _64e16 * _64e16)
+
+/*
+** The following procedure converts a double-precision floating point
+** number into a string. The resulting string has the property that
+** two such strings comparied using strcmp() or memcmp() will give the
+** same results as a numeric comparison of the original floating point
+** numbers.
+**
+** This routine is used to generate database keys from floating point
+** numbers such that the keys sort in the same order as the original
+** floating point numbers even though the keys are compared using
+** memcmp().
+**
+** The calling function should have allocated at least 14 characters
+** of space for the buffer z[].
+*/
+void sqliteRealToSortable(double r, char *z){
+ int neg;
+ int exp;
+ int cnt = 0;
+
+ /* This array maps integers between 0 and 63 into base-64 digits.
+ ** The digits must be chosen such at their ASCII codes are increasing.
+ ** This means we can not use the traditional base-64 digit set. */
+ static const char zDigit[] =
+ "0123456789"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "abcdefghijklmnopqrstuvwxyz"
+ "|~";
+ if( r<0.0 ){
+ neg = 1;
+ r = -r;
+ *z++ = '-';
+ } else {
+ neg = 0;
+ *z++ = '0';
+ }
+ exp = 0;
+
+ if( r==0.0 ){
+ exp = -1024;
+ }else if( r<(0.5/64.0) ){
+ while( r < 0.5/_64e64 && exp > -961 ){ r *= _64e64; exp -= 64; }
+ while( r < 0.5/_64e16 && exp > -1009 ){ r *= _64e16; exp -= 16; }
+ while( r < 0.5/_64e4 && exp > -1021 ){ r *= _64e4; exp -= 4; }
+ while( r < 0.5/64.0 && exp > -1024 ){ r *= 64.0; exp -= 1; }
+ }else if( r>=0.5 ){
+ while( r >= 0.5*_64e63 && exp < 960 ){ r *= 1.0/_64e64; exp += 64; }
+ while( r >= 0.5*_64e15 && exp < 1008 ){ r *= 1.0/_64e16; exp += 16; }
+ while( r >= 0.5*_64e3 && exp < 1020 ){ r *= 1.0/_64e4; exp += 4; }
+ while( r >= 0.5 && exp < 1023 ){ r *= 1.0/64.0; exp += 1; }
+ }
+ if( neg ){
+ exp = -exp;
+ r = -r;
+ }
+ exp += 1024;
+ r += 0.5;
+ if( exp<0 ) return;
+ if( exp>=2048 || r>=1.0 ){
+ strcpy(z, "~~~~~~~~~~~~");
+ return;
+ }
+ *z++ = zDigit[(exp>>6)&0x3f];
+ *z++ = zDigit[exp & 0x3f];
+ while( r>0.0 && cnt<10 ){
+ int digit;
+ r *= 64.0;
+ digit = (int)r;
+ assert( digit>=0 && digit<64 );
+ *z++ = zDigit[digit & 0x3f];
+ r -= digit;
+ cnt++;
+ }
+ *z = 0;
+}
+
+#ifdef SQLITE_UTF8
+/*
+** X is a pointer to the first byte of a UTF-8 character. Increment
+** X so that it points to the next character. This only works right
+** if X points to a well-formed UTF-8 string.
+*/
+#define sqliteNextChar(X) while( (0xc0&*++(X))==0x80 ){}
+#define sqliteCharVal(X) sqlite_utf8_to_int(X)
+
+#else /* !defined(SQLITE_UTF8) */
+/*
+** For iso8859 encoding, the next character is just the next byte.
+*/
+#define sqliteNextChar(X) (++(X));
+#define sqliteCharVal(X) ((int)*(X))
+
+#endif /* defined(SQLITE_UTF8) */
+
+
+#ifdef SQLITE_UTF8
+/*
+** Convert the UTF-8 character to which z points into a 31-bit
+** UCS character. This only works right if z points to a well-formed
+** UTF-8 string.
+*/
+static int sqlite_utf8_to_int(const unsigned char *z){
+ int c;
+ static const int initVal[] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
+ 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
+ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
+ 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
+ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
+ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
+ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
+ 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
+ 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
+ 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
+ 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
+ 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
+ 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 0, 1, 2,
+ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 0, 1, 254,
+ 255,
+ };
+ c = initVal[*(z++)];
+ while( (0xc0&*z)==0x80 ){
+ c = (c<<6) | (0x3f&*(z++));
+ }
+ return c;
+}
+#endif
+
+/*
+** Compare two UTF-8 strings for equality where the first string can
+** potentially be a "glob" expression. Return true (1) if they
+** are the same and false (0) if they are different.
+**
+** Globbing rules:
+**
+** '*' Matches any sequence of zero or more characters.
+**
+** '?' Matches exactly one character.
+**
+** [...] Matches one character from the enclosed list of
+** characters.
+**
+** [^...] Matches one character not in the enclosed list.
+**
+** With the [...] and [^...] matching, a ']' character can be included
+** in the list by making it the first character after '[' or '^'. A
+** range of characters can be specified using '-'. Example:
+** "[a-z]" matches any single lower-case letter. To match a '-', make
+** it the last character in the list.
+**
+** This routine is usually quick, but can be N**2 in the worst case.
+**
+** Hints: to match '*' or '?', put them in "[]". Like this:
+**
+** abc[*]xyz Matches "abc*xyz" only
+*/
+int
+sqliteGlobCompare(const unsigned char *zPattern, const unsigned char *zString){
+ register int c;
+ int invert;
+ int seen;
+ int c2;
+
+ while( (c = *zPattern)!=0 ){
+ switch( c ){
+ case '*':
+ while( (c=zPattern[1]) == '*' || c == '?' ){
+ if( c=='?' ){
+ if( *zString==0 ) return 0;
+ sqliteNextChar(zString);
+ }
+ zPattern++;
+ }
+ if( c==0 ) return 1;
+ if( c=='[' ){
+ while( *zString && sqliteGlobCompare(&zPattern[1],zString)==0 ){
+ sqliteNextChar(zString);
+ }
+ return *zString!=0;
+ }else{
+ while( (c2 = *zString)!=0 ){
+ while( c2 != 0 && c2 != c ){ c2 = *++zString; }
+ if( c2==0 ) return 0;
+ if( sqliteGlobCompare(&zPattern[1],zString) ) return 1;
+ sqliteNextChar(zString);
+ }
+ return 0;
+ }
+ case '?': {
+ if( *zString==0 ) return 0;
+ sqliteNextChar(zString);
+ zPattern++;
+ break;
+ }
+ case '[': {
+ int prior_c = 0;
+ seen = 0;
+ invert = 0;
+ c = sqliteCharVal(zString);
+ if( c==0 ) return 0;
+ c2 = *++zPattern;
+ if( c2=='^' ){ invert = 1; c2 = *++zPattern; }
+ if( c2==']' ){
+ if( c==']' ) seen = 1;
+ c2 = *++zPattern;
+ }
+ while( (c2 = sqliteCharVal(zPattern))!=0 && c2!=']' ){
+ if( c2=='-' && zPattern[1]!=']' && zPattern[1]!=0 && prior_c>0 ){
+ zPattern++;
+ c2 = sqliteCharVal(zPattern);
+ if( c>=prior_c && c<=c2 ) seen = 1;
+ prior_c = 0;
+ }else if( c==c2 ){
+ seen = 1;
+ prior_c = c2;
+ }else{
+ prior_c = c2;
+ }
+ sqliteNextChar(zPattern);
+ }
+ if( c2==0 || (seen ^ invert)==0 ) return 0;
+ sqliteNextChar(zString);
+ zPattern++;
+ break;
+ }
+ default: {
+ if( c != *zString ) return 0;
+ zPattern++;
+ zString++;
+ break;
+ }
+ }
+ }
+ return *zString==0;
+}
+
+/*
+** Compare two UTF-8 strings for equality using the "LIKE" operator of
+** SQL. The '%' character matches any sequence of 0 or more
+** characters and '_' matches any single character. Case is
+** not significant.
+**
+** This routine is just an adaptation of the sqliteGlobCompare()
+** routine above.
+*/
+int
+sqliteLikeCompare(const unsigned char *zPattern, const unsigned char *zString){
+ register int c;
+ int c2;
+
+ while( (c = UpperToLower[*zPattern])!=0 ){
+ switch( c ){
+ case '%': {
+ while( (c=zPattern[1]) == '%' || c == '_' ){
+ if( c=='_' ){
+ if( *zString==0 ) return 0;
+ sqliteNextChar(zString);
+ }
+ zPattern++;
+ }
+ if( c==0 ) return 1;
+ c = UpperToLower[c];
+ while( (c2=UpperToLower[*zString])!=0 ){
+ while( c2 != 0 && c2 != c ){ c2 = UpperToLower[*++zString]; }
+ if( c2==0 ) return 0;
+ if( sqliteLikeCompare(&zPattern[1],zString) ) return 1;
+ sqliteNextChar(zString);
+ }
+ return 0;
+ }
+ case '_': {
+ if( *zString==0 ) return 0;
+ sqliteNextChar(zString);
+ zPattern++;
+ break;
+ }
+ default: {
+ if( c != UpperToLower[*zString] ) return 0;
+ zPattern++;
+ zString++;
+ break;
+ }
+ }
+ }
+ return *zString==0;
+}
+
+/*
+** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
+** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
+** when this routine is called.
+**
+** This routine is a attempt to detect if two threads use the
+** same sqlite* pointer at the same time. There is a race
+** condition so it is possible that the error is not detected.
+** But usually the problem will be seen. The result will be an
+** error which can be used to debug the application that is
+** using SQLite incorrectly.
+**
+** Ticket #202: If db->magic is not a valid open value, take care not
+** to modify the db structure at all. It could be that db is a stale
+** pointer. In other words, it could be that there has been a prior
+** call to sqlite_close(db) and db has been deallocated. And we do
+** not want to write into deallocated memory.
+*/
+int sqliteSafetyOn(sqlite *db){
+ if( db->magic==SQLITE_MAGIC_OPEN ){
+ db->magic = SQLITE_MAGIC_BUSY;
+ return 0;
+ }else if( db->magic==SQLITE_MAGIC_BUSY || db->magic==SQLITE_MAGIC_ERROR
+ || db->want_to_close ){
+ db->magic = SQLITE_MAGIC_ERROR;
+ db->flags |= SQLITE_Interrupt;
+ }
+ return 1;
+}
+
+/*
+** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
+** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
+** when this routine is called.
+*/
+int sqliteSafetyOff(sqlite *db){
+ if( db->magic==SQLITE_MAGIC_BUSY ){
+ db->magic = SQLITE_MAGIC_OPEN;
+ return 0;
+ }else if( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ERROR
+ || db->want_to_close ){
+ db->magic = SQLITE_MAGIC_ERROR;
+ db->flags |= SQLITE_Interrupt;
+ }
+ return 1;
+}
+
+/*
+** Check to make sure we are not currently executing an sqlite_exec().
+** If we are currently in an sqlite_exec(), return true and set
+** sqlite.magic to SQLITE_MAGIC_ERROR. This will cause a complete
+** shutdown of the database.
+**
+** This routine is used to try to detect when API routines are called
+** at the wrong time or in the wrong sequence.
+*/
+int sqliteSafetyCheck(sqlite *db){
+ if( db->pVdbe!=0 ){
+ db->magic = SQLITE_MAGIC_ERROR;
+ return 1;
+ }
+ return 0;
+}
diff --git a/src/3rdparty/sqlite/vacuum.c b/src/3rdparty/sqlite/vacuum.c
new file mode 100644
index 0000000..53a274d
--- /dev/null
+++ b/src/3rdparty/sqlite/vacuum.c
@@ -0,0 +1,320 @@
+/*
+** 2003 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the VACUUM command.
+**
+** Most of the code in this file may be omitted by defining the
+** SQLITE_OMIT_VACUUM macro.
+**
+** $Id: vacuum.c,v 1.12 2004/02/25 02:33:35 drh Exp $
+*/
+#include "sqliteInt.h"
+#include "os.h"
+
+/*
+** A structure for holding a dynamic string - a string that can grow
+** without bound.
+*/
+typedef struct dynStr dynStr;
+struct dynStr {
+ char *z; /* Text of the string in space obtained from sqliteMalloc() */
+ int nAlloc; /* Amount of space allocated to z[] */
+ int nUsed; /* Next unused slot in z[] */
+};
+
+/*
+** A structure that holds the vacuum context
+*/
+typedef struct vacuumStruct vacuumStruct;
+struct vacuumStruct {
+ sqlite *dbOld; /* Original database */
+ sqlite *dbNew; /* New database */
+ char **pzErrMsg; /* Write errors here */
+ int rc; /* Set to non-zero on an error */
+ const char *zTable; /* Name of a table being copied */
+ const char *zPragma; /* Pragma to execute with results */
+ dynStr s1, s2; /* Two dynamic strings */
+};
+
+#if !defined(SQLITE_OMIT_VACUUM) || SQLITE_OMIT_VACUUM
+/*
+** Append text to a dynamic string
+*/
+static void appendText(dynStr *p, const char *zText, int nText){
+ if( nText<0 ) nText = strlen(zText);
+ if( p->z==0 || p->nUsed + nText + 1 >= p->nAlloc ){
+ char *zNew;
+ p->nAlloc = p->nUsed + nText + 1000;
+ zNew = sqliteRealloc(p->z, p->nAlloc);
+ if( zNew==0 ){
+ sqliteFree(p->z);
+ memset(p, 0, sizeof(*p));
+ return;
+ }
+ p->z = zNew;
+ }
+ memcpy(&p->z[p->nUsed], zText, nText+1);
+ p->nUsed += nText;
+}
+
+/*
+** Append text to a dynamic string, having first put the text in quotes.
+*/
+static void appendQuoted(dynStr *p, const char *zText){
+ int i, j;
+ appendText(p, "'", 1);
+ for(i=j=0; zText[i]; i++){
+ if( zText[i]=='\'' ){
+ appendText(p, &zText[j], i-j+1);
+ j = i + 1;
+ appendText(p, "'", 1);
+ }
+ }
+ if( j<i ){
+ appendText(p, &zText[j], i-j);
+ }
+ appendText(p, "'", 1);
+}
+
+/*
+** Execute statements of SQL. If an error occurs, write the error
+** message into *pzErrMsg and return non-zero.
+*/
+static int execsql(char **pzErrMsg, sqlite *db, const char *zSql){
+ char *zErrMsg = 0;
+ int rc;
+
+ /* printf("***** executing *****\n%s\n", zSql); */
+ rc = sqlite_exec(db, zSql, 0, 0, &zErrMsg);
+ if( zErrMsg ){
+ sqliteSetString(pzErrMsg, zErrMsg, (char*)0);
+ sqlite_freemem(zErrMsg);
+ }
+ return rc;
+}
+
+/*
+** This is the second stage callback. Each invocation contains all the
+** data for a single row of a single table in the original database. This
+** routine must write that information into the new database.
+*/
+static int vacuumCallback2(void *pArg, int argc, char **argv, char **NotUsed){
+ vacuumStruct *p = (vacuumStruct*)pArg;
+ const char *zSep = "(";
+ int i;
+
+ if( argv==0 ) return 0;
+ p->s2.nUsed = 0;
+ appendText(&p->s2, "INSERT INTO ", -1);
+ appendQuoted(&p->s2, p->zTable);
+ appendText(&p->s2, " VALUES", -1);
+ for(i=0; i<argc; i++){
+ appendText(&p->s2, zSep, 1);
+ zSep = ",";
+ if( argv[i]==0 ){
+ appendText(&p->s2, "NULL", 4);
+ }else{
+ appendQuoted(&p->s2, argv[i]);
+ }
+ }
+ appendText(&p->s2,")", 1);
+ p->rc = execsql(p->pzErrMsg, p->dbNew, p->s2.z);
+ return p->rc;
+}
+
+/*
+** This is the first stage callback. Each invocation contains three
+** arguments where are taken from the SQLITE_MASTER table of the original
+** database: (1) the entry type, (2) the entry name, and (3) the SQL for
+** the entry. In all cases, execute the SQL of the third argument.
+** For tables, run a query to select all entries in that table and
+** transfer them to the second-stage callback.
+*/
+static int vacuumCallback1(void *pArg, int argc, char **argv, char **NotUsed){
+ vacuumStruct *p = (vacuumStruct*)pArg;
+ int rc = 0;
+ assert( argc==3 );
+ if( argv==0 ) return 0;
+ assert( argv[0]!=0 );
+ assert( argv[1]!=0 );
+ assert( argv[2]!=0 );
+ rc = execsql(p->pzErrMsg, p->dbNew, argv[2]);
+ if( rc==SQLITE_OK && strcmp(argv[0],"table")==0 ){
+ char *zErrMsg = 0;
+ p->s1.nUsed = 0;
+ appendText(&p->s1, "SELECT * FROM ", -1);
+ appendQuoted(&p->s1, argv[1]);
+ p->zTable = argv[1];
+ rc = sqlite_exec(p->dbOld, p->s1.z, vacuumCallback2, p, &zErrMsg);
+ if( zErrMsg ){
+ sqliteSetString(p->pzErrMsg, zErrMsg, (char*)0);
+ sqlite_freemem(zErrMsg);
+ }
+ }
+ if( rc!=SQLITE_ABORT ) p->rc = rc;
+ return rc;
+}
+
+/*
+** This callback is used to transfer PRAGMA settings from one database
+** to the other. The value in argv[0] should be passed to a pragma
+** identified by ((vacuumStruct*)pArg)->zPragma.
+*/
+static int vacuumCallback3(void *pArg, int argc, char **argv, char **NotUsed){
+ vacuumStruct *p = (vacuumStruct*)pArg;
+ char zBuf[200];
+ assert( argc==1 );
+ if( argv==0 ) return 0;
+ assert( argv[0]!=0 );
+ assert( strlen(p->zPragma)<100 );
+ assert( strlen(argv[0])<30 );
+ sprintf(zBuf,"PRAGMA %s=%s;", p->zPragma, argv[0]);
+ p->rc = execsql(p->pzErrMsg, p->dbNew, zBuf);
+ return p->rc;
+}
+
+/*
+** Generate a random name of 20 character in length.
+*/
+static void randomName(unsigned char *zBuf){
+ static const unsigned char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "0123456789";
+ int i;
+ sqliteRandomness(20, zBuf);
+ for(i=0; i<20; i++){
+ zBuf[i] = zChars[ zBuf[i]%(sizeof(zChars)-1) ];
+ }
+}
+#endif
+
+/*
+** The non-standard VACUUM command is used to clean up the database,
+** collapse free space, etc. It is modelled after the VACUUM command
+** in PostgreSQL.
+**
+** In version 1.0.x of SQLite, the VACUUM command would call
+** gdbm_reorganize() on all the database tables. But beginning
+** with 2.0.0, SQLite no longer uses GDBM so this command has
+** become a no-op.
+*/
+void sqliteVacuum(Parse *pParse, Token *pTableName){
+ Vdbe *v = sqliteGetVdbe(pParse);
+ sqliteVdbeAddOp(v, OP_Vacuum, 0, 0);
+ return;
+}
+
+/*
+** This routine implements the OP_Vacuum opcode of the VDBE.
+*/
+int sqliteRunVacuum(char **pzErrMsg, sqlite *db){
+#if !defined(SQLITE_OMIT_VACUUM) || SQLITE_OMIT_VACUUM
+ const char *zFilename; /* full pathname of the database file */
+ int nFilename; /* number of characters in zFilename[] */
+ char *zTemp = 0; /* a temporary file in same directory as zFilename */
+ sqlite *dbNew = 0; /* The new vacuumed database */
+ int rc = SQLITE_OK; /* Return code from service routines */
+ int i; /* Loop counter */
+ char *zErrMsg; /* Error message */
+ vacuumStruct sVac; /* Information passed to callbacks */
+
+ /* These are all of the pragmas that need to be transferred over
+ ** to the new database */
+ static const char *zPragma[] = {
+ "default_synchronous",
+ "default_cache_size",
+ /* "default_temp_store", */
+ };
+
+ if( db->flags & SQLITE_InTrans ){
+ sqliteSetString(pzErrMsg, "cannot VACUUM from within a transaction",
+ (char*)0);
+ return SQLITE_ERROR;
+ }
+ memset(&sVac, 0, sizeof(sVac));
+
+ /* Get the full pathname of the database file and create two
+ ** temporary filenames in the same directory as the original file.
+ */
+ zFilename = sqliteBtreeGetFilename(db->aDb[0].pBt);
+ if( zFilename==0 ){
+ /* This only happens with the in-memory database. VACUUM is a no-op
+ ** there, so just return */
+ return SQLITE_OK;
+ }
+ nFilename = strlen(zFilename);
+ zTemp = sqliteMalloc( nFilename+100 );
+ if( zTemp==0 ) return SQLITE_NOMEM;
+ strcpy(zTemp, zFilename);
+ for(i=0; i<10; i++){
+ zTemp[nFilename] = '-';
+ randomName(&zTemp[nFilename+1]);
+ if( !sqliteOsFileExists(zTemp) ) break;
+ }
+ if( i>=10 ){
+ sqliteSetString(pzErrMsg, "unable to create a temporary database file "
+ "in the same directory as the original database", (char*)0);
+ goto end_of_vacuum;
+ }
+
+
+ dbNew = sqlite_open(zTemp, 0, &zErrMsg);
+ if( dbNew==0 ){
+ sqliteSetString(pzErrMsg, "unable to open a temporary database at ",
+ zTemp, " - ", zErrMsg, (char*)0);
+ goto end_of_vacuum;
+ }
+ if( (rc = execsql(pzErrMsg, db, "BEGIN"))!=0 ) goto end_of_vacuum;
+ if( (rc = execsql(pzErrMsg, dbNew, "PRAGMA synchronous=off; BEGIN"))!=0 ){
+ goto end_of_vacuum;
+ }
+
+ sVac.dbOld = db;
+ sVac.dbNew = dbNew;
+ sVac.pzErrMsg = pzErrMsg;
+ for(i=0; rc==SQLITE_OK && i<sizeof(zPragma)/sizeof(zPragma[0]); i++){
+ char zBuf[200];
+ assert( strlen(zPragma[i])<100 );
+ sprintf(zBuf, "PRAGMA %s;", zPragma[i]);
+ sVac.zPragma = zPragma[i];
+ rc = sqlite_exec(db, zBuf, vacuumCallback3, &sVac, &zErrMsg);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite_exec(db,
+ "SELECT type, name, sql FROM sqlite_master "
+ "WHERE sql NOT NULL AND type!='view' "
+ "UNION ALL "
+ "SELECT type, name, sql FROM sqlite_master "
+ "WHERE sql NOT NULL AND type=='view'",
+ vacuumCallback1, &sVac, &zErrMsg);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqliteBtreeCopyFile(db->aDb[0].pBt, dbNew->aDb[0].pBt);
+ sqlite_exec(db, "COMMIT", 0, 0, 0);
+ sqliteResetInternalSchema(db, 0);
+ }
+
+end_of_vacuum:
+ if( rc && zErrMsg!=0 ){
+ sqliteSetString(pzErrMsg, "unable to vacuum database - ",
+ zErrMsg, (char*)0);
+ }
+ sqlite_exec(db, "ROLLBACK", 0, 0, 0);
+ if( dbNew ) sqlite_close(dbNew);
+ sqliteOsDelete(zTemp);
+ sqliteFree(zTemp);
+ sqliteFree(sVac.s1.z);
+ sqliteFree(sVac.s2.z);
+ if( zErrMsg ) sqlite_freemem(zErrMsg);
+ if( rc==SQLITE_ABORT ) sVac.rc = SQLITE_ERROR;
+ return sVac.rc;
+#endif
+}
diff --git a/src/3rdparty/sqlite/vdbe.c b/src/3rdparty/sqlite/vdbe.c
new file mode 100644
index 0000000..0d3fb43
--- /dev/null
+++ b/src/3rdparty/sqlite/vdbe.c
@@ -0,0 +1,4885 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** The code in this file implements execution method of the
+** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
+** handles housekeeping details such as creating and deleting
+** VDBE instances. This file is solely interested in executing
+** the VDBE program.
+**
+** In the external interface, an "sqlite_vm*" is an opaque pointer
+** to a VDBE.
+**
+** The SQL parser generates a program which is then executed by
+** the VDBE to do the work of the SQL statement. VDBE programs are
+** similar in form to assembly language. The program consists of
+** a linear sequence of operations. Each operation has an opcode
+** and 3 operands. Operands P1 and P2 are integers. Operand P3
+** is a null-terminated string. The P2 operand must be non-negative.
+** Opcodes will typically ignore one or more operands. Many opcodes
+** ignore all three operands.
+**
+** Computation results are stored on a stack. Each entry on the
+** stack is either an integer, a null-terminated string, a floating point
+** number, or the SQL "NULL" value. An inplicit conversion from one
+** type to the other occurs as necessary.
+**
+** Most of the code in this file is taken up by the sqliteVdbeExec()
+** function which does the work of interpreting a VDBE program.
+** But other routines are also provided to help in building up
+** a program instruction by instruction.
+**
+** Various scripts scan this source file in order to generate HTML
+** documentation, headers files, or other derived files. The formatting
+** of the code in this file is, therefore, important. See other comments
+** in this file for details. If in doubt, do not deviate from existing
+** commenting and indentation practices when changing or adding code.
+**
+** $Id: vdbe.c,v 1.268 2004/03/03 01:51:25 drh Exp $
+*/
+#include "sqliteInt.h"
+#include "os.h"
+#include <ctype.h>
+#include "vdbeInt.h"
+
+/*
+** The following global variable is incremented every time a cursor
+** moves, either by the OP_MoveTo or the OP_Next opcode. The test
+** procedures use this information to make sure that indices are
+** working correctly. This variable has no function other than to
+** help verify the correct operation of the library.
+*/
+int sqlite_search_count = 0;
+
+/*
+** When this global variable is positive, it gets decremented once before
+** each instruction in the VDBE. When reaches zero, the SQLITE_Interrupt
+** of the db.flags field is set in order to simulate and interrupt.
+**
+** This facility is used for testing purposes only. It does not function
+** in an ordinary build.
+*/
+int sqlite_interrupt_count = 0;
+
+/*
+** Advance the virtual machine to the next output row.
+**
+** The return vale will be either SQLITE_BUSY, SQLITE_DONE,
+** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE.
+**
+** SQLITE_BUSY means that the virtual machine attempted to open
+** a locked database and there is no busy callback registered.
+** Call sqlite_step() again to retry the open. *pN is set to 0
+** and *pazColName and *pazValue are both set to NULL.
+**
+** SQLITE_DONE means that the virtual machine has finished
+** executing. sqlite_step() should not be called again on this
+** virtual machine. *pN and *pazColName are set appropriately
+** but *pazValue is set to NULL.
+**
+** SQLITE_ROW means that the virtual machine has generated another
+** row of the result set. *pN is set to the number of columns in
+** the row. *pazColName is set to the names of the columns followed
+** by the column datatypes. *pazValue is set to the values of each
+** column in the row. The value of the i-th column is (*pazValue)[i].
+** The name of the i-th column is (*pazColName)[i] and the datatype
+** of the i-th column is (*pazColName)[i+*pN].
+**
+** SQLITE_ERROR means that a run-time error (such as a constraint
+** violation) has occurred. The details of the error will be returned
+** by the next call to sqlite_finalize(). sqlite_step() should not
+** be called again on the VM.
+**
+** SQLITE_MISUSE means that the this routine was called inappropriately.
+** Perhaps it was called on a virtual machine that had already been
+** finalized or on one that had previously returned SQLITE_ERROR or
+** SQLITE_DONE. Or it could be the case the the same database connection
+** is being used simulataneously by two or more threads.
+*/
+int sqlite_step(
+ sqlite_vm *pVm, /* The virtual machine to execute */
+ int *pN, /* OUT: Number of columns in result */
+ const char ***pazValue, /* OUT: Column data */
+ const char ***pazColName /* OUT: Column names and datatypes */
+){
+ Vdbe *p = (Vdbe*)pVm;
+ sqlite *db;
+ int rc;
+
+ if( p->magic!=VDBE_MAGIC_RUN ){
+ return SQLITE_MISUSE;
+ }
+ db = p->db;
+ if( sqliteSafetyOn(db) ){
+ p->rc = SQLITE_MISUSE;
+ return SQLITE_MISUSE;
+ }
+ if( p->explain ){
+ rc = sqliteVdbeList(p);
+ }else{
+ rc = sqliteVdbeExec(p);
+ }
+ if( rc==SQLITE_DONE || rc==SQLITE_ROW ){
+ if( pazColName ) *pazColName = (const char**)p->azColName;
+ if( pN ) *pN = p->nResColumn;
+ }else{
+ if( pazColName) *pazColName = 0;
+ if( pN ) *pN = 0;
+ }
+ if( pazValue ){
+ if( rc==SQLITE_ROW ){
+ *pazValue = (const char**)p->azResColumn;
+ }else{
+ *pazValue = 0;
+ }
+ }
+ if( sqliteSafetyOff(db) ){
+ return SQLITE_MISUSE;
+ }
+ return rc;
+}
+
+/*
+** Insert a new aggregate element and make it the element that
+** has focus.
+**
+** Return 0 on success and 1 if memory is exhausted.
+*/
+static int AggInsert(Agg *p, char *zKey, int nKey){
+ AggElem *pElem, *pOld;
+ int i;
+ Mem *pMem;
+ pElem = sqliteMalloc( sizeof(AggElem) + nKey +
+ (p->nMem-1)*sizeof(pElem->aMem[0]) );
+ if( pElem==0 ) return 1;
+ pElem->zKey = (char*)&pElem->aMem[p->nMem];
+ memcpy(pElem->zKey, zKey, nKey);
+ pElem->nKey = nKey;
+ pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem);
+ if( pOld!=0 ){
+ assert( pOld==pElem ); /* Malloc failed on insert */
+ sqliteFree(pOld);
+ return 0;
+ }
+ for(i=0, pMem=pElem->aMem; i<p->nMem; i++, pMem++){
+ pMem->flags = MEM_Null;
+ }
+ p->pCurrent = pElem;
+ return 0;
+}
+
+/*
+** Get the AggElem currently in focus
+*/
+#define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P)))
+static AggElem *_AggInFocus(Agg *p){
+ HashElem *pElem = sqliteHashFirst(&p->hash);
+ if( pElem==0 ){
+ AggInsert(p,"",1);
+ pElem = sqliteHashFirst(&p->hash);
+ }
+ return pElem ? sqliteHashData(pElem) : 0;
+}
+
+/*
+** Convert the given stack entity into a string if it isn't one
+** already.
+*/
+#define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);}
+static int hardStringify(Mem *pStack){
+ int fg = pStack->flags;
+ if( fg & MEM_Real ){
+ sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r);
+ }else if( fg & MEM_Int ){
+ sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i);
+ }else{
+ pStack->zShort[0] = 0;
+ }
+ pStack->z = pStack->zShort;
+ pStack->n = strlen(pStack->zShort)+1;
+ pStack->flags = MEM_Str | MEM_Short;
+ return 0;
+}
+
+/*
+** Convert the given stack entity into a string that has been obtained
+** from sqliteMalloc(). This is different from Stringify() above in that
+** Stringify() will use the NBFS bytes of static string space if the string
+** will fit but this routine always mallocs for space.
+** Return non-zero if we run out of memory.
+*/
+#define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0)
+static int hardDynamicify(Mem *pStack){
+ int fg = pStack->flags;
+ char *z;
+ if( (fg & MEM_Str)==0 ){
+ hardStringify(pStack);
+ }
+ assert( (fg & MEM_Dyn)==0 );
+ z = sqliteMallocRaw( pStack->n );
+ if( z==0 ) return 1;
+ memcpy(z, pStack->z, pStack->n);
+ pStack->z = z;
+ pStack->flags |= MEM_Dyn;
+ return 0;
+}
+
+/*
+** An ephemeral string value (signified by the MEM_Ephem flag) contains
+** a pointer to a dynamically allocated string where some other entity
+** is responsible for deallocating that string. Because the stack entry
+** does not control the string, it might be deleted without the stack
+** entry knowing it.
+**
+** This routine converts an ephemeral string into a dynamically allocated
+** string that the stack entry itself controls. In other words, it
+** converts an MEM_Ephem string into an MEM_Dyn string.
+*/
+#define Deephemeralize(P) \
+ if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;}
+static int hardDeephem(Mem *pStack){
+ char *z;
+ assert( (pStack->flags & MEM_Ephem)!=0 );
+ z = sqliteMallocRaw( pStack->n );
+ if( z==0 ) return 1;
+ memcpy(z, pStack->z, pStack->n);
+ pStack->z = z;
+ pStack->flags &= ~MEM_Ephem;
+ pStack->flags |= MEM_Dyn;
+ return 0;
+}
+
+/*
+** Release the memory associated with the given stack level. This
+** leaves the Mem.flags field in an inconsistent state.
+*/
+#define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); }
+
+/*
+** Pop the stack N times.
+*/
+static void popStack(Mem **ppTos, int N){
+ Mem *pTos = *ppTos;
+ while( N>0 ){
+ N--;
+ Release(pTos);
+ pTos--;
+ }
+ *ppTos = pTos;
+}
+
+/*
+** Return TRUE if zNum is a 32-bit signed integer and write
+** the value of the integer into *pNum. If zNum is not an integer
+** or is an integer that is too large to be expressed with just 32
+** bits, then return false.
+**
+** Under Linux (RedHat 7.2) this routine is much faster than atoi()
+** for converting strings into integers.
+*/
+static int toInt(const char *zNum, int *pNum){
+ int v = 0;
+ int neg;
+ int i, c;
+ if( *zNum=='-' ){
+ neg = 1;
+ zNum++;
+ }else if( *zNum=='+' ){
+ neg = 0;
+ zNum++;
+ }else{
+ neg = 0;
+ }
+ for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
+ v = v*10 + c - '0';
+ }
+ *pNum = neg ? -v : v;
+ return c==0 && i>0 && (i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0));
+}
+
+/*
+** Convert the given stack entity into a integer if it isn't one
+** already.
+**
+** Any prior string or real representation is invalidated.
+** NULLs are converted into 0.
+*/
+#define Integerify(P) if(((P)->flags&MEM_Int)==0){ hardIntegerify(P); }
+static void hardIntegerify(Mem *pStack){
+ if( pStack->flags & MEM_Real ){
+ pStack->i = (int)pStack->r;
+ Release(pStack);
+ }else if( pStack->flags & MEM_Str ){
+ toInt(pStack->z, &pStack->i);
+ Release(pStack);
+ }else{
+ pStack->i = 0;
+ }
+ pStack->flags = MEM_Int;
+}
+
+/*
+** Get a valid Real representation for the given stack element.
+**
+** Any prior string or integer representation is retained.
+** NULLs are converted into 0.0.
+*/
+#define Realify(P) if(((P)->flags&MEM_Real)==0){ hardRealify(P); }
+static void hardRealify(Mem *pStack){
+ if( pStack->flags & MEM_Str ){
+ pStack->r = sqliteAtoF(pStack->z, 0);
+ }else if( pStack->flags & MEM_Int ){
+ pStack->r = pStack->i;
+ }else{
+ pStack->r = 0.0;
+ }
+ pStack->flags |= MEM_Real;
+}
+
+/*
+** The parameters are pointers to the head of two sorted lists
+** of Sorter structures. Merge these two lists together and return
+** a single sorted list. This routine forms the core of the merge-sort
+** algorithm.
+**
+** In the case of a tie, left sorts in front of right.
+*/
+static Sorter *Merge(Sorter *pLeft, Sorter *pRight){
+ Sorter sHead;
+ Sorter *pTail;
+ pTail = &sHead;
+ pTail->pNext = 0;
+ while( pLeft && pRight ){
+ int c = sqliteSortCompare(pLeft->zKey, pRight->zKey);
+ if( c<=0 ){
+ pTail->pNext = pLeft;
+ pLeft = pLeft->pNext;
+ }else{
+ pTail->pNext = pRight;
+ pRight = pRight->pNext;
+ }
+ pTail = pTail->pNext;
+ }
+ if( pLeft ){
+ pTail->pNext = pLeft;
+ }else if( pRight ){
+ pTail->pNext = pRight;
+ }
+ return sHead.pNext;
+}
+
+/*
+** The following routine works like a replacement for the standard
+** library routine fgets(). The difference is in how end-of-line (EOL)
+** is handled. Standard fgets() uses LF for EOL under unix, CRLF
+** under windows, and CR under mac. This routine accepts any of these
+** character sequences as an EOL mark. The EOL mark is replaced by
+** a single LF character in zBuf.
+*/
+static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){
+ int i, c;
+ for(i=0; i<nBuf-1 && (c=getc(in))!=EOF; i++){
+ zBuf[i] = c;
+ if( c=='\r' || c=='\n' ){
+ if( c=='\r' ){
+ zBuf[i] = '\n';
+ c = getc(in);
+ if( c!=EOF && c!='\n' ) ungetc(c, in);
+ }
+ i++;
+ break;
+ }
+ }
+ zBuf[i] = 0;
+ return i>0 ? zBuf : 0;
+}
+
+/*
+** Make sure there is space in the Vdbe structure to hold at least
+** mxCursor cursors. If there is not currently enough space, then
+** allocate more.
+**
+** If a memory allocation error occurs, return 1. Return 0 if
+** everything works.
+*/
+static int expandCursorArraySize(Vdbe *p, int mxCursor){
+ if( mxCursor>=p->nCursor ){
+ Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) );
+ if( aCsr==0 ) return 1;
+ p->aCsr = aCsr;
+ memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor));
+ p->nCursor = mxCursor+1;
+ }
+ return 0;
+}
+
+#ifdef VDBE_PROFILE
+/*
+** The following routine only works on pentium-class processors.
+** It uses the RDTSC opcode to read cycle count value out of the
+** processor and returns that value. This can be used for high-res
+** profiling.
+*/
+__inline__ unsigned long long int hwtime(void){
+ unsigned long long int x;
+ __asm__("rdtsc\n\t"
+ "mov %%edx, %%ecx\n\t"
+ :"=A" (x));
+ return x;
+}
+#endif
+
+/*
+** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
+** sqlite_interrupt() routine has been called. If it has been, then
+** processing of the VDBE program is interrupted.
+**
+** This macro added to every instruction that does a jump in order to
+** implement a loop. This test used to be on every single instruction,
+** but that meant we more testing that we needed. By only testing the
+** flag on jump instructions, we get a (small) speed improvement.
+*/
+#define CHECK_FOR_INTERRUPT \
+ if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt;
+
+
+/*
+** Execute as much of a VDBE program as we can then return.
+**
+** sqliteVdbeMakeReady() must be called before this routine in order to
+** close the program with a final OP_Halt and to set up the callbacks
+** and the error message pointer.
+**
+** Whenever a row or result data is available, this routine will either
+** invoke the result callback (if there is one) or return with
+** SQLITE_ROW.
+**
+** If an attempt is made to open a locked database, then this routine
+** will either invoke the busy callback (if there is one) or it will
+** return SQLITE_BUSY.
+**
+** If an error occurs, an error message is written to memory obtained
+** from sqliteMalloc() and p->zErrMsg is made to point to that memory.
+** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
+**
+** If the callback ever returns non-zero, then the program exits
+** immediately. There will be no error message but the p->rc field is
+** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
+**
+** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
+** routine to return SQLITE_ERROR.
+**
+** Other fatal errors return SQLITE_ERROR.
+**
+** After this routine has finished, sqliteVdbeFinalize() should be
+** used to clean up the mess that was left behind.
+*/
+int sqliteVdbeExec(
+ Vdbe *p /* The VDBE */
+){
+ int pc; /* The program counter */
+ Op *pOp; /* Current operation */
+ int rc = SQLITE_OK; /* Value to return */
+ sqlite *db = p->db; /* The database */
+ Mem *pTos; /* Top entry in the operand stack */
+ char zBuf[100]; /* Space to sprintf() an integer */
+#ifdef VDBE_PROFILE
+ unsigned long long start; /* CPU clock count at start of opcode */
+ int origPc; /* Program counter at start of opcode */
+#endif
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ int nProgressOps = 0; /* Opcodes executed since progress callback. */
+#endif
+
+ if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
+ assert( db->magic==SQLITE_MAGIC_BUSY );
+ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
+ p->rc = SQLITE_OK;
+ assert( p->explain==0 );
+ if( sqlite_malloc_failed ) goto no_mem;
+ pTos = p->pTos;
+ if( p->popStack ){
+ popStack(&pTos, p->popStack);
+ p->popStack = 0;
+ }
+ CHECK_FOR_INTERRUPT;
+ for(pc=p->pc; rc==SQLITE_OK; pc++){
+ assert( pc>=0 && pc<p->nOp );
+ assert( pTos<=&p->aStack[pc] );
+#ifdef VDBE_PROFILE
+ origPc = pc;
+ start = hwtime();
+#endif
+ pOp = &p->aOp[pc];
+
+ /* Only allow tracing if NDEBUG is not defined.
+ */
+#ifndef NDEBUG
+ if( p->trace ){
+ sqliteVdbePrintOp(p->trace, pc, pOp);
+ }
+#endif
+
+ /* Check to see if we need to simulate an interrupt. This only happens
+ ** if we have a special test build.
+ */
+#ifdef SQLITE_TEST
+ if( sqlite_interrupt_count>0 ){
+ sqlite_interrupt_count--;
+ if( sqlite_interrupt_count==0 ){
+ sqlite_interrupt(db);
+ }
+ }
+#endif
+
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ /* Call the progress callback if it is configured and the required number
+ ** of VDBE ops have been executed (either since this invocation of
+ ** sqliteVdbeExec() or since last time the progress callback was called).
+ ** If the progress callback returns non-zero, exit the virtual machine with
+ ** a return code SQLITE_ABORT.
+ */
+ if( db->xProgress ){
+ if( db->nProgressOps==nProgressOps ){
+ if( db->xProgress(db->pProgressArg)!=0 ){
+ rc = SQLITE_ABORT;
+ continue; /* skip to the next iteration of the for loop */
+ }
+ nProgressOps = 0;
+ }
+ nProgressOps++;
+ }
+#endif
+
+ switch( pOp->opcode ){
+
+/*****************************************************************************
+** What follows is a massive switch statement where each case implements a
+** separate instruction in the virtual machine. If we follow the usual
+** indentation conventions, each case should be indented by 6 spaces. But
+** that is a lot of wasted space on the left margin. So the code within
+** the switch statement will break with convention and be flush-left. Another
+** big comment (similar to this one) will mark the point in the code where
+** we transition back to normal indentation.
+**
+** The formatting of each case is important. The makefile for SQLite
+** generates two C files "opcodes.h" and "opcodes.c" by scanning this
+** file looking for lines that begin with "case OP_". The opcodes.h files
+** will be filled with #defines that give unique integer values to each
+** opcode and the opcodes.c file is filled with an array of strings where
+** each string is the symbolic name for the corresponding opcode.
+**
+** Documentation about VDBE opcodes is generated by scanning this file
+** for lines of that contain "Opcode:". That line and all subsequent
+** comment lines are used in the generation of the opcode.html documentation
+** file.
+**
+** SUMMARY:
+**
+** Formatting is important to scripts that scan this file.
+** Do not deviate from the formatting style currently in use.
+**
+*****************************************************************************/
+
+/* Opcode: Goto * P2 *
+**
+** An unconditional jump to address P2.
+** The next instruction executed will be
+** the one at index P2 from the beginning of
+** the program.
+*/
+case OP_Goto: {
+ CHECK_FOR_INTERRUPT;
+ pc = pOp->p2 - 1;
+ break;
+}
+
+/* Opcode: Gosub * P2 *
+**
+** Push the current address plus 1 onto the return address stack
+** and then jump to address P2.
+**
+** The return address stack is of limited depth. If too many
+** OP_Gosub operations occur without intervening OP_Returns, then
+** the return address stack will fill up and processing will abort
+** with a fatal error.
+*/
+case OP_Gosub: {
+ if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){
+ sqliteSetString(&p->zErrMsg, "return address stack overflow", (char*)0);
+ p->rc = SQLITE_INTERNAL;
+ return SQLITE_ERROR;
+ }
+ p->returnStack[p->returnDepth++] = pc+1;
+ pc = pOp->p2 - 1;
+ break;
+}
+
+/* Opcode: Return * * *
+**
+** Jump immediately to the next instruction after the last unreturned
+** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
+** processing aborts with a fatal error.
+*/
+case OP_Return: {
+ if( p->returnDepth<=0 ){
+ sqliteSetString(&p->zErrMsg, "return address stack underflow", (char*)0);
+ p->rc = SQLITE_INTERNAL;
+ return SQLITE_ERROR;
+ }
+ p->returnDepth--;
+ pc = p->returnStack[p->returnDepth] - 1;
+ break;
+}
+
+/* Opcode: Halt P1 P2 *
+**
+** Exit immediately. All open cursors, Lists, Sorts, etc are closed
+** automatically.
+**
+** P1 is the result code returned by sqlite_exec(). For a normal
+** halt, this should be SQLITE_OK (0). For errors, it can be some
+** other value. If P1!=0 then P2 will determine whether or not to
+** rollback the current transaction. Do not rollback if P2==OE_Fail.
+** Do the rollback if P2==OE_Rollback. If P2==OE_Abort, then back
+** out all changes that have occurred during this execution of the
+** VDBE, but do not rollback the transaction.
+**
+** There is an implied "Halt 0 0 0" instruction inserted at the very end of
+** every program. So a jump past the last instruction of the program
+** is the same as executing Halt.
+*/
+case OP_Halt: {
+ p->magic = VDBE_MAGIC_HALT;
+ p->pTos = pTos;
+ if( pOp->p1!=SQLITE_OK ){
+ p->rc = pOp->p1;
+ p->errorAction = pOp->p2;
+ if( pOp->p3 ){
+ sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
+ }
+ return SQLITE_ERROR;
+ }else{
+ p->rc = SQLITE_OK;
+ return SQLITE_DONE;
+ }
+}
+
+/* Opcode: Integer P1 * P3
+**
+** The integer value P1 is pushed onto the stack. If P3 is not zero
+** then it is assumed to be a string representation of the same integer.
+*/
+case OP_Integer: {
+ pTos++;
+ pTos->i = pOp->p1;
+ pTos->flags = MEM_Int;
+ if( pOp->p3 ){
+ pTos->z = pOp->p3;
+ pTos->flags |= MEM_Str | MEM_Static;
+ pTos->n = strlen(pOp->p3)+1;
+ }
+ break;
+}
+
+/* Opcode: String * * P3
+**
+** The string value P3 is pushed onto the stack. If P3==0 then a
+** NULL is pushed onto the stack.
+*/
+case OP_String: {
+ char *z = pOp->p3;
+ pTos++;
+ if( z==0 ){
+ pTos->flags = MEM_Null;
+ }else{
+ pTos->z = z;
+ pTos->n = strlen(z) + 1;
+ pTos->flags = MEM_Str | MEM_Static;
+ }
+ break;
+}
+
+/* Opcode: Variable P1 * *
+**
+** Push the value of variable P1 onto the stack. A variable is
+** an unknown in the original SQL string as handed to sqlite_compile().
+** Any occurance of the '?' character in the original SQL is considered
+** a variable. Variables in the SQL string are number from left to
+** right beginning with 1. The values of variables are set using the
+** sqlite_bind() API.
+*/
+case OP_Variable: {
+ int j = pOp->p1 - 1;
+ pTos++;
+ if( j>=0 && j<p->nVar && p->azVar[j]!=0 ){
+ pTos->z = p->azVar[j];
+ pTos->n = p->anVar[j];
+ pTos->flags = MEM_Str | MEM_Static;
+ }else{
+ pTos->flags = MEM_Null;
+ }
+ break;
+}
+
+/* Opcode: Pop P1 * *
+**
+** P1 elements are popped off of the top of stack and discarded.
+*/
+case OP_Pop: {
+ assert( pOp->p1>=0 );
+ popStack(&pTos, pOp->p1);
+ assert( pTos>=&p->aStack[-1] );
+ break;
+}
+
+/* Opcode: Dup P1 P2 *
+**
+** A copy of the P1-th element of the stack
+** is made and pushed onto the top of the stack.
+** The top of the stack is element 0. So the
+** instruction "Dup 0 0 0" will make a copy of the
+** top of the stack.
+**
+** If the content of the P1-th element is a dynamically
+** allocated string, then a new copy of that string
+** is made if P2==0. If P2!=0, then just a pointer
+** to the string is copied.
+**
+** Also see the Pull instruction.
+*/
+case OP_Dup: {
+ Mem *pFrom = &pTos[-pOp->p1];
+ assert( pFrom<=pTos && pFrom>=p->aStack );
+ pTos++;
+ memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS);
+ if( pTos->flags & MEM_Str ){
+ if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){
+ pTos->flags &= ~MEM_Dyn;
+ pTos->flags |= MEM_Ephem;
+ }else if( pTos->flags & MEM_Short ){
+ memcpy(pTos->zShort, pFrom->zShort, pTos->n);
+ pTos->z = pTos->zShort;
+ }else if( (pTos->flags & MEM_Static)==0 ){
+ pTos->z = sqliteMallocRaw(pFrom->n);
+ if( sqlite_malloc_failed ) goto no_mem;
+ memcpy(pTos->z, pFrom->z, pFrom->n);
+ pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short);
+ pTos->flags |= MEM_Dyn;
+ }
+ }
+ break;
+}
+
+/* Opcode: Pull P1 * *
+**
+** The P1-th element is removed from its current location on
+** the stack and pushed back on top of the stack. The
+** top of the stack is element 0, so "Pull 0 0 0" is
+** a no-op. "Pull 1 0 0" swaps the top two elements of
+** the stack.
+**
+** See also the Dup instruction.
+*/
+case OP_Pull: {
+ Mem *pFrom = &pTos[-pOp->p1];
+ int i;
+ Mem ts;
+
+ ts = *pFrom;
+ Deephemeralize(pTos);
+ for(i=0; i<pOp->p1; i++, pFrom++){
+ Deephemeralize(&pFrom[1]);
+ *pFrom = pFrom[1];
+ assert( (pFrom->flags & MEM_Ephem)==0 );
+ if( pFrom->flags & MEM_Short ){
+ assert( pFrom->flags & MEM_Str );
+ assert( pFrom->z==pFrom[1].zShort );
+ pFrom->z = pFrom->zShort;
+ }
+ }
+ *pTos = ts;
+ if( pTos->flags & MEM_Short ){
+ assert( pTos->flags & MEM_Str );
+ assert( pTos->z==pTos[-pOp->p1].zShort );
+ pTos->z = pTos->zShort;
+ }
+ break;
+}
+
+/* Opcode: Push P1 * *
+**
+** Overwrite the value of the P1-th element down on the
+** stack (P1==0 is the top of the stack) with the value
+** of the top of the stack. Then pop the top of the stack.
+*/
+case OP_Push: {
+ Mem *pTo = &pTos[-pOp->p1];
+
+ assert( pTo>=p->aStack );
+ Deephemeralize(pTos);
+ Release(pTo);
+ *pTo = *pTos;
+ if( pTo->flags & MEM_Short ){
+ assert( pTo->z==pTos->zShort );
+ pTo->z = pTo->zShort;
+ }
+ pTos--;
+ break;
+}
+
+
+/* Opcode: ColumnName P1 P2 P3
+**
+** P3 becomes the P1-th column name (first is 0). An array of pointers
+** to all column names is passed as the 4th parameter to the callback.
+** If P2==1 then this is the last column in the result set and thus the
+** number of columns in the result set will be P1. There must be at least
+** one OP_ColumnName with a P2==1 before invoking OP_Callback and the
+** number of columns specified in OP_Callback must one more than the P1
+** value of the OP_ColumnName that has P2==1.
+*/
+case OP_ColumnName: {
+ assert( pOp->p1>=0 && pOp->p1<p->nOp );
+ p->azColName[pOp->p1] = pOp->p3;
+ p->nCallback = 0;
+ if( pOp->p2 ) p->nResColumn = pOp->p1+1;
+ break;
+}
+
+/* Opcode: Callback P1 * *
+**
+** Pop P1 values off the stack and form them into an array. Then
+** invoke the callback function using the newly formed array as the
+** 3rd parameter.
+*/
+case OP_Callback: {
+ int i;
+ char **azArgv = p->zArgv;
+ Mem *pCol;
+
+ pCol = &pTos[1-pOp->p1];
+ assert( pCol>=p->aStack );
+ for(i=0; i<pOp->p1; i++, pCol++){
+ if( pCol->flags & MEM_Null ){
+ azArgv[i] = 0;
+ }else{
+ Stringify(pCol);
+ azArgv[i] = pCol->z;
+ }
+ }
+ azArgv[i] = 0;
+ p->nCallback++;
+ p->azResColumn = azArgv;
+ assert( p->nResColumn==pOp->p1 );
+ p->popStack = pOp->p1;
+ p->pc = pc + 1;
+ p->pTos = pTos;
+ return SQLITE_ROW;
+}
+
+/* Opcode: Concat P1 P2 P3
+**
+** Look at the first P1 elements of the stack. Append them all
+** together with the lowest element first. Use P3 as a separator.
+** Put the result on the top of the stack. The original P1 elements
+** are popped from the stack if P2==0 and retained if P2==1. If
+** any element of the stack is NULL, then the result is NULL.
+**
+** If P3 is NULL, then use no separator. When P1==1, this routine
+** makes a copy of the top stack element into memory obtained
+** from sqliteMalloc().
+*/
+case OP_Concat: {
+ char *zNew;
+ int nByte;
+ int nField;
+ int i, j;
+ char *zSep;
+ int nSep;
+ Mem *pTerm;
+
+ nField = pOp->p1;
+ zSep = pOp->p3;
+ if( zSep==0 ) zSep = "";
+ nSep = strlen(zSep);
+ assert( &pTos[1-nField] >= p->aStack );
+ nByte = 1 - nSep;
+ pTerm = &pTos[1-nField];
+ for(i=0; i<nField; i++, pTerm++){
+ if( pTerm->flags & MEM_Null ){
+ nByte = -1;
+ break;
+ }else{
+ Stringify(pTerm);
+ nByte += pTerm->n - 1 + nSep;
+ }
+ }
+ if( nByte<0 ){
+ if( pOp->p2==0 ){
+ popStack(&pTos, nField);
+ }
+ pTos++;
+ pTos->flags = MEM_Null;
+ break;
+ }
+ zNew = sqliteMallocRaw( nByte );
+ if( zNew==0 ) goto no_mem;
+ j = 0;
+ pTerm = &pTos[1-nField];
+ for(i=j=0; i<nField; i++, pTerm++){
+ assert( pTerm->flags & MEM_Str );
+ memcpy(&zNew[j], pTerm->z, pTerm->n-1);
+ j += pTerm->n-1;
+ if( nSep>0 && i<nField-1 ){
+ memcpy(&zNew[j], zSep, nSep);
+ j += nSep;
+ }
+ }
+ zNew[j] = 0;
+ if( pOp->p2==0 ){
+ popStack(&pTos, nField);
+ }
+ pTos++;
+ pTos->n = nByte;
+ pTos->flags = MEM_Str|MEM_Dyn;
+ pTos->z = zNew;
+ break;
+}
+
+/* Opcode: Add * * *
+**
+** Pop the top two elements from the stack, add them together,
+** and push the result back onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the addition.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: Multiply * * *
+**
+** Pop the top two elements from the stack, multiply them together,
+** and push the result back onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the multiplication.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: Subtract * * *
+**
+** Pop the top two elements from the stack, subtract the
+** first (what was on top of the stack) from the second (the
+** next on stack)
+** and push the result back onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the subtraction.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: Divide * * *
+**
+** Pop the top two elements from the stack, divide the
+** first (what was on top of the stack) from the second (the
+** next on stack)
+** and push the result back onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the division. Division by zero returns NULL.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: Remainder * * *
+**
+** Pop the top two elements from the stack, divide the
+** first (what was on top of the stack) from the second (the
+** next on stack)
+** and push the remainder after division onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the division. Division by zero returns NULL.
+** If either operand is NULL, the result is NULL.
+*/
+case OP_Add:
+case OP_Subtract:
+case OP_Multiply:
+case OP_Divide:
+case OP_Remainder: {
+ Mem *pNos = &pTos[-1];
+ assert( pNos>=p->aStack );
+ if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){
+ Release(pTos);
+ pTos--;
+ Release(pTos);
+ pTos->flags = MEM_Null;
+ }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
+ int a, b;
+ a = pTos->i;
+ b = pNos->i;
+ switch( pOp->opcode ){
+ case OP_Add: b += a; break;
+ case OP_Subtract: b -= a; break;
+ case OP_Multiply: b *= a; break;
+ case OP_Divide: {
+ if( a==0 ) goto divide_by_zero;
+ b /= a;
+ break;
+ }
+ default: {
+ if( a==0 ) goto divide_by_zero;
+ b %= a;
+ break;
+ }
+ }
+ Release(pTos);
+ pTos--;
+ Release(pTos);
+ pTos->i = b;
+ pTos->flags = MEM_Int;
+ }else{
+ double a, b;
+ Realify(pTos);
+ Realify(pNos);
+ a = pTos->r;
+ b = pNos->r;
+ switch( pOp->opcode ){
+ case OP_Add: b += a; break;
+ case OP_Subtract: b -= a; break;
+ case OP_Multiply: b *= a; break;
+ case OP_Divide: {
+ if( a==0.0 ) goto divide_by_zero;
+ b /= a;
+ break;
+ }
+ default: {
+ int ia = (int)a;
+ int ib = (int)b;
+ if( ia==0.0 ) goto divide_by_zero;
+ b = ib % ia;
+ break;
+ }
+ }
+ Release(pTos);
+ pTos--;
+ Release(pTos);
+ pTos->r = b;
+ pTos->flags = MEM_Real;
+ }
+ break;
+
+divide_by_zero:
+ Release(pTos);
+ pTos--;
+ Release(pTos);
+ pTos->flags = MEM_Null;
+ break;
+}
+
+/* Opcode: Function P1 * P3
+**
+** Invoke a user function (P3 is a pointer to a Function structure that
+** defines the function) with P1 string arguments taken from the stack.
+** Pop all arguments from the stack and push back the result.
+**
+** See also: AggFunc
+*/
+case OP_Function: {
+ int n, i;
+ Mem *pArg;
+ char **azArgv;
+ sqlite_func ctx;
+
+ n = pOp->p1;
+ pArg = &pTos[1-n];
+ azArgv = p->zArgv;
+ for(i=0; i<n; i++, pArg++){
+ if( pArg->flags & MEM_Null ){
+ azArgv[i] = 0;
+ }else{
+ Stringify(pArg);
+ azArgv[i] = pArg->z;
+ }
+ }
+ ctx.pFunc = (FuncDef*)pOp->p3;
+ ctx.s.flags = MEM_Null;
+ ctx.s.z = 0;
+ ctx.isError = 0;
+ ctx.isStep = 0;
+ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
+ (*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv);
+ if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
+ popStack(&pTos, n);
+ pTos++;
+ *pTos = ctx.s;
+ if( pTos->flags & MEM_Short ){
+ pTos->z = pTos->zShort;
+ }
+ if( ctx.isError ){
+ sqliteSetString(&p->zErrMsg,
+ (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0);
+ rc = SQLITE_ERROR;
+ }
+ break;
+}
+
+/* Opcode: BitAnd * * *
+**
+** Pop the top two elements from the stack. Convert both elements
+** to integers. Push back onto the stack the bit-wise AND of the
+** two elements.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: BitOr * * *
+**
+** Pop the top two elements from the stack. Convert both elements
+** to integers. Push back onto the stack the bit-wise OR of the
+** two elements.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: ShiftLeft * * *
+**
+** Pop the top two elements from the stack. Convert both elements
+** to integers. Push back onto the stack the top element shifted
+** left by N bits where N is the second element on the stack.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: ShiftRight * * *
+**
+** Pop the top two elements from the stack. Convert both elements
+** to integers. Push back onto the stack the top element shifted
+** right by N bits where N is the second element on the stack.
+** If either operand is NULL, the result is NULL.
+*/
+case OP_BitAnd:
+case OP_BitOr:
+case OP_ShiftLeft:
+case OP_ShiftRight: {
+ Mem *pNos = &pTos[-1];
+ int a, b;
+
+ assert( pNos>=p->aStack );
+ if( (pTos->flags | pNos->flags) & MEM_Null ){
+ popStack(&pTos, 2);
+ pTos++;
+ pTos->flags = MEM_Null;
+ break;
+ }
+ Integerify(pTos);
+ Integerify(pNos);
+ a = pTos->i;
+ b = pNos->i;
+ switch( pOp->opcode ){
+ case OP_BitAnd: a &= b; break;
+ case OP_BitOr: a |= b; break;
+ case OP_ShiftLeft: a <<= b; break;
+ case OP_ShiftRight: a >>= b; break;
+ default: /* CANT HAPPEN */ break;
+ }
+ assert( (pTos->flags & MEM_Dyn)==0 );
+ assert( (pNos->flags & MEM_Dyn)==0 );
+ pTos--;
+ Release(pTos);
+ pTos->i = a;
+ pTos->flags = MEM_Int;
+ break;
+}
+
+/* Opcode: AddImm P1 * *
+**
+** Add the value P1 to whatever is on top of the stack. The result
+** is always an integer.
+**
+** To force the top of the stack to be an integer, just add 0.
+*/
+case OP_AddImm: {
+ assert( pTos>=p->aStack );
+ Integerify(pTos);
+ pTos->i += pOp->p1;
+ break;
+}
+
+/* Opcode: ForceInt P1 P2 *
+**
+** Convert the top of the stack into an integer. If the current top of
+** the stack is not numeric (meaning that is is a NULL or a string that
+** does not look like an integer or floating point number) then pop the
+** stack and jump to P2. If the top of the stack is numeric then
+** convert it into the least integer that is greater than or equal to its
+** current value if P1==0, or to the least integer that is strictly
+** greater than its current value if P1==1.
+*/
+case OP_ForceInt: {
+ int v;
+ assert( pTos>=p->aStack );
+ if( (pTos->flags & (MEM_Int|MEM_Real))==0
+ && ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){
+ Release(pTos);
+ pTos--;
+ pc = pOp->p2 - 1;
+ break;
+ }
+ if( pTos->flags & MEM_Int ){
+ v = pTos->i + (pOp->p1!=0);
+ }else{
+ Realify(pTos);
+ v = (int)pTos->r;
+ if( pTos->r>(double)v ) v++;
+ if( pOp->p1 && pTos->r==(double)v ) v++;
+ }
+ Release(pTos);
+ pTos->i = v;
+ pTos->flags = MEM_Int;
+ break;
+}
+
+/* Opcode: MustBeInt P1 P2 *
+**
+** Force the top of the stack to be an integer. If the top of the
+** stack is not an integer and cannot be converted into an integer
+** with out data loss, then jump immediately to P2, or if P2==0
+** raise an SQLITE_MISMATCH exception.
+**
+** If the top of the stack is not an integer and P2 is not zero and
+** P1 is 1, then the stack is popped. In all other cases, the depth
+** of the stack is unchanged.
+*/
+case OP_MustBeInt: {
+ assert( pTos>=p->aStack );
+ if( pTos->flags & MEM_Int ){
+ /* Do nothing */
+ }else if( pTos->flags & MEM_Real ){
+ int i = (int)pTos->r;
+ double r = (double)i;
+ if( r!=pTos->r ){
+ goto mismatch;
+ }
+ pTos->i = i;
+ }else if( pTos->flags & MEM_Str ){
+ int v;
+ if( !toInt(pTos->z, &v) ){
+ double r;
+ if( !sqliteIsNumber(pTos->z) ){
+ goto mismatch;
+ }
+ Realify(pTos);
+ v = (int)pTos->r;
+ r = (double)v;
+ if( r!=pTos->r ){
+ goto mismatch;
+ }
+ }
+ pTos->i = v;
+ }else{
+ goto mismatch;
+ }
+ Release(pTos);
+ pTos->flags = MEM_Int;
+ break;
+
+mismatch:
+ if( pOp->p2==0 ){
+ rc = SQLITE_MISMATCH;
+ goto abort_due_to_error;
+ }else{
+ if( pOp->p1 ) popStack(&pTos, 1);
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: Eq P1 P2 *
+**
+** Pop the top two elements from the stack. If they are equal, then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared for equality that way. Otherwise the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrEq.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: Ne P1 P2 *
+**
+** Pop the top two elements from the stack. If they are not equal, then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared in that format. Otherwise the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrNe.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: Lt P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is less than the first (the top of stack), then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+** In other words, jump if NOS<TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared in that format. Numeric values are always less than
+** non-numeric values. If both operands are non-numeric, the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrLt.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: Le P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is less than or equal to the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS<=TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared in that format. Numeric values are always less than
+** non-numeric values. If both operands are non-numeric, the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrLe.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: Gt P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is greater than the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS>TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared in that format. Numeric values are always less than
+** non-numeric values. If both operands are non-numeric, the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrGt.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: Ge P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the next
+** on stack) is greater than or equal to the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS>=TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared in that format. Numeric values are always less than
+** non-numeric values. If both operands are non-numeric, the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrGe.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+case OP_Eq:
+case OP_Ne:
+case OP_Lt:
+case OP_Le:
+case OP_Gt:
+case OP_Ge: {
+ Mem *pNos = &pTos[-1];
+ int c, v;
+ int ft, fn;
+ assert( pNos>=p->aStack );
+ ft = pTos->flags;
+ fn = pNos->flags;
+ if( (ft | fn) & MEM_Null ){
+ popStack(&pTos, 2);
+ if( pOp->p2 ){
+ if( pOp->p1 ) pc = pOp->p2-1;
+ }else{
+ pTos++;
+ pTos->flags = MEM_Null;
+ }
+ break;
+ }else if( (ft & fn & MEM_Int)==MEM_Int ){
+ c = pNos->i - pTos->i;
+ }else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){
+ c = v - pTos->i;
+ }else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){
+ c = pNos->i - v;
+ }else{
+ Stringify(pTos);
+ Stringify(pNos);
+ c = sqliteCompare(pNos->z, pTos->z);
+ }
+ switch( pOp->opcode ){
+ case OP_Eq: c = c==0; break;
+ case OP_Ne: c = c!=0; break;
+ case OP_Lt: c = c<0; break;
+ case OP_Le: c = c<=0; break;
+ case OP_Gt: c = c>0; break;
+ default: c = c>=0; break;
+ }
+ popStack(&pTos, 2);
+ if( pOp->p2 ){
+ if( c ) pc = pOp->p2-1;
+ }else{
+ pTos++;
+ pTos->i = c;
+ pTos->flags = MEM_Int;
+ }
+ break;
+}
+/* INSERT NO CODE HERE!
+**
+** The opcode numbers are extracted from this source file by doing
+**
+** grep '^case OP_' vdbe.c | ... >opcodes.h
+**
+** The opcodes are numbered in the order that they appear in this file.
+** But in order for the expression generating code to work right, the
+** string comparison operators that follow must be numbered exactly 6
+** greater than the numeric comparison opcodes above. So no other
+** cases can appear between the two.
+*/
+/* Opcode: StrEq P1 P2 *
+**
+** Pop the top two elements from the stack. If they are equal, then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Eq.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: StrNe P1 P2 *
+**
+** Pop the top two elements from the stack. If they are not equal, then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Ne.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: StrLt P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is less than the first (the top of stack), then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+** In other words, jump if NOS<TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Lt.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: StrLe P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is less than or equal to the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS<=TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Le.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: StrGt P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is greater than the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS>TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Gt.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: StrGe P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the next
+** on stack) is greater than or equal to the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS>=TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Ge.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+case OP_StrEq:
+case OP_StrNe:
+case OP_StrLt:
+case OP_StrLe:
+case OP_StrGt:
+case OP_StrGe: {
+ Mem *pNos = &pTos[-1];
+ int c;
+ assert( pNos>=p->aStack );
+ if( (pNos->flags | pTos->flags) & MEM_Null ){
+ popStack(&pTos, 2);
+ if( pOp->p2 ){
+ if( pOp->p1 ) pc = pOp->p2-1;
+ }else{
+ pTos++;
+ pTos->flags = MEM_Null;
+ }
+ break;
+ }else{
+ Stringify(pTos);
+ Stringify(pNos);
+ c = strcmp(pNos->z, pTos->z);
+ }
+ /* The asserts on each case of the following switch are there to verify
+ ** that string comparison opcodes are always exactly 6 greater than the
+ ** corresponding numeric comparison opcodes. The code generator depends
+ ** on this fact.
+ */
+ switch( pOp->opcode ){
+ case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break;
+ case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break;
+ case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break;
+ case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break;
+ case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break;
+ default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break;
+ }
+ popStack(&pTos, 2);
+ if( pOp->p2 ){
+ if( c ) pc = pOp->p2-1;
+ }else{
+ pTos++;
+ pTos->flags = MEM_Int;
+ pTos->i = c;
+ }
+ break;
+}
+
+/* Opcode: And * * *
+**
+** Pop two values off the stack. Take the logical AND of the
+** two values and push the resulting boolean value back onto the
+** stack.
+*/
+/* Opcode: Or * * *
+**
+** Pop two values off the stack. Take the logical OR of the
+** two values and push the resulting boolean value back onto the
+** stack.
+*/
+case OP_And:
+case OP_Or: {
+ Mem *pNos = &pTos[-1];
+ int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
+
+ assert( pNos>=p->aStack );
+ if( pTos->flags & MEM_Null ){
+ v1 = 2;
+ }else{
+ Integerify(pTos);
+ v1 = pTos->i==0;
+ }
+ if( pNos->flags & MEM_Null ){
+ v2 = 2;
+ }else{
+ Integerify(pNos);
+ v2 = pNos->i==0;
+ }
+ if( pOp->opcode==OP_And ){
+ static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
+ v1 = and_logic[v1*3+v2];
+ }else{
+ static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
+ v1 = or_logic[v1*3+v2];
+ }
+ popStack(&pTos, 2);
+ pTos++;
+ if( v1==2 ){
+ pTos->flags = MEM_Null;
+ }else{
+ pTos->i = v1==0;
+ pTos->flags = MEM_Int;
+ }
+ break;
+}
+
+/* Opcode: Negative * * *
+**
+** Treat the top of the stack as a numeric quantity. Replace it
+** with its additive inverse. If the top of the stack is NULL
+** its value is unchanged.
+*/
+/* Opcode: AbsValue * * *
+**
+** Treat the top of the stack as a numeric quantity. Replace it
+** with its absolute value. If the top of the stack is NULL
+** its value is unchanged.
+*/
+case OP_Negative:
+case OP_AbsValue: {
+ assert( pTos>=p->aStack );
+ if( pTos->flags & MEM_Real ){
+ Release(pTos);
+ if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
+ pTos->r = -pTos->r;
+ }
+ pTos->flags = MEM_Real;
+ }else if( pTos->flags & MEM_Int ){
+ Release(pTos);
+ if( pOp->opcode==OP_Negative || pTos->i<0 ){
+ pTos->i = -pTos->i;
+ }
+ pTos->flags = MEM_Int;
+ }else if( pTos->flags & MEM_Null ){
+ /* Do nothing */
+ }else{
+ Realify(pTos);
+ Release(pTos);
+ if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
+ pTos->r = -pTos->r;
+ }
+ pTos->flags = MEM_Real;
+ }
+ break;
+}
+
+/* Opcode: Not * * *
+**
+** Interpret the top of the stack as a boolean value. Replace it
+** with its complement. If the top of the stack is NULL its value
+** is unchanged.
+*/
+case OP_Not: {
+ assert( pTos>=p->aStack );
+ if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
+ Integerify(pTos);
+ Release(pTos);
+ pTos->i = !pTos->i;
+ pTos->flags = MEM_Int;
+ break;
+}
+
+/* Opcode: BitNot * * *
+**
+** Interpret the top of the stack as an value. Replace it
+** with its ones-complement. If the top of the stack is NULL its
+** value is unchanged.
+*/
+case OP_BitNot: {
+ assert( pTos>=p->aStack );
+ if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
+ Integerify(pTos);
+ Release(pTos);
+ pTos->i = ~pTos->i;
+ pTos->flags = MEM_Int;
+ break;
+}
+
+/* Opcode: Noop * * *
+**
+** Do nothing. This instruction is often useful as a jump
+** destination.
+*/
+case OP_Noop: {
+ break;
+}
+
+/* Opcode: If P1 P2 *
+**
+** Pop a single boolean from the stack. If the boolean popped is
+** true, then jump to p2. Otherwise continue to the next instruction.
+** An integer is false if zero and true otherwise. A string is
+** false if it has zero length and true otherwise.
+**
+** If the value popped of the stack is NULL, then take the jump if P1
+** is true and fall through if P1 is false.
+*/
+/* Opcode: IfNot P1 P2 *
+**
+** Pop a single boolean from the stack. If the boolean popped is
+** false, then jump to p2. Otherwise continue to the next instruction.
+** An integer is false if zero and true otherwise. A string is
+** false if it has zero length and true otherwise.
+**
+** If the value popped of the stack is NULL, then take the jump if P1
+** is true and fall through if P1 is false.
+*/
+case OP_If:
+case OP_IfNot: {
+ int c;
+ assert( pTos>=p->aStack );
+ if( pTos->flags & MEM_Null ){
+ c = pOp->p1;
+ }else{
+ Integerify(pTos);
+ c = pTos->i;
+ if( pOp->opcode==OP_IfNot ) c = !c;
+ }
+ assert( (pTos->flags & MEM_Dyn)==0 );
+ pTos--;
+ if( c ) pc = pOp->p2-1;
+ break;
+}
+
+/* Opcode: IsNull P1 P2 *
+**
+** If any of the top abs(P1) values on the stack are NULL, then jump
+** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack
+** unchanged.
+*/
+case OP_IsNull: {
+ int i, cnt;
+ Mem *pTerm;
+ cnt = pOp->p1;
+ if( cnt<0 ) cnt = -cnt;
+ pTerm = &pTos[1-cnt];
+ assert( pTerm>=p->aStack );
+ for(i=0; i<cnt; i++, pTerm++){
+ if( pTerm->flags & MEM_Null ){
+ pc = pOp->p2-1;
+ break;
+ }
+ }
+ if( pOp->p1>0 ) popStack(&pTos, cnt);
+ break;
+}
+
+/* Opcode: NotNull P1 P2 *
+**
+** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the
+** stack if P1 times if P1 is greater than zero. If P1 is less than
+** zero then leave the stack unchanged.
+*/
+case OP_NotNull: {
+ int i, cnt;
+ cnt = pOp->p1;
+ if( cnt<0 ) cnt = -cnt;
+ assert( &pTos[1-cnt] >= p->aStack );
+ for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
+ if( i>=cnt ) pc = pOp->p2-1;
+ if( pOp->p1>0 ) popStack(&pTos, cnt);
+ break;
+}
+
+/* Opcode: MakeRecord P1 P2 *
+**
+** Convert the top P1 entries of the stack into a single entry
+** suitable for use as a data record in a database table. The
+** details of the format are irrelavant as long as the OP_Column
+** opcode can decode the record later. Refer to source code
+** comments for the details of the record format.
+**
+** If P2 is true (non-zero) and one or more of the P1 entries
+** that go into building the record is NULL, then add some extra
+** bytes to the record to make it distinct for other entries created
+** during the same run of the VDBE. The extra bytes added are a
+** counter that is reset with each run of the VDBE, so records
+** created this way will not necessarily be distinct across runs.
+** But they should be distinct for transient tables (created using
+** OP_OpenTemp) which is what they are intended for.
+**
+** (Later:) The P2==1 option was intended to make NULLs distinct
+** for the UNION operator. But I have since discovered that NULLs
+** are indistinct for UNION. So this option is never used.
+*/
+case OP_MakeRecord: {
+ char *zNewRecord;
+ int nByte;
+ int nField;
+ int i, j;
+ int idxWidth;
+ u32 addr;
+ Mem *pRec;
+ int addUnique = 0; /* True to cause bytes to be added to make the
+ ** generated record distinct */
+ char zTemp[NBFS]; /* Temp space for small records */
+
+ /* Assuming the record contains N fields, the record format looks
+ ** like this:
+ **
+ ** -------------------------------------------------------------------
+ ** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) |
+ ** -------------------------------------------------------------------
+ **
+ ** All data fields are converted to strings before being stored and
+ ** are stored with their null terminators. NULL entries omit the
+ ** null terminator. Thus an empty string uses 1 byte and a NULL uses
+ ** zero bytes. Data(0) is taken from the lowest element of the stack
+ ** and data(N-1) is the top of the stack.
+ **
+ ** Each of the idx() entries is either 1, 2, or 3 bytes depending on
+ ** how big the total record is. Idx(0) contains the offset to the start
+ ** of data(0). Idx(k) contains the offset to the start of data(k).
+ ** Idx(N) contains the total number of bytes in the record.
+ */
+ nField = pOp->p1;
+ pRec = &pTos[1-nField];
+ assert( pRec>=p->aStack );
+ nByte = 0;
+ for(i=0; i<nField; i++, pRec++){
+ if( pRec->flags & MEM_Null ){
+ addUnique = pOp->p2;
+ }else{
+ Stringify(pRec);
+ nByte += pRec->n;
+ }
+ }
+ if( addUnique ) nByte += sizeof(p->uniqueCnt);
+ if( nByte + nField + 1 < 256 ){
+ idxWidth = 1;
+ }else if( nByte + 2*nField + 2 < 65536 ){
+ idxWidth = 2;
+ }else{
+ idxWidth = 3;
+ }
+ nByte += idxWidth*(nField + 1);
+ if( nByte>MAX_BYTES_PER_ROW ){
+ rc = SQLITE_TOOBIG;
+ goto abort_due_to_error;
+ }
+ if( nByte<=NBFS ){
+ zNewRecord = zTemp;
+ }else{
+ zNewRecord = sqliteMallocRaw( nByte );
+ if( zNewRecord==0 ) goto no_mem;
+ }
+ j = 0;
+ addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt);
+ for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
+ zNewRecord[j++] = addr & 0xff;
+ if( idxWidth>1 ){
+ zNewRecord[j++] = (addr>>8)&0xff;
+ if( idxWidth>2 ){
+ zNewRecord[j++] = (addr>>16)&0xff;
+ }
+ }
+ if( (pRec->flags & MEM_Null)==0 ){
+ addr += pRec->n;
+ }
+ }
+ zNewRecord[j++] = addr & 0xff;
+ if( idxWidth>1 ){
+ zNewRecord[j++] = (addr>>8)&0xff;
+ if( idxWidth>2 ){
+ zNewRecord[j++] = (addr>>16)&0xff;
+ }
+ }
+ if( addUnique ){
+ memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt));
+ p->uniqueCnt++;
+ j += sizeof(p->uniqueCnt);
+ }
+ for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
+ if( (pRec->flags & MEM_Null)==0 ){
+ memcpy(&zNewRecord[j], pRec->z, pRec->n);
+ j += pRec->n;
+ }
+ }
+ popStack(&pTos, nField);
+ pTos++;
+ pTos->n = nByte;
+ if( nByte<=NBFS ){
+ assert( zNewRecord==zTemp );
+ memcpy(pTos->zShort, zTemp, nByte);
+ pTos->z = pTos->zShort;
+ pTos->flags = MEM_Str | MEM_Short;
+ }else{
+ assert( zNewRecord!=zTemp );
+ pTos->z = zNewRecord;
+ pTos->flags = MEM_Str | MEM_Dyn;
+ }
+ break;
+}
+
+/* Opcode: MakeKey P1 P2 P3
+**
+** Convert the top P1 entries of the stack into a single entry suitable
+** for use as the key in an index. The top P1 records are
+** converted to strings and merged. The null-terminators
+** are retained and used as separators.
+** The lowest entry in the stack is the first field and the top of the
+** stack becomes the last.
+**
+** If P2 is not zero, then the original entries remain on the stack
+** and the new key is pushed on top. If P2 is zero, the original
+** data is popped off the stack first then the new key is pushed
+** back in its place.
+**
+** P3 is a string that is P1 characters long. Each character is either
+** an 'n' or a 't' to indicates if the argument should be intepreted as
+** numeric or text type. The first character of P3 corresponds to the
+** lowest element on the stack. If P3 is NULL then all arguments are
+** assumed to be of the numeric type.
+**
+** The type makes a difference in that text-type fields may not be
+** introduced by 'b' (as described in the next paragraph). The
+** first character of a text-type field must be either 'a' (if it is NULL)
+** or 'c'. Numeric fields will be introduced by 'b' if their content
+** looks like a well-formed number. Otherwise the 'a' or 'c' will be
+** used.
+**
+** The key is a concatenation of fields. Each field is terminated by
+** a single 0x00 character. A NULL field is introduced by an 'a' and
+** is followed immediately by its 0x00 terminator. A numeric field is
+** introduced by a single character 'b' and is followed by a sequence
+** of characters that represent the number such that a comparison of
+** the character string using memcpy() sorts the numbers in numerical
+** order. The character strings for numbers are generated using the
+** sqliteRealToSortable() function. A text field is introduced by a
+** 'c' character and is followed by the exact text of the field. The
+** use of an 'a', 'b', or 'c' character at the beginning of each field
+** guarantees that NULLs sort before numbers and that numbers sort
+** before text. 0x00 characters do not occur except as separators
+** between fields.
+**
+** See also: MakeIdxKey, SortMakeKey
+*/
+/* Opcode: MakeIdxKey P1 P2 P3
+**
+** Convert the top P1 entries of the stack into a single entry suitable
+** for use as the key in an index. In addition, take one additional integer
+** off of the stack, treat that integer as a four-byte record number, and
+** append the four bytes to the key. Thus a total of P1+1 entries are
+** popped from the stack for this instruction and a single entry is pushed
+** back. The first P1 entries that are popped are strings and the last
+** entry (the lowest on the stack) is an integer record number.
+**
+** The converstion of the first P1 string entries occurs just like in
+** MakeKey. Each entry is separated from the others by a null.
+** The entire concatenation is null-terminated. The lowest entry
+** in the stack is the first field and the top of the stack becomes the
+** last.
+**
+** If P2 is not zero and one or more of the P1 entries that go into the
+** generated key is NULL, then jump to P2 after the new key has been
+** pushed on the stack. In other words, jump to P2 if the key is
+** guaranteed to be unique. This jump can be used to skip a subsequent
+** uniqueness test.
+**
+** P3 is a string that is P1 characters long. Each character is either
+** an 'n' or a 't' to indicates if the argument should be numeric or
+** text. The first character corresponds to the lowest element on the
+** stack. If P3 is null then all arguments are assumed to be numeric.
+**
+** See also: MakeKey, SortMakeKey
+*/
+case OP_MakeIdxKey:
+case OP_MakeKey: {
+ char *zNewKey;
+ int nByte;
+ int nField;
+ int addRowid;
+ int i, j;
+ int containsNull = 0;
+ Mem *pRec;
+ char zTemp[NBFS];
+
+ addRowid = pOp->opcode==OP_MakeIdxKey;
+ nField = pOp->p1;
+ pRec = &pTos[1-nField];
+ assert( pRec>=p->aStack );
+ nByte = 0;
+ for(j=0, i=0; i<nField; i++, j++, pRec++){
+ int flags = pRec->flags;
+ int len;
+ char *z;
+ if( flags & MEM_Null ){
+ nByte += 2;
+ containsNull = 1;
+ }else if( pOp->p3 && pOp->p3[j]=='t' ){
+ Stringify(pRec);
+ pRec->flags &= ~(MEM_Int|MEM_Real);
+ nByte += pRec->n+1;
+ }else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){
+ if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){
+ pRec->r = pRec->i;
+ }else if( (flags & (MEM_Real|MEM_Int))==0 ){
+ pRec->r = sqliteAtoF(pRec->z, 0);
+ }
+ Release(pRec);
+ z = pRec->zShort;
+ sqliteRealToSortable(pRec->r, z);
+ len = strlen(z);
+ pRec->z = 0;
+ pRec->flags = MEM_Real;
+ pRec->n = len+1;
+ nByte += pRec->n+1;
+ }else{
+ nByte += pRec->n+1;
+ }
+ }
+ if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
+ rc = SQLITE_TOOBIG;
+ goto abort_due_to_error;
+ }
+ if( addRowid ) nByte += sizeof(u32);
+ if( nByte<=NBFS ){
+ zNewKey = zTemp;
+ }else{
+ zNewKey = sqliteMallocRaw( nByte );
+ if( zNewKey==0 ) goto no_mem;
+ }
+ j = 0;
+ pRec = &pTos[1-nField];
+ for(i=0; i<nField; i++, pRec++){
+ if( pRec->flags & MEM_Null ){
+ zNewKey[j++] = 'a';
+ zNewKey[j++] = 0;
+ }else if( pRec->flags==MEM_Real ){
+ zNewKey[j++] = 'b';
+ memcpy(&zNewKey[j], pRec->zShort, pRec->n);
+ j += pRec->n;
+ }else{
+ assert( pRec->flags & MEM_Str );
+ zNewKey[j++] = 'c';
+ memcpy(&zNewKey[j], pRec->z, pRec->n);
+ j += pRec->n;
+ }
+ }
+ if( addRowid ){
+ u32 iKey;
+ pRec = &pTos[-nField];
+ assert( pRec>=p->aStack );
+ Integerify(pRec);
+ iKey = intToKey(pRec->i);
+ memcpy(&zNewKey[j], &iKey, sizeof(u32));
+ popStack(&pTos, nField+1);
+ if( pOp->p2 && containsNull ) pc = pOp->p2 - 1;
+ }else{
+ if( pOp->p2==0 ) popStack(&pTos, nField);
+ }
+ pTos++;
+ pTos->n = nByte;
+ if( nByte<=NBFS ){
+ assert( zNewKey==zTemp );
+ pTos->z = pTos->zShort;
+ memcpy(pTos->zShort, zTemp, nByte);
+ pTos->flags = MEM_Str | MEM_Short;
+ }else{
+ pTos->z = zNewKey;
+ pTos->flags = MEM_Str | MEM_Dyn;
+ }
+ break;
+}
+
+/* Opcode: IncrKey * * *
+**
+** The top of the stack should contain an index key generated by
+** The MakeKey opcode. This routine increases the least significant
+** byte of that key by one. This is used so that the MoveTo opcode
+** will move to the first entry greater than the key rather than to
+** the key itself.
+*/
+case OP_IncrKey: {
+ assert( pTos>=p->aStack );
+ /* The IncrKey opcode is only applied to keys generated by
+ ** MakeKey or MakeIdxKey and the results of those operands
+ ** are always dynamic strings or zShort[] strings. So we
+ ** are always free to modify the string in place.
+ */
+ assert( pTos->flags & (MEM_Dyn|MEM_Short) );
+ pTos->z[pTos->n-1]++;
+ break;
+}
+
+/* Opcode: Checkpoint P1 * *
+**
+** Begin a checkpoint. A checkpoint is the beginning of a operation that
+** is part of a larger transaction but which might need to be rolled back
+** itself without effecting the containing transaction. A checkpoint will
+** be automatically committed or rollback when the VDBE halts.
+**
+** The checkpoint is begun on the database file with index P1. The main
+** database file has an index of 0 and the file used for temporary tables
+** has an index of 1.
+*/
+case OP_Checkpoint: {
+ int i = pOp->p1;
+ if( i>=0 && i<db->nDb && db->aDb[i].pBt && db->aDb[i].inTrans==1 ){
+ rc = sqliteBtreeBeginCkpt(db->aDb[i].pBt);
+ if( rc==SQLITE_OK ) db->aDb[i].inTrans = 2;
+ }
+ break;
+}
+
+/* Opcode: Transaction P1 * *
+**
+** Begin a transaction. The transaction ends when a Commit or Rollback
+** opcode is encountered. Depending on the ON CONFLICT setting, the
+** transaction might also be rolled back if an error is encountered.
+**
+** P1 is the index of the database file on which the transaction is
+** started. Index 0 is the main database file and index 1 is the
+** file used for temporary tables.
+**
+** A write lock is obtained on the database file when a transaction is
+** started. No other process can read or write the file while the
+** transaction is underway. Starting a transaction also creates a
+** rollback journal. A transaction must be started before any changes
+** can be made to the database.
+*/
+case OP_Transaction: {
+ int busy = 1;
+ int i = pOp->p1;
+ assert( i>=0 && i<db->nDb );
+ if( db->aDb[i].inTrans ) break;
+ while( db->aDb[i].pBt!=0 && busy ){
+ rc = sqliteBtreeBeginTrans(db->aDb[i].pBt);
+ switch( rc ){
+ case SQLITE_BUSY: {
+ if( db->xBusyCallback==0 ){
+ p->pc = pc;
+ p->undoTransOnError = 1;
+ p->rc = SQLITE_BUSY;
+ p->pTos = pTos;
+ return SQLITE_BUSY;
+ }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
+ busy = 0;
+ }
+ break;
+ }
+ case SQLITE_READONLY: {
+ rc = SQLITE_OK;
+ /* Fall thru into the next case */
+ }
+ case SQLITE_OK: {
+ p->inTempTrans = 0;
+ busy = 0;
+ break;
+ }
+ default: {
+ goto abort_due_to_error;
+ }
+ }
+ }
+ db->aDb[i].inTrans = 1;
+ p->undoTransOnError = 1;
+ break;
+}
+
+/* Opcode: Commit * * *
+**
+** Cause all modifications to the database that have been made since the
+** last Transaction to actually take effect. No additional modifications
+** are allowed until another transaction is started. The Commit instruction
+** deletes the journal file and releases the write lock on the database.
+** A read lock continues to be held if there are still cursors open.
+*/
+case OP_Commit: {
+ int i;
+ if( db->xCommitCallback!=0 ){
+ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
+ if( db->xCommitCallback(db->pCommitArg)!=0 ){
+ rc = SQLITE_CONSTRAINT;
+ }
+ if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
+ }
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ if( db->aDb[i].inTrans ){
+ rc = sqliteBtreeCommit(db->aDb[i].pBt);
+ db->aDb[i].inTrans = 0;
+ }
+ }
+ if( rc==SQLITE_OK ){
+ sqliteCommitInternalChanges(db);
+ }else{
+ sqliteRollbackAll(db);
+ }
+ break;
+}
+
+/* Opcode: Rollback P1 * *
+**
+** Cause all modifications to the database that have been made since the
+** last Transaction to be undone. The database is restored to its state
+** before the Transaction opcode was executed. No additional modifications
+** are allowed until another transaction is started.
+**
+** P1 is the index of the database file that is committed. An index of 0
+** is used for the main database and an index of 1 is used for the file used
+** to hold temporary tables.
+**
+** This instruction automatically closes all cursors and releases both
+** the read and write locks on the indicated database.
+*/
+case OP_Rollback: {
+ sqliteRollbackAll(db);
+ break;
+}
+
+/* Opcode: ReadCookie P1 P2 *
+**
+** Read cookie number P2 from database P1 and push it onto the stack.
+** P2==0 is the schema version. P2==1 is the database format.
+** P2==2 is the recommended pager cache size, and so forth. P1==0 is
+** the main database file and P1==1 is the database file used to store
+** temporary tables.
+**
+** There must be a read-lock on the database (either a transaction
+** must be started or there must be an open cursor) before
+** executing this instruction.
+*/
+case OP_ReadCookie: {
+ int aMeta[SQLITE_N_BTREE_META];
+ assert( pOp->p2<SQLITE_N_BTREE_META );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( db->aDb[pOp->p1].pBt!=0 );
+ rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
+ pTos++;
+ pTos->i = aMeta[1+pOp->p2];
+ pTos->flags = MEM_Int;
+ break;
+}
+
+/* Opcode: SetCookie P1 P2 *
+**
+** Write the top of the stack into cookie number P2 of database P1.
+** P2==0 is the schema version. P2==1 is the database format.
+** P2==2 is the recommended pager cache size, and so forth. P1==0 is
+** the main database file and P1==1 is the database file used to store
+** temporary tables.
+**
+** A transaction must be started before executing this opcode.
+*/
+case OP_SetCookie: {
+ int aMeta[SQLITE_N_BTREE_META];
+ assert( pOp->p2<SQLITE_N_BTREE_META );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( db->aDb[pOp->p1].pBt!=0 );
+ assert( pTos>=p->aStack );
+ Integerify(pTos)
+ rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
+ if( rc==SQLITE_OK ){
+ aMeta[1+pOp->p2] = pTos->i;
+ rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta);
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: VerifyCookie P1 P2 *
+**
+** Check the value of global database parameter number 0 (the
+** schema version) and make sure it is equal to P2.
+** P1 is the database number which is 0 for the main database file
+** and 1 for the file holding temporary tables and some higher number
+** for auxiliary databases.
+**
+** The cookie changes its value whenever the database schema changes.
+** This operation is used to detect when that the cookie has changed
+** and that the current process needs to reread the schema.
+**
+** Either a transaction needs to have been started or an OP_Open needs
+** to be executed (to establish a read lock) before this opcode is
+** invoked.
+*/
+case OP_VerifyCookie: {
+ int aMeta[SQLITE_N_BTREE_META];
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
+ if( rc==SQLITE_OK && aMeta[1]!=pOp->p2 ){
+ sqliteSetString(&p->zErrMsg, "database schema has changed", (char*)0);
+ rc = SQLITE_SCHEMA;
+ }
+ break;
+}
+
+/* Opcode: OpenRead P1 P2 P3
+**
+** Open a read-only cursor for the database table whose root page is
+** P2 in a database file. The database file is determined by an
+** integer from the top of the stack. 0 means the main database and
+** 1 means the database used for temporary tables. Give the new
+** cursor an identifier of P1. The P1 values need not be contiguous
+** but all P1 values should be small integers. It is an error for
+** P1 to be negative.
+**
+** If P2==0 then take the root page number from the next of the stack.
+**
+** There will be a read lock on the database whenever there is an
+** open cursor. If the database was unlocked prior to this instruction
+** then a read lock is acquired as part of this instruction. A read
+** lock allows other processes to read the database but prohibits
+** any other process from modifying the database. The read lock is
+** released when all cursors are closed. If this instruction attempts
+** to get a read lock but fails, the script terminates with an
+** SQLITE_BUSY error code.
+**
+** The P3 value is the name of the table or index being opened.
+** The P3 value is not actually used by this opcode and may be
+** omitted. But the code generator usually inserts the index or
+** table name into P3 to make the code easier to read.
+**
+** See also OpenWrite.
+*/
+/* Opcode: OpenWrite P1 P2 P3
+**
+** Open a read/write cursor named P1 on the table or index whose root
+** page is P2. If P2==0 then take the root page number from the stack.
+**
+** The P3 value is the name of the table or index being opened.
+** The P3 value is not actually used by this opcode and may be
+** omitted. But the code generator usually inserts the index or
+** table name into P3 to make the code easier to read.
+**
+** This instruction works just like OpenRead except that it opens the cursor
+** in read/write mode. For a given table, there can be one or more read-only
+** cursors or a single read/write cursor but not both.
+**
+** See also OpenRead.
+*/
+case OP_OpenRead:
+case OP_OpenWrite: {
+ int busy = 0;
+ int i = pOp->p1;
+ int p2 = pOp->p2;
+ int wrFlag;
+ Btree *pX;
+ int iDb;
+
+ assert( pTos>=p->aStack );
+ Integerify(pTos);
+ iDb = pTos->i;
+ pTos--;
+ assert( iDb>=0 && iDb<db->nDb );
+ pX = db->aDb[iDb].pBt;
+ assert( pX!=0 );
+ wrFlag = pOp->opcode==OP_OpenWrite;
+ if( p2<=0 ){
+ assert( pTos>=p->aStack );
+ Integerify(pTos);
+ p2 = pTos->i;
+ pTos--;
+ if( p2<2 ){
+ sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0);
+ rc = SQLITE_INTERNAL;
+ break;
+ }
+ }
+ assert( i>=0 );
+ if( expandCursorArraySize(p, i) ) goto no_mem;
+ sqliteVdbeCleanupCursor(&p->aCsr[i]);
+ memset(&p->aCsr[i], 0, sizeof(Cursor));
+ p->aCsr[i].nullRow = 1;
+ if( pX==0 ) break;
+ do{
+ rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor);
+ switch( rc ){
+ case SQLITE_BUSY: {
+ if( db->xBusyCallback==0 ){
+ p->pc = pc;
+ p->rc = SQLITE_BUSY;
+ p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
+ return SQLITE_BUSY;
+ }else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
+ busy = 0;
+ }
+ break;
+ }
+ case SQLITE_OK: {
+ busy = 0;
+ break;
+ }
+ default: {
+ goto abort_due_to_error;
+ }
+ }
+ }while( busy );
+ break;
+}
+
+/* Opcode: OpenTemp P1 P2 *
+**
+** Open a new cursor to a transient table.
+** The transient cursor is always opened read/write even if
+** the main database is read-only. The transient table is deleted
+** automatically when the cursor is closed.
+**
+** The cursor points to a BTree table if P2==0 and to a BTree index
+** if P2==1. A BTree table must have an integer key and can have arbitrary
+** data. A BTree index has no data but can have an arbitrary key.
+**
+** This opcode is used for tables that exist for the duration of a single
+** SQL statement only. Tables created using CREATE TEMPORARY TABLE
+** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the
+** context of this opcode means for the duration of a single SQL statement
+** whereas "Temporary" in the context of CREATE TABLE means for the duration
+** of the connection to the database. Same word; different meanings.
+*/
+case OP_OpenTemp: {
+ int i = pOp->p1;
+ Cursor *pCx;
+ assert( i>=0 );
+ if( expandCursorArraySize(p, i) ) goto no_mem;
+ pCx = &p->aCsr[i];
+ sqliteVdbeCleanupCursor(pCx);
+ memset(pCx, 0, sizeof(*pCx));
+ pCx->nullRow = 1;
+ rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);
+
+ if( rc==SQLITE_OK ){
+ rc = sqliteBtreeBeginTrans(pCx->pBt);
+ }
+ if( rc==SQLITE_OK ){
+ if( pOp->p2 ){
+ int pgno;
+ rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno);
+ if( rc==SQLITE_OK ){
+ rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor);
+ }
+ }else{
+ rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor);
+ }
+ }
+ break;
+}
+
+/* Opcode: OpenPseudo P1 * *
+**
+** Open a new cursor that points to a fake table that contains a single
+** row of data. Any attempt to write a second row of data causes the
+** first row to be deleted. All data is deleted when the cursor is
+** closed.
+**
+** A pseudo-table created by this opcode is useful for holding the
+** NEW or OLD tables in a trigger.
+*/
+case OP_OpenPseudo: {
+ int i = pOp->p1;
+ Cursor *pCx;
+ assert( i>=0 );
+ if( expandCursorArraySize(p, i) ) goto no_mem;
+ pCx = &p->aCsr[i];
+ sqliteVdbeCleanupCursor(pCx);
+ memset(pCx, 0, sizeof(*pCx));
+ pCx->nullRow = 1;
+ pCx->pseudoTable = 1;
+ break;
+}
+
+/* Opcode: Close P1 * *
+**
+** Close a cursor previously opened as P1. If P1 is not
+** currently open, this instruction is a no-op.
+*/
+case OP_Close: {
+ int i = pOp->p1;
+ if( i>=0 && i<p->nCursor ){
+ sqliteVdbeCleanupCursor(&p->aCsr[i]);
+ }
+ break;
+}
+
+/* Opcode: MoveTo P1 P2 *
+**
+** Pop the top of the stack and use its value as a key. Reposition
+** cursor P1 so that it points to an entry with a matching key. If
+** the table contains no record with a matching key, then the cursor
+** is left pointing at the first record that is greater than the key.
+** If there are no records greater than the key and P2 is not zero,
+** then an immediate jump to P2 is made.
+**
+** See also: Found, NotFound, Distinct, MoveLt
+*/
+/* Opcode: MoveLt P1 P2 *
+**
+** Pop the top of the stack and use its value as a key. Reposition
+** cursor P1 so that it points to the entry with the largest key that is
+** less than the key popped from the stack.
+** If there are no records less than than the key and P2
+** is not zero then an immediate jump to P2 is made.
+**
+** See also: MoveTo
+*/
+case OP_MoveLt:
+case OP_MoveTo: {
+ int i = pOp->p1;
+ Cursor *pC;
+
+ assert( pTos>=p->aStack );
+ assert( i>=0 && i<p->nCursor );
+ pC = &p->aCsr[i];
+ if( pC->pCursor!=0 ){
+ int res, oc;
+ pC->nullRow = 0;
+ if( pTos->flags & MEM_Int ){
+ int iKey = intToKey(pTos->i);
+ if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){
+ pC->movetoTarget = iKey;
+ pC->deferredMoveto = 1;
+ Release(pTos);
+ pTos--;
+ break;
+ }
+ sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res);
+ pC->lastRecno = pTos->i;
+ pC->recnoIsValid = res==0;
+ }else{
+ Stringify(pTos);
+ sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
+ pC->recnoIsValid = 0;
+ }
+ pC->deferredMoveto = 0;
+ sqlite_search_count++;
+ oc = pOp->opcode;
+ if( oc==OP_MoveTo && res<0 ){
+ sqliteBtreeNext(pC->pCursor, &res);
+ pC->recnoIsValid = 0;
+ if( res && pOp->p2>0 ){
+ pc = pOp->p2 - 1;
+ }
+ }else if( oc==OP_MoveLt ){
+ if( res>=0 ){
+ sqliteBtreePrevious(pC->pCursor, &res);
+ pC->recnoIsValid = 0;
+ }else{
+ /* res might be negative because the table is empty. Check to
+ ** see if this is the case.
+ */
+ int keysize;
+ res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0;
+ }
+ if( res && pOp->p2>0 ){
+ pc = pOp->p2 - 1;
+ }
+ }
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: Distinct P1 P2 *
+**
+** Use the top of the stack as a string key. If a record with that key does
+** not exist in the table of cursor P1, then jump to P2. If the record
+** does already exist, then fall thru. The cursor is left pointing
+** at the record if it exists. The key is not popped from the stack.
+**
+** This operation is similar to NotFound except that this operation
+** does not pop the key from the stack.
+**
+** See also: Found, NotFound, MoveTo, IsUnique, NotExists
+*/
+/* Opcode: Found P1 P2 *
+**
+** Use the top of the stack as a string key. If a record with that key
+** does exist in table of P1, then jump to P2. If the record
+** does not exist, then fall thru. The cursor is left pointing
+** to the record if it exists. The key is popped from the stack.
+**
+** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
+*/
+/* Opcode: NotFound P1 P2 *
+**
+** Use the top of the stack as a string key. If a record with that key
+** does not exist in table of P1, then jump to P2. If the record
+** does exist, then fall thru. The cursor is left pointing to the
+** record if it exists. The key is popped from the stack.
+**
+** The difference between this operation and Distinct is that
+** Distinct does not pop the key from the stack.
+**
+** See also: Distinct, Found, MoveTo, NotExists, IsUnique
+*/
+case OP_Distinct:
+case OP_NotFound:
+case OP_Found: {
+ int i = pOp->p1;
+ int alreadyExists = 0;
+ Cursor *pC;
+ assert( pTos>=p->aStack );
+ assert( i>=0 && i<p->nCursor );
+ if( (pC = &p->aCsr[i])->pCursor!=0 ){
+ int res, rx;
+ Stringify(pTos);
+ rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
+ alreadyExists = rx==SQLITE_OK && res==0;
+ pC->deferredMoveto = 0;
+ }
+ if( pOp->opcode==OP_Found ){
+ if( alreadyExists ) pc = pOp->p2 - 1;
+ }else{
+ if( !alreadyExists ) pc = pOp->p2 - 1;
+ }
+ if( pOp->opcode!=OP_Distinct ){
+ Release(pTos);
+ pTos--;
+ }
+ break;
+}
+
+/* Opcode: IsUnique P1 P2 *
+**
+** The top of the stack is an integer record number. Call this
+** record number R. The next on the stack is an index key created
+** using MakeIdxKey. Call it K. This instruction pops R from the
+** stack but it leaves K unchanged.
+**
+** P1 is an index. So all but the last four bytes of K are an
+** index string. The last four bytes of K are a record number.
+**
+** This instruction asks if there is an entry in P1 where the
+** index string matches K but the record number is different
+** from R. If there is no such entry, then there is an immediate
+** jump to P2. If any entry does exist where the index string
+** matches K but the record number is not R, then the record
+** number for that entry is pushed onto the stack and control
+** falls through to the next instruction.
+**
+** See also: Distinct, NotFound, NotExists, Found
+*/
+case OP_IsUnique: {
+ int i = pOp->p1;
+ Mem *pNos = &pTos[-1];
+ BtCursor *pCrsr;
+ int R;
+
+ /* Pop the value R off the top of the stack
+ */
+ assert( pNos>=p->aStack );
+ Integerify(pTos);
+ R = pTos->i;
+ pTos--;
+ assert( i>=0 && i<=p->nCursor );
+ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int res, rc;
+ int v; /* The record number on the P1 entry that matches K */
+ char *zKey; /* The value of K */
+ int nKey; /* Number of bytes in K */
+
+ /* Make sure K is a string and make zKey point to K
+ */
+ Stringify(pNos);
+ zKey = pNos->z;
+ nKey = pNos->n;
+ assert( nKey >= 4 );
+
+ /* Search for an entry in P1 where all but the last four bytes match K.
+ ** If there is no such entry, jump immediately to P2.
+ */
+ assert( p->aCsr[i].deferredMoveto==0 );
+ rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ if( res<0 ){
+ rc = sqliteBtreeNext(pCrsr, &res);
+ if( res ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+ }
+ rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ if( res>0 ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+
+ /* At this point, pCrsr is pointing to an entry in P1 where all but
+ ** the last for bytes of the key match K. Check to see if the last
+ ** four bytes of the key are different from R. If the last four
+ ** bytes equal R then jump immediately to P2.
+ */
+ sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v);
+ v = keyToInt(v);
+ if( v==R ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+
+ /* The last four bytes of the key are different from R. Convert the
+ ** last four bytes of the key into an integer and push it onto the
+ ** stack. (These bytes are the record number of an entry that
+ ** violates a UNIQUE constraint.)
+ */
+ pTos++;
+ pTos->i = v;
+ pTos->flags = MEM_Int;
+ }
+ break;
+}
+
+/* Opcode: NotExists P1 P2 *
+**
+** Use the top of the stack as a integer key. If a record with that key
+** does not exist in table of P1, then jump to P2. If the record
+** does exist, then fall thru. The cursor is left pointing to the
+** record if it exists. The integer key is popped from the stack.
+**
+** The difference between this operation and NotFound is that this
+** operation assumes the key is an integer and NotFound assumes it
+** is a string.
+**
+** See also: Distinct, Found, MoveTo, NotFound, IsUnique
+*/
+case OP_NotExists: {
+ int i = pOp->p1;
+ BtCursor *pCrsr;
+ assert( pTos>=p->aStack );
+ assert( i>=0 && i<p->nCursor );
+ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int res, rx, iKey;
+ assert( pTos->flags & MEM_Int );
+ iKey = intToKey(pTos->i);
+ rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res);
+ p->aCsr[i].lastRecno = pTos->i;
+ p->aCsr[i].recnoIsValid = res==0;
+ p->aCsr[i].nullRow = 0;
+ if( rx!=SQLITE_OK || res!=0 ){
+ pc = pOp->p2 - 1;
+ p->aCsr[i].recnoIsValid = 0;
+ }
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: NewRecno P1 * *
+**
+** Get a new integer record number used as the key to a table.
+** The record number is not previously used as a key in the database
+** table that cursor P1 points to. The new record number is pushed
+** onto the stack.
+*/
+case OP_NewRecno: {
+ int i = pOp->p1;
+ int v = 0;
+ Cursor *pC;
+ assert( i>=0 && i<p->nCursor );
+ if( (pC = &p->aCsr[i])->pCursor==0 ){
+ v = 0;
+ }else{
+ /* The next rowid or record number (different terms for the same
+ ** thing) is obtained in a two-step algorithm.
+ **
+ ** First we attempt to find the largest existing rowid and add one
+ ** to that. But if the largest existing rowid is already the maximum
+ ** positive integer, we have to fall through to the second
+ ** probabilistic algorithm
+ **
+ ** The second algorithm is to select a rowid at random and see if
+ ** it already exists in the table. If it does not exist, we have
+ ** succeeded. If the random rowid does exist, we select a new one
+ ** and try again, up to 1000 times.
+ **
+ ** For a table with less than 2 billion entries, the probability
+ ** of not finding a unused rowid is about 1.0e-300. This is a
+ ** non-zero probability, but it is still vanishingly small and should
+ ** never cause a problem. You are much, much more likely to have a
+ ** hardware failure than for this algorithm to fail.
+ **
+ ** The analysis in the previous paragraph assumes that you have a good
+ ** source of random numbers. Is a library function like lrand48()
+ ** good enough? Maybe. Maybe not. It's hard to know whether there
+ ** might be subtle bugs is some implementations of lrand48() that
+ ** could cause problems. To avoid uncertainty, SQLite uses its own
+ ** random number generator based on the RC4 algorithm.
+ **
+ ** To promote locality of reference for repetitive inserts, the
+ ** first few attempts at chosing a random rowid pick values just a little
+ ** larger than the previous rowid. This has been shown experimentally
+ ** to double the speed of the COPY operation.
+ */
+ int res, rx, cnt, x;
+ cnt = 0;
+ if( !pC->useRandomRowid ){
+ if( pC->nextRowidValid ){
+ v = pC->nextRowid;
+ }else{
+ rx = sqliteBtreeLast(pC->pCursor, &res);
+ if( res ){
+ v = 1;
+ }else{
+ sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v);
+ v = keyToInt(v);
+ if( v==0x7fffffff ){
+ pC->useRandomRowid = 1;
+ }else{
+ v++;
+ }
+ }
+ }
+ if( v<0x7fffffff ){
+ pC->nextRowidValid = 1;
+ pC->nextRowid = v+1;
+ }else{
+ pC->nextRowidValid = 0;
+ }
+ }
+ if( pC->useRandomRowid ){
+ v = db->priorNewRowid;
+ cnt = 0;
+ do{
+ if( v==0 || cnt>2 ){
+ sqliteRandomness(sizeof(v), &v);
+ if( cnt<5 ) v &= 0xffffff;
+ }else{
+ unsigned char r;
+ sqliteRandomness(1, &r);
+ v += r + 1;
+ }
+ if( v==0 ) continue;
+ x = intToKey(v);
+ rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res);
+ cnt++;
+ }while( cnt<1000 && rx==SQLITE_OK && res==0 );
+ db->priorNewRowid = v;
+ if( rx==SQLITE_OK && res==0 ){
+ rc = SQLITE_FULL;
+ goto abort_due_to_error;
+ }
+ }
+ pC->recnoIsValid = 0;
+ pC->deferredMoveto = 0;
+ }
+ pTos++;
+ pTos->i = v;
+ pTos->flags = MEM_Int;
+ break;
+}
+
+/* Opcode: PutIntKey P1 P2 *
+**
+** Write an entry into the table of cursor P1. A new entry is
+** created if it doesn't already exist or the data for an existing
+** entry is overwritten. The data is the value on the top of the
+** stack. The key is the next value down on the stack. The key must
+** be an integer. The stack is popped twice by this instruction.
+**
+** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
+** incremented (otherwise not). If the OPFLAG_CSCHANGE flag is set,
+** then the current statement change count is incremented (otherwise not).
+** If the OPFLAG_LASTROWID flag of P2 is set, then rowid is
+** stored for subsequent return by the sqlite_last_insert_rowid() function
+** (otherwise it's unmodified).
+*/
+/* Opcode: PutStrKey P1 * *
+**
+** Write an entry into the table of cursor P1. A new entry is
+** created if it doesn't already exist or the data for an existing
+** entry is overwritten. The data is the value on the top of the
+** stack. The key is the next value down on the stack. The key must
+** be a string. The stack is popped twice by this instruction.
+**
+** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
+*/
+case OP_PutIntKey:
+case OP_PutStrKey: {
+ Mem *pNos = &pTos[-1];
+ int i = pOp->p1;
+ Cursor *pC;
+ assert( pNos>=p->aStack );
+ assert( i>=0 && i<p->nCursor );
+ if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){
+ char *zKey;
+ int nKey, iKey;
+ if( pOp->opcode==OP_PutStrKey ){
+ Stringify(pNos);
+ nKey = pNos->n;
+ zKey = pNos->z;
+ }else{
+ assert( pNos->flags & MEM_Int );
+ nKey = sizeof(int);
+ iKey = intToKey(pNos->i);
+ zKey = (char*)&iKey;
+ if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
+ if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i;
+ if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
+ if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){
+ pC->nextRowidValid = 0;
+ }
+ }
+ if( pTos->flags & MEM_Null ){
+ pTos->z = 0;
+ pTos->n = 0;
+ }else{
+ assert( pTos->flags & MEM_Str );
+ }
+ if( pC->pseudoTable ){
+ /* PutStrKey does not work for pseudo-tables.
+ ** The following assert makes sure we are not trying to use
+ ** PutStrKey on a pseudo-table
+ */
+ assert( pOp->opcode==OP_PutIntKey );
+ sqliteFree(pC->pData);
+ pC->iKey = iKey;
+ pC->nData = pTos->n;
+ if( pTos->flags & MEM_Dyn ){
+ pC->pData = pTos->z;
+ pTos->flags = MEM_Null;
+ }else{
+ pC->pData = sqliteMallocRaw( pC->nData );
+ if( pC->pData ){
+ memcpy(pC->pData, pTos->z, pC->nData);
+ }
+ }
+ pC->nullRow = 0;
+ }else{
+ rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n);
+ }
+ pC->recnoIsValid = 0;
+ pC->deferredMoveto = 0;
+ }
+ popStack(&pTos, 2);
+ break;
+}
+
+/* Opcode: Delete P1 P2 *
+**
+** Delete the record at which the P1 cursor is currently pointing.
+**
+** The cursor will be left pointing at either the next or the previous
+** record in the table. If it is left pointing at the next record, then
+** the next Next instruction will be a no-op. Hence it is OK to delete
+** a record from within an Next loop.
+**
+** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
+** incremented (otherwise not). If OPFLAG_CSCHANGE flag is set,
+** then the current statement change count is incremented (otherwise not).
+**
+** If P1 is a pseudo-table, then this instruction is a no-op.
+*/
+case OP_Delete: {
+ int i = pOp->p1;
+ Cursor *pC;
+ assert( i>=0 && i<p->nCursor );
+ pC = &p->aCsr[i];
+ if( pC->pCursor!=0 ){
+ sqliteVdbeCursorMoveto(pC);
+ rc = sqliteBtreeDelete(pC->pCursor);
+ pC->nextRowidValid = 0;
+ }
+ if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
+ if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
+ break;
+}
+
+/* Opcode: SetCounts * * *
+**
+** Called at end of statement. Updates lsChange (last statement change count)
+** and resets csChange (current statement change count) to 0.
+*/
+case OP_SetCounts: {
+ db->lsChange=db->csChange;
+ db->csChange=0;
+ break;
+}
+
+/* Opcode: KeyAsData P1 P2 *
+**
+** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
+** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls
+** data off of the key rather than the data. This is used for
+** processing compound selects.
+*/
+case OP_KeyAsData: {
+ int i = pOp->p1;
+ assert( i>=0 && i<p->nCursor );
+ p->aCsr[i].keyAsData = pOp->p2;
+ break;
+}
+
+/* Opcode: RowData P1 * *
+**
+** Push onto the stack the complete row data for cursor P1.
+** There is no interpretation of the data. It is just copied
+** onto the stack exactly as it is found in the database file.
+**
+** If the cursor is not pointing to a valid row, a NULL is pushed
+** onto the stack.
+*/
+/* Opcode: RowKey P1 * *
+**
+** Push onto the stack the complete row key for cursor P1.
+** There is no interpretation of the key. It is just copied
+** onto the stack exactly as it is found in the database file.
+**
+** If the cursor is not pointing to a valid row, a NULL is pushed
+** onto the stack.
+*/
+case OP_RowKey:
+case OP_RowData: {
+ int i = pOp->p1;
+ Cursor *pC;
+ int n;
+
+ pTos++;
+ assert( i>=0 && i<p->nCursor );
+ pC = &p->aCsr[i];
+ if( pC->nullRow ){
+ pTos->flags = MEM_Null;
+ }else if( pC->pCursor!=0 ){
+ BtCursor *pCrsr = pC->pCursor;
+ sqliteVdbeCursorMoveto(pC);
+ if( pC->nullRow ){
+ pTos->flags = MEM_Null;
+ break;
+ }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){
+ sqliteBtreeKeySize(pCrsr, &n);
+ }else{
+ sqliteBtreeDataSize(pCrsr, &n);
+ }
+ pTos->n = n;
+ if( n<=NBFS ){
+ pTos->flags = MEM_Str | MEM_Short;
+ pTos->z = pTos->zShort;
+ }else{
+ char *z = sqliteMallocRaw( n );
+ if( z==0 ) goto no_mem;
+ pTos->flags = MEM_Str | MEM_Dyn;
+ pTos->z = z;
+ }
+ if( pC->keyAsData || pOp->opcode==OP_RowKey ){
+ sqliteBtreeKey(pCrsr, 0, n, pTos->z);
+ }else{
+ sqliteBtreeData(pCrsr, 0, n, pTos->z);
+ }
+ }else if( pC->pseudoTable ){
+ pTos->n = pC->nData;
+ pTos->z = pC->pData;
+ pTos->flags = MEM_Str|MEM_Ephem;
+ }else{
+ pTos->flags = MEM_Null;
+ }
+ break;
+}
+
+/* Opcode: Column P1 P2 *
+**
+** Interpret the data that cursor P1 points to as
+** a structure built using the MakeRecord instruction.
+** (See the MakeRecord opcode for additional information about
+** the format of the data.)
+** Push onto the stack the value of the P2-th column contained
+** in the data.
+**
+** If the KeyAsData opcode has previously executed on this cursor,
+** then the field might be extracted from the key rather than the
+** data.
+**
+** If P1 is negative, then the record is stored on the stack rather
+** than in a table. For P1==-1, the top of the stack is used.
+** For P1==-2, the next on the stack is used. And so forth. The
+** value pushed is always just a pointer into the record which is
+** stored further down on the stack. The column value is not copied.
+*/
+case OP_Column: {
+ int amt, offset, end, payloadSize;
+ int i = pOp->p1;
+ int p2 = pOp->p2;
+ Cursor *pC;
+ char *zRec;
+ BtCursor *pCrsr;
+ int idxWidth;
+ unsigned char aHdr[10];
+
+ assert( i<p->nCursor );
+ pTos++;
+ if( i<0 ){
+ assert( &pTos[i]>=p->aStack );
+ assert( pTos[i].flags & MEM_Str );
+ zRec = pTos[i].z;
+ payloadSize = pTos[i].n;
+ }else if( (pC = &p->aCsr[i])->pCursor!=0 ){
+ sqliteVdbeCursorMoveto(pC);
+ zRec = 0;
+ pCrsr = pC->pCursor;
+ if( pC->nullRow ){
+ payloadSize = 0;
+ }else if( pC->keyAsData ){
+ sqliteBtreeKeySize(pCrsr, &payloadSize);
+ }else{
+ sqliteBtreeDataSize(pCrsr, &payloadSize);
+ }
+ }else if( pC->pseudoTable ){
+ payloadSize = pC->nData;
+ zRec = pC->pData;
+ assert( payloadSize==0 || zRec!=0 );
+ }else{
+ payloadSize = 0;
+ }
+
+ /* Figure out how many bytes in the column data and where the column
+ ** data begins.
+ */
+ if( payloadSize==0 ){
+ pTos->flags = MEM_Null;
+ break;
+ }else if( payloadSize<256 ){
+ idxWidth = 1;
+ }else if( payloadSize<65536 ){
+ idxWidth = 2;
+ }else{
+ idxWidth = 3;
+ }
+
+ /* Figure out where the requested column is stored and how big it is.
+ */
+ if( payloadSize < idxWidth*(p2+1) ){
+ rc = SQLITE_CORRUPT;
+ goto abort_due_to_error;
+ }
+ if( zRec ){
+ memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2);
+ }else if( pC->keyAsData ){
+ sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
+ }else{
+ sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
+ }
+ offset = aHdr[0];
+ end = aHdr[idxWidth];
+ if( idxWidth>1 ){
+ offset |= aHdr[1]<<8;
+ end |= aHdr[idxWidth+1]<<8;
+ if( idxWidth>2 ){
+ offset |= aHdr[2]<<16;
+ end |= aHdr[idxWidth+2]<<16;
+ }
+ }
+ amt = end - offset;
+ if( amt<0 || offset<0 || end>payloadSize ){
+ rc = SQLITE_CORRUPT;
+ goto abort_due_to_error;
+ }
+
+ /* amt and offset now hold the offset to the start of data and the
+ ** amount of data. Go get the data and put it on the stack.
+ */
+ pTos->n = amt;
+ if( amt==0 ){
+ pTos->flags = MEM_Null;
+ }else if( zRec ){
+ pTos->flags = MEM_Str | MEM_Ephem;
+ pTos->z = &zRec[offset];
+ }else{
+ if( amt<=NBFS ){
+ pTos->flags = MEM_Str | MEM_Short;
+ pTos->z = pTos->zShort;
+ }else{
+ char *z = sqliteMallocRaw( amt );
+ if( z==0 ) goto no_mem;
+ pTos->flags = MEM_Str | MEM_Dyn;
+ pTos->z = z;
+ }
+ if( pC->keyAsData ){
+ sqliteBtreeKey(pCrsr, offset, amt, pTos->z);
+ }else{
+ sqliteBtreeData(pCrsr, offset, amt, pTos->z);
+ }
+ }
+ break;
+}
+
+/* Opcode: Recno P1 * *
+**
+** Push onto the stack an integer which is the first 4 bytes of the
+** the key to the current entry in a sequential scan of the database
+** file P1. The sequential scan should have been started using the
+** Next opcode.
+*/
+case OP_Recno: {
+ int i = pOp->p1;
+ Cursor *pC;
+ int v;
+
+ assert( i>=0 && i<p->nCursor );
+ pC = &p->aCsr[i];
+ sqliteVdbeCursorMoveto(pC);
+ pTos++;
+ if( pC->recnoIsValid ){
+ v = pC->lastRecno;
+ }else if( pC->pseudoTable ){
+ v = keyToInt(pC->iKey);
+ }else if( pC->nullRow || pC->pCursor==0 ){
+ pTos->flags = MEM_Null;
+ break;
+ }else{
+ assert( pC->pCursor!=0 );
+ sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v);
+ v = keyToInt(v);
+ }
+ pTos->i = v;
+ pTos->flags = MEM_Int;
+ break;
+}
+
+/* Opcode: FullKey P1 * *
+**
+** Extract the complete key from the record that cursor P1 is currently
+** pointing to and push the key onto the stack as a string.
+**
+** Compare this opcode to Recno. The Recno opcode extracts the first
+** 4 bytes of the key and pushes those bytes onto the stack as an
+** integer. This instruction pushes the entire key as a string.
+**
+** This opcode may not be used on a pseudo-table.
+*/
+case OP_FullKey: {
+ int i = pOp->p1;
+ BtCursor *pCrsr;
+
+ assert( p->aCsr[i].keyAsData );
+ assert( !p->aCsr[i].pseudoTable );
+ assert( i>=0 && i<p->nCursor );
+ pTos++;
+ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int amt;
+ char *z;
+
+ sqliteVdbeCursorMoveto(&p->aCsr[i]);
+ sqliteBtreeKeySize(pCrsr, &amt);
+ if( amt<=0 ){
+ rc = SQLITE_CORRUPT;
+ goto abort_due_to_error;
+ }
+ if( amt>NBFS ){
+ z = sqliteMallocRaw( amt );
+ if( z==0 ) goto no_mem;
+ pTos->flags = MEM_Str | MEM_Dyn;
+ }else{
+ z = pTos->zShort;
+ pTos->flags = MEM_Str | MEM_Short;
+ }
+ sqliteBtreeKey(pCrsr, 0, amt, z);
+ pTos->z = z;
+ pTos->n = amt;
+ }
+ break;
+}
+
+/* Opcode: NullRow P1 * *
+**
+** Move the cursor P1 to a null row. Any OP_Column operations
+** that occur while the cursor is on the null row will always push
+** a NULL onto the stack.
+*/
+case OP_NullRow: {
+ int i = pOp->p1;
+
+ assert( i>=0 && i<p->nCursor );
+ p->aCsr[i].nullRow = 1;
+ p->aCsr[i].recnoIsValid = 0;
+ break;
+}
+
+/* Opcode: Last P1 P2 *
+**
+** The next use of the Recno or Column or Next instruction for P1
+** will refer to the last entry in the database table or index.
+** If the table or index is empty and P2>0, then jump immediately to P2.
+** If P2 is 0 or if the table or index is not empty, fall through
+** to the following instruction.
+*/
+case OP_Last: {
+ int i = pOp->p1;
+ Cursor *pC;
+ BtCursor *pCrsr;
+
+ assert( i>=0 && i<p->nCursor );
+ pC = &p->aCsr[i];
+ if( (pCrsr = pC->pCursor)!=0 ){
+ int res;
+ rc = sqliteBtreeLast(pCrsr, &res);
+ pC->nullRow = res;
+ pC->deferredMoveto = 0;
+ if( res && pOp->p2>0 ){
+ pc = pOp->p2 - 1;
+ }
+ }else{
+ pC->nullRow = 0;
+ }
+ break;
+}
+
+/* Opcode: Rewind P1 P2 *
+**
+** The next use of the Recno or Column or Next instruction for P1
+** will refer to the first entry in the database table or index.
+** If the table or index is empty and P2>0, then jump immediately to P2.
+** If P2 is 0 or if the table or index is not empty, fall through
+** to the following instruction.
+*/
+case OP_Rewind: {
+ int i = pOp->p1;
+ Cursor *pC;
+ BtCursor *pCrsr;
+
+ assert( i>=0 && i<p->nCursor );
+ pC = &p->aCsr[i];
+ if( (pCrsr = pC->pCursor)!=0 ){
+ int res;
+ rc = sqliteBtreeFirst(pCrsr, &res);
+ pC->atFirst = res==0;
+ pC->nullRow = res;
+ pC->deferredMoveto = 0;
+ if( res && pOp->p2>0 ){
+ pc = pOp->p2 - 1;
+ }
+ }else{
+ pC->nullRow = 0;
+ }
+ break;
+}
+
+/* Opcode: Next P1 P2 *
+**
+** Advance cursor P1 so that it points to the next key/data pair in its
+** table or index. If there are no more key/value pairs then fall through
+** to the following instruction. But if the cursor advance was successful,
+** jump immediately to P2.
+**
+** See also: Prev
+*/
+/* Opcode: Prev P1 P2 *
+**
+** Back up cursor P1 so that it points to the previous key/data pair in its
+** table or index. If there is no previous key/value pairs then fall through
+** to the following instruction. But if the cursor backup was successful,
+** jump immediately to P2.
+*/
+case OP_Prev:
+case OP_Next: {
+ Cursor *pC;
+ BtCursor *pCrsr;
+
+ CHECK_FOR_INTERRUPT;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = &p->aCsr[pOp->p1];
+ if( (pCrsr = pC->pCursor)!=0 ){
+ int res;
+ if( pC->nullRow ){
+ res = 1;
+ }else{
+ assert( pC->deferredMoveto==0 );
+ rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) :
+ sqliteBtreePrevious(pCrsr, &res);
+ pC->nullRow = res;
+ }
+ if( res==0 ){
+ pc = pOp->p2 - 1;
+ sqlite_search_count++;
+ }
+ }else{
+ pC->nullRow = 1;
+ }
+ pC->recnoIsValid = 0;
+ break;
+}
+
+/* Opcode: IdxPut P1 P2 P3
+**
+** The top of the stack holds a SQL index key made using the
+** MakeIdxKey instruction. This opcode writes that key into the
+** index P1. Data for the entry is nil.
+**
+** If P2==1, then the key must be unique. If the key is not unique,
+** the program aborts with a SQLITE_CONSTRAINT error and the database
+** is rolled back. If P3 is not null, then it becomes part of the
+** error message returned with the SQLITE_CONSTRAINT.
+*/
+case OP_IdxPut: {
+ int i = pOp->p1;
+ BtCursor *pCrsr;
+ assert( pTos>=p->aStack );
+ assert( i>=0 && i<p->nCursor );
+ assert( pTos->flags & MEM_Str );
+ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int nKey = pTos->n;
+ const char *zKey = pTos->z;
+ if( pOp->p2 ){
+ int res, n;
+ assert( nKey >= 4 );
+ rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ while( res!=0 ){
+ int c;
+ sqliteBtreeKeySize(pCrsr, &n);
+ if( n==nKey
+ && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK
+ && c==0
+ ){
+ rc = SQLITE_CONSTRAINT;
+ if( pOp->p3 && pOp->p3[0] ){
+ sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
+ }
+ goto abort_due_to_error;
+ }
+ if( res<0 ){
+ sqliteBtreeNext(pCrsr, &res);
+ res = +1;
+ }else{
+ break;
+ }
+ }
+ }
+ rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0);
+ assert( p->aCsr[i].deferredMoveto==0 );
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: IdxDelete P1 * *
+**
+** The top of the stack is an index key built using the MakeIdxKey opcode.
+** This opcode removes that entry from the index.
+*/
+case OP_IdxDelete: {
+ int i = pOp->p1;
+ BtCursor *pCrsr;
+ assert( pTos>=p->aStack );
+ assert( pTos->flags & MEM_Str );
+ assert( i>=0 && i<p->nCursor );
+ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int rx, res;
+ rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res);
+ if( rx==SQLITE_OK && res==0 ){
+ rc = sqliteBtreeDelete(pCrsr);
+ }
+ assert( p->aCsr[i].deferredMoveto==0 );
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: IdxRecno P1 * *
+**
+** Push onto the stack an integer which is the last 4 bytes of the
+** the key to the current entry in index P1. These 4 bytes should
+** be the record number of the table entry to which this index entry
+** points.
+**
+** See also: Recno, MakeIdxKey.
+*/
+case OP_IdxRecno: {
+ int i = pOp->p1;
+ BtCursor *pCrsr;
+
+ assert( i>=0 && i<p->nCursor );
+ pTos++;
+ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int v;
+ int sz;
+ assert( p->aCsr[i].deferredMoveto==0 );
+ sqliteBtreeKeySize(pCrsr, &sz);
+ if( sz<sizeof(u32) ){
+ pTos->flags = MEM_Null;
+ }else{
+ sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v);
+ v = keyToInt(v);
+ pTos->i = v;
+ pTos->flags = MEM_Int;
+ }
+ }else{
+ pTos->flags = MEM_Null;
+ }
+ break;
+}
+
+/* Opcode: IdxGT P1 P2 *
+**
+** Compare the top of the stack against the key on the index entry that
+** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
+** index entry. If the index entry is greater than the top of the stack
+** then jump to P2. Otherwise fall through to the next instruction.
+** In either case, the stack is popped once.
+*/
+/* Opcode: IdxGE P1 P2 *
+**
+** Compare the top of the stack against the key on the index entry that
+** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
+** index entry. If the index entry is greater than or equal to
+** the top of the stack
+** then jump to P2. Otherwise fall through to the next instruction.
+** In either case, the stack is popped once.
+*/
+/* Opcode: IdxLT P1 P2 *
+**
+** Compare the top of the stack against the key on the index entry that
+** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
+** index entry. If the index entry is less than the top of the stack
+** then jump to P2. Otherwise fall through to the next instruction.
+** In either case, the stack is popped once.
+*/
+case OP_IdxLT:
+case OP_IdxGT:
+case OP_IdxGE: {
+ int i= pOp->p1;
+ BtCursor *pCrsr;
+
+ assert( i>=0 && i<p->nCursor );
+ assert( pTos>=p->aStack );
+ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int res, rc;
+
+ Stringify(pTos);
+ assert( p->aCsr[i].deferredMoveto==0 );
+ rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res);
+ if( rc!=SQLITE_OK ){
+ break;
+ }
+ if( pOp->opcode==OP_IdxLT ){
+ res = -res;
+ }else if( pOp->opcode==OP_IdxGE ){
+ res++;
+ }
+ if( res>0 ){
+ pc = pOp->p2 - 1 ;
+ }
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: IdxIsNull P1 P2 *
+**
+** The top of the stack contains an index entry such as might be generated
+** by the MakeIdxKey opcode. This routine looks at the first P1 fields of
+** that key. If any of the first P1 fields are NULL, then a jump is made
+** to address P2. Otherwise we fall straight through.
+**
+** The index entry is always popped from the stack.
+*/
+case OP_IdxIsNull: {
+ int i = pOp->p1;
+ int k, n;
+ const char *z;
+
+ assert( pTos>=p->aStack );
+ assert( pTos->flags & MEM_Str );
+ z = pTos->z;
+ n = pTos->n;
+ for(k=0; k<n && i>0; i--){
+ if( z[k]=='a' ){
+ pc = pOp->p2-1;
+ break;
+ }
+ while( k<n && z[k] ){ k++; }
+ k++;
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: Destroy P1 P2 *
+**
+** Delete an entire database table or index whose root page in the database
+** file is given by P1.
+**
+** The table being destroyed is in the main database file if P2==0. If
+** P2==1 then the table to be clear is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** See also: Clear
+*/
+case OP_Destroy: {
+ rc = sqliteBtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1);
+ break;
+}
+
+/* Opcode: Clear P1 P2 *
+**
+** Delete all contents of the database table or index whose root page
+** in the database file is given by P1. But, unlike Destroy, do not
+** remove the table or index from the database file.
+**
+** The table being clear is in the main database file if P2==0. If
+** P2==1 then the table to be clear is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** See also: Destroy
+*/
+case OP_Clear: {
+ rc = sqliteBtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
+ break;
+}
+
+/* Opcode: CreateTable * P2 P3
+**
+** Allocate a new table in the main database file if P2==0 or in the
+** auxiliary database file if P2==1. Push the page number
+** for the root page of the new table onto the stack.
+**
+** The root page number is also written to a memory location that P3
+** points to. This is the mechanism is used to write the root page
+** number into the parser's internal data structures that describe the
+** new table.
+**
+** The difference between a table and an index is this: A table must
+** have a 4-byte integer key and can have arbitrary data. An index
+** has an arbitrary key but no data.
+**
+** See also: CreateIndex
+*/
+/* Opcode: CreateIndex * P2 P3
+**
+** Allocate a new index in the main database file if P2==0 or in the
+** auxiliary database file if P2==1. Push the page number of the
+** root page of the new index onto the stack.
+**
+** See documentation on OP_CreateTable for additional information.
+*/
+case OP_CreateIndex:
+case OP_CreateTable: {
+ int pgno;
+ assert( pOp->p3!=0 && pOp->p3type==P3_POINTER );
+ assert( pOp->p2>=0 && pOp->p2<db->nDb );
+ assert( db->aDb[pOp->p2].pBt!=0 );
+ if( pOp->opcode==OP_CreateTable ){
+ rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno);
+ }else{
+ rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno);
+ }
+ pTos++;
+ if( rc==SQLITE_OK ){
+ pTos->i = pgno;
+ pTos->flags = MEM_Int;
+ *(u32*)pOp->p3 = pgno;
+ pOp->p3 = 0;
+ }else{
+ pTos->flags = MEM_Null;
+ }
+ break;
+}
+
+/* Opcode: IntegrityCk P1 P2 *
+**
+** Do an analysis of the currently open database. Push onto the
+** stack the text of an error message describing any problems.
+** If there are no errors, push a "ok" onto the stack.
+**
+** P1 is the index of a set that contains the root page numbers
+** for all tables and indices in the main database file. The set
+** is cleared by this opcode. In other words, after this opcode
+** has executed, the set will be empty.
+**
+** If P2 is not zero, the check is done on the auxiliary database
+** file, not the main database file.
+**
+** This opcode is used for testing purposes only.
+*/
+case OP_IntegrityCk: {
+ int nRoot;
+ int *aRoot;
+ int iSet = pOp->p1;
+ Set *pSet;
+ int j;
+ HashElem *i;
+ char *z;
+
+ assert( iSet>=0 && iSet<p->nSet );
+ pTos++;
+ pSet = &p->aSet[iSet];
+ nRoot = sqliteHashCount(&pSet->hash);
+ aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) );
+ if( aRoot==0 ) goto no_mem;
+ for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){
+ toInt((char*)sqliteHashKey(i), &aRoot[j]);
+ }
+ aRoot[j] = 0;
+ sqliteHashClear(&pSet->hash);
+ pSet->prev = 0;
+ z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
+ if( z==0 || z[0]==0 ){
+ if( z ) sqliteFree(z);
+ pTos->z = "ok";
+ pTos->n = 3;
+ pTos->flags = MEM_Str | MEM_Static;
+ }else{
+ pTos->z = z;
+ pTos->n = strlen(z) + 1;
+ pTos->flags = MEM_Str | MEM_Dyn;
+ }
+ sqliteFree(aRoot);
+ break;
+}
+
+/* Opcode: ListWrite * * *
+**
+** Write the integer on the top of the stack
+** into the temporary storage list.
+*/
+case OP_ListWrite: {
+ Keylist *pKeylist;
+ assert( pTos>=p->aStack );
+ pKeylist = p->pList;
+ if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
+ pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
+ if( pKeylist==0 ) goto no_mem;
+ pKeylist->nKey = 1000;
+ pKeylist->nRead = 0;
+ pKeylist->nUsed = 0;
+ pKeylist->pNext = p->pList;
+ p->pList = pKeylist;
+ }
+ Integerify(pTos);
+ pKeylist->aKey[pKeylist->nUsed++] = pTos->i;
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: ListRewind * * *
+**
+** Rewind the temporary buffer back to the beginning.
+*/
+case OP_ListRewind: {
+ /* What this opcode codes, really, is reverse the order of the
+ ** linked list of Keylist structures so that they are read out
+ ** in the same order that they were read in. */
+ Keylist *pRev, *pTop;
+ pRev = 0;
+ while( p->pList ){
+ pTop = p->pList;
+ p->pList = pTop->pNext;
+ pTop->pNext = pRev;
+ pRev = pTop;
+ }
+ p->pList = pRev;
+ break;
+}
+
+/* Opcode: ListRead * P2 *
+**
+** Attempt to read an integer from the temporary storage buffer
+** and push it onto the stack. If the storage buffer is empty,
+** push nothing but instead jump to P2.
+*/
+case OP_ListRead: {
+ Keylist *pKeylist;
+ CHECK_FOR_INTERRUPT;
+ pKeylist = p->pList;
+ if( pKeylist!=0 ){
+ assert( pKeylist->nRead>=0 );
+ assert( pKeylist->nRead<pKeylist->nUsed );
+ assert( pKeylist->nRead<pKeylist->nKey );
+ pTos++;
+ pTos->i = pKeylist->aKey[pKeylist->nRead++];
+ pTos->flags = MEM_Int;
+ if( pKeylist->nRead>=pKeylist->nUsed ){
+ p->pList = pKeylist->pNext;
+ sqliteFree(pKeylist);
+ }
+ }else{
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: ListReset * * *
+**
+** Reset the temporary storage buffer so that it holds nothing.
+*/
+case OP_ListReset: {
+ if( p->pList ){
+ sqliteVdbeKeylistFree(p->pList);
+ p->pList = 0;
+ }
+ break;
+}
+
+/* Opcode: ListPush * * *
+**
+** Save the current Vdbe list such that it can be restored by a ListPop
+** opcode. The list is empty after this is executed.
+*/
+case OP_ListPush: {
+ p->keylistStackDepth++;
+ assert(p->keylistStackDepth > 0);
+ p->keylistStack = sqliteRealloc(p->keylistStack,
+ sizeof(Keylist *) * p->keylistStackDepth);
+ if( p->keylistStack==0 ) goto no_mem;
+ p->keylistStack[p->keylistStackDepth - 1] = p->pList;
+ p->pList = 0;
+ break;
+}
+
+/* Opcode: ListPop * * *
+**
+** Restore the Vdbe list to the state it was in when ListPush was last
+** executed.
+*/
+case OP_ListPop: {
+ assert(p->keylistStackDepth > 0);
+ p->keylistStackDepth--;
+ sqliteVdbeKeylistFree(p->pList);
+ p->pList = p->keylistStack[p->keylistStackDepth];
+ p->keylistStack[p->keylistStackDepth] = 0;
+ if( p->keylistStackDepth == 0 ){
+ sqliteFree(p->keylistStack);
+ p->keylistStack = 0;
+ }
+ break;
+}
+
+/* Opcode: ContextPush * * *
+**
+** Save the current Vdbe context such that it can be restored by a ContextPop
+** opcode. The context stores the last insert row id, the last statement change
+** count, and the current statement change count.
+*/
+case OP_ContextPush: {
+ p->contextStackDepth++;
+ assert(p->contextStackDepth > 0);
+ p->contextStack = sqliteRealloc(p->contextStack,
+ sizeof(Context) * p->contextStackDepth);
+ if( p->contextStack==0 ) goto no_mem;
+ p->contextStack[p->contextStackDepth - 1].lastRowid = p->db->lastRowid;
+ p->contextStack[p->contextStackDepth - 1].lsChange = p->db->lsChange;
+ p->contextStack[p->contextStackDepth - 1].csChange = p->db->csChange;
+ break;
+}
+
+/* Opcode: ContextPop * * *
+**
+** Restore the Vdbe context to the state it was in when contextPush was last
+** executed. The context stores the last insert row id, the last statement
+** change count, and the current statement change count.
+*/
+case OP_ContextPop: {
+ assert(p->contextStackDepth > 0);
+ p->contextStackDepth--;
+ p->db->lastRowid = p->contextStack[p->contextStackDepth].lastRowid;
+ p->db->lsChange = p->contextStack[p->contextStackDepth].lsChange;
+ p->db->csChange = p->contextStack[p->contextStackDepth].csChange;
+ if( p->contextStackDepth == 0 ){
+ sqliteFree(p->contextStack);
+ p->contextStack = 0;
+ }
+ break;
+}
+
+/* Opcode: SortPut * * *
+**
+** The TOS is the key and the NOS is the data. Pop both from the stack
+** and put them on the sorter. The key and data should have been
+** made using SortMakeKey and SortMakeRec, respectively.
+*/
+case OP_SortPut: {
+ Mem *pNos = &pTos[-1];
+ Sorter *pSorter;
+ assert( pNos>=p->aStack );
+ if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem;
+ pSorter = sqliteMallocRaw( sizeof(Sorter) );
+ if( pSorter==0 ) goto no_mem;
+ pSorter->pNext = p->pSort;
+ p->pSort = pSorter;
+ assert( pTos->flags & MEM_Dyn );
+ pSorter->nKey = pTos->n;
+ pSorter->zKey = pTos->z;
+ assert( pNos->flags & MEM_Dyn );
+ pSorter->nData = pNos->n;
+ pSorter->pData = pNos->z;
+ pTos -= 2;
+ break;
+}
+
+/* Opcode: SortMakeRec P1 * *
+**
+** The top P1 elements are the arguments to a callback. Form these
+** elements into a single data entry that can be stored on a sorter
+** using SortPut and later fed to a callback using SortCallback.
+*/
+case OP_SortMakeRec: {
+ char *z;
+ char **azArg;
+ int nByte;
+ int nField;
+ int i;
+ Mem *pRec;
+
+ nField = pOp->p1;
+ pRec = &pTos[1-nField];
+ assert( pRec>=p->aStack );
+ nByte = 0;
+ for(i=0; i<nField; i++, pRec++){
+ if( (pRec->flags & MEM_Null)==0 ){
+ Stringify(pRec);
+ nByte += pRec->n;
+ }
+ }
+ nByte += sizeof(char*)*(nField+1);
+ azArg = sqliteMallocRaw( nByte );
+ if( azArg==0 ) goto no_mem;
+ z = (char*)&azArg[nField+1];
+ for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
+ if( pRec->flags & MEM_Null ){
+ azArg[i] = 0;
+ }else{
+ azArg[i] = z;
+ memcpy(z, pRec->z, pRec->n);
+ z += pRec->n;
+ }
+ }
+ popStack(&pTos, nField);
+ pTos++;
+ pTos->n = nByte;
+ pTos->z = (char*)azArg;
+ pTos->flags = MEM_Str | MEM_Dyn;
+ break;
+}
+
+/* Opcode: SortMakeKey * * P3
+**
+** Convert the top few entries of the stack into a sort key. The
+** number of stack entries consumed is the number of characters in
+** the string P3. One character from P3 is prepended to each entry.
+** The first character of P3 is prepended to the element lowest in
+** the stack and the last character of P3 is prepended to the top of
+** the stack. All stack entries are separated by a \000 character
+** in the result. The whole key is terminated by two \000 characters
+** in a row.
+**
+** "N" is substituted in place of the P3 character for NULL values.
+**
+** See also the MakeKey and MakeIdxKey opcodes.
+*/
+case OP_SortMakeKey: {
+ char *zNewKey;
+ int nByte;
+ int nField;
+ int i, j, k;
+ Mem *pRec;
+
+ nField = strlen(pOp->p3);
+ pRec = &pTos[1-nField];
+ nByte = 1;
+ for(i=0; i<nField; i++, pRec++){
+ if( pRec->flags & MEM_Null ){
+ nByte += 2;
+ }else{
+ Stringify(pRec);
+ nByte += pRec->n+2;
+ }
+ }
+ zNewKey = sqliteMallocRaw( nByte );
+ if( zNewKey==0 ) goto no_mem;
+ j = 0;
+ k = 0;
+ for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
+ if( pRec->flags & MEM_Null ){
+ zNewKey[j++] = 'N';
+ zNewKey[j++] = 0;
+ k++;
+ }else{
+ zNewKey[j++] = pOp->p3[k++];
+ memcpy(&zNewKey[j], pRec->z, pRec->n-1);
+ j += pRec->n-1;
+ zNewKey[j++] = 0;
+ }
+ }
+ zNewKey[j] = 0;
+ assert( j<nByte );
+ popStack(&pTos, nField);
+ pTos++;
+ pTos->n = nByte;
+ pTos->flags = MEM_Str|MEM_Dyn;
+ pTos->z = zNewKey;
+ break;
+}
+
+/* Opcode: Sort * * *
+**
+** Sort all elements on the sorter. The algorithm is a
+** mergesort.
+*/
+case OP_Sort: {
+ int i;
+ Sorter *pElem;
+ Sorter *apSorter[NSORT];
+ for(i=0; i<NSORT; i++){
+ apSorter[i] = 0;
+ }
+ while( p->pSort ){
+ pElem = p->pSort;
+ p->pSort = pElem->pNext;
+ pElem->pNext = 0;
+ for(i=0; i<NSORT-1; i++){
+ if( apSorter[i]==0 ){
+ apSorter[i] = pElem;
+ break;
+ }else{
+ pElem = Merge(apSorter[i], pElem);
+ apSorter[i] = 0;
+ }
+ }
+ if( i>=NSORT-1 ){
+ apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem);
+ }
+ }
+ pElem = 0;
+ for(i=0; i<NSORT; i++){
+ pElem = Merge(apSorter[i], pElem);
+ }
+ p->pSort = pElem;
+ break;
+}
+
+/* Opcode: SortNext * P2 *
+**
+** Push the data for the topmost element in the sorter onto the
+** stack, then remove the element from the sorter. If the sorter
+** is empty, push nothing on the stack and instead jump immediately
+** to instruction P2.
+*/
+case OP_SortNext: {
+ Sorter *pSorter = p->pSort;
+ CHECK_FOR_INTERRUPT;
+ if( pSorter!=0 ){
+ p->pSort = pSorter->pNext;
+ pTos++;
+ pTos->z = pSorter->pData;
+ pTos->n = pSorter->nData;
+ pTos->flags = MEM_Str|MEM_Dyn;
+ sqliteFree(pSorter->zKey);
+ sqliteFree(pSorter);
+ }else{
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: SortCallback P1 * *
+**
+** The top of the stack contains a callback record built using
+** the SortMakeRec operation with the same P1 value as this
+** instruction. Pop this record from the stack and invoke the
+** callback on it.
+*/
+case OP_SortCallback: {
+ assert( pTos>=p->aStack );
+ assert( pTos->flags & MEM_Str );
+ p->nCallback++;
+ p->pc = pc+1;
+ p->azResColumn = (char**)pTos->z;
+ assert( p->nResColumn==pOp->p1 );
+ p->popStack = 1;
+ p->pTos = pTos;
+ return SQLITE_ROW;
+}
+
+/* Opcode: SortReset * * *
+**
+** Remove any elements that remain on the sorter.
+*/
+case OP_SortReset: {
+ sqliteVdbeSorterReset(p);
+ break;
+}
+
+/* Opcode: FileOpen * * P3
+**
+** Open the file named by P3 for reading using the FileRead opcode.
+** If P3 is "stdin" then open standard input for reading.
+*/
+case OP_FileOpen: {
+ assert( pOp->p3!=0 );
+ if( p->pFile ){
+ if( p->pFile!=stdin ) fclose(p->pFile);
+ p->pFile = 0;
+ }
+ if( sqliteStrICmp(pOp->p3,"stdin")==0 ){
+ p->pFile = stdin;
+ }else{
+ p->pFile = fopen(pOp->p3, "r");
+ }
+ if( p->pFile==0 ){
+ sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, (char*)0);
+ rc = SQLITE_ERROR;
+ }
+ break;
+}
+
+/* Opcode: FileRead P1 P2 P3
+**
+** Read a single line of input from the open file (the file opened using
+** FileOpen). If we reach end-of-file, jump immediately to P2. If
+** we are able to get another line, split the line apart using P3 as
+** a delimiter. There should be P1 fields. If the input line contains
+** more than P1 fields, ignore the excess. If the input line contains
+** fewer than P1 fields, assume the remaining fields contain NULLs.
+**
+** Input ends if a line consists of just "\.". A field containing only
+** "\N" is a null field. The backslash \ character can be used be used
+** to escape newlines or the delimiter.
+*/
+case OP_FileRead: {
+ int n, eol, nField, i, c, nDelim;
+ char *zDelim, *z;
+ CHECK_FOR_INTERRUPT;
+ if( p->pFile==0 ) goto fileread_jump;
+ nField = pOp->p1;
+ if( nField<=0 ) goto fileread_jump;
+ if( nField!=p->nField || p->azField==0 ){
+ char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1);
+ if( azField==0 ){ goto no_mem; }
+ p->azField = azField;
+ p->nField = nField;
+ }
+ n = 0;
+ eol = 0;
+ while( eol==0 ){
+ if( p->zLine==0 || n+200>p->nLineAlloc ){
+ char *zLine;
+ p->nLineAlloc = p->nLineAlloc*2 + 300;
+ zLine = sqliteRealloc(p->zLine, p->nLineAlloc);
+ if( zLine==0 ){
+ p->nLineAlloc = 0;
+ sqliteFree(p->zLine);
+ p->zLine = 0;
+ goto no_mem;
+ }
+ p->zLine = zLine;
+ }
+ if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){
+ eol = 1;
+ p->zLine[n] = 0;
+ }else{
+ int c;
+ while( (c = p->zLine[n])!=0 ){
+ if( c=='\\' ){
+ if( p->zLine[n+1]==0 ) break;
+ n += 2;
+ }else if( c=='\n' ){
+ p->zLine[n] = 0;
+ eol = 1;
+ break;
+ }else{
+ n++;
+ }
+ }
+ }
+ }
+ if( n==0 ) goto fileread_jump;
+ z = p->zLine;
+ if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){
+ goto fileread_jump;
+ }
+ zDelim = pOp->p3;
+ if( zDelim==0 ) zDelim = "\t";
+ c = zDelim[0];
+ nDelim = strlen(zDelim);
+ p->azField[0] = z;
+ for(i=1; *z!=0 && i<=nField; i++){
+ int from, to;
+ from = to = 0;
+ if( z[0]=='\\' && z[1]=='N'
+ && (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){
+ if( i<=nField ) p->azField[i-1] = 0;
+ z += 2 + nDelim;
+ if( i<nField ) p->azField[i] = z;
+ continue;
+ }
+ while( z[from] ){
+ if( z[from]=='\\' && z[from+1]!=0 ){
+ int tx = z[from+1];
+ switch( tx ){
+ case 'b': tx = '\b'; break;
+ case 'f': tx = '\f'; break;
+ case 'n': tx = '\n'; break;
+ case 'r': tx = '\r'; break;
+ case 't': tx = '\t'; break;
+ case 'v': tx = '\v'; break;
+ default: break;
+ }
+ z[to++] = tx;
+ from += 2;
+ continue;
+ }
+ if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break;
+ z[to++] = z[from++];
+ }
+ if( z[from] ){
+ z[to] = 0;
+ z += from + nDelim;
+ if( i<nField ) p->azField[i] = z;
+ }else{
+ z[to] = 0;
+ z = "";
+ }
+ }
+ while( i<nField ){
+ p->azField[i++] = 0;
+ }
+ break;
+
+ /* If we reach end-of-file, or if anything goes wrong, jump here.
+ ** This code will cause a jump to P2 */
+fileread_jump:
+ pc = pOp->p2 - 1;
+ break;
+}
+
+/* Opcode: FileColumn P1 * *
+**
+** Push onto the stack the P1-th column of the most recently read line
+** from the input file.
+*/
+case OP_FileColumn: {
+ int i = pOp->p1;
+ char *z;
+ assert( i>=0 && i<p->nField );
+ if( p->azField ){
+ z = p->azField[i];
+ }else{
+ z = 0;
+ }
+ pTos++;
+ if( z ){
+ pTos->n = strlen(z) + 1;
+ pTos->z = z;
+ pTos->flags = MEM_Str | MEM_Ephem;
+ }else{
+ pTos->flags = MEM_Null;
+ }
+ break;
+}
+
+/* Opcode: MemStore P1 P2 *
+**
+** Write the top of the stack into memory location P1.
+** P1 should be a small integer since space is allocated
+** for all memory locations between 0 and P1 inclusive.
+**
+** After the data is stored in the memory location, the
+** stack is popped once if P2 is 1. If P2 is zero, then
+** the original data remains on the stack.
+*/
+case OP_MemStore: {
+ int i = pOp->p1;
+ Mem *pMem;
+ assert( pTos>=p->aStack );
+ if( i>=p->nMem ){
+ int nOld = p->nMem;
+ Mem *aMem;
+ p->nMem = i + 5;
+ aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
+ if( aMem==0 ) goto no_mem;
+ if( aMem!=p->aMem ){
+ int j;
+ for(j=0; j<nOld; j++){
+ if( aMem[j].flags & MEM_Short ){
+ aMem[j].z = aMem[j].zShort;
+ }
+ }
+ }
+ p->aMem = aMem;
+ if( nOld<p->nMem ){
+ memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
+ }
+ }
+ Deephemeralize(pTos);
+ pMem = &p->aMem[i];
+ Release(pMem);
+ *pMem = *pTos;
+ if( pMem->flags & MEM_Dyn ){
+ if( pOp->p2 ){
+ pTos->flags = MEM_Null;
+ }else{
+ pMem->z = sqliteMallocRaw( pMem->n );
+ if( pMem->z==0 ) goto no_mem;
+ memcpy(pMem->z, pTos->z, pMem->n);
+ }
+ }else if( pMem->flags & MEM_Short ){
+ pMem->z = pMem->zShort;
+ }
+ if( pOp->p2 ){
+ Release(pTos);
+ pTos--;
+ }
+ break;
+}
+
+/* Opcode: MemLoad P1 * *
+**
+** Push a copy of the value in memory location P1 onto the stack.
+**
+** If the value is a string, then the value pushed is a pointer to
+** the string that is stored in the memory location. If the memory
+** location is subsequently changed (using OP_MemStore) then the
+** value pushed onto the stack will change too.
+*/
+case OP_MemLoad: {
+ int i = pOp->p1;
+ assert( i>=0 && i<p->nMem );
+ pTos++;
+ memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);;
+ if( pTos->flags & MEM_Str ){
+ pTos->flags |= MEM_Ephem;
+ pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
+ }
+ break;
+}
+
+/* Opcode: MemIncr P1 P2 *
+**
+** Increment the integer valued memory cell P1 by 1. If P2 is not zero
+** and the result after the increment is greater than zero, then jump
+** to P2.
+**
+** This instruction throws an error if the memory cell is not initially
+** an integer.
+*/
+case OP_MemIncr: {
+ int i = pOp->p1;
+ Mem *pMem;
+ assert( i>=0 && i<p->nMem );
+ pMem = &p->aMem[i];
+ assert( pMem->flags==MEM_Int );
+ pMem->i++;
+ if( pOp->p2>0 && pMem->i>0 ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: AggReset * P2 *
+**
+** Reset the aggregator so that it no longer contains any data.
+** Future aggregator elements will contain P2 values each.
+*/
+case OP_AggReset: {
+ sqliteVdbeAggReset(&p->agg);
+ p->agg.nMem = pOp->p2;
+ p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) );
+ if( p->agg.apFunc==0 ) goto no_mem;
+ break;
+}
+
+/* Opcode: AggInit * P2 P3
+**
+** Initialize the function parameters for an aggregate function.
+** The aggregate will operate out of aggregate column P2.
+** P3 is a pointer to the FuncDef structure for the function.
+*/
+case OP_AggInit: {
+ int i = pOp->p2;
+ assert( i>=0 && i<p->agg.nMem );
+ p->agg.apFunc[i] = (FuncDef*)pOp->p3;
+ break;
+}
+
+/* Opcode: AggFunc * P2 P3
+**
+** Execute the step function for an aggregate. The
+** function has P2 arguments. P3 is a pointer to the FuncDef
+** structure that specifies the function.
+**
+** The top of the stack must be an integer which is the index of
+** the aggregate column that corresponds to this aggregate function.
+** Ideally, this index would be another parameter, but there are
+** no free parameters left. The integer is popped from the stack.
+*/
+case OP_AggFunc: {
+ int n = pOp->p2;
+ int i;
+ Mem *pMem, *pRec;
+ char **azArgv = p->zArgv;
+ sqlite_func ctx;
+
+ assert( n>=0 );
+ assert( pTos->flags==MEM_Int );
+ pRec = &pTos[-n];
+ assert( pRec>=p->aStack );
+ for(i=0; i<n; i++, pRec++){
+ if( pRec->flags & MEM_Null ){
+ azArgv[i] = 0;
+ }else{
+ Stringify(pRec);
+ azArgv[i] = pRec->z;
+ }
+ }
+ i = pTos->i;
+ assert( i>=0 && i<p->agg.nMem );
+ ctx.pFunc = (FuncDef*)pOp->p3;
+ pMem = &p->agg.pCurrent->aMem[i];
+ ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */
+ ctx.pAgg = pMem->z;
+ ctx.cnt = ++pMem->i;
+ ctx.isError = 0;
+ ctx.isStep = 1;
+ (ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv);
+ pMem->z = ctx.pAgg;
+ pMem->flags = MEM_AggCtx;
+ popStack(&pTos, n+1);
+ if( ctx.isError ){
+ rc = SQLITE_ERROR;
+ }
+ break;
+}
+
+/* Opcode: AggFocus * P2 *
+**
+** Pop the top of the stack and use that as an aggregator key. If
+** an aggregator with that same key already exists, then make the
+** aggregator the current aggregator and jump to P2. If no aggregator
+** with the given key exists, create one and make it current but
+** do not jump.
+**
+** The order of aggregator opcodes is important. The order is:
+** AggReset AggFocus AggNext. In other words, you must execute
+** AggReset first, then zero or more AggFocus operations, then
+** zero or more AggNext operations. You must not execute an AggFocus
+** in between an AggNext and an AggReset.
+*/
+case OP_AggFocus: {
+ AggElem *pElem;
+ char *zKey;
+ int nKey;
+
+ assert( pTos>=p->aStack );
+ Stringify(pTos);
+ zKey = pTos->z;
+ nKey = pTos->n;
+ pElem = sqliteHashFind(&p->agg.hash, zKey, nKey);
+ if( pElem ){
+ p->agg.pCurrent = pElem;
+ pc = pOp->p2 - 1;
+ }else{
+ AggInsert(&p->agg, zKey, nKey);
+ if( sqlite_malloc_failed ) goto no_mem;
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: AggSet * P2 *
+**
+** Move the top of the stack into the P2-th field of the current
+** aggregate. String values are duplicated into new memory.
+*/
+case OP_AggSet: {
+ AggElem *pFocus = AggInFocus(p->agg);
+ Mem *pMem;
+ int i = pOp->p2;
+ assert( pTos>=p->aStack );
+ if( pFocus==0 ) goto no_mem;
+ assert( i>=0 && i<p->agg.nMem );
+ Deephemeralize(pTos);
+ pMem = &pFocus->aMem[i];
+ Release(pMem);
+ *pMem = *pTos;
+ if( pMem->flags & MEM_Dyn ){
+ pTos->flags = MEM_Null;
+ }else if( pMem->flags & MEM_Short ){
+ pMem->z = pMem->zShort;
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: AggGet * P2 *
+**
+** Push a new entry onto the stack which is a copy of the P2-th field
+** of the current aggregate. Strings are not duplicated so
+** string values will be ephemeral.
+*/
+case OP_AggGet: {
+ AggElem *pFocus = AggInFocus(p->agg);
+ Mem *pMem;
+ int i = pOp->p2;
+ if( pFocus==0 ) goto no_mem;
+ assert( i>=0 && i<p->agg.nMem );
+ pTos++;
+ pMem = &pFocus->aMem[i];
+ *pTos = *pMem;
+ if( pTos->flags & MEM_Str ){
+ pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
+ pTos->flags |= MEM_Ephem;
+ }
+ break;
+}
+
+/* Opcode: AggNext * P2 *
+**
+** Make the next aggregate value the current aggregate. The prior
+** aggregate is deleted. If all aggregate values have been consumed,
+** jump to P2.
+**
+** The order of aggregator opcodes is important. The order is:
+** AggReset AggFocus AggNext. In other words, you must execute
+** AggReset first, then zero or more AggFocus operations, then
+** zero or more AggNext operations. You must not execute an AggFocus
+** in between an AggNext and an AggReset.
+*/
+case OP_AggNext: {
+ CHECK_FOR_INTERRUPT;
+ if( p->agg.pSearch==0 ){
+ p->agg.pSearch = sqliteHashFirst(&p->agg.hash);
+ }else{
+ p->agg.pSearch = sqliteHashNext(p->agg.pSearch);
+ }
+ if( p->agg.pSearch==0 ){
+ pc = pOp->p2 - 1;
+ } else {
+ int i;
+ sqlite_func ctx;
+ Mem *aMem;
+ p->agg.pCurrent = sqliteHashData(p->agg.pSearch);
+ aMem = p->agg.pCurrent->aMem;
+ for(i=0; i<p->agg.nMem; i++){
+ int freeCtx;
+ if( p->agg.apFunc[i]==0 ) continue;
+ if( p->agg.apFunc[i]->xFinalize==0 ) continue;
+ ctx.s.flags = MEM_Null;
+ ctx.s.z = aMem[i].zShort;
+ ctx.pAgg = (void*)aMem[i].z;
+ freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort;
+ ctx.cnt = aMem[i].i;
+ ctx.isStep = 0;
+ ctx.pFunc = p->agg.apFunc[i];
+ (*p->agg.apFunc[i]->xFinalize)(&ctx);
+ if( freeCtx ){
+ sqliteFree( aMem[i].z );
+ }
+ aMem[i] = ctx.s;
+ if( aMem[i].flags & MEM_Short ){
+ aMem[i].z = aMem[i].zShort;
+ }
+ }
+ }
+ break;
+}
+
+/* Opcode: SetInsert P1 * P3
+**
+** If Set P1 does not exist then create it. Then insert value
+** P3 into that set. If P3 is NULL, then insert the top of the
+** stack into the set.
+*/
+case OP_SetInsert: {
+ int i = pOp->p1;
+ if( p->nSet<=i ){
+ int k;
+ Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) );
+ if( aSet==0 ) goto no_mem;
+ p->aSet = aSet;
+ for(k=p->nSet; k<=i; k++){
+ sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1);
+ }
+ p->nSet = i+1;
+ }
+ if( pOp->p3 ){
+ sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p);
+ }else{
+ assert( pTos>=p->aStack );
+ Stringify(pTos);
+ sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p);
+ Release(pTos);
+ pTos--;
+ }
+ if( sqlite_malloc_failed ) goto no_mem;
+ break;
+}
+
+/* Opcode: SetFound P1 P2 *
+**
+** Pop the stack once and compare the value popped off with the
+** contents of set P1. If the element popped exists in set P1,
+** then jump to P2. Otherwise fall through.
+*/
+case OP_SetFound: {
+ int i = pOp->p1;
+ assert( pTos>=p->aStack );
+ Stringify(pTos);
+ if( i>=0 && i<p->nSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){
+ pc = pOp->p2 - 1;
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: SetNotFound P1 P2 *
+**
+** Pop the stack once and compare the value popped off with the
+** contents of set P1. If the element popped does not exists in
+** set P1, then jump to P2. Otherwise fall through.
+*/
+case OP_SetNotFound: {
+ int i = pOp->p1;
+ assert( pTos>=p->aStack );
+ Stringify(pTos);
+ if( i<0 || i>=p->nSet ||
+ sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){
+ pc = pOp->p2 - 1;
+ }
+ Release(pTos);
+ pTos--;
+ break;
+}
+
+/* Opcode: SetFirst P1 P2 *
+**
+** Read the first element from set P1 and push it onto the stack. If the
+** set is empty, push nothing and jump immediately to P2. This opcode is
+** used in combination with OP_SetNext to loop over all elements of a set.
+*/
+/* Opcode: SetNext P1 P2 *
+**
+** Read the next element from set P1 and push it onto the stack. If there
+** are no more elements in the set, do not do the push and fall through.
+** Otherwise, jump to P2 after pushing the next set element.
+*/
+case OP_SetFirst:
+case OP_SetNext: {
+ Set *pSet;
+ CHECK_FOR_INTERRUPT;
+ if( pOp->p1<0 || pOp->p1>=p->nSet ){
+ if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1;
+ break;
+ }
+ pSet = &p->aSet[pOp->p1];
+ if( pOp->opcode==OP_SetFirst ){
+ pSet->prev = sqliteHashFirst(&pSet->hash);
+ if( pSet->prev==0 ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+ }else{
+ assert( pSet->prev );
+ pSet->prev = sqliteHashNext(pSet->prev);
+ if( pSet->prev==0 ){
+ break;
+ }else{
+ pc = pOp->p2 - 1;
+ }
+ }
+ pTos++;
+ pTos->z = sqliteHashKey(pSet->prev);
+ pTos->n = sqliteHashKeysize(pSet->prev);
+ pTos->flags = MEM_Str | MEM_Ephem;
+ break;
+}
+
+/* Opcode: Vacuum * * *
+**
+** Vacuum the entire database. This opcode will cause other virtual
+** machines to be created and run. It may not be called from within
+** a transaction.
+*/
+case OP_Vacuum: {
+ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
+ rc = sqliteRunVacuum(&p->zErrMsg, db);
+ if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
+ break;
+}
+
+/* An other opcode is illegal...
+*/
+default: {
+ sqlite_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode);
+ sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0);
+ rc = SQLITE_INTERNAL;
+ break;
+}
+
+/*****************************************************************************
+** The cases of the switch statement above this line should all be indented
+** by 6 spaces. But the left-most 6 spaces have been removed to improve the
+** readability. From this point on down, the normal indentation rules are
+** restored.
+*****************************************************************************/
+ }
+
+#ifdef VDBE_PROFILE
+ {
+ long long elapse = hwtime() - start;
+ pOp->cycles += elapse;
+ pOp->cnt++;
+#if 0
+ fprintf(stdout, "%10lld ", elapse);
+ sqliteVdbePrintOp(stdout, origPc, &p->aOp[origPc]);
+#endif
+ }
+#endif
+
+ /* The following code adds nothing to the actual functionality
+ ** of the program. It is only here for testing and debugging.
+ ** On the other hand, it does burn CPU cycles every time through
+ ** the evaluator loop. So we can leave it out when NDEBUG is defined.
+ */
+#ifndef NDEBUG
+ /* Sanity checking on the top element of the stack */
+ if( pTos>=p->aStack ){
+ assert( pTos->flags!=0 ); /* Must define some type */
+ if( pTos->flags & MEM_Str ){
+ int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
+ assert( x!=0 ); /* Strings must define a string subtype */
+ assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
+ assert( pTos->z!=0 ); /* Strings must have a value */
+ /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
+ assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort );
+ assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort );
+ }else{
+ /* Cannot define a string subtype for non-string objects */
+ assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
+ }
+ /* MEM_Null excludes all other types */
+ assert( pTos->flags==MEM_Null || (pTos->flags&MEM_Null)==0 );
+ }
+ if( pc<-1 || pc>=p->nOp ){
+ sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0);
+ rc = SQLITE_INTERNAL;
+ }
+ if( p->trace && pTos>=p->aStack ){
+ int i;
+ fprintf(p->trace, "Stack:");
+ for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
+ if( pTos[i].flags & MEM_Null ){
+ fprintf(p->trace, " NULL");
+ }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
+ fprintf(p->trace, " si:%d", pTos[i].i);
+ }else if( pTos[i].flags & MEM_Int ){
+ fprintf(p->trace, " i:%d", pTos[i].i);
+ }else if( pTos[i].flags & MEM_Real ){
+ fprintf(p->trace, " r:%g", pTos[i].r);
+ }else if( pTos[i].flags & MEM_Str ){
+ int j, k;
+ char zBuf[100];
+ zBuf[0] = ' ';
+ if( pTos[i].flags & MEM_Dyn ){
+ zBuf[1] = 'z';
+ assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 );
+ }else if( pTos[i].flags & MEM_Static ){
+ zBuf[1] = 't';
+ assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 );
+ }else if( pTos[i].flags & MEM_Ephem ){
+ zBuf[1] = 'e';
+ assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 );
+ }else{
+ zBuf[1] = 's';
+ }
+ zBuf[2] = '[';
+ k = 3;
+ for(j=0; j<20 && j<pTos[i].n; j++){
+ int c = pTos[i].z[j];
+ if( c==0 && j==pTos[i].n-1 ) break;
+ if( isprint(c) && !isspace(c) ){
+ zBuf[k++] = c;
+ }else{
+ zBuf[k++] = '.';
+ }
+ }
+ zBuf[k++] = ']';
+ zBuf[k++] = 0;
+ fprintf(p->trace, "%s", zBuf);
+ }else{
+ fprintf(p->trace, " ???");
+ }
+ }
+ if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
+ fprintf(p->trace,"\n");
+ }
+#endif
+ } /* The end of the for(;;) loop the loops through opcodes */
+
+ /* If we reach this point, it means that execution is finished.
+ */
+vdbe_halt:
+ if( rc ){
+ p->rc = rc;
+ rc = SQLITE_ERROR;
+ }else{
+ rc = SQLITE_DONE;
+ }
+ p->magic = VDBE_MAGIC_HALT;
+ p->pTos = pTos;
+ return rc;
+
+ /* Jump to here if a malloc() fails. It's hard to get a malloc()
+ ** to fail on a modern VM computer, so this code is untested.
+ */
+no_mem:
+ sqliteSetString(&p->zErrMsg, "out of memory", (char*)0);
+ rc = SQLITE_NOMEM;
+ goto vdbe_halt;
+
+ /* Jump to here for an SQLITE_MISUSE error.
+ */
+abort_due_to_misuse:
+ rc = SQLITE_MISUSE;
+ /* Fall thru into abort_due_to_error */
+
+ /* Jump to here for any other kind of fatal error. The "rc" variable
+ ** should hold the error number.
+ */
+abort_due_to_error:
+ if( p->zErrMsg==0 ){
+ if( sqlite_malloc_failed ) rc = SQLITE_NOMEM;
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
+ }
+ goto vdbe_halt;
+
+ /* Jump to here if the sqlite_interrupt() API sets the interrupt
+ ** flag.
+ */
+abort_due_to_interrupt:
+ assert( db->flags & SQLITE_Interrupt );
+ db->flags &= ~SQLITE_Interrupt;
+ if( db->magic!=SQLITE_MAGIC_BUSY ){
+ rc = SQLITE_MISUSE;
+ }else{
+ rc = SQLITE_INTERRUPT;
+ }
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
+ goto vdbe_halt;
+}
diff --git a/src/3rdparty/sqlite/vdbe.h b/src/3rdparty/sqlite/vdbe.h
new file mode 100644
index 0000000..f39de1c
--- /dev/null
+++ b/src/3rdparty/sqlite/vdbe.h
@@ -0,0 +1,112 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Header file for the Virtual DataBase Engine (VDBE)
+**
+** This header defines the interface to the virtual database engine
+** or VDBE. The VDBE implements an abstract machine that runs a
+** simple program to access and modify the underlying database.
+**
+** $Id: vdbe.h,v 1.71 2004/02/22 20:05:02 drh Exp $
+*/
+#ifndef _SQLITE_VDBE_H_
+#define _SQLITE_VDBE_H_
+#include <stdio.h>
+
+/*
+** A single VDBE is an opaque structure named "Vdbe". Only routines
+** in the source file sqliteVdbe.c are allowed to see the insides
+** of this structure.
+*/
+typedef struct Vdbe Vdbe;
+
+/*
+** A single instruction of the virtual machine has an opcode
+** and as many as three operands. The instruction is recorded
+** as an instance of the following structure:
+*/
+struct VdbeOp {
+ u8 opcode; /* What operation to perform */
+ int p1; /* First operand */
+ int p2; /* Second parameter (often the jump destination) */
+ char *p3; /* Third parameter */
+ int p3type; /* P3_STATIC, P3_DYNAMIC or P3_POINTER */
+#ifdef VDBE_PROFILE
+ int cnt; /* Number of times this instruction was executed */
+ long long cycles; /* Total time spend executing this instruction */
+#endif
+};
+typedef struct VdbeOp VdbeOp;
+
+/*
+** A smaller version of VdbeOp used for the VdbeAddOpList() function because
+** it takes up less space.
+*/
+struct VdbeOpList {
+ u8 opcode; /* What operation to perform */
+ signed char p1; /* First operand */
+ short int p2; /* Second parameter (often the jump destination) */
+ char *p3; /* Third parameter */
+};
+typedef struct VdbeOpList VdbeOpList;
+
+/*
+** Allowed values of VdbeOp.p3type
+*/
+#define P3_NOTUSED 0 /* The P3 parameter is not used */
+#define P3_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */
+#define P3_STATIC (-2) /* Pointer to a static string */
+#define P3_POINTER (-3) /* P3 is a pointer to some structure or object */
+
+/*
+** The following macro converts a relative address in the p2 field
+** of a VdbeOp structure into a negative number so that
+** sqliteVdbeAddOpList() knows that the address is relative. Calling
+** the macro again restores the address.
+*/
+#define ADDR(X) (-1-(X))
+
+/*
+** The makefile scans the vdbe.c source file and creates the "opcodes.h"
+** header file that defines a number for each opcode used by the VDBE.
+*/
+#include "opcodes.h"
+
+/*
+** Prototypes for the VDBE interface. See comments on the implementation
+** for a description of what each of these routines does.
+*/
+Vdbe *sqliteVdbeCreate(sqlite*);
+void sqliteVdbeCreateCallback(Vdbe*, int*);
+int sqliteVdbeAddOp(Vdbe*,int,int,int);
+int sqliteVdbeOp3(Vdbe*,int,int,int,const char *zP3,int);
+int sqliteVdbeCode(Vdbe*,...);
+int sqliteVdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
+void sqliteVdbeChangeP1(Vdbe*, int addr, int P1);
+void sqliteVdbeChangeP2(Vdbe*, int addr, int P2);
+void sqliteVdbeChangeP3(Vdbe*, int addr, const char *zP1, int N);
+void sqliteVdbeDequoteP3(Vdbe*, int addr);
+int sqliteVdbeFindOp(Vdbe*, int, int);
+VdbeOp *sqliteVdbeGetOp(Vdbe*, int);
+int sqliteVdbeMakeLabel(Vdbe*);
+void sqliteVdbeDelete(Vdbe*);
+void sqliteVdbeMakeReady(Vdbe*,int,int);
+int sqliteVdbeExec(Vdbe*);
+int sqliteVdbeList(Vdbe*);
+int sqliteVdbeFinalize(Vdbe*,char**);
+void sqliteVdbeResolveLabel(Vdbe*, int);
+int sqliteVdbeCurrentAddr(Vdbe*);
+void sqliteVdbeTrace(Vdbe*,FILE*);
+void sqliteVdbeCompressSpace(Vdbe*,int);
+int sqliteVdbeReset(Vdbe*,char **);
+int sqliteVdbeSetVariables(Vdbe*,int,const char**);
+
+#endif
diff --git a/src/3rdparty/sqlite/vdbeInt.h b/src/3rdparty/sqlite/vdbeInt.h
new file mode 100644
index 0000000..79b6b51
--- /dev/null
+++ b/src/3rdparty/sqlite/vdbeInt.h
@@ -0,0 +1,303 @@
+/*
+** 2003 September 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the header file for information that is private to the
+** VDBE. This information used to all be at the top of the single
+** source code file "vdbe.c". When that file became too big (over
+** 6000 lines long) it was split up into several smaller files and
+** this header information was factored out.
+*/
+
+/*
+** When converting from the native format to the key format and back
+** again, in addition to changing the byte order we invert the high-order
+** bit of the most significant byte. This causes negative numbers to
+** sort before positive numbers in the memcmp() function.
+*/
+#define keyToInt(X) (sqliteVdbeByteSwap(X) ^ 0x80000000)
+#define intToKey(X) (sqliteVdbeByteSwap((X) ^ 0x80000000))
+
+/*
+** The makefile scans this source file and creates the following
+** array of string constants which are the names of all VDBE opcodes.
+** This array is defined in a separate source code file named opcode.c
+** which is automatically generated by the makefile.
+*/
+extern char *sqliteOpcodeNames[];
+
+/*
+** SQL is translated into a sequence of instructions to be
+** executed by a virtual machine. Each instruction is an instance
+** of the following structure.
+*/
+typedef struct VdbeOp Op;
+
+/*
+** Boolean values
+*/
+typedef unsigned char Bool;
+
+/*
+** A cursor is a pointer into a single BTree within a database file.
+** The cursor can seek to a BTree entry with a particular key, or
+** loop over all entries of the Btree. You can also insert new BTree
+** entries or retrieve the key or data from the entry that the cursor
+** is currently pointing to.
+**
+** Every cursor that the virtual machine has open is represented by an
+** instance of the following structure.
+**
+** If the Cursor.isTriggerRow flag is set it means that this cursor is
+** really a single row that represents the NEW or OLD pseudo-table of
+** a row trigger. The data for the row is stored in Cursor.pData and
+** the rowid is in Cursor.iKey.
+*/
+struct Cursor {
+ BtCursor *pCursor; /* The cursor structure of the backend */
+ int lastRecno; /* Last recno from a Next or NextIdx operation */
+ int nextRowid; /* Next rowid returned by OP_NewRowid */
+ Bool recnoIsValid; /* True if lastRecno is valid */
+ Bool keyAsData; /* The OP_Column command works on key instead of data */
+ Bool atFirst; /* True if pointing to first entry */
+ Bool useRandomRowid; /* Generate new record numbers semi-randomly */
+ Bool nullRow; /* True if pointing to a row with no data */
+ Bool nextRowidValid; /* True if the nextRowid field is valid */
+ Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */
+ Bool deferredMoveto; /* A call to sqliteBtreeMoveto() is needed */
+ int movetoTarget; /* Argument to the deferred sqliteBtreeMoveto() */
+ Btree *pBt; /* Separate file holding temporary table */
+ int nData; /* Number of bytes in pData */
+ char *pData; /* Data for a NEW or OLD pseudo-table */
+ int iKey; /* Key for the NEW or OLD pseudo-table row */
+};
+typedef struct Cursor Cursor;
+
+/*
+** A sorter builds a list of elements to be sorted. Each element of
+** the list is an instance of the following structure.
+*/
+typedef struct Sorter Sorter;
+struct Sorter {
+ int nKey; /* Number of bytes in the key */
+ char *zKey; /* The key by which we will sort */
+ int nData; /* Number of bytes in the data */
+ char *pData; /* The data associated with this key */
+ Sorter *pNext; /* Next in the list */
+};
+
+/*
+** Number of buckets used for merge-sort.
+*/
+#define NSORT 30
+
+/*
+** Number of bytes of string storage space available to each stack
+** layer without having to malloc. NBFS is short for Number of Bytes
+** For Strings.
+*/
+#define NBFS 32
+
+/*
+** A single level of the stack or a single memory cell
+** is an instance of the following structure.
+*/
+struct Mem {
+ int i; /* Integer value */
+ int n; /* Number of characters in string value, including '\0' */
+ int flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
+ double r; /* Real value */
+ char *z; /* String value */
+ char zShort[NBFS]; /* Space for short strings */
+};
+typedef struct Mem Mem;
+
+/*
+** Allowed values for Mem.flags
+*/
+#define MEM_Null 0x0001 /* Value is NULL */
+#define MEM_Str 0x0002 /* Value is a string */
+#define MEM_Int 0x0004 /* Value is an integer */
+#define MEM_Real 0x0008 /* Value is a real number */
+#define MEM_Dyn 0x0010 /* Need to call sqliteFree() on Mem.z */
+#define MEM_Static 0x0020 /* Mem.z points to a static string */
+#define MEM_Ephem 0x0040 /* Mem.z points to an ephemeral string */
+#define MEM_Short 0x0080 /* Mem.z points to Mem.zShort */
+
+/* The following MEM_ value appears only in AggElem.aMem.s.flag fields.
+** It indicates that the corresponding AggElem.aMem.z points to a
+** aggregate function context that needs to be finalized.
+*/
+#define MEM_AggCtx 0x0100 /* Mem.z points to an agg function context */
+
+/*
+** The "context" argument for a installable function. A pointer to an
+** instance of this structure is the first argument to the routines used
+** implement the SQL functions.
+**
+** There is a typedef for this structure in sqlite.h. So all routines,
+** even the public interface to SQLite, can use a pointer to this structure.
+** But this file is the only place where the internal details of this
+** structure are known.
+**
+** This structure is defined inside of vdbe.c because it uses substructures
+** (Mem) which are only defined there.
+*/
+struct sqlite_func {
+ FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
+ Mem s; /* The return value is stored here */
+ void *pAgg; /* Aggregate context */
+ u8 isError; /* Set to true for an error */
+ u8 isStep; /* Current in the step function */
+ int cnt; /* Number of times that the step function has been called */
+};
+
+/*
+** An Agg structure describes an Aggregator. Each Agg consists of
+** zero or more Aggregator elements (AggElem). Each AggElem contains
+** a key and one or more values. The values are used in processing
+** aggregate functions in a SELECT. The key is used to implement
+** the GROUP BY clause of a select.
+*/
+typedef struct Agg Agg;
+typedef struct AggElem AggElem;
+struct Agg {
+ int nMem; /* Number of values stored in each AggElem */
+ AggElem *pCurrent; /* The AggElem currently in focus */
+ HashElem *pSearch; /* The hash element for pCurrent */
+ Hash hash; /* Hash table of all aggregate elements */
+ FuncDef **apFunc; /* Information about aggregate functions */
+};
+struct AggElem {
+ char *zKey; /* The key to this AggElem */
+ int nKey; /* Number of bytes in the key, including '\0' at end */
+ Mem aMem[1]; /* The values for this AggElem */
+};
+
+/*
+** A Set structure is used for quick testing to see if a value
+** is part of a small set. Sets are used to implement code like
+** this:
+** x.y IN ('hi','hoo','hum')
+*/
+typedef struct Set Set;
+struct Set {
+ Hash hash; /* A set is just a hash table */
+ HashElem *prev; /* Previously accessed hash elemen */
+};
+
+/*
+** A Keylist is a bunch of keys into a table. The keylist can
+** grow without bound. The keylist stores the ROWIDs of database
+** records that need to be deleted or updated.
+*/
+typedef struct Keylist Keylist;
+struct Keylist {
+ int nKey; /* Number of slots in aKey[] */
+ int nUsed; /* Next unwritten slot in aKey[] */
+ int nRead; /* Next unread slot in aKey[] */
+ Keylist *pNext; /* Next block of keys */
+ int aKey[1]; /* One or more keys. Extra space allocated as needed */
+};
+
+/*
+** A Context stores the last insert rowid, the last statement change count,
+** and the current statement change count (i.e. changes since last statement).
+** Elements of Context structure type make up the ContextStack, which is
+** updated by the ContextPush and ContextPop opcodes (used by triggers)
+*/
+typedef struct Context Context;
+struct Context {
+ int lastRowid; /* Last insert rowid (from db->lastRowid) */
+ int lsChange; /* Last statement change count (from db->lsChange) */
+ int csChange; /* Current statement change count (from db->csChange) */
+};
+
+/*
+** An instance of the virtual machine. This structure contains the complete
+** state of the virtual machine.
+**
+** The "sqlite_vm" structure pointer that is returned by sqlite_compile()
+** is really a pointer to an instance of this structure.
+*/
+struct Vdbe {
+ sqlite *db; /* The whole database */
+ Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
+ FILE *trace; /* Write an execution trace here, if not NULL */
+ int nOp; /* Number of instructions in the program */
+ int nOpAlloc; /* Number of slots allocated for aOp[] */
+ Op *aOp; /* Space to hold the virtual machine's program */
+ int nLabel; /* Number of labels used */
+ int nLabelAlloc; /* Number of slots allocated in aLabel[] */
+ int *aLabel; /* Space to hold the labels */
+ Mem *aStack; /* The operand stack, except string values */
+ Mem *pTos; /* Top entry in the operand stack */
+ char **zArgv; /* Text values used by the callback */
+ char **azColName; /* Becomes the 4th parameter to callbacks */
+ int nCursor; /* Number of slots in aCsr[] */
+ Cursor *aCsr; /* One element of this array for each open cursor */
+ Sorter *pSort; /* A linked list of objects to be sorted */
+ FILE *pFile; /* At most one open file handler */
+ int nField; /* Number of file fields */
+ char **azField; /* Data for each file field */
+ int nVar; /* Number of entries in azVariable[] */
+ char **azVar; /* Values for the OP_Variable opcode */
+ int *anVar; /* Length of each value in azVariable[] */
+ u8 *abVar; /* TRUE if azVariable[i] needs to be sqliteFree()ed */
+ char *zLine; /* A single line from the input file */
+ int nLineAlloc; /* Number of spaces allocated for zLine */
+ int magic; /* Magic number for sanity checking */
+ int nMem; /* Number of memory locations currently allocated */
+ Mem *aMem; /* The memory locations */
+ Agg agg; /* Aggregate information */
+ int nSet; /* Number of sets allocated */
+ Set *aSet; /* An array of sets */
+ int nCallback; /* Number of callbacks invoked so far */
+ Keylist *pList; /* A list of ROWIDs */
+ int keylistStackDepth; /* The size of the "keylist" stack */
+ Keylist **keylistStack; /* The stack used by opcodes ListPush & ListPop */
+ int contextStackDepth; /* The size of the "context" stack */
+ Context *contextStack; /* Stack used by opcodes ContextPush & ContextPop*/
+ int pc; /* The program counter */
+ int rc; /* Value to return */
+ unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */
+ int errorAction; /* Recovery action to do in case of an error */
+ int undoTransOnError; /* If error, either ROLLBACK or COMMIT */
+ int inTempTrans; /* True if temp database is transactioned */
+ int returnStack[100]; /* Return address stack for OP_Gosub & OP_Return */
+ int returnDepth; /* Next unused element in returnStack[] */
+ int nResColumn; /* Number of columns in one row of the result set */
+ char **azResColumn; /* Values for one row of result */
+ int popStack; /* Pop the stack this much on entry to VdbeExec() */
+ char *zErrMsg; /* Error message written here */
+ u8 explain; /* True if EXPLAIN present on SQL command */
+};
+
+/*
+** The following are allowed values for Vdbe.magic
+*/
+#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
+#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
+#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
+#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
+
+/*
+** Function prototypes
+*/
+void sqliteVdbeCleanupCursor(Cursor*);
+void sqliteVdbeSorterReset(Vdbe*);
+void sqliteVdbeAggReset(Agg*);
+void sqliteVdbeKeylistFree(Keylist*);
+void sqliteVdbePopStack(Vdbe*,int);
+int sqliteVdbeCursorMoveto(Cursor*);
+int sqliteVdbeByteSwap(int);
+#if !defined(NDEBUG) || defined(VDBE_PROFILE)
+void sqliteVdbePrintOp(FILE*, int, Op*);
+#endif
diff --git a/src/3rdparty/sqlite/vdbeaux.c b/src/3rdparty/sqlite/vdbeaux.c
new file mode 100644
index 0000000..6254aa8
--- /dev/null
+++ b/src/3rdparty/sqlite/vdbeaux.c
@@ -0,0 +1,1061 @@
+/*
+** 2003 September 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used for creating, destroying, and populating
+** a VDBE (or an "sqlite_vm" as it is known to the outside world.) Prior
+** to version 2.8.7, all this code was combined into the vdbe.c source file.
+** But that file was getting too big so this subroutines were split out.
+*/
+#include "sqliteInt.h"
+#include "os.h"
+#include <ctype.h>
+#include "vdbeInt.h"
+
+
+/*
+** When debugging the code generator in a symbolic debugger, one can
+** set the sqlite_vdbe_addop_trace to 1 and all opcodes will be printed
+** as they are added to the instruction stream.
+*/
+#ifndef NDEBUG
+int sqlite_vdbe_addop_trace = 0;
+#endif
+
+
+/*
+** Create a new virtual database engine.
+*/
+Vdbe *sqliteVdbeCreate(sqlite *db){
+ Vdbe *p;
+ p = sqliteMalloc( sizeof(Vdbe) );
+ if( p==0 ) return 0;
+ p->db = db;
+ if( db->pVdbe ){
+ db->pVdbe->pPrev = p;
+ }
+ p->pNext = db->pVdbe;
+ p->pPrev = 0;
+ db->pVdbe = p;
+ p->magic = VDBE_MAGIC_INIT;
+ return p;
+}
+
+/*
+** Turn tracing on or off
+*/
+void sqliteVdbeTrace(Vdbe *p, FILE *trace){
+ p->trace = trace;
+}
+
+/*
+** Add a new instruction to the list of instructions current in the
+** VDBE. Return the address of the new instruction.
+**
+** Parameters:
+**
+** p Pointer to the VDBE
+**
+** op The opcode for this instruction
+**
+** p1, p2 First two of the three possible operands.
+**
+** Use the sqliteVdbeResolveLabel() function to fix an address and
+** the sqliteVdbeChangeP3() function to change the value of the P3
+** operand.
+*/
+int sqliteVdbeAddOp(Vdbe *p, int op, int p1, int p2){
+ int i;
+ VdbeOp *pOp;
+
+ i = p->nOp;
+ p->nOp++;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( i>=p->nOpAlloc ){
+ int oldSize = p->nOpAlloc;
+ Op *aNew;
+ p->nOpAlloc = p->nOpAlloc*2 + 100;
+ aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
+ if( aNew==0 ){
+ p->nOpAlloc = oldSize;
+ return 0;
+ }
+ p->aOp = aNew;
+ memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
+ }
+ pOp = &p->aOp[i];
+ pOp->opcode = op;
+ pOp->p1 = p1;
+ if( p2<0 && (-1-p2)<p->nLabel && p->aLabel[-1-p2]>=0 ){
+ p2 = p->aLabel[-1-p2];
+ }
+ pOp->p2 = p2;
+ pOp->p3 = 0;
+ pOp->p3type = P3_NOTUSED;
+#ifndef NDEBUG
+ if( sqlite_vdbe_addop_trace ) sqliteVdbePrintOp(0, i, &p->aOp[i]);
+#endif
+ return i;
+}
+
+/*
+** Add an opcode that includes the p3 value.
+*/
+int sqliteVdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3, int p3type){
+ int addr = sqliteVdbeAddOp(p, op, p1, p2);
+ sqliteVdbeChangeP3(p, addr, zP3, p3type);
+ return addr;
+}
+
+/*
+** Add multiple opcodes. The list is terminated by an opcode of 0.
+*/
+int sqliteVdbeCode(Vdbe *p, ...){
+ int addr;
+ va_list ap;
+ int opcode, p1, p2;
+ va_start(ap, p);
+ addr = p->nOp;
+ while( (opcode = va_arg(ap,int))!=0 ){
+ p1 = va_arg(ap,int);
+ p2 = va_arg(ap,int);
+ sqliteVdbeAddOp(p, opcode, p1, p2);
+ }
+ va_end(ap);
+ return addr;
+}
+
+
+
+/*
+** Create a new symbolic label for an instruction that has yet to be
+** coded. The symbolic label is really just a negative number. The
+** label can be used as the P2 value of an operation. Later, when
+** the label is resolved to a specific address, the VDBE will scan
+** through its operation list and change all values of P2 which match
+** the label into the resolved address.
+**
+** The VDBE knows that a P2 value is a label because labels are
+** always negative and P2 values are suppose to be non-negative.
+** Hence, a negative P2 value is a label that has yet to be resolved.
+*/
+int sqliteVdbeMakeLabel(Vdbe *p){
+ int i;
+ i = p->nLabel++;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( i>=p->nLabelAlloc ){
+ int *aNew;
+ p->nLabelAlloc = p->nLabelAlloc*2 + 10;
+ aNew = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0]));
+ if( aNew==0 ){
+ sqliteFree(p->aLabel);
+ }
+ p->aLabel = aNew;
+ }
+ if( p->aLabel==0 ){
+ p->nLabel = 0;
+ p->nLabelAlloc = 0;
+ return 0;
+ }
+ p->aLabel[i] = -1;
+ return -1-i;
+}
+
+/*
+** Resolve label "x" to be the address of the next instruction to
+** be inserted. The parameter "x" must have been obtained from
+** a prior call to sqliteVdbeMakeLabel().
+*/
+void sqliteVdbeResolveLabel(Vdbe *p, int x){
+ int j;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( x<0 && (-x)<=p->nLabel && p->aOp ){
+ if( p->aLabel[-1-x]==p->nOp ) return;
+ assert( p->aLabel[-1-x]<0 );
+ p->aLabel[-1-x] = p->nOp;
+ for(j=0; j<p->nOp; j++){
+ if( p->aOp[j].p2==x ) p->aOp[j].p2 = p->nOp;
+ }
+ }
+}
+
+/*
+** Return the address of the next instruction to be inserted.
+*/
+int sqliteVdbeCurrentAddr(Vdbe *p){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ return p->nOp;
+}
+
+/*
+** Add a whole list of operations to the operation stack. Return the
+** address of the first operation added.
+*/
+int sqliteVdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
+ int addr;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->nOp + nOp >= p->nOpAlloc ){
+ int oldSize = p->nOpAlloc;
+ Op *aNew;
+ p->nOpAlloc = p->nOpAlloc*2 + nOp + 10;
+ aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
+ if( aNew==0 ){
+ p->nOpAlloc = oldSize;
+ return 0;
+ }
+ p->aOp = aNew;
+ memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
+ }
+ addr = p->nOp;
+ if( nOp>0 ){
+ int i;
+ VdbeOpList const *pIn = aOp;
+ for(i=0; i<nOp; i++, pIn++){
+ int p2 = pIn->p2;
+ VdbeOp *pOut = &p->aOp[i+addr];
+ pOut->opcode = pIn->opcode;
+ pOut->p1 = pIn->p1;
+ pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
+ pOut->p3 = pIn->p3;
+ pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
+#ifndef NDEBUG
+ if( sqlite_vdbe_addop_trace ){
+ sqliteVdbePrintOp(0, i+addr, &p->aOp[i+addr]);
+ }
+#endif
+ }
+ p->nOp += nOp;
+ }
+ return addr;
+}
+
+/*
+** Change the value of the P1 operand for a specific instruction.
+** This routine is useful when a large program is loaded from a
+** static array using sqliteVdbeAddOpList but we want to make a
+** few minor changes to the program.
+*/
+void sqliteVdbeChangeP1(Vdbe *p, int addr, int val){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
+ p->aOp[addr].p1 = val;
+ }
+}
+
+/*
+** Change the value of the P2 operand for a specific instruction.
+** This routine is useful for setting a jump destination.
+*/
+void sqliteVdbeChangeP2(Vdbe *p, int addr, int val){
+ assert( val>=0 );
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
+ p->aOp[addr].p2 = val;
+ }
+}
+
+/*
+** Change the value of the P3 operand for a specific instruction.
+** This routine is useful when a large program is loaded from a
+** static array using sqliteVdbeAddOpList but we want to make a
+** few minor changes to the program.
+**
+** If n>=0 then the P3 operand is dynamic, meaning that a copy of
+** the string is made into memory obtained from sqliteMalloc().
+** A value of n==0 means copy bytes of zP3 up to and including the
+** first null byte. If n>0 then copy n+1 bytes of zP3.
+**
+** If n==P3_STATIC it means that zP3 is a pointer to a constant static
+** string and we can just copy the pointer. n==P3_POINTER means zP3 is
+** a pointer to some object other than a string.
+**
+** If addr<0 then change P3 on the most recently inserted instruction.
+*/
+void sqliteVdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
+ Op *pOp;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p==0 || p->aOp==0 ) return;
+ if( addr<0 || addr>=p->nOp ){
+ addr = p->nOp - 1;
+ if( addr<0 ) return;
+ }
+ pOp = &p->aOp[addr];
+ if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){
+ sqliteFree(pOp->p3);
+ pOp->p3 = 0;
+ }
+ if( zP3==0 ){
+ pOp->p3 = 0;
+ pOp->p3type = P3_NOTUSED;
+ }else if( n<0 ){
+ pOp->p3 = (char*)zP3;
+ pOp->p3type = n;
+ }else{
+ sqliteSetNString(&pOp->p3, zP3, n, 0);
+ pOp->p3type = P3_DYNAMIC;
+ }
+}
+
+/*
+** If the P3 operand to the specified instruction appears
+** to be a quoted string token, then this procedure removes
+** the quotes.
+**
+** The quoting operator can be either a grave ascent (ASCII 0x27)
+** or a double quote character (ASCII 0x22). Two quotes in a row
+** resolve to be a single actual quote character within the string.
+*/
+void sqliteVdbeDequoteP3(Vdbe *p, int addr){
+ Op *pOp;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->aOp==0 ) return;
+ if( addr<0 || addr>=p->nOp ){
+ addr = p->nOp - 1;
+ if( addr<0 ) return;
+ }
+ pOp = &p->aOp[addr];
+ if( pOp->p3==0 || pOp->p3[0]==0 ) return;
+ if( pOp->p3type==P3_POINTER ) return;
+ if( pOp->p3type!=P3_DYNAMIC ){
+ pOp->p3 = sqliteStrDup(pOp->p3);
+ pOp->p3type = P3_DYNAMIC;
+ }
+ sqliteDequote(pOp->p3);
+}
+
+/*
+** On the P3 argument of the given instruction, change all
+** strings of whitespace characters into a single space and
+** delete leading and trailing whitespace.
+*/
+void sqliteVdbeCompressSpace(Vdbe *p, int addr){
+ unsigned char *z;
+ int i, j;
+ Op *pOp;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
+ pOp = &p->aOp[addr];
+ if( pOp->p3type==P3_POINTER ){
+ return;
+ }
+ if( pOp->p3type!=P3_DYNAMIC ){
+ pOp->p3 = sqliteStrDup(pOp->p3);
+ pOp->p3type = P3_DYNAMIC;
+ }
+ z = (unsigned char*)pOp->p3;
+ if( z==0 ) return;
+ i = j = 0;
+ while( isspace(z[i]) ){ i++; }
+ while( z[i] ){
+ if( isspace(z[i]) ){
+ z[j++] = ' ';
+ while( isspace(z[++i]) ){}
+ }else{
+ z[j++] = z[i++];
+ }
+ }
+ while( j>0 && isspace(z[j-1]) ){ j--; }
+ z[j] = 0;
+}
+
+/*
+** Search for the current program for the given opcode and P2
+** value. Return the address plus 1 if found and 0 if not found.
+*/
+int sqliteVdbeFindOp(Vdbe *p, int op, int p2){
+ int i;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ for(i=0; i<p->nOp; i++){
+ if( p->aOp[i].opcode==op && p->aOp[i].p2==p2 ) return i+1;
+ }
+ return 0;
+}
+
+/*
+** Return the opcode for a given address.
+*/
+VdbeOp *sqliteVdbeGetOp(Vdbe *p, int addr){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ assert( addr>=0 && addr<p->nOp );
+ return &p->aOp[addr];
+}
+
+/*
+** The following group or routines are employed by installable functions
+** to return their results.
+**
+** The sqlite_set_result_string() routine can be used to return a string
+** value or to return a NULL. To return a NULL, pass in NULL for zResult.
+** A copy is made of the string before this routine returns so it is safe
+** to pass in an ephemeral string.
+**
+** sqlite_set_result_error() works like sqlite_set_result_string() except
+** that it signals a fatal error. The string argument, if any, is the
+** error message. If the argument is NULL a generic substitute error message
+** is used.
+**
+** The sqlite_set_result_int() and sqlite_set_result_double() set the return
+** value of the user function to an integer or a double.
+**
+** These routines are defined here in vdbe.c because they depend on knowing
+** the internals of the sqlite_func structure which is only defined in
+** this source file.
+*/
+char *sqlite_set_result_string(sqlite_func *p, const char *zResult, int n){
+ assert( !p->isStep );
+ if( p->s.flags & MEM_Dyn ){
+ sqliteFree(p->s.z);
+ }
+ if( zResult==0 ){
+ p->s.flags = MEM_Null;
+ n = 0;
+ p->s.z = 0;
+ p->s.n = 0;
+ }else{
+ if( n<0 ) n = strlen(zResult);
+ if( n<NBFS-1 ){
+ memcpy(p->s.zShort, zResult, n);
+ p->s.zShort[n] = 0;
+ p->s.flags = MEM_Str | MEM_Short;
+ p->s.z = p->s.zShort;
+ }else{
+ p->s.z = sqliteMallocRaw( n+1 );
+ if( p->s.z ){
+ memcpy(p->s.z, zResult, n);
+ p->s.z[n] = 0;
+ }
+ p->s.flags = MEM_Str | MEM_Dyn;
+ }
+ p->s.n = n+1;
+ }
+ return p->s.z;
+}
+void sqlite_set_result_int(sqlite_func *p, int iResult){
+ assert( !p->isStep );
+ if( p->s.flags & MEM_Dyn ){
+ sqliteFree(p->s.z);
+ }
+ p->s.i = iResult;
+ p->s.flags = MEM_Int;
+}
+void sqlite_set_result_double(sqlite_func *p, double rResult){
+ assert( !p->isStep );
+ if( p->s.flags & MEM_Dyn ){
+ sqliteFree(p->s.z);
+ }
+ p->s.r = rResult;
+ p->s.flags = MEM_Real;
+}
+void sqlite_set_result_error(sqlite_func *p, const char *zMsg, int n){
+ assert( !p->isStep );
+ sqlite_set_result_string(p, zMsg, n);
+ p->isError = 1;
+}
+
+/*
+** Extract the user data from a sqlite_func structure and return a
+** pointer to it.
+*/
+void *sqlite_user_data(sqlite_func *p){
+ assert( p && p->pFunc );
+ return p->pFunc->pUserData;
+}
+
+/*
+** Allocate or return the aggregate context for a user function. A new
+** context is allocated on the first call. Subsequent calls return the
+** same context that was returned on prior calls.
+**
+** This routine is defined here in vdbe.c because it depends on knowing
+** the internals of the sqlite_func structure which is only defined in
+** this source file.
+*/
+void *sqlite_aggregate_context(sqlite_func *p, int nByte){
+ assert( p && p->pFunc && p->pFunc->xStep );
+ if( p->pAgg==0 ){
+ if( nByte<=NBFS ){
+ p->pAgg = (void*)p->s.z;
+ memset(p->pAgg, 0, nByte);
+ }else{
+ p->pAgg = sqliteMalloc( nByte );
+ }
+ }
+ return p->pAgg;
+}
+
+/*
+** Return the number of times the Step function of a aggregate has been
+** called.
+**
+** This routine is defined here in vdbe.c because it depends on knowing
+** the internals of the sqlite_func structure which is only defined in
+** this source file.
+*/
+int sqlite_aggregate_count(sqlite_func *p){
+ assert( p && p->pFunc && p->pFunc->xStep );
+ return p->cnt;
+}
+
+#if !defined(NDEBUG) || defined(VDBE_PROFILE)
+/*
+** Print a single opcode. This routine is used for debugging only.
+*/
+void sqliteVdbePrintOp(FILE *pOut, int pc, Op *pOp){
+ char *zP3;
+ char zPtr[40];
+ if( pOp->p3type==P3_POINTER ){
+ sprintf(zPtr, "ptr(%#x)", (int)pOp->p3);
+ zP3 = zPtr;
+ }else{
+ zP3 = pOp->p3;
+ }
+ if( pOut==0 ) pOut = stdout;
+ fprintf(pOut,"%4d %-12s %4d %4d %s\n",
+ pc, sqliteOpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3 ? zP3 : "");
+ fflush(pOut);
+}
+#endif
+
+/*
+** Give a listing of the program in the virtual machine.
+**
+** The interface is the same as sqliteVdbeExec(). But instead of
+** running the code, it invokes the callback once for each instruction.
+** This feature is used to implement "EXPLAIN".
+*/
+int sqliteVdbeList(
+ Vdbe *p /* The VDBE */
+){
+ sqlite *db = p->db;
+ int i;
+ int rc = SQLITE_OK;
+ static char *azColumnNames[] = {
+ "addr", "opcode", "p1", "p2", "p3",
+ "int", "text", "int", "int", "text",
+ 0
+ };
+
+ assert( p->popStack==0 );
+ assert( p->explain );
+ p->azColName = azColumnNames;
+ p->azResColumn = p->zArgv;
+ for(i=0; i<5; i++) p->zArgv[i] = p->aStack[i].zShort;
+ i = p->pc;
+ if( i>=p->nOp ){
+ p->rc = SQLITE_OK;
+ rc = SQLITE_DONE;
+ }else if( db->flags & SQLITE_Interrupt ){
+ db->flags &= ~SQLITE_Interrupt;
+ if( db->magic!=SQLITE_MAGIC_BUSY ){
+ p->rc = SQLITE_MISUSE;
+ }else{
+ p->rc = SQLITE_INTERRUPT;
+ }
+ rc = SQLITE_ERROR;
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(p->rc), (char*)0);
+ }else{
+ sprintf(p->zArgv[0],"%d",i);
+ sprintf(p->zArgv[2],"%d", p->aOp[i].p1);
+ sprintf(p->zArgv[3],"%d", p->aOp[i].p2);
+ if( p->aOp[i].p3type==P3_POINTER ){
+ sprintf(p->aStack[4].zShort, "ptr(%#x)", (int)p->aOp[i].p3);
+ p->zArgv[4] = p->aStack[4].zShort;
+ }else{
+ p->zArgv[4] = p->aOp[i].p3;
+ }
+ p->zArgv[1] = sqliteOpcodeNames[p->aOp[i].opcode];
+ p->pc = i+1;
+ p->azResColumn = p->zArgv;
+ p->nResColumn = 5;
+ p->rc = SQLITE_OK;
+ rc = SQLITE_ROW;
+ }
+ return rc;
+}
+
+/*
+** Prepare a virtual machine for execution. This involves things such
+** as allocating stack space and initializing the program counter.
+** After the VDBE has be prepped, it can be executed by one or more
+** calls to sqliteVdbeExec().
+*/
+void sqliteVdbeMakeReady(
+ Vdbe *p, /* The VDBE */
+ int nVar, /* Number of '?' see in the SQL statement */
+ int isExplain /* True if the EXPLAIN keywords is present */
+){
+ int n;
+
+ assert( p!=0 );
+ assert( p->magic==VDBE_MAGIC_INIT );
+
+ /* Add a HALT instruction to the very end of the program.
+ */
+ if( p->nOp==0 || (p->aOp && p->aOp[p->nOp-1].opcode!=OP_Halt) ){
+ sqliteVdbeAddOp(p, OP_Halt, 0, 0);
+ }
+
+ /* No instruction ever pushes more than a single element onto the
+ ** stack. And the stack never grows on successive executions of the
+ ** same loop. So the total number of instructions is an upper bound
+ ** on the maximum stack depth required.
+ **
+ ** Allocation all the stack space we will ever need.
+ */
+ if( p->aStack==0 ){
+ p->nVar = nVar;
+ assert( nVar>=0 );
+ n = isExplain ? 10 : p->nOp;
+ p->aStack = sqliteMalloc(
+ n*(sizeof(p->aStack[0]) + 2*sizeof(char*)) /* aStack and zArgv */
+ + p->nVar*(sizeof(char*)+sizeof(int)+1) /* azVar, anVar, abVar */
+ );
+ p->zArgv = (char**)&p->aStack[n];
+ p->azColName = (char**)&p->zArgv[n];
+ p->azVar = (char**)&p->azColName[n];
+ p->anVar = (int*)&p->azVar[p->nVar];
+ p->abVar = (u8*)&p->anVar[p->nVar];
+ }
+
+ sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0);
+ p->agg.pSearch = 0;
+#ifdef MEMORY_DEBUG
+ if( sqliteOsFileExists("vdbe_trace") ){
+ p->trace = stdout;
+ }
+#endif
+ p->pTos = &p->aStack[-1];
+ p->pc = 0;
+ p->rc = SQLITE_OK;
+ p->uniqueCnt = 0;
+ p->returnDepth = 0;
+ p->errorAction = OE_Abort;
+ p->undoTransOnError = 0;
+ p->popStack = 0;
+ p->explain |= isExplain;
+ p->magic = VDBE_MAGIC_RUN;
+#ifdef VDBE_PROFILE
+ {
+ int i;
+ for(i=0; i<p->nOp; i++){
+ p->aOp[i].cnt = 0;
+ p->aOp[i].cycles = 0;
+ }
+ }
+#endif
+}
+
+
+/*
+** Remove any elements that remain on the sorter for the VDBE given.
+*/
+void sqliteVdbeSorterReset(Vdbe *p){
+ while( p->pSort ){
+ Sorter *pSorter = p->pSort;
+ p->pSort = pSorter->pNext;
+ sqliteFree(pSorter->zKey);
+ sqliteFree(pSorter->pData);
+ sqliteFree(pSorter);
+ }
+}
+
+/*
+** Reset an Agg structure. Delete all its contents.
+**
+** For installable aggregate functions, if the step function has been
+** called, make sure the finalizer function has also been called. The
+** finalizer might need to free memory that was allocated as part of its
+** private context. If the finalizer has not been called yet, call it
+** now.
+*/
+void sqliteVdbeAggReset(Agg *pAgg){
+ int i;
+ HashElem *p;
+ for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){
+ AggElem *pElem = sqliteHashData(p);
+ assert( pAgg->apFunc!=0 );
+ for(i=0; i<pAgg->nMem; i++){
+ Mem *pMem = &pElem->aMem[i];
+ if( pAgg->apFunc[i] && (pMem->flags & MEM_AggCtx)!=0 ){
+ sqlite_func ctx;
+ ctx.pFunc = pAgg->apFunc[i];
+ ctx.s.flags = MEM_Null;
+ ctx.pAgg = pMem->z;
+ ctx.cnt = pMem->i;
+ ctx.isStep = 0;
+ ctx.isError = 0;
+ (*pAgg->apFunc[i]->xFinalize)(&ctx);
+ if( pMem->z!=0 && pMem->z!=pMem->zShort ){
+ sqliteFree(pMem->z);
+ }
+ if( ctx.s.flags & MEM_Dyn ){
+ sqliteFree(ctx.s.z);
+ }
+ }else if( pMem->flags & MEM_Dyn ){
+ sqliteFree(pMem->z);
+ }
+ }
+ sqliteFree(pElem);
+ }
+ sqliteHashClear(&pAgg->hash);
+ sqliteFree(pAgg->apFunc);
+ pAgg->apFunc = 0;
+ pAgg->pCurrent = 0;
+ pAgg->pSearch = 0;
+ pAgg->nMem = 0;
+}
+
+/*
+** Delete a keylist
+*/
+void sqliteVdbeKeylistFree(Keylist *p){
+ while( p ){
+ Keylist *pNext = p->pNext;
+ sqliteFree(p);
+ p = pNext;
+ }
+}
+
+/*
+** Close a cursor and release all the resources that cursor happens
+** to hold.
+*/
+void sqliteVdbeCleanupCursor(Cursor *pCx){
+ if( pCx->pCursor ){
+ sqliteBtreeCloseCursor(pCx->pCursor);
+ }
+ if( pCx->pBt ){
+ sqliteBtreeClose(pCx->pBt);
+ }
+ sqliteFree(pCx->pData);
+ memset(pCx, 0, sizeof(Cursor));
+}
+
+/*
+** Close all cursors
+*/
+static void closeAllCursors(Vdbe *p){
+ int i;
+ for(i=0; i<p->nCursor; i++){
+ sqliteVdbeCleanupCursor(&p->aCsr[i]);
+ }
+ sqliteFree(p->aCsr);
+ p->aCsr = 0;
+ p->nCursor = 0;
+}
+
+/*
+** Clean up the VM after execution.
+**
+** This routine will automatically close any cursors, lists, and/or
+** sorters that were left open. It also deletes the values of
+** variables in the azVariable[] array.
+*/
+static void Cleanup(Vdbe *p){
+ int i;
+ if( p->aStack ){
+ Mem *pTos = p->pTos;
+ while( pTos>=p->aStack ){
+ if( pTos->flags & MEM_Dyn ){
+ sqliteFree(pTos->z);
+ }
+ pTos--;
+ }
+ p->pTos = pTos;
+ }
+ closeAllCursors(p);
+ if( p->aMem ){
+ for(i=0; i<p->nMem; i++){
+ if( p->aMem[i].flags & MEM_Dyn ){
+ sqliteFree(p->aMem[i].z);
+ }
+ }
+ }
+ sqliteFree(p->aMem);
+ p->aMem = 0;
+ p->nMem = 0;
+ if( p->pList ){
+ sqliteVdbeKeylistFree(p->pList);
+ p->pList = 0;
+ }
+ sqliteVdbeSorterReset(p);
+ if( p->pFile ){
+ if( p->pFile!=stdin ) fclose(p->pFile);
+ p->pFile = 0;
+ }
+ if( p->azField ){
+ sqliteFree(p->azField);
+ p->azField = 0;
+ }
+ p->nField = 0;
+ if( p->zLine ){
+ sqliteFree(p->zLine);
+ p->zLine = 0;
+ }
+ p->nLineAlloc = 0;
+ sqliteVdbeAggReset(&p->agg);
+ if( p->aSet ){
+ for(i=0; i<p->nSet; i++){
+ sqliteHashClear(&p->aSet[i].hash);
+ }
+ }
+ sqliteFree(p->aSet);
+ p->aSet = 0;
+ p->nSet = 0;
+ if( p->keylistStack ){
+ int ii;
+ for(ii = 0; ii < p->keylistStackDepth; ii++){
+ sqliteVdbeKeylistFree(p->keylistStack[ii]);
+ }
+ sqliteFree(p->keylistStack);
+ p->keylistStackDepth = 0;
+ p->keylistStack = 0;
+ }
+ sqliteFree(p->contextStack);
+ p->contextStack = 0;
+ sqliteFree(p->zErrMsg);
+ p->zErrMsg = 0;
+}
+
+/*
+** Clean up a VDBE after execution but do not delete the VDBE just yet.
+** Write any error messages into *pzErrMsg. Return the result code.
+**
+** After this routine is run, the VDBE should be ready to be executed
+** again.
+*/
+int sqliteVdbeReset(Vdbe *p, char **pzErrMsg){
+ sqlite *db = p->db;
+ int i;
+
+ if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
+ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0);
+ return SQLITE_MISUSE;
+ }
+ if( p->zErrMsg ){
+ if( pzErrMsg && *pzErrMsg==0 ){
+ *pzErrMsg = p->zErrMsg;
+ }else{
+ sqliteFree(p->zErrMsg);
+ }
+ p->zErrMsg = 0;
+ }else if( p->rc ){
+ sqliteSetString(pzErrMsg, sqlite_error_string(p->rc), (char*)0);
+ }
+ Cleanup(p);
+ if( p->rc!=SQLITE_OK ){
+ switch( p->errorAction ){
+ case OE_Abort: {
+ if( !p->undoTransOnError ){
+ for(i=0; i<db->nDb; i++){
+ if( db->aDb[i].pBt ){
+ sqliteBtreeRollbackCkpt(db->aDb[i].pBt);
+ }
+ }
+ break;
+ }
+ /* Fall through to ROLLBACK */
+ }
+ case OE_Rollback: {
+ sqliteRollbackAll(db);
+ db->flags &= ~SQLITE_InTrans;
+ db->onError = OE_Default;
+ break;
+ }
+ default: {
+ if( p->undoTransOnError ){
+ sqliteRollbackAll(db);
+ db->flags &= ~SQLITE_InTrans;
+ db->onError = OE_Default;
+ }
+ break;
+ }
+ }
+ sqliteRollbackInternalChanges(db);
+ }
+ for(i=0; i<db->nDb; i++){
+ if( db->aDb[i].pBt && db->aDb[i].inTrans==2 ){
+ sqliteBtreeCommitCkpt(db->aDb[i].pBt);
+ db->aDb[i].inTrans = 1;
+ }
+ }
+ assert( p->pTos<&p->aStack[p->pc] || sqlite_malloc_failed==1 );
+#ifdef VDBE_PROFILE
+ {
+ FILE *out = fopen("vdbe_profile.out", "a");
+ if( out ){
+ int i;
+ fprintf(out, "---- ");
+ for(i=0; i<p->nOp; i++){
+ fprintf(out, "%02x", p->aOp[i].opcode);
+ }
+ fprintf(out, "\n");
+ for(i=0; i<p->nOp; i++){
+ fprintf(out, "%6d %10lld %8lld ",
+ p->aOp[i].cnt,
+ p->aOp[i].cycles,
+ p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
+ );
+ sqliteVdbePrintOp(out, i, &p->aOp[i]);
+ }
+ fclose(out);
+ }
+ }
+#endif
+ p->magic = VDBE_MAGIC_INIT;
+ return p->rc;
+}
+
+/*
+** Clean up and delete a VDBE after execution. Return an integer which is
+** the result code. Write any error message text into *pzErrMsg.
+*/
+int sqliteVdbeFinalize(Vdbe *p, char **pzErrMsg){
+ int rc;
+ sqlite *db;
+
+ if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
+ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0);
+ return SQLITE_MISUSE;
+ }
+ db = p->db;
+ rc = sqliteVdbeReset(p, pzErrMsg);
+ sqliteVdbeDelete(p);
+ if( db->want_to_close && db->pVdbe==0 ){
+ sqlite_close(db);
+ }
+ if( rc==SQLITE_SCHEMA ){
+ sqliteResetInternalSchema(db, 0);
+ }
+ return rc;
+}
+
+/*
+** Set the values of all variables. Variable $1 in the original SQL will
+** be the string azValue[0]. $2 will have the value azValue[1]. And
+** so forth. If a value is out of range (for example $3 when nValue==2)
+** then its value will be NULL.
+**
+** This routine overrides any prior call.
+*/
+int sqlite_bind(sqlite_vm *pVm, int i, const char *zVal, int len, int copy){
+ Vdbe *p = (Vdbe*)pVm;
+ if( p->magic!=VDBE_MAGIC_RUN || p->pc!=0 ){
+ return SQLITE_MISUSE;
+ }
+ if( i<1 || i>p->nVar ){
+ return SQLITE_RANGE;
+ }
+ i--;
+ if( p->abVar[i] ){
+ sqliteFree(p->azVar[i]);
+ }
+ if( zVal==0 ){
+ copy = 0;
+ len = 0;
+ }
+ if( len<0 ){
+ len = strlen(zVal)+1;
+ }
+ if( copy ){
+ p->azVar[i] = sqliteMalloc( len );
+ if( p->azVar[i] ) memcpy(p->azVar[i], zVal, len);
+ }else{
+ p->azVar[i] = (char*)zVal;
+ }
+ p->abVar[i] = copy;
+ p->anVar[i] = len;
+ return SQLITE_OK;
+}
+
+
+/*
+** Delete an entire VDBE.
+*/
+void sqliteVdbeDelete(Vdbe *p){
+ int i;
+ if( p==0 ) return;
+ Cleanup(p);
+ if( p->pPrev ){
+ p->pPrev->pNext = p->pNext;
+ }else{
+ assert( p->db->pVdbe==p );
+ p->db->pVdbe = p->pNext;
+ }
+ if( p->pNext ){
+ p->pNext->pPrev = p->pPrev;
+ }
+ p->pPrev = p->pNext = 0;
+ if( p->nOpAlloc==0 ){
+ p->aOp = 0;
+ p->nOp = 0;
+ }
+ for(i=0; i<p->nOp; i++){
+ if( p->aOp[i].p3type==P3_DYNAMIC ){
+ sqliteFree(p->aOp[i].p3);
+ }
+ }
+ for(i=0; i<p->nVar; i++){
+ if( p->abVar[i] ) sqliteFree(p->azVar[i]);
+ }
+ sqliteFree(p->aOp);
+ sqliteFree(p->aLabel);
+ sqliteFree(p->aStack);
+ p->magic = VDBE_MAGIC_DEAD;
+ sqliteFree(p);
+}
+
+/*
+** Convert an integer in between the native integer format and
+** the bigEndian format used as the record number for tables.
+**
+** The bigEndian format (most significant byte first) is used for
+** record numbers so that records will sort into the correct order
+** even though memcmp() is used to compare the keys. On machines
+** whose native integer format is little endian (ex: i486) the
+** order of bytes is reversed. On native big-endian machines
+** (ex: Alpha, Sparc, Motorola) the byte order is the same.
+**
+** This function is its own inverse. In other words
+**
+** X == byteSwap(byteSwap(X))
+*/
+int sqliteVdbeByteSwap(int x){
+ union {
+ char zBuf[sizeof(int)];
+ int i;
+ } ux;
+ ux.zBuf[3] = x&0xff;
+ ux.zBuf[2] = (x>>8)&0xff;
+ ux.zBuf[1] = (x>>16)&0xff;
+ ux.zBuf[0] = (x>>24)&0xff;
+ return ux.i;
+}
+
+/*
+** If a MoveTo operation is pending on the given cursor, then do that
+** MoveTo now. Return an error code. If no MoveTo is pending, this
+** routine does nothing and returns SQLITE_OK.
+*/
+int sqliteVdbeCursorMoveto(Cursor *p){
+ if( p->deferredMoveto ){
+ int res;
+ extern int sqlite_search_count;
+ sqliteBtreeMoveto(p->pCursor, (char*)&p->movetoTarget, sizeof(int), &res);
+ p->lastRecno = keyToInt(p->movetoTarget);
+ p->recnoIsValid = res==0;
+ if( res<0 ){
+ sqliteBtreeNext(p->pCursor, &res);
+ }
+ sqlite_search_count++;
+ p->deferredMoveto = 0;
+ }
+ return SQLITE_OK;
+}
diff --git a/src/3rdparty/sqlite/where.c b/src/3rdparty/sqlite/where.c
new file mode 100644
index 0000000..34195c6
--- /dev/null
+++ b/src/3rdparty/sqlite/where.c
@@ -0,0 +1,1204 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This module contains C code that generates VDBE code used to process
+** the WHERE clause of SQL statements.
+**
+** $Id: where.c,v 1.89 2004/02/22 20:05:02 drh Exp $
+*/
+#include "sqliteInt.h"
+
+/*
+** The query generator uses an array of instances of this structure to
+** help it analyze the subexpressions of the WHERE clause. Each WHERE
+** clause subexpression is separated from the others by an AND operator.
+*/
+typedef struct ExprInfo ExprInfo;
+struct ExprInfo {
+ Expr *p; /* Pointer to the subexpression */
+ u8 indexable; /* True if this subexprssion is usable by an index */
+ short int idxLeft; /* p->pLeft is a column in this table number. -1 if
+ ** p->pLeft is not the column of any table */
+ short int idxRight; /* p->pRight is a column in this table number. -1 if
+ ** p->pRight is not the column of any table */
+ unsigned prereqLeft; /* Bitmask of tables referenced by p->pLeft */
+ unsigned prereqRight; /* Bitmask of tables referenced by p->pRight */
+ unsigned prereqAll; /* Bitmask of tables referenced by p */
+};
+
+/*
+** An instance of the following structure keeps track of a mapping
+** between VDBE cursor numbers and bitmasks. The VDBE cursor numbers
+** are small integers contained in SrcList_item.iCursor and Expr.iTable
+** fields. For any given WHERE clause, we want to track which cursors
+** are being used, so we assign a single bit in a 32-bit word to track
+** that cursor. Then a 32-bit integer is able to show the set of all
+** cursors being used.
+*/
+typedef struct ExprMaskSet ExprMaskSet;
+struct ExprMaskSet {
+ int n; /* Number of assigned cursor values */
+ int ix[32]; /* Cursor assigned to each bit */
+};
+
+/*
+** Determine the number of elements in an array.
+*/
+#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
+
+/*
+** This routine is used to divide the WHERE expression into subexpressions
+** separated by the AND operator.
+**
+** aSlot[] is an array of subexpressions structures.
+** There are nSlot spaces left in this array. This routine attempts to
+** split pExpr into subexpressions and fills aSlot[] with those subexpressions.
+** The return value is the number of slots filled.
+*/
+static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
+ int cnt = 0;
+ if( pExpr==0 || nSlot<1 ) return 0;
+ if( nSlot==1 || pExpr->op!=TK_AND ){
+ aSlot[0].p = pExpr;
+ return 1;
+ }
+ if( pExpr->pLeft->op!=TK_AND ){
+ aSlot[0].p = pExpr->pLeft;
+ cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
+ }else{
+ cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
+ cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
+ }
+ return cnt;
+}
+
+/*
+** Initialize an expression mask set
+*/
+#define initMaskSet(P) memset(P, 0, sizeof(*P))
+
+/*
+** Return the bitmask for the given cursor. Assign a new bitmask
+** if this is the first time the cursor has been seen.
+*/
+static int getMask(ExprMaskSet *pMaskSet, int iCursor){
+ int i;
+ for(i=0; i<pMaskSet->n; i++){
+ if( pMaskSet->ix[i]==iCursor ) return 1<<i;
+ }
+ if( i==pMaskSet->n && i<ARRAYSIZE(pMaskSet->ix) ){
+ pMaskSet->n++;
+ pMaskSet->ix[i] = iCursor;
+ return 1<<i;
+ }
+ return 0;
+}
+
+/*
+** Destroy an expression mask set
+*/
+#define freeMaskSet(P) /* NO-OP */
+
+/*
+** This routine walks (recursively) an expression tree and generates
+** a bitmask indicating which tables are used in that expression
+** tree.
+**
+** In order for this routine to work, the calling function must have
+** previously invoked sqliteExprResolveIds() on the expression. See
+** the header comment on that routine for additional information.
+** The sqliteExprResolveIds() routines looks for column names and
+** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
+** the VDBE cursor number of the table.
+*/
+static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
+ unsigned int mask = 0;
+ if( p==0 ) return 0;
+ if( p->op==TK_COLUMN ){
+ return getMask(pMaskSet, p->iTable);
+ }
+ if( p->pRight ){
+ mask = exprTableUsage(pMaskSet, p->pRight);
+ }
+ if( p->pLeft ){
+ mask |= exprTableUsage(pMaskSet, p->pLeft);
+ }
+ if( p->pList ){
+ int i;
+ for(i=0; i<p->pList->nExpr; i++){
+ mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr);
+ }
+ }
+ return mask;
+}
+
+/*
+** Return TRUE if the given operator is one of the operators that is
+** allowed for an indexable WHERE clause. The allowed operators are
+** "=", "<", ">", "<=", ">=", and "IN".
+*/
+static int allowedOp(int op){
+ switch( op ){
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_EQ:
+ case TK_IN:
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+/*
+** The input to this routine is an ExprInfo structure with only the
+** "p" field filled in. The job of this routine is to analyze the
+** subexpression and populate all the other fields of the ExprInfo
+** structure.
+*/
+static void exprAnalyze(ExprMaskSet *pMaskSet, ExprInfo *pInfo){
+ Expr *pExpr = pInfo->p;
+ pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
+ pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
+ pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
+ pInfo->indexable = 0;
+ pInfo->idxLeft = -1;
+ pInfo->idxRight = -1;
+ if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
+ if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
+ pInfo->idxRight = pExpr->pRight->iTable;
+ pInfo->indexable = 1;
+ }
+ if( pExpr->pLeft->op==TK_COLUMN ){
+ pInfo->idxLeft = pExpr->pLeft->iTable;
+ pInfo->indexable = 1;
+ }
+ }
+}
+
+/*
+** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
+** left-most table in the FROM clause of that same SELECT statement and
+** the table has a cursor number of "base".
+**
+** This routine attempts to find an index for pTab that generates the
+** correct record sequence for the given ORDER BY clause. The return value
+** is a pointer to an index that does the job. NULL is returned if the
+** table has no index that will generate the correct sort order.
+**
+** If there are two or more indices that generate the correct sort order
+** and pPreferredIdx is one of those indices, then return pPreferredIdx.
+**
+** nEqCol is the number of columns of pPreferredIdx that are used as
+** equality constraints. Any index returned must have exactly this same
+** set of columns. The ORDER BY clause only matches index columns beyond the
+** the first nEqCol columns.
+**
+** All terms of the ORDER BY clause must be either ASC or DESC. The
+** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is
+** set to 0 if the ORDER BY clause is all ASC.
+*/
+static Index *findSortingIndex(
+ Table *pTab, /* The table to be sorted */
+ int base, /* Cursor number for pTab */
+ ExprList *pOrderBy, /* The ORDER BY clause */
+ Index *pPreferredIdx, /* Use this index, if possible and not NULL */
+ int nEqCol, /* Number of index columns used with == constraints */
+ int *pbRev /* Set to 1 if ORDER BY is DESC */
+){
+ int i, j;
+ Index *pMatch;
+ Index *pIdx;
+ int sortOrder;
+
+ assert( pOrderBy!=0 );
+ assert( pOrderBy->nExpr>0 );
+ sortOrder = pOrderBy->a[0].sortOrder & SQLITE_SO_DIRMASK;
+ for(i=0; i<pOrderBy->nExpr; i++){
+ Expr *p;
+ if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=sortOrder ){
+ /* Indices can only be used if all ORDER BY terms are either
+ ** DESC or ASC. Indices cannot be used on a mixture. */
+ return 0;
+ }
+ if( (pOrderBy->a[i].sortOrder & SQLITE_SO_TYPEMASK)!=SQLITE_SO_UNK ){
+ /* Do not sort by index if there is a COLLATE clause */
+ return 0;
+ }
+ p = pOrderBy->a[i].pExpr;
+ if( p->op!=TK_COLUMN || p->iTable!=base ){
+ /* Can not use an index sort on anything that is not a column in the
+ ** left-most table of the FROM clause */
+ return 0;
+ }
+ }
+
+ /* If we get this far, it means the ORDER BY clause consists only of
+ ** ascending columns in the left-most table of the FROM clause. Now
+ ** check for a matching index.
+ */
+ pMatch = 0;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int nExpr = pOrderBy->nExpr;
+ if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue;
+ for(i=j=0; i<nEqCol; i++){
+ if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break;
+ if( j<nExpr && pOrderBy->a[j].pExpr->iColumn==pIdx->aiColumn[i] ){ j++; }
+ }
+ if( i<nEqCol ) continue;
+ for(i=0; i+j<nExpr; i++){
+ if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ) break;
+ }
+ if( i+j>=nExpr ){
+ pMatch = pIdx;
+ if( pIdx==pPreferredIdx ) break;
+ }
+ }
+ if( pMatch && pbRev ){
+ *pbRev = sortOrder==SQLITE_SO_DESC;
+ }
+ return pMatch;
+}
+
+/*
+** Generate the beginning of the loop used for WHERE clause processing.
+** The return value is a pointer to an (opaque) structure that contains
+** information needed to terminate the loop. Later, the calling routine
+** should invoke sqliteWhereEnd() with the return value of this function
+** in order to complete the WHERE clause processing.
+**
+** If an error occurs, this routine returns NULL.
+**
+** The basic idea is to do a nested loop, one loop for each table in
+** the FROM clause of a select. (INSERT and UPDATE statements are the
+** same as a SELECT with only a single table in the FROM clause.) For
+** example, if the SQL is this:
+**
+** SELECT * FROM t1, t2, t3 WHERE ...;
+**
+** Then the code generated is conceptually like the following:
+**
+** foreach row1 in t1 do \ Code generated
+** foreach row2 in t2 do |-- by sqliteWhereBegin()
+** foreach row3 in t3 do /
+** ...
+** end \ Code generated
+** end |-- by sqliteWhereEnd()
+** end /
+**
+** There are Btree cursors associated with each table. t1 uses cursor
+** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
+** And so forth. This routine generates code to open those VDBE cursors
+** and sqliteWhereEnd() generates the code to close them.
+**
+** If the WHERE clause is empty, the foreach loops must each scan their
+** entire tables. Thus a three-way join is an O(N^3) operation. But if
+** the tables have indices and there are terms in the WHERE clause that
+** refer to those indices, a complete table scan can be avoided and the
+** code will run much faster. Most of the work of this routine is checking
+** to see if there are indices that can be used to speed up the loop.
+**
+** Terms of the WHERE clause are also used to limit which rows actually
+** make it to the "..." in the middle of the loop. After each "foreach",
+** terms of the WHERE clause that use only terms in that loop and outer
+** loops are evaluated and if false a jump is made around all subsequent
+** inner loops (or around the "..." if the test occurs within the inner-
+** most loop)
+**
+** OUTER JOINS
+**
+** An outer join of tables t1 and t2 is conceptally coded as follows:
+**
+** foreach row1 in t1 do
+** flag = 0
+** foreach row2 in t2 do
+** start:
+** ...
+** flag = 1
+** end
+** if flag==0 then
+** move the row2 cursor to a null row
+** goto start
+** fi
+** end
+**
+** ORDER BY CLAUSE PROCESSING
+**
+** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
+** if there is one. If there is no ORDER BY clause or if this routine
+** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
+**
+** If an index can be used so that the natural output order of the table
+** scan is correct for the ORDER BY clause, then that index is used and
+** *ppOrderBy is set to NULL. This is an optimization that prevents an
+** unnecessary sort of the result set if an index appropriate for the
+** ORDER BY clause already exists.
+**
+** If the where clause loops cannot be arranged to provide the correct
+** output order, then the *ppOrderBy is unchanged.
+*/
+WhereInfo *sqliteWhereBegin(
+ Parse *pParse, /* The parser context */
+ SrcList *pTabList, /* A list of all tables to be scanned */
+ Expr *pWhere, /* The WHERE clause */
+ int pushKey, /* If TRUE, leave the table key on the stack */
+ ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
+){
+ int i; /* Loop counter */
+ WhereInfo *pWInfo; /* Will become the return value of this function */
+ Vdbe *v = pParse->pVdbe; /* The virtual database engine */
+ int brk, cont = 0; /* Addresses used during code generation */
+ int nExpr; /* Number of subexpressions in the WHERE clause */
+ int loopMask; /* One bit set for each outer loop */
+ int haveKey; /* True if KEY is on the stack */
+ ExprMaskSet maskSet; /* The expression mask set */
+ int iDirectEq[32]; /* Term of the form ROWID==X for the N-th table */
+ int iDirectLt[32]; /* Term of the form ROWID<X or ROWID<=X */
+ int iDirectGt[32]; /* Term of the form ROWID>X or ROWID>=X */
+ ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */
+
+ /* pushKey is only allowed if there is a single table (as in an INSERT or
+ ** UPDATE statement)
+ */
+ assert( pushKey==0 || pTabList->nSrc==1 );
+
+ /* Split the WHERE clause into separate subexpressions where each
+ ** subexpression is separated by an AND operator. If the aExpr[]
+ ** array fills up, the last entry might point to an expression which
+ ** contains additional unfactored AND operators.
+ */
+ initMaskSet(&maskSet);
+ memset(aExpr, 0, sizeof(aExpr));
+ nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
+ if( nExpr==ARRAYSIZE(aExpr) ){
+ sqliteErrorMsg(pParse, "WHERE clause too complex - no more "
+ "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
+ return 0;
+ }
+
+ /* Allocate and initialize the WhereInfo structure that will become the
+ ** return value.
+ */
+ pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
+ if( sqlite_malloc_failed ){
+ sqliteFree(pWInfo);
+ return 0;
+ }
+ pWInfo->pParse = pParse;
+ pWInfo->pTabList = pTabList;
+ pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab;
+ pWInfo->iBreak = sqliteVdbeMakeLabel(v);
+
+ /* Special case: a WHERE clause that is constant. Evaluate the
+ ** expression and either jump over all of the code or fall thru.
+ */
+ if( pWhere && (pTabList->nSrc==0 || sqliteExprIsConstant(pWhere)) ){
+ sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
+ pWhere = 0;
+ }
+
+ /* Analyze all of the subexpressions.
+ */
+ for(i=0; i<nExpr; i++){
+ exprAnalyze(&maskSet, &aExpr[i]);
+
+ /* If we are executing a trigger body, remove all references to
+ ** new.* and old.* tables from the prerequisite masks.
+ */
+ if( pParse->trigStack ){
+ int x;
+ if( (x = pParse->trigStack->newIdx) >= 0 ){
+ int mask = ~getMask(&maskSet, x);
+ aExpr[i].prereqRight &= mask;
+ aExpr[i].prereqLeft &= mask;
+ aExpr[i].prereqAll &= mask;
+ }
+ if( (x = pParse->trigStack->oldIdx) >= 0 ){
+ int mask = ~getMask(&maskSet, x);
+ aExpr[i].prereqRight &= mask;
+ aExpr[i].prereqLeft &= mask;
+ aExpr[i].prereqAll &= mask;
+ }
+ }
+ }
+
+ /* Figure out what index to use (if any) for each nested loop.
+ ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
+ ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
+ ** loop.
+ **
+ ** If terms exist that use the ROWID of any table, then set the
+ ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
+ ** to the index of the term containing the ROWID. We always prefer
+ ** to use a ROWID which can directly access a table rather than an
+ ** index which requires reading an index first to get the rowid then
+ ** doing a second read of the actual database table.
+ **
+ ** Actually, if there are more than 32 tables in the join, only the
+ ** first 32 tables are candidates for indices. This is (again) due
+ ** to the limit of 32 bits in an integer bitmask.
+ */
+ loopMask = 0;
+ for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){
+ int j;
+ int iCur = pTabList->a[i].iCursor; /* The cursor for this table */
+ int mask = getMask(&maskSet, iCur); /* Cursor mask for this table */
+ Table *pTab = pTabList->a[i].pTab;
+ Index *pIdx;
+ Index *pBestIdx = 0;
+ int bestScore = 0;
+
+ /* Check to see if there is an expression that uses only the
+ ** ROWID field of this table. For terms of the form ROWID==expr
+ ** set iDirectEq[i] to the index of the term. For terms of the
+ ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
+ ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
+ **
+ ** (Added:) Treat ROWID IN expr like ROWID=expr.
+ */
+ pWInfo->a[i].iCur = -1;
+ iDirectEq[i] = -1;
+ iDirectLt[i] = -1;
+ iDirectGt[i] = -1;
+ for(j=0; j<nExpr; j++){
+ if( aExpr[j].idxLeft==iCur && aExpr[j].p->pLeft->iColumn<0
+ && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
+ switch( aExpr[j].p->op ){
+ case TK_IN:
+ case TK_EQ: iDirectEq[i] = j; break;
+ case TK_LE:
+ case TK_LT: iDirectLt[i] = j; break;
+ case TK_GE:
+ case TK_GT: iDirectGt[i] = j; break;
+ }
+ }
+ if( aExpr[j].idxRight==iCur && aExpr[j].p->pRight->iColumn<0
+ && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
+ switch( aExpr[j].p->op ){
+ case TK_EQ: iDirectEq[i] = j; break;
+ case TK_LE:
+ case TK_LT: iDirectGt[i] = j; break;
+ case TK_GE:
+ case TK_GT: iDirectLt[i] = j; break;
+ }
+ }
+ }
+ if( iDirectEq[i]>=0 ){
+ loopMask |= mask;
+ pWInfo->a[i].pIdx = 0;
+ continue;
+ }
+
+ /* Do a search for usable indices. Leave pBestIdx pointing to
+ ** the "best" index. pBestIdx is left set to NULL if no indices
+ ** are usable.
+ **
+ ** The best index is determined as follows. For each of the
+ ** left-most terms that is fixed by an equality operator, add
+ ** 8 to the score. The right-most term of the index may be
+ ** constrained by an inequality. Add 1 if for an "x<..." constraint
+ ** and add 2 for an "x>..." constraint. Chose the index that
+ ** gives the best score.
+ **
+ ** This scoring system is designed so that the score can later be
+ ** used to determine how the index is used. If the score&7 is 0
+ ** then all constraints are equalities. If score&1 is not 0 then
+ ** there is an inequality used as a termination key. (ex: "x<...")
+ ** If score&2 is not 0 then there is an inequality used as the
+ ** start key. (ex: "x>..."). A score or 4 is the special case
+ ** of an IN operator constraint. (ex: "x IN ...").
+ **
+ ** The IN operator (as in "<expr> IN (...)") is treated the same as
+ ** an equality comparison except that it can only be used on the
+ ** left-most column of an index and other terms of the WHERE clause
+ ** cannot be used in conjunction with the IN operator to help satisfy
+ ** other columns of the index.
+ */
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int eqMask = 0; /* Index columns covered by an x=... term */
+ int ltMask = 0; /* Index columns covered by an x<... term */
+ int gtMask = 0; /* Index columns covered by an x>... term */
+ int inMask = 0; /* Index columns covered by an x IN .. term */
+ int nEq, m, score;
+
+ if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */
+ for(j=0; j<nExpr; j++){
+ if( aExpr[j].idxLeft==iCur
+ && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
+ int iColumn = aExpr[j].p->pLeft->iColumn;
+ int k;
+ for(k=0; k<pIdx->nColumn; k++){
+ if( pIdx->aiColumn[k]==iColumn ){
+ switch( aExpr[j].p->op ){
+ case TK_IN: {
+ if( k==0 ) inMask |= 1;
+ break;
+ }
+ case TK_EQ: {
+ eqMask |= 1<<k;
+ break;
+ }
+ case TK_LE:
+ case TK_LT: {
+ ltMask |= 1<<k;
+ break;
+ }
+ case TK_GE:
+ case TK_GT: {
+ gtMask |= 1<<k;
+ break;
+ }
+ default: {
+ /* CANT_HAPPEN */
+ assert( 0 );
+ break;
+ }
+ }
+ break;
+ }
+ }
+ }
+ if( aExpr[j].idxRight==iCur
+ && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
+ int iColumn = aExpr[j].p->pRight->iColumn;
+ int k;
+ for(k=0; k<pIdx->nColumn; k++){
+ if( pIdx->aiColumn[k]==iColumn ){
+ switch( aExpr[j].p->op ){
+ case TK_EQ: {
+ eqMask |= 1<<k;
+ break;
+ }
+ case TK_LE:
+ case TK_LT: {
+ gtMask |= 1<<k;
+ break;
+ }
+ case TK_GE:
+ case TK_GT: {
+ ltMask |= 1<<k;
+ break;
+ }
+ default: {
+ /* CANT_HAPPEN */
+ assert( 0 );
+ break;
+ }
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ /* The following loop ends with nEq set to the number of columns
+ ** on the left of the index with == constraints.
+ */
+ for(nEq=0; nEq<pIdx->nColumn; nEq++){
+ m = (1<<(nEq+1))-1;
+ if( (m & eqMask)!=m ) break;
+ }
+ score = nEq*8; /* Base score is 8 times number of == constraints */
+ m = 1<<nEq;
+ if( m & ltMask ) score++; /* Increase score for a < constraint */
+ if( m & gtMask ) score+=2; /* Increase score for a > constraint */
+ if( score==0 && inMask ) score = 4; /* Default score for IN constraint */
+ if( score>bestScore ){
+ pBestIdx = pIdx;
+ bestScore = score;
+ }
+ }
+ pWInfo->a[i].pIdx = pBestIdx;
+ pWInfo->a[i].score = bestScore;
+ pWInfo->a[i].bRev = 0;
+ loopMask |= mask;
+ if( pBestIdx ){
+ pWInfo->a[i].iCur = pParse->nTab++;
+ pWInfo->peakNTab = pParse->nTab;
+ }
+ }
+
+ /* Check to see if the ORDER BY clause is or can be satisfied by the
+ ** use of an index on the first table.
+ */
+ if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
+ Index *pSortIdx;
+ Index *pIdx;
+ Table *pTab;
+ int bRev = 0;
+
+ pTab = pTabList->a[0].pTab;
+ pIdx = pWInfo->a[0].pIdx;
+ if( pIdx && pWInfo->a[0].score==4 ){
+ /* If there is already an IN index on the left-most table,
+ ** it will not give the correct sort order.
+ ** So, pretend that no suitable index is found.
+ */
+ pSortIdx = 0;
+ }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
+ /* If the left-most column is accessed using its ROWID, then do
+ ** not try to sort by index.
+ */
+ pSortIdx = 0;
+ }else{
+ int nEqCol = (pWInfo->a[0].score+4)/8;
+ pSortIdx = findSortingIndex(pTab, pTabList->a[0].iCursor,
+ *ppOrderBy, pIdx, nEqCol, &bRev);
+ }
+ if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){
+ if( pIdx==0 ){
+ pWInfo->a[0].pIdx = pSortIdx;
+ pWInfo->a[0].iCur = pParse->nTab++;
+ pWInfo->peakNTab = pParse->nTab;
+ }
+ pWInfo->a[0].bRev = bRev;
+ *ppOrderBy = 0;
+ }
+ }
+
+ /* Open all tables in the pTabList and all indices used by those tables.
+ */
+ for(i=0; i<pTabList->nSrc; i++){
+ Table *pTab;
+ Index *pIx;
+
+ pTab = pTabList->a[i].pTab;
+ if( pTab->isTransient || pTab->pSelect ) continue;
+ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
+ sqliteVdbeOp3(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum,
+ pTab->zName, P3_STATIC);
+ sqliteCodeVerifySchema(pParse, pTab->iDb);
+ if( (pIx = pWInfo->a[i].pIdx)!=0 ){
+ sqliteVdbeAddOp(v, OP_Integer, pIx->iDb, 0);
+ sqliteVdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum, pIx->zName,0);
+ }
+ }
+
+ /* Generate the code to do the search
+ */
+ loopMask = 0;
+ for(i=0; i<pTabList->nSrc; i++){
+ int j, k;
+ int iCur = pTabList->a[i].iCursor;
+ Index *pIdx;
+ WhereLevel *pLevel = &pWInfo->a[i];
+
+ /* If this is the right table of a LEFT OUTER JOIN, allocate and
+ ** initialize a memory cell that records if this table matches any
+ ** row of the left table of the join.
+ */
+ if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
+ if( !pParse->nMem ) pParse->nMem++;
+ pLevel->iLeftJoin = pParse->nMem++;
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
+ }
+
+ pIdx = pLevel->pIdx;
+ pLevel->inOp = OP_Noop;
+ if( i<ARRAYSIZE(iDirectEq) && iDirectEq[i]>=0 ){
+ /* Case 1: We can directly reference a single row using an
+ ** equality comparison against the ROWID field. Or
+ ** we reference multiple rows using a "rowid IN (...)"
+ ** construct.
+ */
+ k = iDirectEq[i];
+ assert( k<nExpr );
+ assert( aExpr[k].p!=0 );
+ assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
+ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
+ if( aExpr[k].idxLeft==iCur ){
+ Expr *pX = aExpr[k].p;
+ if( pX->op!=TK_IN ){
+ sqliteExprCode(pParse, aExpr[k].p->pRight);
+ }else if( pX->pList ){
+ sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
+ pLevel->inOp = OP_SetNext;
+ pLevel->inP1 = pX->iTable;
+ pLevel->inP2 = sqliteVdbeCurrentAddr(v);
+ }else{
+ assert( pX->pSelect );
+ sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
+ sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
+ pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
+ pLevel->inOp = OP_Next;
+ pLevel->inP1 = pX->iTable;
+ }
+ }else{
+ sqliteExprCode(pParse, aExpr[k].p->pLeft);
+ }
+ aExpr[k].p = 0;
+ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk);
+ haveKey = 0;
+ sqliteVdbeAddOp(v, OP_NotExists, iCur, brk);
+ pLevel->op = OP_Noop;
+ }else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){
+ /* Case 2: There is an index and all terms of the WHERE clause that
+ ** refer to the index use the "==" or "IN" operators.
+ */
+ int start;
+ int testOp;
+ int nColumn = (pLevel->score+4)/8;
+ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
+ for(j=0; j<nColumn; j++){
+ for(k=0; k<nExpr; k++){
+ Expr *pX = aExpr[k].p;
+ if( pX==0 ) continue;
+ if( aExpr[k].idxLeft==iCur
+ && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
+ && pX->pLeft->iColumn==pIdx->aiColumn[j]
+ ){
+ if( pX->op==TK_EQ ){
+ sqliteExprCode(pParse, pX->pRight);
+ aExpr[k].p = 0;
+ break;
+ }
+ if( pX->op==TK_IN && nColumn==1 ){
+ if( pX->pList ){
+ sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
+ pLevel->inOp = OP_SetNext;
+ pLevel->inP1 = pX->iTable;
+ pLevel->inP2 = sqliteVdbeCurrentAddr(v);
+ }else{
+ assert( pX->pSelect );
+ sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
+ sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
+ pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
+ pLevel->inOp = OP_Next;
+ pLevel->inP1 = pX->iTable;
+ }
+ aExpr[k].p = 0;
+ break;
+ }
+ }
+ if( aExpr[k].idxRight==iCur
+ && aExpr[k].p->op==TK_EQ
+ && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
+ && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
+ ){
+ sqliteExprCode(pParse, aExpr[k].p->pLeft);
+ aExpr[k].p = 0;
+ break;
+ }
+ }
+ }
+ pLevel->iMem = pParse->nMem++;
+ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_NotNull, -nColumn, sqliteVdbeCurrentAddr(v)+3);
+ sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, brk);
+ sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0);
+ sqliteAddIdxKeyType(v, pIdx);
+ if( nColumn==pIdx->nColumn || pLevel->bRev ){
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
+ testOp = OP_IdxGT;
+ }else{
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
+ testOp = OP_IdxGE;
+ }
+ if( pLevel->bRev ){
+ /* Scan in reverse order */
+ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
+ sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
+ start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
+ sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk);
+ pLevel->op = OP_Prev;
+ }else{
+ /* Scan in the forward order */
+ sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
+ start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
+ sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
+ pLevel->op = OP_Next;
+ }
+ sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
+ sqliteVdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
+ sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
+ if( i==pTabList->nSrc-1 && pushKey ){
+ haveKey = 1;
+ }else{
+ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
+ haveKey = 0;
+ }
+ pLevel->p1 = pLevel->iCur;
+ pLevel->p2 = start;
+ }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
+ /* Case 3: We have an inequality comparison against the ROWID field.
+ */
+ int testOp = OP_Noop;
+ int start;
+
+ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
+ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
+ if( iDirectGt[i]>=0 ){
+ k = iDirectGt[i];
+ assert( k<nExpr );
+ assert( aExpr[k].p!=0 );
+ assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
+ if( aExpr[k].idxLeft==iCur ){
+ sqliteExprCode(pParse, aExpr[k].p->pRight);
+ }else{
+ sqliteExprCode(pParse, aExpr[k].p->pLeft);
+ }
+ sqliteVdbeAddOp(v, OP_ForceInt,
+ aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT, brk);
+ sqliteVdbeAddOp(v, OP_MoveTo, iCur, brk);
+ aExpr[k].p = 0;
+ }else{
+ sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
+ }
+ if( iDirectLt[i]>=0 ){
+ k = iDirectLt[i];
+ assert( k<nExpr );
+ assert( aExpr[k].p!=0 );
+ assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
+ if( aExpr[k].idxLeft==iCur ){
+ sqliteExprCode(pParse, aExpr[k].p->pRight);
+ }else{
+ sqliteExprCode(pParse, aExpr[k].p->pLeft);
+ }
+ /* sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1); */
+ pLevel->iMem = pParse->nMem++;
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
+ if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
+ testOp = OP_Ge;
+ }else{
+ testOp = OP_Gt;
+ }
+ aExpr[k].p = 0;
+ }
+ start = sqliteVdbeCurrentAddr(v);
+ pLevel->op = OP_Next;
+ pLevel->p1 = iCur;
+ pLevel->p2 = start;
+ if( testOp!=OP_Noop ){
+ sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
+ sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
+ sqliteVdbeAddOp(v, testOp, 0, brk);
+ }
+ haveKey = 0;
+ }else if( pIdx==0 ){
+ /* Case 4: There is no usable index. We must do a complete
+ ** scan of the entire database table.
+ */
+ int start;
+
+ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
+ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
+ start = sqliteVdbeCurrentAddr(v);
+ pLevel->op = OP_Next;
+ pLevel->p1 = iCur;
+ pLevel->p2 = start;
+ haveKey = 0;
+ }else{
+ /* Case 5: The WHERE clause term that refers to the right-most
+ ** column of the index is an inequality. For example, if
+ ** the index is on (x,y,z) and the WHERE clause is of the
+ ** form "x=5 AND y<10" then this case is used. Only the
+ ** right-most column can be an inequality - the rest must
+ ** use the "==" operator.
+ **
+ ** This case is also used when there are no WHERE clause
+ ** constraints but an index is selected anyway, in order
+ ** to force the output order to conform to an ORDER BY.
+ */
+ int score = pLevel->score;
+ int nEqColumn = score/8;
+ int start;
+ int leFlag, geFlag;
+ int testOp;
+
+ /* Evaluate the equality constraints
+ */
+ for(j=0; j<nEqColumn; j++){
+ for(k=0; k<nExpr; k++){
+ if( aExpr[k].p==0 ) continue;
+ if( aExpr[k].idxLeft==iCur
+ && aExpr[k].p->op==TK_EQ
+ && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
+ && aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
+ ){
+ sqliteExprCode(pParse, aExpr[k].p->pRight);
+ aExpr[k].p = 0;
+ break;
+ }
+ if( aExpr[k].idxRight==iCur
+ && aExpr[k].p->op==TK_EQ
+ && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
+ && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
+ ){
+ sqliteExprCode(pParse, aExpr[k].p->pLeft);
+ aExpr[k].p = 0;
+ break;
+ }
+ }
+ }
+
+ /* Duplicate the equality term values because they will all be
+ ** used twice: once to make the termination key and once to make the
+ ** start key.
+ */
+ for(j=0; j<nEqColumn; j++){
+ sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
+ }
+
+ /* Labels for the beginning and end of the loop
+ */
+ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
+ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
+
+ /* Generate the termination key. This is the key value that
+ ** will end the search. There is no termination key if there
+ ** are no equality terms and no "X<..." term.
+ **
+ ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
+ ** key computed here really ends up being the start key.
+ */
+ if( (score & 1)!=0 ){
+ for(k=0; k<nExpr; k++){
+ Expr *pExpr = aExpr[k].p;
+ if( pExpr==0 ) continue;
+ if( aExpr[k].idxLeft==iCur
+ && (pExpr->op==TK_LT || pExpr->op==TK_LE)
+ && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
+ && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
+ ){
+ sqliteExprCode(pParse, pExpr->pRight);
+ leFlag = pExpr->op==TK_LE;
+ aExpr[k].p = 0;
+ break;
+ }
+ if( aExpr[k].idxRight==iCur
+ && (pExpr->op==TK_GT || pExpr->op==TK_GE)
+ && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
+ && pExpr->pRight->iColumn==pIdx->aiColumn[j]
+ ){
+ sqliteExprCode(pParse, pExpr->pLeft);
+ leFlag = pExpr->op==TK_GE;
+ aExpr[k].p = 0;
+ break;
+ }
+ }
+ testOp = OP_IdxGE;
+ }else{
+ testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
+ leFlag = 1;
+ }
+ if( testOp!=OP_Noop ){
+ int nCol = nEqColumn + (score & 1);
+ pLevel->iMem = pParse->nMem++;
+ sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
+ sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, brk);
+ sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
+ sqliteAddIdxKeyType(v, pIdx);
+ if( leFlag ){
+ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
+ }
+ if( pLevel->bRev ){
+ sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
+ }else{
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
+ }
+ }else if( pLevel->bRev ){
+ sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk);
+ }
+
+ /* Generate the start key. This is the key that defines the lower
+ ** bound on the search. There is no start key if there are no
+ ** equality terms and if there is no "X>..." term. In
+ ** that case, generate a "Rewind" instruction in place of the
+ ** start key search.
+ **
+ ** 2002-Dec-04: In the case of a reverse-order search, the so-called
+ ** "start" key really ends up being used as the termination key.
+ */
+ if( (score & 2)!=0 ){
+ for(k=0; k<nExpr; k++){
+ Expr *pExpr = aExpr[k].p;
+ if( pExpr==0 ) continue;
+ if( aExpr[k].idxLeft==iCur
+ && (pExpr->op==TK_GT || pExpr->op==TK_GE)
+ && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
+ && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
+ ){
+ sqliteExprCode(pParse, pExpr->pRight);
+ geFlag = pExpr->op==TK_GE;
+ aExpr[k].p = 0;
+ break;
+ }
+ if( aExpr[k].idxRight==iCur
+ && (pExpr->op==TK_LT || pExpr->op==TK_LE)
+ && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
+ && pExpr->pRight->iColumn==pIdx->aiColumn[j]
+ ){
+ sqliteExprCode(pParse, pExpr->pLeft);
+ geFlag = pExpr->op==TK_LE;
+ aExpr[k].p = 0;
+ break;
+ }
+ }
+ }else{
+ geFlag = 1;
+ }
+ if( nEqColumn>0 || (score&2)!=0 ){
+ int nCol = nEqColumn + ((score&2)!=0);
+ sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
+ sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, brk);
+ sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
+ sqliteAddIdxKeyType(v, pIdx);
+ if( !geFlag ){
+ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
+ }
+ if( pLevel->bRev ){
+ pLevel->iMem = pParse->nMem++;
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
+ testOp = OP_IdxLT;
+ }else{
+ sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
+ }
+ }else if( pLevel->bRev ){
+ testOp = OP_Noop;
+ }else{
+ sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk);
+ }
+
+ /* Generate the the top of the loop. If there is a termination
+ ** key we have to test for that key and abort at the top of the
+ ** loop.
+ */
+ start = sqliteVdbeCurrentAddr(v);
+ if( testOp!=OP_Noop ){
+ sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
+ sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
+ }
+ sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
+ sqliteVdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont);
+ sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
+ if( i==pTabList->nSrc-1 && pushKey ){
+ haveKey = 1;
+ }else{
+ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
+ haveKey = 0;
+ }
+
+ /* Record the instruction used to terminate the loop.
+ */
+ pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
+ pLevel->p1 = pLevel->iCur;
+ pLevel->p2 = start;
+ }
+ loopMask |= getMask(&maskSet, iCur);
+
+ /* Insert code to test every subexpression that can be completely
+ ** computed using the current set of tables.
+ */
+ for(j=0; j<nExpr; j++){
+ if( aExpr[j].p==0 ) continue;
+ if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
+ if( pLevel->iLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){
+ continue;
+ }
+ if( haveKey ){
+ haveKey = 0;
+ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
+ }
+ sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
+ aExpr[j].p = 0;
+ }
+ brk = cont;
+
+ /* For a LEFT OUTER JOIN, generate code that will record the fact that
+ ** at least one row of the right table has matched the left table.
+ */
+ if( pLevel->iLeftJoin ){
+ pLevel->top = sqliteVdbeCurrentAddr(v);
+ sqliteVdbeAddOp(v, OP_Integer, 1, 0);
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
+ for(j=0; j<nExpr; j++){
+ if( aExpr[j].p==0 ) continue;
+ if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
+ if( haveKey ){
+ /* Cannot happen. "haveKey" can only be true if pushKey is true
+ ** an pushKey can only be true for DELETE and UPDATE and there are
+ ** no outer joins with DELETE and UPDATE.
+ */
+ haveKey = 0;
+ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
+ }
+ sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
+ aExpr[j].p = 0;
+ }
+ }
+ }
+ pWInfo->iContinue = cont;
+ if( pushKey && !haveKey ){
+ sqliteVdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0);
+ }
+ freeMaskSet(&maskSet);
+ return pWInfo;
+}
+
+/*
+** Generate the end of the WHERE loop. See comments on
+** sqliteWhereBegin() for additional information.
+*/
+void sqliteWhereEnd(WhereInfo *pWInfo){
+ Vdbe *v = pWInfo->pParse->pVdbe;
+ int i;
+ WhereLevel *pLevel;
+ SrcList *pTabList = pWInfo->pTabList;
+
+ for(i=pTabList->nSrc-1; i>=0; i--){
+ pLevel = &pWInfo->a[i];
+ sqliteVdbeResolveLabel(v, pLevel->cont);
+ if( pLevel->op!=OP_Noop ){
+ sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
+ }
+ sqliteVdbeResolveLabel(v, pLevel->brk);
+ if( pLevel->inOp!=OP_Noop ){
+ sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
+ }
+ if( pLevel->iLeftJoin ){
+ int addr;
+ addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
+ sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0));
+ sqliteVdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
+ if( pLevel->iCur>=0 ){
+ sqliteVdbeAddOp(v, OP_NullRow, pLevel->iCur, 0);
+ }
+ sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top);
+ }
+ }
+ sqliteVdbeResolveLabel(v, pWInfo->iBreak);
+ for(i=0; i<pTabList->nSrc; i++){
+ Table *pTab = pTabList->a[i].pTab;
+ assert( pTab!=0 );
+ if( pTab->isTransient || pTab->pSelect ) continue;
+ pLevel = &pWInfo->a[i];
+ sqliteVdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0);
+ if( pLevel->pIdx!=0 ){
+ sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0);
+ }
+ }
+#if 0 /* Never reuse a cursor */
+ if( pWInfo->pParse->nTab==pWInfo->peakNTab ){
+ pWInfo->pParse->nTab = pWInfo->savedNTab;
+ }
+#endif
+ sqliteFree(pWInfo);
+ return;
+}