1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
|
/*
Rosegarden
A sequencer and musical notation editor.
This program is Copyright 2000-2008
Guillaume Laurent <[email protected]>,
Chris Cannam <[email protected]>,
Richard Bown <[email protected]>
This file is Copyright 2002
Randall Farmer <[email protected]>
The moral right of the authors to claim authorship of this work
has been asserted.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include <iostream>
#include <string>
#include <map>
#include <algorithm>
#include <cmath> // fabs, pow
#include "NotationTypes.h"
#include "AnalysisTypes.h"
#include "Event.h"
#include "Segment.h"
#include "CompositionTimeSliceAdapter.h"
#include "BaseProperties.h"
#include "Composition.h"
#include "Profiler.h"
#include "Sets.h"
#include "Quantizer.h"
namespace Rosegarden
{
using std::string;
using std::cerr;
using std::endl;
using std::multimap;
using std::vector;
using std::partial_sort_copy;
///////////////////////////////////////////////////////////////////////////
// Miscellany (doesn't analyze anything)
///////////////////////////////////////////////////////////////////////////
Key
AnalysisHelper::getKeyForEvent(Event *e, Segment &s)
{
Segment::iterator i =
e ? s.findNearestTime(e->getAbsoluteTime()) //cc
: s.begin();
if (i==s.end()) return Key();
// This is an ugly loop. Is there a better way to iterate backwards
// through an STL container?
while (true) {
if ((*i)->isa(Key::EventType)) {
return Key(**i);
}
if (i != s.begin()) --i;
else break;
}
return Key();
}
///////////////////////////////////////////////////////////////////////////
// Simple chord identification
///////////////////////////////////////////////////////////////////////////
void
AnalysisHelper::labelChords(CompositionTimeSliceAdapter &c, Segment &s,
const Rosegarden::Quantizer *quantizer)
{
Key key;
if (c.begin() != c.end()) key = getKeyForEvent(*c.begin(), s);
else key = getKeyForEvent(0, s);
Profiler profiler("AnalysisHelper::labelChords", true);
for (CompositionTimeSliceAdapter::iterator i = c.begin(); i != c.end(); ++i) {
timeT time = (*i)->getAbsoluteTime();
// std::cerr << "AnalysisHelper::labelChords: time is " << time << ", type is " << (*i)->getType() << ", event is " << *i << " (itr is " << &i << ")" << std::endl;
if ((*i)->isa(Key::EventType)) {
key = Key(**i);
Text text(key.getName(), Text::KeyName);
s.insert(text.getAsEvent(time));
continue;
}
if ((*i)->isa(Note::EventType)) {
int bass = 999;
int mask = 0;
GlobalChord chord(c, i, quantizer);
if (chord.size() == 0) continue;
for (GlobalChord::iterator j = chord.begin(); j != chord.end(); ++j) {
long pitch = 999;
if ((**j)->get<Int>(BaseProperties::PITCH, pitch)) {
if (pitch < bass) {
assert(bass == 999); // should be in ascending order already
bass = pitch;
}
mask |= 1 << (pitch % 12);
}
}
i = chord.getFinalElement();
if (mask == 0) continue;
ChordLabel ch(key, mask, bass);
if (ch.isValid())
{
//std::cerr << ch.getName(key) << " at time " << time << std::endl;
Text text(ch.getName(key), Text::ChordName);
s.insert(text.getAsEvent(time));
}
}
}
}
// ChordLabel
/////////////////////////////////////////////////
ChordLabel::ChordMap ChordLabel::m_chordMap;
ChordLabel::ChordLabel()
{
checkMap();
}
ChordLabel::ChordLabel(Key key, int mask, int /* bass */) :
m_data()
{
checkMap();
// Look for a chord built on an unaltered scale step of the current key.
for (ChordMap::iterator i = m_chordMap.find(mask);
i != m_chordMap.end() && i->first==mask; ++i)
{
if (Pitch(i->second.m_rootPitch).isDiatonicInKey(key))
{
m_data = i->second;
}
}
/*
int rootBassInterval = ((bass - m_data.m_rootPitch + 12) % 12);
// Pretend nobody cares about second and third inversions
// (i.e., bass must always be either root or third of chord)
if (rootBassInterval > 7) m_data.m_type=ChordTypes::NoChord;
else if (rootBassInterval > 4) m_data.m_type=ChordTypes::NoChord;
// Mark first-inversion and root-position chords as such
else if (rootBassInterval > 0) m_data.m_inversion=1;
else m_data.m_inversion=0;
*/
}
std::string
ChordLabel::getName(Key key) const
{
return Pitch(m_data.m_rootPitch).getAsString(key.isSharp(), false) +
m_data.m_type;
// + (m_data.m_inversion>0 ? " in first inversion" : "");
}
int
ChordLabel::rootPitch()
{
return m_data.m_rootPitch;
}
bool
ChordLabel::isValid() const
{
return m_data.m_type != ChordTypes::NoChord;
}
bool
ChordLabel::operator<(const ChordLabel& other) const
{
if (!isValid()) return true;
return getName(Key()) < other.getName(Key());
}
bool
ChordLabel::operator==(const ChordLabel& other) const
{
return getName(Key()) == other.getName(Key());
}
void
ChordLabel::checkMap()
{
if (!m_chordMap.empty()) return;
const ChordType basicChordTypes[8] =
{ChordTypes::Major, ChordTypes::Minor, ChordTypes::Diminished,
ChordTypes::MajorSeventh, ChordTypes::DominantSeventh,
ChordTypes::MinorSeventh, ChordTypes::HalfDimSeventh,
ChordTypes::DimSeventh};
// What the basicChordMasks mean: each bit set in each one represents
// a pitch class (pitch%12) in a chord. C major has three pitch
// classes, C, E, and G natural; if you take the MIDI pitches
// of those notes modulo 12, you get 0, 4, and 7, so the mask for
// major triads is (1<<0)+(1<<4)+(1<<7). All the masks are for chords
// built on C.
const int basicChordMasks[8] =
{
1 + (1<<4) + (1<<7), // major
1 + (1<<3) + (1<<7), // minor
1 + (1<<3) + (1<<6), // diminished
1 + (1<<4) + (1<<7) + (1<<11), // major 7th
1 + (1<<4) + (1<<7) + (1<<10), // dominant 7th
1 + (1<<3) + (1<<7) + (1<<10), // minor 7th
1 + (1<<3) + (1<<6) + (1<<10), // half-diminished 7th
1 + (1<<3) + (1<<6) + (1<<9) // diminished 7th
};
// Each mask is inserted into the map rotated twelve ways; each
// rotation is a mask you would get by transposing the chord
// to have a new root (i.e., C, C#, D, D#, E, F...)
for (int i = 0; i < 8; ++i)
{
for (int j = 0; j < 12; ++j)
{
m_chordMap.insert
(
std::pair<int, ChordData>
(
(basicChordMasks[i] << j | basicChordMasks[i] >> (12-j))
& ((1<<12) - 1),
ChordData(basicChordTypes[i], j)
)
);
}
}
}
///////////////////////////////////////////////////////////////////////////
// Harmony guessing
///////////////////////////////////////////////////////////////////////////
void
AnalysisHelper::guessHarmonies(CompositionTimeSliceAdapter &c, Segment &s)
{
HarmonyGuessList l;
// 1. Get the list of possible harmonies
makeHarmonyGuessList(c, l);
// 2. Refine the list of possible harmonies by preferring chords in the
// current key and looking for familiar progressions and
// tonicizations.
refineHarmonyGuessList(c, l, s);
// 3. Put labels in the Segment. For the moment we just do the
// really naive thing with the segment arg to refineHarmonyGuessList:
// could do much better here
}
// #### explain how this works:
// in terms of other functions (simple chord labelling, key guessing)
// in terms of basic concepts (pitch profile, harmony guess)
// in terms of flow
void
AnalysisHelper::makeHarmonyGuessList(CompositionTimeSliceAdapter &c,
HarmonyGuessList &l)
{
if (*c.begin() == *c.end()) return;
checkHarmonyTable();
PitchProfile p; // defaults to all zeroes
TimeSignature timeSig;
timeT timeSigTime = 0;
timeT nextSigTime = (*c.begin())->getAbsoluteTime();
// Walk through the piece labelChords style
// no increment (the first inner loop does the incrementing)
for (CompositionTimeSliceAdapter::iterator i = c.begin(); i != c.end(); )
{
// 2. Update the pitch profile
timeT time = (*i)->getAbsoluteTime();
if (time >= nextSigTime) {
Composition *comp = c.getComposition();
int sigNo = comp->getTimeSignatureNumberAt(time);
if (sigNo >= 0) {
std::pair<timeT, TimeSignature> sig = comp->getTimeSignatureChange(sigNo);
timeSigTime = sig.first;
timeSig = sig.second;
}
if (sigNo < comp->getTimeSignatureCount() - 1) {
nextSigTime = comp->getTimeSignatureChange(sigNo + 1).first;
} else {
nextSigTime = comp->getEndMarker();
}
}
double emphasis =
double(timeSig.getEmphasisForTime(time - timeSigTime));
// Scale all the components of the pitch profile down so that
// 1. notes that are a beat/bar away have less weight than notes
// from this beat/bar
// 2. the difference in weight depends on the metrical importance
// of the boundary between the notes: the previous beat should
// get less weight if this is the first beat of a new bar
// ### possibly too much fade here
// also, fade should happen w/reference to how many notes played?
PitchProfile delta;
int noteCount = 0;
// no initialization
for ( ; i != c.end() && (*i)->getAbsoluteTime() == time; ++i)
{
if ((*i)->isa(Note::EventType))
{
try {
int pitch = (*i)->get<Int>(BaseProperties::PITCH);
delta[pitch % 12] += 1 << int(emphasis);
++noteCount;
} catch (...) {
std::cerr << "No pitch for note at " << time << "!" << std::endl;
}
}
}
p *= 1. / (pow(2, emphasis) + 1 + noteCount);
p += delta;
// 1. If there could have been a chord change, compare the current
// pitch profile with all of the profiles in the table to figure
// out which chords we are now nearest.
// (If these events weren't on a beat boundary, assume there was no
// chord change and continue -- ### will need this back)
/* if ((!(i != c.end())) ||
timeSig.getEmphasisForTime((*i)->getAbsoluteTime() - timeSigTime) < 3)
{
continue;
}*/
// (If the pitch profile hasn't changed much, continue)
PitchProfile np = p.normalized();
HarmonyGuess possibleChords;
possibleChords.reserve(m_harmonyTable.size());
for (HarmonyTable::iterator j = m_harmonyTable.begin();
j != m_harmonyTable.end();
++j)
{
double score = np.productScorer(j->first);
possibleChords.push_back(ChordPossibility(score, j->second));
}
// 3. Save a short list of the nearest chords in the
// HarmonyGuessList passed in from guessHarmonies()
l.push_back(std::pair<timeT, HarmonyGuess>(time, HarmonyGuess()));
HarmonyGuess& smallerGuess = l.back().second;
// Have to learn to love this:
smallerGuess.resize(10);
partial_sort_copy(possibleChords.begin(),
possibleChords.end(),
smallerGuess.begin(),
smallerGuess.end(),
cp_less());
#ifdef GIVE_HARMONYGUESS_DETAILS
std::cerr << "Time: " << time << std::endl;
std::cerr << "Profile: ";
for (int k = 0; k < 12; ++k)
std::cerr << np[k] << " ";
std::cerr << std::endl;
std::cerr << "Best guesses: " << std::endl;
for (HarmonyGuess::iterator debugi = smallerGuess.begin();
debugi != smallerGuess.end();
++debugi)
{
std::cerr << debugi->first << ": " << debugi->second.getName(Key()) << std::endl;
}
#endif
}
}
// Comparison function object -- can't declare this in the headers because
// this only works with pair<double, ChordLabel> instantiated,
// pair<double, ChordLabel> can't be instantiated while ChordLabel is an
// incomplete type, and ChordLabel is still an incomplete type at that
// point in the headers.
bool
AnalysisHelper::cp_less::operator()(ChordPossibility l, ChordPossibility r)
{
// Change name from "less?"
return l.first > r.first;
}
void
AnalysisHelper::refineHarmonyGuessList(CompositionTimeSliceAdapter &/* c */,
HarmonyGuessList &l, Segment &segment)
{
// (Fetch the piece's starting key from the key guesser)
Key key;
checkProgressionMap();
if (l.size() < 2)
{
l.clear();
return;
}
// Look at the list of harmony guesses two guesses at a time.
HarmonyGuessList::iterator i = l.begin();
// j stays ahead of i
HarmonyGuessList::iterator j = i + 1;
ChordLabel bestGuessForFirstChord, bestGuessForSecondChord;
while (j != l.end())
{
double highestScore = 0;
// For each possible pair of chords (i.e., two for loops here)
for (HarmonyGuess::iterator k = i->second.begin();
k != i->second.end();
++k)
{
for (HarmonyGuess::iterator l = j->second.begin();
l != j->second.end();
++l)
{
// Print the guess being processed:
// std::cerr << k->second.getName(Key()) << "->" << l->second.getName(Key()) << std::endl;
// For a first approximation, let's say the probability that
// a chord guess is correct is proportional to its score. Then
// the probability that a pair is correct is the product of
// its scores.
double currentScore;
currentScore = k->first * l->first;
// std::cerr << currentScore << std::endl;
// Is this a familiar progression? Bonus if so.
bool isFamiliar = false;
// #### my ways of breaking up long function calls are haphazard
// also, does this code belong here?
ProgressionMap::iterator pmi =
m_progressionMap.lower_bound(
ChordProgression(k->second, l->second)
);
// no initialization
for ( ;
pmi != m_progressionMap.end()
&& pmi->first == k->second
&& pmi->second == l->second;
++pmi)
{
// key doesn't have operator== defined
if (key.getName() == pmi->homeKey.getName())
{
// std::cerr << k->second.getName(Key()) << "->" << l->second.getName(Key()) << " is familiar" << std::endl;
isFamiliar = true;
break;
}
}
if (isFamiliar) currentScore *= 5; // #### arbitrary
// (Are voice-leading rules followed? Penalty if not)
// Is this better than any pair examined so far? If so, set
// some variables that should end up holding the best chord
// progression
if (currentScore > highestScore)
{
bestGuessForFirstChord = k->second;
bestGuessForSecondChord = l->second;
highestScore = currentScore;
}
}
}
// Since we're not returning any results right now, print them
std::cerr << "Time: " << j->first << std::endl;
std::cerr << "Best chords: "
<< bestGuessForFirstChord.getName(Key()) << ", "
<< bestGuessForSecondChord.getName(Key()) << std::endl;
std::cerr << "Best score: " << highestScore << std::endl;
// Using the best pair of chords:
// Is the first chord diatonic?
// If not, is it a secondary function?
// If so, change the current key
// If not, set an "implausible progression" flag
// (Is the score of the best pair of chords reasonable?
// If not, set the flag.)
// Was the progression plausible?
// If so, replace the ten or so chords in the first guess with the
// first chord of the best pair, set
// first-iterator=second-iterator, and ++second-iterator
// (and possibly do the real key-setting)
// If not, h.erase(second-iterator++)
// Temporary hack to get _something_ interesting out:
Event *e;
e = Text(bestGuessForFirstChord.getName(Key()), Text::ChordName).
getAsEvent(j->first);
segment.insert(new Event(*e, e->getAbsoluteTime(),
e->getDuration(), e->getSubOrdering()-1));
delete e;
e = Text(bestGuessForSecondChord.getName(Key()), Text::ChordName).
getAsEvent(j->first);
segment.insert(e);
// For now, just advance:
i = j;
++j;
}
}
AnalysisHelper::HarmonyTable AnalysisHelper::m_harmonyTable;
void
AnalysisHelper::checkHarmonyTable()
{
if (!m_harmonyTable.empty()) return;
// Identical to basicChordTypes in ChordLabel::checkMap
const ChordType basicChordTypes[8] =
{ChordTypes::Major, ChordTypes::Minor, ChordTypes::Diminished,
ChordTypes::MajorSeventh, ChordTypes::DominantSeventh,
ChordTypes::MinorSeventh, ChordTypes::HalfDimSeventh,
ChordTypes::DimSeventh};
// Like basicChordMasks in ChordLabel::checkMap(), only with
// ints instead of bits
const int basicChordProfiles[8][12] =
{
// 0 1 2 3 4 5 6 7 8 9 10 11
{1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0}, // major
{1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0}, // minor
{1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0}, // diminished
{1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1}, // major 7th
{1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0}, // dominant 7th
{1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0}, // minor 7th
{1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0}, // half-diminished 7th
{1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0} // diminished 7th
};
for (int i = 0; i < 8; ++i)
{
for (int j = 0; j < 12; ++j)
{
PitchProfile p;
for (int k = 0; k < 12; ++k)
p[(j + k) % 12] = (basicChordProfiles[i][k] == 1)
? 1.
: -1.;
PitchProfile np = p.normalized();
ChordLabel c(basicChordTypes[i], j);
m_harmonyTable.push_back(std::pair<PitchProfile, ChordLabel>(np, c));
}
}
}
AnalysisHelper::ProgressionMap AnalysisHelper::m_progressionMap;
void
AnalysisHelper::checkProgressionMap()
{
if (!m_progressionMap.empty()) return;
// majorProgressionFirsts[0] = 5, majorProgressionSeconds[0]=1, so 5->1 is
// a valid progression. Note that the chord numbers are 1-based, like the
// Roman numeral symbols
const int majorProgressionFirsts[9] =
{5, 2, 6, 3, 7, 4, 4, 3, 5};
const int majorProgressionSeconds[9] =
{1, 5, 2, 6, 1, 2, 5, 4, 6};
// For each major key
for (int i = 0; i < 12; ++i)
{
// Make the key
Key k(0, false); // tonicPitch = i, isMinor = false
// Add the common progressions
for (int j = 0; j < 9; ++j)
{
std::cerr << majorProgressionFirsts[j] << ", " << majorProgressionSeconds[j] << std::endl;
addProgressionToMap(k,
majorProgressionFirsts[j],
majorProgressionSeconds[j]);
}
// Add I->everything
for (int j = 1; j < 8; ++j)
{
addProgressionToMap(k, 1, j);
}
// (Add the progressions involving seventh chords)
// (Add I->seventh chords)
}
// (For each minor key)
// (Do what we just did for major keys)
}
void
AnalysisHelper::addProgressionToMap(Key k,
int firstChordNumber,
int secondChordNumber)
{
// majorScalePitches[1] should be the pitch of the first step of
// the scale, so there's padding at the beginning of both these
// arrays.
const int majorScalePitches[] = {0, 0, 2, 4, 5, 7, 9, 11};
const ChordType majorDiationicTriadTypes[] =
{ChordTypes::NoChord, ChordTypes::Major, ChordTypes::Minor,
ChordTypes::Minor, ChordTypes::Major, ChordTypes::Major,
ChordTypes::Minor, ChordTypes::Diminished};
int offset = k.getTonicPitch();
if (!k.isMinor())
{
ChordLabel firstChord
(
majorDiationicTriadTypes[firstChordNumber],
(majorScalePitches[firstChordNumber] + offset) % 12
);
ChordLabel secondChord
(
majorDiationicTriadTypes[secondChordNumber],
(majorScalePitches[secondChordNumber] + offset) % 12
);
ChordProgression p(firstChord, secondChord, k);
m_progressionMap.insert(p);
}
// else handle minor-key chords
}
// AnalysisHelper::ChordProgression
/////////////////////////////////////////////////
AnalysisHelper::ChordProgression::ChordProgression(ChordLabel first_,
ChordLabel second_,
Key key_) :
first(first_),
second(second_),
homeKey(key_)
{
// nothing else
}
bool
AnalysisHelper::ChordProgression::operator<(const AnalysisHelper::ChordProgression& other) const
{
// no need for:
// if (first == other.first) return second < other.second;
return first < other.first;
}
// AnalysisHelper::PitchProfile
/////////////////////////////////////////////////
AnalysisHelper::PitchProfile::PitchProfile()
{
for (int i = 0; i < 12; ++i) m_data[i] = 0;
}
double&
AnalysisHelper::PitchProfile::operator[](int i)
{
return m_data[i];
}
const double&
AnalysisHelper::PitchProfile::operator[](int i) const
{
return m_data[i];
}
double
AnalysisHelper::PitchProfile::distance(const PitchProfile &other)
{
double distance = 0;
for (int i = 0; i < 12; ++i)
{
distance += fabs(other[i] - m_data[i]);
}
return distance;
}
double
AnalysisHelper::PitchProfile::dotProduct(const PitchProfile &other)
{
double product = 0;
for (int i = 0; i < 12; ++i)
{
product += other[i] * m_data[i];
}
return product;
}
double
AnalysisHelper::PitchProfile::productScorer(const PitchProfile &other)
{
double cumulativeProduct = 1;
double numbersInProduct = 0;
for (int i = 0; i < 12; ++i)
{
if (other[i] > 0)
{
cumulativeProduct *= m_data[i];
++numbersInProduct;
}
}
if (numbersInProduct > 0)
return pow(cumulativeProduct, 1/numbersInProduct);
return 0;
}
AnalysisHelper::PitchProfile
AnalysisHelper::PitchProfile::normalized()
{
double size = 0;
PitchProfile normedProfile;
for (int i = 0; i < 12; ++i)
{
size += fabs(m_data[i]);
}
if (size == 0) size = 1;
for (int i = 0; i < 12; ++i)
{
normedProfile[i] = m_data[i] / size;
}
return normedProfile;
}
AnalysisHelper::PitchProfile&
AnalysisHelper::PitchProfile::operator*=(double d)
{
for (int i = 0; i < 12; ++i)
{
m_data[i] *= d;
}
return *this;
}
AnalysisHelper::PitchProfile&
AnalysisHelper::PitchProfile::operator+=(const PitchProfile& d)
{
for (int i = 0; i < 12; ++i)
{
m_data[i] += d[i];
}
return *this;
}
///////////////////////////////////////////////////////////////////////////
// Time signature guessing
///////////////////////////////////////////////////////////////////////////
// #### this is too long
// should use constants for basic lengths, not numbers
TimeSignature
AnalysisHelper::guessTimeSignature(CompositionTimeSliceAdapter &c)
{
bool haveNotes = false;
// 1. Guess the duration of the beat. The right beat length is going
// to be a common note length, and beat boundaries should be likely
// to have notes starting on them.
vector<int> beatScores(4, 0);
// durations of quaver, dotted quaver, crotchet, dotted crotchet:
static const int commonBeatDurations[4] = {48, 72, 96, 144};
int j = 0;
for (CompositionTimeSliceAdapter::iterator i = c.begin();
i != c.end() && j < 100;
++i, ++j)
{
// Skip non-notes
if (!(*i)->isa(Note::EventType)) continue;
haveNotes = true;
for (int k = 0; k < 4; ++k)
{
// Points for any note of the right length
if ((*i)->getDuration() == commonBeatDurations[k])
beatScores[k]++;
// Score for the probability that a note starts on a beat
// boundary.
// Normally, to get the probability that a random beat boundary
// has a note on it, you'd add a constant for each note on a
// boundary and divide by the number of beat boundaries.
// Instead, this multiplies the constant (1/24) by
// commonBeatDurations[k], which is inversely proportional to
// the number of beat boundaries.
if ((*i)->getAbsoluteTime() % commonBeatDurations[k] == 0)
beatScores[k] += commonBeatDurations[k] / 24;
}
}
if (!haveNotes) return TimeSignature();
int beatDuration = 0,
bestScore = 0;
for (int j = 0; j < 4; ++j)
{
if (beatScores[j] >= bestScore)
{
bestScore = beatScores[j];
beatDuration = commonBeatDurations[j];
}
}
// 2. Guess whether the measure has two, three or four beats. The right
// measure length should make notes rarely cross barlines and have a
// high average length for notes at the start of bars.
vector<int> measureLengthScores(5, 0);
for (CompositionTimeSliceAdapter::iterator i = c.begin();
i != c.end() && j < 100;
++i, ++j)
{
if (!(*i)->isa(Note::EventType)) continue;
// k is the guess at the number of beats in a measure
for (int k = 2; k < 5; ++k)
{
// Determine whether this note crosses a barline; points for the
// measure length if it does NOT.
int noteOffset = ((*i)->getAbsoluteTime() % (beatDuration * k));
int noteEnd = noteOffset + (*i)->getDuration();
if ( !(noteEnd > (beatDuration * k)) )
measureLengthScores[k] += 10;
// Average length of notes at measure starts
// Instead of dividing by the number of measure starts, this
// multiplies by the number of beats per measure, which is
// inversely proportional to the number of measure starts.
if ((*i)->getAbsoluteTime() % (beatDuration * k) == 0)
measureLengthScores[k] +=
(*i)->getDuration() * k / 24;
}
}
int measureLength = 0;
bestScore = 0; // reused from earlier
for (int j = 2; j < 5; ++j)
{
if (measureLengthScores[j] >= bestScore)
{
bestScore = measureLengthScores[j];
measureLength = j;
}
}
//
// 3. Put the result in a TimeSignature object.
//
int numerator = 0, denominator = 0;
if (beatDuration % 72 == 0)
{
numerator = 3 * measureLength;
// 144 means the beat is a dotted crotchet, so the beat division
// is a quaver, so you want 8 on bottom
denominator = (144 * 8) / beatDuration;
}
else
{
numerator = measureLength;
// 96 means that the beat is a crotchet, so you want 4 on bottom
denominator = (96 * 4) / beatDuration;
}
TimeSignature ts(numerator, denominator);
return ts;
}
///////////////////////////////////////////////////////////////////////////
// Key guessing
///////////////////////////////////////////////////////////////////////////
Key
AnalysisHelper::guessKey(CompositionTimeSliceAdapter &c)
{
if (c.begin() == c.end()) return Key();
// 1. Figure out the distribution of emphasis over the twelve
// pitch clases in the first few bars. Pitches that occur
// more often have greater emphasis, and pitches that occur
// at stronger points in the bar have greater emphasis.
vector<int> weightedNoteCount(12, 0);
TimeSignature timeSig;
timeT timeSigTime = 0;
timeT nextSigTime = (*c.begin())->getAbsoluteTime();
int j = 0;
for (CompositionTimeSliceAdapter::iterator i = c.begin();
i != c.end() && j < 100; ++i, ++j)
{
timeT time = (*i)->getAbsoluteTime();
if (time >= nextSigTime) {
Composition *comp = c.getComposition();
int sigNo = comp->getTimeSignatureNumberAt(time);
if (sigNo >= 0) {
std::pair<timeT, TimeSignature> sig = comp->getTimeSignatureChange(sigNo);
timeSigTime = sig.first;
timeSig = sig.second;
}
if (sigNo < comp->getTimeSignatureCount() - 1) {
nextSigTime = comp->getTimeSignatureChange(sigNo + 1).first;
} else {
nextSigTime = comp->getEndMarker();
}
}
// Skip any other non-notes
if (!(*i)->isa(Note::EventType)) continue;
try {
// Get pitch, metric strength of this event
int pitch = (*i)->get<Int>(BaseProperties::PITCH)%12;
int emphasis =
1 << timeSig.getEmphasisForTime((*i)->getAbsoluteTime() - timeSigTime);
// Count notes
weightedNoteCount[pitch] += emphasis;
} catch (...) {
std::cerr << "No pitch for note at " << time << "!" << std::endl;
}
}
// 2. Figure out what key best fits the distribution of emphasis.
// Notes outside a piece's key are rarely heavily emphasized,
// and the tonic and dominant of the key are likely to appear.
// This part is longer than it should be.
int bestTonic = -1;
bool bestKeyIsMinor = false;
int lowestCost = 999999999;
for (int k = 0; k < 12; ++k)
{
int cost =
// accidentals are costly
weightedNoteCount[(k + 1 ) % 12]
+ weightedNoteCount[(k + 3 ) % 12]
+ weightedNoteCount[(k + 6 ) % 12]
+ weightedNoteCount[(k + 8 ) % 12]
+ weightedNoteCount[(k + 10) % 12]
// tonic is very good
- weightedNoteCount[ k ] * 5
// dominant is good
- weightedNoteCount[(k + 7 ) % 12];
if (cost < lowestCost)
{
bestTonic = k;
lowestCost = cost;
}
}
for (int k = 0; k < 12; ++k)
{
int cost =
// accidentals are costly
weightedNoteCount[(k + 1 ) % 12]
+ weightedNoteCount[(k + 4 ) % 12]
+ weightedNoteCount[(k + 6 ) % 12]
// no cost for raised steps 6/7 (k+9, k+11)
// tonic is very good
- weightedNoteCount[ k ] * 5
// dominant is good
- weightedNoteCount[(k + 7 ) % 12];
if (cost < lowestCost)
{
bestTonic = k;
bestKeyIsMinor = true;
lowestCost = cost;
}
}
return Key(bestTonic, bestKeyIsMinor);
}
}
|