summaryrefslogtreecommitdiffstats
path: root/tde-i18n-en_GB/docs/tdeedu/kstars/calc-geodetic.docbook
diff options
context:
space:
mode:
authorTimothy Pearson <[email protected]>2011-12-03 11:05:10 -0600
committerTimothy Pearson <[email protected]>2011-12-03 11:05:10 -0600
commitf7e7a923aca8be643f9ae6f7252f9fb27b3d2c3b (patch)
tree1f78ef53b206c6b4e4efc88c4849aa9f686a094d /tde-i18n-en_GB/docs/tdeedu/kstars/calc-geodetic.docbook
parent85ca18776aa487b06b9d5ab7459b8f837ba637f3 (diff)
downloadtde-i18n-f7e7a923aca8be643f9ae6f7252f9fb27b3d2c3b.tar.gz
tde-i18n-f7e7a923aca8be643f9ae6f7252f9fb27b3d2c3b.zip
Second part of prior commit
Diffstat (limited to 'tde-i18n-en_GB/docs/tdeedu/kstars/calc-geodetic.docbook')
-rw-r--r--tde-i18n-en_GB/docs/tdeedu/kstars/calc-geodetic.docbook45
1 files changed, 45 insertions, 0 deletions
diff --git a/tde-i18n-en_GB/docs/tdeedu/kstars/calc-geodetic.docbook b/tde-i18n-en_GB/docs/tdeedu/kstars/calc-geodetic.docbook
new file mode 100644
index 00000000000..0419968435f
--- /dev/null
+++ b/tde-i18n-en_GB/docs/tdeedu/kstars/calc-geodetic.docbook
@@ -0,0 +1,45 @@
+<sect2 id="calc-geodetic">
+<title
+>Geodetic Coordinates module</title>
+<indexterm
+><primary
+>Tools</primary>
+<secondary
+>Astrocalculator</secondary>
+<tertiary
+>Geodetic Coordinates module</tertiary>
+</indexterm>
+
+<screenshot>
+<screeninfo
+>The Geodetic Coordinates calculator module </screeninfo>
+<mediaobject>
+ <imageobject>
+ <imagedata fileref="calc-geodetic.png" format="PNG"/>
+ </imageobject>
+ <textobject>
+ <phrase
+>Geodetic Coordinates</phrase>
+ </textobject>
+</mediaobject>
+</screenshot>
+
+<para
+>The normal <link linkend="ai-geocoords"
+>geographic coordinate system</link
+> assumes that the Earth is a perfect sphere. This is nearly true, so for most purposes geographic coordinates are fine. If very high precision is required, then we must take the true shape of the Earth into account. The Earth is an ellipsoid; the distance around the equator is about 0.3% longer than a <link linkend="ai-greatcircle"
+>Great Circle</link
+> that passes through the poles. The <firstterm
+>Geodetic Coordinate system</firstterm
+> takes this ellipsoidal shape into account, and expresses the position on the Earth's surface in Cartesian coordinates (X, Y, and Z). </para>
+<para
+>To use the module, first select which coordinates you will use as input in the <guilabel
+>Input Selection</guilabel
+> section. Then, fill in the input coordinates in either the <guilabel
+>Cartesian Coordinates</guilabel
+> section or the <guilabel
+>Geographic Coordinates</guilabel
+> section. When you press the <guibutton
+>Compute</guibutton
+> button, the corresponding coordinates will be filled in. </para>
+</sect2>