1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|
/**
This file is part of Kig, a KDE program for Interactive Geometry...
Copyright (C) 2002 Dominique Devriese <[email protected]>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
USA
**/
#ifndef KIG_MISC_COMMON_H
#define KIG_MISC_COMMON_H
#include "coordinate.h"
#include "rect.h"
#include <tqrect.h>
#include <tdeversion.h>
#include <vector>
#include <assert.h>
#ifdef KDE_IS_VERSION
#if KDE_IS_VERSION( 3, 1, 0 )
#define KIG_USE_KDOUBLEVALIDATOR
#else
#undef KIG_USE_KDOUBLEVALIDATOR
#endif
#else
#undef KIG_USE_KDOUBLEVALIDATOR
#endif
class ObjectImp;
class KigWidget;
extern const double double_inf;
/**
* Here, we define some algorithms which we need in
* various places...
*/
double getDoubleFromUser( const TQString& caption, const TQString& label, double value,
TQWidget* parent, bool* ok, double min, double max, int decimals );
/**
* Simple class representing a line. Used by various functions in Kig.
*/
class LineData {
public:
/**
* \ifnot creating-python-scripting-doc
* Default constructor. Sets a and b to the origin.
* \endif
*/
LineData() : a(), b() {}
/**
* Constructor. Sets a and b to the given Coordinates.
*/
LineData( const Coordinate& na, const Coordinate& nb ) : a( na ), b( nb ) {}
/**
* One point on the line.
*/
Coordinate a;
/**
* Another point on the line.
*/
Coordinate b;
/**
* The direction of the line. Equivalent to b - a.
*/
const Coordinate dir() const { return b - a; }
/**
* The length from a to b.
*/
double length() const { return ( b - a ).length(); }
/**
* Return true if this line is parallel to l.
*/
bool isParallelTo( const LineData& l ) const;
/**
* Return true if this line is orthogonal to l.
*/
bool isOrthogonalTo( const LineData& l ) const;
};
/**
* Equality. Tests two LineData's for equality.
*/
bool operator==( const LineData& l, const LineData& r );
/**
* This calcs the rotation of point a around point c by arc arc. Arc
* is in radians, in the range 0 < arc < 2*pi ...
*/
Coordinate calcRotatedPoint( const Coordinate& a, const Coordinate& c, const double arc );
/**
* this returns a point, so that the line through point t
* and the point returned is perpendicular to the line l.
*/
Coordinate calcPointOnPerpend( const LineData& l, const Coordinate& t );
/**
* this returns a point, so that the line through point t and the
* point returned is perpendicular to the direction given in dir...
*/
Coordinate calcPointOnPerpend( const Coordinate& dir, const Coordinate& t );
/**
* this returns a point, so that the line through point t
* and the point returned is parallel with the line l
*/
Coordinate calcPointOnParallel( const LineData& l, const Coordinate& t );
/**
* this returns a point, so that the line through point t
* and the point returned is parallel with the direction given in dir...
*/
Coordinate calcPointOnParallel( const Coordinate& dir, const Coordinate& t );
/**
* this calcs the point where the lines l and m intersect...
*/
Coordinate calcIntersectionPoint( const LineData& l, const LineData& m );
/**
* this calcs the intersection points of the circle with center c and
* radius sqrt( r ), and the line l. As a circle and a
* line have two intersection points, side tells us which one we
* need... It should be 1 or -1. If the line and the circle have no
* intersection, valid is set to false, otherwise to true...
* Note that sqr is the _square_ of the radius. We do this to avoid
* rounding errors...
*/
const Coordinate calcCircleLineIntersect( const Coordinate& c,
const double sqr,
const LineData& l,
int side );
/**
* this calcs the intersection points of the arc with center c,
* radius sqrt( r ), start angle sa and angle angle, and the line l.
* As a arc and a line can have max two intersection points, side
* tells us which one we need... It should be 1 or -1. If the line
* and the arc have no intersection, valid is set to false, otherwise
* to true... Note that sqr is the _square_ of the radius. We do
* this to avoid rounding errors...
*/
const Coordinate calcArcLineIntersect( const Coordinate& c, const double sqr,
const double sa, const double angle,
const LineData& l, int side );
/**
* this calculates the perpendicular projection of point p on line
* ab...
*/
const Coordinate calcPointProjection( const Coordinate& p,
const LineData& l );
/**
* calc the distance of point p to the line through a and b...
*/
double calcDistancePointLine( const Coordinate& p,
const LineData& l );
/**
* this sets p1 and p2 to p1' and p2' so that p1'p2' is the same line
* as p1p2, and so that p1' and p2' are on the border of the Rect...
*/
void calcBorderPoints( Coordinate& p1, Coordinate& p2, const Rect& r );
/**
* overload...
*/
void calcBorderPoints( double& xa, double& xb, double& ya, double& yb, const Rect& r);
/**
* cleaner overload, intended to replace the above two...
*/
const LineData calcBorderPoints( const LineData& l, const Rect& r );
/**
* this does the same as the above function, but only for b..
*/
void calcRayBorderPoints( const Coordinate& a, Coordinate& b, const Rect& r );
/**
* This function calculates the center of the circle going through the
* three given points..
*/
const Coordinate calcCenter(
const Coordinate& a, const Coordinate& b, const Coordinate& c );
/**
* overload...
*/
void calcRayBorderPoints( const double xa, const double xb, double& ya,
double& yb, const Rect& r );
/**
* calc the mirror point of p over the line l
*/
const Coordinate calcMirrorPoint( const LineData& l,
const Coordinate& p );
/**
* test collinearity of three points
*/
bool areCollinear( const Coordinate& p1, const Coordinate& p2,
const Coordinate& p3 );
/**
* test if a 2x2 matrix is singular (relatively to the
* norm of the two row vectors)
*/
bool isSingular( const double& a, const double& b,
const double& c, const double& d );
/**
* is o on the line defined by point a and point b ?
* fault is the allowed difference...
*/
bool isOnLine( const Coordinate& o, const Coordinate& a,
const Coordinate& b, const double fault );
/**
* is o on the segment defined by point a and point b ?
* this calls isOnLine(), but also checks if o is "between" a and b...
* fault is the allowed difference...
*/
bool isOnSegment( const Coordinate& o, const Coordinate& a,
const Coordinate& b, const double fault );
bool isOnRay( const Coordinate& o, const Coordinate& a,
const Coordinate& b, const double fault );
bool isOnArc( const Coordinate& o, const Coordinate& c, const double r,
const double sa, const double a, const double fault );
Coordinate calcCircleRadicalStartPoint( const Coordinate& ca,
const Coordinate& cb,
double sqra, double sqrb );
/**
* Is the line, segment, ray or vector inside r ? We need the imp to
* distinguish between rays, lines, segments or whatever.. ( we use
* their contains functions actually.. )
*/
bool lineInRect( const Rect& r, const Coordinate& a, const Coordinate& b,
const int width, const ObjectImp* imp, const KigWidget& w );
template <typename T>
T kigMin( const T& a, const T& b )
{
return a < b ? a : b;
}
template <typename T>
T kigMax( const T& a, const T& b )
{
return a > b ? a : b;
}
template <typename T>
T kigAbs( const T& a )
{
return a >= 0 ? a : -a;
}
template <typename T>
int kigSgn( const T& a )
{
return a == 0 ? 0 : a > 0 ? +1 : -1;
}
extern const double test_threshold;
#endif
|